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Abstract

A challenge in using fully autonomous robots in human-robot interaction (HRI) is to design
behavior that is engaging enough to encourage voluntary, long-term interaction, yet robust
to the perturbations induced by human interaction. It has been repeatedly argued that
intrinsic motivations (IMs) are crucial for human development, so it seems reasonable that
this mechanism could produce an adaptive and developing robot, which is interesting to
interact with. This thesis evaluates whether an intrinsically motivated robot can lead to
sustained HRI.

Recent research showed that robots which ‘appeared’ intrinsically motivated raised interest
in the human interaction partner. The displayed IMs resulted from ‘unpredictably’ asking a
question or from a self-disclosing statement. They were designed with the help of pre-defined
scripts or teleoperation. An issue here is that this practice renders the behavior less robust
toward unexpected input or requires a trained human in the loop.

Instead, this thesis proposes a computational model of IM to realize fully autonomous and
adaptive behavior generation in a robot. Previous work showed that predictive information
maximization leads to playful, exploratory behavior in simulated robots that is robust to
changes in the robot’s morphology and environment. This thesis demonstrates how to deploy
the formalism on a physical robot that interacts with humans.

The thesis conducted three within-subjects studies, where participants interacted with a
fully autonomous Sphero BB8 robot with two behavioral regimes: one realizing an adaptive,
intrinsically motivated behavior and the other being reactive, but not adaptive. The first
study contributes to the idea of the overall proposed study design: the interaction needs
to be designed in such a way, that participants are not given any idea of the robot’s task.
The second study implements this idea, letting participants focus on answering the question
of whether the robots are any different. It further contributes ideas for a more ‘challeng-
ing’ baseline behavior motivating the third and final study. Here, a systematic baseline is
generated and shows that participants perceive it as almost indistinguishable and similarly
animated compared to the intrinsically motivated robot. Despite the emphasis on the design
of similarly perceived baseline behaviors, quantitative analyses of post-interaction question-
naires after each study showed a significantly higher perception of the dimension ‘Warmth’ for
the intrinsically motivated robot compared to the baseline behavior. Warmth is considered
a primary dimension for social attitude formation in social cognition. A human perceived as
warm (i.e. friendly and trustworthy) experiences more positive social interactions.

The Robotic Social Attribute Scale (RoSAS) implements the scale dimension Warmth for
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the HRI domain, which has been validated with a series of still images. Going beyond static
images, this thesis provides support for the use and applicability of this scale dimension for
the purpose of comparing behaviors. It shows that participants prefer to continue interacting
with the robot they perceive highest in Warmth.

This research opens new research avenues, in particular with respect to different physical
robots and longitudinal studies, which are ought to be performed to corroborate the results
presented here. However, this thesis shows the general methods presented here, which do not
require a human operator in the loop, can be used to imbue robots with behavior leading to
positive perception by their human interaction partners, which can yield sustained HRI.
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Chapter 1.

Introduction

1.1. Motivation

This thesis investigates whether intrinsically motivated, fully autonomous robots are a com-
pelling tool to pave the way toward sustained human-robot interaction (HRI).

I started my work with the aim to create a robot mediator for the therapy given to children
with autism. My goal was to find dyads of children, who share the interest to interact with
a robot, to bring them together and to help develop friendships between the children: a
rare occurrence among children with autism. I quickly faced the challenge of implementing
interesting behavior, which would enable and sustain interactions between the children and
the robot. This became a tedious task, keeping the robot predictable enough to have the
children with autism feel comfortable interacting with it, but also giving the robot enough
variability to keep the interaction interesting, to avoid boredom among the children. In other
words, I tried to sustain the interaction. I quickly found myself in a situation where I tweaked
sets of parameters per each of the 20 children I worked with. Also, more generally, and
independent of the particular child, I started to have different behavior implementations for
the robot, to keep the children interested. It became clear that this task required a specialist
for tweaking the right parameters for each of the children, similarly to the requirement of a
specialist to operate robots for other therapeutic uses, or general therapy for children with
autism. My goal, however, has been to bring a robot to children’s homes, to families who
cannot afford to have their children visit a special care unit, or to families living so remote
that a care unit is simply out of scope.

In HRI, scientists have focused on the interaction with robots in constrained environments.
For example, robots which offer guidance and help in a hotel lobby (Pinillos et al. 2016) or
robots which play games to educate children (e.g. Wainer et al. 2014). This way robots could
follow a set of given rules, which they could handle with pre-scripted behavior. What is still
far out of reach is an understanding of how a robot can develop its behavior. How will they
learn to cope with humans in an environment shaped by humans? This thesis contributes to
close that gap.

To achieve this, I took a step back, and looked into the research of what is known about
behavior generation. Broadly speaking, how can we have a robot grow with us, so that
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Chapter 1. Introduction

it learns the needs of the humans, rather than getting those needs induced by some code
enabling a set of rules. When thinking about this, the idea of autonomy comes to mind.
Autonomy is a complex term without a central definition across research fields (Boden 2008;
Ziemke 2008). Autonomy can merely mean robots that are not directly controlled by a
human operator, with autonomy used as a dimension of the experimental design (Huang et
al. 2004; Stubbs et al. 2007). Autonomy might also be referring to the concept of self-making
or self-law-giving, which is closely related to autopoiesis (Maturana and Varela 1991; Froese
and Ziemke 2009). In Self-Determination Theory (SDT) autonomy refers to being in control
of one’s own life, which can be seen as a close enough analogy for living systems (Paolo 2004).
SDT also assumes that there is a drive to maintain this state of autonomy, which we do not
see in general with autonomous robots. We might see autonomy used as the idea that a
robot should strive to maintain operational autonomy, i.e., not be in need of external help,
but it is usually not referred to in this way.

SDT posits that humans have an inherent tendency to seek out novelty and challenges, to
extend and exercise their capacities to explore and to learn, without having to be coerced
by an extrinsic reward. According to SDT, humans have inherent drives for competence,
autonomy and relatedness. Closely related to SDT, and originating from psychology, the
concept of intrinsic motivation (IM) describes these drives (Ryan and Deci 2000).

IM has been extensively studied by psychologists since the 1940s, yielding a large body
of work. Both a multitude of approaches for describing the phenomenon and a variety of
definitions for IM exist. Hull (1943) introduced the theory of drives, which are construed as
stressful perturbations (e.g. hunger) an organism tries to reduce. This idea was challenged
by White (1959), with the argument that activities based on IMs have different, in particular
non-homeostatic, dynamics. Ryan and Deci (2000), to present one of the most popular exam-
ples, define intrinsic motivation as the “doing [...] of an activity for its inherent satisfactions
rather than for some separable consequence”. An agent is moved to do something for the
enjoyment of the activity itself, for the “fun or [the] challenge entailed rather than because
of external products, pressures, or rewards” (ibid., pg. 56).

Concepts like fun and challenge are presented as crucial for the definition of IM in psychol-
ogy and yet the literature lacks consensus on what these concepts are (Oudeyer and Kaplan
2009). This missing consensus and the resulting vagueness of the definition makes it impos-
sible to transfer it directly onto a robotic system. Research in HRI circumvents this issue
by mimicking IM designed by humans. For example, Kanda et al. (2010) developed a semi-
teleoperated mall robot and incrementally added novel behaviors, such as self-disclosure. A
field trial indicates that the robot attracted recurring visitors, without increasing its ser-
vices. One existing approach in social robots in education is to develop robots with a set of
hand-designed questions, comments and statements (Gordon et al. 2015; Ceha et al. 2019).
This makes the robots appear curious, which elicits curiosity in the humans as well, which in
turn enhances learning and memory retention (Oudeyer, Gottlieb, et al. 2016). Curiosity is
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part of the broader concept of IM (ibid.), or is even used synonymously for intrinsic motiva-
tion (Schmidhuber 1991). While the studies above are promising to use IM in robots in order
to sustain HRI, they raised the same issues posed at the beginning of this introduction: they
either needed a constrained context, a specific task (e.g. Gordon et al. 2015; Pinillos et al.
2016), or were relying on humans teleoperating the robot (e.g. Kanda et al. 2010; Ceha et al.
2019). Teleoperation, or the Wizard-of-Oz model, remains the state of the art for many HRI
studies (Clabaugh and Matarić 2019). This is caused by the challenge to define a sufficient
set of execution rules (i.e. behaviors) for an HRI task; this holds true even in a laboratory
setting. It remains elusive to achieve autonomous, social behavior in an unconstrained envi-
ronment, i.e., for any given task or goal in the real world (Christensen et al. 2016; Belpaeme
et al. 2018). However, developing a robot driven by an actual IM implementation might
offer a solution to both problems. If successful, this would provide us with a robust behavior
generation mechanism that allows us to “Escape Oz” (Clabaugh and Matarić 2019), while
also producing behavior that appears curious, or similarly engaging to the human interaction
partner. This would reduce the reliance on human adaptation or teleoperation, and could
provide a promising pathway toward having robots more easily deployed in our everyday
lives.

However, the question remains, how to build a computational model based on relatively
vague psychological definitions? Already early on, Schmidhuber (1991) looked into the
computation of artificial curiosity, where an agent chooses actions to maximize its learn-
ing progress. Later, Oudeyer and Kaplan (2008) characterize IM in the following, broadly
accepted way:

An activity or an experienced situation, be it physical or imaginary, is intrinsically
motivating for an autonomous entity if its interest depends primarily on the
collation or comparison of information from different stimuli [...].

[...] the information that is compared has to be understood in an information the-
oretic perspective [...], independently of their meaning. As a consequence, mea-
sures which pre-suppose the meaning of stimuli, i.e. the meaning of sensorimotor
channels (e.g. the fact that a measure is a measure of energy or temperature or
color), do not characterize intrinsically motivating activities or situations.

Ultimately, any heteronomy during the development or creation of an agent would make
them extrinsic and hence undermine their very nature, i.e. computational models of IMs on
robots are usually put on those robots by humans, and are thus actually extrinsic. There-
fore, computational models of IM are another attempt to merely reproduce the behavior or
functionality of genuinely IM in organisms, with the added benefit that no human operator
is present in the loop. When I talk about IM on a robot, I exclusively refer to the above
definition of IM from a computational perspective.

Nowadays, there is a range of formal models that roughly fall under the header of intrinsic
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motivation, such as the free energy principle (Friston 2010), homeokinesis (Der and Martius
2012), empowerment (Klyubin et al. 2005), learning progress (Kaplan and Oudeyer 2004),
the autotelic principle (Steels 2004). These models have a range of commonalities: they are
free of semantics, task-independent, universal and can be computed from an agent’s subjec-
tive perspective. Most of the work related to IMs focuses on how they create “reasonable”
behavior (in some suitable sense) for simulated agents. There has been some work in the do-
main of computer games that focuses more explicitly on the relationship between intrinsically
motivated agents and humans, and how an IM could generate more believable non-player
characters (Merrick and Maher 2009) or produce generic companions (Guckelsberger et al.
2016). So far, IMs have been deployed on simulated and physical robots (e.g. Oudeyer, Ka-
plan, and Hafner 2007; Der and Martius 2012; Martius, Jahn, et al. 2014), but, as far as
I know, there has not yet been an HRI study that evaluated the perception of intrinsically
motivated robots from the perspective of humans.

This thesis uses predictive information (PI) maximization as a realization of a computa-
tional model for IM, an “internal, task independent motivation for the development of [...]
behavior” (Der, Güttler, et al. 2008). The PI formalism fits the above characterization: it is
an information-theoretic measure in the sensor space, which quantifies the information con-
tained in a preceding series of sensory input for a consecutive sequence. An agent maximizing
its predictive information will derive a rich and variable sensor future while, at the same time,
keeping it as predictable as possible from past sensory input. Martius, Der, et al. (2013b)
developed an approximation for computing PI for non-linear and non-stationary dynamics,
which allows applying the measure to a real robotic system, inhabiting a real world: time-
local predictive information (TiPI). The core idea is to only maximize PI based on states
that are a few steps back in time, rather than the full history. For animals and humans, it is
essential to modify their behavior intrinsically motivated to enable further development. An
algorithm that is capable of enabling this in a robot might be perceived as more familiar by
a human participant, increasing the human’s interest in the robot as an interaction partner,
and thus bringing the search of sustainable HRI a step closer. One contribution of this thesis
is the evidence that the TiPI maximization can be applied to a physical robot in an HRI
scenario.

Applying the above formalism to a robot, and letting it generate its behavior by itself, may
raise skepticism for some people. One particular concern is likely to be the predictability
of its behavior. Section 2.3 outlines that the above formalism, by design, is not predictable
and results in exploratory behavior. The authors argue that it allows for self-organization
of complex behavior (ibid.). In other words, such a robot is able to independently explore
its environment by exploring its sensor space. This, in turn, as it has been argued above, is
seen as a key feature in autonomy for both natural and artificial systems (Boden 2008).

In some HRI scenarios this may yield discomfort: humans probably expect a robot to be
predictable when it comes to critical tasks. Otherwise, depending on the robot’s strength,
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there is a risk that the robot will cause damage or harm. The literature in behavioral science
is non-conclusive when it comes to the perception of unpredictable behavior in interpersonal
interaction. However, there is evidence that a degree of unpredictability might be a cause for
the human’s interest. Grillon et al. (2004) showed that unpredictable and aversive stimuli
lead to a more sustained level of anxiety when compared to stimuli that were predictable
and aversive. In contrast, agent behavior research by Bickmore et al. (2010) indicates that
a degree of unpredictability in the behavior of an animated human might be essential to
sustain engagement of the human participants in longitudinal interactions. In other words,
if a longitudinal interaction is too predictive, the human participant might simply get bored.
Fukuda and Ueda (2010) conducted an HRI experiment investigating the difference between
a fully reactive robot, and a robot which is mostly reactive: that is a robot which responded
as predicted in most scenarios, but a level of noise also let it react unpredictably. They found
that the participants who observed the HRI scenario preferred the fully reactive robot. How-
ever, participants who interacted with the robot seemed to value a level of unpredictability.
Interestingly, maximizing TiPI creates behavior somewhere between chaos and predictability.
These properties give more weight to the hypothesis that an intrinsically motivated robot
makes a human participant want to interact further with the robot, and therefore sustains
the interaction.

This leads us to the critical question: how can the human’s intention to continue engaging
in an interaction – the sustainability of HRI – be measured? Unarguably, the best way
would be to deploy robot companions into households and measure how much people engage
in interacting with the robots. This, however, yields a chicken and egg problem. We know
such robots do not exist as of now, so there still needs to be development in order to pass this
test. An alternative approach, as the one employed in this thesis, is to indirectly measure
sustainability with the help of other dimensions. In social cognition, one popular measure
to understand human’s social attitude formation and their resulting behaviors are the two
central (or universal) dimensions Warmth and Competence. Fiske et al. (2007) argue that, in
order for humans to be perceived positively and experience more interaction by their peers,
humans need to be perceived high in Competence and Warmth. The dimension Warmth
is primary to understand whether this perception is positive, while Competence measures
its intensity (e.g. Cuddy et al. 2007; Abele, Hauke, et al. 2016). Carpinella et al. (2017)
designed the Robotic Social Attribute Scale (RoSAS) transferring the dimensions of Warmth
and Competence to the domain of HRI. This questionnaire provides an ideal handle for
investigating how the behavior generated by TiPI maximization is perceived. Intuitively,
being able to generate behavior capable of sustaining the interaction should suffice to score
high in Warmth. How high in Warmth is high enough? This is a matter of investigation.
However, one main contribution of this thesis is that it provides evidence that there is a link
between participants’ responses to Warmth and their preferred behavior. Specifically, the
thesis shows that human participants prefer to continue interacting with the robot behavior
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they perceive highest in Warmth.
In summary, there are two main research questions this thesis addresses. Firstly, how to

measure sustainability in HRI? Secondly, can an intrinsically motivated robot sustain HRI?
In order to answer these research questions, a few intermediate research objectives emerged.
One has been already outlined: is there a computational model of IM that can be applied
to a robot in an HRI scenario. This thesis shows that TiPI is a good candidate. Another
question concerns the design of a suitable study to understand the impact of intrinsically
motivated autonomy in robots. This thesis provides a design that addresses several issues
related to these questions, such as a suitable robot platform, a suitable baseline behavior
and a way to encourage unbiased interaction.

The thesis consists of three interaction studies that approach these intermediate objec-
tives incrementally and contributes to answering the main research questions outlined in
section 1.2. Section 1.3 provides an overview of this thesis, while section 1.4 summarizes its
contributions in regard to the research questions and objectives.

1.2. Research questions

RQ1 Can dimensions of social cognition be employed to measure human participants’ pref-
erences of robot behavior in order to understand what may sustain the interaction
between humans and robots?1

RQ2 Can an autonomously, intrinsically motivated robot, sustain the interaction with hu-
mans?

In order to address the main research questions above, two intermediate research objectives
emerged:

O1 To identify a suitable computational model of IM that can be applied to a robot in an
HRI scenario.

O2 To develop a good study design for investigating the human perception of intrinsically
motivated robots.

1.3. Overview

Chapter 2. This chapter presents the background and technical developments that are
needed for this thesis. It first focuses on what exactly constitutes as intrinsic motivation (IM),
and how it could be applied to the robot. The chosen robot platform was the BB8 version
of a Sphero, which is described in section 2.5. The limited, non-humanoid robot was chosen
in order to limit participants’ expectations of the robot’s capabilities. A computational

1Note that the focus on social cognition dimensions was a result of the first study of chapter 3.
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model of IM needs to fulfill two main criteria in order to be robustly applicable to this robot
platform in a real-world human-robot interaction (HRI) scenario: (i) it needs to cover an
infinite number of states, i.e., it needs to be able to work on a large range of continuous
sensor input and (ii) it needs to be computable.

The chapter proposes a computational model for IM which maximizes the time-local pre-
dictive information (TiPI) introduced by Martius, Der, et al. (2013b). TiPI uses past obser-
vations to quantify how many of the future states are predictable, therefore to maximize this
quantity the robot has to generate a rich sensory input. The chapter derives the formulas to
compute TiPI, along with a discussion of the needed approximations and their implications
when applying them to robots. Two approximations have a direct impact on designing the
studies: (i) prediction errors need to be very small and Gaussian and (ii) the noise must be
independent of controller parameters. It is explained that approximation (i) determined the
choice of sensory input, which made proprioceptive sensors, such as speed or acceleration
sensors, a sensible choice. However, section 2.6 shows that for the chosen robot platform the
measured servo speed is not solely dependent on the control for that servo. This means that
when using the measured servo speed as an input, the error of that proprioceptive sensor de-
pends on the controller parameters, which violated approximation (ii). The chapter presents
a simple motion model based on linear equations to break this dependency and shows that
the use of this model enabled a rich behavior generation.

Another technical development presented in this chapter is the sensor system which was
used in the final study, presented in chapter 5. It used the received signal strength of
Bluetooth Low Energy (BLE) to derive proximity information between the robot and the
human. It can also enable a robot to distinguish between humans in its vicinity and enable
it to recognize touch gestures, but these functionalities were not employed in this thesis. The
sensor system is a contribution of this thesis.

The main contribution of the chapter, however, is that it addresses the first research
objective O1: TiPI maximization is a possible computational model for IM, which can be
applied to a real, minimal robot in an HRI scenario.

Chapter 3. This chapter presents the first of three interaction studies and discusses its
results. It was a within-subjects study (N = 16) which compared an intrinsically motivated
robot to a reactive baseline behavior. The main contribution of this chapter is the systematic
development of this baseline behavior. Before conducting a study, the intrinsically motivated
robot was placed in the study environment and it adapted its parameters. The adaptation
was then stopped and the robot used constant, but adapted, parameters to serve as a baseline
during the study.

The robots in the study were both reactive to the same input sensors and both used the
built-in balancing controller to locomote. The controller keeps the robots upright by using
the heading and speed information as input. This also created a wide variety of behaviors in
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the baseline.
The chapter also presents the first approach to design a suitable study. The main idea

was to create a situation that enforced HRI, while allowing participants to see the robots’
capability to adapt. Therefore the participants were tasked with preventing the robot from
falling, while a robot moved on a table with an open edge. Additional complexity was added
to the environment by adjusting the altitude and friction on different areas of the table. This
was included to further emphasize the strength of the adaptive robot.

The chapter then discusses the results of the study, which highlighted areas that needed
to be redesigned. Evidently, the task created the assumption that the robot’s goal was to
remain on the table, and participants considered any deviation from this as faulty or suicidal
behavior. As a result, and contrary to the hypothesis, the intrinsically motivated robot was
considered the least competent. However, the results also showed that a medium effect of
Warmth was perceived in the intrinsically motivated robot. The chapter goes on to explain
how the dimensions Warmth and Competence are central to social cognition, and that humans
who are perceived as high in Warmth experience more positive social interactions from their
peers (e.g. Abele and Wojciszke 2007). The chapter then guides the focus of this research
toward the effects of Warmth.

Chapter 4. This chapter presents the second study (N = 24) and the specific design changes
which followed the previous study. These changes were (i) concentrate on the perception of
Warmth and (ii) enable behavior generation solely based on the robot’s IMs.

Firstly, the environment was changed in order to fully focus on the perception of Warmth.
The table was now circular, had no friction or altitude variations and was fully enclosed.
Without the open edge, a second change became necessary to motivate interaction. The
participants were now presented with a game-like task, with instructions “to find out whether
the two presented robots are different”. The game was thought to prevent the participants
from implicitly assuming a robot’s goal, which does not match the robot’s behavior. This
game design also encouraged interaction by exploiting the participant’s interest to perform
well (e.g. Orne 1962). The study introduces the wand-shaped tool. The idea is that a tool
that was provided for interacting with the robot causes the participants to feel the urge to
use it, which in turn further encourages interaction.

Secondly, the intrinsically motivated robot used the motion model (cf. 2.6) to directly
change the speed of its two servos, instead of using the balancing controller. This way the
robot’s behavior is only influenced by its IMs, unconstrained from additional software. This
allowed to further focus the analysis on the perception of intrinsically motivated autonomy.

The results in this chapter indicated that the changes to the study design were successful, as
the participants perceived both robots as similarly competent and intelligent. Additionally,
the results on the Warmth dimension were not influenced by the perception of the robot’s
Competence (cf. Fiske et al. 2007). And, most importantly, the chapter presents results that
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show the intrinsically motivated robot was perceived statistically significantly warmer than
the baseline behavior.

However, results also showed that both behaviors were perceived very differently and the
intrinsically motivated robot was even perceived as more animated. It is known that humans
perceive robots and even objects as animated if the cause of their movement changes are
not obvious to the observer (e.g. Castro-González et al. 2016). This raised the concern that
the motion regimes of the baseline robot were too different (maybe even too predictable) in
comparison to those of the intrinsically motivated robot.

Chapter 5. This chapter presents the final study (N = 36) of the thesis, which focused on
confirming the effect of Warmth. Therefore, the chapter describes the changes that were made
while addressing the concerns found in the previous study: was the intrinsically motivated
robot perceived statistically significantly more warm because (i) it was more animated and
had a different behavioral regime than the baseline, or because (ii) participants could see
that the robot was responding more directly to their perturbations, or because of (iii) the
exploratory, playful behavior generated by the robot’s IMs?

The first change was a new baseline behavior, which included the implementation of fake
adaptivity. This meant that the robot now received updates that were recorded during
a previous run of an intrinsically motivated robot and then replayed for the baseline. The
chapter explains that the updates were not random, but also not truly adaptive. Additionally,
the final study now had two conditions with intrinsically motivated robots: one with a
proximity sensor and one without. The sensor enabled the robot to perceive human proximity
by using BLE signal strength between the wand-shaped tool and the robot (cf. 2.7). This
allowed the robot to respond directly to the participants’ input.

The results presented in this chapter show that the new baseline behavior, based on a
parameter replaying controller, was perceived as much more similar, including similarly ani-
mated and competent, when compared to the intrinsically motivated robots. This made it a
good candidate for comparison. Furthermore, despite these similarities, the two intrinsically
motivated robots were both perceived as more warm. This underlined evidence from the
previous studies: an intrinsically motivated robot in an embodied social cognition scenario
elicits a feeling of Warmth. Additionally, it was shown that the proximity amplified the
feeling of Warmth. Evidently, this means that an intrinsically motivated robot that can
adapt toward the proximity of the human interaction partner will elicit a stronger feeling of
Warmth. The chapter interprets these results as strong evidence that this effect was mainly
routed in the robot’s IMs, and not because of (i) or (ii).

The chapter presents another important contribution to the thesis. It describes details
of the investigation into whether the knowledge of social cognition transfers to HRI: do
participants prefer to interact with the robot which they perceived highest in Warmth? The
results showed that robots perceived highest in Warmth are likewise the robots that human
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participants preferred to interact with the most. The chapter explains the importance of
these results, giving two underlying reasons. Firstly, it gave more weight to the previous
study results and provided evidence that all intrinsically motivated robots were preferred
over the baseline robot. Secondly, it showed that there was a link between human attitude
formation toward peers and robots. If further evidence can confirm the results, this provides
future research with a good measure of human preference, by using tools established in social
cognition.

Chapter 6. This chapter concludes the thesis and addresses this thesis’ evidence that a
fully autonomous, intrinsically motivated robot elicits a feeling of Warmth in the human
interaction partner, which in turn shows that it can potentially sustain the interaction. The
chapter provides ideas for possible future studies, which can further confirm these results.
One central idea is to measure the actual interaction time with robots which are already
placed in human-inhabited environments, such as the therapeutic robot Paro or vacuum
cleaning robots.

1.4. Contributions of the thesis

This thesis, to the best of my knowledge, is the first to investigate the impact that intrinsically
motivated autonomy has on human perception. It used a computational model, based on
information theory approaches, to implement intrinsic motivation onto a robot and then an-
alyzed the effect on human perception. Furthermore, the thesis investigated whether human
attitude formation studied in social cognition is transferable to human attitude formation
toward robots. Therefore, this thesis contributes knowledge to the four disciplines: robotics,
HRI, information theory, and social cognition.

1.4.1. Information theory

This work contributes to information theory by presenting an information-theoretically based
computational model of IM, which is shown to have had an impact on human perception.
Intrinsically motivated autonomy was implemented using predictive information (PI) maxi-
mization, arguably “the most natural complexity measure for time series” (e.g. Bialek et al.
2001). The behavior generated from PI maximization has been previously judged by obser-
vations, which claimed that it results in “playful and exploratory” behavior (Martius, Der,
et al. 2013b). This and all other computational models usually followed theoretically sound
approaches, but how they performed in a real-world setting had not yet been analyzed. This
thesis therefore contributes a quantitative argument to the list. Without a doubt, humans
are our best judges of how humans perceive robotic behavior. This thesis shows that human
participants perceived an intrinsically motivated robot as more warm, which is the primary
concept to understand positive human attribute perception. This means that PI maximiza-
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tion, as a candidate for a computational model of IM, created a feeling of Warmth toward
an artificial agent.

On the more practical side, issues with the original TiPI implementation by Martius,
Der, et al. (ibid.) were discovered during the process of actually implementing the compu-
tational model. In particular, this concerned the parameter computation for more than two
steps back. These observations were addressed to the authors and were also addressed pub-
licly (see Scheunemann 2018d). In addition, there are contributions that enable compiling
the lpzrobots simulator on current architectures, a simulator created by the authors and
used for their simulation experiments (see Scheunemann 2018c).

1.4.2. Robotics

The thesis contributes to the field of robotics by providing guidance for how to implement PI
maximization onto a robot. It outlines the approximations of the formalism that was used
and the implications for applying them to a robot. This contributes to further research in
this area, especially for research that uses the same approach as this thesis. The guidance can
also be used as an orientation for related computational models of IM. In general, similar
approaches could follow up on the same approximations to make the computation of the
underlying information theory concepts possible.

On the more technical side of robotics, this work contributes code enhancements to run
the Sphero robot. In fact, the off-the-shelf robot was chosen to expedite the start of research.
The next chapter explains the hardware decisions in more detail. It turned out, however,
that the code to run the robot had a variety of issues. The provided official JavaScript
framework, for example, did not parse the protocol correctly, which yielded a stuck robot
behavior that forced a re-start of the controller. In addition, sensor values, such as the roll
angle of the robot, were faulty, along with the order of how the servo speed was set. These
insights were forwarded to the company or made into public pull requests to the (back then)
official framework. The four contributions which are most closely related to this thesis are the
following. The first allows the retrieval of quaternion readings (see Scheunemann 2017d) and
another fixed the documentation (see Scheunemann 2017b). Arguably, the most important
are the two more technical contributions: one which allows making a connection to multiple
robots simultaneously (see Scheunemann 2017c) and the other enables parsing the robot’s
protocol correctly to prevent the robot from crashing (see Scheunemann 2017a).

When the above contributions were proposed to the official framework, it occurred already
that the framework development would not continue for long. This was one reason why
the knowledge was also transferred into an own framework development based on C++. The
other reason was that the C++ language allows writing code that is closer to the hardware,
which enabled controlling the robot from embedded, computationally limited systems. The
C++ library is publicly available (see Scheunemann 2017e; Scheunemann 2018b). The first
attempts of this thesis involved working with autistic children in a nursery. In this context,
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the library was successfully used on a Raspberry Pi 2 during the initial play sessions with
children.

The public availability of the framework creates a simpler way of reproducing the exper-
iments. More importantly, it allows other researchers to start straight away without the
developmental issues present prior to this thesis. The robot platform eventually became dis-
continued altogether in 2018. This is a very common issue to robotic related contributions:
the developed code is bound to a specific robot platform and the contribution is therefore
only short-term. However, a technical contribution with a longer date of expiry is the derived
motion model discussed in this thesis (cf. section 2.6). More specifically, the way the motion
model was derived. The ideas can be extended to a variety of other robot platforms.

For the work on this thesis, a proximity sensor based on BLE was developed. It was
successfully applied to the wand-shaped tool in chapter 5, allowing the robot to sense the
proximity of the human interaction partner. To the best of my knowledge, BLE has not
been used in the context of robotics for a proximity sensor. Related research also shows
that it can be used to prototype a touch sensor and that it can help to distinguish between
people (e.g. Scheunemann, Dautenhahn, Salem, et al. 2016b). The technology is relatively
cheap and easily applicable, which can contribute to faster robot development and a faster
design process for robot-related experiments. Instead of developing a whole vision pipeline
in order to recognize humans, a researcher can start investigating by using the cheap BLE
technology first. The technology can also be applied to service robots already present in
human inhabitant environments. For example, one method to increase the functionality of
service robots is to distinguish humans and recognize reoccurring visitors. Instead of relying
on images to accomplish this, which consumes modeling time and computational power, the
robot can rely on the phone signals or a visitor’s badge instead. The code for the sensor
system is publicly available (see Scheunemann 2018e; Scheunemann 2018a).

1.4.3. Human-robot interaction

This thesis also contributes knowledge to the field of HRI. It has a substantially different
approach compared to many other HRI research and focused on the generation of robust
HRI. In some HRI studies, human interference could cause a potential risk to the reliability
of the system. Certain interactions would need to be explained to the participants prior
to the experiment and too much deviation could cause system failures or unwanted results.
Instead, the thesis will present a robot which handled interactions intrinsically. This allowed
for a study design which only needed to provide minimal information to the participants,
without the need to control how they interacted with the robot. It also allowed for conditions
which could be presented totally independent from the experimenter.

A key contribution to the study design is the systematic way to generate a baseline be-
havior. The design of a good baseline behavior is very critical and it needs to fulfill two
tasks: it needs to be reproducible by other researchers and it needs to be systematically
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sound. For example, if I had compared an intrinsically motivated robot to a straight driving
robot, the results would have had less quality. This thesis extensively discusses the thought
process involved and it is believed that the same process can be applied on different and
more complex robot platforms, like the one proposed in section 6.4.

The most central contribution to knowledge is that the TiPI formalism, which enables a
fully autonomous robot behavior generation, had an impact on human perception of robots.
The difference to existing work on IM is that the robot did not mimic IMs, but was in fact
truly intrinsically motivated, driven by its interest to explore the world through a hysteresis
of predictability and change. It is hoped that one of the contributions of this work is an
increased motivation of the HRI community in computationally modeled IM. However, the
biggest contribution is perhaps that the step toward this research has been taken. I believe
that for robots to be situated in our societies and everyday life, they need to be interested in
mastering new situations. There is an ample amount of evidence that this robustness cannot
be hard-coded into a robot. Instead, the robot needs to be adaptive toward changes in its
environment. So far, this research resulted in two publications, and others are currently
being written: (Scheunemann, Salge, and Dautenhahn 2019; Scheunemann, Salge, Polani,
et al. 2021).

Last but not least, the thesis presents a first step to understand whether the knowledge of
social cognition transfers to physical HRI. Human-human interactions and relationships have
been extensively studied over decades and it remains an active research area. If a connection
between human-human interactions and HRI can be further fostered, this would allow HRI
research to use a large set of existing methods and tools to evaluate robot behavior.

The thesis shows that, for an interaction scenario with robots of the same morphology,
there is a potential link between our perception of Warmth in humans and our perception of
Warmth in robots (RQ1). In both cases we like to sustain the interaction with the agent we
perceive highest in Warmth. This evidence gives more weight to the contributions mentioned
before: intrinsically motivated autonomy in robots is perceived as warm by human interaction
partners, which provides evidence that IM is key to sustain the interaction in HRI (RQ2).
A list of scientific publications and disseminations can be found in Appendix A.
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Chapter 2.

Background and Developments

This chapter presents the background and developments needed for the work on this thesis.
Section 2.1 presents how intrinsic motivation (IM) is understood in psychology and from a
computational perspective. Section 2.2 describes the term autonomy. In this thesis, the robot
reproduces the behavior of genuine IM in organisms. In other words, the robot autonomously
generates behavior. Section 2.3 explains the concept behind predictive information (PI)
maximization, the formalism used in this thesis for realizing intrinsically motivated autonomy
on a robot. The section shows the derivation of update rules for a time-local heuristic of PI.
The focus of this section lies in extracting the needed approximations, along with a detailed
explanation of what is needed when applying it to a real robot. Section 2.5 then presents the
off-the-shelf robot platform Sphero in its BB8 version, along with its sensors and actuators.
The application of PI maximization on the robot is briefly discussed. Section 2.6 presents
and discusses a motion model to let PI maximization control the robot’s servos directly.
Section 2.7 then presents a wand-shaped human-robot interaction tool. The tool was used
by participants to interact with the robot, since the preliminary study revealed that some
participants felt uncomfortable using their hands directly. Furthermore, changes were made
to the robot so it can sense the proximity of the tool using Bluetooth Low Energy. Section 2.4
presents measures from social cognition to describe the perception of others. The section
links these findings to human-robot interaction (HRI) and shows that the same measures can
help to understand human perception of robots.

2.1. Intrinsic motivation

Psychologists studied IM since the 1940s, yielding a large body of work. Both a multitude
of approaches for describing the phenomenon and a variety of definitions for IM exist. Hull
(1943) introduced the theory of drives to explain IM, which he believed are construed as
stressful perturbations (e.g., hunger) an organism tries to reduce. This idea was challenged
by White (1959), with the argument that activities based on IMs have different, in particular
none-homeostatic, dynamics. Ryan and Deci (2000) defined1 it as the “doing [...] of an
activity for its inherent satisfactions rather than for some separable consequence”. An agent

1The definition by Ryan and Deci (2000) presents one of the most popular definitions for IM in psychology.
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is moved to do something for the enjoyment of the activity itself, for the “fun or [the]
challenge entailed rather than because of external products, pressures, or rewards” (Ryan
and Deci 2000, pg. 56).

This, for example, can be observed in a child interacting with a puppy. The child will likely
be motivated to do so, even without an external reward (such as promised money) and even
without the existence of an extrinsic reward (such as playing with the puppy as a means
to an end such as training the puppy). Instead, the motivation for the interaction might
results purely from wanting to do this activity for its own sake, i.e., the child is intrinsically
motivated to play with the puppy.

Concepts like fun and challenge are presented as crucial for the definition of IM in psy-
chology (ibid.), and yet the literature lacks consensus on what these concepts mean. This
triggered the investigation of IM from a bottom-up or developmental perspective. Oudeyer
and Kaplan (2008) characterize IM in the following, broadly accepted way:

An activity or an experienced situation, be it physical or imaginary, is intrinsically
motivating for an autonomous entity if its interest depends primarily on the
collation or comparison of information from different stimuli [...].

[...] the information that is compared has to be understood in an information the-
oretic perspective [...], independently of their meaning. As a consequence, mea-
sures which pre-suppose the meaning of stimuli, i.e. the meaning of sensorimotor
channels (e.g. the fact that a measure is a measure of energy or temperature or
color), do not characterize intrinsically motivating activities or situations.

Generally speaking, a computational model of IM can use any source of information, as
long as there is no hard-coded meaning for the sensor input. The sensor input can correspond
directly to a physical variable, such as the measured light intensity or the speed of a servo
wheel. It can also correspond to a more high-level quantity, such as the number of people in
an image. However, the model should derive actions for the robot primarily on the basis of
comparing these sensor values, without having any pre-judgment of the corresponding values
of the sensors. For example, a robot that uses the information of its energy level can be
intrinsically motivated. However, an implementation that makes the robot drive to a power
station because the power level is critically low does not constitute intrinsically motivated
behavior. I present an example of a computational model of IM later in section 2.3, but first
I look at their conceptual relation to HRI research.

In HRI, computational models of IM have not yet been studied. However, there are two
HRI studies which use robots in education which elicit curiosity. Curiosity-driven behavior
and behavior driven by IM are closely related. In the theory of learning progress, for example,
curiosity is a state of experiencing intermediate novelty and complexity, which a person is
lead to by their IMs (Oudeyer, Gottlieb, et al. 2016). The theory about the learning process
considers curiosity essential for learning, motivating research for education robots in HRI.
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One idea behind this is by making robots appear curious, that this elicits curiosity in the
humans too, which in turn enhances learning and memory retention (ibid.).

Gordon et al. (2015) studied the effect of a robot appearing curious in an educational
HRI scenario. A child played a tablet app together with a robot that was portrayed as a
“younger peer”, to investigate whether the child’s learning aim was increased by a curious
robot. The robot’s behavior was based on a pre-defined protocol, which also included some
randomness regarding its questions and statements. While the effects on the children’s
learning gain were not conclusive, they showed that the robot could elicit curious behavior
in children. In particular, they argued that the curious robot behavior effected the children’s
curiosity and not the “engagement or affects of the children toward the robot”. Ceha et al.
(2019) investigated this in the context of a game played with a curious, social robot and
focused on the resulting verbal behavior of the participant. They pre-defined a set of curious
questions and revealing statements. They tested their hypothesis in an educational game
that taught participants about different kinds of rocks. In a game session, a researcher
teleoperated the robot to trigger factual and revealing statements, along with questions
showing curiosity. They showed that a robot which displays curious behavior “produce[s]
both emotional and behavioral curiosity contagion effects in participants”. An interview a
week after the experiment showed that participants who played the game with a curious
robot had more questions about rocks and wanted to learn more about them. Similar to
(Gordon et al. 2015), they could not show an effect on the participants’ learning outcome.
However, both studies show that a robot could elicit curiosity in the participants.

What remains unstudied in HRI is intrinsically motivated autonomy, i.e., a robot which is
intrinsically motivated and seeks these states of curiosity by itself. Will this have an effect
on our perception? This is one of the main research questions outlined in this thesis (RQ2).

2.2. Autonomy

The term autonomy is overloaded (Boden 2008) and used with ambiguous meanings. For
example, when some researchers talk about autonomous robots, they merely mean robots
that are not directly controlled by a human operator, autonomy just being a dimension of
the experimental design (Huang et al. 2004; Stubbs et al. 2007).

In Self-Determination Theory (SDT), however, autonomy refers to being in control of one’s
own life, which can be seen as a close enough analogy for living systems (Paolo 2004). SDT
also assumes that there is a drive to maintain this state of autonomy, which we do not see
in general with autonomous robots. We might see autonomy used as the idea that a robot
should strive to maintain operational autonomy, i.e. not be in need of external help, but it
usually does not refer to a robot striving to not be controlled by a human.

Finally, autonomy might also be referring to the concept of self-making or self-law-giving,
which is closely related to autopoiesis (Maturana and Varela 1991; Froese and Ziemke 2009).
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In robots, this is currently a theoretical idea only, but it is often considered necessary for true
IM. Any heteronomy during the development or creation of an agent would ultimately make
them extrinsic and hence undermine their very nature, i.e. computational models of IM on
robots are usually put on those robots by humans, and are thus actually extrinsic. Compu-
tational models of IM are an attempt to merely reproduce the behavior or functionality of
genuine IM in organisms.

From this point onward, when I talk about IM on a robot I will exclusively refer to the
initial, technical meaning, the computational model that aims to mimic IM. While the more
philosophical underpinnings of autonomy are highly relevant to the larger context of this work
and will make this approach useful even if we develop robots with more extensive autonomy,
I will set them aside for the present work.

2.3. Predictive information

This section describes predictive information (PI) maximization, the computational model of
intrinsic motivation (IM) used for the robot behavior generation in the thesis’ experiments.
The initial motivation to use this computational model was that it is, by design, computable
for continuous sensor input and that it has been applied to physical robotic systems prior to
this work.

PI has been described as early as 1986, termed effective measure complexity (Grassberger
1986) or excess entropy (Crutchfield and Young 1989). Previous work with PI-driven robots
in simulation demonstrated its applicability to a large range of different robot morphologies
(Der, Güttler, et al. 2008; Martius, Der, et al. 2013b; Zahedi et al. 2013; Martius, Jahn, et al.
2014). A range of existing videos (Martius, Der, et al. 2013c) from experiments in simulation
showcase apparent exploratory, playful and open-ended behavior of individual robots and
robot collectives. The PI-induced behavior in the videos suggests PI maximization as a
promising immediate candidate measure to test our core idea.

Conceptually, when this measure is transformed into a behavior-generating rule, the re-
sulting dynamics essentially falls into a family of learning rules related to the reduction of the
time prediction error in the perception-action loop of a robot (see especially the book “The
Playful Machine”, Der and Martius 2012). The aforementioned book also shows how these
approaches can be computed from the robot’s perspective alone. Additionally, the variety of
different robots and their behaviors presented there shows how different behaviors arise from
the same formalism due to the sensitivity towards the agent’s specific embodiment.

The predictive information formalism consists in computing a specific learning rule that
aims to maximize the mutual information between a robot’s past and future sensor states (Ay,
Bertschinger, et al. 2008), i.e., PI quantifies how much information a history of past sensor
states contain about future sensor states. More generally, PI is defined as the mutual in-
formation between the past and the future of a robot’s sensor input. A high amount of PI
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requires two things: First, past sensor states should make future sensor states more pre-
dictable. This should lead the robot to act so that its actions have predictable consequences.
Furthermore, the robot also needs to create a high variety of sensor input. If the robot would
always perceive the same sensor input, then there is either insufficient information in the past
to predict future sensor states, or an insufficiently varied future for which there is not much
to predict. In both cases, an impoverished sensor input reduces the PI. Alternatively, if there
is strong variation in sensor inputs but little structure in the sensory data stream, i.e., the
past has little to do with the future, that would also lead to low PI. Vice versa, a high value
for PI requires a high entropy in future sensor states, i.e., a richly varied future (a robot mo-
tivated to excite its sensors to reach a rich variety of different states) which at the same time
depends on the observable past (i.e., which the robot can predict well based on the past).
The behavioral regime is created by these two counterpoised requirements: predictability
and variety. This yields a robot wanting to act so that its future is highly predictable while
exploring and experiencing new sensor states. The PI literature argues that this balancing
act produces rich exploratory behavior that is sensitive to the robot’s embodiment and ar-
gues that PI is “the most natural complexity measure for time series” (Bialek et al. 2001;
Martius, Der, et al. 2013b).

Der, Güttler, et al. (2008), Ay, Bertschinger, et al. (2008), and Ay, Bernigau, et al. (2012)
presented derivation rules for PI, which allows for computing the model directly for linear
systems with stationary dynamics. The next subsections present an extension of their work
by Martius, Der, et al. (2013b) for the use in nonlinear and non-stationary systems – such
as physical robotic systems. The main idea is that instead of computing the full system
dynamics, only the system’s time-local dynamics are considered to compute the PI values.
This quantity is called time-local predictive information (TiPI) and is the one used in this
work. Subsection 2.3.1 provides an overview of TiPI and introduces the measure. This is
followed by subsection 2.3.2 presenting the derivation of the explicit update rules used for
my studies. The derivations are kept short to provide the basic concepts of the quantity and
introduce the underlying main approximations and assumptions. Subsection 2.3.3 discusses
these approximations and assumptions with respect to applying TiPI in a human-robot
interaction (HRI) scenario. Subsection 2.3.4 summarizes this section.

2.3.1. Overview

The predictive information formalism to generate the robot’s intrinsically motivated behav-
ior in the studies of this article is closely following the implementation of Martius, Der, et
al. (ibid.). They propose an approximation to compute PI for nonlinear systems with non-
stationary dynamics, which allows for behavior development of a self-determined robotic
system. They approximate PI with assuming small, Gaussian noise and only consider a time
window over the current state of the robot and τ steps back in the past: time-local pre-
dictive information (TiPI). TiPI allows for going beyond discrete finite-state actions, which
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still dominates scenarios of information-theory-based behavior generation, toward continu-
ous actions. This permits the use in physical robots in high-dimensional state-action spaces.
TiPI enables robot behavior with self-switching dynamics in a simple hysteresis system and
spontaneous cooperation of physical coupled systems (Martius, Der, et al. 2013b).

It works by updating the two internal neural networks of the robot, one that generates
behavior from sensor input and the other that predicts the future states. The continuous
adaptation, aimed at improving the TiPI, moves the robot through a range of behavioral
regimes. Importantly, the changes in behavior are partially triggered by the interaction with
the environment, as mediated through the robot’s embodiment. The rate at which those
internal neural networks are updated is the one model parameter which could be adapted
for individual preferences (Der and Martius 2006).

The approach allows changing the robot’s morphology without having to redesign the
algorithm, but will still remain sensitive to the embodiment of the robot, meaning that
the resulting behavior differs, depending on how the robot interacts with the world. The
morphology can be changed by changing physical parts or by choosing different sensors
as inputs for the robot’s neural networks. In both ways, the robot can be guided toward
exploring and playing in different ways. For example, by including a sensor for the robot’s
angular velocity around its main axis, the spherical robot will try to spin clockwise and
anticlockwise with changing velocities. If we further include an accelerometer providing
measurements of the forward and backward acceleration, the robot will try to explore the
relationship between spinning movements and locomotion, yielding a variety of additional
motion patterns. If, furthermore, a human is interacting with the robot, this can increase
the behavioral diversity, depending on the interaction between the robot and the human.

2.3.2. Deriving update rules

Martius, Der, et al. (2013b) present estimates of the time-local predictive information (TiPI)
for general stochastic dynamical systems. For systems with Gaussian noise and with gradient
ascent on the TiPI landscape, they derive explicit expressions for exploratory dynamics. I do
not aim to provide a full mathematical background of the method. For a detailed treatment,
the reader should refer to (Ay, Bertschinger, et al. 2008; Martius, Der, et al. 2013b).

Assume a robot has n sensors and the sensor readings are polled in constant time steps
(∆t = 1). Combine now the result of all sensor values in a vector s ∈ Rn. A series of
those sensor readings between points of time a and b (with a < b) can be described as a
time-discrete process {St}bt=a, where both boundaries are included. Let the past be defined
by the points of time a, . . . , t− 1 and the future by t, . . . , b. Bialek et al. (2001) defines the
PI for some point in time t for the time series S as the mutual information between the past
and the future. Intuitively, the mutual information measures the shared information of two
random variables, here Spast and Sfuture, i.e., it measures how much knowledge of the past
Spast reduces the uncertainty of the future Sfuture. The predictive information, expressed as
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mutual information, is thus defined as follows:

I(Sfuture;Spast) =

〈
ln

p(sfuture, spast)

p(sfuture)p(spast)

〉
= H(Sfuture)−H(Sfuture|Spast) (2.1)

with the average taken over the joint probability density distribution p(spast, sfuture).
The first essential simplification proposed by Martius, Der, et al. (2013b) is applying the

Markov assumption to Equation 2.1. If {St}bt=a is a Markov process, all past information
relevant to the future is stored in the very last state of the system, i.e., Spast = St−1.

The PI in this case reduces to:

I(St;St−1) =
∑

st−1∈St−1

∑
st∈St

p(st, st−1) ln

(
p(st, st−1)

p(st)p(st−1)

)
= H(St)−H(St|St−1) . (2.2)

In general, the Markov assumption will only hold true for real-world sensor processes in
exceptional cases. Nonetheless, as in the wide use of e.g., particle or Kalman filters, it is a pop-
ular assumption for successfully approximating problems using a Bayesian approach (Thrun
et al. 2005). Martius, Der, et al. (2013b) use the reduced Equation 2.2 as the definition of
the objective function for deriving the autonomous exploration dynamics.

Above Equation 2.2 is a quantity derived for the whole process. However, to create an
actual behavior rule that reacts to current situation, it necessary to compute a local quantity,
specific to the current situation. Therefore, instead of computing the probability distribution
p(st) over the whole process, we additionally condition the PI on a state st−2. The new
quantity derived is then

I(St;St−1|st−2) (2.3)

Because of above Markovianity, this is effectively a time-local quantity for PI and therefore
it is called time-local predictive information (TiPI). To calculate the TiPI, a model of St needs
to be learned to predict its time series. Let ψ = Rn → Rn be a function predicting the time
series at t− 2, t− 1 and t via

ŝt−2 = st−2 (2.4)

ŝt−1 = ψ(st−2, θt−2) (2.5)

ŝt = ψ(ψ(st−2, θt−2), θt−1) (2.6)
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In an example implementation by Martius (2013), ψ is realized as a one-layer neural
network. θ is a set of parameters representing the synaptic weights and biases, which will be
updated each time step in order to increase TiPI. The actual dynamics of the process can be
described via

st = ψ(st−1, θt−1) + ξt (2.7)

ξt being the prediction error.
I denote the deviation of the actual dynamics (Equation 2.7) from the deterministic pre-

diction (Equation 2.6) as

δst′ = st′ − ŝt′ (2.8)

for any time t′ with t−2 ≤ t′ ≤ t. Since st−2 is the initial state for TiPI, there is no deviation
at time t − 2 and δst−2 = 0, while one step after the initial state δst−1 = ξt−1. Intuitively,
δst represents the prediction error(s) accumulated from the start of the prediction (here at
t− 2) up to time t.

For very small prediction errors the dynamics of δs (Equation 2.8) can be linearized as an
approximation:

δst′ = L(st′−1)δst′−1 + ξt′ +O(||ξt||2) (2.9)

with the Jacobian
Lij(s) =

∂ψi(s, θ)

∂sj

Assuming that the prediction errors ξ are both small and Gaussian, the TiPI on the
deviation process δSt′ is the same as on the original process St (see Martius, Der, et al.
2013a, sec. A). It is therefore sufficient to concentrate on the error propagation for the
computation of the TiPI. This reduces Equation 2.2 in such a way that only the probability
distribution of the deviation p(δs) needs to be known, rather than the probability distribution
over the full state p(s).

If we further assume that the prediction error ξ is white Gaussian, the entropy can be
expressed as covariances (Cover and Thomas 2012). The resulting explicit expression of
TiPI on δS becomes:

I(δSt; δSt−1|st−2) =
1

2
ln |Σt| −

1

2
ln |Dt| (2.10)

with Σ = 〈δs δsT 〉 as the covariance matrix of the process δS, and D = 〈ξξT 〉 as the co-
variance matrix of the prediction error. Note that the PI becomes meaningful only at t,
as the prediction error vanishes at t − 2 and at t − 1 the two covariance matrices coincide:
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Σt−1 = Dt−1. The covariances are exact for Gaussianity. For the general case, they are
approximations only.

I now give the algorithm used to drive a robot’s behavior toward increasing TiPI. Martius,
Der, et al. (2013b) derive it explicitly for the gradient ascending neural network presented in
Equation 2.6. They argue that the prediction error ξ is essentially noise and does not depend
on the parameter of the controller, and that therefore the term ln |D| of Equation 2.10 can
be omitted when computing the gradient. Based on Equation 2.10, the resulting gradient
step executed at each time t is

∆θt = ε
∂I

∂θ
= ε

∂

∂θ
ln |Σt| (2.11)

with ε being the update rate and θt+1 = θt +∆θt.
Applying Equation 2.9 to above equations results in the explicit gradient step

∆θ = ε

〈
δuTt

∂L(st−1)

∂θ
δst−1

〉
(2.12)

where δs and the auxiliary δu are given as

δst−1 = st−1 − ψ(st−2, θt−2)

δst = st − ψ(ψ(st−2, θt−2), θt−1)

δu = Σ−1
t δst

Σt = 〈δst δsTt 〉

To render ∆θ computable the Equation 2.12 is further approximated by applying the
self-averaging property (this is explained in more detail below) of a stochastic gradient

∆θ = ε δuTt
∂L(st−1)

∂θ
δst−1 (2.13)

As per (Der, Güttler, et al. 2008; Martius, Der, et al. 2013b), Equation 2.13 is the equation
by which the (approximate) TiPI maximization is ultimately implemented. I remark that
increasing |Σ| corresponds to an increase of the norm of δs. In other words, this reflects the
amplification of small fluctuations in the motor dynamics, i.e., an increase of the instability
of the system dynamics.

2.3.3. Considerations for applying to real robots

Martius, Der, et al. (2013b) apply the above maximization of TiPI to simulated robots.
As a result, those robots show complex behavior. One example is a humanoid robot with
17 degrees of freedom (DOF) controlled by a single high-dimensional controller implementing
the PI optimization principle from Equation 2.13. Importantly, despite using the same rules,
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the formalism produces different behavioral regimes of the simulated humanoid, depending
on the environment it is exposed to. Along the above derivation, several approximations
and assumptions have been made. When the measure is applied to a real robot in a real-
world human-interaction scenario, this requires a careful consideration of the assumptions
and approximations, which I do in the following.

Markov assumption

This assumption simplifies the definition of the objective function Equation 2.2. More impor-
tantly, it renders TiPI (Equation 2.3) computable as it simplifies the conditional probability
density distribution. Applying the assumption to robotics-related problems, especially to
make Bayesian problems manageable, is common in robotics (Thrun et al. 2005). This ap-
proximation therefore can be considered a popular robotics strategy for applying information
theory and Bayesian algorithms to the real world.

Conditioning on an initial from two states back

To compute PI for nonlinear systems with non-stationary dynamics, the proposed solution
is to condition the quantity on an initial state being two steps back in time. I stick here to
the minimal possible window mainly because computing a larger window online comes to a
computational cost challenging to bear on embedded systems.

The sensors used for the input need to be meaningful for the time window. For example,
a global position of the robot does not change much within the time window of two steps, so
the robot cannot excite the sensor value in the chosen window. It is therefore preferable to
choose sensors that display variation within the given time window, such as proprioceptive
sensors measuring the acceleration or velocity.

Prediction errors are both: very small and Gaussian

These assumptions are made at various places for deriving the explicit update rules. For
example, the assumptions were used to show that TiPI on the process δS (propagation of
errors) is equivalent to the one on the original process S (sensor states). This enables the
linearization of the error dynamics Equation 2.9 and eventually, under the same assumptions,
the formulation of explicit TiPI expressions (Equation 2.10). The assumption that the error
is very small and Gaussian has implications on choosing the right sensors for the experi-
ments. Therefore, care needs to be taken that the noise of the sensors remains somewhat
Gaussian and somewhat small for the duration of the time window. For example, the motor
position typically changes in a continuous fashion and therefore the respective sensors are
good candidates to fulfill these assumptions.

On the contrary, it would violate the Gaussianity assumption to use a sensor whose values
exhibit, e.g., sudden drops, such as proximity sensors based on Bluetooth (Scheunemann,
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Dautenhahn, Salem, et al. 2016b). Such sensors measure the signal strength to an external
device that is prone to occlusions and can sometimes intermittently fail to provide any reading
at all. To mitigate this, it is possible to use filters to smoothen the sensor readings.

Applying the self-averaging property for stochastic gradients

Equation 2.13 uses the so called self-averaging property of stochastic gradients, that means,
that a stochastic gradient over a larger number of steps in a sequence acts as an approximation
of averaging over the probability distribution (Van Rensburg et al. 2001). In other words, we
can replace the average over multiple independently drawn samples with a one-shot gradient.

Practically, this makes Equation 2.10 computable, as the density distribution of the gra-
dient is hard to obtain. Martius, Der, et al. (2013b) note that using this property is only
exactly valid for a small update rate ε when it is driven to zero eventually. Note that the
update rate ε in my application is quite large to allow for a very fast adaptation process.
Martius, Der, et al. (ibid.) argue that the explicit update rules favor the approach of getting
an “intrinsic mechanisms for the self-determined and self-directed exploration”, with the ex-
ploration being driven only by the sensor values. Thus, the one-shot nature of the gradients
favors the explorative nature of the exploration dynamics and increases interesting synergy
effects, but is not strictly implementing the average.

Noise is independent of the controller parameters

To derive the explicit update rules (Equation 2.10), the covariance of the noise D = 〈ξξT 〉 is
omitted altogether. The propagation in error is only assumed to be pure independent noise
in the environment. In other words, the noise is independent of the controller parameter θ.
Martius, Der, et al. (ibid.) justify this because of the “parsimonious control” implemented
by the formalism.

All these assumptions are of course no longer strictly valid once the robot interacts with the
environment, especially humans. Nevertheless, the intended richness of the robot’s behavior
is not hampered by that. Instead, the formalism gives rise to a varied and manifold repertoire
of behaviors, as shown by many studies mentioned in (Ay, Bertschinger, et al. 2008; Der and
Martius 2012; Martius, Der, et al. 2013b; Martius, Jahn, et al. 2014).

2.3.4. Summary

The TiPI method generates the aforementioned variety of different behavioral patterns for
a robot. This makes TiPI-maximization a promising candidate for use in HRI settings. Its
universality for different embodiments and non-stationary settings makes it a good candidate
for applying it to a robot without concerning oneself too much with the environment or the
robot’s particular embodiment. Completely missing from the existing body of work on TiPI,
however, is the actual evaluation of the behavior when it is induced by the interaction
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with humans. This is the gap this thesis aims to fill. One hypothesis of this thesis is
that an intrinsically motivated robot, enabled by TiPI-maximization, is perceived as more
social by human participants, and that this will eventually help to sustain human-robot
interaction (RQ2). As this has not been investigated before, the design of the studies needs
to be carefully considered. With a particular focus on understanding the perception of
intrinsically motivated autonomy, it was crucial to isolate the perception from the robot’s
capability to fulfill a specific task. This is a main contribution of this work and the three
studies in chapter 3, 4 and 5 guides through the process of finding a suitable study design to
address O2.

2.4. Social cognition

A large body of literature in social psychology connects our social perception, often in forms
of stereotypes, to behavior formation (e.g., Judd et al. 2005; Fiske et al. 2007; Cuddy et
al. 2007; Abele, Hauke, et al. 2016). When looking into the literature of social cognition to
understand the social perception of peers (person perception), a popular approach is to model
the complex human stimuli with fundamental dimensions. This section briefly introduces two
models for human attitude formation. In both, two dimensions suffice to explain more than
80 % of our perception of others. The last section shows examples of applications in HRI
research, and motivates the measure of the dimension Warmth in this thesis.

2.4.1. Person perception

Wojciszke, Bazinska, et al. (1998) discussed that moral categories (i.e., stereotypes) are domi-
nant in impression formation of others. Generally speaking, the consideration of stereotypical
behavior is mostly connotated negatively in the general public. In the scientific community,
however, stereotypes became a powerful tool to understand and predict behavior formation
for individuals and groups (e.g., Czopp et al. 2015; Bodenhausen et al. 2012).

One reasoning is that mapping humans’ complex stimuli structure quickly into simple cate-
gories is an essential survival skill for humans. When two humans meet, their first judgment
relates to whether the other human is going to harm them or not. In other words, their
behavioral intent is judged, whether they are friends or foes (Fiske 2018). The next crucial
question is whether they can enact that intent or not. The stereotype content model (SCM)
labels these two dimensions of judgments as Warmth (trustworthiness, sociability) and Com-
petence (capability, agency) (e.g., Fiske et al. 2007; Fiske 2018). One important finding when
researching the SCM was “that people perceived as warm and competent perceive uniformly
positive emotions and behavior, whereas those perceived as lacking warmth and competence
elicit uniform negativity” (Fiske et al. 2007). Cuddy et al. (2007) described further how
intergroup affects and emotions measured by these stereotypes yield certain behavior2. They

2The framework for behaviors from intergroup affect and stereotypes (BIAS).
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explained that Warmth describes the valence of behavior and Competence describes the
intensity.

Another actively researched framework is the dual perspective model (DPM), which con-
cerns the two central dimensions of Communion (benevolence, trustworthiness, morality) and
Agency (competence, assertiveness, decisiveness), which relates to goal-achievement and task
functioning. The DPM has been researched for self-concept (Abele, Hauke, et al. 2016) and
interpersonal attitudes (Wojciszke, Abele, et al. 2009). There, liking-disliking (Communion)
reflects personal preferences, and respect-disrespect (Agency) reflects deference. It has long
been acknowledged and later been confirmed that these two dimensions can account for more
than 80% of the variance in individual impressions (Wojciszke, Bazinska, et al. 1998; Abele
and Wojciszke 2014; Fiske 2018). Both SCM and DPM consider two logically independent
cues to describe the complex interplay and attitude formation in humans. The importance
and weight of these cues differ between the different perceptions, such as perception of others,
perception of groups and self-perception. For example, in self-perception Agency and Com-
petence content receives more weight than Communion or Warmth. Both models, however,
show that in the perception of others either Warmth or Communion receives more weight
than Competence and Agency (Abele and Wojciszke 2014; Fiske et al. 2007; Carpinella et al.
2017). They further show that humans perceived high in Warmth and Competence perceive
uniformly more positive, social behavior of others (e.g., Fiske et al. 2007).

2.4.2. Robot perception

The knowledge of person perception has been used in the context of HRI. For example,
stereotypes have been studied in HRI such as facial gender cues (Eyssel and Hegel 2012) or
gender and the relationship of personality and gender perception (Tay et al. 2014). Carpinella
et al. (2017) designed the Robotic Social Attribute Scale (RoSAS) to transfer the dimensions
of Warmth and Competence to the domain of HRI. The scale has been since picked up and
further analyzed (see Stroessner 2020). The validation of the scale has been conducted based
on still-images of human-like and robotic-like pictures, with gender-specific characteristics.
They have been further confirmed on a larger set of images (Mieczkowski et al. 2019).

Oliveira et al. (2019) investigated how the display of high and low Warmth and Competence
of robots in a card game affects the emotions of human interaction partners. These emotions
were then analyzed depending on the role of the human. The 4-player card game was played
competitively between two collaborating human-robot teams. The researchers manipulated
the robot’s Competence with its skills to master the card game, and they manipulated
Warmth with utterances of the robot. Interestingly, they found that the formed stereotypes of
the robots remained prevalent in the memory of the participants after they were approached
a week after conducting the study. The participants’ questionnaire responses suggested that
participants preferred to play again with the robot they perceived as the most warm. Each
participant played with two robots. If both of them were manipulated to be warm, only then
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did the participants prefer to play again with the robot they judged highest in Competence.
This is evidence that the observation from social cognition, namely that Warmth carries
more weight in our judgment of others, may transfer to robot perception.

Contrary to the above findings, Stroessner (2020) provided evidence that Warmth is a
“poor predictor for contact desirability”. In addition, Mieczkowski et al. (2019) further
evaluated the SCM (and its extension BIAS) with the use of still-images. They found evidence
that attitude formation toward robots mostly follows the rules from social cognition. They
further argued, however, that people judge a robot’s Warmth and Competence solely on their
physical characteristics, and less on the robot behavior.

The thesis’ research question RQ1 is to understand whether dimensions of social cognition
offers a good measure for the perception of robot behavior to understand participants’ pref-
erence. The working hypothesis derived from the first study of chapter 3 is that Warmth,
a measure for how social a robot is perceived by human participants, can further serve as a
good indicator for the participants’ preference to continue interacting with the robot. The
final study of chapter 5 addressed this hypothesis and provides evidence that the perception
of Warmth on a behavioral level can help to predict participants’ intent for future inter-
action. In the final study, participants did not perceive any of the robots differently on
the Competence dimensions. However, the results suggested that participants preferred to
interact again with the robot they perceived highest in Warmth. This was subsequently
published (see Scheunemann, Cuijpers, et al. 2020). The impact of this evidence is twofold.
Firstly, it links the findings of social cognition to robot perception. It shows that robots
that are perceived as high in Warmth are more favored by human participants, as is the case
with humans that are perceived as high in Warmth. Secondly, this allows focusing research
on a single dimension. This is important to the experiments of this thesis because it studies
behavior isolated from a specific robot’s task fulfillment.

2.5. Robot

This section describes the robot platform used for the interaction studies in this thesis. Fig-
ure 2.1a shows the robot: the BB8 version of Sphero (Sphero, Inc. 2020a). It was developed
by the eponymous company Sphero and resembles the BB8 character from the Star Wars
movies (Lucasfilm Ltd. 2015).

Subsection 2.5.1 describes the reasons for choosing this specific robot platform, followed
by an overview of the technical details of the robot (2.5.2). The last sections describe the
software to control the robot (2.5.3) and its motion control (2.5.4).

2.5.1. Choice of robot platform

The robot platform had to meet certain requirements to make it applicable in a human-robot
interaction (HRI) scenario and to be able to run an implementation of time-local predictive
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information (TiPI) maximization. This resulted in the use of a small, spherical and non-
humanoid robot platform.

Note that the choice was driven by purely technical standpoints, which are addressed
in detail in this subsection. The fact that the robot resembled a movie character does of
course raise expectations of its behavior. This is addressed in later study designs with the
use of a within-subjects design and the focus on perceptual change rather than on absolute
perception. More details will be discussed in chapter 3, 4, and 5.

Purchasable Off-the-shelf

The anticipated time for testing the algorithms and developing the studies could not be
accurately predicted, mainly due to the lack of previous work in using an implementation
of intrinsic motivation (IM) in an HRI scenario. A rough estimation for implementing and
thoroughly testing the study was predicted to be over a year. This of course bears the
potential risk that over time the robot’s hardware would wear out considerably. The idea
behind using an off-the-shelf robot is that prototyping and designing can be done with one
robot, while the studies are conducted with another robot of the same batch, using a robot
with sufficiently similar characteristics. Another idea was that an off-the-shelf robot may
offer a tested software stack to start the study quickly.

Physical robustness

The main reason for choosing a spherical robot was its physical robustness. This was impor-
tant for three reasons: firstly, the investigation started with very young children with autism
(2 to 4 years of age). Secondly, it was not clear how the interaction would turn out. Lastly,
it was unclear in which environment the HRI investigation would take place. Would it be in
casual and everyday places, or rather in a laboratory setting?

Therefore, the robot needed to be quite robust to tailor for a variety of interaction scenarios.
The Sphero company showed advertisement videos where the robot was used outside and even
in water. Initial tests with the robot showed that it could fall off a table onto a hard surface,
and could cope with being kicked without breaking.

Spherical shape

The stable and reliable locomotion of a robot is still a challenging task. For example, hu-
manoid robots cannot yet master stable walking on different terrains or grounds. Addi-
tionally, given the novelty of the research in this thesis, it was not expected that a full
behavior generation can be realized which can master locomoting with robot morphologies
which provide many degrees of freedom. Therefore wheeled robots were considered, as stable
locomotion is almost guaranteed. However, they are constrained to even ground in order
to locomote. Following the example above, it was unclear what the interaction and study
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design would eventually look like. In the end a spherical robot was chosen: like with wheeled
robots, its locomotion is always stable, but it is also able to locomote in uneven/changing
terrain.

Minimality of the platform

The choice above describes the decision for a robot which has as few degrees of freedom (DOF)
as possible, but still enables stable and reliable locomotion. This is also one of the arguments
for the requirement of minimality. Fewer DOF also have more practical benefits. Firstly,
it makes purchasing a batch of robots feasible, since fewer DOF means fewer servos, which
results in lower costs. Secondly, if it is possible to apply IMs to robots in HRI, it will surely
render computable on a robot with minimal hardware. Furthermore, there are disadvantages
of using a more complex platform with more DOF. A humanoid platform “might raise false
expectations regarding the cognitive and social abilities that the robot cannot fulfill” (Daut-
enhahn 2004). A humanoid robot could decrease a human participant’s interest in the robot
when its behavior does not meet their expectations. On the other hand, human participants
could get overexcited about a robot that accidentally conducts gesture-like motions. For ex-
ample, they could anticipate a waving gesture, which could give human participants a sense
of a will to communicate. All this can blur the participants’ perception of the robot.

These above reasons lead to the choice of a non-humanoid, even minimal platform, in order
to fully concentrate on the impacts the robot’s IMs have on the human participant. This
way, if the minimal robot elicits any positive human perception, it would give more weight
to its behavior generated by its IMs.

Visibility of moving direction

The minimalism mentioned above can also have negative side effects. For example, a fully
spherical robot could make it difficult for a human interaction partner to understand its
movements. For example, if the robot would simply spin on the spot, it may be hard to
perceive. However, the BB8 version of the Sphero robot has a head attached. The head
always points in the driving direction, which provided the naïve participant with a sense of
direction.

Applicability to use TiPI

A behavior generation controller that uses TiPI maximization needs sensor input that fulfills
the requirements outlined in subsection 2.3.2. One core assumption of the derived TiPI
formulas is that the prediction errors are both very small and Gaussian. This rules out
sensor input which has sudden drops, which is an issue for sensors that have to deal with
occlusions, such as camera sensors. Subsection 2.3.3 argues that speed or acceleration sensors
are good candidates since they fulfill these requirements. The robot platform offers a range
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of such sensor readings, such as sensors for linear acceleration, for angular velocities and for
its servo speeds.

2.5.2. Technical details

The Sphero robot is a small, spherical robot that has a 74 mm diameter and weighs 168 g.
Figure 2.1a depicts what the robot looks like. It has a 75 MHz ARM Cortex M4 on board,
powered by two 350 mA h LiPo batteries. The batteries can be charged with power inductive
charging. By design, the inner parts of the robot cannot be accessed.

The robot contains a two-wheeled electric vehicle inside its spherical shell, as depicted in
the cross-sectional view of the robot in the center of Figure 2.1b. The vehicle and the head

(a) (b)

�
74

m
m

Figure 2.1.: (a) The robot platform BB8 from Sphero. (b) A 2-D cross-sectional view of the robot. A
two-wheeled vehicle (darker shape), kept in position by a heavy weight, moves the sphere when driving.
The speed of each servo motor can be set individually, allowing the robot to move straight, to turn and
to spin. A magnet attached to the vehicle keeps the head on top of the sphere, facing the direction of
movement.

both have magnets that attach the head to the outside of the sphere. This also allows the
head to be kept in the driving direction, providing any observer with a sense of the robot’s
direction. There is a coil for power inductive charging on the bottom of the shell, which also
acts as a weight to keep the vehicle in place. The two servo motors provide the robot with
two DOF, allowing the robot to locomote backward, forward and to spin on the spot.

The robot can stream sensor information. It offers raw sensor readings of a 3-DOF ac-
celerometer (linear acceleration), a 3-DOF gyroscope (angular velocity) and the servo speed
(in back EMF). These sensors are fused on-board, delivering further sensor readings such as
inertial measurement unit (IMU) data (in quaternions or Euclidean angles), the robot global
position on a 2-D map (with the reference frame as the robot’s starting position) and the
robot speed on a 2-D plane, which is delivered in components for the forward/backward and
sideward speed.
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2.5.3. Software

The robot came with a mobile phone application that could be used to remotely control the
robot either directly or by drawing a path that the robot then follows. It further allows setting
the robot in a mode where it could automatically explore the environment. Additionally,
there was an official API written in the script language JavaScript. It used Bluetooth Low
Energy (BLE) to send control commands to the robot, and receive sensor readings from the
robot. The package in Node.js enabled writing custom programs to control the robot.

The API was a good starting point for exploring the robot. However, there were a few
reasons which eventually triggered the development of a custom framework. First of all,
the development for this thesis started in 2017 and at the time the last commit to the
repository dated back to 2016-05-11. Furthermore, necessary pull requests to make the
robot operable were not taken care of anymore. I contacted the original API developer to
learn that there there is no further support planned. I had submitted four pull requests (PR)
to the repository, ranging from corrections to the documentation (see Scheunemann 2017b)
to more crucial PRs which made the robot operable for my needs. This includes code to
enable connecting and controlling more than one robot (see Scheunemann 2017c), enable
direct access to quaternion readings (see Scheunemann 2017d), and, most importantly, fixing
issues with parsing packages sent by Sphero (see Scheunemann 2017a). This fix was needed
as the robot could get stuck entirely and would make the robot inoperable, especially when
the communicated packages were quite large. This happens, in particular, when a lot of
sensor readings are streamed, something which was absolutely crucial to enough data for
TiPI maximization, but also to log the actual sensor state of the robot for later analysis. In
December 2019, the repository was eventually archived and the documentations to controlling
the robot using JavaScript disappeared from the company server.

I decided to implement my own API using the programming language C++ (see Sche-
unemann 2017e; Scheunemann 2018b). The language leaves implementation details to the
developer, which allows programming with little hardware demands. This enables running
developed code on embedded systems. This way the study could be carried out independently
of a laboratory setting. The first attempts of this thesis involved working with autistic chil-
dren in a nursery. In this context, the library was successfully used on a Raspberry Pi 2
during the initial play sessions with children.

It needs to be noted that the robot had issues with the on-board firmware as well. For
example, when it sent commands to “set the raw motors”, as mentioned in the API doc-
umentation, the speed values for the left and right servos were swapped. More crucially,
the sensor readings provided by the built-in IMU were faulty. For example, the quaternions
did not provide the true orientation of the robot. This is probably best explained in Euler
angles. If the robot was rolled more than 90° (positively or negatively), the absolute angle
value decreased again. This had no direct implication for the studies of this thesis, as the
robot does not reach such a roll angle by itself. However, all these findings counteracted the
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idea of an off-the-shelf robot, as it slowed down development and made excessive testing of
the robot’s sensors necessary.

2.5.4. Robot control

The vehicle inside the robot has two servos and there are two ways of controlling them, either
by directly setting the speed for each of the servos or by using a built-in balanced mode:
a closed-loop controller that keeps upright while processing speed and heading commands.
The two options, i.e., direct control and balanced control are explained in this section.

Balanced control

BB8 provides a built-in balancing mode controller. This controller expects heading and speed
information, which it then translates to commands to the robot’s servos. The speed here is
referring to the forward speed of the robot and the heading is an absolute position of the
robot’s head. When the robot is started, the current heading is 0°. If the robot receives a
command of 20° for its heading, it is set to 20° with respect to the starting position (i.e.,
global frame). According to the Sphero documentation, a parameter can be set to control
the speed for changing the robot’s heading direction. However, this parameter did not have
an effect on the moving speed of the head. Furthermore, it is documented that the balance
controller uses a fusion of accelerometers, gyroscopes and the wheel encoders (Sphero, Inc.
2020b). Other than that, there is no further information on the closed-source controller.
What can be observed is that the robot tries primarily to remain upright (i.e., the robot’s
head stays on top) while trying to reach the requested heading and speed. The robot has
several possible motion patterns while always being upright: it can locomote forward, it can
turn while moving in the forward direction with various radii, or it can spin on the spot. In
the first study in chapter 3, both conditions are based on the balanced mode.

Direct control

It is possible to control the speed and direction of both servos directly and individually. This
enables the possibility of having an open-loop control, which means that the servos control
is independent of any sensor information. Importantly, the set servo speed and direction
are not manipulated further by the robot firmware, allowing the implementation of TiPI
maximization to fully control them. In contrast to the balanced control, the direct control
allows for a larger variety of motion patterns. It can cover the patterns above, i.e., moving
straight forward, turning and even turning on the spot (spinning), but it can also create more
wobbly locomotion and moving and turning backward. In the first study (the preliminary
study), the direct control was not used. This has much to do with the challenge of applying
the algorithm directly, which is discussed in the next section (2.6).
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2.6. Motion control

The interaction studies used two different motion controls: the built-in and closed source
balanced motion control and the direct motion control. Both have been described earlier in
subsection 2.5.4.

The first study used the balancing controller for the robots in all conditions. The main mo-
tivation was that it was relatively straight forward to implement intrinsic motivations (IMs)
in the robot, which allowed gaining insights into the usage of intrinsically motivated robots
and the resulted adaptive and exploratory behavior.

However, there are two main reasons to avoid using the balancing controller. Firstly, the
implementation is closed-source, which leaves it open to whether the control eventually fulfills
the time-local predictive information (TiPI) requirements outlined in subsection 2.3.3. For
example, is there a control delay that spans much further than 2 timesteps in the past?
This would mean that the current measured sensor errors are not realized by the TiPI
maximization output from the previous step. Secondly, a controller plugged between the TiPI
maximization output signals and the robot output may restrict the robot’s self-motivation.
For example, if the robot is intrinsically motivated to excite its sensor input associated with
its accelerometer, it may gradually change the associated output for the speed command.
However, the pre-specifying effect – the robot’s drive – to keep itself upright may put an
unobservable limit to the computation of TiPI maximization. This makes it impossible to
analyze whether this limit is reached because of the balancing controller or because of TiPI
maximization. Consequently, the goal of this thesis to analyze the influence of the robot’s
IM-driven behavior on human perception cannot be fully understood.

This section derives a simple motion model M, which allows the robot to directly control
its servos. An implementation of the model M computes robot actions (i.e., servo commands)
from the desired speed (i.e., the output from TiPI maximization). The section guides through
the analysis of the robot behavior toward the derivation of a simple motion model based on
linear equations. The aim is to provide an example of what can be discovered when applying
TiPI to a real robot and how to approach possible issues.

2.6.1. Overview

Subsection 2.6.2 provides a more detailed explanation of the notation and units. Subsec-
tion 2.6.3 discusses a first naïve approach for M: simply take the output values from TiPI
maximization and map each of the values directly to one of the two servos. The section shows
that this did not yield any interesting behavior. Instead, the robot just alternated between
spinning left and right without any locomotion.

Subsection 2.6.4 follows up on that and analyzes the problem qualitatively and quantita-
tively. Essentially, the independence of the control parameters, which is a core requirement
of TiPI maximization, is violated because changing the speed of one motor affects the speed
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of the other under fixed control. Subsection 2.6.5 derives a simple motion model M. Sub-
section 2.6.6 then evaluates the motion model. It shows that the requirements of TiPI
maximization are fulfilled to the extent that it results in a highly variable robot behavior.
Subsection 2.6.7 summarizes the section.

2.6.2. Notation and units

This section derives a motion model which computes robot control commands (i.e., actions
a) from the desired servo speed s. More formally, let A ⊂ N be the robot’s set of actions and
let S ⊂ N be the possible desired sensations of the robot, then the motion model for a robot
with two motors is

M : S2 → A2 (2.14)

Three variables are needed to explain the robot dynamics and describe the motion model
in this section. Let i ∈ {l, r} be the index of the left and the right servo, then

ai ∈ A, the action, i.e., set servo speed

si ∈ S, the sensation, i.e., measured servo speed

ŝi ∈ S, the desired sensation

The actions or set servo speed a denotes the set speed for the left and right servo of
Sphero as requested by the Sphero API. The documentation says the set speed unit is “pulse-
width modulation (PWM) duty cycles”, which range from −2048 to 2047. However, the
sensor readings for the duty cycles and the actual motor command are not similar, but
linearly correlated. For the sake of a straight forward implementation to a real Sphero robot,
this section uses the values for a, which is how they are forwarded to the API, without
further specifying the units. A similar argument follows for the measured or actual servo
speed s. Sphero provides sensor readings of the servo speed by measuring the servo’s back
electromotive force (back EMF)3. This value is a voltage appearing between the armature
and the magnetic field of the motor’s field coil. However, after studying the documentation it
is unclear how the values map to the true back EMF, therefore the provided sensor readings
are presented without a unit.

Furthermore, there are two constants k, which describe the absolute maximum value of
the set speed and the desired speed:

3The back EMF is related to what is also known as the counter-electromotive force (counter EMF, CEMF).
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ka = 120, the maximum set speed

ks = 320, the maximum desired speed

The values are the same for the left and right servo, as well as for forward (positive)
and backward (negative) speed, e.g., the minimum set speed is −ka = −120. They both
have been empirically derived in such a way, that the robot can operate in the experimental
environments of this thesis. For example, the maximum speed was determined so that the
robot can locomote freely without losing its head when it bumps into an obstacle.

Note: a is the signed set speed value. To set this speed to the Sphero API, a tuple of
(speed,mode) is needed. Let f be a function which computes the API speed and mode, then

f(ai) =


(ai, 1), if ai > 0

(|ai|, 2), if ai < 0

(0, 0), otherwise

, ∀i ∈ {l, r}.

2.6.3. Naïve motion model

This section describes the first attempt to allow the robot to control its servo speed directly
based on its IMs. The idea of the motion model was simply to map the output from TiPI
maximization directly to the robot’s servo commands.

Let y ∈ [−1, 1]2 describe the output of an implementation of TiPI maximization, then the
desired speed can be scaled as follows:

ŝ = y · ks (2.15)

Then, the servo commands a can be modeled with M as follows:

M(ŝ) =
ŝ

ks
· ka = y · ka (2.16)

Figure 2.2 shows an example of a robot behavior resulting from using Equation 2.16. The
figure shows the measured servo speed of each of the two servos. If one servo is moving
backward, while the other moves forward with an almost similar absolute speed (i.e., sl =
−sr) the robot simply just spins on the spot. The blue and red shaded areas indicate a left
or right spin of the robot around its z-axis.

The gray shaded area is another typically recognized pattern. The robot there leans
forward and backward, as if it tries to move forward or backward. However, it is unable to
move, and explores different actions. Despite these three unique behavior patterns, Figure 2.2
shows that the resulting behavior of the robot is alternating between spinning right and left,
without locomotion. In other words, the robot’s behavior is very repetitive and has little
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Figure 2.2.: The figure shows the resulting robot behavior if the output of the robot controller is mapped
to the robot’s speed commands. The robot swaps between spinning left and right at various speed levels,
but does not locomote or explore.

variety.

The important question here is whether the robot is not curious enough to also explore
forward and backward movements. Is there an issue with the TiPI maximization formalism,
the controller implementation or is the robot simply not suitable?

A simple experiment confirms that something keeps it from exploring different motion
regimes: when the robot was lifted by its head, i.e., the magnetic attachment, so that the
main shell did not touch the ground, it started exploring additional straight and turning
motions. This shows that the robot behavior depicted in Figure 2.2 is not theoretically
limited to only a small set of behaviors, but there are practical limitations.

The central difference between a robot lifted by its head and a robot locomoting on a
surface is the additional friction of the surface. The next section investigates the practical
limitations in more detail.

2.6.4. Dependency analysis

This section expands on the above argument and analyzes the development of the measured
servo speed si depending on the set servo commands a.
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Data collection

The first method was to build a controller that applies a sine function to each servo, with
each function having a slightly different frequency. This way, motor commands in a harmonic
fashion would be applied and at the same time, the exploration of different relations between
the two set speeds is possible. The issue with that was, however, that the robot would operate
for a relatively long period of time with full speed around the extremes of that function. This
was an issue for the robot as it then often bumps into obstacles and was likely to loose its
head, which in turn changes the dynamics of the robot drastically.
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Figure 2.3.: The resulting set motor speeds ai for i ∈ {l, r} of a simple controller to collect measured
speed information.

A controller sends motor commands a to a Sphero robot in constant time steps (∆t = 0.1 s).
The controller starts with ai = 0 for both servos (i ∈ {l, r}). This means, for time step t = 0:
ai(0) = 0. After four steps, the command is increased by 4: ai(t)−4 = ai(t−1) = ai(t−2) =

ai(t− 3) = ai(t− 4). This continues until ai(t) = ka. Instead of further increasing, the servo
command is decreased by 4 every fifth time-step until the minimum motor command −ka is
reached. This continues for one full period, i.e., the maximum and the minimum was reached
and the motor command is back to 0. Then, a lag is introduced for the motor command ar.
Instead of 4 steps, the servo speed is only increased after 8 steps. The data collection runs
for about 45 min, yielding 4 to 12 readings per combination of al and ar. Figure 2.3 shows
the resulting control signals for both servos. The controller allows collecting a comprehensive
set of control patterns and their effects on the actual motor speed. This spans a wide area
of the control/sensory space in a controllable way.

Figure 2.4 shows two scenarios for data collection. In scenario (a), the robot’s head is
attached and its spherical body can move freely. The only external friction on the system
is the head. Scenario (b), on the other hand, exposes the robot to a more realistic scenario.
The robot freely locomotes on a circular table, the same table which was used in the studies
utilizing the presented model (cf. subsection 4.2.1 and 5.2.1).
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(a) minimal friction scenario (b) realistic scenario

Figure 2.4.: The two scenarios for data collection. In (a) the robot is attached on its head, allowing
the shell to freely locomote. In (b) the robot can freely locomote on the table, which was ultimately
used for the experiments.

Qualitative analysis

The above data collections allow for an analysis of how the actual servo speed s depends
on the set motor speed a. This section discusses this dependency with the help of plots. A
quantitative confirmation follows in the next subsection.
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Figure 2.5.: All plots show the median values of the actual speed of the left servo motor (sl) with
respect to the set servo speeds al and ar (first row as 3-D scatter plot, second row as contour plot).
The recordings are conducted in an (a) minimal friction scenario (first column) and in a (b) realistic
scenario (second column).

Figure 2.5 shows three-dimensional plots, where the measured, actual speed sl is plotted
with respect to both set speed components a. If all readings are plotted, the shape of the data
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is not easy to grasp. The plot therefore plots the median value per set speed combination.
First of all, in both scenarios, the measured speed sl decreases the closer the set speed

ar approaches 0. The decreasing appears to be stronger for the realistic scenario (b). In
addition, for the realistic scenario, the measured speed is further decreased when the robot
attempts to move straight (i.e., al = ar). This is seen in the upper right corner and the lower
left corner of the contour plots in Figure 2.5b. The figures show that the robot locomoting
on the ground in the realistic scenario (b) has a more complex dynamic in comparison to the
minimal friction scenario (a). All these observations make it safe to conclude that in either
of the two scenarios the actual servo speed s depends on both set servo speeds. In particular,
sl depends on ar.

Quantitative analysis

This section provides quantitative evidence for the above observations, namely that it is
likely that the measured speed s depends on both set speeds al and ar. For the analysis of
the dependency, the inverse of the motion model is used:

s = M−1(a) (2.17)

The simplest model can be expressed as a system of linear equations for each servo, which
can predict s depending on a as such:

sl = θ
(l)
0 + θ

(l)
l al + θ(l)r ar = θ0 + θ(l) · a

sr = θ
(r)
0 + θ

(r)
l al + θ(r)r ar = θ0 + θ(r) · a (2.18)

The observations above already indicate that there is no full linear dependency. However,
for now the simple linear model is used to quantify dependency, and it is refined later.

The first interesting question here is to quantify whether the measured servo speed truly
depends on both variables al and ar, or whether one of the variables is enough to explain
the measured servo speed. To analyze this, four different models per variable sl and sr need
to be investigated. For i ∈ {l, r}:

si = θ0 + θlal + θrar (2.19)

si = θ0 + θlal, (i.e., θr = 0) (2.20)

si = θ0 + θlar, (i.e., θl = 0) (2.21)

Effect sizes for comparing the model strength are used to analyze which of the above
models can predict the dependent variable s best. Table 2.1 reports three effect sizes: the
Akaike information criterion (AIC), the rooted mean-square error (RMSE), and R2. R2 is
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the fraction of variance explained by the model. It gives the percentage of how much the
model variance can be explained by the variance of the residuals (i.e., estimations)4 Note that
some people argue that R2 does not have much value as a measure of effect size5. However,
it is added for completion since some readers might be more familiar with it. For the present
data, it provides the same information as AIC and RMSE. AIC is an estimator of out-of-
sample prediction error and therefore a goodness-of-fit estimator of a model for a given set
of data. The smaller the value for AIC, the better. RMSE provides a quantity showing how
much the prediction can differ in units of the dependent variable (i.e., the measured servo
speed s).

Table 2.1 shows the analysis of effects6 for the two dependent variables sl (a) and sr (b).
It can be seen that the full model (Equation 2.19) shows the best goodness-of-fit (AIC) for
the data, has the lowest error (RSME) and describes 63 % of the variance of the data, which
is the highest value for R2. The other models, which use only one of the set speeds to explain
si, do not produce as good results. This shows that the observations made earlier can be
confirmed: the measured speed is indeed dependent on both variables al and ar.

However, when looking at the effects in general it can be seen that they are not very
convincing. RMSE can be interpreted as the standard deviation of the residuals or the
prediction error. Predicting s wrongly for around 60 units is quite a large error, considering
that the maximum absolute value of the measured servo speed is around 320. This means
all models poorly describe the data.

Table 2.1.: Linear regression results.

(a) sl (measured left servo)

Eq. AIC RMSE R2

2.19 281032 59.3 0.62
2.20 283450 62.2 0.58
2.21 304564 94 0.04

(b) sr (measured right servo)

Eq. AIC RMSE R2

2.19 280190 58.3 0.62
2.20 304392 93.7 0.03
2.21 282263 60.8 0.59

Figure 2.6 visualizes the model M−1. Finding a plane which fits all the values accurately
is impossible. More importantly, however, the intercept of the plane does not describe the
starting points of true servo movement accurately enough. Applying this model to a robot
would cause its behavior to look similar to the initial tests: the robot would only spin right
and left.

For a better prediction of the motor speed, the straightforward idea is to describe M−1

piece-wise per section where the set motor speeds have the same signs. In other words, one
part is a linear model for s++

l with only positive predictors al and ar, a linear model for s+−
l

4The adjusted R2 explains the same but penalizes the use of more independent variables. The value of the
adjusted R2 for all examples here is the same as the R2 and is therefore not reported.

5An example discussion of why not to use R2: (Ford 2015).
6The models are computed with R’s built-in stats package and its method lm(). For example, Equation 2.19

is computed with lm(sl ∼ al ∗ ar).
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Figure 2.6.: The planes visualize the linear models described by Equation 2.19. The single points are
the median values for the measured speed of sl (a) and sr (b).

with al > 0 and ar < 0, and so on.
Table 2.3 shows the results for the sector-specific linear models. As before, it can be seen

that si can be best described by both set speed values (Equation 2.19). This confirms that
si is dependent on both motor commands a. The error to predict sl ranges from 31.5 to 37
when using Equation 2.19. Looking back at Table 2.1, the error for the full model was 59.3,
which is significantly higher.

Table 2.3.: Linear regression results based on sectors.

(a) s−+
l

Eq. AIC RMSE R2

2.19 27102 31.5 0.82
2.20 28896 43.4 0.66
2.21 31793 73.1 0.04

(b) s++
l

Eq. AIC RMSE R2

2.19 12793 37 0.7
2.20 13003 40.2 0.64
2.21 14293 66.8 0.01

(c) s−−
l

Eq. AIC RMSE R2

2.19 12793 37 0.7
2.20 13003 40.2 0.64
2.21 14293 66.8 0.01

(d) s+−
l

Eq. AIC RMSE R2

2.19 28256 30.9 0.83
2.20 30316 44 0.65
2.21 33281 73.2 0.04

Figure 2.7 visualizes the models for the left and right measured servo speed. The points on
the figure depict the median values of the measured servo speeds. The planes visualize the
model M−1, which fits those points as per the four sectors. When comparing the visualization
to the one of Figure 2.6, where only one linear equation is used to fit all these points, it can
be seen that the approach to split the model per sector is already increasing the accuracy.

Table 2.5 shows the coefficients per sector, which describes the planes visualized in Fig-
ure 2.7. To confirm the necessity of each coefficient, the model is tested with the reported
value for the coefficients. The t-test is used with the null-hypothesis that the modeled values
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Figure 2.7.: The planes visualize the motion model constructed out of four linear models (Equa-
tion 2.19). Each of the models describes the data in one sector, where the signs of al and ar are
constant. The single points are the medians of measured servo speeds for sl (a) and sr (b).

do not differ when the coefficient is 0. Table 2.5 presents the test results, which show that the
null can be rejected for all the coefficients of the model. This confirms that each coefficient
makes a statically significant difference.

Table 2.5.: Sector-specific linear regression coefficients for Equation 2.19.

(a) −+

estimate std. error t value p value

θ(l)_0 163.83 3.065 53.4 < .001

θ(l)_l 2.73 0.025 110.6 < .001

θ(l)_r -1.34 0.027 -50.2 < .001

θ(r)_0 -173.17 2.997 -57.8 < .001

θ(r)_l -1.32 0.024 -54.8 < .001

θ(r)_r 2.86 0.026 109.6 < .001

(b) ++

estimate std. error t value p value

θ(l)_0 -176.46 6.729 -26.2 < .001

θ(l)_l 2.95 0.055 53.5 < .001

θ(l)_r 0.75 0.049 15.2 < .001

θ(r)_0 -154.51 6.475 -23.9 < .001

θ(r)_l 1.01 0.053 19 < .001

θ(r)_r 2.37 0.048 49.9 < .001

(c) −−

estimate std. error t value p value

θ(l)_0 149.69 5.297 28.3 < .001

θ(l)_l 2.76 0.044 63.3 < .001

θ(l)_r 0.69 0.042 16.6 < .001

θ(r)_0 169.83 5.146 33 < .001

θ(r)_l 1.09 0.042 25.7 < .001

θ(r)_r 2.63 0.04 65.1 < .001

(d) +−

estimate std. error t value p value

θ(l)_0 -165.11 2.992 -55.2 < .001

θ(l)_l 2.7 0.023 115.9 < .001

θ(l)_r -1.44 0.026 -54.7 < .001

θ(r)_0 166.88 3.004 55.6 < .001

θ(r)_l -1.05 0.023 -45 < .001

θ(r)_r 3.03 0.026 114.7 < .001

2.6.5. Deriving a motion model

This subsection derives a motion model a = M(ŝ) to allow the robot to directly control its
desired servo speed ŝ. Instead of fitting M directly, I use the coefficients (Table 2.5) from the
inverted model M−1 (Equation 2.19) to compute M. This way, it can be directly analyzed
whether the above observations were sufficient and the resulting model M yields interesting
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behavior.
When ŝl and θ(l) are given, al can be computed as such:

ŝl = θ
(l)
0 + θ

(l)
l al + θ(l)r ar (from EQ 6)

−θ(l)l al = θ
(l)
0 + θ(l)r ar − ŝl

al =
ŝl − θ

(l)
0 − θ

(l)
r ar

θ
(l)
l

(2.22)

Equivalently, starting from the equation for sr:

ŝr = θ
(r)
0 + θ

(r)
l al + θ(r)r ar (from EQ 6)

al =
ŝr − θ

(r)
0 − θ

(r)
r ar

θ
(r)
l

(2.23)

As the analysis above shows, the equations of the determined linear system of Equation 2.18
are defined. This allows to linearly combine the two linear equations to express the model
for a. Using 2.22 and 2.23 to express ar:

ŝl − θ
(l)
0 − θ

(l)
r ar

θ
(l)
l

=
ŝr − θ

(r)
0 − θ

(r)
r ar

θ
(r)
l

ar =
θ
(l)
l

(
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(r)
0

)
− θ

(r)
l

(
ŝl − θ

(l)
0

)
θ
(l)
l θ

(r)
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(l)
r θ

(r)
l

(2.24)

Equivalently, using 2.23 and 2.22 to express al:

al =
θ
(r)
r

(
ŝl − θ

(l)
0

)
− θ

(l)
r

(
ŝr − θ

(r)
0

)
θ
(l)
l θ

(r)
r − θ

(l)
r θ

(r)
l

(2.25)

The above linear system of Equation 2.24 and 2.25 together with the computed parameters
θ (Table 2.5) describe the direct motion model M used in the studies of this thesis. The
model can compute robot motion commands a out of the desired motion speed ŝ. The output
y ∈ [−1, 1]2 from TiPI maximization is intended to change the actual servo speed and can
serve as the input to the model. For this, y needs to be mapped to the unit space of ŝ. With
ks which describes the maximal desired absolute speed, then

ŝ = y · ks (2.26)

A sensible option for the scaling factor ks is the overall measurable speed of an operable
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robot in its current environment. This means, that the scaling should be the maximum speed
at which the robot can safely operate. For the interaction study environments of this thesis,
for example, it has been found empirically that ks = 320 provides good results. The model
can now be used to map the output y ∈ [−1, 1]2 (from TiPI maximization) to the necessary
motor commands a. The next section evaluates if an implementation of this motion model
is sufficient to yield exploratory robot behavior.

2.6.6. Evaluation

This section evaluates the motion model M and whether its application results in a more
interesting robot behavior with much more behavioral variety. For this purpose, a robot that
generates its behavior based on TiPI maximization and the above motion model was placed
on the circular table. Similar to the interaction scenarios of, e.g., the second study, a human
nudged the robot from time to time. The robot locomoted on the table for 160 s while it was
recording its control signals y, the commands a and the measured actual servo speed s.

The question is whether the output for one of the servos, for example sl, can be explained
independently by only one component of y, for example yl. If that is the case, then the TiPI
requirement that the output error is independent of the TiPI controller parameters is given.
Consequently, this should result in a robot behavior with much more variety.

The motion model M uses the TiPI output y and the parameter θ to compute servo
commands for the robot. Similar to the derivation of the motion model M−1 above, four
linear models for both servos are analyzed to answer the question whether the measured
speed of each servo can be explained best by one or two components of the control values y.
For each servo i ∈ {l, r}:

si = θ0 + θlyl + θryr (2.27)

si = θ0 + θlyl + θryr + θl:rylyr (2.28)

si = θ0 + θlyl (2.29)

si = θ0 + θlyr (2.30)

Table 2.7 shows the results for fitting these four linear regression models above. Table 2.7a
shows that sl is best predicted with the equations which contain yl, i.e., Equation 2.27, 2.28
and 2.29. They all have a comparably low prediction error of around 43, and the goodness-
of-fit AIC is very similar ∼2340. When observing the results for Equation 2.30 on the other
hand, the goodness-of-fit is much lower, and the prediction error is almost three times as
high. The equivalent is true for the results from predicting sr (cf. Table 2.7b). The results
are similar, independent of whether both predictors yl and yr or only yr is considered. This
shows that a robot which uses the derived motion model M can control the desired servo
speed almost independently.
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Table 2.7.: Effects of predicting s from y.

(a) sl

Eq. AIC RMSE R2

2.27 2338 42.9 0.89
2.28 2340 42.9 0.89
2.29 2337 43 0.89
2.30 2821 126.1 0.01

(b) sr

Eq. AIC RMSE R2

2.27 2243 34.7 0.89
2.28 2244 34.6 0.89
2.29 2745 106.4 0
2.30 2252 35.6 0.89

Figure 2.8 visualizes the results for (a) the left measured servo speed sl and (b) the right
measured servo speed sr. What can be seen is that for the case of predicting the left servo
speed sl, the most explanation is provided by yl. If yl changes, the measured servo speed sl

changes too. The influence of yr, on the other hand, is very small and seems to only play a
role for very small yr. The same is true when observing the plot for sr (cf. Figure 2.8b): the
most influence on the actual servo speed sr is provided by yr. The variable yl, on the other
hand, does not explain much about the actual speed. Figure 2.8 supports the quantitative
analysis in the paragraph above: the actual servo speed s is only dependent on one of the
components of y. In other words, the motion model allows the robot to independently control
each servo’s speed. In theory, the motion model should fulfill the requirements for using TiPI
maximization, which should increase the variety of the robot’s behavior.

−0.5 0 0.5

−0.5

0

0.5

yr

y l

−0.5 0 0.5

yr

y l

−200

0

200
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Figure 2.8.: The plot shows the measured servo speed for (a) the left and (b) the right servo with
respect to the control signals y. It can be seen that the biggest influence on the measured speed comes
from exactly one of the control signals.

Figure 2.9 shows a snapshot of the resulting measured speed values. The robot tries to
explore the relationship between motor signals in much more variety when compared to the
initial behavior shown in Figure 2.2 at the beginning of this section. At that point, the
robot was only spinning left and right. With the use of the motion model M, the robot
now explores other means of locomotion, including forward locomotion or simple turns. This
means the robot’s resulting behavior is indeed more variable.

It is most likely possible to achieve even better predictability with a different model that
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2.7. Human-robot interaction tool with proximity information

uses, e.g., a combination of different kernels or a multi-layered neural network. This, however,
is not pursued further here, since the goal was not to accurately predict the servo speed.
Instead, the goal was to enable the robot to control its two servos independently, so it can
explore the space and try to predict the outcome itself.
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Figure 2.9.: A snapshot of the analyzed experiment. In comparison to the behavior shown at the start
of the section (cf. Figure 2.2), the robot now has a higher behavioral variety, including spinning, but
also turning and moving straight.

2.6.7. Summary

This section showed that the measured servo speed for each of the two servos of the robot
platform Sphero is dependent on both speed commands of both servos. When mapping
the resulting TiPI maximization control signals to the robot speed commands, it resulted in
repetitive behavior with only little behavioral variety. This was because a crucial requirement
of the used formalism to maximize TiPI was not met: the control signals were not independent
of the control parameters.

The evaluation shows that the developed motion model allows the robot to successfully
directly control its two servos, which, at the same time, increases its behavioral variety based
on its IMs.

2.7. Human-robot interaction tool with proximity information

This section describes the wand-shaped human-robot interaction (HRI) tool depicted in
Figure 2.10, which was used in the second study and the final study. The tool is a lightweight
aluminum tube with a ping-pong ball attached to its tip, and a fabric wristband to its bottom
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to provide a better grip. The tool served two purposes: (i) it motivated interaction with the
robot and (ii) it helped the robot to sense human proximity.

Figure 2.10.: The picture shows the human-robot interaction tool used in the second study and the
final study.

The idea for point (i) derived from observations in the first study. There, participants
used their hands to interact with the robot. They did not feel very comfortable with this
and only interacted with the robot when the situation required it. Providing participants
with the wand-shaped tool was meant to mediate this. It was hypothesized that the presence
of the tool would already encourage interactions: firstly, because there was a tool in their
hand with the introduced purpose to interact with the robot, and, secondly, because the
tool allowed interactions without the need to physically touch the robot, even providing a
distance between the robot and the human.

The second idea of introducing the tool was because it enabled the means of proximity
sensing (point ii). Without the tool, it would be difficult to design an experiment where
participants interact in a predictable way, but without giving them precise guidance on how
to interact with the robot. For example, some participants may prefer to use their right
or left hand, or alternate between them. If the robot could only sense one hand, maybe
because of a wristband, the experimenter would have to intervene and ask the participants
to only use a specific hand. This would give the participants room to assume the robot’s
sensing capabilities or imply the robot’s goal. This is something the study design of this
thesis actively tried to avoid.

The tool structures the experiment and the expected interactions since it was the presented
way to interact with the robot. This structure allowed the robot to measure the distance
to the very same object, and not, e.g., to the hands of different participants. This section
discusses how proximity sensing to humans was enabled.

The question was, however, what kind of technology is best suited for proximity sens-
ing? Subsection 2.7.2 provides an overview of known technologies for proximity sensing and
discusses their applicability for the studies of this thesis. It proposes Bluetooth Low En-
ergy (BLE) as a promising candidate for proximity sensing. Subsection 2.7.3 then presents
BLE components that were used to develop a proximity sensor based on BLE. A proof-of-
concept evaluation of the overall setup is briefly discussed. Subsection 2.7.4 presents how
the wand-shaped tool and the robot were modified so the sensor could be used for the final
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study of this thesis. Subsection 2.7.5 summarizes the section.

2.7.1. Requirements

This section outlines the requirements needed to enable a robot to sense the proximity of
human participants in the interactions studies. Firstly, the sensor should be unobtrusive,
meaning it should not be obvious to the participant that the robot has the capability to sense
proximity. This enables creating studies without biasing the participant for the proximity
sensor. If the participants were aware of the robot’s capabilities, they may have expected
a certain competence or implied goal for the robot. This is in line with the attempts in
all the interaction studies of this thesis, where the participants’ expectations were kept to a
minimum. Furthermore, the system needed to be applicable to a spherical, mobile robot, as
the one described in section 2.5. In particular, the robot does not have the possibility to equip
additional hardware. In addition, if the sensor output is used as an input for the controller
maximizing time-local predictive information (TiPI), the values needed to be provided fast
and should not have sudden drops to fulfill the assumptions of the TiPI implementation.
And lastly, it was ideal that the sensor system was affordable. This enabled using it in the
everyday environment and made replacing it easy. The primary needs can be summed up as
follows:

• sense the proximity of a human

• provide sensor readings fast to compute predictive information (PI)

• unobtrusive

• applicability to a small, spherical robot

• self-contained sensor system independent of the robot

• affordable components

While investigating suitable sensor systems, an eye was kept on possible requirements
of future studies. For example, it was assumed that the same system can also distinguish
between participants. Understanding direct contact (i.e., touch) can also enhance the robot’s
behavior or the data analysis of the recorded sensor values of the robot. The secondary
needs, i.e., the needs hypothesized to be important for future studies beyond the thesis, were
therefore:

• recognize touch

• distinguish between multiple humans
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2.7.2. Technologies to sense proximity

This section discusses a selection of popular sensor systems for retrieving proximity informa-
tion between two agents. Each subsection outlines the benefits and shortcomings in relation
to the requirements provided above. The section concludes with a summary and proposes
BLE as a potential candidate for an unobtrusive and cheap proximity sensor for a mobile,
spherical robot, with little configuration needs.

Laser scanners Laser range sensors have a long history of being used for robotic systems,
as the sensors provide distance information to surrounding objects with already little com-
putational complexity and few environmental constraints. A common application is to track
multiple humans (Schulz et al. 2003) and follow one or more humans in the environment (Lee
et al. 2006; Leigh et al. 2015). One of their major advantages is that the sensors can be used
in an indoor as well as an outdoor setting, in contrast to, for example, camera systems which
is explained later.

However, additional tracking is needed for the robot’s self-motion to distinguish between
obstacles, such as a wall or an interacting human. With wheeled robots, for example, this is
relatively easily applicable because the direction and the position of the sensor are known.
However, the spherical robot platform used in the studies of this thesis would make such
modeling much more challenging. In addition, these sensors cannot be mounted on the robot
without an additional processing unit, which would make the components too heavy and
clunky for the small, spherical robot.

External camera systems External cameras for capturing motion are popular in many
domains, such as surveillance systems, but they can also be used to track robots (Michel et al.
2006), or enable robots to track interacting humans or their limbs, e.g., their hands (Calinon
et al. 2010).

External tracking systems can provide the ability to track robot positions with an accuracy
of less than a millimeter7, by using high-frequency cameras and special markers that mark
the object/person/limb being tracked. This provides 2-D positional information or distance
information between the human and a robot (Khoramshahi et al. 2016). Such tracking
systems enable research despite limited robot sensing capabilities. For example, Khoramshahi
et al. (ibid.) investigated gaze cues of a simulated robot looking at a human participant’s
hand holding a marker.

External camera systems were not applicable to the studies of this thesis for several reasons.
If they are used with markers (e.g., providing a glove with markers), then it would become
obtrusive and the participants could become aware of the sensing capabilities of the robot
(something I wanted to avoid). If only external cameras were used without the markers, the

7The company OptiTrack claims that it can track robots with less than 0.3 mm positional error and less
than 0.05° rotational error (OptiTrack 2020).
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computational complexity of retrieving proximity information would be high. Most likely,
some kind of configuration per human would be needed to infer data. Both approaches would
need quite a substantial number of cameras to avoid occlusion and, more importantly, the
approach would constrain the application area for the study to a room with either a tracking
system with markers or one which allowed for ideal lighting conditions. The studies of this
thesis all take place in the same room. However, with an eye on future studies, an external
camera system would render results incomparable to future studies conducted elsewhere,
such as other laboratories or communal spaces.

On-board camera On-board cameras are less obtrusive compared to tracking systems.
They are very popular devices for collecting information about humans in the environment.
For instance, they can help to understand a human’s gaze or facial expressions. Camera
images can also help to distinguish objects and/or the distance to those objects (especially
if they provide depth information).

However, current approaches, such as using deep learning for object recognition, still
needs substantial computational power and many approaches are prone to lightning con-
ditions (Feng et al. 2018). There are approaches that can deal with various lighting condi-
tions (e.g., Dijk and Scheunemann 2019). However, they need knowledge about the environ-
ment to infer the distance to objects. In addition, a model of the self-motion (i.e., odometry)
is needed to handle occlusions (e.g., Feng et al. 2018).

Vision approaches feel most natural and will presumably be implemented in everyday
robots eventually, given their biological plausibility when observing humans. Camera devices
are also comparably cheap and can be attached to many different robot platforms. However,
for the robot platform in the studies of this thesis, a camera was not applicable for various
reasons. Firstly, the computational power to compute distance information out of image data
was not given, especially not the one needed to achieve that in 100 ms. Secondly, there was
no possibility to mount additional hardware on the robot, and, most importantly, the self-
motion of the robot was very complex. This makes a reliable odometry calculation difficult,
which would have made it very challenging to give meaning to received images.

Radio-frequency identification Radio-frequency identification (RFID) uses electromagnetic
fields to identify tags that passively or actively emit frequencies. The most widely deployed
RFID tags are off-the-shelf, narrow band tags. They do not need an external power source,
they are small, and thus can be applied unobtrusively to everyday objects, which made it a
good candidate and was investigated in more detail. Wood et al. (2017) used this technology
in an HRI scenario. A robot was equipped with an RFID reader. The human robot operator
could then change the robot behavior depending on the RFID tag presented to the robot.
This is similar to the way RFID is most predominantly used: granting door access via RFID
cards. The human, however, needs to be aware of this technology and control.
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A prominent use case of RFID is indoor localization or distance measuring. Localization
techniques usually use many tags in an environment or several readers to infer a position
accurately (e.g., Truijens et al. 2014; Martinelli 2015). For example, Megalou et al. (2019)
presented a robot that navigates in a room using self-localization and mapping. Passive
reference RFID tags, which were augmenting the environment, helped to infer the position
with the help of received signal strength (RSS) of other passive tags which had an unknown
location. The approach, however, could not be transferred to the studies presented here. This
has several reasons: the accuracy error was around a multiple of 10 cm, which is good for many
applications, but not for a robot locomoting on a table with 91 cm in diameter. Furthermore,
the environment would need a dense distribution of additional RFID tags which, again, would
make the robot less autonomous and constrain future studies to a specific environment. Most
notably, it is known that RSS is prone to the antenna orientation of the reader (Martinelli
2015). In the example above, the tags and the reader were allocated in a plane in order to
achieve 2-D positioning. This was something the robot in this study would not have been
able to deliver.

Ma et al. (2017) proposed a solution for 3-D localization with sub-centimeter accuracy,
using only passive, off-the-shelf RFID tags and ultra-high frequency readers, and by exploit-
ing the time-of-flight of the signals. The setup, however, needed, at least, two high-power
consuming readers (in different locations). This, again, made it inapplicable for the small
robot presented here.

Bluetooth and Bluetooth Low Energy Bluetooth was presented in 1994 to replace wired
data connections by using radio transmissions. It became very popular with the core spec-
ification Bluetooth 2.1, a standard also known as Bluetooth Basic Rate/Enhanced Data
Rate (BR/EDR). It offers a way to pair with peripheral devices (e.g., headphones or mobile
phones) and to stream data.

Similar to the RFID technology, some research suggested the use of RSS to retrieve in-
ferring proximity to people wearing Bluetooth devices. For example, this information could
then be used to infer social networks (Do and Gatica-Perez 2011), analyze interaction pat-
terns with augmented objects (Siegemund and Florkemeier 2003), change public displays to
sustain interaction (José et al. 2008) or for indoor localization (Subhan et al. 2011). These
examples made Bluetooth a promising choice. However, this technology has significant short-
comings. For example, scanning for other Bluetooth devices can take up to 10.24 s, making
it inapplicable in highly dynamic environments, like the one presented here where a human
interacted with a locomoting robot. In addition, the devices have a high energy consumption,
due to the protocol’s focus on communication between devices which requires large message
payloads. This makes it unsuitable for embedded systems or to equip human participants
unobtrusively as a larger external power source would be needed.

In 2011, the core specification Bluetooth 4.0 was introduced Bluetooth SIG 2016. Its
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subsystem BLE, also referred to as Bluetooth Smart, addresses the shortcomings mentioned
above. BLE uses small 2 MHz bands over the unlicensed 2.4 GHz radio band. Only three
channels are used for advertising8 messages. These are chosen in such a way that collisions
with the most commonly used WiFi channels are unlikely, since WiFi also uses the 2.4 GHz
radio band (Faragher and Harle 2015). In contrast to older Bluetooth protocols (since 2.1
is referred to as Classic Bluetooth), BLE uses very short duration messages with small
payloads, yielding low power consumption (ibid.). This allows devices that are operating on
a coin cell battery with 250 mAh to last 1 to 2 years (Bluetooth SIG 2016; Rault et al. 2014).
All this decreases the maximum scanning time from 10.24 s (Bluetooth Classic) to less than
10 ms (Faragher and Harle 2015), which allows a scanning device to see rapid changes in
proximity.

Furthermore, BLE devices are small enough to attach them to people unobtrusively. RSS
indications between devices are built-in the BLE standard. This makes exploiting the RSS
easily applicable. Although the RSS and the distance between devices are associated, there
are shortcomings when fully relying on RSS readings.

The biggest disadvantages for human-inhabited environments are partial occlusions (Schwarz
et al. 2015; Ahmad et al. 2019) and fluctuations of the RSS (Faragher and Harle 2015). One
way to deal with this is by using multiple BLE beacons. For example, Schwarz et al. (2015)
presented a robot that could use BLE to find a key ring. The research was conducted in a
household environment equipped with stationary BLE devices. A robot had the task to find
a key ring, which was equipped with a BLE beacon. The robot achieved this by triangulating
its position using three measures of RSS between the stationary devices and the beacon. This
technique can be extended by using a pre-processed map. For example, a mobile receiving
device collects RSS of the surrounding static sensors. A map of fingerprints is computed,
where each cell contains RSS data to all surrounding sensors. With this pre-processed map,
an indoor position of a mobile sensor can then be inferred by comparing the stored finger-
print with the current fingerprint (e.g., Faragher and Harle 2015; Ng et al. 2019). Such an
approach handles the fluctuations observed in the RSS and makes localization more accu-
rate than established WiFi localization (Faragher and Harle 2015). However, similar to the
arguments for other technologies, it is not ideal to constrain future experiments to a specific
environment, e.g., an environment with preset BLE beacons and or scanners.

Research suggests that for distances smaller than 25 cm, the actual distance and the RSS
are correlated (ibid.). The chosen setup kept this in mind, mounting a BLE device to the
robot’s head and to the tip of the wand. This allowed the robot to infer the proximity of the
approaching wand, and react and adapt accordingly.

Summary The small, spherical robot platform used in the interaction studies of this thesis
posed various challenges that only BLE seemed to overcome. BLE correlates to the true

8“Advertising” is the term used in the BLE context when a message is sent without knowing who will receive
it and if somebody receives it. This is similar to the term broadcasting known from WiFi.
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distance for interactions between 0 to 25 cm, it is a small and affordable, system-on-chip
technology, which could be mounted on the small, spherical robot used in this thesis. All
this makes it a good candidate for a sensor system measuring proximity.

2.7.3. Setup

BLE device
(central/mobile)

#1 #2

BLE beacon
(peripheral/mobile)

Another BLE beacon
(peripheral/mobile)

Figure 2.11.: The overall experimental setup from (Scheunemann, Dautenhahn, Salem, et al. 2016b).
A central BLE device (mounted on the robot) was used to passively scan for advertisements of peripheral
BLE devices (attached to/worn by humans). The central device computed packages with RSS data and
ID of received advertisements. The self-contained system-on-chip transmitted these packages wired or
wirelessly via BLE.

This section describes the BLE devices and their setup to enable a robot with a proximity
sensor for close distances. Scheunemann, Dautenhahn, Salem, et al. (2016b) used BLE to
enable a robot to receive information about a human participant’s proximity, to recognize
touch gestures and to distinguish between human participants. Figure 2.11 visualizes the
setup: a mobile, rotating robot was equipped with a central BLE device and peripheral BLE
devices were attached to the human participants.

Each of the peripheral devices (i.e. beacons) attached to humans advertised their ID. The
central device passively scanned for these advertisements. The central device was a system-
on-chip, meaning it could compute this information independently. It collected the RSS and
the associated beacon ID, and transmitted this to an external computer which controlled the
robot. This way the robot controller received information about the surrounding beacons
and their RSS.

Components

Figure 2.12 shows the hardware components: (a) the beacon Gimbal Series 10 and (b) the
central device BLED112. Both components are described in the next two subsections.

Peripheral proximity beacons Gimbal Series 10 Figure 2.12a shows the beacon Gimbal
Proximity Beacons (Series 10) that was used in the setup. It is a small (40 × 28 × 5.5 mm),
inexpensive (US$5) device, which can be powered with a standard coin cell battery of the
type CR2032.

The device can be configured with two different proprietary protocols: the Gimbal protocol
and Apple’s iBeacon (Apple Inc. 2014). The setup here used the iBeacon protocol, simply
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1.1 cm

(a) beacon

(b) central

Figure 2.12.: The two BLE components used in the setup. (a) Gimbal Series 10 is a self-powered
and configurable advertising beacon, which can easily be attached to humans, robots or objects.
(b) Bluegiga’s BLED112 is a central BLE device that scans for the RSS of surrounding peripher-
als.

because many BLE devices and upcoming products utilize the standard, making the integra-
tion of other devices in this architecture more comfortable. Apple’s iBeacon was introduced
in 2013, however, a protocol specification was only provided in 2015 (Apple Inc. 2014; Apple
Inc. 2015). The protocol has the disadvantage that it does not report the transmission chan-
nel. A BLE scanner then receives RSS from different channels, which results in a smearing
effect (Faragher and Harle 2015).

Each beacon has to be assigned a 20 byte payload. This is what the iBeacon protocol
reserves to identify the beacon purpose and its position. The first 16 bytes are the beacon’s
UUID. This is a unique identifier of the beacon’s application and allowed the scanner to
pre-filter advertisements for only the beacons of the described setup. The last 4 bytes can
specify information about the position of whatever the beacon is attached to. This can be
the identifier of a participant, including more details such as whether the beacon is attached
to their left or right wrist.

The iBeacons were configured in such a way that they allowed the maximum perception
by the central device. For example, the antenna operated as an omnidirectional antenna, as
opposed to a directed antenna. This way the direction from the beacon to the scanner was
influenced the least. The beacons had the maximal transmission interval of ∼100 ms and a
maximum Transmission Power (txPower) of 0 dBm. This way, the central device received the
maximum readings possible and the high power increased the accuracy. Both settings also
maximized energy consumption. This, however, was acceptable as beacons powered with a
coin cell battery will still last for several days.
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A central scanning device Bluegiga’s BLED112 The embedded firmware of the robot is
proprietary, i.e. there is no possibility of changing the software. This made it impossible
to use the existing Bluetooth adapter or to add an adapter. Therefore the central module
needed to be independent of the other hardware in the robot.

Bluegiga’s module BLE112 was used as the central device for scanning the environment
for advertisements of other BLE devices such as beacons (Silicon Laboratories Inc. 2015).
This device is based on the 6 × 6 mm chip CC2540F128 from Texas Instruments: a “cost-
effective, low-power, true system-on-chip (SoC)” for BLE applications (Texas Instruments
2013). The radio frequency transceiver, the 8051 microcontroller unit (MCU), 8 kB SRAM,
128 kB programmable Flash and a complete BLE stack9 enables full BLE device capabili-
ties (see Bluetooth SIG 2016).

Figure 2.12b shows the USB dongle BLED112, which was used in this setting. With the
size of 12.05 × 18.10 mm it is much bigger than the non-USB version. However, it allows
for easier prototyping, as the dongle can be positioned flexibly to different robots/machines
without any soldering. Bluegiga provides a protocol BGAPI to control the integrated BLE
stack, i.e., to send commands and to receive events/responses, in either of the following two
options:

• connect an external microcontroller/PC via UART or a USB CDC virtual serial port
to control the stack with BGLib, an ANSI C implementation of BGAPI

• use the embedded CC2540 chip on the BLE112 and control it with BGScript, the
BGAPI implementation in a BASIC-like scripting language

Here, the second option was used, which allowed the scanner to be used independently
of other hardware. The central BLE device was set in a constant passive scanning mode,
offering its own GATT Bluetooth profile. The machine which ran the robot client was
connected via Bluetooth to this service and waited for changes in its characteristics. Each
received advertisement package was sent roughly every ∼100 ms, which triggered a two-step
response event on the chip:

i. extract the sender ID and the corresponding RSS to the sender

ii. communicate the information to the robot client, i.e., change the profile characteristic

This way, changes in the RSS could influence the robot’s behavior. More details of the
implementation are publicly available (see Scheunemann 2018e; Scheunemann 2018a).

Proof-of-concept evaluation

Scheunemann, Dautenhahn, Salem, et al. (2016b) presented proof-of-concept evaluations.
Two human participants wore wristbands with BLE beacons and a spherical robot was

9The full BLE stack includes protocols such as GAP, GATT, L2CAP and SMP.
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equipped with a central device. Their results show that the above setup can be used (i)
to increase the robot’s awareness of participants that are present in its environment/proxim-
ity, (ii) to use a BLE device as a touch sensor for deliberate use and (iii) to enable the robot
to distinguish between interacting individuals. This means that all capability requirements
outlined at the beginning of this section were met.

Most relevant for this thesis is the evaluation of the proximity information. Figure 2.13
shows example data of the measured RSS between the central device and the beacon. What
can be seen is that there was an almost linear relationship between the beacon distance
and the RSS. For a beacon which operates on maximum power (txPower = 0dBm), the
relationship is linear in the range of 0 to ∼25 cm. This is in line with analysis by Faragher
and Harle (2015).
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Figure 2.13.: The RSS of two beacons. Beacon 1 was set up with the highest possible transmission
power (txPower = 0dBm) and beacon 2 to the lowest (txPower = −23 dBm). The x-axis shows the
distance between the beacon and the central device. Each beacon was moved with a roughly constant
speed of ∼5 cm

s away from the central device.

Setup adaptations for this thesis

The technological requirements were met with the above setup. However, what turned out
to be a challenge was to translate the setup to the small robot platform used in this thesis.
The robot is closed-source hardware, which rendered it difficult to equip with any additional
hardware. This was the reason why a system-on-chip device was chosen in the first place. It
could be equipped to a robot by only using its power. However, opening the shell damaged
the robot in such a way that the dynamics changed and rolling was not as smooth anymore.
This was too huge of an impact on the robot hardware. Initially, an important reason for
an off-the-shelf robot was to be able to easily replace the robot with another from the same
batch. This way, the robot replacement had similar characteristics. However, opening the
robot changed the central feature of the robot: its locomotion, which made this benefit vanish
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(especially as the damage was not anticipated to be caused reliably).
For the final study, the setup can also be realized by swapping the places of the beacon

and the central device. This needs some motivation. An added benefit of the studies in this
thesis compared to the proof-of-concept evaluation above is the use of the wand-shaped tool.
The human participant solely used the tool to interact with the robot. Therefore, the two
devices were placed in the tip of the wand and the robot itself (see the next section). This
gave the robot an idea about the proximity of the wand (and therefore the human). The
central device could sense the bacon without any occlusions if it was in close distance, and
the wand was close enough as it was used for any type of interaction. In particular, the
proximity could be sensed by only using one beacon and one central. This in turn meant
that both the devices could be swapped: the robot carried the more lightweight, self-powered
beacon and the central device was placed in the wand shaped tool. This had two benefits:
the most lightweight devices were placed on the robot directly, and the wand, with its pouch,
offered more space to place the additional power source unobtrusively.

2.7.4. Assembly

This section describes the assembly of the setup with the components described above. The
first step was to equip the robot with the beacon. This started by making the size of the
beacon smaller, without harming its functionality (Figure 2.14a). Ideally, to avoid changes
in the robot’s dynamics, the beacon would then be placed as close to the robot’s center of
mass as possible. However, as it was discussed earlier, this would mean the shell needs to be
cut open. This idea has been rejected because the robot’s dynamics would change too much.

(a) prepare beacon case (b) top mount (c) inside mount

Figure 2.14.: The beacon’s weight was reduced by modifying its shell in such a way, that it remains
functional (a). In initial trials, the beacon was mounted on the top of the head (b). This changed
the robot dynamics drastically, in a way that the robot could not keep the head on top anymore and
quickly lost its head. The extra weight of ∼5 g had to be placed closer to the robot’s center of mass.
Therefore, the robot’s head was cut open so it fits the beacon (c).

Instead, the first idea was to mount the beacon on the robot’s head (Figure 2.14b). This
already allowed the robot to sense the wand proximity. However, it turned out that the extra
weight of ∼5 g was already enough to make the robot dynamics unstable: the robot could not
keep its head upright and rather pulls it or pushes it. Therefore, the beacon was mounted
as close to the center of mass as possible, meaning the head needed to be cut open and the
beacon could then be pushed inside the head (Figure 2.14c). A white tape covered up the
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hole in the head to hide the additional robot functionality for the participants. Unlike for
the shell, opening the head does not change the dynamics of the robot. This is because the
prepared head can be reused on a new off-the-shelf robot.

The next step was to assemble the wand-shaped HRI tool. Figure 2.15a shows the compo-
nents for assembling the tool. A thin metal tube held a USB female plug. The central device
was plugged into the USB cable. The tip was shielded with a table tennis ball. Cables with
a JST PH 2-pin connector10 are soldered to the power wires of the USB cables. This enabled
the ability to connect an external battery to the plug, which then powered the system-on-chip
central device. The battery was hidden in a black pouch which was attached to the end of
the wand. This design had two benefits. Firstly, it enabled the battery to be changed easily
and without disassembling the wand. Secondly, the weight of components is closest to the
point of human contact. This construction kept the additional weight on the tip of the wand
to a minimum, which in turn made it more comfortable to handle the wand. Figure 2.15b
shows how the assembled wand and robot were used in an experimental run with the author.

(a) Explosion view (b) Usage

Figure 2.15.: The image shows an explosion view of the components of the HRI tool (a). Cables were
soldered to a female USB connector and were placed in the metal tube. This way, an external battery
could power the BLED112 and could be placed flexibly. The second image shows the assembled tool in
use (b). A ping-pong ball covered the BLED112. A black pouch at the end covered a small battery.

2.7.5. Summary

The technology BLE and the proposed devices fulfilled the requirements outlined in sub-
section 2.7.1. The BLE devices were small and could be attached unobtrusively, which is
important for research where human participants should be unaware of the robot’s sensor
capabilities. The technology could be self-contained on a chip. This means a central BLE
device could scan surrounding beacons, but it did not need to be part of the robot itself. In-
stead, an external machine could be connected to the central device and gather the scanning
10JST describes a range of common standards developed by Japan Solderless Terminal.
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results. This was able to extend the robotic sensing capabilities without the need to have
access to the robot’s firmware.

BLE offered the capability to quickly scan for surrounding signals of beacons. The robot
could therefore react quickly to proximity changes to a beacon. BLE could use omnidirec-
tional antennas, something other technologies, such as RFID, were lacking. The technology
was cheap at the time of conducting the research, for example, a beacon cost US$5 and a
central BLE device (a self-contained system on a chip) cost £11.49.

A limitation of BLE was that it needed to be powered somehow, in contrast to passive
RFID tags. However, a beacon with a coin cell battery only increased the weight by ∼5 g
and a beacon could run on a coin cell battery for 1 to 2 years. This means the technology
could still be applied to a small robot platform in most cases.

A further argument for BLE was that many manufacturers used the technology for their
devices, such as mobile phones, modern smartwatches and fitness bracelets. This also resulted
in research into using smartphones for, e.g., medical workflow tracking (Antunes et al. 2018)
and driver and passenger identification (Ahmad et al. 2019). Due to its popularity, it can
be expected that the amount of BLE devices in our environment will further increase in
the future (Faragher and Harle 2015). The inexpensive availability (prices may even fall
due to increasing popularity), the widespread use of BLE in existing devices and the many
upcoming additional applications and hardware devices further enhanced the motivation to
utilize this technology.

Scheunemann, Dautenhahn, Salem, et al. (2016b) provided a proof-of-concept evaluation
that the technology can be applied to retrieve proximity and touch information, as well as to
distinguish between participants. The technology is applied to the final study in chapter 5.
The tool’s usability and its impact on the participant’s experience have not been directly
evaluated.
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Study I

3.1. Introduction

This study was the first attempt to answer the main research question of how an au-
tonomously, intrinsically motivated robot is perceived, and whether this may sustain human-
robot interaction (HRI) (RQ2). The robot’s intrinsic motivations (IMs) were realized by
maximizing the information-theoretic quantity of time-local predictive information (TiPI).
The interesting property is that this computational model works on the sensor channels of the
robot, without providing any meaning to the information. A robot that maximizes its TiPI
in the sensor space would try to predict and excite its sensors and would only be constrained
by its morphology and the environment. Implementations on a simulated robot have shown
that this yields “exploratory and playful” behavior (Der and Martius 2012).

In order to investigate the human perception of this behavior generation, a few other
questions arise: (i) what is a suitable baseline behavior for comparison, (ii) how to design
a study to measure human perception and (iii) how to measure whether the intrinsically
motivated robot can sustain HRI?

These research objectives accompany the whole thesis. The idea this chapter proposes is
to have a baseline behavior that is as close as possible to the behavior generation of the
autonomous robot. This was achieved by letting the robot adapt its parameters based on
IM, and then letting the robot use one set of these parameters for its baseline behavior. This
resulted in a fully autonomous robot behavior, which was not adaptive to the environment.

Two methods were realized in order to ensure that the participants interact with the robot.
Firstly, the study enforced interactions. The environment was designed so that the robot
autonomously locomoted on a table with a variety of surfaces and different altitudes. One
side of the table was kept open so that the participant had to interact with the robot in
order to keep it on the table. Secondly, the participant was further encouraged to actively
seek interaction in order to fulfill a task: they were asked to understand, whether the two
robots had different strategies.

Another question that is motivating the thesis is that of how to measure sustained in-
teraction? Unarguably, the best way would be to measure the interaction time of human
participants with a robot. However, any longitudinal study which was to assess the interac-
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tion time would simply be too cost-intensive to be rolled out without any prior quantifiable
evidence that an intrinsically motivated robot may sustain the interaction. To measure
whether intrinsically motivated autonomy in robots has the potential to sustain interaction,
this study therefore measured human perception with the help of questionnaires.

The working hypothesis was that robots are more interesting to interact with if they have
perceived agency or goal-directedness. This allows the human interaction partner to assign
motivations to the robot, support or hinder its goals, or even sympathize with its joy when
achieving a goal. Once humans identify something as an agent, they are likely to direct
their attention toward that agent, trying to understand its goals, intentions, and behavior.
Competence is a dimension that can measure agency or is sometimes interchangeably used
to describe the concept of agentic (Fiske et al. 2007). There are two questionnaires which
offer scale dimensions for Competence and related Perceived Intelligence: the Robotic Social
Attribute Scale (RoSAS) and the Godspeed scale. The Godspeed questionnaire also offers
other dimensions, which seem intuitively interesting when it comes to our judgment of robots:
Animacy, Anthropomorphism and Likeability.

Animacy is a measure of aliveness (Bartneck et al. 2009). There is evidence that humans
already perceive objects as animated if the cause of their movement changes is not obvious
to the observer (Tremoulet and Feldman 2000). Perceiving something as animated seems like
a necessary criterion of whether we can perceive agency. On the other hand, there is HRI
research which found that the perception of Animacy is dependent on whether the human
interacts with a robot or whether the human observes only an HRI scenario: the Animacy
perception is hindered if, and only if, a robot’s actions are visibly goal-directed, but only if
we interact with the robot (Fukuda and Ueda 2010). In contrast, if a human only observes
the HRI scenario, they perceive the robot which is following instructions the most animated.
This shows two things: in order to understand what sustains HRI, it is important to have
physical interaction. In addition, our perception of agency and goal-directedness might not
reflect solely on how alive we perceive a robot.

Anthropomorphism is a measure often studied to understand our perception of robot ap-
pearances (e.g. Walters et al. 2007). Anthropomorphism is a complex and ambiguous term,
without a consensus on a definition for the concept. However, the concept of anthropomor-
phism is believed to measure more than just appearance, but also relationships. Airenti
(2015) claims that we anthropomorphize our pets, which we interact and play with, knowing
they are not humans. We treat them with similar care as we treat our peers, to the point
that we develop similar empathy (ibid.). In order to understand whether to reach similar en-
joyment or close relationships as we do with pets, anthropomorphism might be an important
dimension to understand more about HRI.

It seems therefore plausible to not just collect participants’ responses to Competence and
Perceived Intelligence, in order to investigate their perception of agency, but also to accom-
pany these measures with the dimension Animacy, Anthropomorphism and Likeability from
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the Godspeed scale.

3.1.1. Research questions

Following the arguments above, this study investigated the following research questions:

RQ1 Is an autonomous, intrinsically motivated robot perceived as more animated or anthro-
pomorphized than a reactive baseline behavior?

RQ2 Is an autonomous, intrinsically motivated robot more liked than a reactive baseline
behavior?

RQ3 Is the perceived agency of an autonomous, intrinsically motivated robot higher com-
pared to a reactive baseline behavior?

3.1.2. Overview

In this study, an intrinsically motivated robot was compared to a robot with a reactive
baseline behavior. Section 3.2 presents the design of the baseline behavior, following a
description of the study design in section 3.3.

Firstly, the used minimal, non-humanoid robot platform and the environment is described
in subsection 3.3.1. The robot platform Sphero was used, which is a spherical, non-humanoid
platform with only two degrees of freedom. This reduces observable complexity and, in
addition, should help to decrease a participants’ expectation bias of the robot and prevent
participants from anthropomorphizing the robot. Subsection 3.3.1 describes the tasks of the
robot and the human participants. Subsection 3.3.2 presents the conditions of the study. One
condition was the robot with a reactive baseline behavior. The other condition used a fully
autonomous adaptive robot behavior based on predictive information (PI) maximization.
The behavior patterns are described in subsection 3.3.3 to better understand the different
characteristics of the behaviors in the two conditions.Subsection 3.3.4 describes the measures
used for the study. These were standardized, popular scales used in HRI, namely the RoSAS
and the Godspeed scale. The presentation of the study design is finalized by the description
of the procedure (3.3.5) and the sample (3.3.6).

Section 3.4 presents the results. The study did not find any statistically significant results.
Contrary to the hypothesis, the reactive baseline robot was more liked and perceived slightly
more intelligent and animated. What stood out was the medium effect for the factor Warmth,
a universal dimension from social cognition implemented by the RoSAS questionnaire. Sec-
tion 3.5 discusses these results, followed by a detailed description of the implications for
the studies that followed in section 3.6. Then section 3.7 completes the chapter with the
conclusion.
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3.2. Baseline behavior

A challenge for investigating the human perception of robots is the baseline comparison. The
simple act of moving (Dautenhahn 1997; Hoffman and Ju 2014) or the appearance of a robot’s
head (Blow et al. 2006; Hoffman and Ju 2014) can already change a human’s perception of a
robot. Therefore, to compare the perception of different robot behaviors, it is best to choose
the same robot platform.

But what is the best way to generate a baseline behavior? The following three alternative
means of behavior-generation for serving as a baseline can be considered:

i. human remotely controls the robot

ii. random behavior

iii. pre-adapted reactive behavior

Human remotely controls the robot Ideally, I wanted to see how the algorithm compares
to a human remotely controlling the robot. However, human-controlled behavior has a high
degree of variance, dependent on the particular human controller. Furthermore, it is unclear
how much access the human controller should have to environmental information.

If a human directly observes participants, they may obtain much more information than
the robot, giving them an unfair advantage when creating behavior responses. It can be
considered a separate means of research to provide the sensor input in any meaningful way
for the human while keeping it comparable to the perception of the robot. For example,
if the human controller is limited to only the plots of the robots’ sensors, then the human
controller would likely struggle to make sense of this limited input.

Again, eventually, I would like to test whether an intrinsically motivated robot is perceived
as more or similarly agent-like compared to a remote-controlled robot. A Turing test could
be used to answer this question. However, creating a meaningful control for the limited
platform would need a preceding investigation of how to provide fair, shared sensory input
for humans and robots. In addition, PI maximization would need adaptation to be applied
to more complex robot platforms with sensor capabilities similar to a human. Therefore, a
different baseline behavior would need to be implemented first.

Random behavior The problem with using random behavior as a baseline is that “random-
ness” actually has a set of parameters that needs to be chosen. For example, how often do
values change, or is it the change of value or the value that is being randomized. The issue
with mimicking the behavior generated by PI maximization is that the change of behavior is
dependent on the input. So, when should that change? An option considered, for example,
was a Braitenberg-style vehicle (Braitenberg 1984). In a thought experiment, Braitenberg
(ibid.) created vehicles with surprisingly complex behavior generated out of a set of simple
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internal rules. For example, imagine a vehicle with two proximity sensors in the driving
direction. If the vehicle senses an obstacle to the right, it could turn to the left, and vice
versa. This yields quite a complex obstacle avoidance behavior, without the use of, e.g.,
a state machine. The robot platform used here, for example, could drive toward and then
bump into an obstacle. Depending on the tilt, it could then change its heading to the left
or right and continue as soon as its tilt is small. Sometimes in addition and randomly, it
could just change its heading without an obstacle to add extra complexity. I performed some
preliminary trials with random values, but I was quickly facing the question of a fair base-
line behavior again. The biggest issue with a random baseline behavior is its comparability
among research and robot platforms. Having the experimenter choose these values leads
to basically designing a certain kind of behavior (chosen from a whole range of behaviors),
which makes it problematic as a baseline. If a scientist wants to replicate this experiment in
the future, choosing a different robot platform, a systematically created baseline behavior,
ideally independent of the robot’s morphology, would be ideal, and would also be helpful
when comparing results with the current study.

Pre-adapted reactive behavior I decided to use a pre-adapted reactive behavior that has
adapted its network weights to the environment, but does not continue to adapt during the
experimental trials. The pre-adaptation was done in the same environment, with the same
behavior-generation algorithm (i.e. PI maximization) and the same robot platform as the
robot in the non-baseline case. Later during the experiments, the baseline robot used all
the same sensor inputs, but it only used the network parameters1 adapted at the end of
the pre-adaption. That way, the baseline was reactive to the same sensor input. It was
reactive to human and environmental perturbations, i.e., it was sensitive to changes either
of the environment, by input from human participants or just from moving itself. However,
the baseline robot did not continue the adaptation of its parameters. Its states were thus
deterministic, i.e., on the very same sensor input to the robot in the very same state, its next
state would always be the very same. However, this was challenging to observe in the real
world, due to the huge variety and combinations of sensor inputs and environmental states,
which made the behavior a good baseline candidate. Receiving the network parameters was
done with three pre-adaptations for 5 minutes. The network parameters were then randomly
chosen among the three. The initial parameters were the same for the baseline and the
non-baseline behavior.

3.3. Study design

As mentioned earlier, the design of the study was a challenge in itself, due to a lack of
previous investigations on the human perception of intrinsically motivated robots. This

1This refers to θ, a set of parameters representing the synaptic weights and biases. Their dynamics were
described in subsection 2.3.2.
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section describes and discusses the study design.

3.3.1. Robot, environment and tasks

There is evidence that the appearance of the robot and its behavior needs to be consistent
or, in other words, balanced (Ishiguro 2007; Fukuda and Ueda 2010). This means a very
realistic robot may elicit discomfort if its motion does not match expectations. For example,
a humanoid robot with the degrees of freedom similar to a human and some technical com-
plexity in its arms and face may elicit discomfort, not just by not being able to gesture or
communicate, but simply by not moving in accordance with our expectations.

(a) The robot platform (b) Schema
�
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(c) HRI environment

Figure 3.1.: (a) The used robot platform: BB8 from Sphero. (b) A 2-D cross-sectional view of the
robot. A two-wheel vehicle, kept in position by a heavy weight, moves the sphere when driving. A
magnet attached to the vehicle keeps the head on top of the sphere facing the direction of movement.
(c) The environment the robot explores during the trials from a bird’s eye perspective. The white area
is paper, the black is foam material and the beige-colored area is wood. At the top of the foam material
is a hill area and a pit in the lower part. The bottom edge does not have a wall, which forced the
participant to interact with the robot.

In this study, a very simple platform with a few degrees of freedom was chosen. This
lowered the expectation bias of the participants and allowed me to solely focus on the effects
induced by predictive information. Although simple, the robot offers some sensor capabil-
ities to enable rich behavior and adaptation capabilities to the environment. A suitable
platform is the off-the-shelf spherical robot from the company Sphero, specifically, the BB8
platform (Sphero, Inc. 2020a; Lucasfilm Ltd. 2015) as depicted in Figure 3.1a. In the BB8
version, the spherical robot Sphero has a head. A magnet keeps the head in driving direction,
which gives the user a sense of the heading direction of the robot. This, and the fact that
many people know the robot from movies, provides a better impression of a robot than using
the original Sphero: a white, solely spherical robot. The robot specifications are described
in more detail in section 2.5 (pg. 36).

Figure 3.1c shows the experimental environment. Two tables formed the space where the
robot could move around. The area was 180 cm × 120 cm in size. It was open on one side
where the participant was supposed to stand and interact with the robot. In Figure 3.1c you
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can see the author nudging the robot. The surface of the table differed in friction and height.
The black foam area had a hill (top) and a pit (bottom). Additionally, the black area and
the white paper area were softer and had higher friction compared to the wooden part.

The participants’ task was to observe the robot and understand whether it had a strategy
for exploring the environment. I directly asked the participants: “Aside from keeping the
robot in the area, try to observe the robot’s behavior. Also, try to understand the robot’s
exploration strategy (if any)?” (the full protocol is described in subsection 3.3.5). The idea
was that this would encourage the participants to interact with the robot. Additionally, one
side was kept open, so participants had to actively interact with the robot to prevent it from
falling off the table. The idea was that this enforcement of interaction would provide the
participants with a better understanding of the robot’s capabilities and behavioral richness.

3.3.2. Conditions and their order

The experiment consisted of two different types of behavior generation (i.e., conditions):

REAb (reactive): participants interact for approximately 10 minutes with a reactive robot
and were then asked about what they had seen.

ADAb (adaptive): same as REAb, but the robot was continuously adapting, based on max-
imization of PI as a motivation to interact with its environment.

The adaptive robot in the ADAb condition realized behavior motivated by maximizing PI,
and it continuously updated its internal networks based on that gradient during the exper-
iment. The PI formalism is described in detail in section 2.3 of the background chapter.
The reactive robot in the REAb condition started with the same network configurations as
the adaptive one (based on pre-trial adaptation). This determined how it reacted to sensor
input, but it did not further update its internal network during the experiment.

The type of behavior generation was a within-subjects variable, i.e., each condition was
presented to all participants. The order of REAb and ADAb was therefore randomly assigned
but counterbalanced over the number of participants to avoid interaction effects. Table 3.1
shows the orders of conditions, along with the number of participants.

Table 3.1.: Order of conditions

order of conditions participants

A ADAb → REAb 8
B REAb → ADAb 8

Figure 3.2 shows how the starting configurations for all networks of both conditions were
derived. They were generated in two steps. Firstly, three trials with the robot for 5 minutes
in the previously described environment were conducted. At the end of each trial, the robot’s
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network configurations were saved. In a second step, one of these network configurations was
randomly chosen as the starting configuration, i.e., for condition ADAb and REAb.

The PI formalism allows having different levels of adaptivity to changing environments
and new stimuli. The update rate for ADAb was determined empirically. I noticed that the
robot sometimes got caught in the pit mentioned earlier. When this happened, it would need
to adapt in order to leave and continue exploring. The ADAb adaptation rate was set so that
the robot would change its behavior and leave the pit in less than 20 seconds. The hypothesis
was that a high adaptation rate yields a higher perceived intelligence, as the robot would
continuously adapt to new stimuli and change the way it would react to certain inputs. The
robot in the ADAb condition was assumed to be perceived as more intelligent, as it would
be the only one able to leave the pit. This is discussed later in more detail.

0
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P P

P P ′

R
E
A

b

A
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Pre-trial adaptation of
an initial network con-
figuration for 3 times.

Choose one network
configuration P ran-
domly.

Each experimental run
consisted of two condi-
tions (i.e. REAb and
ADAb) in random or-
der. P was the start-
ing configuration for all
conditions of all experi-
mental runs.

Figure 3.2.: The starting point of each condition was a network configuration P . The network
configuration P was chosen randomly from three 5 minute pre-adaptation trials. Only in the ADAb

condition the adaptation continued during the human-robot interaction trial. In condition REAb, the
robot was only reactive but was not adaptive to the environment.

3.3.3. Description of the robot’s behavior

The chosen sensors determined the robot’s behavior to a large extent, as PI tries to excite
sensor input. For example, if one decides to only use the inertial measurement unit (IMU)
reading of the yaw angle speed, then the robot only needs to adapt its heading in order
to excite the sensor. It is likely that it would not generate any output for rolling forward,
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as such a movement would not excite the sensors. Empirically, I decided on the following
sensors as input:

• pitch and roll angles from the IMU

• x and y component (forward/backward and left/right) of the accelerometer

• z component of the gyrometer, i.e., the angular velocity of the robot when spinning

The aforementioned strategy of using a fixed network for the reactive robot yielded a
somewhat predictable behavior for the condition REAb. The robot preferred left turns in
light of environmental perturbations or human interaction, i.e., if it hit a wall, it would often
turn left. Its major trajectory was that of circling in different radii. Given this behavior, it
seemed likely that people would become bored very quickly. However, in initial trials and
according to the observations presented later, almost all participants did not recognize the
mentioned pattern.

The adaptive robot (ADAb) started with the same network configurations as the reactive
robot (REAb). A very high update rate was chosen for its model, as discussed in section 3.2.
Its trajectory had a tendency to be straight, and if it reached an obstacle it adapted its
heading to be able to continue moving in another direction. However, as soon as a participant
interacted with the robot, it was not trivial to understand what the robot would do next
to increase sensory stimuli. Example videos for both conditions are publicly available (see
Scheunemann 2019; Scheunemann 2017e).

3.3.4. Measures

Two standardized scales were used to measure the participant’s perceptions of the robots:
the Godspeed scale designed by Bartneck et al. (2009), which has been widely used in many
experiments, and the Robotic Social Attribute Scale (RoSAS) designed and evaluated by
Carpinella et al. (2017), which is comparably new to HRI. Using standardized questionnaires
helps when comparing the results with other experiments. The use of questionnaires was
motivated in section 2.4.

Godspeed uses a 5-point semantic differential scale and investigates for the dimensions
Anthropomorphism, Animacy, Likeability, Perceived Intelligence and Perceived Safety. The
RoSAS collects responses for the dimensions Warmth, Competence and Discomfort. The
authors of RoSAS do not recommend a specific scale, but instead recommend having a
neutral value, e.g., an uneven number of possible responses. The used questionnaire consists
of 7-point Likert-type items.

The focus of this study lied on the dimensions Animacy, Anthropomorphism, Likeability,
Perceived Intelligence and Competence to answer the research questions outlined in subsec-
tion 3.1.1. However, all the other dimensions were included in the questionnaire and are also
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reported. This entails Perceived Safety from the Godspeed scale, and Warmth and Discom-
fort from the RoSAS. This was done, on the one hand, to hide the questionnaire intention
and on the other hand to check for other effects or suitable dimensions for later study designs.
In addition, it further helps when comparing effects in follow up studies. The dimensions
consist of several items. The mean of all items encompassing a dimension is used to calculate
the dimensions’ response.

Both scales were included in the questionnaire handed out to the participants after each
condition. Two additional open-ended questions were asked in the last questionnaire after
both conditions had been conducted:

i. “Can you describe the different behaviors of the robot? Did the robot have any par-
ticular strategy for exploring?” and

ii. “What were the best and/or worst aspects of the robot’s behavior?”.

The purpose of these open-ended questions was twofold: on the one hand, answers could
reveal more insights into what participants focused on. This in turn could provide ideas
of how to amend the study design or whether the baseline robot was perceived particularly
differently. On the other hand, they were used to draw the participants’ attention to the robot
and encouraged their interaction. The pre-test and post-test questionnaires are attached to
this work in section B.1 (on page 175 and 178).

3.3.5. Procedure

Participants were welcomed to the experimental room and they were handed an information
sheet. They were welcomed to discuss concerns related to their participation. If they were
happy to proceed with the study, they were asked to sign an informed consent form. It was
in the beginning and at this point that it was emphasized that they could leave the study
whenever they feel uncomfortable, stressed or bored.

After that, the environment and the robot were presented and briefly described, starting
with a description and demonstration of the interaction possibilities. They were shown how
to use their hand as a wall or nudge the robot to prevent it from falling off the side of the
arena that was not enclosed by a wall, or to illicit new behavior through interaction. For
each interaction shown, the participants were asked to repeat them:

• “you can use your flat hand to stop it”

• “you can use your pointing finger to poke it”

• “you can use your flat hand and rotate it”

The experimenter then described the main conditions of the experiment:
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• “the same robot hardware is used for both 10 minute interactions”

• “at the beginning of each interaction, the robot has almost no knowledge about its
body and/or about the world”

Participants were informed of the robot’s task to explore the environment.

• “the robot will try to understand/explore the world and itself”

They were asked to observe whether the robot followed a particular strategy to do so, and
if they could identify any specific behavior. They were also asked to prevent the robot from
rolling over the open edge.

• “you need to take care the robot is not falling off the table”

• “try to observe the robot’s behavior and try to understand the robot’s exploration
strategy (if any)?”

• “you can use all techniques above to further understand the robot’s strategy”

The two tasks above aimed to initiate a human-robot interaction so that participants’ re-
sponses reflect their perception of the interaction. Their task to prevent the robot from falling
off the table aimed to enforce the interaction, while the question about robot strategies aimed
to encourage it.

Participants then filled in the pre-questionnaire. This gathered information regarding their
sex, age and background. Next, the two conditions were presented to the participants in a
randomized order. The resulting allocation to either order A or B was counterbalanced,
as shown in Table 3.1. Each condition lasted approximately 10 minutes. They filled in
two post-questionnaires containing the two scales and the two additional questions discussed
earlier (cf. subsection 3.3.4). The questionnaires can be found in Appendix B. The entire
experiment took 50 to 60 min per participant.

3.3.6. Sample

Sixteen participants were recruited (5 females; 11 males) between the ages of 23 to 60 years
(M = 33.4, SD = 9.3). Figure 3.3 shows the distribution of participant’s ages.

All participants but one were university staff or students, and all of them had a background
in Computer Science. To gain insight into their experience with robots, the participants were
asked how familiar they were with interacting with robots, programming robots and the
chosen robot platform. A 5-point Likert scale was chosen with the value 1 for “not familiar”
and 5 for “very familiar”. Figure 3.4 shows all the responses to the self-assessment. The
participants’ background were reflected in their responses to the pre-test questionnaire. Their
self-assessed experience for interacting with robots gave an average of 4.4 (a) and the average
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Figure 3.3.: A histogram of the participant’s age in the study. It is skewed toward younger participants.

familiarity with programming robots was 3.8 (b). However, their experience with the chosen
robot platform was relatively low and rated an average of 1.9 (c). Having participants with
higher experience in robot interaction and robot programming was on purpose. I expected
that those participants would be more critical toward an HRI experiment. Importantly, all
participants were naïve with regard to the purpose of the experiment.
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Responses to the questions: How familiar are you with …
(a) …interacting with robots? (b) …programming robots? (c) …the BB8 robot from Sphero?

Figure 3.4.: The response distributions of the pre-test questionnaire on 5-point Likert-type items.
Participants were asked about their familiarity with (a) interacting with robots, (b) programming
robots and (c) the Sphero BB8 version. The majority of participants had little experience with the
Sphero robot but had interacted with robots already.

The study was ethically approved by the Health, Science, Engineering & Technology ECDA
with protocol number aCOM/PGR/UH/03018(1). The notification of approval is attached
to this work in section C.1. The experiments were conducted from May to June 2018 over the
course of 13 days. The anonymity and confidentiality of the individuals’ data are guaranteed.
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3.3.7. Data preparation

Table 3.2 shows the results of testing the internal consistency reliability of the scales of
both the standardized questionnaires, analyzed with the use of Cronbach’s α. The item
quiescent-surprised was negatively loaded on the scale dimension Perceived Safety. Even if
reversed, the reliability was poor. The item was therefore removed. After preparation, all
scale dimensions showed a good reliability, ranging from α = 0.75 to α = 0.92. This was
evidence that the dimensions could be analyzed without any further preparation.

Table 3.2.: Internal consistency reliability scores.

dimension items α

R
oS

A
S


Warmth 6 0.84
Competence 6 0.87
Discomfort 6 0.81

G
od

sp
ee

d


Anthropomorphism 5 0.75
Animacy 6 0.75
Likeability 5 0.89
Perceived Intelligence 5 0.87
Perceived Safety 2 0.92

3.4. Results

This section presents the results of the study in three different subsections. The first two
subsections present the results of the quantitative analysis of the questionnaires2. The third
subsection is concerned with the qualitative analysis, presenting insights from the open-ended
questions.

The order of the two conditions was counterbalanced, i.e., the sample was split in half
and the two orders A and B had the same amount of participants (cf. subsection 3.3.2). In
addition, the order had been randomly assigned. All this was done to avoid interaction effects,
i.e., to avoid that observed condition effects are influenced by the order of the conditions.
Subsection 3.4.1 shows that there was no evidence for interaction effects. This, in turn,
allowed investigating the condition effects, i.e., main effects, independently of their order.

Subsection 3.4.2 presents the main effects between the conditions. An analysis of variances,
or a non-parametric type as used above, would not show any direction or size of an effect.
Therefore, a two-way paired difference test was used to understand possible effect directions:
the Wilcoxon signed-rank test. The results did not indicate any statistical significance, but
they revealed medium effects for the dimensions Warmth, Discomfort (both RoSAS) and

2All tests were non-parametric. This was mainly because the collected questionnaire responses were ordinal,
but also as these tests are more robust for small sample sizes.
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Perceived Intelligence (Godspeed). The section is concluded with the results of a qualitative
analysis of the open-ended questions (subsection 3.4.3).

3.4.1. Interaction effects

An analysis of variances (ANOVA)3 is commonly used for investigating interaction effects, i.e.,
effects that show whether the order of the conditions influences the participants’ responses
to a condition. The study had two independent variables: one within-subjects variable and
one between-subjects variable. The type of behavior generation (short: behavior) was an
independent within-subjects variable. It consisted of the two levels: the conditions REAb

and ADAb. The between-subjects variable was the order of how the conditions were presented
and had the levels A and B (cf. subsection 3.3.2).

Table 3.3 shows the results of the ANOVA-type test for each questionnaire dimension,
i.e., for each independent variable or factor. The last column reveals that there was no

Table 3.3.: ANOVA-type test results for the independent variables “type of behavior generation” (level
REAb, ADAb), their “order” (level A,B) and the interaction of both variables “order:behavior” for
the dimensions of the RoSAS and Godspeed scale.

order behavior order:behavior

dimension F df1 p F df1 p F df1 p

R
oS

A
S


Warmth 1.411 1 0.235 0.355 1 0.551 1.890 1 0.169
Competence 0.022 1 0.881 0.001 1 0.981 0.210 1 0.647
Discomfort 1.889 1 0.169 2.359 1 0.125 0.002 1 0.965

G
od

sp
ee

d


Anthropomorphism 1.606 1 0.205 0.057 1 0.812 0.982 1 0.322
Animacy 2.367 1 0.124 0.009 1 0.923 0.017 1 0.897
Likeability 0.035 1 0.852 0.033 1 0.857 0.813 1 0.367
Perceived Intelligence 0.250 1 0.617 1.649 1 0.199 0.007 1 0.935
Perceived Safety 0.370 1 0.543 0.742 1 0.389 0.403 1 0.526

interaction between the condition and order, i.e., all p values were bigger than the confidence
level of 5 % (p > 0.05). This means that the conditions could be analyzed independently of
their order 4. The second column shows that there seemed to be no statistically significant
condition effect for any of the dimensions. The next section discusses the main effects in
more detail.

3For computing the ANOVA-type test the R package nparLD was used. As the study consisted of one within-
subjects variable (behavior) and one between-subjects variable (order), it could be expressed as F1-LD-F1
Model. The nparLD package offers the function f1.ld.f1() for computing such models.

4Note that the same test was used to analyze if the participants’ self-reports from the pre-test questionnaire
had an effect on the participants’ responses to the conditions, but no statistically significant effects were
found.
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3.4.2. Main effects

This section discusses the main effects of the study. A main effect is the effect of a single
independent variable (here: the behavior generation) on a dependent variable (here: the
questionnaire dimension) while ignoring all other independent variables. As discussed before,
the main effects could be analyzed individually as there were no interaction effects between
the conditions and their order.

Table 3.3 indicated that there were no statistically significant effects between the con-
ditions. This section adds an investigation of the underlying effect sizes. Even if there is
no statistical significance, an effect size can reveal tendencies for further investigations or
adaptation in future studies.

To understand the effects it is worthwhile to investigate the actual change of the within-
subjects variable behavior for one participant, rather than the total responses to one con-
dition. The question was: does a number of participants respond higher to one condition
than the other? This was important to understand whether many participants perceived one
condition differently than another condition. For example, if all participants responded to
the dimension Perceived Intelligence for the robot in the ADAb condition a bit higher than
in the REAb condition, this would yield the insight that ADAb was perceived as more intel-
ligent among participants. This type of analysis allows revealing effects even if participants
answered mostly at the extreme ends of the scales. For example, one participant might have
been excited to see a robot locomoting and responded in all conditions at the right end of
the scale. Another participant might have been more reserved toward a locomoting robot
and rather answered on the left side of the scale. The important question of this study was:
do both of them, nevertheless, perceive the ADAb robot as more intelligent than the REAb

robot?
A test investigating for such effects is called a paired difference test. The Wilcoxon signed-

rank test5 is such a paired difference test and a non-parametric alternative to the popular
paired t-test. Figure 3.5 shows the results for the two-sided Wilcoxon signed-rank test for
comparing the difference REAb−ADAb. Depicted are the results for all dimensions (y-axis).
If the response to ADAb was higher than REAb for one participant, then the difference is
negative. If the median of all the differences (i.e., the point estimate) is negative (x-axis),
then there was a tendency that most participants scored ADAb higher for that observed
dimension.

The 95 % confidence interval is depicted as error bars. If the confidence interval entails 0,
then there was no certainty as to whether this difference was truly an effect in one direction,
i.e., the effect was not statistically significant and the p value would be larger than 5 %.

Figure 3.5 shows that participants seemed to perceive the robot in the REAb condition as
more intelligent and competent. In addition, participants perceived the robot in REAb as
more safe, but the uncertainty of that effect spanned over a large range and was therefore

5The Wilcoxon signed-rank test is part of R’s built-in stats package and is implemented as wilcox.test().
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Figure 3.5.: The results of the two-sided Wilcoxon signed-rank test. Depicted are the point estimates
(median of the differences) between the condition REAb and ADA. The 95 % confidence interval is
plotted as error bars.

ignored. On the other hand, there was some effect that participants perceived the adaptive,
intrinsically motivated robot (ADAb) as more warm and, in the same way, their Discomfort
perception was increased.

However, Figure 3.5 also shows that all these effects were not statistically significant for
any of the dimensions. This means there was not enough evidence that the robot’s Animacy
and Anthropomorphism (RQ1), Likeability (RQ2) and Competence and Intelligence (RQ3)
in the ADAb condition was differently perceived by the participants than for the robot in
the REAb condition.

There were two possible causes. Firstly, there may have been an effect but the chosen
sample size was too small to reveal any statistical significance. Secondly, there may have
been simply no effect. Finding out the needed sample size is challenging to tackle before
conducting the experiment. A power analysis is the tool for revealing the needed sample size
prior to a study. However, without a comparable study or any model to predict the effects,
this was not possible in advance. Although no statistical significance was present, putting
the results in relation to the sample size helps to see effects for further investigation.

Table 3.4 shows the test statistic V and its p value of the Wilcoxon signed-rank test.
It also presents the detailed results of the point estimate and its corresponding confidence
intervals which were depicted in Figure 3.5. In addition, the table shows the results of the
standardized effect size r.

The standardized effect size r is a robust measure for small sample sizes present in this
study (Rosenthal et al. 1994; Yatani 2016). The underlying effect is either small (r ≥ 0.1),
medium (r ≥ 0.3) or large (r ≥ 0.5)6. In a sense, r normalizes the p value by taking the

6There is no mutual agreement on how to verbalize the effect size r. However, the subjective interpretation
of Pearson’s r by Cohen (1992) has been often used. I adjust r upward to interpret the values.

84



3.4. Results

Table 3.4.: Wilcoxon signed-rank test results between REAb and ADAb for all dimensions.

95 % confidence interval

dimension V estimate lower bound upper bound p r

R
oS

A
S


Warmth 27.0 -0.167 -0.667 0.167 0.346 0.236
Competence 65.0 0.167 -0.583 0.500 0.776 0.071
Discomfort 21.0 -0.333 -0.750 0.083 0.087 0.428

G
od

sp
ee

d


Anthropomorphism 47.5 0.000 -0.300 0.400 0.889 0.035
Animacy 68.0 0.067 -0.250 0.333 0.649 0.114
Likeability 51.0 0.100 -0.300 0.400 0.700 0.096
Perceived Intelligence 81.0 0.300 -0.200 0.800 0.233 0.298
Perceived Safety 19.5 0.500 -1.000 2.000 0.350 0.234

sample size into account. This is good for two reasons: firstly, it allows quantifying the effect,
and secondly, it allows comparing the effect between studies with different sample sizes. For
the present study, the effect size r provided an indicator for the magnitude of effect that the
participants’ perception was different.

The results for r showed that there was possibly a medium and large effect for Warmth and
Discomfort, respectively, in favor of the adaptive robot (ADAb). There was also a medium
effect for Perceived Intelligence in favor of REAb. There was no evidence that participants
perceived one robot more competent than the other. There were only small or no effects for
Likeability, Animacy and Anthropomorphism.

3.4.3. Qualitative analysis

This section presents the analysis of the answers to the open-ended questions. The idea is to
better explain the non-statistical significance found above and to discuss the ideas that were
considered for the design of the next study.

Participants were not explicitly asked for differences in the seen behavior. However, the
answers to the open-ended questions about the robot strategies could be analyzed for a
tendency. For example, if a participant addressed any differences. All participants answered
the open-ended questions with differing detail and length.

One open-ended question was addressing the robot’s strategy and behavior directly: “Can
you describe the different behaviours of the robot? Did the robot have any particular strategy
for exploring?” A first overview of the answers revealed that some participants described
the strategy of the robot. If they found a difference, they either explained the robot as
following the wall or having a more circling behavior. Furthermore, 7 participants described
the strategy of the robot in ADAb similarly. Table 3.5 shows the comments they added to
the questionnaire. They considered the strategy of the robot as mainly following the edge.

Two of them also thought the robot in REAb was mostly circling. One pointed out that
this was mainly left turns. Their comments are provided in Table 3.6. Subsection 3.3.3 indeed
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Table 3.5.: Robot in ADAb has a tendency to follow the wall.

ID order description fraction

502 B “following the edge of the obstacle”
503 B “It seemed to not go away from obstacles but rather tended to go along /

around them”
504 A “exploring the environment principally following the boarders of the area”
509 B “seemed to follow alongside edges” and “outter limits well explored”
514 B “the robot was able tot follow walls”
515 A “seemed to follow edges quite a lot”
516 A “the robot was trying to follow the wall”

describes the reactive robot behavior (REAb) as mostly circling in left turns with various
radii. However, only two participants pointed this out, which showed that the baseline be-
havior was not perceived as too monotone. Table 3.7 shows the comments of 3 participants

Table 3.6.: Robot in REAb has a circling behavior.

ID order description fraction

509 B “always turning left”
516 A “following the circular trajectory”

that considered the robot in the ADAb as “suicidal”, or more so in comparison to the REAb.
Two other participants perceived the robot in both conditions similarly. Only one partic-
ipant (515) mentioned that the robot “maybe want[s] some human attention”. This was
surprising as I hypothesized that the approach to the human, and therefore the edge, would
be considered more as a wish to approach the human rather than to leave the table.

Table 3.7.: Robot in ADAb appeared suicidal.

ID order description fraction

503 B “the robot required input not to kill itself which gave me more to do”
505 B “a little suicidal”
511 A “The robot ws initated suicidal”, the participant later described the robot

in REAb as “less suicidal”

The environment of the study was designed in such a way that the participants could
perceive differences between the robots due to their abilities regarding mastering the different
surfaces. To my surprise, only 5 participants addressed that at all. Table 3.8 lists their
answers. Four participants recognized that the robot in the ADAb condition could master
the “hill” or “valley” better: two gave credit to the robot in the ADAb condition, and two
others recognized that the robot in the REAb condition was lacking those abilities. One
participant, however, was frustrated that the ADAb condition got stuck in the “slopy area”.
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Overall, this was evidence that the learning rate of PI was set well. However, the complexity
of the environment did not seem to be helpful for distinguishing the robots.

Table 3.8.: Adaptivity of the different robots.

ID order condition description fraction

506 B ADAb “can climb the hill”
507 A REAb “robot was unable to move smoothly in the valley and mountain

area (black)”
508 B REAb “but never succeeded to climb heights”
509 B ADAb “attempted to go over difficult terrain”
512 B ADAb(!) “it was bit sad when robot couldn’t get out of the slopy area

and kept looking for strategy”

There were also hints about the randomness of the robot’s behavior. One participant
(513, A) considered the robot in both conditions random. Three others considered the
ADAb as random, or as more random than the REAb robot (501, 505, 510). Two participants
mentioned that the robot in both conditions did not seem to remember obstacles or attempted
the same movements (509, 510). Two participants, on the other hand, left statements about
the robot’s intelligence. One considered the robot in the REAb condition as “move[ing]
intelligent[ly]” (516, A). Another said that the robot in the ADAb “seemed much more
intelligent” (502, B).

3.5. Discussion

The research questions were concerned with investigating whether the intrinsically motivated,
fully autonomous and adaptive robot (ADAb) has a higher perceived Animacy or Anthropo-
morphism (RQ1), that the robot is more liked (RQ2) and whether the robot is perceived more
competent or intelligent (RQ3) compared to the reactive baseline behavior (REAb). Neither
the quantitative analysis of the questionnaire responses (subsection 3.4.2) nor the qualitative
analysis of the open-ended question (subsection 3.4.3) provided clear evidence to answer any
of these questions. There were no statistically significant or large effects neither in favor of
the intrinsically motivated, adaptive robot, nor for the reactive robot. Most importantly, the
dimensions which were the focus of the study (Competence, Animacy, Likeability, Perceived
Intelligence) all showed, if at all, small or medium effects for the reactive, baseline robot.

What may have played in favor of the reactive robot was the fact that it only rarely
approached the edge that was not enclosed by a wall and where the robot could fall off the
table. Initially, I thought that people would feel that the robot tries to approach them rather
than trying to fall off the table. However, only one participant mentioned “it may have sought
attention”. I designed the interaction at the edge so that participants could experience the
robot’s adaptation to interactions. I hypothesize that the participants’ perception of the
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reactive robot was highly influenced by the fact that it approached the edge less often, and
that the robot’s reactions were more predictive. These may all be reasons for the higher
score of, e.g., Perceived Intelligence and Competence for the reactive robot, but also for the
higher perception of Discomfort for the intrinsically motivated robot. Participants may have
felt particularly uncomfortable with the act of being alert to prevent the robot from falling.
In addition, two participants mentioned they felt uncomfortable using their hands to interact
with the robot. This feeling may have been amplified by the intrinsically motivated robot
which made it more necessary to interact.

This study design aimed to initiate a human-robot interaction so that participants’ re-
sponses to the questionnaire reflected their perception of the interaction. The idea was that
the task to protect the robot from falling off the table enforced interactions, while the ques-
tion about robot strategies aimed to encourage it. A positive aspect of this design was that
15 out of 16 participants pointed out robot characteristics or differences in response to the
question about the robot’s strategy. This was evidence that the idea to encourage interaction
with a question regarding the robot strategy made the participants more alert toward the
robot’s behavior. However, it may in turn have also encouraged a critical observation of the
robot which falls off the table more often. The result also revealed, that participants were
very alert toward the robot falling off the edge, which was probably the central impression
of their judgment. A future study design should avoid biasing the participants in this way.
An idea which is outlined below was to have a more plane environment and only encourage
the interaction by asking whether the robots are different, as differences do not imply any
higher level of intelligence of a strategy.

The study environment was designed in such a way that participants could observe the
robot’s competence in mastering the variety of terrains. In particular, it was designed so
that the robot could be trapped in a pit, which only an adaptive robot could leave. However,
only two participants responded positively to the intrinsically motivated robot’s adaptivity
in “difficult terrain”. Having the robot adaptive enough to leave the pit quickly was not as
exciting for the participants as I had anticipated. Furthermore, the quick adaptation that
was needed to achieve this made the robot too unpredictable, following the answers that
three participants considered the robot more random than the baseline. I assumed that a
lower update rate for the adaptive robot would make a difference here.

On the positive side, the missing statistically significant results indicated that the baseline
behavior was a successful choice. A concern regarding the baseline was that the fixed pa-
rameters may result in too much of a monotonic behavior. The robot responded to most of
the sensor input, i.e., perturbations by the environment or humans, by giving more speed to
the right than to the left wheel, i.e., circling left. However, the motion was mediated by the
balancing controller, which aimed to keep the robot upright and therefore also interfered with
the robots’ reactions. Initial tests prior to this study showed that this resulted in a behavior
that was hard to tell apart from the intrinsically motivated robot. The qualitative results
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confirmed this. In particular, only two participants mentioned in the open-ended questions
that the reactive robot’s trajectory was mostly circling. This was evidence that the baseline
behavior was a fair comparison and was a promising candidate for future studies.

This study focused on the perceived agency of the intrinsically motivated robot. It was
hypothesized that the intrinsically motivated robot, which could adapt to the environment
or human interactions, would be perceived as having more agency. The study results did not
confirm this. However, they did reveal that the intrinsically motivated robot was perceived
as more warm. The dimension Warmth is created from the items Happy, Feeling, Social,
Organic, Compassionate and Emotional. Together with Competence, it is one of the universal
dimensions explaining social attribute formation for human-human interaction. It has been
argued that Warmth carries more weight in judgments of interpersonal interaction than
Competence (Carpinella et al. 2017). In particular, Warmth predicts the valence of social
judgments. For example, if we perceive another human as high in Warmth, we likely judge
them with more positive social attributes (Fiske et al. 2007). The reason for the focus on
agency at the beginning of the study was that it seemed out of the question that participants
would perceive one robot higher in a central social concept such as Warmth; a concept also
linked to Friendliness and Trustworthiness (Fiske 2018). The findings therefore motivated a
shift of the working hypothesis from a focus on agency to a focus on Warmth. The hypothesis
was that if a robot is perceived as more warm, it indicates that we may judge the robot more
positively, which in turn may sustain the interaction (cf. section 2.4). However, it was
crucial that a future study confirms this finding, as the observed effect in this study was not
convincing and not part of a research question.

Given the medium effect for Warmth, it was somewhat surprising that the related dimen-
sion Likeability (Carpinella et al. 2017) did not show a similar effect. The development of
this effect needed careful observation in future studies7. This is also true for the dimension
Discomfort. At first glance, it was somewhat concerning that the adaptive robot scored high
in Discomfort. However, the dimension is not a central dimension to the social attitude judg-
ment from the dimensions Warmth and Competence (ibid.). As discussed earlier, the high
perceived Discomfort may be caused by the extra care needed by participants to interact
with the adaptive robot, so that it was not rolling over the edge. It could also be an indi-
cation that the intrinsically motivated robot elicited an unknown perception in the human
participant, maybe due to the unpredictability of its behavior. From behavioral sciences it
is known, for example, that unpredictable and aversive stimuli leads to a more sustained
level of anxiety when compared to stimuli that were predictable and aversive (Grillon et al.
2004). In contrast, however, agent behavior research by Bickmore et al. (2010) indicates
that a degree of unpredictability in the behavior of an animated human might be essential to
sustain engagement of the human participants in longitudinal interactions. In other words, if

7It is shown in the final study that Likeability did not measure the same concept as Warmth. In particular,
it was found that Warmth is linked to the participant’s preference to continue interacting with a robot,
but Likeability is not.
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a longitudinal interaction is too predictive, the human participants might simply get bored.
As already pointed out, a follow-up study would have to change the experimental design and
avoid forcing the participants to take more care with one robot than the other.

3.6. Implications for next studies

This section presents the implications for the next studies of this thesis deriving from this
chapter. The list below provides an overview of them. Each item is described in detail in
the following paragraphs.

i. Focusing on the dimension Warmth.

ii. Change the environment: enclose the table and decrease complexity.

iii. A more game-like scenario for encouraging interaction.

iv. Increase motion capabilities with a different motion model.

v. A tool for interacting with the robot.

vi. Increase the number of participants.

Focusing on the dimension Warmth The results of this study indicated that the intrinsi-
cally motivated robot was perceived as less intelligent than the reactive baseline behavior.
Given that the intrinsically motivated robot had the capability to adapt to new situations
and human interactions, this was initially surprising to me. As discussed, one cause was
most likely the study design. However, in retrospect, the IM-driven behavior generation
could hardly yield an observable goal which shows particular goal-directedness. The goal of
the intrinsically motivated robot was to explore how to create rich sensory input (i.e., excit-
ing its sensors), while at the same time trying to predict the sensory outcome. By design,
this behavior might have been interesting to watch and enabled the robot to be adaptive to
new situations, but it could not elicit a feeling of Competence in the human observer, given
that the robot intrinsically tries to expose itself to new states. Therefore, the main focus on
the concept of perceived agency of the robot (RQ3) needed a rethink.

With the increasing insight into social cognition, gained with the work from the current
study, the dimension Warmth emerged as a promising tool to understand how to sustain HRI.
In fact, Warmth is, next to Competence, the second universal dimension for humans to assign
social attributes, but it is primary for understanding whether our attitudes toward peers are
positive (cf. section 2.4). To make HRI sustainable in the long run means the robots would
eventually have to score high for Competence and Warmth. However, positive attitudes are
usually assigned to humans scoring high in Warmth. The following study therefore focused
on whether an intrinsically motivated robot was perceived as more warm.
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Change the environment: enclose the table and decrease complexity The idea toward a
new robotic environment began by considering a different experiment introduction. Rather
than saying “also, your task is to prevent the robot from falling off the table”, it could
have been said that “we did not enclose the edge by a wall, so you can better interact with
the robot when it is seeking attention, but please take care it is not rolling over the edge”.
Both introductions would have biased the participant in some way. The first one would have
let the participants project Competence on the robot which was less likely to approach the
edge. The second one may project more social capabilities on the robot which was seeking
attention, i.e., approaching the edge more often. This introduction was necessary because
the environment was designed with an open edge and the robot could not sense the open
edge itself. This way, the environment design caused the participants to project a goal onto
the robot, which, depending on the robot’s behavior, made the robot appear more intelligent
than the other. For example, similarly to what is present here, a robot that is mostly slowly
circling could be perceived as careful. In contrast, an explorative robot changing its behavior
could be perceived as more careless, as it risks falling over the edge.

The environment needed to meet the sensor capabilities of the robots. The robot had no
possibility to prevent itself from falling over the edge. Therefore, it was assumed that an
environment where none of the robots could fall over the edge would lessen the participants’
bias and would make both robots appear similarly competent and intelligent.

Furthermore, it could be said that the capacity of the robot to leave the pit was not a
driving factor for participants when judging the robot’s competence positively. The update
rate that allowed for that skill may have made the adaptive robot appear unnecessarily
random. Further studies were needed to find a good update rate for the robot. In addition to
enclosing the wall as mentioned above, the environment was simplified to further concentrate
on the interaction part only. It was assumed that a round table would make the robot less
stuck and decrease the interpretation of the robot goal. Also, a more plain environment
would further put the investigation solely on the interaction level.

A more game-like scenario for encouraging interaction Enforcing the interaction by asking
the participants to prevent the robot from falling off the table may have caused participant’s
to focus on the robot’s capability to stay on the table. In addition, asking participants to
address the robot’s strategy may have caused them to assume that there was a particular
strategy.

The idea for the next study was to avoid any interaction enforcement. Instead, it concen-
trated on encouraging the interaction in a way that did not imply the high-level intelligence
of a strategy. I implemented a more game-like scenario which allowed for the participants
to interact with the robot depending on their enjoyment or curiosity to do so, rather than
having to interact without them knowing when it is intended by the robot. The aim of the
game was that the participants had to figure out whether the robot behaviors were different
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or the same. To this end, participants could observe the robot or interact with it when
they felt curious about the interaction, or when they simply enjoyed doing so. The game
scenario benefited from the changes to the environment as discussed before. It took place
in a completely enclosed environment, where the robot could freely locomote without falling
off the edge.

The game-like scenario further directed the focus toward the interaction, without giving
away the purpose of the study and leaving the development of the interaction solely to the
human and the robot.

Increase motion capabilities with a different motion model The study showed that the
chosen platform could already create different behavioral patterns. However, the balancing
controller, which was used to keep the robot upright, put a layer between the PI controller and
the world, enforcing some position that the robot could not truly influence. In a sense, this
balancing controller made the environment and the robot’s embodiment more constrained
and made it less adaptable to them. For example, the robot itself allows spinning and more
wobbly locomotion, but could not achieve this by only changing its heading and speed.

Thus, another potentially beneficial change was to allow the robot to directly control its
servos, rather than controlling the heading and the speed of Sphero’s built-in balancing
controller. The idea was that this could yield a larger variety in the behavioral regime. It
could also enrich the interaction between the human and the robot, as perturbations would
have more direct consequences on the robot’s behavior. This also further directed the focus
on the level of interaction.

A tool for the interaction with the robot Introducing a tool for the interaction was thought
to have two positive effects. Firstly, with the presence of a tool, participants would be
implicitly encouraged to interact with the robot, as that was the purpose of the tool given
to them. This could increase the interactions and in turn let participants focus more on the
interaction itself. Secondly, a tool took away the need to use their hands for interaction.
Some participants felt unwell with touching the robot. This possibly increased their rating
for Discomfort for the adaptive robot, which needed more intervention as it approached the
edge more often. Therefore, a wand-shaped tool was presented in the next study. Next to
the aforementioned idea of not enforcing interaction, the idea was that this would further
encourage the participants to interact more with the robot.

Increase the number of participants The study revealed some effects that were useful for
drawing the implications above. However, none of the effects were statistically significant.
This could have two potential reasons. Firstly, the presented effects of this study were not
effects, but instead, they only occurred by chance. Secondly, the effects shown were relevant
and exist, but the sample size was too small to be 95 % confident. If I were to repeat the
same study, I could now perform a power analysis that would reveal the needed sample size,
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because the effect sizes are now known. Given the number of possible changes discussed above
however, and given that the center of observation was more focused on another dimension, I
did not conduct a power analysis. With keeping an eye on the practicality of conducting such
an experiment, increasing the number of participants from 16 to 24, i.e. by 50 %, seemed
reasonable.

The next chapter presents the follow-up study, which takes into account the lessons learned
when conducting the study described in the current chapter. All the implications discussed
in this section were implemented.

3.7. Conclusion

The study investigated whether an intrinsically motivated, fully autonomous robot is anthro-
pomorphized or perceived more animated (RQ1), is more liked (RQ2) or is perceived as more
intelligent or competent (RQ3) than a reactive baseline behavior. The quantitative results
did not provide an answer to these questions for either of the robots. Although there were
no statistically significant or large effects, the results seemed to indicate that the reactive
baseline behavior was perceived higher in all the investigated dimensions. In other words,
there was a tendency that the baseline was more liked, perceived as more intelligent, and
was also more animated. This chapter argues that this was mainly because of the study
design. The participants were enforced to interact with the robot in order to keep it on the
table. The chapter suggests that a future study should rather encourage interaction. The
idea was to introduce an interaction tool, as well as to create a game-like interaction where
participants would answer at the end of the study session whether the robots were different.

What was unexpected was that the results suggested an adaptive, intrinsically motivated
robot is perceived as more warm. From social cognition, it is known that a high scoring for
Warmth can be found for all positive ratings of social attitudes for interpersonal interac-
tions (Fiske et al. 2007). Thus, Warmth plays an important role in going toward sustained
HRI.

In addition, the study’s baseline behavior turned out to be a fair comparison. The baseline
behavior was pre-adapted for the very same sensors and the very same environment as
the intrinsically motivated behavior. Future experiments can adapt the underlying baseline
generation for their comparisons.

The general idea of investigating robots solely on their behavioral level was very promising.
However, this chapter addressed a few changes future studies would benefit from (cf. sec-
tion 4.5). The following chapters describe studies that followed a similar design approach
but were enhanced with the suggested changes.
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Study II

4.1. Introduction

This study aimed to provide a further step toward answering the main research question: Can
an autonomously, intrinsically motivated robot, sustain the interaction with humans? (RQ2).

In the first study (chapter 3), the focus was on investigating the robot’s agency. The idea
was that a human engages more with a robot if they perceive the robot high in agency.
Therefore, the measures focused mainly on the dimensions Animacy, Anthropomorphism,
Perceived Intelligence and Competence. In addition, the dimension Likeability was used to
understand if the intrinsically motivated robot is more liked than the reactive baseline. The
idea was to understand what kind of robotic behavior humans prefer and what may sustain
the interaction between robots and humans. The questionnaires Godspeed and Robotic Social
Attribute Scale (RoSAS) were used to measure those dimensions. All dimensions provided by
the questionnaires were reported along with the ones above, including Warmth, Discomfort
(RoSAS) and Perceived Safety (Godspeed). From this, a medium effect on the dimension
Warmth was found. This indicated that the intrinsically motivated robot is perceived as
more warm than the reactive baseline behavior.

In contrast to the Godspeed dimensions Likeability, Animacy and Anthropomorphism, the
dimension Warmth has not found much attention in human-robot interaction (HRI) at the
time of conducting the study. The promising effect found in study I triggered more in-depth
research of the social cognition between humans. Social psychology research considers the
dimension Warmth, together with Competence, as one of the universal dimensions to measure
social attitudes (Fiske et al. 2007; Abele, Hauke, et al. 2016). Fiske et al. (2007) argued that
humans perceived high in Warmth are judged positively by their peers. Warmth judgments,
in contrast to Competence, “carries more weight in interpersonal interaction” (Carpinella
et al. 2017). This means, when characterizing other people, we firstly judge their intent
(Warmth) before judging their capability (Competence) to enact their intent. Warmth is
linked to the measure of trust (e.g. Fiske 2018). A person who is perceived as warm is also
perceived as more trustworthy. For example, Kulms and Kopp (2018) used it as an indicator
of people’s trust in computers. Humans perceived as warm therefore experience more positive
interactions (cf. section 2.4).
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This knowledge from social cognition changed the focus of this study and how to measure
human perception. This study extended the first study and further investigated whether
an intrinsically motivated robot is perceived as more warm. Fiske et al. (2007) points out
that the dimension Competence can affect the rating for Warmth. Therefore, this study
was designed in such a way that none of the robots were perceived as more competent or
intelligent compared to the other conditions.

4.1.1. Research questions

As discussed above, this study built on top of the first study presented in chapter 3 and so did
the research questions. The previous study found evidence that the intrinsically motivated,
fully autonomous robot is perceived more warm compared to the reactive baseline behavior.
This study therefore focused on the dimension Warmth and aimed to confirm this observation.
However, there were added questions concerning the changes to the study design, which
are presented in detail in the next section. A central aim was to have both behaviors –
the baseline and the intrinsically motivated one – perceived to be similarly competent and
intelligent. This way the focus could be fully on the dimension Warmth, which was then
not influenced by observations of the robot’s competence. Lastly, participants were directly
asked whether they perceived the robot behaviors in the conditions differently. This helped
to provide data about the quality of the baseline behavior. The data of perceived difference
provided a ground truth for the development of a different baseline behavior for the final
study. To summarize, the following research questions were derived:

RQ1 Is an autonomously, intrinsically motivated robot, which directly controls its servos,
perceived as higher in Warmth than the reactive, but balanced baseline behavior?

RQ2 Does a simple environment and a more game-like scenario, which does not force the
participants to interact with a robot, but rather ask them to look out for differences,
allow for a more unbiased perception of the robot’s behavior? In other words, is
the perceived intelligence and competence of the intrinsically motivated robot similar
compared to the reactive baseline robot?

RQ3 Do participants perceive the two robot behaviors as similar?

4.1.2. Overview

In this study, a robot that used predictive information (PI) maximization and directly con-
trolled its servos was compared to the fully reactive baseline robot from the first study.

Section 4.2 presents the study design. Subsection 4.2.1 describes the environment, the
robot, the interaction tool, and the participants’ task. The robot platform was again Sphero’s
BB8. The environment for the interaction in this study was redesigned. The complexity of
the environment was decreased by having only one surface, no obstacles and the table had
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no open edge. Subsection 4.2.2 presents the two conditions: one used the baseline robot
from the first study, the other used an intrinsically motivated robot that directly controlled
its servos (contrary to study I, where the balanced controller of Sphero was used). For the
measures that are presented in subsection 4.2.3, the study used the same questionnaires as
before: the RoSAS and the Godspeed scale. There were no open-ended questions this time.
Instead, participants answered an additional Likert-type question about how different they
perceived the robot behaviors. The procedure is described in subsection 4.2.4. Participants
were given little information. Their only task was to understand whether the two robots
differed in any way. Subsection 4.2.5 then presents the sample of 24 participants for this
study.

Section 4.3 presents the results of the study. Most notably, the participants perceived
the intrinsically motivated robot as more warm and liked it more than the reactive baseline
behavior. However, there was no evidence that the participants perceived one of the robots
as more competent, as intended by the re-design of the study. The results also revealed that
the participants perceived the two conditions as quite different and that the intrinsically
motivated robot was perceived as more animated. Both were not expected and are critically
discussed in section 4.4, and shape the implications for the final study which is presented in
section 4.5. One of the main implications that were formulated was the need for a more similar
baseline behavior, other than the reactive robot behavior used in this study. Section 4.6
concludes the chapter’s results and contributions.

4.2. Study design

This section describes the study design. All suggested changes which were discussed in the
first study in section 3.6 were implemented in this study. The next sections describe the
study design in detail, which includes addressing the changes made in comparison to the first
study.

4.2.1. Robot, environment and tasks

Figure 4.1a shows the robot used in this experiment: the BB8 version of the Sphero robot.
The robot and its capabilities were described in detail in section 2.5. This was the same
platform that was used in the first study, however, there were changes regarding how the
intrinsically motivated robot was controlled, which is presented in the next subsection 4.2.2.

Figure 4.1b shows the table that the robot was placed on. In this study, the table had
no open edge, which allowed the robot to freely locomote on the table without falling off.
This change in the design was motivated by the previous study. The idea was to reduce the
mismatch between the implicit goal assignment and the robot behavior, which occurred in
study I: people assumed that the robot which falls off the table less often was more competent.
The table was circular with 91 cm in diameter and of 72 cm in height. A foam wall of 2.5 cm
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(a) Robot BB8 (b) Table

(c) The HRI tool.

Figure 4.1.: The images show the environment and tools used for the study. (a) The BB8 version of
the Sphero robot. (b) The table where the robot was placed to locomote freely. It was covered with
a cloth to increase friction. In contrast to study I, there were no obstacles, different surfaces or an
open edge. (c) The HRI tool that was used for interacting with the robot by using the white end.
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in height and with 4 cm width surrounded the border of the table. These measurements were
determined so that the robot could not fall off the table, even when moving with a very high
velocity. Three blankets with a total height of 3 to 4 mm covered the surface (including the
walls). This applied some friction, which made it easier for the robot to locomote on the
otherwise smooth and slippery surface given by the wooden tabletop. The table’s distance
to the surrounding walls was at least 60 cm, which allowed the participants to freely move
around the table. Figure 4.1c shows the HRI tool referred to as a wand. The wand was
50 cm long and weighed 78 g. It consisted of a 40 cm long aluminum tube with a diameter
of 10 mm. The black end was where a human could hold the wand. The white end was a
soft sphere, which was made of an off-the-shelf table tennis ball with a diameter of 40 mm.
This end was for contact with the robot. The wand was a new tool that was not present in
the first study. Instead, participants were given a task to encourage interaction: they had to
keep the robot from falling off the table. In this study, they were given a tool for encouraging
interaction with the robot. The idea was that the presence of the tool made the participants
more inclined to use it and thus encouraged interaction with the robot. Figure 4.2 shows the
author in the full environmental setup. He uses the tool to nudge the robot, which locomotes
on top of the table.

Figure 4.2.: The picture shows the author using the interaction tool. He nudged the robot with the
white end. It can be seen that the participants were able to freely choose a position around the table
to interact with the robot.
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4.2.2. Conditions

The study consisted of two 5-minute-long conditions with the following types of behavior
generation:

REAb (balanced, reactive): The robot used its balanced mode for locomotion. The param-
eters controlling the robot had been pre-adapted using time-local predictive informa-
tion (TiPI) maximization, but the parameters remained constant during the condition.
The binary running the robot and the parameters were exactly the same as in the
first study. The resulting behavior was therefore very similar to the one described in
section 3.2 and the name of the condition was therefore kept the same.

ADA (unbalanced and directly controlled, adaptive): In this condition, the robot was in-
trinsically motivated and was continuously adapting its parameters, based on TiPI
maximization (see θ in subsection 2.3.2). Unlike in study I, the robot did not use
its balanced mode for locomotion. Instead, it controls both its servos directly (cf.sec-
tion 2.6).

The intrinsically motivated robot in the ADA condition realized behavior motivated by
maximizing TiPI, and it continuously updated its parameters based on that gradient during
the experiment. In contrast to the similar robot (ADAb) from the preliminary study, the
robot controlled its two servos directly. This lead to more diverse robot behavior because a
larger variety of servo configurations were possible.

The robot input, as with study I, contained the linear acceleration for the forward/back-
ward and left/right axis from the accelerometer, and the angular velocity around the upright
axis received by the gyrometer. In study I, the robot’s orientation was used, which was
received via its pitch and roll angles from the inertial measurement unit (IMU). In this
study, they were replaced with the input speed of each servo by measuring the servo’s back
electromotive force (back EMF)1. This allowed for a coupling between the output of the
TiPI controller for the servo speed, and the actual measured servo speed as the input to the
controller.

This time, the starting parameters of the TiPI controller were tweaked by hand. As there
was direct coupling between the servo speed readings and the controller output (i.e., the set
speed for the servos) the parameters were set in such a way that a reading on the left servo
would amplify the output for the left servo, and vice versa. This way, the robot started its
behavior by moving straight, just like the reactive robot.

The reactive robot in the REAb condition started with the same parameters as the robot
in the first study. The weights were received based on pre-trial adaption. This determined
how it would react to sensor input, but it did not further update its internal networks during
the experiment. The reactive robot implementation, including the sensory input and the

1The back EMF is a voltage appearing between the armature and the magnetic field of the motor’s field coil.
It is related to what is also known as the counter-electromotive force (counter EMF, CEMF).
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parameters, remained unchanged from the one in the first study. The name for the reactive
robot condition therefore remained the same: REAb. The only behavioral difference was
grounded in the change of the environment. The friction of the whole environment in this
study was less variable compared to the first study, where the friction of the wooden floor and
the foam floor made the robot appear faster and slower (respectively). However, the resulting
behavior was very similar to the one from the first study. A video supplementing this study
shows an example of both conditions (see Scheunemann 2019; Scheunemann 2017e).

The reason for taking the REAb robot from the first study was two-fold: firstly, the behav-
ior was evidently a good baseline behavior. The robot was interesting to the participants and
the behavior was not too simple, so the participants did not see any reoccurring patterns. In
fact, in study I they perceived the robot in the REAb condition as more intelligent (cf.sec-
tion 3.4). Secondly, keeping the baseline constant, but changing other variables, allowed a
better comparison to the previous findings and the previous adaptive robot.

The type of behavior generation was an independent within-subjects variable, meaning that
all participants were exposed to both conditions REAb and ADA. The order of the conditions
was randomized but counterbalanced over the number of participants. This resulted in the
two orders A and B:

order of conditions participants

A REAb → ADA 12
B ADA → REAb 12

4.2.3. Measures

After each of the two conditions (REAb andADA) participants were given a post-questionnaire.
Similar to study I, the post-questionnaire consisted of the RoSAS and the Godspeed scale.
Godspeed uses a 5-point semantic differential scale for the factors Anthropomorphism, An-
imacy, Likeability, Perceived Intelligence and Perceived Safety. The authors of RoSAS do
not suggest a specific scale, but recommend having a neutral value, e.g. uneven number of
possible responses for the Likert-type items. As in study I (cf. subsection 3.3.4), the cur-
rent study used a 7-Likert scale. The scale tests for the factors Warmth, Competence and
Discomfort.

To answer the research questions addressed in subsection 4.1.1, the dimensions Warmth,
Competence (both RoSAS) and Perceived Intelligence (Godspeed) were needed. The re-
search question RQ1 focused on the effect of the dimension Warmth. The dimensions Per-
ceived Intelligence (Godspeed) and Competence (RoSAS) were needed to answer RQ2 and to
understand whether the game-like study design present here helped to perceive both robots
similarly in both dimensions. All the other items offered by the RoSAS and Godspeed scale
were included in the questionnaire to hide its intention. These items also allowed for finding
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possible effects that were not part of the initial research questions. Therefore, all factors are
presented.

Other than in the first study, the questionnaires did not include any open-ended questions.
However, to have a more robust measure of whether the participants perceive the two con-
ditions differently, they were asked directly at the end of the session: “Was the behavior of
the robot different in comparison to the previous interaction?”. The responses were collected
with a 5-point Likert-type item ranging from 1 (“Not at all”) to 5 (“Very much so”). The
measure was helpful for three reasons:

i. The data collected provided quantitative insights about the perceived differences be-
tween the two conditions and helped to answer RQ3.

ii. The study was designed in such a way that the participants had to understand whether
the robots in the two conditions were different. Asking this question at the end of the
study masked the intent of the study.

iii. The collected data provided a baseline of perceived differences for the evaluation of
a new baseline behavior development, such as the one of the final study described in
chapter 5.

The pre-test and post-test questionnaires are attached to this work in section B.2.

4.2.4. Procedure

Participants were welcomed to the experimental room and were then handed an information
sheet. They were welcomed to discuss concerns related to their participation. If they were
happy to proceed with the study, they were asked to sign an informed consent form. It was
in the beginning and at this point that it was emphasized that they could leave the study
whenever they feel uncomfortable, stressed or bored.

They were then assigned randomly, but counterbalanced, to one of the two orders. To
achieve this, they drew a folded snippet from an envelope, which contained 24 pieces. They
were not informed about the letter they drew. After that, the study environment and the
robots were presented to the participants.

Unlike in the first study, participants were not told that the robot had a specific aim and
they were not asked to prevent the robot from falling over the edge. Instead, they were
only told that their task was to observe whether the two presented robots (one robot per
condition) were different. To understand whether the robots were different, they could use
the HRI tool. They were allowed to nudge the robot or block it by using the white end of
the wand. Both actions were presented to the participants by the experimenter. Again, no
other information was provided.

They were informed that they will be asked whether “the two robots’ behaviors are any
different” at the end of the experiment. The idea was that their intent to answer the question
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would motivate them to interact with the robot in order to find out the robots’ behavioral
differences. They were not given any more details but the means of interactions. In particular,
the type of possible differences was not revealed.

Participants then filled in the pre-questionnaire. This gathered information regarding their
sex, age and background. Next, the two conditions were presented depending on the order
that they were assigned to earlier. Each interaction in one of the two conditions lasted
approximately 5 minutes. After each of the two interactions, the participants filled in a
post-questionnaire containing the two scales and additional questions discussed earlier in
subsection 4.2.3. The entire experiment took about 40 to 50 minutes.

4.2.5. Sample
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Figure 4.3.: A histogram showing the age of the participants. The participants were evenly distributed
over the ages of 22 to 46 years. Overall, the sample was slightly skewed towards younger participants
under 22 years old.

I recruited 24 participants (10 female; 14 male) mostly from university staff and students,
between the ages of 18 and 64 years (M = 31.7, SD = 12.6). Figure 4.3 shows the age
distribution of the participants. Twenty-two participants were students and staff from the
university and eight of them had a background in HRI. Seven participants took part in the
preliminary study I, whereas nine participants never participated in any prior HRI study.
All participants were naïve toward the goal of the experiment. The participants were asked
how familiar they were with interacting with robots, programming robots, the chosen robot
platform Sphero and the movie series Star Wars. A 5-point Likert scale was chosen with
the value 1 for “not familiar” and 5 for “very familiar”. The self-assessed experience for
interacting with robots averaged 3.5 (Mode=5). The average familiarity with programming
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robots was 3.2 (Mode=5) and experience with the chosen robot platform was rated an average
of 2.1 (Mode=1). The familiarity with the movie series Star Wars was rated 3.2 (Mode=4).
Figure 4.4 shows the responses to the questions.
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Responses to the questions: How familiar are you with …

(a) …interacting with robots? (b) …programming robots?

(c) …the BB8 robot from Sphero? (d) …Star Wars?

Figure 4.4.: The response distributions of the pre-test questionnaire 5-point Likert-type questions
(see section B.2). The scale ranged from value 1 “Not familiar” to value 5 “Very familiar”. Par-
ticipants were asked about their familiarity with (a) interacting with robots, (b) programming robots,
(c) Sphero BB8 version and (d) Star Wars. Results indicated that the majority of participants had
little experience with the Sphero robot. However, the majority of the people had interacted with robots
already.

The study was conducted on the premises of the University of Hertfordshire and was
ethically approved by the Health, Science, Engineering & Technology ECDA with protocol
number aCOM/PGR/UH/03018(3). The notification of approval is attached to this work in
section C.2. The experiments were conducted in February 2019 over the course of 10 days.
The anonymity and confidentiality of individuals’ data are guaranteed.

4.2.6. Data preparation

The score reliability of the scales of both standardized questionnaires had been tested with
the use of Cronbach’s α. The item quiescent-surprised was negatively loaded on the scale
dimension Perceived Safety. Even if reversed, the reliability was poor with α = 0.54. The
item was therefore removed. Table 4.1 presents all test results, which revealed a good score
for reliability ranging from 0.74 to 0.85 and acceptable reliability for the dimension Anthro-
pomorphism: α = 0.67. This was evidence that the dimensions could be analyzed without
any further preparation.

104



4.3. Results

Table 4.1.: Internal consistency reliability scores.

dimension items α

R
oS

A
S


Warmth 6 0.80
Competence 6 0.85
Discomfort 6 0.79

G
od

sp
ee

d


Anthropomorphism 5 0.67
Animacy 6 0.74
Likeability 5 0.82
Perceived Intelligence 5 0.84
Perceived Safety 2 0.82

4.3. Results

This section presents the results of the study. In contrast to the first study, all results
stemmed from a quantitative analysis of the questionnaire responses. The questionnaire re-
sponses were analyzed for interaction effects, to understand whether the conditions could
be analyzed independently of their presented order. The results that are presented in sub-
section 4.3.1 showed that there were no interaction effects. Subsection 4.3.2 presents the
results of the main effects. They provided evidence that the intrinsically motivated robot
was perceived as more warm than the reactive baseline behavior. They further showed that
the Perceived Intelligence and Competence of the robots in both conditions were perceived
similarly, as intended by the study design.

4.3.1. Interaction effects

An analysis of variances (ANOVA) is commonly used for investigating interaction effects,
i.e., effects that show that the order of the conditions influences the responses of participants
to a condition. A non-parametric ANOVA-type test was used, due to the relatively small
sample size (N = 24).

The study had two independent variables: one within-subjects variable and one between-
subjects variable. The within-subjects variable, i.e., the independent variable that all partic-
ipants were exposed to, was the type of behavior generation (short: behavior). It consisted of
the two condition levels REAb and ADA (cf. subsection 4.2.2). The independent, between-
subjects variable was the order of the conditions (short: order). This means that each par-
ticipant was exposed to only one order. Table 4.2 shows the results of a non-parametric
ANOVA-type test2. The last column order:behavior reveals the likability for an interaction
between the conditions and their order. None of the p values (sub-column p) fulfills the

2For computing the ANOVA-type test the R package nparLD was used. As the study consisted of one within-
subjects variable (behavior) and one between-subjects variable (order), it could be expressed as F1-LD-F1
Model. The nparLD package offers the function f1.ld.f1() for computing such models.
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Table 4.2.: ANOVA-type test results for the independent variables “type of behavior generation” (level
REAb, ADA), their “order” (level A,B) and the interaction of both variables “order:behavior” for the
dimensions of the RoSAS and Godspeed scale. Note that the dimensions Anthropomorphism, Perceived
Intelligence and Perceived Safety are abbreviated.

order behavior order:behavior

dimension F df1 p F df1 p F df1 p

R
oS

A
S


Warmth 0.098 1 0.755 11.733 1 0.001 0.001 1 0.976
Competence 0.163 1 0.687 0.047 1 0.828 1.473 1 0.225
Discomfort 1.365 1 0.243 1.143 1 0.285 1.787 1 0.181
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
Anthropom. 0.168 1 0.682 14.074 1 <0.001 0.164 1 0.685
Animacy 0.928 1 0.335 14.565 1 <0.001 0.665 1 0.415
Likeability 0.786 1 0.375 1.856 1 0.173 1.455 1 0.228
Perc.Intelligence 0.193 1 0.660 0.043 1 0.836 0.000 1 0.984
Perc. Safety 10.477 1 0.001 1.343 1 0.246 1.381 1 0.240

criteria p < .05. This means that for a 5 % significance level there was no statistical signif-
icance and therefore there was not enough evidence for an interaction effect for any of the
dimensions. This was particularly true when looking at the dimension Warmth, as the p
value was the largest and almost equaled one. This means, the presence of an interaction
effect was highly unlikely. This allowed for investigating the main effects between the condi-
tions independently of their order, i.e., the responses to both conditions could be compared
independently of whether the participants were exposed to, e.g. ADA, in the beginning of
the experiment or at the end3. The results are presented in subsection 4.3.2.

A first impression of the main effects could be retrieved by studying the second column
behavior of Table 4.2 and its three sub-columns. This shows evidence that there were statis-
tically significant effects for the dimensions Warmth, Anthropomorphism and Animacy. The
next subsection presents a more detailed analysis of these main effects.

4.3.2. Main effects

The above results showed some interesting effects for the two conditions for the dimensions
Warmth, Anthropomorphism and Animacy. A paired difference test could be used to un-
derstand the direction, i.e., was the perceived Warmth higher for the condition ADA or the
condition REAb.

The Wilcoxon signed-rank test is a non-parametric candidate known to be robust for small
sample sizes. It tests for the null-hypothesis that the two conditions do not differ, i.e., the
two-sided test version was used and possible effects in both directions were shown. The
test statistic V , the p value, a point estimate, and its corresponding confidence intervals are

3Note that the same approach was used to analyze if the participants’ self-reports from the pre-test ques-
tionnaire or their involvement in a previous experiment had an effect on their responses to the conditions,
but no statistically significant effects were found.
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reported.
The point estimate (short: estimate) is the median of the differences of the rank. It

provides a size and a direction for how much the participants preferred one condition. For
example, if the median of the differences for the comparison of ADA and REAb equaled
−0.833, this would mean that on average the participants responded to Warmth with 0.833

units higher in the ADA than in REAb. The units were the responses to the Likert-type
items ranging from 1 to 7 (RoSAS) or the differential scale ranging from 1 to 5 (Godspeed).

Along with the point estimate, another effect size is reported: the standardized effect
size r (Rosenthal et al. 1994; Yatani 2016). In a way, it is a normalized p value. The p
value is dependent on the sample size. For example, if the effect of something is known to
be small, the p value can be further decreased by increasing the sample size. r allows for
investigating the size of a potential effect independently of the sample size. Its effect is either
small (r ≥ 0.1), medium (r ≥ 0.3) or large (r ≥ 0.5)4.

Table 4.3.: Main effects for all dimensions of the RoSAS and Godspeed scale for the comparison of
REAb and ADA.

95 % confidence interval

dimension V estimate lower bound upper bound p r

R
oS

A
S


Warmth 27.5 -0.833 -1.333 -0.333 0.007 0.555
Competence 138.5 0.000 -0.833 0.583 0.988 0.003
Discomfort 54.0 -0.250 -1.250 0.417 0.287 0.217
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d


Anthropomorphism 26.0 -0.900 -1.200 -0.500 0.002 0.635
Animacy 30.5 -0.833 -1.250 -0.417 0.002 0.636
Likeability 38.0 -0.400 -0.700 -0.100 0.038 0.424
Perceived Intelligence 126.0 -0.100 -0.600 0.500 0.715 0.075
Perceived Safety 49.0 0.500 -0.500 1.250 0.422 0.164

Table 4.3 shows the results of the two-sided Wilcoxon signed-rank test for all dimensions
of the RoSAS and the Godspeed scale. The test compared the condition ADA and REAb.
Using a 5 % significance level, a large, statistically significant effect for the dimension Warmth
could be seen (r = 0.555, p = 0.007). The point estimate, or the median of the differences,
was negative. This was because, on average, participants responded higher to the robot in
the ADA condition, which made the difference of REAb − ADA negative. In other words,
most participants perceived the robot in the ADA condition as more warm than the robot
in the REAb condition. This directly answered RQ1: an intrinsically motivated robot (as
the one in the ADA condition) is perceived as more warm.

Figure 4.5 visualizes the magnitude of the effect, as a means for an alternative result
presentation. The magnitude of the effect increased with an increasing distance of the point

4There is no mutual agreement on how to verbalize the effect size r. However, the subjective interpretation
of Pearson’s r by Cohen (1992) has been often used.
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Figure 4.5.: Depicted are the point estimates (median of the differences) between the condition REAb

and ADA. If the estimate is on the left, it indicates that more participants rated the dimension higher
in the ADA condition compared to the REAb condition. The error bars visualize the confidence
intervals. It can be seen that there were statistically significant effects for the dimensions Warmth,
Anthropomorphism, Animacy and Likeability.

estimate (i.e., the median of the differences) to zero. It also visualizes the certainty of the
point estimate. The error bars around the estimate visualize the confidence interval. The
narrower the interval is, the more certain it is that the estimate was the true effect. Figure 4.5
confirms that there was a large effect for Warmth in favor of the ADA condition.

RQ2 asks: Does a simple environment and a more game-like scenario, which does not force
the participants to interact with a robot, but rather ask them to look out for differences, allow
for a more unbiased perception of the robot’s behavior? In other words, is the perceived intel-
ligence and competence of the intrinsically motivated robot similar compared to the reactive
baseline robot? The answer to this question could not be given from the results directly and
is discussed later. However, given the results shown in Table 4.3, there was no statistical
significance for either of the two dimensions Perceived Intelligence or Competence. More
importantly, the standardized effect size r was even almost zero and there was no magnitude
of an effect. Figure 4.5 visualizes that the median of the differences was close to zero for both
of the dimensions. The confidence interval was almost equally distributed around zero and
was quite large, indicating that there was no certainty for an effect in any direction. This
meant that none of the robots were perceived higher in Competence or Intelligence in agree-
ment by a large enough number of participants, i.e., the participants could not distinguish
between the robots on these dimensions. As pointed out above, the implications for RQ2 are
discussed in the next section.

The results also indicated a large, statistically significant effect for the two dimensions
Animacy (r = 0.636 p = 0.002) and Anthropomorphism (r = 0.635, p = 0.002). The point
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estimate indicated that this large effect was in favor of the ADA condition.
There was also a medium, statistically significant effect for the dimension Likeability (r =

0.424, p = 0.038) indicating that participants liked the robot in the ADA more than the
baseline. Interestingly, there was also a small effect on the dimension of Discomfort (r =

0.217), although the robot in ADA was perceived as more warm and was more liked. It felt
contradicting at first, but participants could respond high for Warmth and Discomfort at
the same time (Carpinella et al. 2017). This was already seen in the first study presented in
chapter 3.

4.3.3. Perception of difference

In the first study, the perceived difference was analyzed using the answers to open-ended
questions. In this study, the perception of differences between the two conditions was col-
lected with the help of a Likert-type question (cf. subsection 4.2.3). Participants were asked
after the second condition: “Was the behavior of the robot different in comparison to the
previous interaction?”. For the response, a 5-point Likert-type item was provided, ranging
from 1 (“Not at all”) to 5 (“Very much so”).
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Figure 4.6.: At the end of the study, i.e., after the second condition, participants were asked: “Was
the behavior of the robot different in comparison to the previous interaction?”. This figure shows the
responses to a 5-point Likert-type item, with 1 (“Not at all”) and 5 (“Very much so”). It can be seen
that the participants perceived the robot behaviors of both conditions very differently.

Figure 4.6 visualizes the responses to the Likert-type item. It can be seen that most
participants considered both behaviors very different. The median and the mode of the data
were 5, which was associated with the answer: “Very much so”. The research question RQ3
concerned the perceived differences between both conditions: Do participants perceive the
two robot behaviors as similar? The data was only collected with one Likert-type question
and the results had to be interpreted with care. However, almost all participants answered
similarly. It could thus be safely said that the behaviors were perceived very differently.

The results indicated that a new, more similar baseline behavior could be useful to confirm
the other results of the study. The data here could help with developing and evaluating a new,
more similar baseline behavior. The next section discusses the results and their implications
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for the next study.

4.4. Discussion

The study provided evidence that the intrinsically motivated robot is perceived as more
warm than the reactive baseline robot. This is an indicator that a PI-driven behavior may
prove relevant for human-robot interaction, as the dimension Warmth is one of the universal
dimensions for humans judging social attributes on other humans (cf. section 2.4). Notably,
the more we perceive another human as warm, the more we judge them positively and are
more likely to interact with them. The results left no doubt that the intrinsically motivated
robot is perceived more positively than the reactive baseline robot.

The changes undertaken in this study design toward a game-like scenario helped to focus on
the Warmth dimension. Neither the Competence nor the Perceived Intelligence dimension
scored high for any of the conditions. This was evidence that the participants did not
know if the robot had any goals. Although Competence and Warmth are mainly considered
unique dimensions, some interferences between them have been pointed out (Fiske et al.
2007; Abele, Hauke, et al. 2016). The lack of an effect for neither Perceived Intelligence
nor Competence was, therefore, an important feature of the study design, which allowed for
an isolated observation of the influences of intrinsic motivation (IM) on the perception of
Warmth.

In addition, it was – unexpectedly – observed that participants perceived the intrinsically
motivated robot as more animated and they anthropomorphized it more. There is evidence
that humans perceive a robot higher in Animacy when the robot moves more “naturalis-
tic” (Castro-González et al. 2016). In fact, any object is considered animated if it changes
speed and direction without visible influences (Tremoulet and Feldman 2000). Another in-
fluence of the perception of Animacy is the reactivity of the robot (Fukuda and Ueda 2010).
The baseline behavior was designed to provide both similar movement variety and reaction
to sensor input, which allowed for a fair comparison and a focus on the effects of IM. The
baseline behavior showed to be feasible in the first study.

However, in this study, the control mechanism for the intrinsically motivated robot was
changed (cf. subsection 4.2.2). In contrast to the reactive baseline behavior, where the robot
could only move forward and was kept mostly upright due to the balancing controller, the
intrinsically motivated robot had a different behavioral regime. It could go backward and
forward, and because the servo speed was set directly and individually, it could produce
different behavioral regimes such as wobbling locomotion. Therefore, there were three possi-
ble explanations for the baseline behavior being perceived as less animated: (i) its different
motion patterns, (ii) its reduced reactivity, or (iii) the lack of IM.

With the data presented here, the question could not be answered sufficiently, but I tend
to be skeptical and I did not want to argue for (point iii) before carefully observing the
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baseline behavior. Therefore, the baseline behavior was redesigned for the final study. The
changes to create a similarly animated baseline behavior as the intrinsically motivated robot
are discussed in the next section (4.5).

However, it needs to be noted that the robot with the baseline behavior was not perceived
as inanimate. Instead, participants simply perceived the intrinsically motivated robot as
more animated as the baseline. Although this was an indication for the baseline behavior to
have less naturalistic movements (as discussed), there is no evidence in the literature that the
rating for Warmth is significantly influenced. In the first study, for example, participants
perceived the baseline behavior as more animated (small effect), but they perceived the
intrinsically motivated robot as more warm (medium effect). Given the results of both
studies, I argue that there is evidence that the different participant responses for Warmth
between the two behavior conditions are mainly caused by the robot’s IM.

4.5. Implications for the next study

This chapter presented a study design that made the robots in each condition perceived
similarly intelligent and competent. This was a major goal and it was important in order to
fully focus on the dimension Warmth. It could be said that the changes were successful and
they were, therefore, kept constant for the follow-up interaction study. This means, in the
final study, the environment, the interaction tool and the game-like scenario were kept the
same.

However, the discussion above also presented the limitations of the study design and raised
questions that needed addressing in the final study of this thesis. The intrinsically motivated
robot was perceived as more animated and as very different compared to the reactive baseline
behavior. As discussed above, there were three possible explanations for the baseline behavior
being perceived as less animated: (i) its different motion patterns, (ii) its reduced reactivity
to perturbations, or (iii) the lack of IM.

In order to strengthen the evidence that IM caused the perception of Warmth (point iii),
this section presents two changes to control for the other two possible influences. Firstly, a
baseline behavior needed to be developed which was more similar to the behavior generated
by the intrinsically motivated robot (point i). Secondly, allowing the robot to distinguish
between human and environmental perturbations could show how much its reactivity toward
human perturbations influences the perception of Warmth (point ii).

A baseline behavior more similar to the adaptive robot The baseline behavior in this study
was carried over from the first study. The reactive baseline behavior and the intrinsically
motivated robot were perceived differently in the first study already, and yet, there were no
statistically significant effects. This resulted in the argument that the baseline behavior was
a good candidate and, therefore, it was the reason that the full baseline behavior was kept
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and all parameters were constant.
However, the intrinsically motivated robot behavior changed. The implementation of the

IM formalism was kept, but some sensors were changed and, more importantly, the motion
model was modified (cf. subsection 4.2.2). The intrinsically motivated robot directly con-
trolled its servo speed, while the reactive baseline behavior still used the balanced motion
controller. This could have resulted in the differing perception of Animacy. A naïve first
solution to get a more similar baseline behavior could be to simply change the motion model
for the baseline to the direct control. This would mean that the reactive baseline behavior
would directly control its servos by using pre-adapted weights. This however would cause
the robot to have a very monotone, repetitive motion pattern, most likely just circling or
spinning. Note that this was present already in the current baseline behavior, although it
has not been noted (cf. subsection 3.4.3). As discussed, the robot had a tendency to drive in
anti-clockwise circles, but the built-in balancing controller made this pattern less prevalent.
Another idea was to have a behavior that was still reactive to the user input but had chang-
ing random weights. Again, this yielded the challenge of how to design the randomness as
discussed in section 3.2.

The idea which was pushed forward was to replay the networks’ weight updates of a
randomly picked, previous run. Thus, the robot could use the same motion control, the
same sensor input and the same initial model parameters, and produce a variable, reactive
behavior. More importantly, it would provide the participant with a sense of adaptation.
This would not be a true adaptation, as the network updates would not be influenced by any
means of current interactions. In a sense, it could be coined fake adaptation. I hypothesized
that participants would perceive such a baseline behavior as more similar to the intrinsically
motivated robot. This could be inferred by two quantitative measures: (i) the perception of
Animacy being the same and (ii) the assessed perception of difference being smaller compared
to the data collected in this study. This way, if the effect for Warmth persisted for the
intrinsically motivated robot compared to such a baseline, the evidence provided by this
study could be further underlined, namely that IM yielded the high perceived Warmth.

Use sensors to distinguish between human and environmental perturbations Another
important difference between the current baseline behavior, and the intrinsically motivated,
adaptive robot, was the reactivity of the robot toward perturbations. As discussed before,
the baseline robot kept the weights constant. It reacted to the human perturbations, but its
reactions were constrained by the balancing controller. On the other hand, the intrinsically
motivated robot directly changed its servos, and perturbations by the human participant
yielded immediate changes in its behavior. It could be possible that this played a role in
the positive perception of Animacy, Anthropomorphism and – more importantly – even for
Warmth.

The final study ruled out that this described “sense of control”, meaning the participant
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seeing direct behavior changes in the robot, played a role for their perception of Warmth.
To investigate this, the idea was to equip the robot with sensors which enabled it to perceive
human participants in such a way that their perturbations caused different actions than the
perturbations induced by the environment. Such a sensor would provide the participants
with a similar feeling of direct control and would enable the robot to behave differently to
human perturbations than to environmental perturbations. Importantly, such a sensor would
allow for controlling whether the direct robot response was the cause for the high perception
of Animacy and Warmth.

In the current study, only proprioceptive sensors updated the parameters of the IM. There-
fore, from the robot’s perspective it was not directly clear whether the perturbations were
induced by the human participants or an obstacle in the environment, such as a wall. The
solution which was investigated in section 2.7 was to exploit Bluetooth Low Energy (BLE),
adding proximity information to a small, mobile, spherical robot. BLE can scan fast for
signals and, most importantly, the sensor system could be added unobtrusively to the robot
in the final study. This way, the robot’s capability to scan for human participants’ proximity
was hidden from the participants. This is important because providing as little information
as possible about the robot’s capabilities to the participants was a central design paradigm
for all studies of this thesis.

Each of the above two implications were addressed in the final study of this thesis. This
way it could be answered whether an intrinsically motivated robot (like the one presented in
the current study) is perceived as more warm because (i) of it being intrinsically motivated,
or (ii) its pattern of locomotion or (iii) its capability to directly react to human perturbations.

4.6. Conclusion

This study extended the first study and was likewise motivated by the question of whether
intrinsically motivated autonomous robots can be beneficial for designing engaging HRI.
However, the focus of the investigation was changed to the dimension Warmth, which further
triggered design changes for the current study. This chapter presented a within-subjects
study (N = 24). The participants interacted with a fully autonomous Sphero BB8 robot
with two conditions with different behavioral regimes: one realized an adaptive, intrinsically
motivated behavior and the other was reactive, but not adaptive. TiPI maximization was
used as one candidate measure for IM. Of particular interest was the high similarity between
both conditions in Perceived Intelligence (r = 0.032, p = 0.875) and Competence (r =

0.003, p = 0.988), which gave support to the non-task-oriented interaction design. This was
particularly important as Competence ratings can influence the perception of Warmth, which
is the dimension that the study focused on.

The main result was that the perception of Warmth by human participants was high for
the adaptive, intrinsically motivated robot (r = 0.555, p = 0.007). This was in comparison
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to a baseline behavior that included both similar movement and reaction to sensor inputs –
meaning that the difference in perception arose from the robot’s adaptation to the physical
interaction. This effect was also robust to physical interaction, i.e. it was present even though
the robot was physically nudged by the human participants.

The open questions which motivated the design of the final study were the following.
Firstly, can the results for Warmth be confirmed with the use of a more similar, fakely
adaptive baseline behavior? Secondly, were the direct responses of the intrinsically motivated
robot, which directly controls its servos, the reason for the high perceived Warmth, or was
it due to the robot being intrinsically motivated?
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Study III

5.1. Introduction

The last studies showed that a robot which is intrinsically motivated yields an increase in the
participants’ perception of the robot’s Warmth. This started with medium effects that were
seen in the first study and those effects were confirmed in the second study with statistical
significance. These promising results, however, were accompanied by open questions about
what caused the effects and corresponding suggestions to better analyze their origin. This
chapter presents the third and concluding study of this thesis, addressing the suggestions
outlined in the previous chapter.

One observation from the previous study was that the intrinsically motivated robot was not
just perceived as more warm than the reactive baseline behavior, but it was also perceived as
more animated and more anthropomorphized. All these effects were statistically significant
and, at first glance, evidence that intrinsically motivated autonomy affects human perception.

However, it has been shown that robots, even objects, are perceived high in Animacy
if they are moving, and the influence of their locomotion changes are not visible to the
observer (Tremoulet and Feldman 2000). This was why the statistically significant results,
which were at first glance very promising, raised skepticism. Maybe the baseline behavior of
the second study was too different from the intrinsically motivated robot’s behavior? The
results to the question of whether or not participants considered the two robot behaviors to
be different supported this concern since most participants perceived the robots as maximal
different.

The participants’ sole task of study II was to understand whether the robots behaved
differently in the two conditions. This may have caused participants to be particularly alerted
or biased towards minor differences between the robot behaviors. More likely, however, was
that the effect of perceived Warmth was caused by the use of two different motion controls.
The reactive baseline behavior used Sphero’s built-in balancing controller together with the
reactive controller: the robot updated its heading and speed based on previously explored,
constant parameters, and the current sensory input. This resulted in speed and heading
information which the robot tried to reach while the balanced controller kept the robot
upright. In contrast, the intrinsically motivated robot applied computed parameter updates
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(the output values from maximizing predictive information (PI)) directly to the servo speed
and direction. This way, perturbations by the human participants had a more direct effect
on the behavior of the robot, which in turn may have influenced the perception of Warmth
by the participants. The previous chapter therefore encouraged further investigations to
understand whether the promising results remain in a study when using a similar baseline
behavior.

In summary, the aforementioned observations raised the question of whether an intrinsi-
cally motivated robot was perceived as more warm compared to the baseline, because (i)
it was intrinsically motivated, (ii) due to its pattern of locomotion, or (iii) based on its ca-
pability to directly react to human perturbations. In light of the main research question,
the hypothesis was that the perception of Warmth was influenced by the robot’s intrinsic
motivation to explore the spatial relationship to humans and objects in its environment (i.e.,
point i). This chapter presents the last study of the thesis, which had an adapted study
design to answer these questions.

The robot platform, the tool, the environment, the procedure, and the scales that were
used remained unchanged compared to the second study. However, two major changes were
introduced. Firstly, the baseline behavior was designed in such a way that the motion
patterns were similar to the intrinsically motivated robot. The idea was for the baseline to
use the same direct control model as the intrinsically motivated robot. For this to work,
the baseline robot had to update its parameters based on updates of a previous, randomly
chosen interaction. These updates were changes to the robot parameters, but they were not
based on maximizing time-local predictive information (TiPI) and therefore resulted in a
robot that was not goal-directed or adaptive to the environment or human. However, the
goal of the intrinsically motivated robot that used TiPI maximization was not obvious to the
participant, since there was no known observable task that the robot needed to fulfill. This
was why the difference between the truly goal-directed, intrinsically motivated robot and the
robot replaying parameter updates of a previous interaction were very subtle, in particular
for interactions of short duration1. I therefore refer to the replaying behavior as being fakely
adaptive. The hypothesis was that these changes caused the baseline to be perceived as
more similar – in particular more similarly animated – when compared to the intrinsically
motivated robot. In other words, the baseline became more challenging to distinguish. If the
positive effect of Warmth persisted, despite these efforts, then point (ii) from above could be
ruled out, namely that the Warmth perception was due to the different motion patterns and
because the two robot behaviors were perceived very differently.

The next major change addressed the observation that the perception of Warmth could
have been influenced by the capability of the robot to directly respond to human perturba-
tions. To address this concern, this study had an additional condition. The study used the

1A video supplementing this study shows an example of all three conditions conducted by one, randomly
chosen participant (e.g. Scheunemann 2017e).
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same intrinsically motivated robot as in the second study, but had an additional intrinsically
motivated robot, which had the added capability of perceiving human proximity. That way,
point (iii) could be addressed: was it more important that participants were closely entrained
with the robot and therefore saw a direct response from the robot to their actions, or did
the perception of Warmth truly stem from the goal-directed, adaptive behavior enabled by
the robot’s intrinsic motivation (IM)?

If the study could find evidence that the major drive behind the positive effect for Warmth
perception from the second study stemmed from the very fact that the robot was intrinsically
motivated, it would give more weight and meaning to the results of the previous studies.
The working hypothesis throughout the thesis is that the theory about Warmth from social
cognition holds true for human-robot interactions. Thus, the humans perceived as high
in Warmth experience more positive social interaction. If this transfers to human-robot
interaction (HRI), then the findings show that IM can be a key to sustain HRI,

This directly raised the last question that is addressed in this chapter: does the theoretical
knowledge about Warmth transfer to HRI? The concept of Warmth and its implications is
still an active area of research in social cognition, but there has not been any evaluation yet of
whether it transfers to physical interaction between humans and robots. This study showed
the first step toward understanding whether it does or not. In this study, participants were
directly asked after the session that if they could interact with a robot again, which robot (if
any) would they prefer. This study then analyzed whether the responses were related to any
of the scale dimensions. The study showed that Warmth and Competence – the two central
dimensions for human attitude formation – were both related to the participant’s preference,
and that, interestingly, the dimension Likeability failed to deliver this relation.

In summary, this study concluded the series of interaction studies of this thesis. Its results
showed that the intrinsically motivated robots are perceived as more warm, because they
are intrinsically motivated, and not because of different motion controls or a specific capa-
bility to directly react on human input. In particular, the chapter rules out the alternative
explanations for the effect on Warmth and therefore provides more meaning to the previous
studies, where it was shown consistently that an intrinsically motivated robot is perceived as
more warm. Furthermore, the study results provided the first evidence that the knowledge of
Warmth, which discriminates whether humans perceive positive social interaction, transfers
to physical human-robot interaction.

5.1.1. Research question

The research questions motivated by the introductory section are as follows:

RQ1 Is a reactive robot which is replaying weight updates from a previous run, (i.e. fake
adaptivity) a more challenging baseline behavior compared to the one used before in
study I and study II (cf. 3.2)? In other words, is it perceived more similar and similarly
animated?
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RQ2 Does the study design allow for an unbiased perception of the robot’s Warmth, i.e.
is the robot’s Perceived Intelligence and Competence the same between each pair of
conditions (similar to RQ2 from study II)?

RQ3 Is an intrinsically motivated robot perceived higher in Warmth than a reactive and
seemingly adaptive baseline behavior (similar to RQ1 from study II)?

RQ4 Is a robot perceived as more warm because of being intrinsically motivated, or because
its capacity to directly respond to human interaction (with the help of a proximity
sensor)?

RQ5 Is the behavior a participant perceives highest in Warmth the same behavior they prefer
to interact with again?

5.1.2. Overview

This study compared three different robots: a robot with a baseline behavior and two in-
trinsically motivated robots. The intrinsically motivated robots were the same, except one
used an additional proximity sensor. The baseline behavior was more challenging compared
to the one from the second study: it used the same direct motion control and its motion
patterns were similar compared to the intrinsically motivated robots.

Section 5.2 introduces the design of the study. The environment and the robot (5.2.1), the
measures (5.2.3) and the procedure (5.2.4) stayed the same compared to the second study.
The two changes to the study design were the additional proximity sensor which was used by
one of the intrinsically motivated robots and the baseline robot. These changes are described
in 5.2.2 and 5.2.1 respectively.

Section 5.3 presents the results. This study showed that an intrinsically motivated robot
was perceived as more warm compared to a similarly locomoting, reactive baseline behavior.
The major driving factor behind this was indeed the IM formalism, and not the potential
capability of the robot to respond to human proximity directly. Furthermore, this study
presented evidence that the participants’ responses to the dimension Warmth were related
to their preferred condition, which in turn is a first step to understand if the theoretical
knowledge from social cognition transfers to HRI. Section 5.4 discusses the results and con-
firms that the findings provided more meaning to the results of the previous studies and that
they helped to answer the main research questions of this thesis. Section 5.5 discusses the
limitations of this study and provides directions for future work. Section 5.6 then concludes
the study.

5.2. Study design

The following subsections describe the design of the study. Most of the study design re-
mained the same compared to the second study. This section focuses on the differences, e.g.,
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Figure 5.1.: The experimental environment showing the robot platform Sphero in its BB8 version and
a person using a tool (the wand) to interact with the robot. The robot could freely locomote on the
table. The participant could move around the table to observe and interact with the robot. In contrast
to the second study, the robot had the capability to sense the proximity to the tip of the wand using
Bluetooth Low Energy (BLE).

describing the reasoning and implementation of a new, fakely adaptive baseline behavior, the
use of an additional proximity sensor, and the measuring of participants’ preference.

5.2.1. Robot and environment

From an observer perspective the robot platform, the environment and the interaction tool
remained exactly the same as in the second study (cf. subsection 4.2.1). As a reminder,
Figure 5.1 shows all the components and the author (portraying the role of a participant)
interacting with the robot.

In this study, the robot was equipped with an additional sensor to receive proximity
information of interacting human participants. The sensor used BLE and derived proximity
estimates based on measuring the received signal strength (RSS) between two BLE devices.
This sensor was introduced to address RQ4 and was described in detail in section 2.7. In
this study, the robot carried a BLE beacon in its head which increased the head’s weight
by ∼5 g. The wand was equipped with a BLE scanner, which scanned for the beacon of the
robot. The scanner retrieves the RSS and sends it to the robot controller.

However, feeding the signal directly into the robot as an additional sensor input was
not possible, because RSS values are prone to (i) partial occlusions resulting in sudden
drops (Schwarz et al. 2015; Ahmad et al. 2019) and (ii) strong fluctuations of the measure-
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ments (Faragher and Harle 2015). Both characteristics violate two requirements of TiPI
maximization discussed in subsection 2.3.3. The sensor and the receiver were placed in the
robot’s head and in the tip of the wand-shaped HRI tool. This way, sudden drops were
reduced because occlusions were prevented when the human participant interacted with the
robot. In addition, the sensor readings were pre-processed to avoid strong fluctuations.

It is known that RSS measurements are rarely overestimated but rather underestimated (Schwarz
et al. 2015). The pre-processing therefore consisted of a filter, which passed only the max-
imum value of a time window of past readings, which smoothed the RSS reading values
and filtered false, underestimated readings. Empirically, it was found that a time window of
300 ms was a good candidate: sudden drops were reduced but the readings were still provided
in a timely and continuous manner to the robot.

5.2.2. Conditions

This section describes the condition differences, the realization of the baseline behavior and
the order of conditions. As in the second study, the same robot platform was used in all
conditions. The conditions were the levels of the independent variable which described the
type of behavior generation. The robots’ behavior generation differed either by the realization
of adaptivity (e.g. using an IM formalism or fake adaptation) or by the sensory input (e.g.
using a proximity sensor or not). Note that the adaptivity generation and the sensory input
could have formed two individual independent variables. However, this would have resulted
in an additional condition which does not help to answer any of the research questions, but
instead increases the session time for participants by 20 to 30 minutes.

Table 5.1.: Overview of the three experimental conditions

condition sensor input parameter update

ADA no proximity sensor online adaptation with TiPI
REPLE proximity sensor adaptation based on replay
ADALE proximity sensor online adaptation with TiPI

Table 5.1 provides an overview of the differences as per condition. The study consisted of
three conditions called ADA, REPLE , and ADALE . The ADA condition was exactly the
same as the one used in the second study presented in chapter 4. The only difference was that
the robot in this condition was also equipped with, but did not use, the proximity sensor.
This allowed the experimenter to treat all the robots the same and, at the same time, keep
the condition hidden from both the experimenter and the participant. ADALE was almost
the same as the ADA condition, the difference being that it had an additional input for
proximity information using BLE. This means, both robots were intrinsically motivated and
their behaviors were realized with maximizing TiPI. REPLE was the baseline behavior of
this study. It had exactly the same input as the intrinsically motivated robot in the ADALE ,
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however, the behavior was generated by repeating weight updates from an earlier, randomly
chosen run. A video supplementing this study shows an example of all three conditions
conducted by one, randomly chosen participant (see Scheunemann 2017e). From observing
the three conditions alone, it can be seen that the different behaviors looked quite similar
(as intended). The following subsections describe the changes in the sensor input and the
parameter updates in more detail.

Sensor input

All controllers received sensor readings from an accelerometer, a gyroscope, and the two
servo motors. The gyroscope provided the angular velocity around the z-axis. If the robot
was upright, this axis was perpendicular to the surface. The accelerometer provided the
linear acceleration along the forward and sideward axes. Each of the two servos provided
their current speed, which were negative for backward motions. In condition REPLE and
ADALE , the controller had an additional input: a one-dimensional proximity sensor which
corresponded to the distance of the interaction wand. This way the robot was able to
distinguish between perturbations by the environment or by the participant. Proximity
changes could be induced quite rapidly by the participants. This was different to some of
the other sensors. If the robot was nudged, there would be a peak on the accelerometer
reading, but that would also only result in a short behavioral change. For proximity, this
was different. A change in the wand’s position could change the robot’s behavior more visibly
and rapidly. In a sense, the robot was pushed into a different behavior regime more easily.
This could have different effects, for example, with the observable changes the participant
could feel that the robot was responding more directly to their input. The effect however was
hypothesized to be smaller than the one observable by comparing an intrinsically motivated
robot to a baseline behavior. This design helped to address the research question RQ4.

Parameter updates

In condition ADA and ADALE , the robot was equipped with a computational model of IM.
The update rules for the parameters (weights and biases of a neural network) were imple-
mented by TiPI (cf. section 2.3). In a way, the robot tried to excite different sensors through
the generation of a variety of motion regimes, but in a predictable way. For example, the
robot spun around to excite the gyroscope or accelerated to excite the forward acceleration
measured by the accelerometer. On the other hand, in the baseline condition REPLE the
controller of the robot was not updated by TiPI, but by replaying parameter updates of an
earlier run with a predictive information controller. This means that it changed its network
weights and biases, but it was not adaptive toward the current environment or the current
participant, i.e., it did not adapt to maximize its PI based on its experience.

This means the robot was reactive towards the current sensory input in all conditions,
but the update of the network weights happened either by TiPI (ADA and ADALE) or by
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replaying (REPLE) the adaptation of parameters that occurred in a previous experiment.
Overall, the regimes of generated behaviors were hypothesized to be very similar (RQ1), alas
not adaptive toward the environment in REPLE . This design helped to address RQ3.

Order of conditions

The type of behavior generation was an independent within-subjects variable, i.e. all par-
ticipants were exposed to the three conditions ADA, REPLE and ADALE . The order of
the conditions was randomly assigned and counterbalanced. The study had 36 participants.
This meant that all possible 6 permutations of ordering the 3 conditions occurred 6 times.
Table 5.2 shows the order of the conditions and the assigned number of participants.

Table 5.2.: Order of conditions

order of conditions participants

A ADA → REPLE → ADALE 6
B ADA → ADALE → REPLE 6
C REPLE → ADA → ADALE 6
D REPLE → ADALE → ADA 6
E ADALE → ADA → REPLE 6
F ADALE → REPLE → ADA 6

5.2.3. Measures

The measures in this study were very similar to the ones used in the previous interaction
study. A questionnaire was handed out to the participants after each of the three conditions.
The questionnaires of the study are attached in section B.3. They encompass all items of
the Robotic Social Attribute Scale (RoSAS) and the Godspeed scale in randomized order.
The research questions addressed in subsection 5.1.1 partially relied on the responses to the
scale dimensions Warmth and Competence (both RoSAS), as well as on the scale dimensions
Animacy and Perceived Intelligence (both Godspeed). However, all items of the two scales
were used and the results to all scale dimensions are reported. This helped to hide the
questionnaire intention and, at the same time, the dimension results may be helpful to
design future studies or enable future studies to compare their results with the results of this
study.

There were two changes to the questionnaire compared to study II: one question modifi-
cation and one additional question. Firstly, like in the second study, the post-questionnaire
contained a question to directly assess the perceived difference between conditions: “Was the
behavior of the robot different in comparison to the previous interaction?”. The responses
were collected with a 5-point Likert-type item ranging from 1 (“Not at all”) to 5 (“Very much
so”). The measure was introduced in study II to have a comparison for the development of
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a new baseline behavior (like the one in this study) and to understand if the baseline was
perceived more similar. In contrast to the previous interaction study with two conditions,
this study had three conditions. Therefore, after the third condition, participants were asked
about their perception of the difference between the previous and the first interaction.

Secondly, the questionnaire has one additional question in contrast to the previous study,
which directly assessed which condition participants preferred to interact with again: “If you
could interact with one of the robots again, which one would you chose?”. The participants
could choose between one of the three interactions 1, 2, and 3, but they could also tick
“no preference”. This question was primarily introduced to control whether the dimension
Warmth and the participant’s preference was dependent. If so, this would give more weight
to the results of previous studies where an intrinsically motivated robot was perceived as
more warm (a detailed discussion follows).

5.2.4. Procedure

This section describes the study procedure. Participants were welcomed to the experimental
room and were then handed an information sheet. They were welcomed to discuss concerns
related to their participation. If they were happy to proceed with the study, they were asked
to sign an informed consent form. It was in the beginning and at this point that it was
emphasized that they could leave the study whenever they feel uncomfortable, stressed or
bored.

They were then assigned randomly, but counterbalanced, to one of the six possible orders.
To achieve this, they drew a folded snippet from an envelope which contained 36 pieces.
They were not informed about the number they drew. The participants then filled in the
pre-questionnaire. This gathered information regarding their gender, age and background.
In parallel, the experimenter prepared the order of conditions and transferred the drawn
number to the controlling computer. The numbers had been pre-mapped to a condition order
and the experimenter was unaware of the particular order. This avoided the experimenter
biasing the participants because participants could not guess the experimenter’s intention
from explanations or subconscious expressions2.

After that, the study environment and the robots were presented to the participants.
The participant’s task followed the one from study II exactly: they were told that their
task was to understand whether the three presented robots (one robot per condition) were
different. To understand whether the robots were different or not, they could use the HRI
tool. The participants were told they were allowed to nudge the robot, and the action was
presented to the participants by the experimenter. The participants were then asked to take
the interaction tool and try out the action with a passive robot. This study’s main purpose
was not to investigate the differences in the robots’ behaviors. Instead, the main motivation

2Orne (1962) described this participant’s bias, which he coined demand characteristics. It describes that
participants may try to perform particularly well in order to satisfy the perceived needs of the researcher.
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of this task was to encourage interaction with the robot.
No other information or details were provided. In particular, the type of possible behav-

ioral differences of the robots were not revealed nor was any hint of the robot’s underlying
algorithm given. This was particularly contrasting to the first study, where participants were
told that the robot had the aim to explore the environment and they were asked to prevent
the robot from rolling over the edge and falling off the table. In this study, the participants
could freely decide the amount of interactions they have, and the style of interactions (for
example using the tool to nudge or push the robot). There was no specific task provided, like
in study II. Therefore, this study confirmed, when answering RQ2, that participants were
not encouraged to distinguish the robots by their competence.

Next, the three conditions were presented to the participants depending on the order they
were assigned to earlier (i.e. in a randomized order). Again, the order of conditions was also
unknown to the experimenter. Each interaction lasted approximately 5 minutes. After each
of the three interactions, the participants filled in a post-questionnaire containing the two
scales and additional questions presented earlier in subsection 5.2.3. The entire experiment
took about 60 to 75 minutes per participant.

5.2.5. Sample
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Figure 5.2.: A histogram of the participants’ age. The majority of participants were between 19 to
36.2 years old. The figure also shows there was a wide variety of ages.

Thirty-six participants (11 female; 24 male) were recruited for the study, with ages ranging
from 19 to 62 years (M = 33.6, SD = 10.2). Figure 5.2 shows the distribution of participants’
ages. The participants were mostly recruited from university staff and students (24) and the
majority had a background related to Computer Science (22). Nine participants took part
in one of the two previous studies (Six in study I; Nine in study II).

To gain insight into their experience with robots, the participants were asked how familiar
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they were with interacting with robots, programming robots and the chosen robot platform.
A 5-point Likert scale was chosen with the value 1 for “Not familiar” and 5 for “Very famil-
iar”. Figure 5.3 shows all the responses to the self-assessment. The majority of participants
were familiar with the Star Wars movies (Lucasfilm Ltd. 2015), i.e. the response distribution
is skewed to the right (d). The flyers that were handed out to the participants may explain
this distribution. There was a picture of the used robot platform on them, which resembles a
character from the movie series, and participation was maybe most appealing to people who
were familiar with the two movies that were released in 2015 and 2017 (both in December).
Another skewed distribution can be noted for the responses to the familiarity with the robot
used in the study: most people were not familiar at all (c). The responses to the participants’
experience with programming robots showed that participants’ self-assessed experience was
almost balanced (b). There is a slight skewness towards the participants’ familiarity with
interacting with robots (a). However, when leaving out the participants who felt very fa-
miliar with interacting with robots, the participant responses were balanced. Overall, the
participants could be considered technophile, but the majority did not work with robots, nor
did they have experience with the specific robot platform.
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Figure 5.3.: The response distributions of the pre-test questionnaire 5-point Likert-type questions.
Participants were asked about their familiarity with (a) interacting with robots, (b) programming
robots, (c) Sphero BB8 version and (d) Star Wars. The majority of participants had little experience
with the Sphero robot. However, the majority of people had interacted with robots already.

The study was conducted on the premises of the University of Hertfordshire and was
ethically approved by the Health, Science, Engineering & Technology ECDA with protocol
number aCOM/PGR/UH/03018(4). The experiments were conducted from March to June
2019 over the course of 88 days. The anonymity and confidentiality of the participants’ data
are guaranteed.
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5.2.6. Data preparation

The score reliability of the scales of both standardized questionnaires was tested with the use
of Cronbach’s α. The item quiescent-surprised was negatively loaded on the scale dimension
Perceived Safety. Even if reversed, the reliability was poor. The item was therefore removed.
Table 5.3 presents all test results, which revealed a good score reliability ranging from 0.79
to 0.92. This was evidence that the dimensions could be analyzed without any further
preparation.

Table 5.3.: Internal consistency reliability scores.

dimension items α

R
oS

A
S


Warmth 6 0.86
Competence 6 0.92
Discomfort 6 0.79

G
od

sp
ee

d


Anthropomorphism 5 0.82
Animacy 6 0.82
Likeability 5 0.87
Perceived Intelligence 5 0.88
Perceived Safety 2 0.85

5.3. Results

This section presents the results of the study. Similar to the second study of this thesis,
but in contrast to the first study, all results stemmed from quantitative analyses of the
questionnaire responses to standardized scales and a few extra questions about participants’
preferred interaction and their perceived differences in the robot.

Subsection 5.3.1 presents the results of how different the participants perceived the three
conditions. The results provided evidence that all conditions were perceived quite similar to
each other. In particular, the results showed that the new baseline behavior was perceived
as more similar when compared to the second study.

Subsection 5.3.2 presents the effects on the questionnaire dimensions between conditions.
The results showed that the Perceived Intelligence and Competence of the robots in both
conditions were perceived similarly, which was intended by the study design and confirmed
the results from the second study. The results also showed that there was no effect for
Animacy or Anthropomorphism between any of the conditions, which indicated that all
conditions, in particular the new baseline behavior, were perceived as similarly animated.
Despite the similarity, the results provided evidence that the intrinsically motivated robot
was perceived as more warm than the reactive and seemingly adaptive baseline behavior.

Subsection 5.3.3 presents the results collected with the new item of the questionnaire which
asked for the preferred condition of the participants. The results indicated that the prefer-
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ences were spread throughout the conditions, with a tendency toward people who preferred
the intrinsically motivated robots. Interestingly, the results showed that the reported partici-
pant’s preference was statistically significantly dependent on the condition with their highest
response to the Warmth dimension.

5.3.1. Perception of difference

This section presents the results of the collected responses to the participants’ perceived
differences in the robot behaviors. The perceptions of differences between the three conditions
were collected using the Likert-type question which asked about the perceived difference to
the previous interactions (cf. subsection 5.2.3). Figure 5.4 shows the frequency distributions
of the responses. Note that the responses to the differences are depicted independently of
their order. This means, for example, Figure 5.4a contains all responses for the perceived
difference between the conditions ADA and ADALE , irrespective of which condition was
presented to the participants first or last.
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Figure 5.4.: Histograms of the responses to the Likert-question about the difference to previous inter-
actions. The responses (x-axis) were 1 (“Not at all”) and 5 (“Very much so”). The response counts
are depicted independently of the order, i.e., it does not matter whether the participants conducted
ADA before or after ADALE. The figure indicates that ADA and ADALE were perceived as the least
different.

At first glance, it could be seen that only two responses of two participants3 considered
a pair of conditions to be “not at all” different. This means that all other participants saw
some differences between the conditions. This was possibly due to the task given to the
participants: they had to answer whether the robots differed or not. To answer this, they
were shown how to use the tool. This task and the showcasing of nudging the robot was
all the information that was given to the participants. The task was provided to encourage
the participants to interact with the robots and to hide the intention of the study. However,
this question about the perceived difference may have biased them towards (i) believing the
robots were different, or (ii) made them more alert to minor differences. This meant that the
overall associated level of difference may have limited explanatory power. Instead, comparing
the response distribution between pairs may offer further insights.

3The two responses with 1, i.e. “not at all”, belonged to two different participants.
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From all the pairs depicted in Figure 5.4 the conditions ADA and ADALE (a) appeared
to be perceived as the least different since the responses were more evenly distributed in
comparison to all other pairs. This indicated that the two intrinsically motivated robots
were perceived most similar, despite their differences in their embodiment (i.e. whether they
had a proximity sensor or not). This was a first indicator in answering RQ4, which asks
whether the capability of the robot to respond directly to human perturbations (i.e. having
a proximity sensor) has more influence on the perception of Warmth compared to the robot’s
IMs.

To quantify the observations, a Kruskal-Wallis rank-sum test4 was conducted to examine
the perceived differences according to the pairs of conditions. No significant differences
(χ2 = 1.38, p = .5, df = 2) were found among the three pairs (a), (b), and (c). Therefore,
the main result from the responses to the one Likert-type question was that there was no
evidence that any of the conditions were perceived as more different than another condition.
In particular, there was no evidence that participants perceived the baseline behavior similar
to the behavior of the intrinsically motivated robots.

To address RQ1, the question which remained unanswered was whether participants per-
ceived the baseline as less different to the intrinsically motivated robots, compared to the
difference of the second study. Figure 5.5 helped to answer this question by depicting the
relative frequency distribution. This way, the frequencies of this study with 36 participants
was comparable to the frequencies of the second study with 24 participants.
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Figure 5.5.: A comparison of the perceived differences between conditions of this current study (first
three figures) to the one of study II (d). Depicted are the relative frequency histograms, which allowed
for a comparison of the studies with different sample sizes. It can be seen that participants perceived all
three condition combinations of this study as more equal compared to the two conditions of study II. In
particular, participants perceived the condition ADA more similar to the current baseline REPLE (b)
than compared to the baseline behavior REAb of study II (d).

The first three plots show the frequency distributions of the unordered pairs: (a) (ADA,
ADALE), (b) (ADA, REPLE), and (c) (ADALE , REPLE). Note that the labeling for the
pairs is consistent with the ones in Figure 5.4. The last plot (d) is the histogram of the two
conditions ADA and REAb from the second study. The condition ADA from this study

4The Kruskal-Wallis rank-sum test is part of base R’s built-in stats package and was implemented as
kruskal.test().
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and the second study remained the same, except that the robot was additionally equipped
with the (unused) proximity sensor (cf. subsection 5.2.1). REAb was the condition with the
reactive baseline behavior used in study II5.

Figure 5.5d shows that the distribution is skewed to the far right, which means that
participants of the second study responded mainly with “very much so” to the question of
whether the baseline behavior in REAb was different compared to the intrinsically motivated
robot in the ADA condition. For all possible pairs of this study, the responses were more
evenly distributed between the answers from 2 to 5. This means that participants perceived
any pair of this study more similar compared to the pair of study II. In particular, the ADA
condition was perceived more similar to the baseline condition REPLE than compared to
the baseline condition REAb.

The Kruskal-Wallis rank-sum test (as above) was conducted to quantify the aforementioned
observation and to see if there was any difference among the perceived differences between
pairs of this study and the pair of the previous study. The test results (χ2 = 20.28, p <

0.001, df = 3) showed that there was at least one statistically significant difference between
the four pairs (a), (b), (c), and (d).

A Wilcoxon rank-sum test with continuity correction is a special case of the above test
for two samples, and it was used to understand further if (d) was statistically significantly
different to all other pairs of the current study. The test is a non-parametric version of the
popular t-test. It can operate on ordinal data and is useful for small sample sizes. The results
of the Wilcoxon rank-sum test6 indicated that the median of ranks of (d) were statistically
significantly higher than the median of (a) (W = 676, p = 0.0001), (b) (W = 628, p =

0.0015), and (c) (W = 700, p < 0.0001).

In summary, the results indicated that all conditions of this study were perceived more
similar to each other than the two conditions of study II. In particular, when comparing
the condition ADA to the current baseline behavior REPLE , the conditions were perceived
statistically significantly more similar than when comparing ADA to the baseline behavior
REAb from study II.

Given that the study design (e.g. the environment, the robot platform, the procedure and
the task) remained the same as in study II, this was strong evidence that the current baseline
behavior was more similar to the intrinsically motivated robot behavior and therefore even
more challenging. The results directly answered the first part of RQ1: the new baseline
behavior, in contrast to the baseline behavior from study II, was perceived more similar to
the behavior of the intrinsically motivated robots.

5The condition REAb with the reactive baseline behavior had also been used in study I, but the perceived
difference was derived qualitatively in study I rather than quantitatively in study II and the current one,
which made the results incomparable in a straightforward fashion.

6The Wilcoxon signed-rank test is part of R’s built-in stats package and is implemented as wilcox.test().
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5.3.2. Effects of questionnaire dimensions

This section presents the results for investigating the main effects of the questionnaire di-
mensions. This mainly concerned the dimension Warmth (RQ3), Perceived Intelligence and
Competence (RQ2) and Animacy (RQ1). All other dimensions of the RoSAS and Godspeed
scale are also reported to allow comparisons between possible future studies and this work.

Interaction effects

An analysis of variances (ANOVA) is commonly used for investigating interaction effects,
i.e., effects that show that the order of the conditions influences the responses of participants
to a condition. The study had two independent variables: one within-subjects variable
and one between-subjects variable. The type of behavior generation (short: behavior) was
the independent within-subjects variable. It consisted of the three levels: the conditions
ADA, REPLE , and ADALE . The between-subjects variable was the order of how the three
conditions were presented (cf. subsection 5.2.2).

Table 5.4.: ANOVA-type test results for the “type of behavior generation” (level ADA, ADALE,
REPLE) and “order” (level A–F) for all the dimensions of the RoSAS and Godspeed scale. Note that
the dimensions Anthropomorphism, Perceived Intelligence and Perceived Safety are abbreviated.

order behavior order:behavior

dimension F df1 p F df1 p F df1 p

R
oS

A
S


Warmth 0.151 4.592 0.974 3.454 1.972 0.032 1.683 6.018 0.120
Competence 0.581 4.026 0.678 0.474 1.994 0.622 1.444 5.466 0.199
Discomfort 0.462 4.752 0.795 3.334 1.944 0.037 2.363 6.195 0.026

G
od

sp
ee

d


Anthropom. 0.858 4.373 0.496 0.807 1.863 0.439 1.456 6.588 0.182
Animacy 1.113 4.574 0.350 1.211 1.727 0.294 1.277 6.340 0.262
Likeability 1.070 4.751 0.374 6.809 1.842 0.002 2.012 6.389 0.056
P. Intelligence 0.835 4.136 0.506 0.333 1.924 0.708 1.665 5.686 0.129
P. Safety 0.328 4.651 0.885 0.546 1.867 0.567 1.889 5.421 0.086

Here, a non-parametric ANOVA-type7 test was used, due to the relatively small sample
size (N = 36). Table 5.4 shows the results of the test. The last column order:behavior reveals
the likability for an interaction between the conditions and their order. It shows that there
was a statistically significant interaction effect for the dimension Discomfort (p = 0.026).
The dimension was not part of any research question, therefore a post-hoc analysis of the
interaction effect was omitted and the chapter does not discuss the dimension further.

For all other dimensions, and for a 5 % significance level, there was no statistical significance

7For computing the ANOVA-type test the R package nparLD was used. As the study consisted of one within-
subjects variable (behavior) and one between-subjects variable (order), it can be expressed as F1-LD-F1
Model. The nparLD package offers the function f1.ld.f1() for computing such models.
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for an interaction effect8. Therefore, the results allowed investigating the main effects between
the conditions independently of their order, i.e., the responses to both conditions could be
compared independently of whether the participants were exposed to, e.g. ADALE , in the
beginning of the experiment or at the end. The results are presented in the next subsection.

A first impression of these main effects can be retrieved by studying the second column
behavior of Table 5.4 and its three subcolumns. The dimensions Competence, Perceived
Intelligence and Animacy were important for answering the research questions. They all
do not show any hint for a potential effect (which was intended by the study design). On
the other hand, the column reveals a statistically significant condition effect (p = 0.032) on
Warmth, one of the dimensions this study focused on. This was a very promising indicator
that parts of the study design had an effect on this central dimension. The next subsection
presents a more detailed analysis of the main effects. In particular, an analysis of which
condition created the statistically significant effect for the dimension Warmth.

Main effects

This section presents the main effects between pairs of conditions. The main focus to answer
the research questions lied on Warmth and Competence (both RoSAS), as well as Animacy
and Perceived Intelligence (both Godspeed). A paired difference test could be used to un-
derstand between which pairs of conditions was the effect present and to understand the
direction of that effect. For example, it could answer whether the perceived Warmth was
higher for the condition ADALE compared to the condition REPLE .

The Wilcoxon signed-rank test is a non-parametric candidate for a paired difference test. In
contrast to the popular t-test, it is known to be robust for small sample sizes and can operate
on ordinal data. It tests for the null hypothesis that the two conditions do not differ, i.e., the
two-sided test version was used and possible effects in both directions were revealed. The test
statistic V , a point estimate, and its corresponding 95 % confidence interval are reported,
along with a p value and the standardized effect size r (Rosenthal et al. 1994; Yatani 2016).
The point estimate (short: estimate) is the median of the differences. It provided a size
and a direction for how much the participants preferred one condition. For example, if the
median of the differences for the comparison of ADALE and REPLE equaled 0.417, this
means that on average the participants responded to Warmth with 0.417 units higher in the
ADALE condition than in the REPLE condition. The units here are the responses to the
Likert-type items that ranged 1 to 7 (RoSAS) or the differential scale which ranged from 1
to 5 (Godspeed). The standardized effect size r is either small (r ≥ 0.1), medium (r ≥ 0.3)
or large (r ≥ 0.5)9.

8Note that the same approach was used to analyze if the participants’ self-reports from the pre-test ques-
tionnaire or their involvement in a previous experiment had an effect on their responses to the conditions,
but no statistically significant effects were found.

9There is no mutual agreement on how to verbalize the effect size r. However, the subjective interpretation
of Pearson’s r by Cohen (1992) has been used often.
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Table 5.5.: Wilcoxon signed-rank test results and effect sizes between all pairs of conditions.

(a) ADALE and REPLE

95 % confidence interval

dimension V estimate lower bound upper bound p r

R
oS

A
S {Warmth 412.5 0.417 0 0.667 0.049 0.328

Competence 330.0 0.167 -0.383 0.667 0.578 0.093

G
od

sp
ee

d


Anthropomorphism 371.5 0.100 -0.100 0.400 0.354 0.154
Animacy 300.5 0 -0.333 0.333 0.959 0.009
Likeability 256.5 0.200 -0.200 0.400 0.399 0.141
Perceived Intelligence 273.0 0 -0.400 0.400 0.893 0.022
Perceived Safety 91.0 0 -0.750 0.750 0.809 0.040

(b) ADA and REPLE

95 % confidence interval

dimension V estimate lower bound upper bound p r

R
oS

A
S {Warmth 310.0 0.167 -0.250 0.500 0.389 0.144

Competence 290.5 0.167 -0.333 0.667 0.620 0.083

G
od

sp
ee

d


Anthropomorphism 298.5 0 -0.200 0.300 0.747 0.054
Animacy 208.0 -0.083 -0.417 0.167 0.432 0.131
Likeability 386.5 0.500 0.300 0.800 0.002 0.529
Perceived Intelligence 322.5 0.100 -0.200 0.400 0.452 0.125
Perceived Safety 97.0 0.500 -0.250 0.750 0.326 0.164

(c) ADA and ADALE

95 % confidence interval

dimension V estimate lower bound upper bound p r

R
oS

A
S {Warmth 196.0 -0.250 -0.583 0.083 0.131 0.252

Competence 299.5 0.083 -0.417 0.417 0.734 0.057

G
od

sp
ee

d


Anthropomorphism 144.5 -0.100 -0.500 0.300 0.628 0.081
Animacy 220.5 -0.100 -0.500 0.167 0.416 0.136
Likeability 345.0 0.500 0.200 0.800 0.006 0.460
Perceived Intelligence 333.0 0.200 -0.200 0.600 0.196 0.215
Perceived Safety 94.0 0.250 -0.750 1.250 0.405 0.139
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Table 5.5 shows the results of the two-sided Wilcoxon signed-rank test for the condition
pairs (a) ADALE and REPLE , (b) ADA and REPLE , and (c) ADA and ADALE . The r
column reveals that there were fewer large and medium effects as compared to the second
study (cf. 4.3.2). This did not come as a surprise given that the baseline behavior was
expected to be perceived much more similar to the other behaviors (the previous section
provided some evidence for this expectation). Figure 5.6 combines the three plots from
Table 5.5 together in one figure. All three pairs of conditions are plotted per dimension in
order to provide a better overview of the present effects.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Warmth

Competence

Discomfort

Anthropomorphism

Animacy

Likeability

Perceived Intelligence

Perceived Safety

0

median of the difference

ADA−REPLE

ADALE −REPLE

ADA−ADALE

Figure 5.6.: The point estimate (median of the difference) between all three condition pairs is depicted
per dimension. This shows the direction of the effect. For example, ADALE − REPLE > 0 (red)
indicates that more participants rated the dimension higher in ADALE compared to REPLE. The
error bars visualize the 95 % confidence interval. If 0 is not included, then a statistically significant
effect was present (Warmth and Likeability).

All research questions relied to some extent on the results of the questionnaire dimensions.
The research questions are addressed individually for overview purposes.

RQ1 Is a reactive robot which is replaying weight updates from a previous run, (i.e. fake
adaptivity) a more challenging baseline behavior compared to the one used before in study I
and study II (cf. 3.2)? In other words, is it perceived more similar and similarly animated?

The results presented in subsection 5.3.1 showed that participants perceived the current
baseline behavior as much more similar compared to study II. The results for the dimension
Animacy answered the second part of the question. Figure 5.6 shows that, in contrast to
study II, there was no statistically significant effect for Animacy. The participants did not
seem to perceive one robot as being more animated than the other. As a reminder, in
study II the directly controlled, intrinsically motivated robot (ADA) was perceived (with
statistical significance) as more animated compared to the balanced, controlled and reactive
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baseline behavior (REAb). The result was unexpected and one assumption was that the
high perceived Animacy might have stemmed from the use of two different motion controls.
This also raised the question of whether the two different motion controls could have had
an effect on the likewise promising results on the warmth dimension. This motivated the
design of a new baseline behavior, which used the same motion control as the intrinsically
motivated robot. The results of this study showed that the new baseline behavior was
perceived similarly animated compared to the intrinsically motivated robots. Together with
the observed difference by the participants (5.3.1), the results answered RQ1 directly: the
new baseline behavior was more challenging compared to the one used in the second study.

However, it was noticeable that if there were small effects for Animacy for any of the pairs,
the robot with the proximity sensor was perceived more animated. If both robots had the
proximity sensor (a), there was virtually no effect (estimate = 0, r = 0.01). This indicated
that the proximity sensor had some influence on the perception of Animacy, which is evidence
that any change of the robot’s morphology needs to be considered carefully (I come back to
this later).

RQ2 Does the study design allow for an unbiased perception of the robot’s Warmth, i.e. is
the robot’s Perceived Intelligence and Competence the same between each pair of conditions
(similar to RQ2 from study II)?

Figure 5.6 provides a quick answer for the dimension Competence. For all three pairs of
conditions the confidence intervals spanned a similar area of the positive and negative side.
From Table 5.5 it can be further seen that there were no effects for any of the pairs (r < 0.1).
This meant that there was no evidence that participants perceived any of the robots as
more competent than the other. The same could be observed for the dimension Perceived
Intelligence. However, Table 5.5 reveals a small effect (with no statistical significance) that
participants may have perceived ADA as more intelligent compared to the conditions with
robots that used the proximity sensor. On the other hand, there was virtually no effect
when comparing ADALE and REPLE (a) on this dimension (estimate = 0, r = 0.02).
Interestingly, this was similar to the above paragraph about the dimension Animacy, but
with a changed direction.

However, altogether the results showed that the participants did not perceive any of the
robots as more intelligent or competent than the other, which answered RQ2: the study
design made the robots appear similarly competent and intelligent, and it allowed for an
unbiased perception of the dimension Warmth.

RQ3 Is an intrinsically motivated robot perceived higher in Warmth than a reactive and
seemingly adaptive baseline behavior (similar to RQ1 from study II)?

There were two conditions with an intrinsically motivated robot. In one of the conditions,
the robot had proximity information of the human participant (ADALE) and in the other it

134



5.3. Results

did not (ADA). When comparing the robot in the ADALE condition to the reactive, fakely
adaptive baseline behavior (which also had proximity information of the human participant),
there was a statistically significant, medium effect that the intrinsically motivated robot was
perceived as more warm (estimate = 0.417, r = 0.328, p = 0.049). What was quite striking
was that this effect was by far the largest of any of the dimensions reported in Table 5.6a.
However, comparing ADA to REPLE did not provide a similarly convincing result. There
was only a small and non-statistically significant effect for the robot in the ADA condition
having been perceived as more warm (estimate = 0.167, r = 0.144, p = 0.389).

The results showed that the intrinsically motivated robot was perceived as statistically
significantly more warm compared to the more challenging baseline behavior, given that the
morphology of the robots was similar (i.e. both robots used the proximity sensor). When
the intrinsically motivated robot was not able to sense the human proximity, there was only
a small effect that this robot was perceived as more warm.

RQ4 Is a robot perceived as more warm because of being intrinsically motivated, or because
its capacity to directly respond to human interaction (with the help of a proximity sensor)?

The results presented earlier indicated that the robot’s capability to perceive the partici-
pant’s proximity had small effects on its Perceived Intelligence and Animacy: the robot with
proximity information was perceived as less intelligent, but more animated. Both effects were
small and not statistically significant, but interestingly, they both seemed dependent on the
proximity sensor.

This could not be confirmed for the dimension Warmth. Instead, both intrinsically mo-
tivated robots (either with or without the proximity sensor) were perceived as more warm.
However, the proximity information seemed to play some role here too. Firstly, the effect
for Warmth in favor of the intrinsically motivated robot was larger (and statistically signifi-
cant) if the proximity information was present. Secondly, there was a small, non-statistically
significant effect that ADALE was perceived as more warm than ADA.

These observations allowed to answer RQ4. They showed that even such a small embod-
iment change like adding one additional sensor to a robot had an effect. Here, the sensor
capability of a robot that could derive information on whether a human was approaching or
not was affecting participants’ perception. However, independently of the proximity sensor,
both intrinsically motivated robots were perceived as more warm when compared to the
baseline. This is evidence that the major drive of the Warmth perception is grounded in the
robot being intrinsically motivated and not in using a proximity sensor.

5.3.3. Preferences

This section presents the results of the participants’ responses to their preferred condition.
The data was collected with a Likert-type question at the end of all three conditions. The
participants were asked which interaction they would choose if they were to interact with the
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robot again. They could either answer with one specific interaction or they could say that
they had no preference (cf. 5.2.3).

The responses were meant to address two research questions: firstly, it should provide
further evidence that the baseline behavior was very similar to the behavior of the intrinsically
motivated robots (RQ1). Secondly, it allowed investigating whether a high perception of
Warmth was an indicator for people’s preference (RQ5).

Table 5.7.: Preferred condition.

ADA ADALE REPLE No preference

11 13 7 5

Table 5.7 shows the response frequencies from all 36 participants. It can be seen that
the majority of participants (31) preferred one specific condition. Seven participants even
preferred to interact again with the baseline behavior10.

At first glance, it seemed that participants preferred interacting with either of the intrinsi-
cally motivated robots in either the ADA or the ADALE condition. This would be in itself a
very supporting result for the main research question of this thesis. A very popular quantita-
tive test to analyze categorical data for their goodness of fit is the Chi-squared test. It tests
the null hypothesis that there is no difference between the observed frequencies (Table 5.7)
and the expected ones. The expected frequencies here were that all conditions were pre-
ferred with the same proportion. This way the test helped to find out whether participants
answered randomly or did not have a preferred condition.

An issue here was the possibility to answer “no preference”. This response could mean
that the participant was indecisive, i.e., they had more than one preference. It could also
mean that they did not wish to interact with any of the robots again. The responses were
therefore ambivalent. However, the decision to include that choice of response was to give
indecisive participants an option to respond rather than choosing a distinctive interaction,
which in turn would have blurred the results. Participants who were indecisive towards one
interaction were left out.

The Chi-squared test results (χ2 = 1.81, df = 2, p = 0.41) showed that there was no
evidence that the observed and expected frequencies differed, or in other words, the response
frequencies from Table 5.7 could well have stemmed from a random distribution, or from a
distribution where the participants simply preferred any of the conditions equally.

However, the results supported the findings for RQ1 from earlier, namely that the baseline
behavior was similarly perceived as the intrinsically motivated robots. The very fact that
participants did actually prefer the baseline further confirmed these findings. In addition,
the results also confirmed the previously presented results that the proximity sensor did not

10The question directly asked participants for their preference, which may have caused them to want to
answer for a specific condition in order to please the experimenter. This limitation is discussed later.
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play a significant role in shaping participants’ preference (RQ4).
It needs to be noted that the test results had to be considered with care, as Chi-squared

test results are dependent on the number of participants. For example, if 3.4 times more
participants would answer in the same proportions as in Table 5.7, the above test would
have yielded statistically significant results. This limitation was known prior to conducting
the study. However, a sample size of an estimated 80 to 100 participants was not feasible.
Therefore, by design, the results mentioned so far only provided additional support for the
results of the aforementioned subsections.

The remaining question now was whether the preferred conditions of the participants were
likewise the conditions where they responded the highest to the dimension Warmth. If such
a dependency existed, this would directly answer RQ5: Is the behavior a participant perceives
highest in Warmth the same behavior they prefer to interact with again?

Model participant’s preference

A few new variables are introduced to better address the problem. Let C be the set of all
three conditions and D be the set of all scale dimensions. Then there are two variables
dependent on the participant’s responses:

o ∈ C, the observed preferred condition, self-reported by participant

rd,c ∈ R, the scale response to a dimension d ∈ D in condition c ∈ C

The observed preferred condition o is the participant’s answer to the question about their
preference. The scale response r is the value computed from the questionnaire responses.

Now the question is how to understand whether the (observed) preferred condition o is
dependent on the scale responses r? This needs some motivation. The analyses of the main
effects of the scale dimensions have been conducted with a paired test: the Wilcoxon signed-
rank test. This means, the change of participants’ answers between conditions is analyzed,
rather than comparing all answers of one condition to another one. The main reason for
choosing this test was rooted in the research questions and the corresponding study design.
The participants were not given any context but the task to explore whether the robots in
the conditions were different. This was done to not bias participants’ expectations. However,
their responses could therefore have been very different, depending on their assumptions of
the robot’s capabilities. For example, a person who expected the robot to behave and speak
like the Star Wars character might have been disappointed by the robot’s actual behavior
and had mainly responded on the lower end of the scale. In contrast, a person with fewer
expectations might have been excited about the robot’s behavior and always answered on
the opposite side. Averaging all their answers to one condition and comparing them to
another would be less conclusive than comparing whether participants usually rated the one
condition higher than the other. This was exactly why the use of paired tests was chosen for
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analyzing the main effects. For the same argument, investigating whether o is dependent on
the response value r might not yield much information, as it is unlikely that the participant’s
response values can be compared.

Therefore, to understand whether the observed preferred condition o depends on the par-
ticipant’s response r, an auxiliary variable is introduced: the expected preferred condition
e. This variable categorizes the responses r of the participants and computes a preferred
condition out of their responses. A simple way is to use the maximum response value to
retrieve an expected preferred condition.

More formally, let d̂ ∈ D be the dependent scale dimension and let Rd̂ be a sequence of
all three scale responses to dimension d̂, constructed as:

Rd̂ = {rd̂,ADA, rd̂,ADALE
, rd̂,REPLE

}.

Then, the expected preferred condition e computes with:

ed̂ = c, if rc,d̂ = max
c

{Rd̂} and rc,d̂ 6= rc,d∀d ∈ D \ d̂ (5.1)

Intuitively, the expected preferred condition is the condition that returns the highest par-
ticipant’s scale response value for a specific dimension. An example: let d̂ = Warmth be
the dimension that is used as a discriminator to predict the participant’s preference. The
responses of one participant to the three conditions are given as Rd̂ = {3, 4.3, 2}. Since
max{Rd̂} = 4.3, the expected preferred condition eWarmth is the condition ADALE . In
other words, the participant is expected to prefer the intrinsically motivated robot with the
proximity sensor.

Equation 5.1 allowed for computing the expected preferred condition based on all given
dimensions. This way the expected preferred condition e could be analyzed for its dependency
on the observed preferred condition o.

Qualitative analysis

Figure 5.7 gives a first impression of the data frequencies. The balloon plots are a visualiza-
tion of a contingency table for each of the dimensions d̂ of the questionnaires. The rows are
the levels of the observed preferred condition o, the columns are the levels of the expected
preferred condition e. A perfect association of e and o would result in high frequencies on
the main diagonal and zeros elsewhere.

There were a few qualitative observations possible when studying Figure 5.7. It can be seen
that for the dimensions Warmth and Competence the frequencies along the main diagonal are
high. As presented earlier in Table 5.5, Warmth showed medium and large main effects for
the ADALE condition. Figure 5.7 confirms that participants preferred the ADALE condition,
and, even more important, this is associated with the expected preferred condition, which
was computed from their responses to the dimension. On the other hand, there were no
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Figure 5.7.: The contingency tables of each dimension d for the observed preferred condition o (rows)
and the expected preferred condition ed (columns) as balloon plots. The larger the size and the lighter
the blue, the higher the cell frequency.

main effects for the Competence dimension presented (cf. Table 5.5), which is reflected in
the figure, as there was no unique high frequency as for the Warmth dimension. However, it
can be seen that there is an almost equal distribution of frequencies along the main diagonal.
This means that despite the absence of a main effect, participants’ preferences seemed to
be associated with their responses to the Competence dimension. This means that the
highest responses to the dimensions Warmth and Competence from the RoSAS reflects the
participants’ preferences. The observations for the other dimensions were not as promising.
In particular, Likeability did not show such an association.

Quantitative analysis

This subsection presents quantitative analyses. It first presents the results of an analysis
of whether there was any dependency between the expected condition e and the observed
condition o. It then presents the magnitude of effect, in this case, how consistent was
the expected preference e at predicting the observed condition o. The final test was a
correspondent analysis that showed how the levels of e and o were associated with each other.
For example, were participants who preferred the intrinsically motivated robot o = ADA

likewise responding highest to Warmth in the same condition eWarmth = ADA?

Dependency A possible quantitative tool to investigate whether both categorical variables
o and e were dependent is the Chi-squared test, which was described at the beginning of the
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section. However, both variables e and o had three levels which resulted in a contingency
table with 4 degrees of freedom. Together with the sample size of 36 participants, the
resulting expected cell values were smaller than 5, which violates the requirements to use the
Chi-squared test. An alternative in such cases is the Fisher’s exact test11.

Table 5.8.: Fisher’s exact test for count data.

d̂ (predictor) p N
R

oS
A

S { Warmth 0.033 29
Competence 0.007 28

G
od

sp
ee

d


Anthropomorphism 0.803 25
Animacy 0.593 26
Likeability 0.118 26
Perceived Intelligence 0.487 27
Perceived Safety 0.635 13

Table 5.8 shows the resulting p values of the exact test and the number of considered
participants N . Participants were not considered when they either did not have a preference
or when ed was not defined (i.e. there was more than one condition with a maximum scale
response value). The Fisher’s exact test tests the null hypothesis that both variables were
independent. Table 5.8 shows that the null could be rejected for Warmth and Competence,
i.e. the participants’ responses to these two dimensions were dependent on the observed
preferred condition reported directly by the participant, and vice versa.

These statistically significant results showed that participants’ responses to Warmth and
Competence were associated with their reported preferred conditions. What they did not
say, however, was how meaningful the association was. Therefore, a measure of the strength
of that association (i.e. effect size) was needed, which is presented in the next paragraph.

Effect Size The uncertainty coefficient U(o | e) quantifies the magnitude of above effects12.
It describes how consistent the expected preference e can predict the observed condition o.
The uncertainty coefficient U measures the strength between categorical13 association using
the conditional entropy, i.e. the proportion of uncertainty (Nehmzow 2006).
U is commonly used to evaluate the effectiveness of cluster algorithms. An interesting

property is that it does not take into account any correspondence assumptions, so it did not
matter how the levels of e and o were hypothesized to be related. This is a joint property
with the Fisher’s exact test (or Chi-squared test), which makes U a good choice for an effect
size. Note that U is independent of the number of levels of the variables (i.e., the size of the
contingency table) or the sample size of the study. This allows comparing the strength of the
11The Fisher’s exact test computed with the implementation fisher.test of base R’s built-in stats package.
12Sometimes, it is also ambiguously referred to as Theil’s U . Although Theil (1970) derived a considerable

part of the uncertainty coefficient, the term Theil’s U usually refers to the U statistics used in finance.
13U can be extended to continuous variables.
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association between this and future studies. U is a directed effect. The interesting question
for this study was: how much does the highest scale response to a dimension (ed) tell us
about the observed preferences (o), i.e., the participants’ self-reported preferences. More
formally: what fraction of the remaining uncertainty of o can be predicted given e: U(o|e)?

Table 5.9.: Uncertainty coefficient U .

d̂ (predictor) N U(o | e)
R

oS
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S { Warmth 29 0.178
Competence 28 0.135

G
od

sp
ee

d


Anthropomorphism 25 0.036
Animacy 26 0.054
Likeability 26 0.063
Perceived Intelligence 27 0.049
Perceived Safety 13 0.020

The results14 in Table 5.9 show that U was by far the highest for the dimensions Warmth
and Competence – indicating that by itself, those two dimensions were by far the best
predictors of self-reported human preference for this study.

A value of 1 would indicate that a given dimension reduces all remaining uncertainty in
the prediction. The value of U always lies between 0 and 1, which allowed comparing how
much each dimension predicts the self-reported preference o. It can be seen that Warmth and
Competence provided several times as much uncertainty reduction as the other dimensions.
Note that this was just the reduction of uncertainty by knowing which conditions had the
maximal response for one singular dimension. If Equation 5.1 would combine dimensions, or
consider the scalar values, even better predictive power could potentially be achieved.

Correspondence analysis The results of the Fisher’s exact test revealed that there was a
statistically significant association between e and o for the dimensions Warmth and Com-
petence. Then the uncertainty coefficient U provided a measure of the strength of that
association. It was then important to understand the correspondence between the levels of
e and o to answer RQ5: do participants prefer the condition with the robot they perceive
highest in Warmth?

Observing the distribution in Figure 5.7 already indicated that the expected conditions e
correspond mostly with the observed conditions o. This could be seen by the main diagonal
which has higher frequencies than the other cells. For example, if the use of Competence
results in the expected condition REPLE , then it is very likely that Competence has a high
response for that condition too. For Warmth on the other hand, if the expected condition is
ADALE then it corresponds to the same condition as the observed condition. However, for
14U was computed with UncertCoef(table(o,e), direction=c("column"), p.zero.correction=T) from

the R package DescTools.
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the other conditions this is less obvious.
Correspondence analysis (CA) is a candidate to understand whether the levels (i.e. con-

ditions) of two categorical variables, such as e and o, correspond to each other. It is a
descriptive statistic and an extension of the Principal Component Analysis (PCA) to cate-
gorical variables.15 In short, the analysis breaks down a higher dimensional table into fewer
dimensions, resulting in a plot. The plot then allows analyzing which of the levels of e and
o correspond to each other.

Figure 5.8 shows the plotted results of CA for the scale dimensions (a) Warmth and (b)
Competence. The first important information is that two dimensions suffice to explain the
correspondence between levels.

A strong correspondence between levels of o (blue) and e (red) is indicated by a small angle
between the arrows pointing from the coordinate origin to these levels. An angle larger than
90° indicates no association. The distance from the coordinate origin indicates the strength.

(a) Warmth
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Figure 5.8.: The results of the correspondence analysis (CA) for the levels of o (blue) and the levels of
e (red) for the dimensions (a) Warmth and (b) Competence. For example, for the dimension Warmth
the condition ADALE corresponds between e and o.

Figure 5.8a shows that the levels which corresponded most to each other were the same
conditions. For example, the level ADA of o corresponded most to level ADA of e. In other
words, participants who preferred ADA responded highest to Warmth in ADA. This was true
for all conditions, but the strongest correspondence was revealed when observing ADALE .
The same was true for the scale dimension Competence (see Figure 5.8b). The levels of e
and o corresponded strongest to each other when they represented the same condition. This
correspondence was even stronger for the scale dimension Competence, with the condition
REPLE being most strongly correspondent.

These results underlined the qualitative observations discussed earlier in this section. The

15Computed with ca(table(o,e), arrows=c(T,T)) with the R package ca.
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correspondence was strongest for REPLE in Competence and ADALE in Warmth. The latter
has to be taken with care. It has been discussed earlier that Warmth was perceived highest
in the ADALE condition, with statistical significance. This also explains why there are
more data points for that condition, which made the correspondence for the other conditions
weaker.

Summary The results showed that the expected preferred condition e and the observed
preferred condition o were statistically significantly dependent for the dimensions Warmth
and Competence, but not for any of the other dimensions. Furthermore, the results showed
that the levels of each of the variables (the conditions) corresponded to each other.

What stood out was that these findings of statistically significant dependency and corre-
spondence were prevalent despite the generally small main effects discussed earlier.

An interesting side observation was that there were no such results for any of the other
dimensions, in particular not for the dimension Likeability. Given the concept that the
dimension Likeability represents, it is very interesting that the dimension failed to show
dependency for e and o. Contrary to Competence and Warmth, Likeability did show the
highest main effect of all dimensions.

The interesting point about the results here is that the two central dimensions of social
attitude formation – Warmth and Competence – were the best candidates to understand the
preference of participants. This was because using them to compute the expected preferred
condition, which was that there was statistical significance for the dependency test between
the observed o and the expected preferences e, showed without a doubt the highest effect for
predicting the participant’s preference (U). Additionally, it was because the levels of o and
e corresponded the most if they represented the same condition.

This directly answered RQ5: yes, the participants’ reported preference corresponds to the
condition with their highest response to the dimension Warmth.

5.4. Discussion

This study addressed the suggestions and ideas drawn from the second study: (i) to design a
more similar baseline behavior to understand whether the effect for Warmth persists, despite
similar perception of the robot’s behavior and Animacy, (ii) to use a proximity sensor to
investigate whether a robot, which is able to directly respond to the input of the participants,
has a stronger effect on the dimension Warmth compared to a robot behavior based on IMs
and, (iii) to analyze the relationship between the participant’s reported preferred condition
and the condition with their highest response to Warmth, in order to better understand
whether the knowledge about Warmth transfers to HRI.

As a reminder, the second study found that an intrinsically motivated robot was perceived
significantly more warm compared to a reactive baseline behavior. This was a very promising
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result but it needed further investigation to determine the cause of the effect. This was due
to the unexpected result that the participants perceived the intrinsically motivated robot
as more animated (with statistical significance), and participants also reported that the
intrinsically motivated robot and the baseline were mostly very different. The latter was not
of too much concern, since the overall task of the participant was to judge whether the two
robots were different. This might have biased their judgment of differences or made them
more alert to small differences. However, the unexpected, high difference in the perception
of Animacy could not be explained. Other studies found that robots, or even objects, are
perceived high in Animacy if they are moving and, at the same time, the influences to their
locomotion changes are not visible to the observer (Tremoulet and Feldman 2000). This
knowledge and the different perception of Animacy between the two behaviors was a strong
indicator that the robot behaviors were possibly different.

This conclusion directed the focus to the used baseline behavior and possibilities to en-
hance it. As a reminder, in the second study the baseline behavior was based on pre-adapted
weights of a previous trial, which remained constant during the interaction with the partici-
pants. Sensory input was, depending on the constant parameters, transformed into heading
and speed variables, which were then applied to the built-in balanced controller of Sphero.
The balanced controller kept the robot upright, while simultaneously trying to achieve the
requested heading and speed. In contrast, the intrinsically motivated robot directly changed
its servos’ speed based on the results of TiPI maximization, which also resulted in immediate
responses to perturbations.

This resulted in the concern that (i) the use of different motion controls and (ii) the
capability of reacting directly towards perturbations was the major influence on the Warmth
perception, instead of the IMs of the robot.

To address these two concerns this study was adapted twofold. Firstly, the baseline be-
havior used the same direct motion control and was fakely adaptive to address point (i).
Secondly, a proximity sensor was introduced, so that one robot was able to respond directly
toward human perturbations compared to another one, which aimed to address point (ii).

The baseline behavior of this study was changed to allow it to use direct motion control
and to be fakely adaptive. Switching to the direct motion control was a matter of not
using the balancing controller and directly applying the output of TiPI maximization to
the servos (cf. section 2.6). This however made the use of fake adaptivity necessary. If
the parameters of the robot were kept constant (like in the previous study), this would
have caused a very repetitive behavior (mostly spinning), because there was no interference
of a balancing controller. To enable fake adaptivity, the present baseline used parameter
adaptations which were stored during a previous interaction with an intrinsically motivated
robot. When the baseline behavior was presented to a participant in this study, the robot
replayed these updates as they occurred previously. This made the behavior of the robot more
variable, as the parameters changed, but the robot did not actually adapt to its experiences
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when interacting with the human. The results of this study showed that these changes
successfully resulted in a baseline behavior that participants perceived similarly animated to
the intrinsically motivated robot (RQ1). To contextualize the results the reader can get an
impression by watching the supplementary video material (see Scheunemann 2017e). It can
be seen that the behavior generation across conditions was similar in many features, which
led to robot behaviors that were hard to tell apart – even for the experimenter.

The other major change compared to the previous study was the introduction of a prox-
imity sensor based on BLE, which allowed the robot to sense the participant’s proximity.
The sensor enabled a robot (i) to react based on that very proximity and (ii) to distinguish
between human interactions and perturbations induced by the environment. Both these
capabilities again enabled the robot to react quicker and directly to human perturbations,
which was similar to the differences in the robot motion controls and their reactivity of study
II. This study had two conditions with intrinsically motivated robots, which were exactly the
same, but in one condition the robot used the proximity sensor and in the other it was not
using it. This allowed the analysis of how much the robot’s capability to react differently to
participants’ and environmental perturbations influenced the perception of Warmth. Both
these conditions were compared to the third condition: the previously described baseline
robot, which also used proximity information.

The results of this study provided evidence that a robot equipped with a sensor that allows
unambiguous behavior depending on the human proximity appeared slightly more animated,
but less intelligent. Furthermore, if two intrinsically motivated robots were compared (one
with and the other without such a sensor), humans seemed to favor the robot which was
closely entrained with the human by sensing their proximity. This shows that the choice
of the embodiment of a robot needs careful consideration, as even a single sensor (like the
one here) can have an effect. However, although the sensor had some effect, the results also
showed that the robot’s IM is the strongest influence on the perception of Warmth (RQ4).

From what has been discussed so far – a high similarity of the robot behaviors – it may
seem unlikely that the initial hypothesis that an intrinsically motivated robot is perceived
as more warm than the fakely adaptive baseline behavior could hold true. And yet, the
experience directed adaptation played an important role, since using only fake adaptation
led to a statistically significant drop in the perception of Warmth. The results of this study
revealed that despite the similarity between the behaviors, an intrinsically motivated robot
that is closely entrained with a human elicits a feeling of Warmth in an embodied social
cognition scenario (RQ3).

This also addressed the two major concerns outlined in the second study: could the largest
impact on the positive effect for Warmth stem from the robot’s motion control or its capability
to react to human perturbations directly? This study alleviated these concerns and showed
that the main impact on Warmth is dedicated to the robot’s behavior resulting from its IMs.

Up to this point of the thesis, the studies concentrated on the effect on the dimension
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Warmth, because in the disciplines around social cognition it is considered central for under-
standing social attitude formation (Fiske et al. 2007; Abele, Hauke, et al. 2016). Moreover,
it has been found that humans experience more positive social interactions when they are
perceived high in Warmth (cf. section 2.4). Therefore, it was previously argued in this thesis
that if this knowledge transfers to interaction between humans and robots, a robot that is
perceived as more warm could likewise sustain HRI.

Throughout this thesis the RoSAS was used: a questionnaire that implements that very
concept of Warmth in the domain of HRI. Carpinella et al. (2017) evaluated the scale,
but based solely on standstill images, or in other words, only based on visual one-shot
impressions. This is certainly an important evaluation, especially given that our impression
of Warmth unfolds within milliseconds (Fiske et al. 2007). However, it needs further evidence
whether the knowledge about the dimension Warmth from social cognition (i.e., the science
for understanding human-human interaction) transfers to physical interaction of HRI. Only
then is Warmth a good candidate for measuring human perception of physical, interactive
robots.

This study investigated the relation between participant’s reported preferred condition and
their responses to the Warmth dimension. The idea was that if Warmth is indeed a good
candidate to predict positive interactions, participants would most likely prefer the condition
where the robot scored highest in Warmth. The results of this study showed exactly that:
participants prefer to interact with the robot they perceive most warm (RQ5).

This of course can only be considered a first step toward linking the concept of Warmth to
HRI. And yet, the findings successfully underpinned the (so far) working hypothesis which
in turn gives further weight and meaning to previous findings that an intrinsically motivated
robot is perceived as more warm.

5.5. Limitations and future work

This section discusses the study’s limitations and links them to potential future studies. Most
studies of this thesis were concerned with incrementally developing a study design to best
understand the effects of IM in robots on the dimension Warmth. Naturally, most limitations
specific to this study design have been addressed before.

A new limitation, however, resulted from observing the analysis for interaction effects.
There was only evidence for interaction effects for the dimension Discomfort in this study.
However, the analysis showed an overall high likability for possible interaction effects com-
pared to all previous studies. This indicates that the last study could reveal interaction
effects if a larger sample size would be chosen. Post-hoc tests could further analyze the data
of all dimensions with an eye on understanding how much the ordering of conditions played
a role and provide indications for similar future studies with more participants. Other than
that, the major part of this section is dedicated to the novel approach to link social cognition
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to HRI.

As it has been mentioned earlier, the provided evidence for the dependency on the reported
participants’ preference and their responses to the dimension Warmth can only be considered
a first step to understand the ties of the concept of Warmth between social cognition and
HRI.

This study design could benefit from a set of changes to provide a deeper understanding of
this connection. First and foremost, the assessment of the participant’s preferred condition
could be achieved in a more fine-grained fashion. In this study, participants had to choose
between distinctive conditions or choose that they do not have any preference. In future
studies, their responses could instead be collected on a scale letting them decide how much
they preferred each condition or, alternatively, participants could answer after the second
(and then following) interaction how much they preferred the last interaction to previous ones.
This would allow participants to prefer more than one condition and it would broaden the
options for analyzing the results. For example, it could be investigated whether participants
usually prefer the first interaction more than the second. It would further enable tests which
analyze the dependency between the amount of reported preference and the participants’
response value to Warmth.

Another possible change would be to design an interview to assess the participants’ pref-
erence. However, letting participants directly report the variable of interest is prone to
participant biases. One popular example was described by Orne (1962) which he coined de-
mand characteristics. It describes that participants may try to be particularly good in order
to satisfy the perceived needs of the researcher. This bias was addressed by keeping the cur-
rent robot condition hidden from the experimenter. However, since the question asked for a
preference and the participants perceived the robots differently, this bias could have caused
the participants to choose one interaction as their preference, rather than reporting to have
no preference. Therefore, it may be best to avoid or to accompany the direct reporting. For
example, instead of evaluating their preference indirectly, one could measure the participants’
engagement. The search for engagement measures is a challenging topic in itself and is an
active research field in many disciplines. Going along this route was not applicable for this
thesis, given the many novel areas this thesis already explored. However, a first step could
be to analyze video data and use either the time of or the number of interactions by the
participants as a criterion of their engagement. This, however, still needs detailed research,
as it is unclear what kind of engagement can be expected when participants perceive a robot
as more warm. It is not necessarily clear that a higher amount of interactions is something
positive. For example, participants could increase the interactions because they desperately
want the robot to change its behavior or, it’s the opposite and they really want to interact
with it because they perceive it as more warm.

The most promising way to explore the perception of Warmth and participant’s preference
indirectly could be to let participants quit the interaction by themselves. The length of time
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they actually interacted with a robot before they quit the experiment can be a measure of
their preference. While this has been strongly considered, this path has not been conducted
because of, again, the novelty of the research topic. With the knowledge after the third study,
focusing on Warmth seems reasonable, but that was not clear by the start of designing the
study. Therefore, keeping the condition times comparable to allow for all dimensions to be
explored equally seemed crucial. Looking back, however, Fiske et al. (2007) argue that the
perception of Warmth can unfold quite quickly. Future studies which focus on the Warmth
dimension could therefore benefit from measuring the voluntary interaction time.

Another limitation is that the current evaluation is based on a study where nearly all main
effects on the assessed dimensions showed only a small effect or no effect at all. Of course,
this makes it even more interesting that Warmth and Competence showed a statistically
significant dependency on the participant’s reported preference, but it is likely that the
indirect responses to the scale dimensions Warmth and Competence differed too little to see
a larger, more convincing effect size on predicting people’s preference. Future studies could
tackle this in two ways: it could be beneficial to take the difference between the highest and
the second highest response to a dimension into account when analyzing for dependency,
giving more weight to the participant’s responses where these values differ the most. On the
other hand, it could be beneficial to repeat the collection of participant’s preferences with
an experiment that shows larger effects from the start. A good candidate would be to repeat
study II together with the use of the preference measure used in the current study (or a
suggested extension) to underline the current results or gain further insights.

An additional observation is that the results also showed that the participant’s preference
was not just dependent on their responses to Warmth, but also to Competence. What is
very interesting about this is the different main effects of Warmth and Competence. While
Warmth showed medium-sized, partially statistically significant main effects, the dimension
Competence, in contrast, did not show any effect at all. This was of course intended by
the design and therefore expected. However, the results suggested that the participant
responses to the Competence dimension also determined their preference. This means that
Competence may be a more sensitive discriminator for the participant’s preference. Given
that Competence ratings take time to unfold (ibid.), this needs special consideration for
experiments that run for longer.

The results showed that both central dimensions Warmth and Competence influence hu-
man preference to interact with a robot. Future studies can further investigate the interplay
between the two central dimensions. For example, it would be helpful to understand whether
a specific combination of perceived Warmth and Competence forms the same attitudes in an
interacting human participant as it would if the person interacts with another human. The
more knowledge that is gained about the similarity in human attitude formation between
human-human interaction and HRI, the more the knowledge from one discipline can support
research in the other discipline. Untangling this social attitude formation and behaviors for
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the social interaction between humans and robots of course needs further work, but this study
provides evidence that both central dimensions play a role, and it is likely that they do so
in relation to each other. This is particularly important for studies with more task-focused,
intrinsically motivated robots with behavior beyond the playful, exploratory behavior of this
study.

The study showed that the analysis of the relationship between physical HRI and the
dimensions Warmth and Competence can accompany future HRI studies, because assessing
human participant’s preference does not add too much extra time. This also holds true for
the evaluation of the data and their suggested changes above. Future studies could collect
this data for a variety of contexts and robot morphologies, which then can help to foster
the understanding of the concept of Warmth for physical interactions between humans and
robots.

There are, of course, an ample amount of further research opportunities, with some out-
lining the possibilities in the far distance. For example, future studies could investigate
the effects of this study for longer interactions and for robots with different morphologies.
Most importantly, the formalism as well as the study design has to be advanced so that the
resulting behavior goes beyond the playful, exploratory behavior presented in this study.

5.6. Conclusion

This study was the final study of a series investigating the effect of a fully autonomous,
intrinsically motivated robot on human perception. This study introduced a proximity sensor
and a new motion control for the baseline behavior, to address the two major concerns
extracted from the second study: could the large impact on the positive effect for Warmth
stem from the robot’s motion control, or could it stem from its capability to react to human
perturbations directly? The results of this study alleviated these concerns and showed that
the main impact on Warmth can be dedicated to the robot’s behavior resulting from its IMs.
This not only confirms the findings of the previous studies, but it also gives more weight
to the effects by using intrinsically motivated autonomy in robots. This study showed that
a fully autonomous, intrinsically motivated robot that is closely entrained with a human
can elicit a feeling of Warmth in an embodied social cognition scenario. In particular, the
experience directed adaptation by the robot’s IM plays an important role, because it led
to a statistically significant drop in the perception of Warmth when a robot was only not
intrinsically motivated.

The dimension Warmth was the measure of choice because it is known that human’s per-
ceived as more warm experience more positive social interactions with their peers. This
study addressed the question of whether that characteristic carries over to physical interac-
tions between humans and robots. It provided evidence that humans who prefer a specific
robot behavior were likely to perceive that robot behavior highest in Warmth. This is the
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first, but a very important step, to foster the understanding of how to link human-human
interaction to physical HRI. It showed that Warmth is a potential candidate to evaluate the
robot behaviors to indicate whether they sustain HRI. At the same time, this chapter showed
that intrinsically motivated autonomy plays an important role in developing sustained HRI.

150



Chapter 6.

Conclusion

The thesis was concerned with two research questions: how to assess a human’s preference of
robotic behavior (RQ1), and whether human participants prefer to interact with an intrinsi-
cally motivated robot and, consequently, whether intrinsically motivated autonomy in robots
can sustain human-robot interaction (HRI) (RQ2). The questions sparked two intermediate
research objectives, which were needed in order to answer them: what is a good computa-
tional approach to enable intrinsic motivations (IMs) in robots (O1), and how to design a
study to measure this (O2)?

This chapter first summarizes the overall thesis, focusing on the separate chapters and
their relevant contributions to the research questions and objectives (6.1). It then takes
a closer look at the answers to the two research questions (6.2). And finally, it lists the
thesis’ contributions to knowledge (6.3) and provides limitations and related ideas for future
work (6.4).

6.1. Summary of research

Chapter 2. The focus of the background and development chapter was on what exactly
constitutes as IM, and how it could be applied to the robot. The chosen robot platform to
investigate this was a Sphero in its BB8 version and was described in 2.5. A limited, non-
humanoid robot was chosen in order to limit the participants’ expectations of the robot’s
capabilities. A computational model of IM needs to fulfill two main criteria in order to be
robustly applicable to a robot platform in a real-world HRI scenario: (i) it needs to cover
an infinite number of states, i.e., it needs to be able to work on a large range of continuous
sensor input and (ii) it needs to be computable.

The chapter proposed to maximize the time-local predictive information (TiPI) as a com-
putational model for IM. Predictive information (PI) quantifies how much of the future states
are predictable based on past observations. To maximize this quantity the robot has to gen-
erate a rich sensory input, while at the same time keeping itself in a somewhat predictable
state. The chapter derived the formulas to compute TiPI, along with a discussion of the
needed approximations. Two approximations have a direct impact on designing this exper-
iment: (i) prediction errors need to be very small and Gaussian and (ii) the noise must be
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independent of controller parameters. The first point (i) determined the choice of sensory
input. Most notably, the computational model needed sensor input which underlies a Gaus-
sian error, which essentially restricted the input to sensors that do not have sudden drops,
caused by, e.g., incontinuities. A sensible choice, for example, is proprioceptive sensors, such
as speed or acceleration sensors. The second point (ii) made it necessary that the noise of
the sensor input is independent of the control parameters. Section 2.6 showed that the mea-
sured servo speed is not solely dependent on the control for that servo. Any error from using
this proprioceptive sensor as an input was therefore dependent on the controller parameters,
which violated the assumption. The chapter presented a simple motion model to break this
dependency and showed that the use of this model enabled the generation of rich behavior.

The chapter further presented a sensor system which uses the received signal strength of
Bluetooth Low Energy (BLE) to derive proximity information between the robot and the
human, a sensor that was then used in the final study presented in chapter 5. The sensor
system is a contribution of this thesis: it enables a robot to distinguish between humans in its
vicinity and to recognize touch gestures. The main contribution of the chapter, however, is
the overview of IM and that it addresses the first research objective O1: TiPI maximization
is a possible computational model for IM, which can be applied to a real, minimal robot in
an HRI scenario.

Chapter 3. This chapter presented the first of three interaction studies. The within-subjects
study (N = 16) compared an intrinsically motivated robot to a reactive baseline behavior.
The systematic development of a baseline behavior is a contribution of this chapter. Before
the study started, an intrinsically motivated robot was placed in the same study environment
and adapted its parameters. The adaptation was then stopped and the robot used constant,
but adapted parameters to serve as a baseline for the study. Both robots were reactive to
the same input sensors and both used the built-in balancing controller to locomote. The
balancing controller requested heading and speed information and applied the values to the
robot in such a way that the robot was kept upright.

The chapter also presented the first approach to design a suitable study. The main
paradigm was to enforce HRI: the robot moved on a table with one edge open. The par-
ticipants’ task was to keep the robot from falling off the table. The idea was that the task
ensured the participants would interact with the robot, so they could see its capability to
adapt toward them. Additionally, the table that the robot locomotes on had different areas
with varying altitudes and frictions. This was thought to further show the strength of the
adaptive robot.

The results of the study showed that the idea of enforcing the interaction needed to be
redesigned. Participants were very alert to the robot approaching the edge. However, they
did not perceive the robot’s behavior as approaching or interaction-seeking, but instead
considered it as faulty or suicidal. Contrary to the hypothesis, the intrinsically motivated
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robot, which sought to maximize sensory input and was more adaptive to the environmental
changes, was considered the least competent. This was due to the task given to the partici-
pants’, as they implicitly assumed that the robot’s goal was to stay on the table. However,
the study also showed that the intrinsically motivated robot was perceived as more warm,
with a medium effect. Warmth, together with Competence, is a central dimension in social
cognition. Together they can be used to describe almost all social attitude formations (e.g.
Fiske et al. 2007). Warmth is primary for positive social attitude formation, meaning that
humans who are perceived as high in Warmth experience more positive social interactions
from their peers (e.g. Abele and Wojciszke 2007).

Chapter 4. This chapter presented the second study with design changes following the
discussion from the previous study. These changes were (i) concentrate on the perception of
Warmth and (ii) enable behavior generation solely based on the robot’s IMs.

Firstly, the environment was changed in order to fully focus on the perception of Warmth.
The table was now circular, had no friction or altitude variations, and was fully enclosed.
Without the open edge, a second change became necessary to motivate interaction. The
participants were now presented with a game-like task, with instructions “to find out whether
the two presented robots are different”. The game was thought to prevent the participants
from implicitly assuming a robot’s goal, which does not match the robot’s behavior. This
game design also encouraged interaction by exploiting the participant’s interest to perform
well (e.g. Orne 1962). Additional encouragement was provided by handing the participants a
wand-shaped tool. The idea was that the tool, of which its presented purpose was to interact,
would cause the participants to feel the urge to use the tool and interact with the robot.

Secondly, the intrinsically motivated robot used the motion model (cf. 2.6) to directly
change the speed of its two servos, instead of using the balancing controller as in the study
of the previous chapter. This way the robot’s behavior was only influenced by its IMs,
unconstrained from additional software. This allowed to further focus the analysis on the
perception of intrinsically motivated autonomy.

The results of the within-subjects study (N = 24) showed that both robots were perceived
as similarly competent and intelligent. This indicated that changes to the study design were
successful, and participants did not project an implicit goal onto the robot which mismatched
its behavior. This had the additional benefit that the results on the Warmth dimension were
not influenced by the perceived robot’s Competence (cf. Fiske et al. 2007). Most importantly,
results showed that the intrinsically motivated robot was perceived (statistically significantly)
more warm than the baseline behavior. However, results also showed that both behaviors
were perceived very differently and the intrinsically motivated robot was even perceived as
more animated. It is known that humans perceive robots and even objects as animated if
the cause of their movement changes are not obvious to the observer (e.g. Castro-González
et al. 2016). This raised the concern that the motion regimes of the baseline robot were too
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different (maybe even too predictable) in comparison to those of the intrinsically motivated
robot.

Chapter 5. This chapter presented the final study of the thesis, which focused on confirming
the effect of Warmth while controlling the concerns found in the previous study: was the
intrinsically motivated robot perceived statistically significantly more warm because (i) it
was more animated and had a different behavioral regime than the baseline, or because (ii)
participants could see that the robot was responding more directly to their perturbations, or
because of (iii) the exploratory, playful behavior generated by the robot’s IMs? This time, the
baseline robot in this chapter used the same direct motion model as the intrinsically motivated
robot, in order to appear similarly animated. Without the mediating balancing controller, a
robot that could directly control its servos based on constant parameters would elicit a very
monotone behavior. Therefore, this chapter suggested implementing fake adaptivity, which
means that the robot received parameter updates, but not based on TiPI maximization.
Instead, the updates were recorded during a previous run of an intrinsically motivated robot
and then replayed for the baseline. This way, the updates were not random, but also not
truly adaptive. In order to control the robot’s capability to respond directly to participants,
the study had two conditions with intrinsically motivated robots: one with a proximity
sensor, and one without a proximity sensor. The sensor enabled the robot to perceive human
proximity by using BLE signal strength between the wand-shaped tool and the robot (cf. 2.7).

The results of the within-subjects study (N = 36) showed that the new baseline behav-
ior was perceived similarly animated and, overall, that participants perceived the baseline
as much more similar to the intrinsically motivated robots. This means that the designed
baseline behavior, based on a parameter replaying controller, was a good candidate for com-
parison. Similar to the previous study, it was also perceived similarly competent compared
to the intrinsically motivated robots. Despite these similarities, the two intrinsically moti-
vated robots were both perceived as more warm. In particular, the intrinsically motivated
robot with the proximity sensor was perceived statistically significantly more warm than the
fakely adaptive baseline behavior, which also used the proximity sensor. This underlined the
evidence found in the previous study: an intrinsically motivated robot in an embodied social
cognition scenario elicits a feeling of Warmth, a dimension known to be central to human
attitude formation. The changes to the study design provided evidence that this effect was
mainly routed in the robot’s IMs, and not because of (i) the differently perceived baseline
or (ii) the robot’s capability to respond directly to human perturbations. The study also
showed that the proximity amplified the feeling of Warmth. This means that an intrinsically
motivated robot, which can adapt toward the proximity of the human it interacts with, elicits
a stronger feeling of Warmth.

Another important contribution of this chapter is its investigation into whether the knowl-
edge of social cognition transfers to HRI: do participants prefer to interact with the robot
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which they perceived highest in Warmth? This would indicate a parallel to social cognition,
where it is known that human’s who are perceived as more warm experience more positive
social interaction. The study results showed that robots perceived highest in Warmth are the
robots that human participants preferred to continue interacting with. In particular, using
Warmth as a predictor for participant’s intent for future interaction is better than using the
dimensions Animacy, Anthropomorphism, Perceived Intelligence, Perceived Safety and Like-
abilty from the Godspeed scale. This contribution is important for two reasons. Firstly, it
gives more weight to the previous study results: it provides evidence that all intrinsically mo-
tivated robots were preferred over the baseline robot. Secondly, it shows that there is a link
between human attitude formation toward peers and robots. If further evidence can confirm
these results, it would provide future research with a good measure for human preference,
by using tools established in social cognition.

6.2. Research questions revisited

With the above overview of the thesis, the two main research questions can now be revisited.

RQ1 Can dimensions of social cognition be employed to measure human partic-
ipants’ preferences of robot behavior in order to understand what may sustain
the interaction between humans and robots? Prior to conducting any studies, several
options for measuring were carefully assessed. Ideally, the sustainability of interaction could
be measured by measuring the time a participant voluntarily spends with a robot. This path,
however, has not been pursued because it was not clear whether an intrinsically motivated
robot would be perceived positively in the first place. This thesis therefore employed sec-
ondary measurements to measure sustainability ethically, i.e. to not expose participants to
a lengthy study without a solid background and educated hypothesis.

Social cognition motivated the focus on the two central dimensions: Warmth and Com-
petence. Research has argued that these dimensions can express most attitude formations
in humans toward other humans, with a high perception of Warmth being primary for a
positive attitude formation.

This thesis used the Robotic Social Attribute Scale (RoSAS), which transfers these dimen-
sions to HRI. However, the questionnaire has not been validated for an interaction scenario
with a real robot, instead its validation relied on still images. This opened the question of
whether the theory from social cognition truly carries over to physical HRI. In other words,
if we perceive a robot as high in Warmth, does this likewise mean that we prefer to interact
with it? This thesis extends the RoSAS evaluation by showing that there is a relationship
between a robot behavior scoring high in Warmth and being preferred by human participants
for future interaction. This is in line with conclusive research of social cognition: a human
perceived high in Warmth experiences more positive social interaction. This is a first step
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toward understanding whether the knowledge from social cognition transfers to HRI: there is
evidence that the central dimensions of Warmth indeed measures our affection toward robots.

This directly answered the research question: the dimension Warmth is a good candidate
to measure participants’ preference for continuing / repeating an interaction with a robot.
Therefore, it is a good indicator of sustainable HRI.

RQ2 Can an autonomously, intrinsically motivated robot, sustain the interaction
with humans? In all studies of this thesis the robots’ intrinsically motivated autonomy was
enabled by TiPI maximization. All the studies found, to a varied extent, that an intrinsically
motivated robot is perceived as more warm when compared to an autonomous, reactive
baseline robot. This effect persisted even for a baseline behavior that participants perceived
to be very similar to the intrinsically motivated robot, like the one used in chapter 5.

Combined with the results of RQ1, namely that the perception of Warmth reflects human
preference, it is strong evidence that human participants prefer a robot which is intrinsically
motivated over an autonomously, reactive robot, which determines its actions in such a way
that it generates similar behavior.

Further research is needed to understand more about the uncovered effects of IMs. First
and foremost, sustainability needs to be measured in an everyday context, over a longer
period of time, beyond inferring it from the perception of Warmth. However, the results
underlined that IMs can help to increase human interest to interact with robots. The thesis
adds the argument that this can be achieved by using a computational model of IM, which
enables the robot to create intrinsically motivated behavior itself, without the need of an
experimenter or scientist to pre-define curiosity.

The answer to this research question was that the TiPI formalism enables intrinsically
motivated autonomy in robots, which elicits a feeling of Warmth in human interaction part-
ners. Given that the knowledge of Warmth transfers from human-human interaction over to
human-robot interaction (as the answer to RQ1 suggests), this is evidence that such behavior
can sustain HRI.

6.3. Original contribution to knowledge

This thesis is, to the best of my knowledge, the first attempt to investigate the impact of
intrinsically motivated autonomy on human perception. It used a computational model to
implement intrinsically motivated autonomy into a robot. The model, which was based on
information theoretical approaches, was then used to analyze the effect of an intrinsically
motivated robot on human perception. Furthermore, the thesis links back to social cognition
and investigated whether the perceptions of humans and the attitude formation toward hu-
mans transfers to human attitude formation toward robots. Therefore, this thesis contributes
knowledge to the five disciplines: information theory (6.3.1), robotics (6.3.2), experimental
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methodology (6.3.3), and HRI (6.3.4).

6.3.1. Information theory

The main contribution to information theory is that this work shows an information-theoretically
based computational model of IM which had an impact on human perception. The thesis
used PI maximization to implement intrinsically motivated autonomy. It has been argued
that PI is “the most natural complexity measure for time series” (e.g., Bialek et al. 2001).
The behavior generated by PI maximization was then judged by observations, claiming that
it results in “playful and exploratory” behavior (Martius, Der, et al. 2013b). This and all
other computational models usually followed theoretically sound approaches, but how they
perform in a real-world setting has not yet been analyzed. This thesis therefore adds a
quantitative argument to the list. Without a doubt, humans are our best judges of how
humans perceive robotic behavior. This thesis shows that human participants perceive the
intrinsically motivated robot as more warm, which is the primary concept to understand
positive human attribute perception. This means that PI maximization, as a candidate for
a computational model of IM, creates a feeling of Warmth toward an artificial agent.

On the more practical side, issues with the original TiPI implementation by Martius, Der,
et al. (ibid.) were discovered during the process of actually implementing the computational
model. In particular, this concerned the parameter computation for more than two steps
back. These observations were addressed to the authors and are publicly accessible (see
Scheunemann 2018d). In addition, there are contributions to enable compiling the lpzrobots
simulator on current architectures (see Scheunemann 2018c), a simulator created by the
authors and used for their simulation experiments.

6.3.2. Robotics

The thesis further contributes to the field of robotics by providing guidance for how to imple-
ment PI maximization onto a robot (O1). The thesis emphasizes the approximations of TiPI
maximization, and outlines the implications for applying the formalism and its approxima-
tions to a real robot. This contributes to further research in this area, especially for research
that uses the same approach as this thesis. However, the guidance can also be used as an
orientation for related computational models of IM. In general, similar approaches follow up
on the same approximations to make the computation of the underlying information theory
concepts possible.

On the more technical side of robotics, this work contributed code enhancements to run
the Sphero robot. In fact, the off-the-shelf robot was chosen to expedite the start of research.
It turned out, however, that the code to run the robot had a variety of issues. The provided
official JavaScript framework, for example, did not parse the protocol correctly, which
yielded a stuck robot behavior that forced a re-start of the controller. Sensor values, such
as the roll angle of the robot, were faulty, along with the order of how the servo speed was
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set. These insights were forwarded to the company, mainly by using public pull requests to
the (back then) official framework repository. The four contributions made which are most
closely related to this thesis are the following. The first allowed the retrieval of quaternion
readings (see Scheunemann 2017d) and another fixed the documentation (see Scheunemann
2017b). Arguably, the most important were the two more technical contributions: one
which allowed making a connection to multiple robots simultaneously (see Scheunemann
2017c) and the other enabled parsing the robot’s protocol correctly to prevent the robot
from crashing (see Scheunemann 2017a).

When the above contributions were proposed to the official framework, it already occurred
that the framework development would not continue for long. This is one reason why the
knowledge was transferred into an own framework development based on C++. The other
reason is that the C++ language allows writing code that is closer to the hardware, which
enables controlling the robot from embedded, computationally limited systems. The C++
library is is publicly available (see Scheunemann 2017e; Scheunemann 2018b). The first
attempts of this thesis involved working with autistic children in a nursery. In this context,
the library was successfully used on a Raspberry Pi 2 during the initial play sessions with
children.

The public availability of the framework creates a simpler way of reproducing the exper-
iments. More importantly, it allows other researchers to start straight away without the
developmental issues present prior to this thesis. The robot platform eventually became dis-
continued altogether in 2018. This is a very common issue to robotic related contributions:
the developed code is bound to a specific robot platform and the contribution is therefore
only short-term. However, a technical contribution with a longer date of expiry is the derived
motion model discussed in this thesis (cf. section 2.6). More specifically, the way the motion
model was derived. The ideas can be extended to a variety of other robot platforms.

For the work on this thesis, a proximity sensor based on BLE was developed. It was
successfully applied to the wand-shaped tool in chapter 5, which allowed the robot to sense
the proximity of the human interaction partner. To the best of my knowledge, BLE has
not been used in the context of robotics as a proximity sensor. Related research also shows
that it can be used to prototype a touch sensor and that it can help to distinguish between
people (e.g. Scheunemann, Dautenhahn, Salem, et al. 2016b). The technology is relatively
cheap and easily applicable, and therefore can contribute to faster robot development and
a faster design process for robot-related experiments. Instead of developing a whole vision
pipeline in order to recognize humans, a researcher can start investigating by using the cheap
BLE technology first. The technology can also be applied to service robots already present in
human inhabitant environments. For example, one method to increase the functionality of a
service robots is to distinguish humans and recognize reoccurring visitors. Instead of relying
on images to accomplish this, which consumes modeling time and computational power, the
robot can rely on the phone signals or a visitor’s badge instead. The code for the sensor
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system is publicly available (see Scheunemann 2018e; Scheunemann 2018a).

6.3.3. Experimental methodology

This thesis presents novel developments for an experimental methodology in finding a suitable
study design to investigate the impact of IM on the interaction between a human and a
robot (O2). The traditional HRI angle is to externally impose specific behaviors or behavior
patterns in a robot and to study how each of the isolated behaviors impacts the human
perception of said robot. In the HRI literature, for example, this has been studied with
robots that either asked questions to mimic curiosity, compared to robots that did not ask
questions and were seemingly incurious (cf. section 2.1). In contrast, in this thesis, the
robot is not provided with external behavior scripts that mimic IM, but instead the robot’s
behavior is generated by an IM algorithm that makes the whole robot behavior intrinsically
motivated. This, however, creates challenges. Any external guidance of said autonomous
behavior generation makes the behavior, by definition, not intrinsically motivated anymore.
This makes it challenging to isolate specific factors of the generated behavior and understand
their impact. This means, to study the effect of IM only, the behavior generation can only
be compared between IM-induced behavior and not-IM-induced behavior. This, however,
is another challenge as the formalism that creates the IMs does not create any behavior if
switched off.

To measure the influence of IM, the methodology needed to ensure the above mentioned
behaviors could be compared in a way that the observed effects can be addressed to IM. This
resulted in two original contributions: (i) the design of similarly perceived baseline behaviors,
and (ii) a game-like study design that encourages interaction with very limited input.

The design of a good baseline behavior is very critical and it needs to fulfill two tasks: it
needs to be reproducible by other researchers and it needs to be systematically sound. For
example, if I had compared an intrinsically motivated robot to a straight driving robot, the
results would have had less quality. In order to be able to reduce any influence on the intrinsic
motivation, the behaviors had to look very similar. The baseline proposed in the final study
is very promising. It consists of a fakely adaptive robot, i.e., a behavior that is seemingly
adaptive because it replays changes from an earlier run. This way it was almost impossible
for the participants (and for the author) to tell the behaviors apart. The results show
that although the intrinsically motivated robot behavior and the fakely adaptive behavior
were similarly perceived, the behaviors appeared differently only because of the robot being
intrinsically motivated. This thesis extensively discussed the thought process involved and
it is believed that the same process can be applied on different and more complex robot
platforms, like the one proposed in subsection 6.4.3.

The other key contribution is the proposed game-like study design in study II and in study
IV that encourages participants to interact with the robot. In the first study, the interaction
was rather enforced in the sense that participants had to interact with the robot to keep the
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robot on the table. This let the participants believe that the robot’s goal is to stay on the
table, making them very alert to exactly this and let them rate the robot’s competence in
achieving that goal. However, the perceived Competence can have an impact on our social
perceptions of others, which makes the comparison between the behaviors less fair. In the
last two studies, study II and study IV, the environment was redesigned so that the robots
did not need interaction from the participants in order to stay on the table. Furthermore, the
participant’s task was to understand whether the presented robot behaviors were different.
Both reduced the influence of the study on the participant’s goal-assumption in the sense that
none of the robots were considered more competent than the other. The game-like scenario
exploits the participant bias, i.e., the participant’s interest to perform particularly well in
order to accelerate science (Orne 1962). To perform well, the participants assumed they had
to interact in order to perceive any difference. This proxy task increases the participant’s
interest in interacting with the robot, while at the same time shields the true research interest.

Both contributions, the game-like study design and the design of similarly perceived base-
line behaviors are very critical to the understanding of the perception of intrinsically moti-
vated autonomy. Both shielded the task of the robot behavior and allowed interpreting the
main effects as guided by the IM algorithm (O2).

6.3.4. Human-robot interaction

The contribution to the field of HRI is threefold: (i) the thesis links findings from the field
of social cognition to the field of HRI, (ii) the thesis shows that the IM formalism of pre-
dictive information maximization can enable robust, and socially perceived behavior and
indicates that this can sustain the interaction with a human participant, and (iii) the above
experimental methodology provides a systematic framework to investigate behavior that is
autonomously generated.

A central contribution of this thesis to the field of HRI is linking the knowledge from
social human-human interaction (i.e. social cognition) to HRI. This thesis provides evidence
that humans like to sustain the interaction with the agent we perceive highest in Warmth,
independently of whether this agent is a human or a robot (RQ1). These findings are sup-
ported by recent research that explores the perception of robots by humans that play a
game together. Paetzel et al. (2020) found that involvement is positively correlated to the
perception of Warmth and Oliveira et al. (2019) found that participants preferred the robot
that they perceived highest in Warmth. In this thesis, on the other hand, the findings were
derived from studies where the robot’s task is not explicitly clear to the human participant.
Human-human interactions and relationships have been extensively studied over decades and
it remains an active research area. If a connection between human-human interactions and
HRI can be further fostered, this would allow HRI research to use a large set of existing
methods and tools to evaluate robot behaviors.

Another central contribution is the study of fully autonomously generated intrinsically
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motivated robot behavior. The difference to existing work on IM is that the robot did not
mimic IMs (e.g. Ceha et al. 2019; Law et al. 2017; Gordon et al. 2015) but was in fact truly
intrinsically motivated, driven by its interest to explore the world through a hysteresis of
predictability and change. The thesis shows that the IM formalism of predictive information
maximization is perceived as more social compared to an autonomous robot that is seemingly
adaptive and overall seemingly similar. The before mentioned link between human-robot
interaction and human-human interaction gives more weight to this contribution: intrinsically
motivated autonomy in robots is perceived as warm by human interaction partners. This
provides evidence that IM could be key to sustain the interaction in HRI (RQ2). Moreover,
realizing intrinsically motivated behaviors in robots could be key to have robust behavior
generation in robots, For many robot systems that are tested or deployed in the real world,
human interference can cause a potential risk to the reliability of the system, cause system
failures or unwanted results. This thesis, on the other hand, uses a behavior generation that is
robust to interactions because the intrinsically motivated autonomy employed is, in contrast,
searching for new (i.e. unpredictable) interactions that enriches the robot’s perception of the
world. For research that aims to bring robots into the human-inhabitant real world, a robot
that can handle unforeseen interactions (i.e. is robust to human perturbations) may become
essential. The study of such robust, intrinsically motivated behaviors in HRI is another
contribution of this thesis.

The robust behavior generation discussed above introduced the challenge of how to in-
vestigate human perception. This is because any attempt to constrain that behavior can
lead to a system that cannot deal with unforeseen situations or to a behavior that is then,
by definition, not intrinsically motivated any longer. The thesis contributes a systematic
framework to approach this. The studies presented here let human participants compare two
autonomous robot behaviors. This is achieved by encouraging the participants to interact
with a robot using only a limited set of instructions: the only task given to the participants
is to find out whether the robots’ behaviors are different. This game-like approach helps to
motivate the participants to interact, without giving away any robot task that can influence
the perception of all participants (see subsection 6.3.3). This experimental methodology is
an important contribution because it enables experiments that study the perception of fully
autonomously generated behavior. In particular, the methodology allows this without the
robot having a specific goal or task. This is important because, on the one hand, it is an
active research area to look at how to combine behavior generation rules for IM with goal-
oriented behavior. On the other hand, any combination will raise the question of whether
the observed effects of the IM-induced characteristics and the goal-oriented characteristics
can be truly isolated. The presented methodology accompanies the popular approaches of
most HRI projects that concentrate on the robots’ competence to fulfill a task appropriately.
There, human interference could often cause a potential risk to the reliability of a system.
Certain interactions would need to be explained to the participants prior to the experiment,
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in particular the task and the goal of the robot. A participant that deviates too much from
the explained interactions could cause system failures or unwanted results, as there would
be no adequate responses represented in the scripted behavior. The experimental method-
ology contributed by this thesis, on the other hand, encourages the participants to explore
their interaction fully, while measuring their perception of said robots without biasing their
implicit goal assignment of said robots.

So far, the above contributions resulted in three publications, and others are currently
being written: (Scheunemann, Salge, and Dautenhahn 2019; Scheunemann, Salge, Polani, et
al. 2021; Scheunemann, Cuijpers, et al. 2020). It is hoped that these findings encourage HRI
research to explore intrinsically motivated robots further to allow a deeper understanding of
our social perception of said robots. The thesis indicates that this could be key to have both
sustainable HRI and robots that can autonomously adapt to unforeseen situations such as
those in the unpredictable, human-inhabitant environment.

6.4. Limitations and future work

Each interaction study chapter carefully discussed limitations in relation to the particular
study and suggested changes to a follow-up study. This section proposes three possible future
studies, which can address three more general limitations of the thesis: (i) sustained HRI was
indirectly measured based on questionnaires, (ii) the studies were conducted in a laboratory
setting, and (iii) a simple robot platform was used.

6.4.1. Measure sustained human-robot interaction directly

This thesis explored different scale dimensions to better understand the human perception of
robots. It further provided evidence that the dimension Warmth is a promising candidate to
understand whether humans would like to continue interacting with a robot. Current research
has also employed the measure of Warmth for repeated interaction with a robot. Paetzel
et al. (2020) found that there is a positive correlation between participants’ involvement in
a game and how warm they perceive a robot. This suggests that the studies of this thesis
could be extended for repeated interactions, with the hypothesis that a stable perception of
Warmth indicates participants’ involvement. However, the results that human participants
preferred to interact with an intrinsically motivated robot are promising, and makes the
effort of investigating directly whether IM in robots can sustain HRI worthwhile.

An idea that was addressed already in the final study (cf. section 5.5) is to measure directly
whether participants interact for longer with the intrinsically motivated robot compared to
a baseline robot. The interaction time is a common measure for HRI research that studies
sustained interactions. For example, Graaf et al. (2016) measure the self-reported frequency
of usage of in-home robots or Iio et al. (2019) measure the time people paid attention to a
robot in a public space.
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The within-subjects design employed in this thesis is not a good candidate to compare the
voluntary interaction time of participants. This is because it is very likely that participants
would interact longer with any first robot that they get exposed to, because a new robot may
be more interesting in general, irrespective of its behavior or the participants’ true preference.

Analyzing the interaction time directly would require a new study design. Two study
designs seem most promising: (i) exposing participants to multiple robots at the same time
and (ii) a between-subjects study that only presents one robot to one participant.

The two scenarios differ on how to assess the interaction time. The idea of point (i) is
that participants could interact with two or more robots simultaneously. For example, they
could interact with the intrinsically motivated robot and the baseline robot from study IV.
The study could then measure which of the robots the participants preferred to interact with
the most. The interaction time could be measured by counting the time between consecutive
interactions. An alternative would be to quantify the number of observed interactions that
each robot perceives. However, it has been argued in section 5.4 that the amount of interac-
tions does not necessarily imply long-term interest. Generally speaking, a participant might
be simply annoyed by one robot and tries to harm it. Instead, the experiment could consist of
two different sets. After the participants have interacted with both robots, they could decide
to continue interacting with exactly one robot only. This would measure the participants’
preference directly. However, this would require the robots to be visually distinguishable, so
that participants have a side by side comparison. This in turn increases the risk that the
visual differences have an effect on the participant’s decision.

The second point (ii) is a more straight-forward approach to measure the time of interac-
tion. Each participant would be randomly assigned to a robot and they would be told that
they can stop whenever they like. Then, the interaction times of the experimental group
and the control group would be analyzed for differences. While this study design has been
strongly considered prior to conducting the studies of this thesis, it needs to be noted that
this kind of data assessment would need a considerably larger amount of participants. First
of all, this design would require special treatment for participants that are familiar with the
movie character that the current robot resembles. In the studies of this thesis, the focus was
put on how differently participants perceive the robot in two different conditions. This is
similar to the suggestion in (i). However, if a between-subjects design was employed, this
could skew results depending on the participants’ familiarity. Secondly, between-subjects
studies are less powerful than within-subjects studies. This study would likely require access
to hundreds of participants in order to see an effect. This is also why an alternative path
with questionnaires was taken in this thesis.

Since this thesis provides evidence that an intrinsically motivated robot is preferred by
participants, conducting one of the above studies is worthwhile. If one of the two suggested
designs can confirm that participants prefer to spend more time with the intrinsically moti-
vated robot, this would further support the results of this thesis.
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As outlined above, the need for a large number of participants makes the realization of
such a physical HRI study very challenging. One option, however, might be to use robots
which are already present in our everyday life. This is something the next future study idea
addresses.

6.4.2. Investigate the effect with a robot in the wild

One option to further investigate the effect of intrinsically motivated autonomy is to apply
the algorithm to robots that are already present in our everyday lives. An example of a robot
present in households is a vacuum cleaning robot. There are already thousands of vacuum
cleaning robots placed in households, which makes it potentially possible to roll out a large
scale study. An added benefit comes from the fact that the robots are already deployed and
the robot behavior could therefore be changed unobtrusively. This kind of research would
allow me to step out of the laboratory setting and investigate the effect in the real-world.

The question is: would humans value intrinsically motivated autonomy in their vacuum
robot? Or do they rather prefer an efficient robot? My hypothesis is that even with robots
that have a clear purpose with a quantifiable goal, it would still be beneficial if the robot
would be perceived as more warm. This way, we may be more forgiving when the robot does
not succeed, which is something a robot will always face in a real-world scenario.

A problem, however, and a limitation of the overall thesis is the applicability of the com-
putational model of IM to a real-world robot. Should the robot be intrinsically motivated
at times, for example when it reaches an unknown world state? Should the robot’s drive to
clean co-exist next to a computational model of IM, and how can that be even realized? Or,
even more advanced, should the input of sensors be chosen in such a way, that the cleaning
process itself is part of exciting its sensors?

A problem is the assessment of interaction time. Measuring the participants’ interaction
time with the robot may be challenging, since it may not be ethically possible to access data
from the participants’ homes. For example, facilitating cameras to measure the number of
interactions from a participant would require the collection of video data to provide a means
for recording the number of interactions. However, this presents obvious privacy issues, which
renders the study either not applicable or would reduce the number of participants.

Instead, the knowledge contributed by this thesis could be used and a questionnaire could
be designed. The RoSAS could be employed to investigate the development of the perception
of Warmth and Competence, while at the same time controlling for participants’ perception
of the usability1 of the robot.

If the above can confirm a positive development for the perception of the intrinsically mo-
tivated robot during a long-term HRI study, a possible next step could involve implementing
intrinsically motivated autonomy on robots used for therapy. Wada and Shibata (2007) de-
veloped a seal-shaped robot named Paro. The robot is designed in such a way that it mimics

1A popular questionnaire is the System Usability Scale (Brooke 1986).
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the behavior of a real animal. The robot Paro can react to touch, sounds or light, and has
an implementation that enables it to adapt its behavior based on user input. For example,
it changes states based on whether the robot receives a positive input, such as stroking be-
havior, or negative input, such as beating. The robot can also proactively generate behavior
based on a variety of internal states and parameters.

Studies conducted with the robot in care homes suggest that the robot can help to in-
crease the social network density, as well as reduce stress in participants with dementia or
Alzheimer (e.g. Wada and Shibata 2007; Sabanovic et al. 2013; Lane et al. 2016). If future
studies show that intrinsically motivated autonomy can yield sustained interaction, it might
be worthwhile to implement a computational model of IM on the Paro robot too. That way,
the increased interest could in turn increase the usage of Paro and, to that end, also increase
its positive effects on patients.

Some of the challenges remain similar to the ones outlined for the vacuum robot. How is
it possible to implement intrinsically motivated autonomy in a robot in parallel to, e.g., an
implementation of drives. The problem here is that the work involves vulnerable participants.
By no means should the robot behavior hinder the stress reduction in patients.

A benefit is the purpose of the robot which is to engage humans in interactions. This
allows combining the study with the previous idea to measure the participant’s interaction
time with the robot easily. Since the patient changes the robot’s sensor readings during
the interaction, the robot could measure the interaction time autonomously, possibly even
anonymized.

This future research avenue needs careful consideration of the ethical implications. Hu-
mans are inherently social beings. They assign social attributes to other beings but also
to non-living things such as toys or robots. The aforementioned robot Paro, for example,
is specifically designed to increase the participant’s affection for it. The thesis shows that
human participants have an increased social perception of intrinsically motivated robots.
In other words, the robot’s behavior can further enhance the positive emotions toward the
robot. As with all research, there needs to be a balance between possible current harm (i.e.,
conducting a study that increases emotions toward a robot) with future harm (i.e., the lack
of social robots in everyday life). The current COVID-19 pandemic has shown that there is
a need for social robots. For example, it is argued that social robots could positively impact
mental health issues apparent during times with social distancing measures in place (Ghafu-
rian et al. 2020; Scassellati and Vázquez 2020). A social robot that is intrinsically motivated
to interact with humans, without the need for a skilled human to control the robot, could
help to elevate the harm arising by social distancing.

6.4.3. Increase complexity of the robot

The presented study was conducted on a non-humanoid robot platform with two degrees of
freedom. One motivating idea behind this choice was that more complex robots, such as
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anthropomorphic robots, “might raise false expectations regarding the cognitive and social
abilities that the robot cannot fulfill” (Dautenhahn 2004). The effects of these false expecta-
tions can be twofold. Participants could lose interest in the robot because its behavior does
not meet their expectations. On the other hand, human participants could get overexcited
about a robot that accidentally conducts gesture-like motions. For example, they could an-
ticipate a waving gesture, which human participants could perceive as a will to communicate.
This could highly impact the participants preferred interaction, even if the effect was caused
by a random or accidental movement.

The simple robot platform of this study allowed to concentrate on the effects induced
by intrinsically motivated autonomy. However, the platform is limited when it comes to
studying more complex interactions. The question therefore is whether the computational
model of IM used in this study can also be applied to more complex robot platforms. A
range of new challenges needs to be carefully considered prior to this investigation. Firstly,
how much more complex can the robot be? One challenge will be that, if participants imply
robot capabilities, they will be disappointed if the robot cannot enact on them. This means,
if participants anticipate that the robot has the capability to make sense of visual input,
maybe because they see it has a camera built-in, then the robot should certainly use the
visual sensor.

This however leads to other questions. Will the computational model still render com-
putable? How to let the robot explore the input of visual sensors which are prone to oc-
clusions? In theory, TiPI maximization can be implemented onto more complex robots, as
it has been shown in simulation. Initial trials on real robots, however, have shown that the
more sensors that are connected, the computation becomes increasingly complex.

The question of how to include sensors is a very subtle one and possibly the first step I
will take toward understanding IM in more complex robots. In particular, I would like to
understand how sensors with different timely implications can be combined.

This issue already appeared in the final study. There, the TiPI maximization used two
different accelerations as sensor input: firstly, the self-acceleration of the robot, and secondly
the acceleration of the human. These two sensors were the accelerometer of the robot and the
proximity of the human. The relatively short experiment time and the human participants’
urge to interact with the robot have made both the accelerations comparable. The question
is: what would happen if the human interacts relatively little with the robot? For example
during a long-term study with a household robot, the human participant will not constantly
interact with the robot. Because TiPI formalism only maximizes PI in a time-local manner,
a change of the human proximity has a similar effect on PI compared to the robot’s self-
acceleration. This is counter-intuitive, given that the sheer presence of rarely perceived
signals should make the robot curious, which is the state IMs process too. The first idea that
comes to mind is probably best described as a layered approach, where connected controllers
maximize TiPI for different time-windows.
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6.5. Concluding remarks

It has been shown that robots that appear curious can elicit curiosity in their human in-
teraction partners. Previous research implemented this curiosity with hand-designed scripts
or by using a wizard-of-oz design. These approaches require knowledge about the specific
setting or they need a qualified scientist operating the robot. In contrast, this thesis used a
computational model of IM, which enabled a robot to generate its behavior on its own. This
way, the fully autonomous robot was created so that it could adapt to its environment and,
in particular, adapted to an interacting participant.

The interaction studies of this thesis used a minimal, particularly non-humanoid, spherical
robot platform. This decreased the expectations that participants tend to have of a robot’s
capabilities, and it allowed for a study of IMs in robots. The studies investigated how humans
perceive such an intrinsically motivated robot compared to a reactive, baseline behavior. The
results showed that human participants perceive the intrinsically motivated robots as more
warm than the baseline robot. This also holds true for a baseline behavior that is perceived
similarly competent and animated. Warmth is the primary dimension from social cognition.
A human perceived high in Warmth experiences more positive social interaction. This thesis
presents the first evidence that this knowledge about Warmth from social cognition transfers
to HRI. In particular, this thesis shows that robots perceived highest in Warmth are also the
ones that are preferred as interaction partners by the human participants.

The evidence of this thesis suggests that computational models of IM are possible candi-
dates to make robots interesting enough to sustain interactions. This thesis further opens
up a variety of possible research directions: from making these models more advanced, to
testing them on more advanced robots.
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Appendix A.

Dissemination

This chapter presents the publications and dissemination grown out of the work on this
thesis. The work has been promoted and disseminated mostly in conferences and scientific
talks.

A.1. Publications

The thesis’ author was first author of all the following publications and their respective first
draft.

• Marcus M. Scheunemann, Raymond H. Cuijpers, et al. (2020). “Warmth and Com-
petence to Predict Human Preference of Robot Behavior in Physical Human-Robot
Interaction”. In: Proceedings of the 29th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN). IEEE. Virtual Conference: IEEE,
pp. 1340–1347. doi: 10.1109/RO-MAN47096.2020.9223478 (62% acceptance rate)

• Marcus M. Scheunemann, Christoph Salge, and Kerstin Dautenhahn (2019). “Intrin-
sically Motivated Autonomy in Human-Robot Interaction: Human Perception of Pre-
dictive Information in Robots”. In: Towards Autonomous Robotic Systems. Ed. by
Kaspar Althoefer et al. Cham: Springer International Publishing, pp. 325–337. isbn:
978-3-030-23807-0. doi: 10.1007/978-3-030-23807-0_27 (73% acceptance rate)

• Marcus M. Scheunemann and Kerstin Dautenhahn (Feb. 2017). “Bluetooth Low En-
ergy for Autonomous Human-Robot Interaction”. In: Proceedings of the Companion of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction. HRI ’17.
Vienna, Austria: ACM, pp. 52–52. isbn: 978-1-4503-4885-0. doi: 10.1145/3029798.
3036663

• Marcus M. Scheunemann, Kerstin Dautenhahn, Maha Salem, et al. (Aug. 2016b). “Uti-
lizing Bluetooth Low Energy to recognize proximity, touch and humans”. In: 2016 25th
IEEE International Symposium on Robot and Human Interactive Communication (RO-
MAN). New York, NY, USA: IEEE, pp. 362–367. doi: 10.1109/ROMAN.2016.7745156
(47% acceptance rate)
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• Marcus M. Scheunemann, Kerstin Dautenhahn, Maha Salem, et al. (Aug. 2016a). “Uti-
lizing Bluetooth Low Energy for human-robot interaction”. In: 2016 25th IEEE In-
ternational Symposium on Robot and Human Interactive Communication (RO-MAN).
New York, NY, USA: IEEE

The study presented in the second study has been written as a journal article and is
currently under review:

• Marcus M. Scheunemann, Christoph Salge, Daniel Polani, et al. (2021). Human Percep-
tion of Intrinsically Motivated Autonomy in Human-Robot Interaction. arXiv: 2002.
05936 [cs.RO]

Furthermore, an abstract and a poster of preliminary results of the first study was con-
tributed to the conference “Social cognition in humans and robots”, which was hosted by the
EU project socSMCs and the EUCognition network in University Medical Center Hamburg-
Eppendorf from 27–28.09.2018.

A.2. Related publications

Two other publications were inspired by this thesis. The author used a simple threshold
mechanism to distinguish between touch and close proximity using Bluetooth Low Energy
sensors. For more advanced categorization, the idea was to semantically segment between
this actions using deep neural network. This idea spawned the publication:

• Sander G. van Dijk and Marcus M. Scheunemann (Aug. 2019). “Deep Learning for
Semantic Segmentation on Minimal Hardware”. In: RoboCup 2018: Robot World Cup
XXII. ed. by Dirk Holz et al. Vol. 11374. Lecture Notes in Computer Science. Springer
International Publishing, pp. 349–361. isbn: 978-3-030-27544-0. doi: 10.1007/978-
3-030-27544-0_29

On a different note, the author was involved in many custom framework developments, mostly
because popular framworks, such as the robot operating framework (ROS) were not built
for real-time applications. However, the second version of ROS actually supported real-time
needs. The author contributed to ROS 2 core development and some custom modules to
push the ROS 2 development further, and he applied it to a humanoid robot in the RoboCup
context:

• Marcus M. Scheunemann and Sander G. van Dijk (2019). “ROS 2 for RoboCup”. In:
RoboCup 2019: Robot World Cup XXIII. ed. by Stephan Chalup et al. Vol. 11531.
Lecture Notes in Artificial Intelligence. Springer International Publishing, pp. 429–
438. isbn: 978-3-030-35699-6. doi: 10.1007/978-3-030-35699-6_34

170

https://arxiv.org/abs/2002.05936
https://arxiv.org/abs/2002.05936
https://doi.org/10.1007/978-3-030-27544-0_29
https://doi.org/10.1007/978-3-030-27544-0_29
https://doi.org/10.1007/978-3-030-35699-6_34


A.2. Related publications

For both publications, the author worked together with SD. SD did the main implemen-
tation part of the deep learning paper, but both authors contributed equally in writing.
For the ROS 2 publication, both authors contributed equally to the lengthy integration and
benchmarking progress.
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ID:

Pre-test questionnaire

Before we can start, we need a few more information about your person.

1. Gender:

2. Age:

3. Occupation:

How familiar are you with interacting with robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with programming robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with the BB8 robot from Sphero (the robot used in this experiment):

1 2 3 4 5

Not familiar # # # # # Very familiar

1
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ID:

Post-test questionnaire

In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. Can you describe the different behaviours of the robot? Did the robot have any particular strategy for exploring?

5. What were the best and/or worst aspects of the robot’s behaviour?

3
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ID:

Pre-test questionnaire

Before we can start, we need a few more information about your person.

1. Gender:

2. Age:

3. Occupation:

How familiar are you with interacting with robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with programming robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with the BB8 robot from Sphero (the robot used in this experiment):

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with “Star Wars”:

1 2 3 4 5

Not familiar # # # # # Very familiar

1
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ID:

Post-test questionnaire

In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. Which words describe the behaviour of the robot best? (up to 5 words only)

3
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ID:

Post-test questionnaire 2
In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. Was the behaviour of the robot different in comparison to the previous interaction:

1 2 3 4 5

Not at all # # # # # Very much so

5. Was the behaviour of the robot more adaptive in comparison to the previous interaction:

1 2 3 4 5

Not at all # # # # # Very much so

6. Which words describe the behaviour of the robot best? (up to 5 words only)

7. (Optional) Please use the following space if you want to say more about how the behaviour of the robot(s) differ:

3
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ID:

Pre-test questionnaire
Before we can start, we need a few more information about your person.

1. Gender:

2. Age:

3. Occupation:

How familiar are you with interacting with robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with programming robots:

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with the BB8 robot from Sphero (the robot used in this experiment):

1 2 3 4 5

Not familiar # # # # # Very familiar

How familiar are you with “Star Wars”:

1 2 3 4 5

Not familiar # # # # # Very familiar

1
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ID:

Post-test questionnaire
In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Persistent # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Predictable # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. Which words describe the behaviour of the robot best? (up to 5 words only)

3
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ID:

Post-test questionnaire 2
In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Persistent # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Predictable # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. Was the behaviour of the robot different in comparison to the first interaction:

1 2 3 4 5

Not at all # # # # # Very much so

5. Which words describe the behaviour of the robot best? (up to 5 words only)

3
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ID:

Post-test questionnaire 3
In the previous session you have interacted with the spherical robot. We are now interested to find out how you
experienced and perceived the interaction and the robot itself.

Please tick only one box (X#) per row. Do not skip any questions and answer them in the given order. There
is no right or wrong.

1. Using the scale provided, how closely are the following attributes associated with the robot?

1 2 3 4 5 6 7

Dangerous # # # # # # #

Emotional # # # # # # #

Compassionate # # # # # # #

Aggressive # # # # # # #

Capable # # # # # # #

Happy # # # # # # #

Persistent # # # # # # #

Strange # # # # # # #

Organic # # # # # # #

Scary # # # # # # #

Responsive # # # # # # #

Awkward # # # # # # #

Knowledgeable # # # # # # #

Sociable # # # # # # #

Feeling # # # # # # #

Competent # # # # # # #

Predictable # # # # # # #

Reliable # # # # # # #

Awful # # # # # # #

Interactive # # # # # # #

1 2 3 4 5 6 7

not at all a moderate amount very much so

not at all a moderate amount very much so

1
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2. Please rate your impression of the robot on these scales:

1 2 3 4 5

Machinelike # # # # # Humanlike

Ignorant # # # # # Knowledgeable

Awful # # # # # Nice

Unkind # # # # # Kind

Unintelligent # # # # # Intelligent

Dislike # # # # # Like

Dead # # # # # Alive

Foolish # # # # # Sensible

Unconscious # # # # # Conscious

Artificial # # # # # Lifelike

Fake # # # # # Natural

Moving rigidly # # # # # Moving elegantly

Incompetent # # # # # Competent

Mechanical # # # # # Organic

Stagnant # # # # # Lively

Unpleasant # # # # # Pleasant

Apathetic # # # # # Responsive

Unfriendly # # # # # Friendly

Irresponsible # # # # # Responsible

Inert # # # # # Interactive

3. Please rate your emotional state on these scales:

1 2 3 4 5

Agitated # # # # # Calm

Anxious # # # # # Relaxed

Quiescent # # # # # Surprised

2
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4. If you could interact with one of the robots again, which one would you chose:

1 2 3 no preference

# # # #

5. Was the behaviour of the robot different in comparison to the first interaction:

1 2 3 4 5

Not at all # # # # # Very much so

6. Was the behaviour of the robot different in comparison to the second interaction:

1 2 3 4 5

Not at all # # # # # Very much so

7. Which words describe the behaviour of the robot best? (up to 5 words only)

8. (Optional) Please use the following space if you want to say more about how the behaviour of the robot(s) differ:

3
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Acronyms

BLE Bluetooth Low Energy. 15, 17, 20, 23, 40, 56, 58, 61–65, 67, 68, 113, 119, 120, 145,
152, 154, 158

DOF degrees of freedom. 31, 38, 39

HRI human-robot interaction. 3, 4, 9–18, 20, 21, 23–25, 27, 33–38, 55, 59, 67, 69–71, 74, 77,
80, 90, 93, 95, 98, 99, 102, 103, 110, 113, 117, 118, 120, 123, 143, 146–152, 154–157,
159–162, 164, 167

IM intrinsic motivation. 3, 10–12, 14–19, 21, 23, 24, 26, 37, 38, 42, 44, 55, 69, 73, 90, 93,
110–113, 117, 118, 120, 121, 128, 143–146, 149, 151–154, 156, 157, 159–162, 164–167

IMU inertial measurement unit. 39, 40, 76, 77, 100

PI predictive information. 12, 18, 19, 23, 26–32, 57, 71–76, 87, 92, 96, 110, 116, 121, 151,
157, 166

RFID Radio-frequency identification. 59, 60, 68

RoSAS Robotic Social Attribute Scale. 3, 13, 35, 70, 71, 77, 78, 81, 82, 95, 97, 101, 106,
107, 122, 130, 139, 146, 155, 164

RSS received signal strength. 60–65, 119, 120

SDT Self-Determination Theory. 10, 25

TiPI time-local predictive information. 12–15, 19, 21, 27–34, 36, 38, 40–45, 52–55, 57, 69,
100, 113, 116, 120, 121, 144, 151, 152, 154, 156, 157, 166

199





References

Abele, Andrea E., Nicole Hauke, et al. (Nov. 2016). “Facets of the Fundamental Content
Dimensions: Agency with Competence and Assertiveness—Communion with Warmth and
Morality”. In: Frontiers in Psychology 7. doi: 10.3389/fpsyg.2016.01810 (pp. 13, 34,
35, 95, 110, 146).

Abele, Andrea E. and Bogdan Wojciszke (2007). “Agency and communion from the perspec-
tive of self versus others”. In: Journal of Personality and Social Psychology 93.5, pp. 751–
763. doi: 10.1037/0022-3514.93.5.751 (pp. 16, 153).

– (2014). “Communal and Agentic Content in Social Cognition”. In: Advances in Experimen-
tal Social Psychology. Elsevier, pp. 195–255. doi: 10.1016/b978-0-12-800284-1.00004-7
(p. 35).

Ahmad, Bashar I. et al. (Apr. 2019). “Driver and Passenger Identification From Smartphone
Data”. In: IEEE Transactions on Intelligent Transportation Systems 20.4, pp. 1278–1288.
doi: 10.1109/tits.2018.2845113 (pp. 61, 68, 119).

Airenti, Gabriella (Jan. 2015). “The Cognitive Bases of Anthropomorphism: From Relat-
edness to Empathy”. In: International Journal of Social Robotics 7.1, pp. 117–127. doi:
10.1007/s12369-014-0263-x (p. 70).

Antunes, Rodolfo S. et al. (Apr. 2018). “A Survey of Sensors in Healthcare Workflow Moni-
toring”. In: ACM Computing Surveys 51.2, pp. 1–37. doi: 10.1145/3177852 (p. 68).

Apple Inc. (June 2014). Getting Started with iBeacon. Version 1.0. Apple (pp. 62, 63).
– (Sept. 2015). Proximity Beacon Specification. Release R1. Apple (p. 63).
Ay, Nihat, Holger Bernigau, et al. (Nov. 2012). “Information-driven self-organization: the

dynamical system approach to autonomous robot behavior”. In: Theory in Biosciences
131.3, pp. 161–179. issn: 1611-7530. doi: 10.1007/s12064-011-0137-9 (p. 27).

Ay, Nihat, Nils Bertschinger, et al. (June 2008). “Predictive information and explorative
behavior of autonomous robots”. In: The European Physical Journal B 63.3, pp. 329–339.
issn: 1434-6036. doi: 10.1140/epjb/e2008-00175-0 (pp. 26–28, 33).

Bartneck, Christoph et al. (Jan. 2009). “Measurement Instruments for the Anthropomor-
phism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots”. In:
International Journal of Social Robotics 1.1, pp. 71–81. issn: 1875-4805. doi: 10.1007/
s12369-008-0001-3 (pp. 70, 77).

Belpaeme, Tony et al. (Aug. 2018). “Social robots for education: A review”. In: Science
Robotics 3.21. doi: 10.1126/scirobotics.aat5954 (p. 11).

201

https://doi.org/10.3389/fpsyg.2016.01810
https://doi.org/10.1037/0022-3514.93.5.751
https://doi.org/10.1016/b978-0-12-800284-1.00004-7
https://doi.org/10.1109/tits.2018.2845113
https://doi.org/10.1007/s12369-014-0263-x
https://doi.org/10.1145/3177852
https://doi.org/10.1007/s12064-011-0137-9
https://doi.org/10.1140/epjb/e2008-00175-0
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.1126/scirobotics.aat5954


References

Bialek, William et al. (Nov. 2001). “Predictability, Complexity, and Learning”. In: Neural
Computation 13.11, pp. 2409–2463. doi: 10.1162/089976601753195969 (pp. 18, 27, 28,
157).

Bickmore, Timothy et al. (July 1, 2010). “Maintaining Engagement in Long-term Interven-
tions with Relational Agents”. In: Applied Artificial Intelligence 24.6, pp. 648–666. doi:
10.1080/08839514.2010.492259 (pp. 13, 89).

Blow, Mike et al. (Sept. 2006). “Perception of Robot Smiles and Dimensions for Human-
Robot Interaction Design”. In: The 15th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN). Hatfield, UK: IEEE, pp. 469–474. isbn:
1-4244-0564-5. doi: 10.1109/roman.2006.314372 (p. 72).

Bluetooth SIG (Feb. 2016). Bluetooth 4.2 core specification. url: https://www.bluetooth.
org/docman/handlers/downloaddoc.ashx?doc_id=441541 (visited on 12/08/2015)
(pp. 60, 61, 64).

Boden, Margaret A. (Feb. 2008). “Autonomy: What is it?” In: Biosystems 91.2: Modelling
Autonomy. Ed. by Xabier Barandiaran and Kepa Ruiz-Mirazo, pp. 305–308. issn: 0303-
2647. doi: 10.1016/j.biosystems.2007.07.003 (pp. 10, 12, 25).

Bodenhausen, Galen V et al. (2012). “Social Categorization and the Perception of Social
Groups”. In: The SAGE Handbook of Social Cognition. Ed. by Susan Fiske and C. Neil
Macrae. SAGE Publications Sage UK: London, England, pp. 311–329. isbn: 978-0-857-
02481-7 (p. 34).

Braitenberg, Valentino (1984). Vehicles. Experiments in Synthetic Psychology. Cambridge:
Bradford Books/MIT Press. IX, 152. isbn: 978-0262521123 (p. 72).

Brooke, John (1986). “SUS: a ’quick and dirty‘ usability scale”. In: Usability Evaluation In
Industry. Ed. by Patrick W. Jordan et al. London: Taylor and Francis, pp. 189–194 (p. 164).

Calinon, Sylvain et al. (Oct. 2010). “Learning-based control strategy for safe human-robot
interaction exploiting task and robot redundancies”. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. doi: 10.1109/iros.2010.5648931
(p. 58).

Carpinella, Colleen M. et al. (2017). “The Robotic Social Attributes Scale (RoSAS): Devel-
opment and Validation”. In: Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction. HRI ’17. Vienna, Austria: ACM, pp. 254–262. isbn: 978-1-
4503-4336-7. doi: 10.1145/2909824.3020208 (pp. 13, 35, 77, 89, 95, 109, 146).

Castro-González, Álvaro et al. (June 2016). “Effects of form and motion on judgments of
social robots’ animacy, likability, trustworthiness and unpleasantness”. In: International
Journal of Human-Computer Studies 90, pp. 27–38. doi: 10.1016/j.ijhcs.2016.02.004
(pp. 17, 110, 153).

Ceha, Jessy et al. (2019). “Expression of Curiosity in Social Robots”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems - CHI’19. ACM Press.
doi: 10.1145/3290605.3300636 (pp. 10, 11, 25, 161).

202

https://doi.org/10.1162/089976601753195969
https://doi.org/10.1080/08839514.2010.492259
https://doi.org/10.1109/roman.2006.314372
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://doi.org/10.1016/j.biosystems.2007.07.003
https://doi.org/10.1109/iros.2010.5648931
https://doi.org/10.1145/2909824.3020208
https://doi.org/10.1016/j.ijhcs.2016.02.004
https://doi.org/10.1145/3290605.3300636


Christensen, Henrik I. et al. (June 29, 2016). “Next Generation Robotics”. In: arXiv: 1606.
09205v1 [cs.CY] (p. 11).

Clabaugh, Caitlyn and Maja Matarić (May 2019). “Escaping Oz: Autonomy in Socially
Assistive Robotics”. In: Annual Review of Control, Robotics, and Autonomous Systems
2.1, pp. 33–61. doi: 10.1146/annurev-control-060117-104911 (p. 11).

Cohen, Jacob (July 1992). “A power primer”. In: Psychological Bulletin 112.1 (1), pp. 155–
159. issn: 0033-2909 (pp. 84, 107, 131).

Cover, Thomas M. and Joy A. Thomas (2012). Elements of Information Theory. John Wiley
& Sons (p. 30).

Crutchfield, James P. and Karl Young (July 1989). “Inferring statistical complexity”. In:
Physical Review Letters 63.2, pp. 105–108. doi: 10.1103/physrevlett.63.105 (p. 26).

Cuddy, Amy J. C. et al. (Apr. 2007). “The BIAS map: Behaviors from intergroup affect and
stereotypes”. In: Journal of Personality and Social Psychology 92 (4), pp. 631–648. issn:
0022-3514. doi: 10.1037/0022-3514.92.4.631 (pp. 13, 34).

Czopp, Alexander M. et al. (July 2015). “Positive Stereotypes Are Pervasive and Powerful”.
In: Perspectives on Psychological Science 10.4, pp. 451–463. doi: 10.1177/1745691615588091
(p. 34).

Dautenhahn, Kerstin (July 1997). “I could be you: The phenomenological dimension of social
understanding”. In: Cybernetics and Systems 28.5, pp. 417–453. issn: 0196-9722. doi: 10.
1080/019697297126074 (p. 72).

– (2004). “Robots We Like to Live With?! – A Developmental Perspective on a Personalized,
Life-Long Robot Companion”. In: 13th IEEE International Workshop on Robot and Human
Interactive Communication. IEEE, pp. 17–22. doi: 10.1109/roman.2004.1374720 (pp. 38,
166).

Der, Ralf, Frank Güttler, et al. (Jan. 2008). “Predictive information and emergent coopera-
tivity in a chain of mobile robots”. In: The 11th International Conference on the Synthesis
and Simulation of Living Systems (Artificial Life XI). Ed. by Seth Bullock et al. MIT
Press, pp. 166–172 (pp. 12, 26, 27, 31).

Der, Ralf and Georg Martius (2006). “From Motor Babbling to Purposive Actions: Emerging
Self-exploration in a Dynamical Systems Approach to Early Robot Development”. In: From
Animals to Animats 9. Ed. by Stefano Nolfi et al. Vol. 4095. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 406–421. isbn: 978-3-540-38615-5. doi: 10.1007/
11840541_34 (p. 28).

– (Sept. 2012). The Playful Machine. Theoretical Foundation and Practical Realization of
Self-Organizing Robots. Vol. 15. Cognitive Systems Monographs. Springer-Verlag Berlin
Heidelberg. 336 pp. isbn: 978-3-642-20253-7. doi: 10.1007/978-3-642-20253-7 (pp. 12,
26, 33, 69).

Dijk, Sander G. van and Marcus M. Scheunemann (Aug. 2019). “Deep Learning for Semantic
Segmentation on Minimal Hardware”. In: RoboCup 2018: Robot World Cup XXII. Ed. by

203

https://arxiv.org/abs/1606.09205v1
https://arxiv.org/abs/1606.09205v1
https://doi.org/10.1146/annurev-control-060117-104911
https://doi.org/10.1103/physrevlett.63.105
https://doi.org/10.1037/0022-3514.92.4.631
https://doi.org/10.1177/1745691615588091
https://doi.org/10.1080/019697297126074
https://doi.org/10.1080/019697297126074
https://doi.org/10.1109/roman.2004.1374720
https://doi.org/10.1007/11840541_34
https://doi.org/10.1007/11840541_34
https://doi.org/10.1007/978-3-642-20253-7


References

Dirk Holz et al. Vol. 11374. Lecture Notes in Computer Science. Springer International
Publishing, pp. 349–361. isbn: 978-3-030-27544-0. doi: 10.1007/978-3-030-27544-0_29
(pp. 59, 170).

Do, Trinh Minh Tri and Daniel Gatica-Perez (June 2011). “GroupUs: Smartphone Proximity
Data and Human Interaction Type Mining”. In: 2011 15th Annual International Symposium
on Wearable Computers. IEEE. IEEE, pp. 21–28. doi: 10.1109/ISWC.2011.28 (p. 60).

Eyssel, Friederike and Frank Hegel (July 2012). “(S)he’s Got the Look: Gender Stereotyping
of Robots1”. In: Journal of Applied Social Psychology 42.9, pp. 2213–2230. doi: 10.1111/
j.1559-1816.2012.00937.x (p. 35).

Faragher, Ramsey and Robert Harle (Nov. 2015). “Location Fingerprinting With Bluetooth
Low Energy Beacons”. In: IEEE Journal on Selected Areas in Communications 33.11,
pp. 2418–2428. issn: 0733-8716. doi: 10.1109/JSAC.2015.2430281 (pp. 61, 63, 65, 68,
120).

Feng, Tao et al. (2018). “A Human-Tracking Robot Using Ultra Wideband Technology”. In:
IEEE Access 6, pp. 42541–42550. doi: 10.1109/access.2018.2859754 (p. 59).

Fiske, Susan T. (Feb. 2018). “Stereotype Content: Warmth and Competence Endure”. In:
Current Directions in Psychological Science 27.2, pp. 67–73. doi: 10.1177/0963721417738825
(pp. 34, 35, 89, 95).

Fiske, Susan T. et al. (Feb. 2007). “Universal dimensions of social cognition: warmth and
competence”. In: Trends in Cognitive Sciences 11 (2), pp. 77–83. doi: 10.1016/j.tics.
2006.11.005 (pp. 13, 16, 34, 35, 70, 89, 93, 95, 96, 110, 146, 148, 153).

Ford, Clay (Oct. 17, 2015). Is R-squared Useless? url: https://data.library.virginia.
edu/is-r-squared-useless/ (visited on 12/12/2020) (p. 49).

Friston, Karl (Jan. 13, 2010). “The free-energy principle: a unified brain theory?” In: Nature
Reviews Neuroscience 11 (2), pp. 127–138. issn: 1471-0048. doi: 10.1038/nrn2787 (p. 12).

Froese, Tom and Tom Ziemke (Mar. 2009). “Enactive artificial intelligence: Investigating the
systemic organization of life and mind”. In: Artificial Intelligence 173.3-4, pp. 466–500.
doi: 10.1016/j.artint.2008.12.001 (pp. 10, 25).

Fukuda, Haruaki and Kazuhiro Ueda (Mar. 2, 2010). “Interaction with a Moving Object
Affects One’s Perception of Its Animacy”. In: International Journal of Social Robotics 2.2,
pp. 187–193. doi: 10.1007/s12369-010-0045-z (pp. 13, 70, 74, 110).

Ghafurian, Moojan et al. (2020). Social Companion Robots to Reduce Isolation: A Perception
Change Due to COVID-19. arXiv: 2008.05382 [cs.CY] (p. 165).

Gordon, Goren et al. (2015). “Can Children Catch Curiosity from a Social Robot?” In:
Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction - HRI’15. ACM Press. doi: 10.1145/2696454.2696469 (pp. 10, 11, 25, 161).

Graaf, Maartje M.A. de et al. (Dec. 2016). “Long-term evaluation of a social robot in real
homes”. In: Interaction Studies 17.3, pp. 461–490. doi: 10.1075/is.17.3.08deg (p. 162).

204

https://doi.org/10.1007/978-3-030-27544-0_29
https://doi.org/10.1109/ISWC.2011.28
https://doi.org/10.1111/j.1559-1816.2012.00937.x
https://doi.org/10.1111/j.1559-1816.2012.00937.x
https://doi.org/10.1109/JSAC.2015.2430281
https://doi.org/10.1109/access.2018.2859754
https://doi.org/10.1177/0963721417738825
https://doi.org/10.1016/j.tics.2006.11.005
https://doi.org/10.1016/j.tics.2006.11.005
https://data.library.virginia.edu/is-r-squared-useless/
https://data.library.virginia.edu/is-r-squared-useless/
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/j.artint.2008.12.001
https://doi.org/10.1007/s12369-010-0045-z
https://arxiv.org/abs/2008.05382
https://doi.org/10.1145/2696454.2696469
https://doi.org/10.1075/is.17.3.08deg


Grassberger, Peter (Sept. 1986). “Toward a quantitative theory of self-generated complex-
ity”. In: International Journal of Theoretical Physics 25.9, pp. 907–938. doi: 10.1007/
bf00668821 (p. 26).

Grillon, Christian et al. (2004). “Anxious Responses to Predictable and Unpredictable Aver-
sive Events”. In: Behavioral Neuroscience 118.5, pp. 916–924. doi: 10.1037/0735-7044.
118.5.916 (pp. 13, 89).

Guckelsberger, Christian et al. (Sept. 2016). “Intrinsically motivated general companion
NPCs via Coupled Empowerment Maximisation”. In: 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG). IEEE, pp. 150–157. isbn: 978-1-5090-1883-3.
doi: 10.1109/cig.2016.7860406 (p. 12).

Hoffman, Guy and Wendy Ju (Feb. 2014). “Designing Robots With Movement in Mind”.
In: Journal of Human-Robot Interaction 3.1, pp. 91–122. issn: 2163-0364. doi: 10.5898/
jhri.3.1.hoffman (p. 72).

Huang, Hui-Min et al. (2004). “Autonomy Measures for Robots”. In: ASME 2004 Interna-
tional Mechanical Engineering Congress and Exposition. American Society of Mechanical
Engineers Digital Collection, pp. 1241–1247. doi: 10.1115/IMECE2004-61812 (pp. 10, 25).

Hull, Clark L (1943). Principles of behavior: an introduction to behavior theory. Vol. 422.
New York: Appleton-Century-Crofts (pp. 10, 23).

Iio, Takamasa et al. (Sept. 2019). “Human-Like Guide Robot that Proactively Explains
Exhibits”. In: International Journal of Social Robotics 12.2, pp. 549–566. doi: 10.1007/
s12369-019-00587-y (p. 162).

Ishiguro, Hiroshi (Jan. 2007). “Scientific Issues Concerning Androids”. In: The International
Journal of Robotics Research 26.1, pp. 105–117. doi: 10.1177/0278364907074474 (p. 74).

José, Rui et al. (Oct. 2008). “Instant Places: Using Bluetooth for Situated Interaction in
Public Displays”. In: IEEE Pervasive Computing 7.4, pp. 52–57. issn: 1536-1268. doi:
10.1109/mprv.2008.74 (p. 60).

Judd, Charles M. et al. (2005). “Fundamental dimensions of social judgment: Understanding
the relations between judgments of competence and warmth”. In: Journal of Personality
and Social Psychology 89.6, pp. 899–913. doi: 10.1037/0022-3514.89.6.899 (p. 34).

Kanda, Takayuki et al. (Oct. 2010). “A Communication Robot in a Shopping Mall”. In: IEEE
Transactions on Robotics 26.5, pp. 897–913. issn: 1941-0468. doi: 10.1109/tro.2010.
2062550 (pp. 10, 11).

Kaplan, Frédéric and Pierre-Yves Oudeyer (2004). “Maximizing Learning Progress: An Inter-
nal Reward System for Development”. In: Embodied Artificial Intelligence. Ed. by F. Iida
et al. Vol. 3139. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 259–
270. isbn: 978-3-540-27833-7. doi: 10.1007/978-3-540-27833-7_19 (p. 12).

Khoramshahi, Mahdi et al. (June 2016). “Role of Gaze Cues in Interpersonal Motor Coor-
dination: Towards Higher Affiliation in Human-Robot Interaction”. In: PLOS ONE 11.6.
Ed. by Eugene V Aidman, e0156874. doi: 10.1371/journal.pone.0156874 (p. 58).

205

https://doi.org/10.1007/bf00668821
https://doi.org/10.1007/bf00668821
https://doi.org/10.1037/0735-7044.118.5.916
https://doi.org/10.1037/0735-7044.118.5.916
https://doi.org/10.1109/cig.2016.7860406
https://doi.org/10.5898/jhri.3.1.hoffman
https://doi.org/10.5898/jhri.3.1.hoffman
https://doi.org/10.1115/IMECE2004-61812
https://doi.org/10.1007/s12369-019-00587-y
https://doi.org/10.1007/s12369-019-00587-y
https://doi.org/10.1177/0278364907074474
https://doi.org/10.1109/mprv.2008.74
https://doi.org/10.1037/0022-3514.89.6.899
https://doi.org/10.1109/tro.2010.2062550
https://doi.org/10.1109/tro.2010.2062550
https://doi.org/10.1007/978-3-540-27833-7_19
https://doi.org/10.1371/journal.pone.0156874


References

Klyubin, Alexander S. et al. (2005). “Empowerment: A Universal Agent-Centric Measure
of Control”. In: 2005 IEEE Congress on Evolutionary Computation. Vol. 1. IEEE. IEEE,
pp. 128–135. doi: 10.1109/cec.2005.1554676 (p. 12).

Kulms, Philipp and Stefan Kopp (June 2018). “A Social Cognition Perspective on Hu-
man–Computer Trust: The Effect of Perceived Warmth and Competence on Trust in
Decision-Making With Computers”. In: Frontiers in Digital Humanities 5. doi: 10.3389/
fdigh.2018.00014 (p. 95).

Lane, Geoffrey W. et al. (Aug. 2016). “Effectiveness of a social robot, “Paro,” in a VA long-
term care setting.” In: Psychological Services 13.3, pp. 292–299. doi: 10.1037/ser0000080
(p. 165).

Law, Edith et al. (Aug. 2017). “A Wizard-of-Oz study of curiosity in human-robot inter-
action”. In: 2017 26th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE. doi: 10.1109/roman.2017.8172365 (p. 161).

Lee, Jae et al. (Oct. 2006). “People Tracking Using a Robot in Motion with Laser Range
Finder”. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. doi: 10.1109/iros.2006.282147 (p. 58).

Leigh, Angus et al. (May 2015). “Person tracking and following with 2D laser scanners”. In:
2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE. doi:
10.1109/icra.2015.7139259 (p. 58).

Lucasfilm Ltd. (2015). Star Wars. url: https://www.starwars.com/films/ (visited on
11/10/2020) (pp. 36, 74, 125).

Ma, Yunfei et al. (2017). “Minding the Billions: Ultra-wideband Localization for Deployed
RFID Tags”. In: Proceedings of the 23rd Annual International Conference on Mobile Com-
puting and Networking - MobiCom ’17. ACM Press. doi: 10.1145/3117811.3117833
(p. 60).

Martinelli, Francesco (Sept. 2015). “A Robot Localization System Combining RSSI and Phase
Shift in UHF-RFID Signals”. In: IEEE Transactions on Control Systems Technology 23.5,
pp. 1782–1796. doi: 10.1109/tcst.2014.2386777 (p. 60).

Martius, Georg (Nov. 22, 2013). Implementation of predictive information maximization. url:
https://github.com/georgmartius/lpzrobots/blob/d2e6bbd164d902cdaa57eef154ed353ee0027236/
selforg/controller/pimax.cpp (visited on 12/14/2020) (p. 30).

Martius, Georg, Ralf Der, et al. (2013a). Appendix Text S1 for Information driven self-
organization of complex robotic behaviors with derivations and technical detail. (P. 30).

– (May 2013b). “Information Driven Self-Organization of Complex Robotic Behaviors”. In:
PLOS ONE 8.5. Ed. by Josh Bongard, pp. 1–14. doi: 10.1371/journal.pone.0063400
(pp. 12, 15, 18, 19, 26–29, 31, 33, 157, 206).

– (2013c). Supplementary material for “Information Driven Self-Organization of Complex
Robotic Behaviors” Martius, Der, et al. 2013b: program code and videos. url: http :
//robot.informatik.uni-leipzig.de/research/supplementary/TiPI2013 (p. 26).

206

https://doi.org/10.1109/cec.2005.1554676
https://doi.org/10.3389/fdigh.2018.00014
https://doi.org/10.3389/fdigh.2018.00014
https://doi.org/10.1037/ser0000080
https://doi.org/10.1109/roman.2017.8172365
https://doi.org/10.1109/iros.2006.282147
https://doi.org/10.1109/icra.2015.7139259
https://www.starwars.com/films/
https://doi.org/10.1145/3117811.3117833
https://doi.org/10.1109/tcst.2014.2386777
https://github.com/georgmartius/lpzrobots/blob/d2e6bbd164d902cdaa57eef154ed353ee0027236/selforg/controller/pimax.cpp
https://github.com/georgmartius/lpzrobots/blob/d2e6bbd164d902cdaa57eef154ed353ee0027236/selforg/controller/pimax.cpp
https://doi.org/10.1371/journal.pone.0063400
http://robot.informatik.uni-leipzig.de/research/supplementary/TiPI2013
http://robot.informatik.uni-leipzig.de/research/supplementary/TiPI2013


Martius, Georg, Luisa Jahn, et al. (2014). “Self-exploration of the Stumpy Robot with Predic-
tive Information Maximization”. In: From Animals to Animats 13. Springer International
Publishing, pp. 32–42. doi: 10.1007/978-3-319-08864-8_4 (pp. 12, 26, 33).

Maturana, Humberto R. and Francisco J. Varela (1991). Autopoiesis and Cognition: The
Realization of the Living. Ed. by Robert S. Cohen and Marx W. Wartofsky. Vol. 42.
Springer Science & Business Media. isbn: 978-94-009-8947-4. doi: 10.1007/978-94-009-
8947-4 (pp. 10, 25).

Megalou, S. et al. (Mar. 2019). “Fingerprinting Localization of RFID tags with Real-Time
Performance-Assessment, using a Moving Robot”. In: 2019 13th European Conference on
Antennas and Propagation (EuCAP), pp. 1–5 (p. 60).

Merrick, Kathryn E. and Mary Lou Maher (2009). Motivated Reinforcement Learning. Curi-
ous Characters for Multiuser Games. 1st ed. Springer Berlin Heidelberg. XIV, 206. isbn:
9783540891864. doi: 10.1007/978-3-540-89187-1 (p. 12).

Michel, P. et al. (2006). “Online environment reconstruction for biped navigation”. In: Pro-
ceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA
2006. IEEE. doi: 10.1109/robot.2006.1642171 (p. 58).

Mieczkowski, Hannah et al. (Mar. 2019). “Helping Not Hurting: Applying the Stereotype
Content Model and BIAS Map to Social Robotics”. In: 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE. doi: 10.1109/hri.2019.8673307
(pp. 35, 36).

Nehmzow, Ulrich (2006). Scientific Methods in Mobile Robotics. Vol. 24. 1-2. Springer-Verlag
GmbH, pp. 1–3. isbn: 9781846280191 (p. 140).

Ng, Pai Chet et al. (Aug. 2019). “A Compressive Sensing Approach to Detect the Proxim-
ity Between Smartphones and BLE Beacons”. In: IEEE Internet of Things Journal 6.4,
pp. 7162–7174. doi: 10.1109/jiot.2019.2914733 (p. 61).

Oliveira, Raquel et al. (Mar. 2019). “The Stereotype Content Model Applied to Human-
Robot Interactions in Groups”. In: 2019 14th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). IEEE. doi: 10.1109/hri.2019.8673171 (pp. 35, 160).

OptiTrack (2020). OptiTrack for Robotics. url: https://optitrack.com/applications/
robotics/ (visited on 12/14/2020) (p. 58).

Orne, Martin T. (1962). “On the social psychology of the psychological experiment: With
particular reference to demand characteristics and their implications.” In: American Psy-
chologist 17.11, pp. 776–783. doi: 10.1037/h0043424 (pp. 16, 123, 147, 153, 160).

Oudeyer, Pierre-Yves, J. Gottlieb, et al. (2016). “Intrinsic motivation, curiosity, and learning”.
In: Motivation - Theory, Neurobiology and Applications. Elsevier, pp. 257–284. doi: 10.
1016/bs.pbr.2016.05.005 (pp. 10, 11, 24, 25).

Oudeyer, Pierre-Yves and Frédéric Kaplan (July 2008). “How can we define intrinsic motiva-
tion?” In: Proceedings of the 8th International Conference on Epigenetic Robotics: Modeling

207

https://doi.org/10.1007/978-3-319-08864-8_4
https://doi.org/10.1007/978-94-009-8947-4
https://doi.org/10.1007/978-94-009-8947-4
https://doi.org/10.1007/978-3-540-89187-1
https://doi.org/10.1109/robot.2006.1642171
https://doi.org/10.1109/hri.2019.8673307
https://doi.org/10.1109/jiot.2019.2914733
https://doi.org/10.1109/hri.2019.8673171
https://optitrack.com/applications/robotics/
https://optitrack.com/applications/robotics/
https://doi.org/10.1037/h0043424
https://doi.org/10.1016/bs.pbr.2016.05.005
https://doi.org/10.1016/bs.pbr.2016.05.005


References

Cognitive Development in Robotic Systems. Vol. 5. Brighton, United Kingdom, pp. 93–101
(pp. 11, 24).

Oudeyer, Pierre-Yves and Frédéric Kaplan (Nov. 2, 2009). “What is Intrinsic Motivation?
A Typology of Computational Approaches”. In: Frontiers in Neurorobotics 1. Ed. by Max
Lungarella, p. 6. issn: 1662-5218. doi: 10.3389/neuro.12.006.2007 (p. 10).

Oudeyer, Pierre-Yves, Frédéric Kaplan, and Verena V. Hafner (Apr. 2, 2007). “Intrinsic
Motivation Systems for Autonomous Mental Development”. In: IEEE Transactions on
Evolutionary Computation 11.2, pp. 265–286. issn: 1941-0026. doi: 10.1109/tevc.2006.
890271 (p. 12).

Paetzel, Maike et al. (Mar. 2020). “The Persistence of First Impressions”. In: Proceedings of
the 2020 ACM/IEEE International Conference on Human-Robot Interaction. ACM. doi:
10.1145/3319502.3374786 (pp. 160, 162).

Paolo, Ezequiel A. Di (June 2004). Unbinding Biological Autonomy: Francisco Varela’s Con-
tributions to Artificial Life. Vol. 10. 3. MIT Press - Journals, pp. 231–233. doi: 10.1162/
1064546041255566 (pp. 10, 25).

Pinillos, Roberto et al. (May 2016). “Long-term assessment of a service robot in a hotel
environment”. In: Robotics and Autonomous Systems 79, pp. 40–57. doi: 10.1016/j.
robot.2016.01.014 (pp. 9, 11).

Rault, Tifenn et al. (2014). “Energy efficiency in wireless sensor networks: A top-down sur-
vey”. In: Computer Networks 67, pp. 104–122. issn: 1389-1286. doi: 10.1016/j.comnet.
2014.03.027 (p. 61).

Rosenthal, Robert et al. (1994). “Parametric measures of effect size”. In: The handbook of
research synthesis 621.2, pp. 231–244 (pp. 84, 107, 131).

Ryan, Richard M. and Edward L. Deci (Jan. 2000). “Intrinsic and Extrinsic Motivations:
Classic Definitions and New Directions”. In: Contemporary Educational Psychology 25.1,
pp. 54–67. issn: 0361-476X. doi: 10.1006/ceps.1999.1020 (pp. 10, 23, 24).

Sabanovic, Selma et al. (June 2013). “PARO robot affects diverse interaction modalities in
group sensory therapy for older adults with dementia”. In: 2013 IEEE 13th International
Conference on Rehabilitation Robotics (ICORR). IEEE. doi: 10 . 1109 / icorr . 2013 .
6650427 (p. 165).

Scassellati, Brian and Marynel Vázquez (July 2020). “The potential of socially assistive
robots during infectious disease outbreaks”. In: Science Robotics 5.44, p. 2. doi: 10.1126/
scirobotics.abc9014 (p. 165).

Scheunemann, Marcus M. (June 27, 2017a). GitHub pull request: Bug/BLE packet parsing.
url: https://github.com/sphero-inc/sphero.js/pull/91 (visited on 12/14/2020)
(pp. 19, 40, 158).

– (June 8, 2017b). GitHub pull request: Bug/documentation. url: https://github.com/
sphero-inc/sphero.js/pull/86 (visited on 12/14/2020) (pp. 19, 40, 158).

208

https://doi.org/10.3389/neuro.12.006.2007
https://doi.org/10.1109/tevc.2006.890271
https://doi.org/10.1109/tevc.2006.890271
https://doi.org/10.1145/3319502.3374786
https://doi.org/10.1162/1064546041255566
https://doi.org/10.1162/1064546041255566
https://doi.org/10.1016/j.robot.2016.01.014
https://doi.org/10.1016/j.robot.2016.01.014
https://doi.org/10.1016/j.comnet.2014.03.027
https://doi.org/10.1016/j.comnet.2014.03.027
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1109/icorr.2013.6650427
https://doi.org/10.1109/icorr.2013.6650427
https://doi.org/10.1126/scirobotics.abc9014
https://doi.org/10.1126/scirobotics.abc9014
https://github.com/sphero-inc/sphero.js/pull/91
https://github.com/sphero-inc/sphero.js/pull/86
https://github.com/sphero-inc/sphero.js/pull/86


– (June 16, 2017c). GitHub pull request: Feature/enhance connection to multiple ble devices.
url: https://github.com/sphero-inc/sphero.js/pull/89 (visited on 12/14/2020)
(pp. 19, 40, 158).

– (June 14, 2017d). GitHub pull request: Feature/streaming quaternion. url: https : / /
github.com/sphero-inc/sphero.js/pull/88 (visited on 12/14/2020) (pp. 19, 40, 158).

– (2017e). Project page: Intrinsically Motivated Robots. Videos and code repositories. url:
https://mms.ai/imr/ (visited on 05/18/2020) (pp. 19, 40, 77, 101, 116, 121, 145, 158).

– (Aug. 15, 2018a). Code repository: BLE4HRI. url: https://github.com/scheunemann/
BLE4HRI (visited on 12/12/2020) (pp. 20, 64, 159).

– (Aug. 15, 2018b). Code repository: spherocpp. url: https://gitlab.com/scheunemann/
spheropp (visited on 12/12/2020) (pp. 19, 40, 158).

– (Feb. 8, 2018c). Contributions to lpzrobots. GitHub pull request. url: https://github.
com/georgmartius/lpzrobots/commits?author=scheunemann (visited on 12/14/2020)
(pp. 19, 157).

– (Nov. 8, 2018d). GitHub pull request: TiPI fixes. url: https://github.com/georgmartius/
lpzrobots/pull/29 (visited on 12/14/2020) (pp. 19, 157).

– (Dec. 15, 2018e). Project page: Bluetooth Low Energy for Human-Robot Interaction. Videos
and code repositories. url: https://mms.ai/BLE4HRI (visited on 12/15/2020) (pp. 20,
64, 159).

– (Apr. 26, 2019). Intrinsically Motivated Autonomy in Human-Robot Interaction: Human
Perception of Predictive Information in Robots. Supplementary material. url: https :
//mms.ai/TAROS2019-supplementary/ (visited on 10/10/2019) (pp. 77, 101).

Scheunemann, Marcus M., Raymond H. Cuijpers, et al. (2020). “Warmth and Competence to
Predict Human Preference of Robot Behavior in Physical Human-Robot Interaction”. In:
Proceedings of the 29th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE. Virtual Conference: IEEE, pp. 1340–1347. doi: 10.
1109/RO-MAN47096.2020.9223478 (pp. 36, 162, 169).

Scheunemann, Marcus M. and Kerstin Dautenhahn (Feb. 2017). “Bluetooth Low Energy
for Autonomous Human-Robot Interaction”. In: Proceedings of the Companion of the 2017
ACM/IEEE International Conference on Human-Robot Interaction. HRI ’17. Vienna, Aus-
tria: ACM, pp. 52–52. isbn: 978-1-4503-4885-0. doi: 10.1145/3029798.3036663 (p. 169).

Scheunemann, Marcus M., Kerstin Dautenhahn, Maha Salem, et al. (Aug. 2016a). “Utilizing
Bluetooth Low Energy for human-robot interaction”. In: 2016 25th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN). New York, NY,
USA: IEEE (p. 170).

– (Aug. 2016b). “Utilizing Bluetooth Low Energy to recognize proximity, touch and humans”.
In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communi-
cation (RO-MAN). New York, NY, USA: IEEE, pp. 362–367. doi: 10.1109/ROMAN.2016.
7745156 (pp. 20, 32, 62, 64, 68, 158, 169).

209

https://github.com/sphero-inc/sphero.js/pull/89
https://github.com/sphero-inc/sphero.js/pull/88
https://github.com/sphero-inc/sphero.js/pull/88
https://mms.ai/imr/
https://github.com/scheunemann/BLE4HRI
https://github.com/scheunemann/BLE4HRI
https://gitlab.com/scheunemann/spheropp
https://gitlab.com/scheunemann/spheropp
https://github.com/georgmartius/lpzrobots/commits?author=scheunemann
https://github.com/georgmartius/lpzrobots/commits?author=scheunemann
https://github.com/georgmartius/lpzrobots/pull/29
https://github.com/georgmartius/lpzrobots/pull/29
https://mms.ai/BLE4HRI
https://mms.ai/TAROS2019-supplementary/
https://mms.ai/TAROS2019-supplementary/
https://doi.org/10.1109/RO-MAN47096.2020.9223478
https://doi.org/10.1109/RO-MAN47096.2020.9223478
https://doi.org/10.1145/3029798.3036663
https://doi.org/10.1109/ROMAN.2016.7745156
https://doi.org/10.1109/ROMAN.2016.7745156


References

Scheunemann, Marcus M. and Sander G. van Dijk (2019). “ROS 2 for RoboCup”. In: RoboCup
2019: Robot World Cup XXIII. Ed. by Stephan Chalup et al. Vol. 11531. Lecture Notes
in Artificial Intelligence. Springer International Publishing, pp. 429–438. isbn: 978-3-030-
35699-6. doi: 10.1007/978-3-030-35699-6_34 (p. 170).

Scheunemann, Marcus M., Christoph Salge, and Kerstin Dautenhahn (2019). “Intrinsically
Motivated Autonomy in Human-Robot Interaction: Human Perception of Predictive In-
formation in Robots”. In: Towards Autonomous Robotic Systems. Ed. by Kaspar Althoefer
et al. Cham: Springer International Publishing, pp. 325–337. isbn: 978-3-030-23807-0. doi:
10.1007/978-3-030-23807-0_27 (pp. 21, 162, 169).

Scheunemann, Marcus M., Christoph Salge, Daniel Polani, et al. (2021). Human Perception
of Intrinsically Motivated Autonomy in Human-Robot Interaction. arXiv: 2002 . 05936
[cs.RO] (pp. 21, 162, 170).

Schmidhuber, Jürgen (1991). “Curious model-building control systems”. In: [Proceedings]
1991 IEEE International Joint Conference on Neural Networks. Singapore: IEEE, pp. 1458–
1463. doi: 10.1109/ijcnn.1991.170605 (p. 11).

Schulz, Dirk et al. (Feb. 2003). “People Tracking with Mobile Robots Using Sample-Based
Joint Probabilistic Data Association Filters”. In: The International Journal of Robotics
Research 22.2, pp. 99–116. doi: 10.1177/0278364903022002002 (p. 58).

Schwarz, David et al. (2015). “Cosero, Find My Keys! Object Localization and Retrieval
Using Bluetooth Low Energy Tags”. In: RoboCup 2014: Robot World Cup XVIII. Ed. by
Reinaldo A. C. Bianchi et al. Springer International Publishing, pp. 195–206. isbn: 978-3-
319-18615-3. doi: 10.1007/978-3-319-18615-3_16 (pp. 61, 119, 120).

Siegemund, Frank and Christian Florkemeier (Mar. 2003). “Interaction in pervasive comput-
ing settings using Bluetooth-enabled active tags and passive RFID technology together
with mobile phones”. In: Proceedings of the First IEEE International Conference on Per-
vasive Computing and Communications, 2003. (PerCom 2003). IEEE. IEEE Comput. Soc,
pp. 378–387. doi: 10.1109/PERCOM.2003.1192762 (p. 60).

Silicon Laboratories Inc. (Dec. 2015). BLE112 DATA SHEET. Version 1.48. login required.
Silicon Laboratories (p. 64).

Sphero, Inc. (2020a). Licensed products: BB-8. url: https : / / support . sphero . com /
category/kxwbdyqeyq-bb-8 (visited on 12/12/2020) (pp. 36, 74).

– (2020b). Sphero Edu JavaScript: Movement: Stabilization. url: https://sphero.docsapp.
io/docs/movement#stabilization (visited on 12/12/2020) (p. 41).

Steels, Luc (July 5, 2004). “The Autotelic Principle”. In: Embodied Artificial Intelligence.
Vol. 3139. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 231–242.
isbn: 978-3-540-27833-7. doi: 10.1007/978-3-540-27833-7_17 (p. 12).

Stroessner, Steven J. (2020). “On the social perception of robots: measurement, moderation,
and implications”. In: Living with Robots. Elsevier, pp. 21–47. doi: 10.1016/b978-0-12-
815367-3.00002-5 (pp. 35, 36).

210

https://doi.org/10.1007/978-3-030-35699-6_34
https://doi.org/10.1007/978-3-030-23807-0_27
https://arxiv.org/abs/2002.05936
https://arxiv.org/abs/2002.05936
https://doi.org/10.1109/ijcnn.1991.170605
https://doi.org/10.1177/0278364903022002002
https://doi.org/10.1007/978-3-319-18615-3_16
https://doi.org/10.1109/PERCOM.2003.1192762
https://support.sphero.com/category/kxwbdyqeyq-bb-8
https://support.sphero.com/category/kxwbdyqeyq-bb-8
https://sphero.docsapp.io/docs/movement#stabilization
https://sphero.docsapp.io/docs/movement#stabilization
https://doi.org/10.1007/978-3-540-27833-7_17
https://doi.org/10.1016/b978-0-12-815367-3.00002-5
https://doi.org/10.1016/b978-0-12-815367-3.00002-5


Stubbs, K. et al. (Mar. 2007). “Autonomy and Common Ground in Human-Robot Interaction:
A Field Study”. In: IEEE Intelligent Systems 22.2, pp. 42–50. doi: 10.1109/MIS.2007.21
(pp. 10, 25).

Subhan, Fazli et al. (Apr. 2011). “Indoor positioning in Bluetooth networks using fingerprint-
ing and lateration approach”. In: 2011 International Conference on Information Science
and Applications. IEEE, pp. 1–9. doi: 10.1109/ICISA.2011.5772436 (p. 60).

Tay, Benedict et al. (Sept. 2014). “When stereotypes meet robots: The double-edge sword
of robot gender and personality in human–robot interaction”. In: Computers in Human
Behavior 38, pp. 75–84. doi: 10.1016/j.chb.2014.05.014 (p. 35).

Texas Instruments (2013). CC2540 SimpleLink™ Bluetooth® low energy Wireless MCU with
USB datasheet (Rev. F). Version SWRS084F. First published 2010. Texas Instruments.
27 pp. (p. 64).

Theil, Henri (July 1970). “On the Estimation of Relationships Involving Qualitative Vari-
ables”. In: American Journal of Sociology 76.1, pp. 103–154. doi: 10.1086/224909 (p. 140).

Thrun, Sebastian et al. (2005). Probabilistic Robotics. Intelligent Robotics and Autonomous
Agents. MIT Press. 672 pp. isbn: 978-0-262-30380-4 (pp. 29, 32).

Tremoulet, Patrice D and Jacob Feldman (Aug. 2000). “Perception of Animacy from the
Motion of a Single Object”. In: Perception 29.8, pp. 943–951. doi: 10.1068/p3101 (pp. 70,
110, 115, 144).

Truijens, M. et al. (2014). “Evaluating the Performance of Absolute RSSI Positioning Algorithm-
Based Microzoning and RFID in Construction Materials Tracking”. In: Mathematical Prob-
lems in Engineering 2014, pp. 1–8. doi: 10.1155/2014/784395 (p. 60).

Van Rensburg, E. J. Janse et al. (2001). “Self-averaging sequences in the statistical mechanics
of random copolymers”. In: Journal of Physics A: Mathematical and General 34.33, p. 6381
(p. 33).

Wada, K.. and T.. Shibata (Oct. 2007). “Living With Seal Robots—Its Sociopsychological
and Physiological Influences on the Elderly at a Care House”. In: IEEE Transactions on
Robotics 23.5, pp. 972–980. doi: 10.1109/tro.2007.906261 (pp. 164, 165).

Wainer, Joshua et al. (Sept. 2014). “Using the Humanoid Robot KASPAR to Autonomously
Play Triadic Games and Facilitate Collaborative Play Among Children With Autism”. In:
IEEE Transactions on Autonomous Mental Development 6.3, pp. 183–199. doi: 10.1109/
tamd.2014.2303116 (p. 9).

Walters, Michael L. et al. (Nov. 2007). “Avoiding the uncanny valley: robot appearance,
personality and consistency of behavior in an attention-seeking home scenario for a robot
companion”. In: Autonomous Robots 24.2, pp. 159–178. doi: 10.1007/s10514-007-9058-3
(p. 70).

White, Robert W (1959). “Motivation reconsidered: The concept of competence.” In: Psy-
chological review 66.5, p. 297 (pp. 10, 23).

211

https://doi.org/10.1109/MIS.2007.21
https://doi.org/10.1109/ICISA.2011.5772436
https://doi.org/10.1016/j.chb.2014.05.014
https://doi.org/10.1086/224909
https://doi.org/10.1068/p3101
https://doi.org/10.1155/2014/784395
https://doi.org/10.1109/tro.2007.906261
https://doi.org/10.1109/tamd.2014.2303116
https://doi.org/10.1109/tamd.2014.2303116
https://doi.org/10.1007/s10514-007-9058-3


References

Wojciszke, Bogdan, Andrea E. Abele, et al. (Feb. 2009). “Two dimensions of interpersonal at-
titudes: Liking depends on communion, respect depends on agency”. In: European Journal
of Social Psychology 39.6, pp. 973–990. doi: 10.1002/ejsp.595 (p. 35).

Wojciszke, Bogdan, Roza Bazinska, et al. (Dec. 1998). “On the Dominance of Moral Cat-
egories in Impression Formation”. In: Personality and Social Psychology Bulletin 24.12,
pp. 1251–1263. doi: 10.1177/01461672982412001 (pp. 34, 35).

Wood, Luke J. et al. (2017). “The Iterative Development of the Humanoid Robot Kaspar:
An Assistive Robot for Children with Autism”. In: Social Robotics. Springer International
Publishing, pp. 53–63. doi: 10.1007/978-3-319-70022-9_6 (p. 59).

Yatani, Koji (Mar. 23, 2016). “Effect Sizes and Power Analysis in HCI”. In: Modern Statistical
Methods for HCI. Ed. by Judy Robertson and Maurits Kaptein. Human–Computer Inter-
action Series. Springer. Chap. 5, pp. 87–110. isbn: 978-3-319-26631-2. doi: 10.1007/978-
3-319-26633-6_5 (pp. 84, 107, 131).

Zahedi, Keyan et al. (2013). “Linear combination of one-step predictive information with an
external reward in an episodic policy gradient setting: a critical analysis”. In: Frontiers in
Psychology 4. doi: 10.3389/fpsyg.2013.00801 (p. 26).

Ziemke, Tom (Feb. 2008). “On the role of emotion in biological and robotic autonomy”. In:
BioSystems 91.2: Modelling Autonomy. Ed. by Xabier Barandiaran and Kepa Ruiz-Mirazo,
pp. 401–408. issn: 0303-2647. doi: 10.1016/j.biosystems.2007.05.015 (p. 10).

212

https://doi.org/10.1002/ejsp.595
https://doi.org/10.1177/01461672982412001
https://doi.org/10.1007/978-3-319-70022-9_6
https://doi.org/10.1007/978-3-319-26633-6_5
https://doi.org/10.1007/978-3-319-26633-6_5
https://doi.org/10.3389/fpsyg.2013.00801
https://doi.org/10.1016/j.biosystems.2007.05.015

	Abstract
	Introduction
	Motivation
	Research questions
	Overview
	Contributions of the thesis
	Information theory
	Robotics
	Human-robot interaction


	Background and Developments
	Intrinsic motivation
	Autonomy
	Predictive information
	Overview
	Deriving update rules
	Considerations for applying to real robots
	Summary

	Social cognition
	Person perception
	Robot perception

	Robot
	Choice of robot platform
	Technical details
	Software
	Robot control

	Motion control
	Overview
	Notation and units
	Naïve motion model
	Dependency analysis
	Deriving a motion model
	Evaluation
	Summary

	Human-robot interaction tool with proximity information
	Requirements
	Technologies to sense proximity
	Setup
	Assembly
	Summary


	Study I
	Introduction
	Research questions
	Overview

	Baseline behavior
	Study design
	Robot, environment and tasks
	Conditions and their order
	Description of the robot's behavior
	Measures
	Procedure
	Sample
	Data preparation

	Results
	Interaction effects
	Main effects
	Qualitative analysis

	Discussion
	Implications for next studies
	Conclusion

	Study II
	Introduction
	Research questions
	Overview

	Study design
	Robot, environment and tasks
	Conditions
	Measures
	Procedure
	Sample
	Data preparation

	Results
	Interaction effects
	Main effects
	Perception of difference

	Discussion
	Implications for the next study
	Conclusion

	Study III
	Introduction
	Research question
	Overview

	Study design
	Robot and environment
	Conditions
	Measures
	Procedure
	Sample
	Data preparation

	Results
	Perception of difference
	Effects of questionnaire dimensions
	Preferences

	Discussion
	Limitations and future work
	Conclusion

	Conclusion
	Summary of research
	Research questions revisited
	Original contribution to knowledge
	Information theory
	Robotics
	Experimental methodology
	Human-robot interaction

	Limitations and future work
	Measure sustained human-robot interaction directly
	Investigate the effect with a robot in the wild
	Increase complexity of the robot

	Concluding remarks

	Dissemination
	Publications
	Related publications

	Questionnaires
	Study I
	Study II
	Study III

	Ethics approvals
	Study I
	Study II
	Study III

	Acronyms
	References

