
WIGNER CURRENT

IN ONE-DIMENSIONAL

BOUND-STATE SYSTEMS

Dimitris Kakofengitis

A thesis submitted to the
UNIVERSITY OF HERTFORDSHIRE

in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

July 2018

School of Physics, Astronomy and Mathematics
University of Hertfordshire, Hatfield, AL10 9AB

Principal Supervisor: Dr Ole Steuernagel



Acknowledgements

I would like to acknowledge the advice and guidance of my supervisor Dr Ole Steuernagel.
Since my final year project of my BSc degree in Physics, Dr Steuernagel has always been an
inspiration and a person to look up to. Again as my supervisor, during my MRes degree in
Physics, Dr Steuernagel managed to pull together some of the best ideas we had worked on,
and in collaboration with Dr Georg Ritter, we published our first article on Wigner current,
at the time incorrectly referred to as Wigner ‘flow ’. This publication consequently lead to my
reinstatement as a PhD student by the then Dean of the department, Professor Sean Ryan,
and to the continuation of my collaboration with Dr Steuernagel.

I am also indebted to Professor Sean Ryan who was one of my lecturers during my BSc
degree and he too had been an inspiration and a person to look up to, especially as the Dean of
the School of Physics, Astronomy and Mathematics. Prof. Ryan kindly approved the funding
for this PhD project but also continued providing me with extra teaching work throughout my
MRes and PhD studies. Towards the end of my PhD, Prof. Sean provided a recommendation
which helped me get a more stable position as a visiting lecturer at the same university. This
meant that I could continue finishing my PhD without any financial stress.

I am also grateful to Dr Alan McCall for his involvement as the internal examiner of
this PhD project and earlier during my MRes degree. Dr McCall introduced me to quantum
mechanics as one of my lecturers; his enthusiasm was infectious!

I am also grateful to Dr Jim Collett, Dr Charles Young, Dr Benoit Vicedo and Maxime
Oliva for their fruitful discussions and advice on certain parts of this PhD project.

From the university, I would like to also thank the current Dean of the school, Dr Mark
Thompson and the Associate Dean of Research, Prof. Elias Brinks, whose support at the very
end of my PhD project was invaluable.

I would like to also thank my parents who have always unreservedly believed in me, and
have also provided me with all the support needed during my studies and were always there
willing to help as much as they could. Σας ευχαριστώ πολύ!

Finally, I would like to thank my wife Dr Cecilia Nedi Gyansah for her continuous support
and devotion.

This PhD project was funded by the School of Physics, Astronomy and Mathematics at the
University of Hertfordshire.

ii



Abstract

The behaviour of classical systems is characterised by their phase portraits; the collections
of their trajectories. In quantum mechanics phase portraits are still considered impossible to
compute due to the complexity of quantum trajectories arising from the introduction of the
quantum correction terms. Instead, in this thesis, we identify the Wigner current (the rate
of flow per unit area of the Wigner distribution), as the quantum analogue of the classical
phase-space current, and through Wigner current’s fieldline portraits we show that it reveals
hidden features of quantum dynamics and extra complexity.

In our analysis, we focus on the simplest, most intuitive, and analytically accessible aspects
of the Wigner current. We investigate its features for weakly-anharmonic weakly-excited
bound-states of time-reversible one-dimensional quantum-mechanical systems. We establish
that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft,
and odd. We stress connections between each other and the harmonic case. We show that
their Wigner current fieldline portraits can be characterised by the Wigner current’s discrete
stagnation points, how these arise and how a quantum system’s dynamics is constrained
by the stagnation points’ topological charge conservation. We additionally demonstrate the
conceptual power of the Wigner current by addressing some confusion found in the literature.

We also stress the usefulness of the integral form of Wigner’s representation as an alter-
native to the popular Moyal bracket. The integral form brings out the symmetries between
momentum and position representations of quantum mechanics, is numerically stable, and
allows us to perform some calculations using elementary integrals instead of Groenewold star-
products. The associated integral form of the Wigner current is used here in an elementary
proof which shows that only systems up to quadratic in their potential fulfil Liouville’s theorem
of volume preservation in quantum mechanics.
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1 Introduction

In this thesis we investigate quantum dynamics in phase-space through Wigner’s representa-
tion of quantum mechanics, named after Eugene Wigner who introduced it in 1932 [1]. We
use Wigner’s current, also known as phase-space flux [2], and at times incorrectly referred to
as Wigner ‘flow ’ [3, 4]. The term flow refers to the motion of, for example a fluid, whereas
here we focus on the current: the rate of flow per unit area of the fluid. Consider this fluid
to be a probability distribution. Its associated current is called the probability current. In
quantum mechanics, the position and momentum probability distributions combine in phase-
space to form the Wigner distribution. Its associated current is called the Wigner current.
Thus, the Wigner current is the phase-space counterpart of the quantum-mechanical proba-
bility currents [5]. But the Wigner distribution is not a probability distribution in its strict
mathematical sense, as it can assume negative values. Nevertheless it is a distribution function
and it is the “closest quantum analogue of the classical phase-space distribution” [6]. Thus,
Wigner’s current is the closest quantum analogue of the classical phase-space current.

This alternative approach of investigating quantum dynamics through Wigner’s represen-
tation, is still at the early stages of its potential and it is highly understudied. This is partly
due to the great success of the path integral formulation, even though, historically speaking,
Wigner’s representation preceded the path integral formulation. Also, Wigner’s representa-
tion, in its early formulations, had great opponents, like Paul Dirac (Wigner’s brother-in-law),
who had reservations about Moyal’s methods [7], and was against the formulation of quan-
tum mechanics in phase-space, due to the uncertainty principle [8]. Dirac in the end was
wrong: the uncertainty principle does not preclude the existence of quantum mechanics in
phase-space. In the words of Cosmas K. Zachos: “In this logically complete and self-standing
formulation, one need not choose sides — coordinate or momentum space. It works in full
phase-space, accommodating the uncertainty principle” [9]. “Some believe it will supplant, or
at least complement, the other methods in quantum mechanics and quantum field theory”[10].

We would like to mention that Moyal worked on quantum phase-space during the 1940s,
though most certainly during his spare time, as he was employed by the De Havilland Air-
craft Company at Hatfield, Hertfordshire, UK, for his “wartime research centred on electronic
instrumentation and different continuous systems and their electrical analogues” [7]. We are
proud to also have worked on quantum phase-space under the same ‘roof’.

Next, we discuss the motivational and historical background to the study of quantum
dynamics in phase-space, and of our alternative approach. First we highlight the benefits
of Wigner’s representation against the more traditional Schrödinger’s representation, in Sec-
tion 1.1. Later, in Section 1.2, we compare the hydrodynamical to the current-based approach
of investigating quantum mechanics. Finally, in Section 1.3, we discuss our choice of systems
under consideration, and provide a summary of results. The structure of the remaining part
of this thesis is outlined in Section 1.5.

1.1 Wigner’s vs Schrödinger’s Representation

A pure state of a quantum mechanical system is represented by a state vector or density
matrix in Hilbert space. A mixed state (an ensemble of pure states) is represented as a density
matrix [11]. Choosing a basis, for example position or momentum, a pure state is represented

1
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by its wave function. The continuity equation describing the dynamics of the wave function
is known as Schrödinger’s equation, represented in either position or momentum space.

Choosing phase-space as the basis, both position and momentum are represented as vari-
ables, simultaneously, avoiding position and momentum operators. In phase-space, the state
of the quantum system is represented by the Wigner distribution [1] (the Wigner-transform
of its density matrix). The Wigner distribution combines in phase-space the position and
momentum quantum-mechanical probability distributions, but since it can assume negative
values, it is not a probability distribution. It is therefore referred to as a quasi -probability
distribution. The continuity equation which describes the dynamics of the Wigner distribu-
tion is called the quantum Liouville or Wigner equation [1] (the Wigner-transform of the von
Neumann equation). Thus, Wigner’s representation applies to pure and mixed states.

The quantum Liouville equation can be resolved into kinetic and potential energy terms,
giving rise to Wigner’s current. This is generally true when the system under consideration
has a Hamiltonian expressed as a sum of kinetic and potential energies. But for quantum
systems with different Hamiltonians, for example field oscillators, like the non-linear Kerr
oscillator (studied in this thesis), the quantum Liouville equation is expressed in terms of
the Moyal bracket (the quantum analogue of the Poisson bracket), named after José Moyal
who introduced it in 1949 [12]. For such cases, extracting the Wigner current components is
non-trivial and requires a certain knowledge of the symmetries of the system. For example,
it is well-known that the solutions to the eigenstates of the Kerr oscillator are the eigenstate
solutions of the harmonic oscillator. Thus, the dynamics and therefore the Wigner current of
the Kerr oscillator must obey similar symmetries to the harmonic oscillator.

Due to Moyal’s work, the quantum Liouville equation is sometimes referred to as Moyal’s
equation. Its integral form was derived by George Baker in 1958 [13].

For systems governed by the classical equations of motion, such as Harmonic systems and
their isomorphic partners [14] (including forced systems, and systems studied at the classical
limit of ~ → 0), the quantum-mechanical phase-space formulation provides a simpler and,
in this sense, even superior approach for their study of quantum dynamics compared to the
standard Schrödinger wave function propagators [15], making it easier to compare quantum
and classical mechanics [16].

1.2 A Hydrodynamical vs Current-based Approach

The ideas of a pilot wave theory presented by Louis De Broglie in 1927 [17] lead to the hydro-
dynamic formulation of quantum mechanics, also referred to as quantum hydrodynamics [18],
since it resembles classical hydrodynamics. Quantum hydrodynamics was developed by Er-
win Madelung in 1927 [19], and independently (following De Broglie’s pilot wave theory), by
David Bohm in 1952 [20, 21]. Madelung’s and Bohm’s quantum hydrodynamic formulations
are mathematically equivalent, but Bohm’s theory was more in line with De Broglie’s pilot
wave theory and thus it is now known as De Broglie-Bohm theory. It predicts the existence
of quantum trajectories in position space. Their existence arises from the particle nature,
whereas, the wave nature of the quantum system is depicted by Schrödinger’s representa-
tion. As it is postulated by the pilot wave theory, the quantum particle is guided by its wave
function. The path traced by the quantum particle, is its quantum trajectory.

Mathematically, Schrödinger’s and Bohm’s (and Madelung’s) representations are equiv-
alent and so the existence of quantum trajectories cannot be disputed as long as quantum
mechanics is considered to be a valid theory. But rather, it is the interpretation of the quan-
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tum trajectories which is in dispute and has puzzled physicists since their formulation. For
example, it is believed that they were “originally introduced with the aim of arriving at a
‘realistic interpretation’ of quantum theory” [22]. Instead, one can think of the quantum tra-
jectories as the set of possible paths that the quantum particle can follow. This is similar to
the idea of the set of possible eigenvalues of an operator, e.g. the momentum operator [23].
In fact, the quantum force associated with the trajectory of the quantum particle, is the total
derivative of the momentum eigenvalues [19, 20].

Although quantum trajectories do have experimental significance [24], they are considered
surreal [22] due to the uncertainty principle, as one cannot simultaneously measure the exact
position and momentum of a quantum particle [25].

The quantum hydrodynamic equations were also derived through Wigner’s representa-
tion by Takabayasi in 1954 [15], and it was later shown that the De Broglie-Bohm theory
is the projection of Wigner’s representation onto position space [26]. Quantum trajectories
have therefore also been developed in phase-space. They are of great interest in theoretical
chemistry since the complexity of chemical systems forces us to find simplifications to make
calculations of quantum dynamics tractable. But since the quantum phase-space velocity field,
and its divergence, depend on the reciprocal of the density (the Wigner distribution) of the
system, they are rendered useless as they can be singular for anharmonic systems at the zero
lines of the density. Thus, quantum trajectories in phase-space cannot be defined globally,
with the exception of harmonic systems [5, 27]. Efforts to overcome these singularities and
analyse quantum phase-space through a trajectory-based description, have mainly been fo-
cused on semi-classical approximations [28–36], which are employed to avoid the generation
of negativities of the Wigner distribution. Attempts to avoid negativities also include the
use of the Husimi distribution (which is a smoothed Wigner distribution, and is everywhere
positive), but then numerical and computational issues arise [37].

In this thesis, we multiply the quantum phase-space velocity field with its density, giving
rise to the Wigner current. Unlike its velocity field, the Wigner current is non-singular and
has a finite divergence, allowing us to carry out computational modelling of the dynamics
of the system more accurately and robustly. Instead of developing quantum trajectories in
phase-space, in this thesis we depict the instantaneous portraits of Wigner current’s fieldlines
(similar to phase-space portraits) and through their time-evolution we analyse the dynamics
of quantum systems.

1.3 Summary of Results

In our attempt to investigate quantum tunnelling in phase-space using the Wigner distribu-
tion of an asymmetric double-well potential [38], we came across Wigner’s current. We were
intrigued by the new and interesting insights into quantum dynamics offered by the Wigner
current. Even though for anharmonic potentials the Wigner current does not obey Liouville’s
theorem [5], we were able to demonstrate that its topological charge (the Poincaré-Hopf index
of its stagnation points) is conserved. We also demonstrated that, just like the marginal projec-
tions of the Wigner distribution are the quantum-mechanical probability distributions, equiv-
alently, the marginal projections of Wigner current’s components are the quantum-mechanical
probability currents [4].

In this thesis, we present additional symmetries and projections of the Wigner current
components. We also investigate Wigner’s current through anharmonic potentials, such as
the Eckart, Rosen-Morse and Morse potentials [39]. The Morse potential has theoretical
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significance to chemistry as it is a convenient potential energy model of a diatomic molecule.
Here we focus on the simplest, most intuitive, and analytically accessible aspects of the Wigner
current. This was done by utilising weakly-anharmonic weakly-excited bound-states of time-
reversible one-dimensional quantum-mechanical systems. We consider eigenstates and their
pure two-state superpositions, rendering the dynamics periodic. The main result of this work
is that Wigner current’s fieldline portraits of weakly-anharmonic potentials can be grouped
into three distinct classes: hard (Eckart), soft (Rosen-Morse), and odd (Morse), which are
benchmarked against the harmonic oscillator. It is shown that these three classes of weakly
anharmonic potentials distort Wigner current’s features in characteristic fashions. From the
perspective of Wigner current’s fieldline portraits and stagnation points, the odd (Morse) can
be represented as a hybrid of both the hard (Eckart) and soft (Rosen-Morse). Additionally,
through these fieldline portraits it is also shown that there cannot be a smooth transition
between classically governed and quantum phase-space dynamics of anharmonic systems.

We also stress the usefulness of the integral form of Wigner’s representation as an alterna-
tive to the popular Moyal bracket [12]. The integral form brings out the symmetries between
momentum and position representations of quantum mechanics, is numerically stable, and
allows us to perform some calculations using elementary integrals instead of Groenewold star-
products [40]. The associated integral form of the Wigner current is used in an elementary
proof which shows that only systems up to quadratic in their potential, are able fulfil Li-
ouville’s theorem of volume preservation in quantum mechanics [5]. Contrary to a recent
suggestion [41], this proof shows that the non-Liouvillian nature of quantum phase-space dy-
namics, cannot be transformed away.

Wigner’s current can provide a more intuitive approach for the study of quantum dynamics
and a more accessible comparison tool between quantum and classical mechanics. This is
demonstrated through Ehrenfest’s theorem, which is one of the many (but arguably one of the
best) examples of the correspondence principle between quantum and classical mechanics. In
this thesis, it is shown that the average velocity and average force, which are part of Ehrenfest’s
theorem, are the average (overall phase-space) of Wigner current’s components [5]. Being able
to reformulate Ehrenfest’s theorem using Wigner’s current, in this simpler and mathematically
more intuitive way, than it is currently taught, it is a testimony to the growing idea that
“quantum mechanics lives and works in phase-space” [9].

1.4 Higher Dimensions

In this thesis our investigation is limited to one-dimensional (one-degree of freedom) systems.
Thus, we are able to visualise Wigner current’s fieldline portraits in a two-dimensional phase-
space. For higher degrees of freedom, say for two-dimensions, this requires a four-dimensional
phase-space, which is harder to visualise.

In order to represent a system in n-dimensions (n-degrees of freedom), the system requires
at least n-constants of motion and the Poisson bracket of their pairs must also vanish. Such
a system is referred to as an integrable system. If a system is non-integrable, it cannot be
expressed in more than one dimensions. These systems are usually referred to as chaotic or
irregular [42]. In this thesis, our systems under consideration are not chaotic, they are either
harmonic or anharmonic.

To construct the eigenfunctions of the systems under consideration in this thesis, we make
use of supersymmetric quantum mechanics, which utilises an integrability condition, the shape
invariance condition [43, 44]. Furthermore, we focus on conservative systems (apart from
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the Rabi oscillations) with time-independent potentials. This implies conservation of energy.
Thus, the energy is a constant of motion. To express our findings in this thesis, to say three
dimensions, one needs to determine at least two more constants of motion and together with
the energy of the system, the Poisson bracket of their pairs must also vanish.

1.5 The Structure of this Thesis

Classical phase-space is discussed in Chapter 2. Schrödinger’s quantum mechanics is discussed
in Chapter 3. Wigner’s quantum mechanics, the quantum analogue of classical phase-space is
discussed in Chapter 4. The numerical aspects of this research project are discussed in Chap-
ter 5. In Chapter 6 we investigate when Wigner’s current (introduced in Section 4.3) obeys
Liouville’s theorem. The degenerate form of the Wigner current of the quantum harmonic
oscillator is discussed in Chapter 7. The semi-degenerate Wigner current of the Kerr oscilla-
tor is discussed in Chapter 8 and the non-degenerate Wigner current of weakly anharmonic
potentials is discussed in Chapter 9. We conclude in Chapter 10 where we also provide a list
of contributions to knowledge achieved in this research project and an outlook for future work.
Finally, Appendix A provides a list of useful functions which were used in the derivation of
some of the formulae in the main text, and Appendix B provides a list of our published work.



2 Classical Phase-Space

Classical phase-space was developed in the late 19th century [45]. It consists of all possible
states of a classical system with unique position and momentum coordinates. The time evolu-
tion of the system generates sharply defined and non-crossing classical phase-space trajectories
allowing the viewer to characterise the system’s dynamics. The collection of all the classical
system’s trajectories, its phase portrait, is ordered by the fact that the dynamics obey Li-
ouville’s theorem (on phase-space volume preservation), and can be analysed with powerful
mathematical techniques [42, 45, 46].

This chapter provides an overview of these techniques for the analysis and visualisation of
a system’s classical phase-space, starting with the definition of the classical phase portrait in
Section 2.1 and its associated velocity field in Section 2.2. The discussion is also extended to
Liouville’s theorem in Section 2.3. Finally, Section 2.5 introduces stagnation point numerology
for the classification of the stagnation points formed in a phase portrait used later in this thesis.

The ideas discussed in this Chapter, do not fully carry over to quantum mechanics, since
Heisenberg’s uncertainty principle [25] precludes the existence of a sharply defined quantum
phase-space trajectory (see Chapter 4).

2.1 Classical Phase Portrait

One-dimensional phase-space is represented by a phase plane; a coordinate plane with axes the

position x and momentum p. A unique point with coordinates r =
(
x
p

)
in this phase plane,

represents the state of a classical system. The evolution of the state over time t, the state’s
trajectory, has a specific set of phase plane coordinates {(x(t), p(t)) ∀ t}. For each coordinate r,

the state of the system has an associated velocity field u =
(
ẋ(t)
ṗ(t)

)
1 (discussed in Section 2.2,

its quantum analogue is discussed in Chapter 4), which is tangent to the trajectory. The
set of all trajectories is referred to as the phase portrait of the system, see Figs. 2.1 and 9.1.
Hereinafter, reference to the time-dependence of x and p, is dropped.

2.2 Classical Phase-Space Velocity Field

As mentioned in Section 2.1, a unique point with coordinates r = (x, p) in the phase plane,
represents the state of the classical system. The evolution of the state over time t, the state’s

trajectory, has an associated velocity field u =
(
ẋ
ṗ

)
, tangent to the trajectory. Starting with

the definition of the total derivative of a classical probability distribution, this Section presents
the time evolution of a conservative classical system and its phase-space velocity field u.

The total derivative2 of a probability distribution ρ of a conservative classical system, is

Dρ

Dt
≡ ∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u = 0 , (2.1)

1The dot on top of a letter, such as, ẋ and ṗ, implies the time derivative of x and p, respectively.
2Also known as the derivative following the motion, comoving, material, convective, advective, substantive,

substantial, Lagrangian, Stokes, particle, and hydrodynamic derivative.

6
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where we made use of the conservation equation of the probability distribution (note that
j = ρu is the associated classical phase-space current),

∂ρ

∂t
+∇ · j =

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0 . (2.2)

The dynamics of the system are represented by the velocity field u,

u =
j

ρ
=

(
ẋ
ṗ

)
=

( ∂H
∂p

−∂H
∂x

)
=

( p
M

−d V (x)
dx

)
, with H =

p2

2M
+ V (x) , (2.3)

where H is the classical Hamiltonian with particle mass M representing the total energy of the
system. The contour lines of a plot of H in x and p, are the corresponding classical phase-space
trajectories of the system. They represent the motion of a particle moving in one-dimension x,
under the influence of, in our case, a static potential V (x). Therefore, classical phase-space
trajectories in conservative classical systems do not cross and are fixed; lineation in phase-
space, see Figs. 2.1 and 9.1. In Eq. (2.3), ẋ = ∂H

∂p = p
M and ṗ = −∂H

∂x = −dV (x)
dx , are referred

to as Hamilton’s equations of motion, where ẋ and ṗ are recognised as the velocity and the
force (from Newtonian mechanics), respectively, that the particle in the system is subject to.

2.3 Liouville’s Theorem on Volume Preservation

As mentioned in Section 2.2, for a conservative classical system, the total derivative of its
probability distribution ρ is zero, see Eq. (2.1). This implies that the system’s state density
remains unchanged as the system evolves in time [45]. In other words, an area of a system’s
classical phase portrait, remains constant as the system evolves in time. This is known as
Liouville’s theorem. Thus, assuming ρ is non-zero, the classical phase-space velocity field u

must be divergence-free and it is since ∇ · u = ∂x
( p
M

)
− ∂p

(
dV (x)
dx

)
= 0, implying that u

is incompressible. For the systems under consideration in this thesis, the incompressibility
condition precludes the formation of sinks and sources in phase-space when visualising the
fieldlines of u. A velocity field with zero divergence, can also be written as the curl of a vector
potential A [47]. Thus, u = ∇ ×A given that ∇ · u = 0, and since u is a two-dimensional
vector field, A is a vector perpendicular to u. For classical phase-space A takes the form,

A =

 0
0
H

 since u =

 p
M

−d V (x)
dx
0

 =∇×A =

 ∂pH
−∂xH

0

 , (2.4)

where H is given in Eq. (2.3). In Chapter 6, it will be shown that the quantum analogue of
the classical phase-space velocity field, can be written as the curl of A in Eq. (2.4) only in
special cases, namely in the absence of the quantum correction terms.

2.4 Hamiltonian & Lagrangian Mechanics

As already discussed, in conservative one-dimensional classical-mechanical systems, the energy
of the system, its Hamiltonian H, is the sum of kinetic and potential energies, as in Eq. (2.3).

For time-independent potentials, H does not explicitly depend on time t, i.e. ∂tH = 0.
But H is implicitly time-dependent through its velocity field u defined in Eq. (2.4). The total
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time derivative of H then takes the form,

dH
dt

= ∂tH+ u · ∇H = −H∇ · u , (2.5)

which vanishes (dHdt = 0) in conservative systems with time-independent potentials, as the
energy of the system is a constant of motion.

Alternatively, the implicit time-dependence of the Hamiltonian H can be demonstrated
as follows. The force of the system can be derived starting from the velocity of the system
(ẋ = p/M = ∂pH), where the momentum p can be written in terms of the Hamiltonian H and
potential V , as

p = Mẋ = ±
√

2M(H− V ) . (2.6)

Differentiating p in Eq. (2.6) with respect to t, (where dV
dt = dV

dx ẋ),

ṗ = ∓dV
dt

√
M

2(H− V )
= −dV

dx
= −∂xH . (2.7)

The implicit time-dependence of H, is illustrated by multiplying both sides of Eq. (2.7) with
the velocity ẋ = p

M , and integrating in t (
´ p
M ṗ dt = −

´
dV
dx ẋ dt). This calculation takes us

back to the Hamiltonian H of the system,

ˆ
p

M
dp = −

ˆ
dV

dx
dx→ H =

p2

2M
+ V , (2.8)

where H appears as an integration constant.

The Lagrangian of a conservative system is defined as

L =
p2

M
−H =

p2

2M
− V =

dS

dt
, (2.9)

where S is Hamilton’s principal function [48]. Therefore, the Lagrangian is the total derivative
of Hamilton’s principal function. Note that the total derivative of S, is

dS

dt
= ∂tS + ẋ∂xS . (2.10)

Comparing Eqs. (2.9) and (2.10), one will see a connection between the H and S. In fact,
H = −∂tS and the gradient of S, ∂xS, is the momentum p.

Going from the classical to the quantum mechanical description of a system, the potential V
which appears in H and L, in the equations above, includes a quantum term, the quantum
potential [18], and S is the phase of the quantum mechanical wave function in polar form [20].
In the following parts of this thesis, we will not refer to Hamilton’s principal function S again.
It is only mentioned here because in the hydrodynamic formulation of quantum mechanics,
David Bohm in his 1952 papers [20, 21], he used Hamilton’s principal function S. But this
can be avoided noting that the gradient of S, ∂xS, is the momentum p, as we will see next in
Chapter 3.
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2.5 Stagnation Point Numerology

The trajectories formed in classical phase-space, discussed so far in this Chapter, reveal stag-
nation points3 where the system’s underlying phase-space velocity field stops completely. For
classical systems, these stagnation points appear on the position axis (p = 0) and whenever

the force is zero (−dV (x)
dx = 0), see Eq. (2.3). Therefore, formation of stagnation points away

from the position axis is prohibited in classical phase-space. The velocity field u in Eq. (2.3)
forms stagnation points of a vortex, separatrix and saddle at the potential’s minima, max-
ima and saddle points, respectively. Saddle points of the potential are a combination of a
vortex and a separatrix phase portrait. Fig. 2.1 demonstrates this merging of a vortex and a
separatrix to form a saddle through changes of the potential. Going from panel (A) to (C)
of Fig. 2.1, the central minimum in panel (A) is shifted towards the right getting closer to one
of its neighbouring maximums in panels (B). The minimum and maximum of the potential,
are located at the same point on the x-axis in panel (C), effectively merging and forming a
saddle phase portrait.

x

V

p

x

x

V

p

x

x

V

p

x

(A) (B) (C)

Figure 2.1 The top half of each panel ((A) to (C)), depicts a potential V , and
the bottom half the potential’s corresponding classical phase portrait presented as
a selection of phase-space trajectories (or contour lines of its Hamiltonian H in
Eq. (2.3), blue and black lines), presented together with the associated velocity
field u in Eq. (2.3) (grey thick arrows). Thick blue lines represent the trajectories
at the isosurface value of the Hamiltonian corresponding to the central minimum
for panel (A), which is then shifted towards the right in panels (B) and (C) where in
panel (C) it merges with its neighbouring maximum on its right. Note that at the
location of the potential’s minimums, the stagnation point of a vortex is formed.
Similarly, thick black lines correspond to the trajectories at the two maximum
points of the potential with the formation of a separatrix at these points. On the
right-hand-side of panel (C), one set of thick black and blue lines appear on top of
each other forming a saddle point. The stagnation points of each phase portrait
carries a flow orientation winding number ω, and is labelled as in Fig. 2.2.

In this thesis, apart from the quantum harmonic oscillator (Chapter 7) and the non-linear
Kerr oscillator (Chapter 8), the three classes of weakly anharmonic potentials are also under

3In classical physics, they are also referred to as equilibrium, stationary, fixed, critical, invariant and rest
points [46], and in the field of singular optics, they are called singular points because the direction of the velocity
field changes discontinuously in their immediate neighbourhood; passing from one side, through the singular
point, to the other side, the velocity field’s direction jumps discontinuously, i.e. exhibits a singularity [49].
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investigation (Chapter 9); see Fig. 9.1 where they are presented together with their classical
phase portraits. For their respective equations see Tables 3.1 and 9.1.

The topological nature of stagnation points orders the corresponding velocity field in large
surrounding sectors of phase-space. They carry a conserved topological charge of the surround-
ing velocity field’s orientation winding number ω [4], also known as the stagnation point’s
Poincaré-Hopf index. This is making their appearance robust to perturbations of the poten-
tial (see Fig. 2.1).

The orientation winding number ω [4], of the velocity field

ω(L, t) =
1

2π

ffi
L
dϕ (2.11)

tracks the orientation angle ϕ of the velocity field along continuous, closed, self-avoiding
loops L in phase-space. The components of the velocity field are continuous functions, and
so ω is zero except for the case where the loop contains stagnation points, such as those
sketched in Fig. 2.2, for which a non-zero value of ω can occur. The value of ω stays constant
unless the system’s dynamics transports a stagnation point across L [4].

For infinitely high (or closed) potentials, like in Fig. 2.1, its overall orientation winding
number is +1, according to the definition of Eq. (2.11). That is, if one places a large enough
loop in phase-space to enclose all possible stagnation points, Eq. (2.11) yields the value +1.
In other words, for closed potentials, if one adds together all the winding numbers correspond-
ing to each stagnation point (refer to Fig. 2.2), the net value will be +1. As an example,
see Fig. 2.1.

Figure 2.2 Phase-space velocity field stagnation points are characterised by their
integer orientation winding number (or topological charge [49]) ω in Eq. (2.11),
of the velocity field around them. The red plus sign is used for stagnation points
with charge ω = +1, a yellow minus sign for ω = −1, and a white circle for ω = 0.
Notably, the velocity field near stagnation points can be skewed in phase-space, can
feature skewed separatrices, and saddles oriented in any direction. The topological
charges [49] can be combined or split through the system’s time evolution while
their sum remains conserved [4].



3 Schrödinger’s Quantum Mechanics

The wave-particle duality concept (see Section 3.1), has lead to the development of quantum
mechanics and the description of the quantum state of a system using the wave function (see
Section 3.2), and its probability distribution which provides physical information about the
quantum state of a system (see Section 3.3). In this thesis we also investigate the Rabi cycle
which exhibits reversible dynamics (see Section 3.5). Finally, Section 3.6 provides an analytical
method for the construction of bound-states of a static potential used in this thesis.

As mentioned in the introduction (see Chapter 1), in this thesis we only consider one-
dimensional conservative bound-state quantum-mechanical systems. Hereinafter, any refer-
ence to quantum-mechanical systems, implies the use of the Hamiltonians expressed as a sum
of kinetic and potential energies as in Eq. (3.11), but in general, quantum systems include
field oscillators like the non-linear Kerr oscillator (see Chapter 8), also studied in this thesis.

3.1 Wave-Particle Duality

The photon is a wave packet that displays particle-like behaviour in interactions like the
photoelectric effect, whereas in experiments like the Young’s double-slit experiment the photon
behaves like a wave. The energy E of each photon of light is proportional to its frequency f
with a proportionality constant h known as Planck’s constant, E = hf = ~ω, where ~ = h/(2π)
is Planck’s constant rescaled, and ω = 2πf is the angular frequency (from Chapter 7 onwards
~ = 1 for simplicity). Also, the relativistic energy equation of a particle of rest mass m0 is
given by E2 = p2c2 +m2

0c
4 where c is the speed of light and p is the momentum of the particle.

Thus, treating photons as relativistic ‘particles’ of zero rest mass moving at the speed of light,
their energy is E = pc = hf = h cλ , where λ is the photon wavelength. This implies that λ = h

p ,
which is known as the de Broglie wavelength. Conversely, an electron is a point-like particle,
but when travelling with speed v = p

m it behaves like a wave with a wavelength λ = h
p .

Generally, quantum mechanics predicts that both the wave and particle model apply to
all objects whatever their size [50] with wave-like behaviour that is represented by a complex-
valued wave function Ψ(x, t) which has a probabilistic interpretation.

3.2 Wave Functions

For a single particle system, this complex-valued wave function Ψ(x, t), is a mathematical
representation in position space of the physical state of a quantum system. Its mathematical
representation in momentum space is described by the associated wave function Ψ̃(p, t), defined
as the Fourier transform of Ψ(x, t) while Ψ(x, t) is the inverse Fourier transform of Ψ̃(p, t) [51],

Ψ̃(p, t) =
1√
2π~

ˆ ∞
−∞

Ψ(x, t)e−
i
~px dx ⇐⇒ Ψ(x, t) =

1√
2π~

ˆ ∞
−∞

Ψ̃(p, t)e+ i
~px dp . (3.1)

The wave function contains all the information of the system.

Being complex, the wave function itself cannot be identified with a single physical prop-
erty of the system [50]. Instead, it can be used to obtain physical information, such as the
probability P (x, t) of finding the particle at a given position x or probability P̃ (p, t) of finding

11
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the particle with a given momentum p, discussed further in Section 3.3,

P (x, t) = |Ψ(x, t)|2 = Ψ∗(x, t)Ψ(x, t) and P̃ (p, t) =
∣∣∣Ψ̃(p, t)

∣∣∣2 = Ψ̃∗(p, t)Ψ̃(p, t) , (3.2)

where asterisk (*) denotes complex conjugation.
The following conditions are imposed on the wave functions Ψ and Ψ̃:

• The wave function must be a continuous, single-valued function.

• The first derivative of the wave function must be continuous everywhere except where
there is an infinite discontinuity in the potential.

• The integral of the probability distribution of the wave function over x, must be one,ˆ ∞
−∞

P (x, t) dx = 1 and

ˆ ∞
−∞

P̃ (p, t) dp = 1 . (3.3)

Hereinafter, eigenstate wave functions (or eigenfunctions), are denoted as ψm(x) and ψn(x),
and are solutions to the Schrödinger equation in Eq. (3.10). Their two-state superpositions
and probability distributions are denoted as Ψm,n(x, t) and Pm,n(x, t), respectively.

3.2.1 Two-State Superpositions

For the investigation of quantum dynamics we utilise in this thesis the two-state superposi-
tion Ψm,n, which is simultaneously described by two states denoted by the state indices m,n,

Ψm,n(x, t) = e−i
Em
~ t cos(θ)ψm(x) + e−iϕe−i

En
~ t sin(θ)ψn(x) , (3.4)

where Em and En are the corresponding eigenenergies of ψm and ψn, respectively; θ ∈ [0, π/2]
is the weighting angle, and ϕ ∈ [0, 2π) is the phase shift. Rearranging Eq. (3.4), yields

Ψm,n(x, t) = e−i
Em
~ t
(

cos(θ)ψm(x) + e−i
∆E
~ (t+ ϕ~

∆E ) sin(θ)ψn(x)
)
, (3.5)

where ∆E= |En − Em| is the energy difference between the two states, which determines the
time it takes for the wave function in Eq. (3.5) to complete one oscillation, its period T ,

Tm,n =
2π~
∆E

=
2π

|En − Em|
. (3.6)

The overall phase factor in Eq. (3.5) is eliminated due to the complex conjugate in Eq. (3.2),

Ψm,n(x, t) = cos(θ)ψm(x) + e−i
∆E
~ (t+ ϕ~

∆E ) sin(θ)ψn(x) , (3.7)

The phase shift ϕ in Eq. (3.7) has the effect of only shifting the time, and therefore for
simplicity we always set ϕ equal to zero in Eq. (3.7), reducing it to

Ψm,n(x, t; θ) = cos(θ)ψm(x) + e−i
∆E
~ t sin(θ)ψn(x) , (3.8)

with probability distribution (see Eq. (3.2)),

Pm,n(x, t; θ) = cos2(θ)ψ2
m(x) + sin2(θ)ψ2

n(x) + cos (∆Et/~) sin(2θ)ψm(x)ψn(x) . (3.9)

For eigenfunctions, probability distributions are time-independent due to the complex conju-
gate in Eq. (3.2), which eliminates the time dependence in Eq. (3.12).
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3.2.2 Schrödinger Equations

The time evolution of the wave function described by a pure state, is determined by a wave
equation known as Schrödinger’s equation. Its position space form is presented first, followed
by its momentum space counterpart. Position and momentum space in Schrödinger’s repre-
sentation are related through Fourier transforms, see Eq. (3.1).

Schrödinger Equation In Position Space

The non-relativistic Schrödinger equation in position space which determines the time evolu-
tion of a pure state Ψ(x, t), of a single particle constrained to move along a straight line (the x-
axis), under the influence of a time-independent potential V (x), is [50]

i~∂tΨ(x, t) = ĤΨ(x, t) =

[
− ~2

2M
∂2
x + V (x̂)

]
Ψ(x, t) , (3.10)

where Ĥ is the Hamiltonian operator

Ĥ = − ~2

2M
∂2
x + V (x̂) . (3.11)

The Hamiltonian operator is related to the classical Hamiltonian H = p2

2M + V (x) (discussed
in Section 2.2), via operators in quantum mechanics, not discussed in this thesis.

Since the potential V is time-independent, applying the ‘separation of variables’ technique
to Eq. (3.10), by substituting Ψn(x, t) = ψn(x)Tn(t), yields

Ψn(x, t) = ψn(x)e−
iEn
~ t . (3.12)

Note that ψn(x) in Eq. (3.12) is the solution of the time-independent Schrödinger equation,

Enψn(x) = Ĥψn(x) =

[
− ~2

2M

d2

dx2
+ V (x̂)

]
ψn(x) , (3.13)

where En is the corresponding eigenenergy. The bound-state solutions (see Section 3.6), of the
time-independent Schrödinger equation of Eq. (3.13), form a discrete set of eigenfunctions ψn
with a corresponding set of eigenenergies En.

If the spatial part ψn(x) of the time-dependent wave function in Eq. (3.12), is normalised,
then the time-dependent wave function, Ψn(x, t), is also normalised, since,

|Ψn(x, t)|2 = Ψn(x, t)Ψ∗n(x, t) = ψn(x)e−
iEn
~ tψ∗n(x)e

iEn
~ t = |ψn(x)|2 . (3.14)

The Hamiltonian in Eq. (3.11) is a Hermitian operator. An important property of the
eigenfunctions of a Hermitian operator is known as orthonormality,

ˆ
ψ∗m(x)ψn(x)dx = δmn , (3.15)

where δmn is the Kronecker delta. Orthonormality means that the individual eigenfunctions
of a Hermitian operator are both, normalised and non-overlapping.
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Schrödinger Equation In Momentum Space

To derive the Schrödinger equation in momentum space [52, 53], one can take the Fourier
transform to momentum of the position space Schrödinger equation in Eq. (3.10),

1√
2π~

ˆ ∞
−∞

[
i~
∂Ψ(x, t)

∂t
= − ~2

2M

∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t)

]
e−

i
~px dx . (3.16)

The total energy term of Eq. (3.16), according to Eq. (3.1), is

1√
2π~

ˆ ∞
−∞

i~
∂Ψ(x, t)

∂t
e−

i
~px dx = i~

∂Ψ̃(p, t)

∂t
. (3.17)

The kinetic energy term of Eq. (3.16), when integrated by parts twice, becomes

1√
2π~

ˆ ∞
−∞
− ~2

2M

∂2Ψ(x, t)

∂x2
e−

i
~px dx =

p2

2M

1√
2π~

ˆ ∞
−∞

Ψ(x, t)e−
i
~px dx =

p2

2M
Ψ̃(p, t) . (3.18)

For the potential term of Eq. (3.16), substitute the Fourier transform of Ψ in Eq. (3.1) and V
as the inverse Fourier transform of the momentum space potential Ṽ , defined as,

V (x) =
1√
2π~

ˆ ∞
−∞

Ṽ (p)e
i
~px dp ⇐⇒ Ṽ (p) =

1√
2π~

ˆ ∞
−∞

V (x)e−
i
~px dx , (3.19)

and performing a change of variables, p1 = p′′ − p′ and p2 = p′, with the absolute of the
Jacobian |J | = 1, and using the Dirac δ function, yields

1√
2π~

ˆ ∞
−∞

V (x)Ψ(x, t)e−
i
~px dx =

1

(2π~)
3
2

˚ ∞

−∞
Ṽ (p1)Ψ̃(p2, t)e

i
~x(p1+p2−p) dp1 dp2 dx

=
1

(2π~)
3
2

˚ ∞

−∞
Ṽ (p′′ − p′)Ψ̃(p′, t)e

i
~x(p′′−p) dp′′ dp′ dx

=
1√
2π~

¨ ∞

−∞
Ṽ (p′′ − p′)Ψ̃(p′, t)δ(p′′ − p) dp′′ dp′

=
1√
2π~

ˆ ∞
−∞

Ṽ (p− p′)Ψ̃(p′, t) dp′ , (3.20)

known as the convolution Eq. (A.7) of Ṽ and Ψ. Thus, the Fourier transform to momentum
of the position space Schrödinger equation in Eq. (3.16), yields

i~
∂Ψ̃(p, t)

∂t
=

p2

2M
Ψ̃(p, t) +

1√
2π~

ˆ ∞
−∞

Ṽ (p− p′)Ψ̃(p′, t) dp′ . (3.21)

For simplicity, hereinafter, reference to time t is dropped, unless necessary.

3.3 Probability Distributions

In this Section we reformulate P and P̃ in Eq. (3.2), and also reformulate their respective
probability currents. These reformulations show how Wigner’s representation of quantum
mechanics naturally arises from Schrödinger’s representation using Fourier transforms.
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Substituting for Ψ̃ in Eq. (3.1), into P̃ in Eq. (3.2), and performing a change of vari-
ables, x1 = x+ y and x2 = x− y (with the absolute of the Jacobian |J | = 2), yields

P̃ (p) = Ψ̃∗(p)Ψ̃(p) =
1

2π~

¨ ∞

−∞
Ψ∗(x1)Ψ(x2)e

i
~p(x1−x2) dx1 dx2 =

1

π~

¨ ∞

−∞
Ψ∗(x+y)Ψ(x−y)e

2i
~ py dy dx .

(3.22)
A similar derivation obtains the following for the probability distribution P of Eq. (3.2),

P (x) = Ψ∗(x)Ψ(x) =
1

π~

¨ ∞

−∞
Ψ̃∗(p+ s)Ψ(p− s)e−

2i
~ xs ds dp . (3.23)

The
´
dy of (3.22) is equal to the

´
ds of (3.23), known as the Wigner function (see Chapter 4).

3.3.1 Probability Currents

Here we discuss the probability currents which describe the transport of the probability distri-
bution in either the position or momentum space. For eigenfunctions, since their probability
distributions are time-independent, their corresponding probability currents are zero.

Similar to the probability distributions, shown in Eqs. (3.22) and (3.23) that can be written
as the projections of the Wigner function W of Eq. (4.1), here we also show that the probability
currents can be written as the projections of the Wigner current J of Eq. (4.16).

The reader is reminded that for simplicity, hereinafter, reference to time t is dropped,
unless necessary.

Probability Current In Position Space

The continuity equation in position space is

∂tP (x) + ∂x(x) = 0 , (3.24)

where  is the probability current in position space, derived by rewriting Eq. (3.24) and
substituting the Schrödinger equation in position space Eq. (3.10),

(x) = −
ˆ x

−∞
∂tP (x′) dx′ = −

ˆ x

−∞
Ψ(x′)∂tΨ

∗(x′) + Ψ∗(x′)∂tΨ(x′) dx′

=
~

2iM

ˆ x

−∞
Ψ∗(x′)∂2

x′Ψ(x′)−Ψ(x′)∂2
x′Ψ
∗(x′) dx′

=
~

2iM
(Ψ∗(x)∂xΨ(x)−Ψ(x)∂xΨ∗(x)) . (3.25)

Substituting Ψ of Eq. (3.1) into Eq. (3.25), and performing a change of variables, p1 = p+ s
and p2 = p− s (with the absolute of the Jacobian |J | = 2), yields

(x) =
1

4π~M

¨ ∞

−∞
Ψ̃∗(p1)Ψ̃(p2)e

ix
~ (p2−p1)(p1 + p2)e

ix
~ (p2−p1) dp1 dp2

=
1

π~M

¨ ∞

−∞
Ψ̃∗(p+ s)Ψ̃(p− s)pe−

2i
~ xs ds dp =

ˆ ∞
−∞

Jx dp , (3.26)

where Jx is the position component of Wigner current J of Eq. (4.16).
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For the superposition state Ψm,n in Eq. (3.8), the probability current  takes the form
(where Ψ = Ψm,n in Eq. (3.25)),

(x) = − ~
2M

sin(2θ) sin(∆Et/~) (ψm∂xψn − ψn∂xψm) . (3.27)

Therefore, for a two-state superposition, at any point on the x-axis, the probability current
has a sinusoidal form in time t (refer to panel (b) of Fig.2. in [4]).

Probability Current In Momentum Space

The continuity equation in momentum space is

∂tP̃ (p) + ∂p̃(p) = 0 , (3.28)

where ̃ is the probability current in momentum space, derived by rewriting Eq. (3.28) and
substituting the Schrödinger equation in momentum space Eq. (3.21),

̃(p) = −
ˆ p

−∞
∂tP̃ (p′′) dp′′ = −

ˆ p

−∞
Ψ̃(p′′)∂tΨ̃

∗(p′′) + Ψ̃∗(p′′)∂tΨ̃(p′′) dp′′

=
1

i
√

2π~3

ˆ p

−∞
dp′′
ˆ ∞
−∞

dp′ Ψ̃(p′′)Ṽ ∗(p′′ − p′)Ψ̃∗(p′)− Ψ̃∗(p′′)Ṽ (p′′ − p′)Ψ̃(p′) . (3.29)

Using Eq. (3.20) and substituting for Ψ̃ of Eq. (3.1) into Eq. (3.29), and performing a change
of variables, x1 = x− y and x2 = x+ y (with the absolute of the Jacobian |J | = 2), yields

̃(p) =
1

i2π~2

ˆ p

−∞
dp′′
¨ ∞

−∞
dx1 dx2 [Ψ(x1)V (x2)Ψ∗(x2)−Ψ∗(x2)V (x1)Ψ(x1)] e

i
~p
′′(x2−x1)

=
1

iπ~2

¨ ∞

−∞
dy dx [V (x+ y)− V (x− y)] Ψ∗(x+ y)Ψ(x− y)

ˆ p

−∞
dp′′e

2i
~ p
′′y

= − 1

π~

¨ ∞

−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy dx

=

ˆ ∞
−∞

Jp dx , (3.30)

where Jp is the momentum component of Wigner current J of Eq. (4.16).

3.4 The Hydrodynamic Formulation

In 1927, Erwin Madelung developed the hydrodynamic equations of quantum mechanics [19].
Independently, in 1952, following De Broglie’s pilot wave theory, David Bohm developed what
we now call the De Broglie-Bohm theory [20, 21]. The basic equations behind this theory, are
equivalent to Madelung’s equations.

Starting from the definition of momentum in position space [23],

p(x) = ~ Im

(
∂xψ

ψ

)
, (3.31)
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the quantum force is the total derivative of p(x) in Eq. (3.31),

dp

dt
= ∂tp+ ẋ∂xp = ∂tp+ ∂x

(
p2

2M

)
= −dV

dx
+

~2

2M
∂x

[
Re

(
∂2
xψ

ψ

)
+ Im2

(
∂xψ

ψ

)]
= −dV

dx
+

~2

4M
∂x

[
∂2
xP

P
− 1

2

(
∂xP

P

)2
]

= −dV
dx

+
~2

4M

1

P
∂x

(
P∂x

(
∂xP

P

))
= −dV

dx
− ∂xQ = −∂xU . (3.32)

The potential term Q is the quantum potential, thus, U = V + Q is the overall potential in
quantum mechanics. For eigenfunctions, U represents the eigenvalue energy of the state.

In Chapter 2, we discussed that the momentum p Eq. (3.31) is the gradient of Hamilton’s
principal function S. It is also worth noting that Eq. (3.31) can also be expressed as [23]

p(x) =
M(x)

P (x)
=
M
´∞
−∞ dp Jx(x, p)´∞
−∞ dpW (x, p)

, (3.33)

where the probability current (x) = ~ Im (ψ∗∂xψ) /M =
´∞
−∞ dp Jx(x, p) as it was already

defined in Eq. (3.26), and P (x) =
´∞
−∞ dpW (x, p), also shown in Eq. (3.23). The function W

is the phase-space Wigner distribution, and Jx is the position component of Wigner’s current.
Both of these functions belong in Wigner’s representation of quantum mechanics discussed
next in Chapter 4. It is well-known that the projection onto position space of Wigner’s
representation, gives rise to the hydrodynamic formulation of quantum mechanics [15, 26],
already discussed in this section.

3.5 The Rabi Cycle

In this Section we briefly discuss the reversible dynamics of the non-conservative but non-
decoherent (and therefore non-dissipative), Rabi cycle [54, 55] of an atom driven on resonance
by incident radiation. In Chapter 9 this on resonance Rabi cycle is used for the study of
Wigner current’s features.

For the superposition of the ground and first-excited states,

Ψ0(x, t) = e−i
E0
~ tψ0(x) and Ψ1(x, t) = e−i

E1
~ tψ1(x) , (3.34)

with eigenenergies, E0 and E1, respectively, the Rabi state ΨR takes the form

ΨR(x, t) = cos

(
ΩR

2
t

)
Ψ0(x, t)− i sin

(
ΩR

2
t

)
Ψ1(x, t) (3.35)

= cos

(
ΩR

2
t

)
e−i

E0
~ tψ0(x)− i sin

(
ΩR

2
t

)
e−i

E1
~ tψ1(x) , (3.36)

(with initial condition: ΨR(x, 0) = ψ0(x)), where ΩR is called the Rabi frequency which is
proportional to the amplitude of the incident electromagnetic field. In the rotating wave
approximation [55], the Hamiltonian ĤR of this Rabi state ΨR in Eq. (3.36) is given by

ĤR =

(
E0

ΩR~
2 ei

∆E
~ t

ΩR~
2 e−i

∆E
~ t E1

)
, (3.37)
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where the energy difference ∆E = E1 −E0 = ω~ and ω = ∆E
~ is the natural frequency of the

system. In this discussion we only consider a Rabi cycle on resonance, therefore ω is also the
driving frequency of the incident radiation.

Discarding: i) the overall phase factor e−i
E0
~ t (which does not affect the corresponding

probability distribution), and ii) the phase shift −i, the Rabi state ΨR in Eq. (3.36) becomes

ΨR(x, t) = cos

(
ΩR

2
t

)
ψ0(x) + sin

(
ΩR

2
t

)
e−i

∆E
~ tψ1(x) . (3.38)

The probabilities of the Rabi state ΨR in Eq. (3.38) being in the ground and first-excited
states, Ψ0(x, t) and Ψ1(x, t) given in Eq. (3.34), are

|〈Ψ0|ΨR〉|2 =

∣∣∣∣ˆ ∞
−∞

Ψ∗0(x, t)ΨR(x, t) dx

∣∣∣∣2 = cos2

(
ΩR

2
t

)
(3.39)

and

|〈Ψ1|ΨR〉|2 =

∣∣∣∣ˆ ∞
−∞

Ψ∗1(x, t)ΨR(x, t) dx

∣∣∣∣2 = sin2

(
ΩR

2
t

)
, (3.40)

respectively. Plots of Eqs. (3.39) and (3.40) are shown in Fig. 3.1 for ΩR = 1
8 . This Rabi state

ΨR in Eq. (3.38) is employed in Chapter 9 for the investigation of Wigner current’s features.

Eq. (3.39)

Eq. (3.40)

Figure 3.1 Plots of Eqs. (3.39) and (3.40) depicting the time evolution of the
probability of the Rabi state ΨR(x, t) in Eq. (3.38) being in the ground and first-
excited states, Ψ0(x, t) and Ψ1(x, t) in Eq. (3.34), respectively, with Rabi frequency
ΩR = 1

8 and ∆E = ~ = 1. Since the system is on resonance, the natural frequency

of the system ω = ∆E
~ = 1 is also the driving frequency of the incident radiation.

The natural period of the system T = 2π
ω = 2π and the time period of this Rabi

cycle TR = 2π
ΩR

= 8T . The periodic colour scheme, which runs between T and 7T
and has a period of T , highlights the portion of the time evolution of the Rabi
cycles depicted in Fig. 3.1. The grid lines indicate values of the probability at the
passing of each natural period T (vertical black dash lines) of the system.
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3.6 Bound-States

Here we discuss the analytical method used in this thesis for the construction of bound-states
of a static potential which are solutions to the time-independent Schrödinger equation,

Ĥψ(x) =

[
− ~2

2M

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) . (3.41)

First we consider the appropriate boundary conditions that the wave function ψ(x) in Eq. (3.41),
is constrained to satisfy. For example, consider a potential V (x) which goes to a constant
value Vmax at x→ ±∞ and is less than Vmax everywhere on the x-axis. A continuous potential
of this type with minimum value Vmin is shown in Fig. 9.1 (middle top panel). For E < Vmin,
there are no normalisable solutions of Eq. (3.41). For Vmin < E < Vmax, there are discrete
values of E for which normalisable solutions exist. These values {E0, E1, ...}, are eigenenergies
and the corresponding eigenfunctions are {ψ0, ψ1, . . .}. For E ≥ Vmax, there is a contin-
uum of energy levels with the wave functions having the behaviour of a plane wave, e±ikx

for x→ ±∞. This thesis only takes into consideration discrete bound-states which are in the
range Vmin < E < Vmax and for which the following main properties apply:

• The eigenfunctions {ψ0, ψ1, . . .} can all be chosen to be real.

• Since the Hamiltonian is a Hermitian operator, the eigenenergies {E0, E1, . . .} are nec-
essarily real. Furthermore, for one-dimensional problems, the eigenenergies are non-
degenerate, i.e. each eigenenergy does not correspond to more than one eigenfunction.

• The eigenfunctions are normalisable (see Eq. (3.3)), i.e. vanish fast enough as x→ ±∞.

• The eigenfunctions are orthogonal Eq. (3.15).

• If the eigenfunctions are ordered according to increasing energy, i.e., {E0 < E1 < E2, . . .},
then the corresponding eigenfunctions are automatically ordered in the number of nodes,
with the eigenfunction ψn having n nodes.

• ψn+1 has a node located between each pair of consecutive zeros of the ψn (including the
zeros at x→ ±∞).

3.6.1 Bound-State Spectrum

The ideas introduced here are based on supersymmetry in quantum mechanics which refers to
the application of supersymmetry algebra to quantum mechanics [44]. They constitute a pow-
erful tool for deriving the eigenfunctions and eigenenergies of the one-dimensional potentials
studied in this thesis.

Starting from a single particle Hamiltonian (superscript (1), links the potential to its
corresponding Hamiltonian),

Ĥ(1) ≡ − ~2

2M

d2

dx2
+ V (1)(x) , (3.42)

the Scrödinger equation for the ground state wave function ψ0 is

Ĥ(1)ψ0(x) = − ~2

2M

d2ψ0

dx2
+ V (1)(x)ψ0(x) = E0ψ0(x) = 0 , (3.43)
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where the ground state eigenenergy E0 = 0, so that,

V (1)(x) =
~2

2M

ψ′′0(x)

ψ0(x)
. (3.44)

This provides knowledge of the potential from the knowledge of its ground state wave function.
The Hamiltonian is factorized using the creation A† and annihilation A operators,

Ĥ(1) = A†A , A† = χ(x)− ~√
2M

d

dx
, A = χ(x) +

~√
2M

d

dx
. (3.45)

The potential V (1) is then recognised as

V (1) =
~2

2M

ψ′′0
ψ0

= χ2 − ~√
2M

dχ

dx
(3.46)

since

Ĥ(1)ψ0 = A†Aψ0 = − ~2

2M

d2ψ0

dx2
+ χ2ψ0 −

~√
2M

ψ0
dχ

dx
= 0 . (3.47)

where the function χ is referred to as the superpotential [39, 43]. Recognising that Aψ0 = 0,
the superpotential is written as,

χ(x) = − ~√
2M

ψ′0(x)

ψ0(x)
= − ~√

2M

d(lnψ0)

dx
. (3.48)

Given the superpotential χ, the ground state wave function is obtained using,

ψ0(x) = N exp

(
−
√

2M

~

ˆ x

χ(x′)dx′

)
, (3.49)

where N is the normalisation constant.
By reversing the order of A and A†, we obtain the operator Ĥ(2),

Ĥ(2) = AA† = − ~2

2M

d2

dx2
+ V (2)(x) , (3.50)

which is the Hamiltonian corresponding to a new potential V (2),

V (2)(x) = χ2(x) +
~√
2M

dχ(x)

dx
. (3.51)

The potentials V (1) and V (2), Eqs. (3.46) and (3.51), respectively, are known as supersymmetric
partner potentials.

For n > 0, using the Schrödinger equation for Ĥ(1),

Ĥ(1)ψ(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n , (3.52)

which implies
Ĥ(2)Aψ(1)

n = AA†Aψ(1)
n = E(1)

n Aψ(1)
n . (3.53)

Similarly, using the Schrödinger equation for Ĥ(2),

Ĥ(2)ψ(2)
n = AA†ψ(2)

n = E(2)
n ψ(2)

n , (3.54)
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which implies

Ĥ(1)A†ψ(2)
n = A†AA†ψ(2)

n = E(2)
n A†ψ(2)

n . (3.55)

From Eqs. (3.52) to (3.55), and the fact that E
(1)
0 = 0, the eigenenergies and eigenfunctions

of the two Hamiltonians Ĥ(1) and Ĥ(2) are related by,

E(2)
n = E

(1)
n+1 , E

(1)
0 = 0 , (3.56)

ψ(2)
n =

[
E

(1)
n+1

]−1/2
Aψ

(1)
n+1 , (3.57)

ψ
(1)
n+1 =

[
E(2)
n

]−1/2
A†ψ(2)

n . (3.58)

It is therefore possible to obtain the eigenfunctions and eigenenergies of Hamiltonian Ĥ(2)

if we are already familiar with the corresponding set of solutions of Hamiltonian Ĥ(1). An
illustration of this result in shown as Fig.1. of [39].

The supersymmetric potentials V (1) and V (2), Eqs. (3.46) and (3.51), respectively, are said
to be shape invariant. Shape invariance refers to the shape of the potentials. The term is a
bit misleading as the infinite square well potential and the Eckart potential are very different
in shape even though they fulfil the shape-invariance condition [39]

V (2)(x; a1) = V (1)(x; a2) +R(a1) , (3.59)

where a1 is a set of parameters and a2 is a function of a1, and the remainder R(a1) is inde-
pendent of x. In Eq. (3.59), the potentials V (1)(x; a2) and V (2)(x; a1) are said to be shape
invariant. A beautiful simplification for a special class of solvable shape-invariant potentials
has been formed by Gendenshtein [43]. Table 3.1 presents the shape invariant solvable po-
tentials under consideration in this thesis. In the following derivation, for simplicity we will
assume that 2M and ~ are both equal to unity.

Let us now construct a series of Hamiltonians Ĥ(s), where s = 1, 2, 3, . . ., as

Ĥ(s) = − d2

dx2
+ V (1)(x; as) +

s−1∑
k=1

R(ak) , (3.60)

where as = f (s−1)(ak), i.e., as is a function with respect to ak, which is applied (s− 1) times.
By comparing the spectrum of Ĥ(s) and Ĥ(s+1), and using Eq. (3.59),

Ĥ(s+1) = − d2

dx2
+ V (1)(x; as+1) +

s∑
k=1

R(ak) (3.61)

= − d2

dx2
+ V (2)(x; as) +

s−1∑
k=1

R(ak) . (3.62)

Thus, Ĥ(s) and Ĥ(s+1) are supersymmetric partner Hamiltonians and hence have identical
bound-state spectra except for the ground state of Ĥ(s) whose energy is,

E
(s)
0 =

s−1∑
k=1

R(ak) . (3.63)
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This follows from Eq. (3.60) and the fact that E
(1)
0 = 0. On going back from Ĥ(s) to Ĥ(s−1),

etc, and finally reaching Ĥ(1), the complete eigenenergy spectrum of Ĥ(1) is given by

E(1)
n (a1) =

n∑
k=1

R(ak) , E
(1)
0 (a1) = 0 , (3.64)

and using Eq. (3.56) it is also clear that the n’th unnormalised eigenfunction ψ
(1)
n (x; a1) for

the original Hamiltonian Ĥ(1)(x; a1) is given by,

ψ(1)
n (x; a1) ∝ A†(x; a1)A†(x; a2) . . . A†(x; an)ψ

(1)
0 (x; an+1) , (3.65)

which is clearly a generalisation of the operator method of constructing the eigenfunctions for
the one-dimensional quantum harmonic oscillator potential discussed in Chapter 7. A more
convenient way of expressing Eq. (3.65) is the following identity,

ψ(1)
n (x; a1) = A†(x; a1)ψ

(1)
n−1(x; a2) , (3.66)

where ψ
(1)
n (x; a1) are the eigenfunctions corresponding to the first partner Hamiltonian and

ψ
(1)
n−1 (x; a2) are the eigenfunctions corresponding to the second partner Hamiltonian. Eq. (3.66)

allows us to construct the entire family of solutions.
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4 Wigner’s Quantum Mechanics

Quantum mechanics is usually introduced using Schrödinger’s representation (see Chapter 3),
in either position or momentum space, mainly in position space. In contrast, classical mechan-
ics is mainly studied in phase-space, representing the motion of particles simultaneously in
position and momentum (see Chapter 2). It is therefore natural to wonder whether quantum
mechanics can also be represented in phase-space. This is achieved using Wigner’s quantum
mechanics which is “a reformulation of Schrödinger’s quantum mechanics” [56], in phase-
space. Just like Schrödinger’s representation is based on the wave function (in either position
or momentum space) to describe the quantum state of a system, Wigner’s representation is
based on the Wigner distribution discussed in Section 4.1, which describes the quantum state
of a system in phase-space [57, 58]. The corresponding continuity equation which describes
the time evolution of the Wigner distribution, is called the Wigner equation discussed in Sec-
tion 4.2. The Wigner equation gives rise to the Wigner current J discussed in Section 4.3,
which is the quantum analogue of the classical phase-space current j in Eq. (2.3).

4.1 The Wigner Distribution

In this Section we introduce the Wigner distribution, discuss some of its mathematical prop-
erties and define the Wigner distribution of a particular two-state superposition which will be
used in later Chapters of this thesis to characterise quantum phase-space dynamics.

According to Heisenberg’s uncertainty principle [25], ∆x∆px ≥ 1
2~, where ∆x and ∆p are

the standard deviations of the probability distributions P and P̃ in Eqs. (3.23) and (3.22),
respectively, we cannot simultaneously measure the precise position and momentum of a quan-
tum particle. Therefore we cannot assign a probability distribution to it referring to its exact
position and momentum, but there does exist a quantum phase-space distribution, the Wigner
distribution, first introduced by Eugene Wigner in 1932 [1]. The Wigner distribution is set
apart from other quantum phase-space distributions [56] by the fact that it simultaneously
yields the projections (probability distributions P and P̃ ), and overlap between two distinct
states in Eq. (4.4), while maintaining its form in Eq. (4.1) when evolved in time. It there-
fore joins P and P̃ , into phase-space. “Of course, [the Wigner distribution] cannot be really
interpreted as the simultaneous probability for coordinates and momenta” [1], due to the un-
certainty principle (discussed above) and also since it can assume negative values. Also, only
the Wigner distribution’s averages and uncertainties evolve momentarily classically [59, 60].
This is why we consider the Wigner distribution as the “closest quantum analogue of the clas-
sical phase-space distribution” [6], and is therefore also referred to as a quantum phase-space
quasi -probability distribution.

The Wigner distribution W [1] (first discussed in this thesis in Section 3.3),

W (x, p, t) =
1

π~

ˆ ∞
−∞
〈x− y|%̂(t)|x+ y〉e

2i
~ py dy =

1

π~

ˆ ∞
−∞
〈p− s| ˆ̃%(t)|p+ s〉e−

2i
~ xs ds , (4.1)

is defined as the Wigner transform of the density operator %̂ of the position space density
function〈x− y|%̂(t)|x+ y〉 = Ψ∗(x+ y, t)Ψ(x− y, t) for pure states, where asterisk (*) denotes
complex conjugation, rendering it time-independent for eigenfunctions. An equivalent Wigner
transform applies for the momentum space density operator ˆ̃% in the second expression of

24
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W in Eq. (4.1). Conversely, the density operators %̂ and ˆ̃% are the Weyl transforms of the
Wigner distribution. This invertible mapping between quantum phase-space functions and
operators in the Schrödinger representation, is known as the Wigner-Weyl transform [40, 61–
63]. Throughout this thesis we only consider pure states.

The two expressions of W in Eq. (4.1) are related by Fourier transforms, shown below by
substituting for Ψ̃ the Fourier transform of Ψ in Eq. (3.1), and then performing a change of
variables, x1 = X + y and x2 = X − y (with the absolute of the Jacobian |J | = 2),

W (x, p, t) =
1

π~

ˆ ∞
−∞

Ψ̃∗(p+ s)Ψ̃(p− s)e−
2i
~ xs ds

=
1

2π2~2

˚ ∞

−∞
Ψ∗(x1)Ψ(x2)e

i
~{[x1(p+s)−x2(p−s)]−2xs} dx1 dx2 ds

=
1

π2~2

˚ ∞

−∞
Ψ∗(X + y)Ψ(X − y)e

2i
~ (py+Xs−xs) dy dX ds

=
1

π~

¨ ∞

−∞
Ψ∗(X + y)Ψ(X − y)e

2i
~ pyδ(X − x) dy dX

=
1

π~

ˆ ∞
−∞

Ψ∗(x+ y)Ψ(x− y)e
2i
~ py dy . (4.2)

4.1.1 Mathematical Properties of the Wigner Distribution

Hereinafter, reference to variables, such as the position x, the momentum p, the time t, etc.,
is dropped, unless necessary.

The Wigner distribution is a real-valued phase-space function:

This is demonstrated by using the fact that the Wigner distribution’s Fourier transform inte-
grands in Eq. (4.1) are Hermitian functions in y and s, respectively, hence,

W =
2

π~
Re

(ˆ ∞
0

Ψ∗(x+ y)Ψ(x− y)e
2i
~ py dy

{
=

ˆ ∞
0

Ψ∗(p+ s)Ψ(p− s)e−
2i
~ xs ds

})
. (4.3)

The marginal projections of the Wigner distribution:

The main property of the Wigner distribution distinguishing it from other quantum phase-
space distributions [11, 56], is its projections along p and x, which are the probability distribu-
tions of position and momentum,

´∞
−∞W (x, p, t) dp = P (x, t) and

´∞
−∞W (x, p, t) dx = P̃ (p, t),

respectively (see Section 3.3). It follows that for normalised wave functions, the Wigner dis-
tribution is also normalised, since

´∞
−∞ P (x, t) dx =

´∞
−∞ P̃ (p, t) dp = 1.

The overlap of two distinct Wigner distributions:

The overlap of two distinct Wigner distributions is the scalar product of their wave functions,˜∞
−∞ dp dxWΨWΦ = 1

2π~ |〈Ψ|Φ〉|
2. This is shown below by recognising the integral over p

as the Dirac δ function. Then evaluating the integral over y2, and performing a change of
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variables, x′ = x+ y and x′′ = x− y (with the absolute of the Jacobian |J | = 1
2), yields [6, 11]

¨ ∞

−∞
WΨWΦ dp dx =

1

π~

˚ ∞

−∞
dy1 dy2 dx Ψ∗(x+y1)Ψ(x−y1)Φ∗(x+y2)Φ(x−y2)

1

π~

ˆ ∞
−∞

dp e
2i
~ p(y1+y2)

=
1

π~

˚ ∞

−∞
dy1 dy2 dx Ψ∗(x+ y1)Ψ(x− y1)Φ∗(x+ y2)Φ(x− y2)δ(y1 + y2)

=
1

π~

¨ ∞

−∞
dy dx Ψ∗(x+ y)Ψ(x− y)Φ∗(x− y)Φ(x+ y)

=
1

2π~

¨ ∞

−∞
dx′ dx′′ Ψ∗(x′)Ψ(x′′)Φ∗(x′′)Φ(x′)

=
1

2π~

∣∣∣∣ˆ ∞
−∞

dx Ψ∗(x)Φ(x)

∣∣∣∣2 =
1

2π~
|〈Ψ|Φ〉|2 , (4.4)

The Wigner distribution can go negative:

If Ψ and Φ are orthogonal states, Eq. (4.4) is zero. Thus, either WΨ or WΦ, or both, must
assume negative values; the only non-negative Wigner distributions are Gaussian distribu-
tions [64]. The occurrence of negative values in the Wigner distribution is known to be one
of the very hallmarks of the fact that a system is quantum-mechanical in nature, i.e. defies
description in terms of classical probability theory [11].

Spatial and time inversions:

A spatial inversion of the wave function, Ψ(x) → Ψ(−x), and of its associated Hamiltonian,

H(x, p)
{

= p2

2M + V (x)
}
→ H(−x, p)

{
= p2

2M + V (−x)
}

(assuming H is time-independent and

real-valued), transforms W in Eq. (4.1) as follows:
for superpositions like in Eq. (3.8) where Ψ∗(x, t) = Ψ(x,−t),

W (x, p, t)→W (−x, p,−t) =
1

π~

ˆ ∞
−∞

Ψ∗(−x− y)Ψ(−x+ y)e
2i
~ py dy

=
1

π~

ˆ ∞
−∞

Ψ∗(−x+ y)Ψ(−x− y)e−
2i
~ py dy = W (−x,−p, t) (4.5)

and for eigenfunctions where ψ∗ = ψ,

W (x, p, t)→W (−x, p) = W (−x,−p) =
1

π~

ˆ ∞
−∞

ψ(−x− y)ψ(−x+ y) cos

(
2

~
py

)
dy . (4.6)

Thus, with z being perpendicular to the xp-plane (right-handed system; x×p = z), a spatial
inversion on the system reflects W about the xz- and pz-plane, which amounts to an even
parity transformation (x, p)→ (−x,−p). As indicated in Eq. (4.5), this parity transformation
is equivalent to a reflection of a time-inverted W about the pz-plane.

For eigenfunctions, a spatial inversion on the system only amounts to a reflection of W
about the pz-plane since for eigenfunctions W has a reflectional symmetry about the xz-plane,
as indicated in Eq. (4.6).

Applying both spatial and time inversions reflects W about the pz-plane,

W (x, p, t)→W (−x,−p,−t) = W (−x, p, t) . (4.7)
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4.1.2 The Wigner Distribution of a Two-State Superposition

We use the following definition of the Wigner distribution Wmn to define the Wigner distri-
bution terms of a two-state superposition, as

Wmn =
1

π~

ˆ ∞
−∞

ψ∗m(x+ y)ψn(x− y)e
2i
~ py dy =

{
m 6= n for off-diagonal terms

m = n for eigenfunctions
. (4.8)

Thus, the Wigner distribution Wm,n of Ψm,n in Eq. (3.8), is defined as

Wm,n = cos2(θ)Wmm + sin2(θ)Wnn + sin(2θ) Re
(
e−

i∆E
~ tWmn

)
. (4.9)

Note that Wmn = W ∗nm (asterisk (*) denotes complex conjugation).

If the eigenfunctions ψm and ψn are orthogonal,

¨ ∞

−∞
Wmn(x, p) dp dx =

¨ ∞

−∞
W ∗nm(x, p) dp dx =

ˆ ∞
−∞

ψm(x)ψn(x) dx = 0 , (4.10)

which implies that both Wmn and Wnm have equal parts of negative and positive values, and
that the Wigner distribution Wm,n in Eq. (4.9) is normalised

´∞
−∞Wm,n dx dp = 1.

4.2 The Time Evolution of the Wigner Distribution

Just like the Schrödinger equation determines the time evolution of a wave function, equiv-
alently, the Wigner distribution’s time evolution is determined by the Wigner equation, in-
troduced alongside the Wigner distribution by Eugene Wigner in 1932 [1]. In 1949 [12], José
Moyal generalised the Wigner equation to the Moyal equation which applies to any Hamil-
tonian. The Moyal equation is the Wigner-transform of the von Neumann equation which
applies to pure and mixed states, unlike Schrödinger’s equation which only applies to pure
states [62].

Wigner’s equation and its infinite-sum form, commonly referred to as the quantum Liouville
equation, are presented in this Section together with Moyal’s equation and its integral form.

4.2.1 Wigner Equation

For mechanical systems with Hamiltonians of the form H = p2

2M + V (x) (i.e., as a sum of
kinetic and potential energies), the time evolution of W of Eq. (4.1), was first derived by
Eugene Wigner in 1932 [1], as described below.

Differentiating W of Eq. (4.1) with respect to t, then rearranging using Schrödinger’s
equation (3.10), and replacing differentiations with respect to x with differentiations with
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respect to y, and finally integrating by parts, yields

∂tW =
1

π~

ˆ ∞
−∞

dy [Ψ(x− y, t)∂tΨ∗(x+ y, t) + Ψ∗(x+ y, t)∂tΨ(x− y, t)] e
2i
~ py

=
1

π~

ˆ ∞
−∞

dy

{
i~

2M

[
Ψ∗(x+ y)∂2

xΨ(x− y)−Ψ(x− y)∂2
xΨ∗(x+ y)

]
+
i

~
[V (x+ y)− V (x− y)] Ψ∗(x+ y)Ψ(x− y)

}
e

2i
~ py

=
1

π~

ˆ ∞
−∞

dy
{
− p

m
∂x [Ψ∗(x+ y, t)Ψ(x− y, t)]

+
i

~
[V (x+ y)− V (x− y)] Ψ∗(x+ y, t)Ψ(x− y, t)

}
e

2i
~ py

= − p

M
∂xW +

i

π~2

ˆ ∞
−∞

dy [V (x+ y)− V (x− y)] Ψ∗(x+ y, t)Ψ(x− y, t)e
2i
~ py , (4.11)

known as the Wigner equation. Due to its form, the Wigner equation is also valid for piecewise
potentials (apart from infinite square-wells), and it is numerically more accurate, unlike its
infinite-sum form in Eq. (4.12), see Chapter 5.

The Quantum Liouville Equation

Expanding V (x+ y) and V (x− y) in Eq. (4.11), in Taylor series with respect to y, yields

∂tW = − p

M
∂xW +

∞∑
l=0

(i~/2)2l

(2l + 1)!
∂2l+1
p W∂2l+1

x V , (4.12)

known as the quantum Liouville equation. This form of Wigner’s equation shows the presence
of the quantum correction terms (l ≥ 1), which in the classical limit of ~→ 0 vanish reducing
Eq. (4.12) to its classical form: ∂tW = − p

M ∂xW + ∂pW∂xV . This preserves the kinetic term,
unlike in Schrödinger’s equation of Eq. (3.10) where the kinetic term vanishes in this limit [62].

4.2.2 Moyal Equation

Wigner’s equation only applies to mechanical systems with Hamiltonians of the form H =
p2

2M + V (x) (i.e., as a sum of kinetic and potential energies). For a general Hamiltonian the
time evolution of the Wigner distribution is described by the Moyal equation

∂tW = −{{W,H}} = −2

~
W (x, p, t) sin

(
~
2

(←−
∂x
−→
∂p −

←−
∂p
−→
∂x

))
H(x, p) , (4.13)

named after José Moyal for his 1949 work [12]. The Moyal equation in is the Wigner trans-

form [8, 12, 40, 61–63] of the von Neumann equation ∂%̂
∂t = − i

~

[
Ĥ, %̂

]
. Thus, the Wigner

transform maps the commutator [•, •] in the von Neumann equation to the Moyal bracket
{{•, •}} in Eq. (4.13), which is the quantum analogue of the Poisson bracket {•, •}.
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Baker Equation

The Moyal equation of Eq. (4.13) is only true for Taylor-expandable Hamiltonians (in both x
and p). Thus, a general integral form of Moyal’s equation is [13, 56]

∂tW = − 2

π2~3

˘ ∞

−∞
dx′ dx′′ dp′ dp′′W (x+ x′, p+ p′)

×H(x+ x′′, p+ p′′) sin

(
2

~
(x′p′′ − x′′p′)

)
. (4.14)

4.3 The Wigner Current

In this Section we will introduce the concept of the Wigner current J [2], at times incor-
rectly referred to in literature as Wigner “flow” [3, 4]. It is the quantum analogue of the
classical phase-space current j in Eq. (2.3), and it is derived from Wigner’s representation
of quantum mechanics. Just as the probability currents in position and momentum space in
Schrödinger’s representation fulfil their respective continuity equations (see Section 3.3.1), the
Wigner current J fulfils its own continuity equation [2–4, 30],

∂tW +∇ • J = ∂tW + ∂xJx + ∂pJp = 0 , where J =

(
Jx
Jp

)
. (4.15)

Different formulations of the quantum phase-space continuity equation were discussed in Sec-
tion 4.2. For one-dimensional systems, the Wigner current J in Eq. (4.15) is a vector field
with two components, its position component Jx and its momentum component Jp.

The explicit form of the Wigner current’s components is presented for the quantum-
mechanical case in this Section, for the quantum harmonic oscillator in Chapter 7, and for
the non-linear Kerr oscillator case in Chapter 8. In this Section we also discuss some of the
mathematical properties of the Wigner current.

The Wigner current will be used in later Chapters of this thesis to characterise quantum
phase-space dynamics. We will integrate the Wigner current in phase-space, at a fixed time,
and therefore generate its momentary fieldlines. Note that these fieldlines are somewhat
unphysical in two main regards. Firstly, they are not trajectories [27], and secondly, since they
portray a momentary snapshot of Wigner current’s structure, they do not depict the transport
of quantum phase-space features over long times. The structure of Wigner current fieldline
portraits, particularly near its stagnation points, can more easily be discerned visually when
using fieldlines (from now on we drop the term ‘momentary’), rather than looking at depictions
of its field arrows alone. Wigner current fieldlines also depict the quantum analogue of classical
phase portraits; they are a valuable visualisation tool. In comparison, classical phase portrait
trajectories in conservative systems are fixed (foliation in phase-space) and only depend on
the potential, see Chapter 2. In quantum phase-space, Wigner current fieldlines can change
over time and depend on the quantum state of the system.

4.3.1 The Wigner Current of Mechanical Systems

The Wigner current J of mechanical systems is determined by comparing the abstract form
of J ’s continuity equation of Eq. (4.15) with Eq. (4.11) which yields the integral form of J ,
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or with Eq. (4.12) which yields infinite-sum form of J ,

J =

(
p
M

1
π~
´∞
−∞Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy

− 1
π~
´∞
−∞

[
V (x+y)−V (x−y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy

)
=

 p
MW

−
∞∑
l=0

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

 .

(4.16)
Note that this form of J is specific to mechanical systems with Hamiltonians of the form

H = p2

2M + V (x) (i.e., as a sum of kinetic and potential energies). For field oscillators, like the
Kerr oscillator discussed in Chapter 8, J is determined using the Moyal equation of Eq. (4.13).

For numerical reasons, we truncate the infinite-sum expression of the Jp component in
Eq. (4.16) after L terms yielding the truncated current with cutoff L,

J[L] =

(
Jx
Jp,[L]

)
=

 p
MW
L∑
l=0

Jp,l

 , where Jp,l = − (i~/2)2l

(2l + 1)!
∂2l
p W∂2l+1

x V . (4.17)

According to the continuity equation Eq. (4.15), Jp can also take the form

Jp = −
ˆ
∂tW + ∂xJx dp . (4.18)

For the quantum-mechanical case, the form of Jp in Eq. (4.18) does not depend explicitly
on the potential. For eigenfunctions, due to the time-independence of the associated Wigner
distribution (see Section 4.1), Jp in Eq. (4.18) becomes Jp = −

´
∂xJx dp.

4.3.2 Mathematical Properties of the Wigner Current

Just like the Wigner distribution discussed in 4.1.1, the components of the Wigner current
in Eq. (4.15) are also real-valued phase-space functions which can also go negative and their
marginal projections are the probability currents in position and momentum space. These
mathematical properties of the Wigner current are presented here together with its time
reversal and parity transformations.

The Wigner current’s components are real-valued phase-space functions:

This is demonstrated by using the fact that the Fourier transform integrands of the components
of J in Eq. (4.16) are Hermitian functions in y, hence,

J =

 p
M

2
π~ Re

(´∞
0 Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy

)
− 2
π~ Re

(´∞
0

[
V (x+y)−V (x−y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy

) . (4.19)

The marginal projections of the Wigner current’s components:

Just like the projections of W are the probability distributions (see Section 4.1.1), equivalently,
the projections of W ’s continuity equation in Eq. (4.11), reduce to the continuity equations,

ˆ ∞
−∞

(∂tW + ∂xJx + ∂pJp) dp = ∂tP (x, t) + ∂x(x, t) = 0 (4.20)

and

ˆ ∞
−∞

(∂tW + ∂xJx + ∂pJp) dx = ∂tP̃ (p, t) + ∂p̃(p, t) = 0 . (4.21)
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Thus, the marginal projections,
´∞
−∞ Jx dp in Eq. (4.20) and

´∞
−∞ Jp dx in Eq. (4.21), yield

ˆ ∞
−∞

Jx dp =
1

π~M

¨ ∞

−∞
Ψ∗(x+ y)Ψ(x− y)pe

2i
~ py dy dp (4.22)

=
~

2iM

¨ ∞

−∞
Ψ∗(x+ y)Ψ(x− y)∂yδ(y) dy =

~
2iM

(Ψ∗∂xΨ−Ψ∂xΨ∗) = (x, t)

and

ˆ ∞
−∞

Jp dx = − 1

π~

¨ ∞

−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy dx (4.23)

=
1

i
√

2π~3

ˆ p

−∞

ˆ ∞
−∞

Ψ̃(P)U∗(P − p′)Ψ̃∗(p′)− Ψ̃∗(P)U(P − p′)Ψ̃(p′) dp′ dP = ̃(p, t) ,

which are the probability currents in position and momentum space, respectively. Additionally,
the marginal projections

´∞
−∞ Jx dx in Eq. (4.21) and

´∞
−∞ Jp dp in Eq. (4.20), yield

ˆ ∞
−∞

Jx dx =
p

π~M

¨ ∞

−∞
Ψ̃∗(p+ s)Ψ̃(p− s)e−

2i
~ xs ds dx (4.24)

=
p

M

ˆ ∞
−∞

Ψ̃∗(p+ s)Ψ̃(p− s)δ(s) ds = P̃ (p, t)
p

M

and

ˆ ∞
−∞

Jp dp = − 1

π~

¨ ∞

−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy dp (4.25)

= −
ˆ ∞
−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)δ(y) dy = −P (x, t)

d V

dx
.

The Wigner current’s components can go negative:

Integrating overall phase-space each component of J yields Ehrenfest’s theorem [59],

¨ ∞

−∞
Jx dx dp =

〈p〉
M

=
d〈x〉
dt

and

¨ ∞

−∞
Jp dx dp = −

〈
d V

dx

〉
=
d〈p〉
dt

. (4.26)

As mentioned in Section 4.1, the Wigner distribution of an eigenfunction is time-independent.
This time-independence also applies to the Wigner current’s components due to their form
in Eq. (4.16). Thus, the average velocity and average force in Eq. (4.26), reduce to zero
for eigenfunctions, hence, the Wigner current’s components have equal parts of negative and
positive values;

˜∞
−∞ Jx dx dp = 0 and

˜∞
−∞ Jp dx dp = 0. For superpositions, the average

velocity and average force are time-dependent, hence, the Wigner current’s components for
superpositions do acquire negative values but not in equal parts;

˜∞
−∞ Jx dx dp 6= 0 and˜∞

−∞ Jp dx dp 6= 0. These negativities of the Wigner current’s components invert the direction
of the current, causing formation of vortices and separatrices, but maintaining conservation
of the current’s winding number, which “reveals fundamental topological order in quantum
dynamics” [4], as it is implied by the Poincaré-Hopf theorem (see Section 2.5). This translates
to the following observation: vortices and separatrices in phase-space must be created or
annihilated together while quantum dynamics evolves (see Fig. 9.11 and Figs. 4 and 5 of [4]).

Spatial and time inversions:

A spatial inversion of the wave function, Ψ(x) → Ψ(−x), and of its associated Hamiltonian,

H(x, p)
{

= p2

2M + V (x)
}
→ H(−x, p)

{
= p2

2M + V (−x)
}

(assuming H is time-independent and
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real-valued), transforms J(x, p, t) in Eq. (4.16) as follows:
for superpositions like in Eq. (3.8) where Ψ∗(x, t) = Ψ(x,−t),

J(x, p, t)→
(
Jx(−x, p,−t)
−Jp(−x, p,−t)

)
=

(
p
M

1
π~
´∞
−∞Ψ∗(−x− y)Ψ(−x+ y)e

2i
~ py dy

1
π~
´∞
−∞

[
V (−x+y)−V (−x−y)

2y

]
Ψ∗(−x− y)Ψ(−x+ y)e

2i
~ py dy

)

=

(
p
M

1
π~
´∞
−∞Ψ∗(−x+ y)Ψ(−x− y)e−

2i
~ py dy

1
π~
´∞
−∞

[
V (−x+y)−V (−x−y)

2y

]
Ψ∗(−x+ y)Ψ(−x− y)e−

2i
~ py dy

)
=

(
−Jx(−x,−p, t)
−Jp(−x,−p, t)

)
(4.27)

and for eigenfunctions where ψ∗ = ψ,

J(x, p, t)→
(
Jx(−x, p)
−Jp(−x, p)

)
=

(
−Jx(−x,−p)
−Jp(−x,−p)

)
=

( p
M

1
π~
´∞
−∞ ψ(−x− y)ψ(−x+ y) cos

(
2
~py
)
dy

1
π~
´∞
−∞

[
V (−x+y)−V (−x−y)

2y

]
ψ(−x− y)ψ(−x+ y) cos

(
2
~py
)
dy

)
. (4.28)

Thus, a spatial inversion on the system reflects J over the x- and p-axis and also changes
the sign of J , as indicated in Eq. (4.27), which amounts to an odd parity transformation.
Whereas, for eigenfunctions, a spatial inversion on the system reflects J over the p-axis and
rotates it by π radians. A time inversion on the superposition, Ψ(x, t)→ Ψ(x,−t) = Ψ∗(x, t),
reflects J over the x-axis and rotates it by π radians (see Eq. (4.27)).

Applying both space and time inversions reflects J over the p-axis and rotates it by π
radians,

J(x, p, t)→
(
−Jx(−x,−p,−t) = Jx(−x, p, t)
−Jp(−x,−p,−t) = −Jp(−x, p, t)

)
. (4.29)



5 Numerical Aspects

This Chapter discusses the numerical aspects of the work presented in later Chapters of this
thesis. Specifically, Section 5.1 and 5.2 discusses the numerical computation of the Wigner
functions and associated Wigner current’s fieldline portraits presented in Chapters 7, 8 and 9.
Section 5.3 also highlights key points on how the results presented in this thesis were checked.

5.1 Numerical Computation of the Wigner Function

Analytical closed-form expressions of the Wigner function are known for harmonic systems
(and their isomorphic partners [14]), see Section 7.2), and for the Morse oscillator (see Sec-
tion 9.2). Even for the Morse oscillator, it is time consuming to compute the Wigner function
for high anharmonicities [65]. Thus, in this thesis, for anharmonic potentials, W in Eq. (4.1)
is determined using the midpoint Riemann sum with integration limits [−Y, Y ],

W (x, p, t) ≈ ∆Y

π~

Ny∑
r=1

Ψ∗(x+ yr)Ψ(x− yr)e
2i
~
nπ
2Y
yr , for yr = −Y + (r − 1

2
)∆Y , (5.1)

where Ny is an even number of partitions of width ∆Y = 2Y
Ny

. The substitution p = nπ
2Y follows

from the Nyquist–Shannon sampling theorem [66] with
{
n ∈ Z : −Ny

2 ≤ n ≤
Ny
2

}
. Thus, the

p-axis domain of the numerical integration in Eq. (5.1) is p ∈
[
−πNy

4Y ,
πNy
4Y

]
. Note that yr in

Eq. (5.1), ranges from y1 = −Y + Y
Ny

to yNy = Y − Y
Ny

. Therefore, the values of yr represent the

values of y in Eq. (4.1) and appear within the integration limits [−Y, Y ]. We also make sure
that Ψ∗(x+ y)Ψ(x− y) ≈ 0 at the integration limits for all values of x. For a sufficiently high
value of Ny, the numerically integrated Wigner function in Eq. (5.1), must satisfy the Wigner
function projections, Eqs. (3.22) and (3.23), together with the normalisation condition,

¨ ∞

−∞
dp dx W (x, p, t) = 1 . (5.2)

For a two-state superposition Ψm,n Eq. (3.8), the corresponding Wigner function in Eq. (4.9)
includes the diagonal terms, Wmm and Wnn (see Section 4.1.2), which must satisfy Eq. (4.4).

5.2 Numerical Computation of the Wigner Current

The method described in the previous Section for the numerical computation of the Wigner
function, was also employed for the numerical computation of the Wigner Current J . In our
early attempts we made use of the infinite-sum form of J which lead to the respective continuity
equation, the quantum Liouville equation in Eq. (4.12) diverging (instead of converging to
zero), when more quantum correction terms were included. This divergence was only observed
in open potentials like the Rosen-Morse potential (see Fig. 5.1) and was avoided with the use of
the integral form of J in Eq. (4.16) and the use its respective continuity equation, the Wigner
equation in Eq. (4.11). This also meant that the variables which controlled the accuracy of
our results, were reduced to the number of digits (decimal places) used by the program and
the number of partitions Ny in the numerical integration of Eq. (5.1).

33
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Figure 5.1 Left panel: Incorrect Wigner current fieldline portraits J[5] in
Eq. (4.17) for the first excited state of the Rosen-Morse potential. Right panel:
Correct Wigner current fieldline portraits (same case as left panel) with the use of
the integral form of J in Eq. (4.16). The stagnation points of J at the crossings
of Jx = 0 and Jp = 0 (thick green and blue lines, respectively) are labelled as in
Fig. 2.2. The left panel clearly demonstrates incorrect formation of spirals (sources
and sinks) in phase-space, which are forbidden by the Wigner current fieldline por-
traits of eigenfunctions. The incorrect fieldline portraits of the left panel are due
to the poor convergence of the infinite-sum form of J in Eq. (4.16). Attempts to
use a cutoff for the infinite-sum, high enough for the series to converge, were in
vain as the infinite-sum was diverging.

The Wigner current fieldline portraits presented in Chapters 7, 8 and 9, were produced
with the use of the following equations of motion,(

x(t′) = Jx(x(t′), p(t′), t)
p(t′) = Jp(x(t′), p(t′), t)

)
. (5.3)

Note that, even though J is time-dependent for superposition states, its time t was set to a
constant value while the J fieldlines were integrated for t′ ∈ [−T , T ] using the Runge–Kutta–
Fehlberg method (also known as the RKF45 method) [67]. Therefore, these J fieldlines are
the momentary fieldlines depicting the dynamics of the system as a snapshot in phase-space.

By switching from the infinite-sum to the integral form of J in Eq. (4.16), our results
improved dramatically, see Fig. 5.1.

5.3 Consistency Checks

The list below summarises some of the reasons as to why we feel confident with the results
presented in this thesis:

1. It is well-known that if the divergence of a vector field is zero, such a vector can be
written as the curl of a vector potential, see Chapter 2. Such a divergence-less vector
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field is referred to as a solenoidal vector field, as it forms closed loops. For the Wigner
current of eigenfunctions, ∇ • J = 0, since the Wigner function is time independent.
This translates to closed fieldlines of J in Fig. 9.3.

2. J ’s field arrows are tangent to its respective fieldlines, see Figs. 9.3, 9.6, 9.7 and 9.8.

3. Jx = 0 at p = 0 (see Eq. (4.16)), and since d(2l+1)V = 0 for even potentials, so Jp = 0
at x = 0, see Figs. 9.3, 9.6 and 9.7.

4. The Jx and Jp components in Eq. (4.16) are well behaved functions with no singularities.

5. Field arrows and fieldlines follow the symmetries of Wigner current for eigenfunctions
summarised in Section 4.3.2.



6 When is Wigner’s Current Liouvillian?

In Chapter 4 we discussed Wigner’s phase-space representation of quantum mechanics. We
introduced the Wigner function, its continuity equation and the Wigner current, the quantum
analogue of the classical phase-space current. The Wigner current will be used from this
Chapter onwards as a tool for the study of quantum dynamics in phase-space.

Unlike in classical mechanics (see Chapter 2), quantum mechanics precludes the existence of
phase-space trajectories due to Heisenberg’s uncertainty principle [25]. The concept of trajec-
tories, instead of J -fieldlines (studied in this thesis), originates from the phase-space transport
in Lagrangian form using the total (or comoving) derivative dW

dt in Eq. (6.2) [27, 30, 31, 41].
But Heisenberg demonstrated that the concept of a sharply defined phase-space trajectory is
incompatible with the uncertainty principle. Instead, a quantum description (with the use
of the Wigner function), describes the motion of a single system which fundamentally entails
variance in position and momentum and thus uncertainty about its center-of-mass movement.
This in itself has not stopped us from describing quantum systems using trajectories:

• The field of quantum-characteristics studies a system’s center-of-mass motion in phase-
space and its higher order moments.

• The concept of paths (unlike trajectories, paths do not have to conform with the equa-
tions of motion) has been fruitful in path-integral formalisms applied to configuration
or phase-space.

• Configuration space trajectories are used in Bohm’s version of quantum theory and have
experimental relevance [24].

• Semi-classical methods employ classical trajectories along which quantum objects are
carried [28, 68, 69].

Also, techniques employing trajectories in quantum phase-space [28–33], are of great inter-
est in theoretical chemistry since the great complexity of chemical systems forces us to find
simplifications to make calculations of quantum dynamics tractable.

For reasons stated above, in this thesis we do not take the trajectory approach to our
investigation of quantum dynamics. Instead, we make use of the J -fieldlines.

In this Chapter we define Wigner current’s velocity field, and we address the following
question: When does the Wigner current obey Liouville’s theorem on volume preservation?
We are therefore looking to find for which cases the divergence of Wigner current’s velocity
field vanishes overall phase-space. We find that the Wigner current obeys Liouville’s theorem
only for potentials up to the second order in position, like for the quantum harmonic oscillator
in Chapter 7 and for eigenfunctions of the Kerr oscillator in Chapter 8, or when the Wigner
function approaches zero, like in very high temperatures of the thermal state [1], where the
quantum correction terms (l ≥ 1 in Eq. (4.16)), vanish.

6.1 Wigner Current’s Velocity Field

Just like the Wigner current J is the quantum analogue of the classical phase-space current j,
the Wigner current velocity field w is the quantum analogue of the classical phase-space

36
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velocity field u (see Chapter 2), which fulfils its own continuity equation [2, 30],

∂tW +W∇ •w + w •∇W = 0 , where w =

(
wx
wp

)
=

J

W
=

1

W

(
Jx
Jp

)
, (6.1)

which, for the total derivative1 of W , yields

DW

Dt
= ∂tW + w •∇W = −W∇ •w . (6.2)

Rearranging Eq. (6.2), the divergence of w takes the form

∇ ·w = −∂tW + w ·∇W
W

= −W∂tW + J ·∇W
W 2

=
W∇ · J − J ·∇W

W 2
, (6.3)

which is singular at zeros of W , since generally zeros of W do not coincide with zeros of its
derivatives [27].

6.2 Liouvillian Wigner Current

If the total derivative of W in Eq. (6.2) is zero (assuming W 6= 0), the divergence of its velocity
field ∇ •w must be zero overall phase-space. This implies that w obeys Liouville’s theorem
and that it can be written as the curl of a vector potential A, w = ∇ ×A (see Chapter 2).
For the quantum-mechanical J in Eq. (4.16), w in Eq. (6.1) becomes

w =

(
wx
wp

)
=

( p
M
Jp
W

)
which implies ∇ •w = ∂pwp = ∂p

(
Jp
W

)
, (6.4)

which obeys Liouville’s theorem only when Jp = wp(x)W where wp(x) is a function in x only.
To determine the form of wp(x), one can substitute the integral form of Jp of Eq. (4.16), and
taking projections in p on both sides, one finds

ˆ ∞
−∞

Jp dp = − 1

π~

¨ ∞

−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)e

2i
~ py dy dp

= −
ˆ ∞
−∞

[
V (x+ y)− V (x− y)

2y

]
Ψ∗(x+ y)Ψ(x− y)δ(y) dy

= wp(x)

ˆ ∞
−∞

W dp = −P (x, t)
dV

dx
= wp(x)P (x, t) . (6.5)

This implies wp(x) = −dV
dx . Thus, for w in Eq. (6.4), to obey Liouville’s theorem,

J =

( p
MW

−W dV
dx

)
and w =

J

W
=

( p
M

−dV
dx

)
, (6.6)

reducing the associated continuity equation to the total derivative of W in Eq. (6.2),

DW

Dt
= ∂tW +

p

M
∂xW − ∂xV ∂pW = ∂tW + w •∇W = 0 . (6.7)

1Also known as the derivative following the motion, comoving, material, convective, advective, substantive,
substantial, Lagrangian, Stokes, particle, and hydrodynamic derivative.
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From the infinite-sum form of Jp in Eq. (4.16), Eq. (6.6) is true only for the l = 0 term, i.e.,
when the quantum correction terms (l ≥ 1) vanish. This is known to be true for the thermal
state at infinitely high temperatures [1], for the quantum harmonic oscillator potential (see
Chapter 7), and for eigenfunctions of the non-linear Kerr oscillator (see Chapter 8).

Due to its form, the zeros of J ’s components in Eq. (6.6) coincide with the zeros of W , apart
from the x-axis (p = 0) and when the force is zero (−dV

dx = 0). This implies the formation
of stagnation lines of J at the location of the zero lines of W , rendering J ’s components
degenerate, i.e., J is governed by Hamilton’s equations of motion (see Chapter 2).

Hereinafter, any reference to degenerate and semi-degenerate cases of the Wigner current,
refers to the case of the zeros of Jx and Jp coinciding in phase-space (apart from the x- and
p-axis). For the degenerate case this includes the zeros of W .

A quantum mechanical w which does not obey Liouville’s theorem (∇ • w 6= 0 overall
phase-space), its wp component will have to assume a form which is inversely proportional
to W as in Eq. (6.4). This implies that at the location of the zeros of W , w and its divergence
will go to infinity (see Figs 8.1 and 6.1). As it was proven here, this only occurs in the presence
of the quantum correction terms (l ≥ 1 in Eq. (4.16)), otherwise only in their absence will w
obey Liouville’s theorem. This was missed by Daligault as in [41] was stated that:

“. . . the definition of [J ] has inherently some arbitrariness in the sense that [the
continuity equation Eq. (4.15)] remains valid when a divergenceless field [δJ ] is
added to it, [∂tW = −∇ • (J + δJ) = −∇ • J ]. It implies that for each suitable
divergenceless field a trajectory method can be devised, which leads, in principle,
to the exact distribution function [W ]. One can, for example, wonder if [J + δJ ]
exists, that would render Hamiltonian quantum fluid dynamics in phase space. This
amounts to the existence of a divergecenless [δJ ]. . . ” [41]

Given that we have proven here that the only divergence-less velocity field w is of the form in
Eq. (6.6), Daligault in [41] is effectively referring to a δJ which cancels the quantum correction
terms (l ≥ 1 in Eq. (4.16)). Therefore δJ has to take the form

δJ =

(
δJx
δJp

)
=

 0

+
∞∑
l=1

(i~/2)2l

(2l+1)! ∂
2l
p W∂2l+1

x V

 , (6.8)

which is a not a divergence-less field (∇ • δJ = ∂pδJp 6= 0), unless δJp = 0. Thus, Daligault’s
attempt to “render Hamiltonian quantum fluid dynamics in phase space” in [41], is ill-defined.

6.3 Liouvillian Wigner Current for Eigenfunctions

In this Section we discuss the concept of Wigner trajectories [70] and quantal force [71], and
show that these are unphysical.

Wigner Trajectories

For eigenfunctions, the Wigner function W in Eq. (4.1), is time-independent and therefore the
continuity equation Eq. (4.15), takes the form

∇ • J = ∂xJx + ∂pJp = 0 (only true for eigenfunctions). (6.9)
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This implies that J for eigenfunctions is a solenoidal vector field; it does not feature formation
of vortices in the form of spirals (no expansion or contraction of the current in phase-space,
see Figs. 7.3, and 9.3).

A divergence-less J does not imply a divergence-less w, because, since for eigenfunctions
∂tW = 0, the total derivative of W in Eq. (6.2) becomes

DW

Dt
= w •∇W = −W∇ •w . (6.10)

Thus, for eigenfunctions of the quantum mechanical case, the velocity field w in Eq. (6.4) obeys
Liouville’s theorem (∇ •w = 0 overall phase-space) only when w •∇W = 0, i.e., when w is
perpendicular to the gradient of W . This occurs when the contours of W are collinear with
w’s streamlines. The condition imposed on J so that w obeys Liouville’s theorem, was given
in Eq. (6.6). As it was discussed, the implication of this condition is that the zeros of W
coincide with the zeros of J ’s components, apart from the x-axis (p = 0) and when the force is
zero (−dV

dx = 0). This implies the formation of stagnation lines of J at the location of the zero
lines of W . Therefore, for any other form of the Wigner current J in Eq. (4.16), which are not
of the simple form in Eq. (6.6), the contours of W are not collinear with w’s streamlines, see
Figs. 6.1 and 9.3. This statement is in contradiction with reference [70], where Lee and Scully
consider energy eigenfunctions of the Morse oscillator. They seem to assume that DW

Dt = 0 as
they argue:

“. . . the oscillator should remain in the same eigenstate throughout. In terms of
the Wigner distribution, it means that each phase-space point should move in such
a way that the Wigner distribution function does not change in time. This con-
sideration leads to the concept of “Wigner trajectories,” trajectories along which
phase-space points of the Wigner distribution function move. For the case under
consideration, Wigner trajectories must be trajectories along the surfaces on which
the Wigner distribution function takes on the same value, i.e., trajectories along
the equi-Wigner surfaces. These Wigner trajectories are “quantum-mechanical”
trajectories in the sense that they represent paths of phase-space points that move
according to the quantum-mechanical equation of motion” [70]

Since the total derivative of W is not equal to zero (see Eq. (6.10), except for harmonic
systems), Lee and Scully are wrong.

The concept of Wigner trajectories was also criticised [32, 41]. Specifically, Dittrich et al.
consider it meaningless because their semi-classical integration method [32] did not produce
‘Wigner trajectories’. They find their own semi-classical trajectories, starting from classical
trajectories, when increasingly refined, at first approach the

“Wigner contour [...]. However, they do not approach it asymptotically but con-
tinue shifting further past the Wigner contour, indicating that it plays no particular
role for quantum time evolution in phase space, not even of eigenstates.”[32]

But Dittrich et al. did not disprove Lee and Scully’s misconceptions.

Quantum Force

The concept of Wigner trajectories was also used for the introduction of the concept of “quantal
force” by Razavy [71, 72] who incorrectly assumed that ∇ •w = 0 for anharmonic potentials,
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see Eq. (1) and (3) of [71]. Razavy defines ṗ = Fn = −∂xVeff =
Jp
∂pW

but this is wrong because

according to Eq. (6.4), ṗ =
Jp
W 6=

Jp
∂pW

and generally ∇ •w 6= 0 [27]. Only harmonic systems
have a divergence-less velocity field, as discussed earlier in Section 6.2.

Inspired by the classical expression for j (see Chapter 2 and specifically Eq. (2.4)), one
finds in the quantum case that

J =

JxJp
0

 =

 ∂pQ
−∂xQ

0

 =∇×

 0
0
Q

 where Q =

ˆ p

−∞
dp′ Jx = −

ˆ x

−∞
dx′ Jp , (6.11)

Therefore, a quantum force can be defined as F = −∂xQ = Jp. Then, Q could be referred to
as a quasi-Hamiltonian, but since it only applies to eigenfunctions this does not appear to be
a useful concept.

For superpositions, where ∇ •J 6= 0, Eq. (6.11) does not apply since it only applies in the
case of ∇ • J = 0. For superpositions, J ’s fieldline portraits feature formation of vortices in
the form of spirals (expansion or contraction of the current in phase-space), see e.g. Fig. 9.11.
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Figure 6.1 Left panel: Integrated fieldlines of J cross Wigner function con-
tours. Thin coloured lines display fieldlines of J , displayed together with normal-
ized current J/||J || (black arrows), and its stagnation points, for the same state
as depicted on the right panel. W ’s zero contour, around the negative (light cyan-
coloured) patch at the centre, is highlighted by a thick black line. Many fieldlines,
for this first excited state, cut across the Wigner function’s contours and enter and
leave the negative area. Right panel: Singularities of ∇ ·w coincide with zeros
of W . J depicted by arrows (red for clockwise and green for inverted flow [4]),
together with the zeros of the Jx and Jp components (green and blue lines, re-
spectively), is superimposed on top of a colourplot of 2

π arctan(∇ ·w). The inset
shows the corresponding Wigner function for the first excited state of an anhar-
monic Morse oscillator [65] with potential V (x) = 3(1 − exp(−x/

√
6))2. The red

crosses and yellow bars mark the locations of the current’s stagnation points, with
Poincaré-Hopf indices [4] ω = +1 and −1. Parameters: ~ = 1 and M = 1. The
black dashed line marks the zero-contour of the Wigner function (compare inset),
here the divergence ∇ ·w is singular [27].
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Instead, inspiration for the formulation of a quantum force in phase-space could be found in
the hydrodynamic formulation of quantum mechanics, discussed in Chapter 3. As a reminder,
in the hydrodynamic formulation of quantum mechanics, Erwin Madelung in 1927 [19] and
independently David Bohm in 1952 [20], formulated the quantum force, as the total derivative
of the momentum p(x) = Mu(x). Similarly, one could write in phase-space, the rate of change
of the quantum phase-space velocity field, as

ẇ =
d

dt

(
J

W

)
=

(
ṗ
M

d
dt

(
Jp
W

)) (6.12)

and introduce and quantum phase-space force, or call it Wigner force, as

FW = Mẇ = M
d

dt

(
J

W

)
=

(
ṗ

M d
dt

(
Jp
W

)) (6.13)

Note that ṗ in Eq. (6.13) is
Jp
W , i.e. Jp = ṗW . As a proof, we have already shown that the

projection of the Jp component onto momentum space, is the probability current, j̃(p) = ṗP (p)
in Eq. (4.23), where ṗ is the force in momentum space.



7 Degenerate Wigner Current

The Wigner current is rendered degenerate for vanishing quantum correction terms, see Sec-
tion 6.1. Examples include the classical limit of ~ → 0 [11], the thermal state at infinitely
high temperatures [1], the quantum harmonic oscillator potential, and for eigenfunctions only
of the non-linear Kerr oscillator (see Chapter 8). In this Chapter, we present, analyse and
visualise the characteristics of quantum phase-space dynamics using the degenerate Wigner
current of the quantum harmonic oscillator.

7.1 The Quantum Harmonic Oscillator

The features of the quantum harmonic oscillator’s dynamics discussed in this Chapter, are
used as a reference for comparison with the three classes of weakly-anharmonic oscillators
discussed in Chapter 9. Therefore, for simplicity, we set the quantum harmonic oscillator’s

curvature (its spring constant), ∂2
x

(
kx2

2

)
= k = MΩ2 = 1 and angular frequency Ω = 2π

T = 1

(with oscillating period T = 2π). In this reference form, the quantum harmonic oscillator
features circular (rather than elliptical [65]) fieldlines in both classical and quantum phase-
space (see Figs. 9.1 and 7.3), since its velocity field assumes identical form (in both classical
and quantum) as its dynamics are governed by Hamilton’s equations of motion, see Section 7.3,
which is not obvious from Schrödinger’s equation [62].

The dynamics of the quantum harmonic oscillator are described by the time-independent
Schrödinger equation of the form (with ~ = 1 and state index n = 0, 1, 2, . . .),

Ĥ�ψn =

[
−1

2

d2

dx2
+
x̂2

2

]
ψn = Enψn , (7.1)

where Ĥ� is the quantum harmonic oscillator’s Hamiltonian, and En and ψn are its corre-
sponding eigenfunctions and eigenenergies (Hn are the Hermite polynomials of degree n),

ψn =
1√

2nn!

(
1

π

)1/4

e−
x2

2 Hn (x) , Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
, En = n+

1

2
. (7.2)

7.2 The Quantum Harmonic Oscillator in Phase-Space

In phase-space, the quantum harmonic oscillator in its reference form (see Section 7.1), is
described by its associated Wigner functions W� expressed as [8],

W�mn =


√
m!

n!

(−1)m

π

(
4H�

)(n−m)/2
L(n−m)
m

(
4H�

)
e−2H�+i(m−n) arctan( px) m 6= n for off-diagonal terms

(−1)n

π
L(0)
n

(
4H�

)
e−2H� m = n for eigenfunctions

(7.3)

where H� = p2

2 + x2

2 and L
(n−m)
m are the Laguerre polynomials, defined as

L(α)
m (x) =

x−αex

m!

dm

dxm
(
e−xxm+α

)
. (7.4)

42
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Thus, the Wigner transform (see Section 4.1) maps the Hermite polynomials of the eigen-
functions of the quantum harmonic oscillator in Eq. (7.2), to the Laguerre polynomials of its
associated Wigner functions in Eq. (7.3).

The Wigner functions of the eigenfunctions of the quantum harmonic oscillator in Eq. (7.3),
have the shape of concentric fringes of alternating polarity (ripples in phase-space) centred
on the origin of phase-space, see Fig. 7.1. Their zero lines thus form concentric circles [11]
(n circles for the Wigner function of the nth excited state, which also has n nodes), with the
exception of the Wigner function of the ground state which does not go to zero, as it is a
Gaussian [64]. The radii of these concentric circles of the Wigner functions W�nn in Eq. (7.3),
for the first, second and third excited states, are indicated in Table 7.1. The trend of these
radii including the radii of higher excited states, is illustrated together with the trend of the
nodes of the corresponding eigenfunctions, for the first ten excited states, in Fig. 7.1.

W�33

√
3
2

+
√

3 cos
(

1
3

arctan(
√

2)− 4π
3

) √
3
2

+
√

3 cos
(

1
3

arctan(
√

2)− 2π
3

) √
3
2

+
√

3 cos
(

1
3

arctan(
√

2)
)

W�22

√
1− 1√

2

√
1 + 1√

2
-

W�11
1√
2

- -

k = 1 k = 2 k = 3

Table 7.1 Radii of the kth zero circle (where k = 1 represents the first zero circle
from the origin) of the quantum harmonic oscillator’s Wigner functions for the first,
second and third excited states. These are effectively the roots of the Laguerre

polynomials L
(0)
n

(
2x2
)

in Eq. (7.4), for which a general closed form expression is
not known [73].
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Figure 7.1 Top panel: Wigner functions for n = 0, 1, 2, 3, 4 in Eq (7.3), shifted
upwards according their energy eigenvalue. Green and blue lines are their projec-
tions onto (probability distributions) the x and p axes, see Eqs. (3.22) and (3.23).
Dashed black lines indicate the zero circles of the Wigner functions.
Bottom panel: Coloured lines represent the trend of the numerically determined

roots of the Laguerre polynomials L
(0)
n

(
2x2
)

in Eq. (7.4) (compare with Table. 7.1),
and grey lines represent the roots of the Hermite polynomials Hn(x) in Eq. (7.2),
for n = 1, 2, 3, . . . , 10 (vertical axis). Note that the roots are only true for non-
negative integer values of n; solid lines only depict the trend.
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For the superposition of the ground and first excited state Ψ0,1 in Eq. (3.8) the correspond-
ing Wigner function in Eq. (4.9) takes the form

W�0,1 =
e−p

2−x2

π

[
cos(2θ) + sin2(θ)

(
2p2 + 2x2

)
+ sin(2θ)

√
2 (x cos(t)− p sin(t))

]
. (7.5)

It has a circular zero line with radius 1√
2

and centre
(
− 1√

2
cos(t) cot(θ), 1√

2
sin(t) cot(θ)

)
,

which is further displaced from the origin the larger the ground state contribution (θ → 0, see
top row of Fig. 7.2), and rotates around the origin with period T = 2π. During a full rotation,
the Wigner function remains unchanged, since its total derivative is zero. It is also exhibits a
rigid-body rotation since its associated velocity field is of the form in Eq. (7.7) implying that
every value of W�0,1 in phase-space rotates with the same period, see Sections 7.3. This is also
true for any superposition of the quantum harmonic oscillator.

θ=π/6

θ=π/4 θ=5π/12

θ=π/12

θ=π/2

θ=0

Figure 7.2 Wigner functions of the superposition of the ground and first excited
state W�0,1 in Eq. (8.3) for a weighting angle θ. Green and blue lines indicate the x-
and p-axes, respectively. Dashed black lines indicate the zero circles of the Wigner
functions. By increasing the weighting angle θ, the zero circle of the Wigner
function propagates from infinity towards the origin of phase-space. In the case
of a superposition of two states, other than the superposition of the ground and
first excited state, the corresponding Wigner functions do not generally form zeros
circles but other zero lines of non-trivial shapes in phase-space.



46 CHAPTER 7. DEGENERATE WIGNER CURRENT

7.3 The Quantum Harmonic Oscillator’s Dynamics
in Phase-Space

The Wigner functions of the quantum harmonic oscillator fulfil the equation

∂tW
� + p∂xW

� − x∂pW� = ∂tW
� +∇• J = ∂tW

� + w •∇W� (7.6)

which has a classical form as it governed by Hamilton’s equations of motion (see Chapter 2).

Eq. (7.6) is derived by substituting H� = p2

2 + x2

2 (the Cartesian form of the Hamiltonian in
Eq. (7.1), with spring constant k = MΩ2 = 1 and angular frequency Ω = 1), into Eq. (4.13).

The dynamics in phase-space of the quantum harmonic oscillator are governed by Hamil-
ton’s equations of motion, since it contains terms up to the second order in position [11],
and therefore the quantum Liouville equation assumes the form in Eq. (6.7), featuring the
degenerate Wigner current and its associated divergence-free velocity field in Eq. (6.6), dis-
cussed in Section 6.1. This behaviour of the quantum harmonic oscillator’s dynamics, following
Hamilton’s equations of motion, is not obvious from Schrödinger’s equation [62].

For the quantum harmonic oscillator in its reference form described in Section 7.1, the
Wigner current and its associated velocity field in Eq. (6.6), take the form

J� =

(
Jx
Jp

)
= W�

(
p
−x

)
and w� =

(
p
−x

)
=

(
∂pH�
−∂xH�

)
, (7.7)

whereH� = p2

2 + x2

2 is the quantum harmonic oscillator’s classical Hamiltonian in this reference
form. The Wigner current J� and its velocity field w� in Eq. (7.7), feature circular field lines
and streamlines, respectively, in both classical and quantum phase portraits (see Figs. 9.1
and 7.3), thus the use of the symbol ‘�’ in Eq. (7.7). The zero lines of the Wigner function
W� in Eq. (7.7), discussed in Section 7.2, are lines of zero for both components of its associated
Wigner current, giving rise to lines of stagnation of the current, see Fig. 7.3. This degeneracy
is lifted for superpositions only of the Kerr-type oscillator discussed in Chapter 8 due to the
presence of higher order terms in J . The same applies and it is generally true (i.e. not limited
to superpositions), for anharmonic potentials discussed in Chapter 9. Using trajectories, which
in this case follow the classical equations of motion, is in fact simpler and, in this sense, even
superior to Schrödinger wave function propagators, see [15] p. 352.
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Figure 7.3 Top row: Wigner current and Wigner functions for the quantum
harmonic oscillator’s (in its reference form, discussed in Section 7.1) first excited
state ψ1 (left) and superposition state Ψ�0,1( 7T

8 ; π3 ) (right). Background colouring
refers to the respective Wigner functions’ values (compare insets). The normalised
Wigner current J/|J | is depicted with red arrows if the Wigner function values
are positive. For negative Wigner function values green arrows are used, demon-
strating current reversal [4]. White arrows on top of J/|J | depict J .
Bottom row: Corresponding field lines of the Wigner current J� in Eq. (7.7) at
a fixed time t. The initial points of the field lines are the randomly picked, small
black dots. At these initial points the local magnitude of the Wigner current is de-
termined and the field line it lies on gets coloured accordingly: we chose the colours
of the rainbow; red represents relatively strong current (“hot”) over yellow, green to
blue representing weak current (“cold”). The stagnation point at the origin carries
an orientation winding number ω = +1 and is labelled as in Fig. 2.2. Dashed black
circles show the locations of W� = 0 which implies that, there Jx = 0 and Jp = 0
in Eq. (7.7). These dashed black lines constitute circular current stagnation lines

with constant radius of 1√
2

and centred on
(
− 1√

2
cos(t) cot(θ), 1√

2
sin(t) cot(θ)

)
.



8 Semi-Degenerate Wigner Current

In Chapter 7 we discussed one of the cases of a degenerate Wigner current, of the quantum
harmonic oscillator. For conservative systems, the quantum harmonic oscillator will exhibit
this degeneracy for eigenfunctions and superposition states. In this Chapter we discuss the
case of a semi-degenerate Wigner current of the non-linear Kerr oscillator. For eigenfunctions,
due to the symmetry of the non-linear Kerr oscillator, the quantum correction terms vanish,
and its Wigner current and associated velocity field assume the form in Eq. (6.6), whereas for
a superposition state this degeneracy is lifted as the quantum correction terms remain.

8.1 The Non-Linear Kerr Oscillator

The dynamics of the non-linear Kerr oscillator are described by the time-independent Schrödinger
equation of the form (with ~ = 1 and state index n = 0, 1, 2, . . .),

ĤKψn =

[
−1

2

d2

dx2
+
x̂2

2
+ Λ2

(
−1

2

d2

dx2
+
x̂2

2

)2
]
ψn = EKn ψn , (8.1)

where ĤK is the Kerr oscillator’s Hamiltonian, whose wave function solutions are the quantum
harmonic oscillator’s eigenfunctions ψn given in Eq. (7.2), with eigenenergies of the form

EKn = En + Λ2E2
n =

(
n+

1

2

)
+ Λ2

(
n+

1

2

)2

. (8.2)

In Eq. (8.1), Λ2 is proportional to χ(3), which is the third-order nonlinear susceptibility [55, 74].
Note that we have also set M = 1 and k = 1 in Eq. (8.1), as with the reference form of the
quantum harmonic oscillator in Chapter 7.

8.2 The Non-Linear Kerr Oscillator in Phase-Space

In phase-space the Kerr oscillator is described by the Wigner functions given in Eq. (7.3),
which are also the quantum harmonic oscillator’s Wigner functions, but for the two-state
superposition in Eq. (8.3), the Kerr oscillator’s Wigner functions take the form

WK0,1 =
e−p

2−x2

π

[
cos(2θ) + sin2(θ)

(
2p2 + 2x2

)
+ sin(2θ)

√
2
(
x cos(t+ 2Λ2t)− p sin(t+ 2Λ2t)

)]
.

(8.3)

p̂2

2M
+
k

2
x̂2 + Λ2

(
p̂2

2M
+
k

2
x̂2

)2

=
p̂2

2
+
x̂2

2
+ Λ2

(
p̂2

2
+
x̂2

2

)2

, (8.4)
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8.3 The Non-Linear Kerr Oscillator’s Dynamics in
Phase Space

The continuity equation Eq. (4.15) for the non-linear Kerr-type oscillator can be derived by
substituting its Hamiltonian ĤK in Eq. (8.4), into Eq. (4.13), to take the form (with ~ = 1) 1,

∂tW + p

[
1 + Λ2

(
p2 + x2 − 1

4
∆

)]
∂xW − x

[
1 + Λ2

(
p2 + x2 − 1

4
∆

)]
∂pW = 0 . (8.5)

Comparing Eqs. (4.15) and (8.5), the corresponding Wigner current J takes the form,

J =

(
Jx = p

[
1 + Λ2

(
p2 + x2 − 1

4∆
)]
W

Jp = −x
[
1 + Λ2

(
p2 + x2 − 1

4∆
)]
W

)
=

(
p
−x

)[
1 + Λ2

(
p2 + x2 − 1

4
∆

)]
W , (8.6)

The quantum harmonic oscillator’s Wigner functions are also solutions to the non-linear Kerr
oscillator Hamiltonian ĤK in Eq. (8.4), and so for eigenfunctions, due to their symmetry,
Eq. (8.7) becomes

J =

(
Jx = p

[
1 + Λ2(2n+ 1)

]
Wnn

Jp = −x
[
1 + Λ2(2n+ 1)

]
Wnn

)
=

(
p
−x

)[
1 + Λ2(2n+ 1)

]
Wnn . (8.7)

Therefore, the corresponding velocity field takes the form,

w =

(
wx = p

[
1 + Λ2

]
wp = −x

[
1 + Λ2

]) =

(
p
−x

)[
1 + Λ2(2n+ 1)

]
, (8.8)

which is divergence-less (∇•w = 0). For superposition state the ∇•w is typically non-zero,
see Fig. 8.1.

1∆ =∇•∇ = ∂2
x + ∂2

p is the Laplace operator in phase-space
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Figure 8.1 Wigner current J , depicted by arrows (red for clockwise and green for
inverted current), together with the zeros of the Jx and Jp components (green and
blue lines, respectively), is superimposed on top of a colourplot of 2

π arctan(∇•w).
Parameters: ~ = 1, M = 1, and k = 1. Superposition state Ψ = cos(π7 )ψ0 +

sin(π7 )e−i
7
4πψ1, for the Kerr oscillator with Λ = 2, features blue and green lines

lying on top of each other. The zeros of the Jx and Jp components form degenerate
lines of vanishing current.



9 Non-Degenerate Wigner Current

So far, in terms of the Wigner current, we discussed the degenerate case of the quantum
harmonic oscillator (see Chapter 7), and the semi-degenerate case of the non-linear Kerr os-
cillator (see Chapter 8). In this Chapter, we discuss the quantum-mechanical case of weakly-
anharmonic potentials, featuring a non-degenerate Wigner current. We only consider their
bound weakly-excited eigenfunctions (see Section 9.3) and their pure two-state superposi-
tions (Section 9.4).

Specifically, we investigate the features of J ’s fieldline portraits that are in common for
the three classes of weakly-anharmonic potentials, defined here as hard, soft and odd, and
find that odd potentials are hybrids of hard and soft potentials (see Sections 9.3 and 9.4).
We particularly stress an intuitive understanding of the existence of their Wigner current
fieldline portraits, which we subsequently formalise in a perturbation analysis (see Section 9.4
and 9.3). Because of weak anharmonicities, these three classes can partly be understood from
the vantage point of the quantum harmonic oscillator (see Chapter 7), and partly through the
perturbation analysis. This perturbation analysis is different to the usual perturbation analysis
in quantum mechanics. Namely, here we perturb the potentials only, not their eigenfunctions.
The eigenfunctions of the potential are the exact solutions of the full potential.

To demonstrate the conceptual power of the use of J , and collections of its fieldlines,
we show that in the limit of vanishing anharmonicity the fieldlines of J do not converge
pointwise (see Sections 9.3 and 9.4) to those of the quantum harmonic oscillator. This implies
that even for weakly anharmonic potentials, quantum and classical phase-space behaviour are
qualitatively very different from each other (see Section 6.1 and also [5, 27]); this finding is at
variance with common assumptions found in the literature

9.1 Three Classes of Weakly Anharmonic Potentials

Weakly anharmonic potentials V A that can be Taylor expanded, are characterised by their
leading anharmonicity coefficient αAν in what we will refer to as their truncation V Aν of order ν
and representative A, namely,

V A(x) ≈ V Aν (x) =
x2

2
+ αAν x

ν , (9.1)

We equate the curvature of all weakly anharmonic potentials, at their minimum point (set for
all potentials at x = 0), to the curvature (spring constant k = 1) of the quantum harmonic
oscillator in its reference form in Chapter 7, ∂2

x

(
V A(x)

)∣∣
x=0

= k = 1, see Table 9.1. As it
was discussed in Section 7.1, this helps comparing the phase-space trajectories of the quantum
harmonic oscillator with the trajectories of weakly anharmonic potentials, see Fig. 9.1.

The precise order ν of a truncation’s leading anharmonic coefficient αAν in Eq. (9.1), is
quite unimportant, as it is the qualitative class of the potential that determines its quali-
tative dynamic features. With respect to Wigner current’s qualitative features for weakly-
anharmonic bound-state potentials, just as for the associated phase portraits in the classical
case (see Fig. 9.1), only three classes of weakly anharmonic potentials exist. For each class
a representative exists for which all bound eigenfunctions and eigenenergies are known in
simple closed form, derived using supersymmetric quantum mechanics, see Section 3.6. As
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x

V

p

x
Figure 9.1 Top row: Representatives of the three classes of weakly-anharmonic
potentials displayed side by side: Eckart potentials (V E , left, in blue) are hard,
Rosen-Morse potentials (V R, centre, in green) are soft and Morse potentials (VM,
right, in red) are odd, see Table 9.1. The potentials feature differing amounts
of anharmonicity, αAν in Eq. (9.1), while they are all rescaled to have the same
curvature at their minimum point as the quantum harmonic oscillator potential in
its reference form (see Chapter 7), displayed behind each class as a thick grey line.
Bottom row: Associated classical phase portraits (for one fixed potential strength
in each column), superimposed on quantum harmonic oscillator’s phase portraits
(thick grey lines). The stagnation point at the origin of each phase portrait carries
a flow orientation winding number ω = +1 and is labelled as in Fig. 2.2.

such representatives, denoted by their respective superscripts (A) in Eq. (9.1), we chose the
hard Eckart (V E) potential, representing all potentials with a positive leading anharmonic
coefficient αAν of even order ν, the soft Rosen-Morse (V R) potential, representing all poten-
tials with a negative leading anharmonic coefficient of even order, and the odd Morse (VM)
potential, representing all potentials with a leading anharmonic coefficient of odd order, see
Table 9.1.

Each class has, qualitatively, similar phase portraits, (see Fig. 9.1). The hard and soft
classes correspond to springs harder and softer (in terms of their spring constant), than the
quantum harmonic oscillator in its reference form in Eq. (7.1), see left and middle columns of
Fig. 9.1, respectively. For odd potentials we always set the leading coefficient αMν < 0, making
the odd potentials soft for x > 0 and hard for x < 0, see right column of Fig. 9.1.

Potentials V A, which, based on their truncation V Aν , are classed as even or odd, can contain
higher order Taylor terms which are not necessarily only even or odd. The influence of such
higher terms can be neglected since we limit our investigation to weakly excited systems. If
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Potential Harmonic
Oscillator

hard
Eckart

soft
Rosen-Morse

odd
Morse

V A(x) x2

2
V E = D tan2

(
x√
2D

)
VR = D tanh2

(
x√
2D

)
VM = D

(
1− e−

x√
2D

)2

V Aν = x2

2
+ αAν x

ν x2

2
V E4 = x2

2
+ x4

6D
VR4 = x2

2
− x4

6D
VM3 = x2

2
− x3

2
√

2D

Eigenenergies n+ 1
2

D

[(√
1+16D2+2n+1

4D

)2

− 1

]
D

[
1−

(√
1+16D2−2n−1

4D

)2
]

D

[
1−

(
4D−2n−1

4D

)2
]

Groundstate
(unnormalized) e−

x2

2 cos
(

x√
2D

)[√1+16D2+1
2

]
sech

(
x√
2D

)[√1+16D2−1
2

]
e
−
[
x
(

4D−1

2
√

2D

)
+2De

− x√
2D

]

D-parameter - D > 0 D >

√(
2N−1

4

)2
− 1

16
D > 2N−1

4

N -bound states - - N(D) =

⌊√
1+16D2+1

2

⌋
N(D) =

⌊
4D+1

2

⌋
A -

√
1+16D2+1

4
√
D

√
1+16D2−1

4
√
D

4D−1

4
√
D

B 0 0 0
√
D

α - 1√
2D

1√
2D

1√
2D

Table 9.1 Revised version of Table 3.1 presenting the quantum harmonic oscilla-
tor and the three classes of weakly anharmonic potentials with their corresponding
eigenenergies and groundstate (n = 0). The inverse anharmonicity parameter D,

for which limD→∞ V E,R,M = x2

2 , is also the depth of the two open potentials,
Rosen-Morse and Morse. The number of bound sates N is given in terms of D,
where b. . .c denotes floor rounding. Excited eigenfunctions (n = 1, 2, . . . , N − 1)
for each potential are created using supersymmetric quantum mechanics (see Sec-
tion 3.6), using their respective parameters given in the last three rows. The
potentials here are shifted upwards, compared to Table 3.1, by an amount equal to
the groundstate eigenenergy so that their minimum point is located on the x-axis.

we were to regard the truncated right hand side of Eq. (9.1), as the full potential, soft and odd
potentials would obviously be entirely open (i.e. not only open above a certain potential energy,
like the Rosen-Morse and Morse potentials, see Fig. 9.1), without any bound eigenfunctions;
we exclude such cases. With these provisions, studying one representative of each class allows
us to cover qualitative features of the Wigner current of the bound eigenfunctions of all
weakly-excited weakly-anharmonic potentials.

We only consider two-state superpositions ΨAm,n of the form in Eq. (3.8), where the asso-
ciated revolution time describing the periodic movement in phase-space is given by Eq. (3.6).

9.2 The Wigner Functions of the Morse Potential

The Morse potential is one of the few bound-state systems for which an analytical expression
of the Wigner function in Eq. (4.1), is known. Others include the quantum harmonic oscillator
in Eq. (7.3), the infinite square well (and other similar piecewise constant potentials).

The eigenfunctions of the Morse potential [65], are

ψMn (x) =
1

4
√

2D
N (D,n)ξ2D−n−1/2e−ξ/2L(4D−2n−1)

n (ξ) for ξ = 4De−x/
√

2D , (9.2)



54 CHAPTER 9. NON-DEGENERATE WIGNER CURRENT

where L
(α)
n are the Laguerre polynomials in Eq. (7.4), and N is normalisation constant

N (D,n) =

√
(4D − 2n− 1) Γ (n+ 1)

Γ (4D − n)
. (9.3)

The corresponding Wigner functions (for all diagonal and off-diagonal density matrix entries),
also derived in [65], are

Wmn(x, p;D) =
2

π
N (D,m)N (D,n)ξ4D−m−n−1

×
m∑
r=0

n∑
s=0

b(D,m; r)b(D,n; s)ξr+sKm−n−r+s+2ip
√

2D (ξ) (9.4)

where the b coefficient is of the form,

b(D,n; j) =
(−1)j

j!

Γ (4D − n)

Γ (4D − 2n+ j) Γ (n− j + 1)
, (9.5)

and Kν is the modified Bessel function of the second kind [75] (formerly known as the modified
Bessel function of the third kind [65]),

Kν (ξ) =

ˆ ∞
0

τν−1

2
e−

ξ
2(τ+ 1

τ )dτ , (9.6)

which renders analytical calculations not much easier than numerical calculations [65], and we
only used them to check some of the numerical results, see Chapter 5.

9.3 Wigner Current Fieldine Portraits for Eigenfunc-
tions

Heisenberg’s uncertainty principle ∆x ·∆px ≥ ~/2 implies constancy of the size of an uncer-
tainty domain in phase-space [25] (note that this argument must not be taken too far [6]).
For the Wigner current fieldline portraits for eigenfunctions, hard potentials squash phase-
space fieldlines in position, thus, elliptically expanding them in momentum, see bottom row
of Fig. 9.3. This observation can be applied to the shape of zero lines (see Section 7.2) as well:
compare the green lines in Fig. 9.2 and in the top row of Fig. 9.3. Soft potentials invert this
scenario; expansion in x leads to an elliptical squeeze in p, see middle row of Fig. 9.3. Odd
potentials are effectively hard on the left and soft on the right side. This leads to a growth
in position spread and reduction in momentum spread, similar to the case of soft potentials,
but, additionally, phase-space features tend to be moved to the right, towards the side where
the potential is open, see bottom row of Fig. 9.3.

Existence of Distinct Stagnation Points

In the limit of vanishing anharmonicity (D → ∞), the potential expressions in Table 9.1, all

reduce to the quantum harmonic oscillator in reference form, x2

2 in Eq. (7.1). This implies
that their respective eigenfunctions, eigenenergies and Wigner functions converge pointwise
towards those of the quantum harmonic oscillator. The discussion below shows that pointwise
convergence does not occur for the associated Wigner current fieldline portraits.
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The degeneracy of the quantum harmonic oscillator Wigner functions in Eq. (7.3), leads to
formation of lines of stagnation, see Section 7.2. The presence of the quantum corrections terms
(l ≥ 1 in Eq. (4.16)), lifts this degeneracy for anharmonic potentials. As can be seen in Figs. 9.3
and 9.2, the quantum correction terms deform the zero lines of the momentum component of
the current (Jp = 0, thick blue lines) differently compared to the position component (Jx = 0,
thick green lines). Therefore the zero lines of the components cross each other at discrete
points in phase-space forming separate stagnation points at their intersections. The x-axis
is also coloured green since Jx in Eq. (4.16) also vanishes at p = 0, yielding two stagnation
points for all blue (Jp = 0) lines intersecting it. Similarly, the p-axis is a blue line of zero of
Jp in the harmonic case (see Fig. 7.3), and, for symmetry reasons, also for even potentials.
For odd potentials these Jp zeros do not lie on the p-axis but are displaced to the right. In
section 9.3 we confirm these statements through a mathematical analysis.

Can an alternative to the break-up of the Jp zero lines in the bottom row of Fig. 9.3 exist
for odd potentials? The answer is – it cannot; to the left of the p-axis an odd potential is
hard and therefore has to yield the characteristic pattern displayed in the top row; to the
right it is soft, yielding the middle row pattern. Near the p-axis both portraits meet but
cannot be connected due to the continuity of Jx and Jp as functions of x and p. The only
option, respecting continuity, is the cut-and-reconnect pattern we see realised in the bottom
row of Fig. 9.3.

The elliptic squashing and expansion of the zero lines of Jx and Jp, leads to deformation
of their common zero line in the harmonic case (see Fig. 7.3), into two ellipses of different
eccentricities, common centres, and equal area, which are aligned with the coordinate axes of
phase-space. In the limit of vanishing anharmonicity, these ellipses intersect at odd multiples
of 45 degrees (counted from the positive x-axis), forming the diagonal stagnation points we
observe in Figs. 9.3 and 9.2.

This qualitative discussion has shown that for weakly-anharmonic even potentials 8n + 1
stagnation points are to be expected for all low lying eigenstates ψn: one at the origin, two on
the x-axis and two on the p-axis, and four diagonal stagnation points. For weakly-anharmonic
odd potentials there are 6n+1 stagnation points per eigenfunction, since the p-axis stagnation
points are all avoided by the cut-and-reconnect mechanism, mentioned above.

In short, weakly anharmonic potentials are fundamentally non-classical [5, 27]. The Wigner
functions for eigenfunctions of a weakly anharmonic potentials converge pointwise towards
those of the quantum harmonic oscillator, but the collections of fieldlines do not. In this sense
there cannot be a smooth transition from quantum to classical case in either the limit of ~→ 0
or vanishing non-linearity in the potential. This is at variance with published statement such
as — “Trajectory methods [...] are not reliable in general, being restricted to interaction
potentials which do not deviate too much from an harmonic potential.” [41], or: “the first step
toward a systematic and general Wigner description is to consider a system whose potential
differs only slightly from a harmonic potential” [70].

Displacement on the x-axis of Jx = 0 vs Jp = 0

Numerically, we see that the zero lines of Jx and Jp shift differently. We now confirm this
analytically.

Similarly to equation (9.10), we determine the displacement δxJp of the zero of Jp on the

x-axis using the Newton gradient method at (x, p) = (X̃, 0), here X̃ denotes the point where
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the Wigner distribution is zero, i.e., where Jx = 0.

δxJp

∣∣∣
(X̃,0)
≈ ~2ν(ν − 1)(ν − 2)

24
· ανxν−4

∂2
pW

�

∂xW�

∣∣∣∣∣
(X̃,0)

. (9.7)

Now, the Mexican hat profiles of the harmonic oscillator’s Wigner distributions (see insets
Fig. 7.3) imply that ∂2

pW
�
n,n/∂xW

�
n,n|(X̃,0) > 0 for X̃ > 0 and is negative for X̃ < 0.

For example, if the potential is stiff and symmetric (α4 > 0) we know that the contours of
W are squeezed inward on the x-axis, in other words the magnitude of the zeros of the Wigner

distributions on the x-axis obey |X̃W | < |X̃�W |. In this case δxJp

∣∣∣
(X̃,0)

> 0, this counteracts

the inward movement of the zeros of Jx, the zero line of Jp is less deformed than that of Jx.
The same logic can be applied to stiff and odd, weakly-anharmonic potentials. This dis-

cussion in particular confirms that an odd potential’s behaviour constitutes a hybrid of stiff
and soft potentials’ behaviour, see Fig. 9.3.
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Figure 9.2 Qualitative discussion of the emergence (type and positioning) of
the Wigner current stagnation points for the first excited state of a hard potential.
White arrows represent normalised Wigner current as observed in the quantum
harmonic oscillator; clockwise, far from the origin, and anti-clockwise (inverted
current) very close to the origin (compare left panels of Fig. 7.3). Green and
blue delineated ellipses represent the zero lines, see Section 7.2, deformed by the
anharmonicity of the potential. They are coloured green when Jx changes sign and
blue when Jp does; this also applies to x and p-axis. We track the orientation of
the current while moving across phase-space along the sequence of arrows with ever
darker shades of grey which eventually wraps around the rightmost ‘+1’ stagnation
point. Whenever this sequence crosses a zero line (Jx = 0 or Jp = 0), the arrows are
framed green or blue, respectively. We can similarly track the current’s orientation
around the boundaries of the deformed zero lines and along the x and p-axis. Green
arrows with blue fringe are orientated horizontally (Jp = 0) and invert direction
whenever the blue line they are pinned to crosses a green line. Blue arrows with
green fringe are tied to green lines, are vertically aligned, and behave analogously.
At every crossing of a green with a blue line, a stagnation point exists, but nowhere
else. Using this method we can work out the topological charge of the stagnation
points, labelled as the symbols of Fig. 2.2. The quantitative plots in the top row
of Fig. 9.3 confirm this qualitative analysis.



58 CHAPTER 9. NON-DEGENERATE WIGNER CURRENT

Momentum, p Momentum, p Momentum, p

α   M=
-0

.0
0

8
3Po
sitio

n
, x

Po
sitio

n
, x

Po
sitio

n
, x

α   E=
0

.0
1

4
4

α   E=
0

.0
5

6
4

α   E=
0

.0
8

3
4

α   R=
-0

.0
1

4
4

α   R=
-0

.0
5

6
4

α   R=
-0

.0
8

3
4

α   M=
-0

.0
3

1
3

α   M=
-0

.1
2

5
3

Momentum, p Momentum, p Momentum, p

α   M=
-0

.0
0

8
3Po
sitio

n
, x

Po
sitio

n
, x

Po
sitio

n
, x

α   E=
0

.0
1

4
4

α   E=
0

.0
5

6
4

α   E=
0

.0
8

3
4

α   R=
-0

.0
1

4
4

α   R=
-0

.0
5

6
4

α   R=
-0

.0
8

3
4

α   M=
-0

.0
3

1
3

α   M=
-0

.1
2

5
3

F
ig

u
re

9
.3

W
ign

er
cu

rren
t

fi
eld

lin
e

p
o
rtra

its
o
f
th

e
fi

rst
a
n

d
seco

n
d

ex
cited

states
(left

an
d

righ
t

fram
e,

resp
ectiv

ely
),

fo
r

th
e

th
ree

cla
sses

o
f

w
ea

k
ly

an
h

arm
o
n

ic
p

o
ten

tia
ls:

h
a
rd

E
cka

rt
(to

p
row

),
soft

R
osen

-M
orse

(m
id

d
le

row
),

an
d

o
d

d
M

orse
(b

ottom
row

).
N

o
te

th
a
t

th
e

W
ig

n
er

cu
rren

t
fi

eld
lin

e
p

o
rtra

its
o
f

o
d

d
p

oten
tials

featu
re

sh
ap

es
of

th
e

h
ard

(for
x
<

0
)

an
d

th
e

so
ft

(for
x
>

0
).

T
h

e
resp

ective
va

lu
es

o
f

th
e

a
n

h
a
rm

o
n

icity
co

effi
cien

t
α
Aν

in
E

q
.

(9.1)
are

q
u

oted
in

each
p

an
el,

in
crea

sin
g

fro
m

left
to

righ
t

in
ea

ch
fra

m
e

(n
o
te

th
a
t

id
en

tica
l

valu
es

of
α
Aν

w
ere

u
sed

for
b

oth
th

e
fi

rst
a
n

d
secon

d
ex

cited
states),

co
rresp

on
d

in
g

to
th

e
va

lu
es

o
f
D

=
(1

2
,3,2

)
(to

p
row

),
D

=
(12

,5,4)
(m

id
d

le
row

),
an

d
D

=
(2

0
48
,128

,8
)

(b
otto

m
row

).
W

ign
er

cu
rren

t
fi

eld
lin

es
a
n

d
th

eir
co

lo
u

rin
g

h
ave

b
een

ad
op

ted
from

F
ig.

7.3.
T

h
ick

b
lu

e
an

d
green

lin
es

refer
to

th
e

zero
lin

es
o
f
J
p

=
0

a
n

d
J
x

=
0
,

resp
ectively.

T
h

e
stagn

ation
p

oin
ts

at
th

eir
crossin

gs
are

la
b

elled
as

in
F

ig.
2.2.



9.4. WIGNER CURRENT FIELDINE PORTRAITS FOR TWO-STATE SUPERPOSITIONS59

9.4 Wigner Current Fieldine Portraits for Two-State
Superpositions

We now consider superpositions of eigenfunctions. Fieldline plots present a momentary snap-
shot in time but poorly represent the behaviour over long times.

Vortex Displacement near Potential’s Minimum

A full analysis of the displacement of the vortex near the minimum of a potential would entail
determination of the Wigner function of the anharmonic system. For our qualitative study we
use the quantum harmonic oscillator’s Wigner functions W� (see Section 7.2), and investigate
the shift to lowest order in ~: J ' J[1] in Eq. (4.17), Taylor-expanded in x.

At the position (X = 0) of the potential’s minimum ∂xV = 0, ∂2
xV = 1, and ∂xW ≈

∂xW
� = 0. Therefore, approximations of Jp,[1] and ∂xJp,[1], up to first order in δx = x −X

(evaluated at phase-space position (x = X, p = P ), and referred to as ∂xJp|(X,P ), etc.), are

Jp,[1]

∣∣∣
(X,P )

≈ −W∂xV +
~2

24
∂2
pW∂3

xVν

∣∣∣∣
(X,P )

= −xW +
~2ν(ν − 1)(ν − 2)

24
· ανxν−3 · ∂2

pW

∣∣∣∣
(X,P )

(9.8)

and ∂xJp,[1]

∣∣∣
(X,P )

≈ ∂x

(
−W∂xV +

~2

24
∂2
pW∂3

xVν

)∣∣∣∣
(X,P )

≈ −W − x∂xW + ∂x
~2ν!

24(ν − 3)!
· ανxν−3 · ∂2

pW

∣∣∣∣
(X,P )

. (9.9)

With the Newton gradient approximation for the x-shift of the zero of Jp at the origin
δxJp |(0,0) ≈ −Jp|(0,0)/∂xJp|(0,0), and with αν � 1, implying W ≈ W�, the minimum vor-
tex’ shift is

δxJp

∣∣∣
(0,0)
≈ ~2ν(ν − 1)(ν − 2)

24
· ανxν−3 ·

∂2
pW

�

W�

∣∣∣∣∣
(0,0)

. (9.10)

The stagnation point of J near the minimum of even potentials, ∂
(2l+1)
x V |(0) = 0, does

not shift at all: δxJp |(0,0) = 0. This result conforms with our expectation that, for symmetry
reasons, the vortex at the origin of eigenstates of even potentials does not shift. This can be
confirmed, to all orders in α, using Eq. (4.17). The stagnation point of J near the minimum of
the potential only shifts for odd potentials. If the potential is anharmonic in higher than third
order, a higher order expansion has to be performed. With a third order anharmonicity, we
assume that α3 < 0. The Mexican hat profiles of the harmonic oscillator’s Wigner distributions
(see insets Fig. 7.3) imply that ∂2

pW
�
n,n/W

�
n,n|(0,0) < 0. Therefore, according to Eq. (9.10),

with ν = 3, δxJp |(0,0) > 0. This confirms the shift to the right, in the direction of the
potential’s opening, and is visible in the bottom row of Fig. 9.3.

For a superposition state’s time-dependent displacement of the vortex near the minimum of
the potential, δxJp(t), Eq. (9.10) provides a reasonably good approximation. This is depicted
in Fig. 9.4.

Note that in the classical case the vortex at the potential’s minimum is not displaced at
all, see Fig. 9.1. In general, vortex displacement over time is a pure quantum effect.
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δxJp

t/T

Figure 9.4 Time-dependent quantum displacement δxJp in Eq. (9.10) of the
Morse potential minimum’s stagnation point along the x-axis versus time for
superposition state Ψ0,2(x, t; π4 ), with anharmonicity value, Table 9.1, αM3 =
−0.088 (D = 16, N = 32). Black curve: position of minimum of potential. Red
curve: numerically determined displacement using J[10] of Eq. (4.17). Grey curve:

first order approximation Eq. (9.10), namely: δxJp =
√

2 cos(2t− 3t
2D )+3

4
√

2D
.

The Ferris Wheel Effect – alignment with x and p-axes

According to the discussion in Section 9.3, four diagonal stagnation points form per zero-
circle of every eigenstate. If we ‘perturb’ an eigenstate by, say, mixing in a little bit of
groundstate (Ψm,0(θ) of Eq. (3.8) with θ � 1), the zero-circles get displaced from the origin
(see Eq. (8.3)). Yet, for small values of θ the four diagonal stagnation points remain pinned
to the zero-circle while it rotates around the origin as time progresses. They do this in such
a way that they keep their relative orientation with respect to the axes of phase-space as
seen from the zero-circle’s centre. In other words, while they travel through phase-space they
behave somewhat like markers on a Ferris wheel cabin, where the zero-line, Jx = 0, depicts
the cabin’s outline, see Figs. 9.6, 9.7 and 9.8.

The remaining stagnation points are pinned to the intersections of the zero circles with x-
or p-axes. When the off-centre displacement becomes larger, the diagonal stagnation points
start to interact with stagnation points on the axes leading to repulsion or coalescence. Such
interactions are constrained by the topological charge associated with the stagnation points’
flow winding number. If the magnitude of the sum of their charges is not greater than one, they
can merge, otherwise they are topologically protected and repel each other, this is illustrated
in Figs. 9.6, 9.7, 9.8, and 9.9.
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Wigner Current Dynamics of the Rabi Cycle

To investigate a simple system in which the weighting angle θ of the superposition state (3.8)
changes considerably while the dynamics progresses, we study a resonantly driven Rabi sys-
tem (see Section 3.5). Its solution for a superposition of ground and first excited state is

ΨR
0,1(x, t; θ(t)) = Ψ0,1(x, t;

ΩR

2
t+

π

2
) , (9.11)

where ΩR is the Rabi frequency [55, 74] and the rotating wave approximation has been used.
In accord with this approximation we assume that the perturbation is so small that we can
neglect the time-dependence of the Hamiltonian when determining the fieldlines of J .

The Rabi state (9.11) displays Wigner current fieldline portraits associated with the sys-
tem’s (fast) intrinsic dynamics while (slowly) shifting the weighting of the superposition state:
for the ratio of these two system frequencies we choose ΩR

Ω� = 1/8 in Fig. 9.10.
Fig. 9.10 shows plots with zero-circles of Eq. (8.3) tied to a spiral centred on t = 0

(since ΨR
0,1(t = 0) = ψ1) which expands outward as more of the groundstate gets mixed

in with increasing values of |t|. We notice that the Ferris wheel-effect tends to keep the
orientation of the stagnation points on the zero circle aligned with x- and p-axes. With our
choice of ΩR

Ω� = 1
8 , around |t| = 2T the mixing angle is roughly |θ| = π/4. At this stage the

zero-circle gets displaced by its radius and stagnation points on the circle interact with those
on x- and p-axes. In the corresponding Sections of Fig. 9.10 repulsion, attraction, coalescence
and splitting of stagnation points can be seen– all constrained by conservation of topological
charge.

Other Wigner Current Fieldline Portraits

In the Rabi-scenario, depicted in Fig. 9.10, the weighting angle changes dynamically. We can
also monitor the changes that arise when we change it ‘by hand’. The topological nature of
the stagnation points conserves the current winding number in this case as well, see Fig. 9.11.

Other superposition states, such as Ψ1,2, can show symmetric flower petal arrangements,
see insets in Fig. 9.12, which have recently been observed experimentally [76]. Fig. 9.12 shows
how the three different types of weakly-anharmonic potentials give rise to current portraits.
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Figure 9.9 Time evolution of the Wigner current stagnation
points J[1] Eq. (4.17) for the superposition state Ψ0,1(0.95π4 ) in Eq. (3.8),
with probability 0.54 for ground and 0.46 for first excited state. The
panels feature, from top to bottom, a (hard) Eckart, (soft) Rosen-Morse
and (odd) Morse potential, Table 9.1, with respective anharmonicity val-
ues, αE4 = 0.002 (D = 100), αR4 = −0.002 (D = 100, N = 200)
and αM3 = −0.004 (D = 10000, N = 20000). The helical tube depicting
the position of the zero circle of Eq. (8.3), nearly touches the origin. To guide
the eye, every tenth of the full period is denoted by a dashed black zero circle
painted onto the tube which is rainbow-coloured to display the flow of time, one
period Eq. (3.6) per rainbow. The position of stagnation points is depicted by
red lines if they carry charge ω = +1 and yellow if ω = −1, see Fig. 2.2. The
stagnation point positions are additionally projected along the x-axis onto the
blue wall in the back and along the p-axis downward onto the green floor.
Winding number conservation implies that positively and negatively charged
stagnation points originate and annihilate together, this is seen as red and yellow
lines forming loops which are reminiscent of the formation of the torus reported
in Fig. 4 of reference [4]. As mentioned in the caption of Fig. 9.3 plots for the
odd Morse potential (bottom panel), contain features of the soft Rosen-Morse
potential (middle panel) for x > 0 and of the hard Eckart potential (top panel)
for x < 0.
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Figure 9.10 Rabi cycle for state (9.11) with frequency ratio ΩR/Ω
� = 1/8. The

panels feature, from top to bottom, a soft, hard and odd potential, Table 9.1, with
respective anharmonicity values, αE4 = 0.002, αR4 = −0.002 and αM3 = −0.004.
At time t = 0 the system is in the first excited state; at other times the zero-
circle’s center (8.3) is displaced from the origin such that, over time, it sweeps
out a helix with varying width. This is displayed as a helical tube whose rainbow
coloring depicts the flow of time. Every full period (T� = 1) is denoted by a
dashed black zero-circle. Stagnation points are depicted by red lines when carrying
charge ω = +1 and yellow if ω = −1, see Fig. 2.2. The stagnation point positions
are additionally projected along the x-axis onto the blue wall in the back and along
the p-axis downward onto the green floor. Winding number conservation implies
that positively and negatively charged stagnation points originate and annihilate
together, this is seen as red and yellow lines forming loops which are reminiscent
of the formation of the torus reported in Fig. 4 of reference [4]. As mentioned in
Figs. 9.3 above, the bottom panel, for the odd Morse potential, inherits features
of Rosen-Morse potential and Eckart Potential.
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Figure 9.11 Conservation of the Wigner current winding number for fixed
time t = T/8 but varying weighting angle θ of the superposition state Ψ0,1(x, T8 ; θ).
We observe movements of stagnation points leading to their merger and splitting.
The top row refers to the hard Eckart and bottom row to the soft Rosen-Morse
potential with identical parameters as in Figs. 9.6 and 9.7, respectively. Note the
non-Liouvillian nature of the flow featuring regions of pronounced flow expansion
and compression.
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Figure 9.12 Wigner current fieldline portraits for state Ψ1,2

(
x, 3T

4 ; π4
)

in Eq. (3.8) for, from left to right, Eckart, Rosen-Morse and Morse poten-
tials Table 9.1, with respective anharmonicity values αE4 = 0.042 (D = 4),
αR4 = 0.033 (D = 5, N = 10), and αM3 = 0.125 (D = 8, N = 16). The same
symbols as in Fig. 9.3 are used. Zeros of the Wigner function (thick green lines)
intersect with zeros of the momentum component of Wigner current (thick blue
line) yielding fairly intricate arrangements of stagnation points of Wigner current.
Similarly to Figs. 9.3, 9.9 and 3.1, the Morse potential’s case inherits features of a
soft Rosen-Morse potential for x > 0 and of a hard Eckart potential for x < 0.



10 Conclusions and Future Work

In this Chapter we provide an overview of what has been achieved in this research project as
a list of contributions to knowledge and also provide some brief discussions on how to extend
the research on quantum dynamics in phase-space.

10.1 Contributions to knowledge

The following list provides an overall contribution to knowledge presented in this thesis. Note
that these were not the aims of this research project but rather the final result of our attempt
to investigate quantum dynamics in phase-space with the use of the Wigner current:

• In this thesis we have introduced the study of quantum dynamics with the use of the
Wigner current and its collections of fieldlines. Collections of Wigner current fieldlines
provide the following new insights into the nature of quantum dynamics phase-space:

– They are quantum analogs of classical phase-space trajectories

– They represent quantum dynamics of a specific quantum state in phase-space

– They provide visualisation at-a-glance and thus characterise quantum phase-space
dynamics

– They reveal subtle patterns in phase-space, such as contracting and expanding
regions of phase-space, and stagnation points (vortices, separatrices and saddles);
similar to classical phase portraits [45, 46]. Therefore, they can be characterised
by their stagnation points’ distribution and Poincaré-Hopf-indeces.

• In Chapter 3, we introduced the well-known Schrödinger’s representation of quantum
mechanics which is widely taught during the first year of an undergraduate Physics
degree. Here we discussed the position and momentum Schrödinger’s representations in
parallel using Fourier transforms and it was shown how these representations can be used
to naturally introduce Wigner’s phase-space representation of quantum mechanics (see
Chapter 4). This included the introduction to the Wigner function and Wigner current,
naturally arising, with the use of Fourier transforms, from the probability distributions
and currents of position and momentum Schrödinger’s representations.

• In Chapter 4 we introduced the Wigner function, its continuity equation, and the Wigner
current and discussed some of their mathematical properties. These included the pro-
jections of the Wigner current components and the derivation of Ehrenfest’s theorem as
an average over phase-space of the Wigner current components.

• In Chapter 5 it was shown that the use of the infinite-sum form of the Wigner current’s
momentum component, can lead to incorrect numerical results due to bad convergence.
As an alternative, the integral form of the Wigner current’s momentum component
should be used.

• In Chapter 6, a fundamental proof was presented which shows that the Wigner current
of quantum-mechanical systems obeys Liouville’s theorem only when the dynamics of
the system are governed by Hamilton’s equations of motion, i.e., when the quantum

69
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corrections terms of the quantum Liouville equation, vanish. This was used to dismiss
concepts such as Wigner trajectories and quantal force in phase-space.

• In Chapters 7 and 8, the Wigner current’s degenerate and semi-degenerate cases featured
in the quantum harmonic oscillator and Kerr oscillator, respectively, was discussed.
Their difference, lies in the fact that for a degenerate case the zeros of the Wigner
function and the zeros of the Wigner current’s components coincide in phase-space (apart
from the x- and p-axis), but for the semi-degenerate case only the zeros of the Wigner
current components coincide.

• In Chapter 9 we show that there are three types of weakly-anharmonic weakly-excited
one-dimensional quantum-mechanical systems, which feature, soft, hard and odd poten-
tials. The overall distortions of phase-space in the case of soft potentials (expansion in
the x-direction together with compression in the p-direction) and the reversed distortion
in the case of hard potentials (compressed in x, expanded in p), allows us to qualita-
tively consider the emergence of stagnation points of Wigner current and the associated
fieldline portraits for eigenfunctions of such potentials. Odd potentials turn out to con-
form with the established fieldline portraits for soft and hard potentials, in that they
are a hybrid of these and behave as such. We also investigated superpositions and find
that the position of stagnation points, like in the case of eigenfunctions, tend to align
with x- and p-axis in phase-space. This Ferris wheel-effect tends to apply to various
superpositions, where we again see that fieldline portraits for odd potentials are hybrids
of those of hard and soft potentials.

10.2 Future Work

It would be interesting to investigate the following ideas:

• The only known closed-form expressions of the Wigner function are the ones of harmonic
systems and the Morse oscillator [65]. We believe it is possible to also derive closed-form
expressions of at least a family of Wigner functions for the Eckart and Rosen-Morse
potentials.

• Construct the continuity equation and Wigner current for the case of dissipation (or
decoherence, for example when the system is coupled to the environment), and for the
Rabi Cycle case, which was briefly mentioned in this thesis.

• In this thesis it was proven that for quantum mechanical systems, in order for the Wigner
current to obey Liouville’s theorem on volume preservation, the Wigner current must
be governed by Hamilton’s equations of motion. This occurs when the zeros of the
Wigner function and Wigner current’s components coincide in phase-space. But is also
the reverse true? i.e., when do the zeros of the Wigner function and Wigner current’s
components coincide? Is it only for the quantum harmonic oscillator?

• In Chapter 7, it was shown the roots of the Laguerre polynomials follow a certain trend,
similar to the Hermite polynomials. It might be possible therefore to obtain the exact
roots of these polynomials.
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• At the end of Chapter 6, we introduced the idea of the Wigner force, inspired by the
De Broglie-Bohm theory. Could this result be used to construct quantum trajectories in
phase-space?

It would be interesting to see whether investigations of Wigner current might lead to new
insights on the nature of ‘chaologic’ systems [77] and quantum-classical correspondences [78–
81]. Here we did not attempt to treat either. We would like to emphasise that collections of
Wigner current’s fieldlines are an analog of classical phase-space trajectories. We are aware
of the fact that it depends on the details of how the correspondence is made and that other
approaches [80] yield other analogies.



A Functions

The functions below were used in the derivation of some of the formulae in the main text. For
information see Refs. [82, 83].

1. The Dirac δ function

δ(x− x0) =
1

2π~

ˆ ∞
−∞

dp e
i
~p(x−x0) =

1

π~

ˆ ∞
−∞

dp e
2i
~ p(x−x0)

Some of its properties used in this thesis:

δ(x− x0) = δ(x0 − x) (A.1)

dδ(x− x0)

dx
=

2i

π~2

ˆ ∞
−∞

dp pe
2i
~ p(x−x0) (A.2)

ˆ ∞
−∞

dx f(x)
dδ(x)

dx
= −

ˆ ∞
−∞

δ(x)
df(x)

dx
dx (A.3)

ˆ ∞
−∞

dx f(x)δ(x− x0) = f(x0) (A.4)

2. A Hermitian function f(x), satisfies the identity, f(x) = f∗(−x). Thus, Re (f(x)) is
even in x and Im (f(x)) is odd in x.

3. The Kronecker delta δmn = 1 when m = n and δmn = 0 when m 6= n.

4. Performing a change of variables, (y1 . . . yn)→ (x1 . . . xn), in a multiple-integral,

ˆ
· · ·
ˆ
dy1 . . . dyn f(y1 . . . yn) =

ˆ
· · ·
ˆ
dx1 . . . dxn f(x1 . . . xn)

∣∣∣∣ ∂(y1 . . . yn)

∂(x1 . . . xn)

∣∣∣∣ , (A.5)

makes use of the Jacobian J , defined as

J =
∂(y1 . . . yn)

∂(x1 . . . xn)
= det


∂y1

∂x1
. . . ∂y1

∂xn
...

. . .
...

∂yn
∂x1

. . . ∂yn
∂xn

 (A.6)

5. The convolution of two functions, f1 and f2, is denoted by

(f1 ∗ f2)(x) =

ˆ ∞
−∞

du f1(u)f2(x− u) =

ˆ ∞
−∞

du f1(x− u)f2(u) = (f2 ∗ f1)(x) (A.7)
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B Published Work

Wigner Flow Reveals Topological Order in Quantum Phase Space Dynamics [4]
Abstract: The behavior of classical mechanical systems is characterized by their phase por-
traits, the collections of their trajectories. Heisenberg’s uncertainty principle precludes the
existence of sharply defined trajectories, which is why traditionally only the time evolution
of wave functions is studied in quantum dynamics. These studies are quite insensitive to
the underlying structure of quantum phase space dynamics. We identify the flow that is the
quantum analog of classical particle flow along phase portrait lines. It reveals hidden features
of quantum dynamics and extra complexity. Being constrained by conserved flow winding
numbers, it also reveals fundamental topological order in quantum dynamics that has so far
gone unnoticed.

Wigner’s representation of quantum mechanics in integral form and its applica-
tions [5]
Abstract: We consider quantum phase space dynamics using the Wigner representation
of quantum mechanics. We stress the usefulness of the integral form for the description of
Wigner’s phase space current J as an alternative to the popular Moyal bracket. The integral
form brings out the symmetries between momentum and position representations of quantum
mechanics, is numerically stable, and allows us to perform some calculations using elementary
integrals instead of Groenewold star-products. Our central result is an explicit, elementary
proof which shows that only systems up to quadratic in their potential fulfil Liouville’s the-
orem of volume preservation in quantum mechanics. Contrary to a recent suggestion, our
proof shows that the non-Liouvillian character of quantum phase space dynamics cannot be
transformed away.

Wigner’s quantum phase space current in weakly-anharmonic weakly-excited two-
state systems [16]
Abstract: There are no phase space trajectories for anharmonic quantum systems, but
Wigner’s phase space representation of quantum mechanics features Wigner’s phase current J .
It reveals fine details of quantum dynamics – finer than is ordinarily thought possible accord-
ing to quantum folklore invoking Heisenberg’s uncertainty principle. Here, we focus on the
simplest, most intuitive, and analytically accessible aspects of J . We investigate features of J
for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical
systems which are weakly-excited. We establish that weakly-anharmonic potentials can be
grouped into three distinct classes: hard, soft, and odd potentials. We stress connections be-
tween each other and the harmonic case. We show that their Wigner current fieldline patterns
can be characterised by J ’s discrete stagnation points, how these arise and how a quantum
system’s dynamics is constrained by the stagnation points’ topological charge conservation.
We additionally demonstrate the conceptual power of J by addressing some confusion found
in the literature.
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Anharmonic quantum mechanical systems do not feature phase space trajecto-
ries [27]
Abstract: Phase space dynamics in classical mechanics is described by transport along tra-
jectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based de-
scription of their phase space dynamics. This invalidates some approaches to quantum phase
space studies. We first demonstrate the absence of trajectories in general terms. We then give
an explicit proof for all quantum phase space distributions with negative values: we show that
the generation of coherences in anharmonic quantum mechanical systems is responsible for the
occurrence of singularities in their phase space velocity fields, and vice versa. This explains
numerical problems repeatedly reported in the literature, and provides deeper insight into the
nature of quantum phase space dynamics.
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