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Abstract 

Next-generation sequencing has empowered genomics by making it possible to 

sequence genomes at a lower cost and less time compared to the traditional Sanger 

method. However, these improvements suffer from reduced accuracy when compared 

with the Sanger method. During the library preparation stage of sequencing, artefacts 

can be introduced that affect the reliability of a read. These artefacts can arise from 

biases due to the structure of the genome, such as preferential splitting of DNA 

between specific nucleotides, bias of adapter ligation towards certain base pair 

identities, and temperature dependent denaturation due to nucleotide composition. To 

investigate these issues a library preparation model was developed to simulate the 

occurrences and investigate effects of such artefacts. The implemented model 

simulates the DNA fragmentation, adapter ligation and PCR amplification stages of 

the library preparation process. A set of parameters characterizing these steps and a 

DNA sequence are used as input and the output is an array of values representing the 

number of DNA fragments that cover each position of the input sequence 

(“coverage”). To validate the model a Genetic Algorithm (GA) was used to find 

parameters that would lead to coverage values that are closely similar to what is found 

in empirical sequencing data. The GA was able to acquire such parameters for a 

subsection of the Mycobacterium tuberculosis and Plasmodium falciparum genomes 

but failed when applied to the TP53 gene of the Homo sapiens genome. From this it 

was deduced that the model was better at predicting coverage when applied to genomes 

with subregions of nucleotide repeats. To find the effects of parameters representing 

each step of the library preparation process the model was applied to a set of in silico 

generated DNA that represent different sequence structures (GC-rich, AT-rich, neutral 

composition and a sequence with specific areas of GC and AT rich repeats). My study 

found that the parameters for the fragmentation, adapter ligation and PCR steps 

affected coverage. I also found that a combination of parameters between consecutive 

steps further affected coverage. In the fragmentation step, large fragment size had a 

negative effect on coverage (p = 0.0), in the adapter ligation step, coverage of AT-rich 

sequences was affected by a terminal bias (p = 0.0). Modifying parameters for the PCR 

step affected the coverage of both GC and AT rich sequences due to a temperature 

dependent bias. Finally, an interaction between the parameters of fragmentation and 

other steps were found to further reduce coverage. This simulation was able to suggest 

parameters that need to be fine-tuned to improve coverage. 
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Chapter 1 Introduction 

1.1 Motivation 

Next generation sequencing (NGS) of DNA has dramatically transformed approaches 

to genomic and genetic research (Oyola et al., 2012). DNA sequencing refers to a 

laboratory method used to determine the sequence of a DNA molecule. Some of the 

well-known technologies that are applied in this process include the Roche GS-FLX 

454 Genome Sequencer (originally 454 sequencing), the Illumina Genome Analyser 

(originally Solexa technology), the ABI SOLiD analyser, Polonator G.007, Helicos 

HeliScope, Pacific Biosciences Single Molecule Realtime (SMRT) sequencing and the 

Oxford Nanopore Technologies sequencing platforms. 

These technologies (also referred to as massively parallel sequencing technologies) 

have enabled the sequencing of DNA at unprecedented speeds (Zhang et al., 2011) 

compared to the “original” sequencing methodology known as the Sanger method 

(Sanger, Nicklen & Coulson, 1977). Although NGS has revolutionised biology by 

increasing current understanding of many genes and mutations involved in the 

pathogenesis of human diseases (Zhang et al., 2011), there are still challenges 

associated with the use of these new technologies. 

For example, the sequencing of parts of a genome characterized by extremely biased 

base composition is still a great challenge to the currently available NGS platforms 

(Oyola et al., 2012). The genomes of certain important pathogenic organisms like 

Plasmodium falciparum and Escherichia coli for instance are characterised by 

noticeable high-AT content and high-GC content respectively. The degree with which 

a sequencing technology covers such regions of the genome (called “coverage”) and 

hence the reliability of the output, can be affected by a number of artefacts introduced 

at various stages of the sequencing process. 

In sequencing, coverage refers to how much of the sequenced or targeted genomic 

region is covered by “reads”. A read is the fundamental unit of output of the 

sequencing process, and refers to the base identity (A, T, G or C) that corresponds to 

a single nucleotide position. During the first stage of the sequencing process, a DNA 

sample is broken (ideally at random) into several fragments, which at a later stage can 



 
2 

be reassembled computationally. The number of fragments covering a read position 

quantifies the reliability of that read. This number is referred to as depth of coverage 

and is measured for a single genomic position as the number of reads aligned to that 

position. Thus, coverage for each position in a DNA sample is equal the number of 

reads aligned to that position.  

A perfect sequencing method should provide an end to end reading of a genome, and 

accurately identify variant structures of interest such as polymorphisms and mutations. 

However, in reality, the length of reads are short and contain errors which can be 

misidentified as sequence variants. These errors can be introduced at different stages 

of the sequencing process. For example, as will be reported in Section 2.6.4, during 

the PCR stage of sequencing (the stage at which DNA fragments are “cloned” to 

ensure a sufficiently large sample size of copies), fragments with a high content of A 

and T can be destroyed by the increase in temperature essential for this process. This 

results in low coverage of AT-rich regions of the genome and may lead to situations 

where errors are misidentified as sequence variants, polymorphisms and mutations, 

resulting in false conclusions in studies. Therefore, it is important to assess the 

uniformity of coverage by calculating the variance in coverage across a sequence. This 

will ensure even coverage, and detection of regions with low coverage, thus leading to 

the production of higher quality reads (Sims, et al., 2014). Furthermore, in DNA 

resequencing where genetic variations are explored in relation to diseases in humans, 

accurate detection of variants is essential. This accuracy is affected by low quality 

reads and non-uniform coverage. Increased coverage can counteract these effects and 

improve the detection of variants. 

Coverage can be improved by increasing the amount of DNA to be sequenced, but this 

would lead to higher sequencing costs. Arguably, it is more economical to invest in 

studies into sequencing errors that cause reads of poor quality because of low and 

uneven coverage. Such research may yield improved error detection and methods for 

the differentiation between such errors and actual DNA variants. 

To investigate the effects of sequencing errors, a sequence of systematic and controlled 

experiments in which a single sequencing parameter is varied while keeping the others 

constant can be carried out. Followed by a statistical analysis of the outcomes to check 

the individual effect of each parameter on coverage. But the problem with this 

approach would be that it ends up being more cost-intensive than increasing the 

volume of DNA used for a sequencing run due to the repetition involved. An alternate 
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but cost-effective solution to this would be to simulate the sequencing process by 

implementing a virtual laboratory that carries out the process in silico.  

This kind of simulation can be helpful in studying the interaction between sequencing 

steps without worrying about shortcomings from the hardware and errors from the 

experimenter. It can be seen as an “agent-based model” where each sequencing step is 

characterised by a set of properties which represent their real-world parameters. 

Agent-based models (ABMs) have their origins in artificial life which is the study of 

man-made systems that model the behavior of natural living systems (Aguilar et al., 

2014; Boden, 1996). An ABM is a model that is composed of agents. Each agent is an 

autonomous individual element with its own properties and actions that exist in a 

computer simulation. A system can be modeled using agents, an environment, the 

interactions between the agents as well as interactions between the agents and the 

environment. In artificial life models of living systems are translated to computational 

algorithms using ABMs as they are able to characterise the properties of these living 

systems through computation (Langton, 1997). They have been extensively used to 

model different phenomena, for instance in computational biology to model gene 

regulatory networks (Wang et al., 2009), in business to model consumer behaviour 

(Huiru et al., 2018) and in ecological studies to model population dynamics (Arifin et 

al., 2014). However, these models are not a perfect representation of an original 

process and would not capture all of the original complexities involved but the results 

derived from them can serve as an advisory for changes that can be made in an 

empirical process. 

The main advantage to using this approach here is that if the model is able to reliably 

simulate the real sequencing method, the cost constraint of increased DNA volume is 

solved and it is now easier to investigate how varying parameters that represent 

different sequencing steps affect coverage. In my research, I focus on the initial stage 

of the sequencing process called library preparation. This stage is a step-by-step 

process that prepares a DNA sample for the sequencing hardware. It includes the 

following steps: Fragmentation, End-repair, A-tailing, Adapter ligation and PCR 

amplification. Previous studies indicate that errors and biases due to parameters from 

the PCR step (van Dijk, et al., 2014) and Ligation step (Seguin-Orlando, et al., 2013) 

among others, can negatively affect uniform coverage of a sequence. Using a 

simulation of the library preparation process it becomes possible to vary the 

parameters for each step to find their consequential effects on coverage. The 
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discoveries from this process can inform wet-lab researchers of what steps of the 

library preparation procedure need to be investigated in more detail. Thus, a study of 

problems that can arise from the library preparation stage of the sequencing workflow 

and affect final sequencing output will form the basis of my work. 

1.2 Objectives 

The aim of this research is to analyse how artefacts that may occur during DNA library 

preparation affect sequencing coverage. I will first identify the stages of library 

preparation as used in the Illumina NGS platform. This will provide an in-depth 

understanding of the procedure and the necessary knowledge I will need to model the 

identified stages.  

Subsequently, artefacts that can occur due to biological effects (biases) and 

experimental design during library preparation will be identified. This will give insight 

to how, why, and when these artefacts occur. With this knowledge the identified 

artefacts are modelled and introduced at their related stage during library preparation.  

Finally, with the completion of a simulated library preparation platform, integrated 

models of these artefacts will be applied to track their individual and combined effects 

on sequencing output. Research questions of this study include: 

1. What artefacts can occur at the different stages of library preparation? 

2. How do these artefacts affect sequence coverage? 

3. Are these effects additive, if not how do they combine? 

1.3 Contributions to Knowledge 

The contributions to knowledge in this research include: 

1. A virtual platform that simulates the fragmentation, ligation, and PCR stages of 

library preparation in Illumina sequencing, which allows researchers to study the 

effects of the parameters representing these library preparation steps and their 

affiliated artefacts on coverage.  

2. A genetic algorithm validating that the coverage resulting from a library 

preparation model can match those from actual DNA sequencing. 
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3. Identification of artefacts and values of parameters representing steps of library 

preparation and statistical confirmation of their effects on the uniformity of 

coverage. These effects depend on the base composition and degree of serial 

dependency (e.g. nucleotide repeats) of the sequences considered. 

4. A demonstration of how preceding library preparation steps combine with the 

succeeding steps affect coverage. The parameters of the fragmentation step were 

found to interact with those of the ligation and PCR steps. I present suggestions on 

the cause of this occurrence and a possible solution to reduce its effect on coverage. 

1.4 Thesis Outline 

The structure of this thesis is as follows: 

Chapter 2: Background – An overview of the structure and function of DNA is 

provided along with a summary of DNA sequencing technologies. This is followed by 

a step by step walkthrough of the different stages of Illumina NGS and a review of 

possible artefacts that can occur during these stages. Finally, existing tools which can 

be used to simulate sequencing reads are evaluated. The information in this chapter 

provides the background knowledge required to understand the rest of this thesis.  

Chapter 3: Modelling the Library Preparation of NGS – This chapter provides a 

description of the model for simulating the library preparation process and its 

implementation along with the metrics and tools that will be used to measure its output. 

Chapter 4: Matching Model Outcomes with Results of Real Sequencing using a 

Genetic Algorithm – Background of genetic algorithms and the implementation of a 

genetic algorithm to establish optimal parameter values for fitting model output to the 

real coverage found for DNA samples of Plasmodium falciparum, Mycobacterium 

tuberculosis and Homo sapiens. 

Chapter 5: Effects of Library Preparation – Statistical analysis of the effects of the 

implemented parameters. The first part informs about the statistical effects of each 

single implemented parameter on coverage uniformity for in silico generated DNA 

sequences with different nucleotide composition and sequential dependency. The 

second part deals with the effects of preceding library preparation stages on subsequent 

stages and their combined effect on coverage. The chapter concludes with a validation 
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of the effect of the model parameters applied to the real DNA sequences introduced in 

Chapter 4. 

Chapter 6: Conclusions – The conclusions drawn from the validation of the model 

and the results of my analysis and possible extensions of the work done are outlined. 
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Chapter 2 Background 

This chapter provides the background needed to understand the development of the 

proposed library preparation model and results derived from experiments carried out 

using it. After a short overview of the structure and function of DNA (section 2.1), the 

second section (2.2) covers the basics of DNA sequencing. Next generation 

sequencing with focus on the Illumina sequencing platform is the topic of sections 2.3 

and 2.4. A step by step explanation of the stages of the sequencing process is given in 

section 2.5 followed by a description of artefacts and biases that can occur during the 

library preparation stage (section 2.6). At the end of the chapter software tools that 

have been used to simulate the sequencing process are reviewed (section 2.7). 

2.1 Deoxyribonucleic acid 

Deoxyribonucleic acid (DNA) is a nucleic acid that encodes the genetic information 

in all organisms. A DNA molecule consists of two polynucleotide chains that form a 

spiral called a double helix and is made up of units called nucleotides. These units 

come in two types: purines and pyrimidines. The purines are Adenine (“A”) and 

Guanine (“G”), and the pyrimidines are Cytosine (“C”) and Thymine (“T”). 

Nucleotides are linked sequentially to each other by phosphor-sugar bridges (see 

Figure 1). 

 

Figure 1: DNA structure 
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The double helix is held together by complementary base pairing of A to T and C to 

G by means of hydrogen bonds, consequently forming units called base pairs. 

 

 

Figure 2: Complementary base pairing 
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therefore attach to a messenger RNA codon. Amino-acids, the type of which is 

specified by the particular nucleotide sequence of the anticodon, dock on to the 

second site.  

Subsequently, the bonds between the messenger RNA and transfer RNA are broken 

and the amino acids are linked together to form a polypeptide chain. These are then 

folded into a protein.  

The function and structure of a protein are determined by the way it is folded in three 

dimensions, which in turn depends on the sequence of its amino-acids and hence on 

the sequence of the nucleotides in the exons. Changes in the latter, for instance by 

the transformation of a particular nucleotide into another, are called mutations. 

Mutations may cause disruption of the structure and function of a protein.  

Several mutations can occur in DNA sequences, including, but not limited to, point 

mutations (Single Nucleotide Polymorphisms or SNPs), insertions and deletions. 

SNPs are the most common type of mutation and a number of them are known to be 

associated with particular diseases. With the help of DNA sequencing, mutations can 

be detected in a genome. This allows for the prediction of, among other things, the 

susceptibility for certain diseases. 

2.2 DNA Sequencing 

The first revolution in DNA sequencing occurred in the 1970s with the development 

of the Maxam-Gilbert chemical degradation method (Maxam & Gilbert, 1977) and 

the Sanger enzymatic dideoxy method (Sanger, Nicklen & Coulson, 1977). The 

majority of DNA sequencing technology today relies on variations of the Sanger 

method (Sanger, Nicklen & Coulson, 1977). The Sanger method also known as the 

chain-termination method involves the use of dideoxynucleotides (ddNTPs) in 

combination with deoxynucleotides (dNTP’s). The key difference between ddNTP’s 

and dNTP’s is the presence of a hydrogen group on the 3’ carbon rather than a 

hydroxyl group (OH). When these modified ddNTPs are integrated into a sequence, 

they inhibit the addition of further nucleotides (Obenrader, 2003). This is caused by 

the inability of the ddNTP to form a phosphodiester bond with the next nucleotide of 

a growing DNA chain, leading to the termination of the chain (Sanger, Nicklen & 

Coulson, 1977) (See Figure 3). 
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Figure 3: Chain Termination due to ddNTP 

With the inception of the Human Genome Project in 1990, faster sequencing 
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sequencing over the years (Church, 2005). These revolutionary advances paved way 
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sequencing platform in 2004, so-called Next Generation Sequencing (NGS) (Mardis, 

2008). This innovation heralded the era of high throughput genomic analysis (Next 

Generation Sequencing or NGS). The broadest application of NGS may be the 

resequencing of human genomes to enhance our understanding of how genetic 

differences affect health and disease (Metzker, 2010). 

2.3 Next Generation Sequencing 

Next Generation Sequencing (NGS) has empowered genomics by making it possible 

to sequence genomes at a lower cost and in less time compared to the traditional Sanger 

method (Sanger, Nicklen & Coulson, 1977). The latter was used in the Human 

Genome Project (Lander et al., 2001; Venter et al., 2001), which took about three 

years. Nowadays, with the use of high throughput NGS, a human genome can be 

sequenced within a week.  
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The first commercially available (2005) NGS platform was the Roche/454 FLX 

Pyrosequencer which uses a pyrosequencing sequencing technology (Margulies et al., 

2005). Following this, the Illumina sequencing platform was released in 2006. 

Illumina technology is based on the sequencing by synthesis method (Mardis, 2008). 

A year later “Sequencing by Oligo Ligation Detection” (SOLiD) was developed by 

Life Technologies (Valouev et al., 2008). The Ion Semiconductor Sequencing 

technology was developed by Ion Torrent (now a subsidiary of Life Technologies) in 

2010. An important distinction of this technology is its use of semiconductor 

technology rather than optical detection of nucleotides using fluorescence making it 

quicker, cheaper and smaller than previously mentioned platforms (van Dijk et al., 

2014). Several other NGS platforms have been developed including Helioscope Single 

Molecule Sequencer by Helicos Biosciences (Pushkarev, Neff & Quake, 2009), 

Single-molecule real-time sequencing commercialized by Pacific Biosciences in 2011 

(van Dijk et al., 2014), Polony sequencing (Porreca, Shendure & Church, 2006), and 

DNA nanoball sequencing by Complete Genomics (Drmanac et al., 2010).  

NGS technologies rely on a complex combination of enzymology, chemistry, optical 

sensors (excluding Ion semiconductor sequencing technology), hardware and software 

(Ledergerber & Dessimoz, 2011). Each platform requires raw genomic material to go 

through a series of stages to produce a DNA sequence. These stages are broadly 

classified as the library preparation, the imaging and sequencing, and the data analysis 

phases (Metzker, 2010). The final step in the sequencing process, known as base 

calling, involves using software to identify individual bases. 

 The ability to sequence a whole genome offered by these technologies has resulted in 

an abundance of comparative and evolutionary studies that were previously not 

possible. NGS has been applied to several areas of biology, which include mutation 

detection, alternative splicing, microRNA profiling, and mapping of protein DNA 

interactions (Wang et al., 2012). Despite the revolutionary advancements Next 

Generation Sequencing technologies have brought to sequencing, they still fall short 

when compared to the traditional Sanger method, due to reduced accuracy and shorter 

read lengths (Ledergerber & Dessimoz, 2011).  

Given the impact of the conclusions drawn from DNA sequencing. Quality control to 

check the trustworthiness of the applied sequencing technology is therefore of utmost 

importance; its lack of may have led to the publication of erroneous results in previous 

studies that are still accepted and used as the basis for further research. 
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It is the harmful influence of side-effects generated at the library stage, such as the 

shearing of the source DNA into fragments of a particular length, that forms the basis 

of this dissertation. The methodology chosen as the subject of my research is Illumina 

dye sequencing, which is described in the next section. 

2.4 Illumina dye sequencing 

The Illumina dye sequencing method was originally developed by Shankar 

Balasubramanian and David Klenerman of Cambridge University, who originally 

utilized this technique in their Solexa sequencing platform, which was acquired by 

Illumina in 2007 (Bharagava et al., 2019). This technique utilizes the sequencing by 

synthesis (SBS) method wherein a DNA sample is sheared into a large number of 

fragments. Subsequently, specific short sequences (“adapters”) are joined to the 

fragments that enable them to be attached to a physical substrate (the flow cell). Prior 

to this, the fragments are (amplified) into a large number of clones by a process called 

polymerase chain reaction (PCR). Once attached to the flow cell, each fragment will 

again be “amplified” to form a cluster of identical subsequences (this process is called 

cluster amplification). A single cluster contains roughly one million copies of the 

original fragment, which sufficiently reports incorporated bases (nucleotides) at a 

reliable signal intensity for detection during sequencing (Mardis, 2008). Following 

cluster amplification, a reaction mixture is added to the flow cell, which contains 

primers1, DNA polymerase2 and four terminator nucleotides each labelled with a 

fluorescent dye. Next, the terminator nucleotide is identified by its fluorescent dye 

using a CCD (charge-coupled device) camera (Ansorge, 2009). At the end of the 

imaging step, the reaction mixture is washed away and the cycle is repeated (Mardis, 

2008). The synthesis step is repeated for a specific number of cycles as required by the 

user. Following the sequencing run a base calling algorithm is used to assign sequences 

and allocate quality scores to each read (Mardis, 2008). All Illumina sequencing 

platforms (MiniSeq, MiSeq, HiSeq, NovaSeq, etc.) are based on this method 

(Bharagava et al., 2019). 

 
1 A primer is a string of nucleotides that serves as the starting point for DNA replication (Princeton.edu, n.d.).  

2 DNA polymerase is an enzyme which is responsible for the replication of DNA (Nature.com, n.d.). 
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2.5 Stages of Illumina sequencing 

This section outlines the stages required for a sequencing run using the 

Illumina/Solexa platform. 

2.5.1 Library preparation 

This stage of Illumina sequencing involves preparing a sample of double-stranded 

genomic DNA. First, the DNA sample is fragmented into smaller pieces, then an end-

repair of the fragments is carried out to remove uneven ends. Following this, A-tailing 

is performed to allow ligation of adapters to the ends of the fragments. Then a size 

selection step is performed to select fragments of the required size and to remove un-

ligated adapters. Finally, PCR amplification is carried out, to increase the 

representation of fragments in the library. Each stage is explained in more detail below. 

See Figure 4 for a graphical outline of the process. 

 

Figure 4: Library preparation workflow. 

 

 

Fragmentation

End-repair

A-tailing

Adapter ligation

Size selection

PCR amplification

Sample DNA



 
14 

DNA fragmentation 

The first step of library preparation involves the breaking down of sample DNA to 

fragments of a desired size. This is typically achieved by using mechanical, enzymatic 

or chemical fragmentation methods (Head et al., 2014). Several techniques can be used 

to carry out these processes including sonication, acoustic shearing, nebulization and 

enzymatic shearing.  

Sonication involves subjecting DNA samples to ultrasonic waves, the vibrations from 

the waves produce gaseous cavitations in the medium that contains the DNA sample.  

The cavitation implodes and the energy that is released by this shears high molecular 

weight DNA molecules (Knierim et al., 2011). The acoustic shearing method 

fragments a DNA sample by focusing high frequency, short wavelength energy on the 

sample. The size of fragments produced using this protocol is controlled by modifying 

the intensity and duration of the acoustic waves(Apone, Dimalanta & Stewart, 2017). 

The main difference between sonication and acoustic shearing is the frequency at 

which they operate. Sonicators operate at a low frequency which leads to long 

ultrasonic wavelengths. The high frequency used in acoustic shearing produces shorter 

wavelengths that enable a higher level of precision in the shearing process (Covaris, 

2012). 

In nebulization breaking up a DNA sample involves forcing it through a tiny hole, 

using compressed nitrogen or air resulting in random sheared DNA fragments. The 

size of the resulting fragments is dependent on the preset gas pressure used to force 

the DNA through the hole (Knierim et al., 2011; New England Biolabs, 2014).  

Enzymatic based methods involve the incorporation of two enzymes into a volume of 

DNA. One of the enzymes generates a partial break in the double-stranded DNA while 

the other completes the breakage at the opposite end. The end result of this process is 

a volume of double-stranded DNA fragments (Knierim et al., 2011; New England 

Biolabs, 2014). 

End-repair 

DNA fragments from the fragmentation process usually end up with varying 3’ and 5’ 

overhangs (see Figure 5). The end-repair process converts the resulting overhangs to 

blunt ends using a mixture of enzymes comprising E. coli DNA polymerase, T4 DNA 

polymerase and Klenow enzyme (Illumina, 2008; Son & Taylor, 2011). This enzyme 
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mixture catalyses high 3’ to 5’ exonuclease activity and 5’ to 3’ polymerase activity. 

The former removes the 3’ overhangs while the latter fills in the 5’ overhangs (Bankier, 

2001) (See Figure 6). This process prepares the fragments for addition of an A 

(adenine) base to their 3 ends. 

 

Figure 5: Visual description of overhangs. 

 

Figure 6: Polymerase activity fills in 5 overhangs and exonuclease activity removes 3’ overhangs. 

A-tailing 

A-tailing involves the addition of an A base to the 3’ ends of a fragment (see Figure 

7 ). This is done to enable the ligation of T-tailed adapters and to prevent the formation 

of concatemers3. The modification is carried out by adding the end-repaired DNA 

fragments to a reaction mix containing Klenow buffer, dATP (deoxyadenosine 

triphosphate) and Klenow fragment (Son & Taylor, 2011; Illumina, 2008). Polymerase 

 
3 A concatemer is a DNA molecule that consists of multiple copies of the same DNA attached together 

sequentially (Kutter, 2001). 

5' - ATCTGACT GATGC GTCAAGT - 3'
3' - TAGACTGA CTACG CAGTTCA - 5' 

5' - ATCTGACT
3' - TAGACTGACTACG

GATGCGTCAAGT - 3'
CAGTTCA - 5'

Fragment A Fragment B
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activity of the Klenow fragment adds an A base to the 3’ end of the DNA fragments 

(Illumina, 2008). 

 

Figure 7: Adding adenine to 3' ends (Labster.com, 2014) 

 

Adapter ligation 

To sequence the DNA library, adapters would need to be ligated to the modified 

fragments. The function of the adapters is to connect the fragments to a flow cell (the 

substrate on which actual sequencing is performed). In addition, they are required for 

the cluster amplification stage. Adapter ligation adds distinct (adapter) sequences to 

DNA fragments by creating a phosphodiester bond between the 3’ end of the fragments 

and 5’ end of the adapter sequence (see Figure 8). The reaction is catalysed using T4 

DNA ligase enzyme, which facilitates the ligation of both ends (Gaastra & Hansen, 

1984).  

 

Figure 8: Ligation of adapter to DNA fragment. 
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Size Selection 

After the ligation of adapters to the fragments, a purification process is required to 

remove un-ligated adapters and adapters that may have ligated to each other, and select 

a size range of fragments for the library which would be appropriate for the cluster 

amplification step (Illumina, 2008). The purification can be carried out using gel 

electrophoresis and band excision or solid-phase reversible immobilization (SPRI) 

beads (Bronner et al., 2009). Gel electrophoresis is a process whereby DNA fragments 

are separated by size in an agarose gel. This process is carried out by loading DNA 

samples into slots made in the gel, and then an electric current is applied to the top 

(negative end) of the gel, which causes the negatively charged DNA molecules to 

move towards the bottom (positive end) of the gel. The smaller fragments move faster 

and end up at the bottom of the gel. A fluorescent dye is also added to the gel, making 

it easier to visually track the movement of the DNA fragments across the gel using 

ultraviolet light. At the end of the process, the desired size of DNA is excised from the 

gel. The desired size may vary depending on the protocol being followed (Carr, 2012; 

Roberts & Dryden, 2013). Figure 9 shows an example of gel electrophoresis. 

 

Figure 9: Gel electrophoresis 
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PCR amplification 

The penultimate step in the library preparation process is the amplification of DNA 

fragments that have adapters ligated to both ends. Polymerase chain reaction (PCR) is 

a technique to increase the sample size by several orders of magnitude by recurrently 

cloning the DNA fragments. PCR is carried out by heating and cooling a reaction 

mixture containing primers, dNTPs (see section 2.2) and DNA polymerase repeatedly. 

The cycle begins with heating the reaction mixture to about 93°C (temperature could 

vary depending on the library preparation protocol), which denatures the target DNA 

into two strands (Chantler, 2004; Illumina, 2011a) (Figure 10a). The temperature is 

then reduced to allow the primers to attach to the separated DNA strands (Figure 10b). 

Next, the temperature is increased to enable DNA polymerase to elongate the primers 

by attaching complementary bases to the strand (Figure 10c). Finally, the PCR product 

is denatured from the initial DNA strand. The second and third stage are repeated with 

the primer annealing to the template strands and newly cloned strands enabling 

elongation by DNA polymerase (Chantler, 2004). Subsequent cycles are carried out 

until the required sample size is achieved. 

 

Figure 10: PCR cycle 

a: denaturation

b: primer annealing

c: elongation

3’ 5’
3’5’

3’5’ 3’ 5’

3’5’ 3’ 5’

3’ 5’
3’5’
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Library quantification 

The final stage of library preparation is a quality control measure, which is 

recommended by Illumina. It involves verifying the size of the PCR enriched 

fragments and checking DNA fragment size distribution. To validate the size range of 

the enriched fragments (which ideally should be the same as it was during the 

purification stage), gel electrophoresis is carried out on 10% of the volume of the 

library. Illumina also recommends quantification of the sample library using qPCR 

(quantitative real-time PCR). This is done to ensure optimum clusters are generated 

for the lanes on the flow cell (Illumina, 2011a) (see section 2.5.3). If an excessive 

amount of DNA is loaded on to the flow cells, generated clusters will overlap into 

adjacent lanes causing a reduction in the quality of sequencing data. If an insufficient 

amount of DNA is loaded, the generated clusters would have a reduced density, 

thereby reducing the efficiency of resulting sequencing data (Buehler et al., 2010). 

2.5.2 Library denaturation 

The product of the library preparation phase is a double-stranded DNA library. To 

hybridize individual strands of DNA to primers on the flow cell the library is 

denatured. The denaturation is accomplished by incubating the library in sodium 

hydroxide (Quail, Swerdlow & Turner, 2009; Illumina, 2011a). Alternatively, the 

library could be denatured by heating but this could present bias issues with AT-rich 

fragments and GC rich fragments (Quail, Swerdlow & Turner, 2009). These bias issues 

are further discussed in section 2.6. 

2.5.3 Cluster Amplification 

Cluster amplification transforms libraries into clonal clusters on the surface of a flow 

cell. The Illumina flow cell is a glass slide with microfluidic channels, which dNTPs, 

polymerases, and buffers flow through (Figure 11). The surface of a flow cell is coated 

with oligonucleotides, which are complementary to the sequences of the adapters 

ligated to DNA fragments during library preparation. During cluster amplification, 

single-stranded fragments are connected by hybridization to the oligonucleotides on 

the flow cell (Figure 12a). To ensure that only one end of a fragment hybridizes, the 

sequence of one of the ligated adapters is the reverse complement to the 

oligonucleotides. 
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This end is attached to an adjacent oligonucleotide creating a bridge (Figure 12b). To 

begin the process, the attached fragments are copied using DNA polymerase, creating 

a reverse strand of the original fragments (Figure 12c). The double-stranded fragments 

are then denatured, and the ends are freed allowing them to attach to oligonucleotides 

on the flow cell once again (Figure 12d). This process is repeated several times. 

Finally, the reverse strands are washed away leaving dense clusters of matching 

strands derived from the original fragments (Quail, Swerdlow & Turner, 2009) (Figure 

12e). 

 

 

Figure 11: Illumina flow cell (Quail, Swerdlow & Turner, 2009) 

 

 

Figure 12: Cluster amplification process. Modified from (CeGaT, 2014). 
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2.5.4 Sequencing by synthesis 

To initiate the sequencing by synthesis process, a flow cell containing millions of 

clusters is loaded into the sequencer. The first step involves the addition of a 

polymerase enzyme with the four nucleotides (A, C, G, T). Each nucleotide has a 

unique fluorescent marker and a “terminator” – to prevent the incorporation of 

additional nucleotides after the first complementary nucleotide is attached to be read 

(Mardis, 2008) (Figure 13A). After this addition, the clusters are excited by a light 

source and an image of the flow cell is captured using fluorescence microscopy (Figure 

13B). Following the imaging step, the terminator and fluorescent markers are washed 

away for the next base to be incorporated (Figure 13C). This cycle is repeated several 

times until all fragments are read (Figure 13D and E). The number of cycles carried 

out makes up the length of a “read”.  

 

Figure 13: Sequencing by synthesis 

There are two types of reads in Illumina sequencing, namely, single-end reads, and 

paired-end reads. When single-end reads are utilized the DNA fragment is sequenced 

from one end to the other as seen in Figure 13. With paired-end reads the DNA 

fragment is sequenced from both ends (Figure 14). Single-end sequencing is the 

simplest, fastest and most economical way to sequence a DNA sample. Paired-end 

sequencing due to its ability to read form both directions produces a larger number of 

reads, thus improving accuracy and enabling enhanced detection of variations in DNA 

structure (Illumina, 2017; Nakazato, Ohta & Bono, 2013). 
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Figure 14: Paired-End Reads 

2.5.5  Base calling 

“Base calling” is the name of the process, which determines the identity of a base (A, 

C, G, T) during a sequencing cycle (Illumina, 2011b). To this end specific algorithms 

(e.g. the “Bustard” base caller) are employed that classify bases in accordance to the 

fluorescence of the highest intensity. 

2.5.6 Quality scoring 

A quality score is used to predict the probability of an error in a base call. To assign a 

quality score a set of quality predictor values are computed. These quality predictor 

values are observable traits, such as fluorescence intensities of the clusters on the flow 

cell. The values derived are assigned to a quality table, which relates them to quality 

scores. This relationship is determined by a calibration process where reads are aligned 

to a reference genome4 to confirm the identity of a called base. 

2.5.7 Sequence assembly 

Sequences generated at the end of the sequencing process are formed of many short 

reads, which need to be put back together to represent a whole genome. This process 

is carried out using dedicated algorithms called assemblers. Assemblers work by 

finding overlapping fragments and from these reconstructs a whole genome. Although 

this process may sound simple, it comes with its own challenges that may lead to 

erroneous sequences (Naumenko et al., 2018). For example, DNA segments with 

repeated nucleotide sequences (so-called “repeats”) produce similar or even identical 

 
4 A reference genome is an already known genome, which is sequenced from several individuals using 

different sequencing platforms to ensure accuracy. 
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fragments, which may be from different parts of a genome and are therefore difficult 

to pinpoint to a location (Nagarajan & Pop, 2013). A follow-on process to assembly is 

finishing. In this process assembled data are checked and edited to correct any errors 

if found (Baxevanis & Ouellette, 2004). 

2.6 Artefacts in sequencing 

Next generation sequencing methods are not completely accurate. They are prone to 

errors which could lead to miscalled bases causing misaligned reads and mistakes in 

sequence assembly (Robasky, Lewis & Church, 2014). Errors can arise at various 

stages of the sequencing process leading to poor quality sequencing output. The table 

below lists errors derived from literature. Each of the errors are discussed in more 

detail below. 

Table 1: Sequencing artefacts 

Sequencing stage Artefact Source 

Fragmentation 

Sequence-dependent cleavage 

bias 

(Grokhovsky, 2006) 

 
Oxidative DNA damage (Costello et al., 2013) 

End repair 
 

 

A-Tailing 
 

 

Ligation Ligation bias (Seguin-Orlando et al., 2013) 

Size Selection None  

PCR Amplification Bias 

(van Dijk, Jaszczyszyn & 

Thermes, 2014) 

 
Slipped strand mispairing 

(Fazekas, Steeves & 

Newmaster, 2010) 

 
Chimera formation (Sharifian, 2010) 

Cluster Amplification 
 

 

Sequencing-by-

synthesis Phasing and Pre-phasing 

(Kircher, Heyn & Kelso, 

2011) 

 
Crosstalk (Li & Speed, 1999) 
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2.6.1 Sequence-dependent cleavage bias 

The fragmentation stage of library preparation produces short DNA fragments by 

cleavage of a DNA sequence at (supposedly) random positions. However, a study by 

Grokhovsky et al. (2006), revealed that fragmentation by sonication resulted in a 

biased cleavage rate between cytosine and guanine in 5’ - CpG - 3’5 dinucleotides 

(Figure 15). Furthermore, this bias depends on the flanking sequences; it is stronger 

when both strands contain a mix of purines (A, G) and pyrimidines (C, T) but weaker 

if the flanking sequences consist of just purines in one of its strands (Grokhovsky, 

2006). 

Also, a subsequent study by Grokhovsky et al. (2008) found that cleavage commonly 

occurred at the 3’ side of cytosine. The cleavage intensity increased in the order CG > 

CA = CT > CC. The CA, CT, CC steps have a higher cleavage rate than their 

complementary steps (TG, AG, GG). The unequal cleavage rate of bases at opposite 

strands results in overhangs. This is not the case with CG pairs, as its complements 

have the same identity, which may be the reason for increased cleavage at this position 

(Grokhovsky et al., 2013).  

The mechanism that leads to this bias is the sequence-dependent variation in the serial 

structure of the nucleotide chain which in turn is controlled by the carbon structures 

that hold the nucleotides together (Grokhovsky et al., 2011; Poptsova et al., 2014). 

The increased level of reads in GC-rich areas of the genome is generally attributed to 

PCR (Benjamini & Speed, 2012). This may not always be the case, as the sequence 

dependence of cleavage points especially between C and G would lead to the majority 

of fragments coming from GC-rich areas of a genome. The effects of the splitting bias 

should be considered when sequencing as it may lead to biased outcomes. 

Modifications to experimental procedures and the addition of specific reagents may 

produce a solution to this bias (Poptsova et al., 2014). 

 

Figure 15: CpG dinucleotide  

 
5 p is a phosphate which links a pair of nucleotides together. 
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2.6.2 Oxidative DNA damage 

Costello et al. (2013) discovered an unexpected high number of otherwise uncommon 

variants (C → A and G → T mutations) in certain cancerous tissues. These variants 

appeared to be specifically flanked by C and G (CCG → CAG). Following further 

inspection, the authors hypothesised that these variants were induced by artefacts in 

the library preparation or the sequencing process. 

Surprisingly, the rate of occurrence of the C → A and G → T mutations varied between 

sequencing projects run at different laboratories. This instigated Costello et al. to 

analyse the sequencing projects carried out in their own lab. A comparison of the 

different sequencing chemistries used (Illumina HiSeq, MiSeq and Ion Torrent) 

showed no difference in the occurrence of the variants, suggesting the effect was 

induced before the sequencing stage. Going through the library preparation protocols, 

they found that DNA fragmented using high powered 150bp sonication showed a 

significant increase in the occurrence of the variants. However, the effect was only 

found in less than half of 150bp sonicated libraries implying that the fragmentation 

method on its own was not enough to explain the artefact. After comparing incoming 

DNA samples from other collaborating institutions, it was found that the aberration 

varied between collection sites and could be attributed to heat from high sonication 

energy in addition to contaminants in the DNA samples. The combination creates a 

highly oxidative environment leading to the conversion of guanine to 8-Oxoguanine 

(denoted as G*). 8-oxoG pairs with adenine, hence G(C) becomes G*(A) leading to C 

→ A and (complementary) G → T substitutions (Cheng et al., 1992). 

2.6.3 Ligation bias 

Another step of the library preparation process that can introduce bias is ligation. 

Seguin-Orlando et al. (2013) discovered failed ligation of adapters to fragments with 

a specific nucleotide on their 5’ and 3’ ends.  

This effect suggests that ligation probability depends on the identity of the nucleotide 

at the beginning of a fragment and is specifically averse to fragments with a T on their 

5’ end. Increasing the concentration of adapters during ligation reduced the loss of 

fragments. Unfortunately, the converse holds as well; reduction of the adapter 

concentration amplifies the loss of fragments, this is undesirable, because lowering the 
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concentration of adapters is an effective way of diminishing the presence of adapter 

dimers6.  

Ligation bias can lead to an under-representation of AT-rich areas and over-

representation of GC-rich areas of a genome, resulting in uneven coverage and hence 

a low sequencing quality. 

2.6.4 Amplification bias 

The PCR amplification process introduces a bias in sequencing coverage because not 

all fragments are amplified with the same efficiency (van Dijk, Jaszczyszyn & 

Thermes, 2014). Especially fragments with extreme base compositions (GC-rich or 

AT-rich) can be underrepresented or completely lost during library preparation (Aird 

et al., 2011). This effect can cause difficulties when sequencing important organisms 

with unbalanced genomic base composition such as Plasmodium falciparum (AT-rich: 

80% AT) and Mycobacterium tuberculosis (GC-rich: 65.6% GC).  

Temperatures used during the denaturation and elongation steps of PCR have been 

shown to be responsible for this. Dutton et al. (1993) found that denaturing GC-rich 

fragments at 94C led to a loss of such fragments due to incomplete denaturation. Su 

et al. (1996) reported that elongation of AT-rich fragments at 72C after denaturation 

led to a loss of AT-rich fragments. This is most likely brought about by the strength of 

bonds between GC and AT pairs; GC pairs are held together with three hydrogen 

bonds, while AT pairs are bound by two. Because the number of bonds holding the 

pairs together and their neighbouring nucleotides determine the stability of a DNA 

double helix (Yakovchuk, 2006), the higher number of bonds in the GC pair requires 

a higher temperature to dissociate it from its template strand, whereas AT pairs can be 

separated at lower temperatures.  

Several solutions have been suggested to lessen these effects: Dutton, et al. (1993) 

proposed a PCR protocol where the denaturation temperature was set at 98C to 

improve the representation of GC rich fragments. The addition of betaine to the PCR 

reaction mix was also found to improve GC-rich fragment representation (Aird et al., 

 
6 Adapter dimers are created when adapters ligate to themselves. These dimers can go through the 

sequencing process and take space on flow cells, thereby leading to reduced sequencing efficiency 

(Head et al., 2014). 
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2011). However, although the addition of betaine reduces the melting temperature7 

and thus favours denaturation of GC-rich fragments, it negatively affects the 

elongation of AT-rich fragments.  

In an empirical study, Su et al. (1996) found that a reduction of elongation 

temperatures to 60C from the routinely used 72C led to an improvement in coverage 

of AT-rich DNA. By reducing this temperature, AT-rich fragments were less likely to 

get denatured during elongation.  

Kozarewa et al. (2009) proposed an amplification-free library preparation protocol 

that skips the PCR stage. By doing this they were able to achieve higher coverage for 

GC-rich sequences. This method uses the attached adapters from the ligation stage to 

directly adhere the fragments to Illumina flow cells for bridge amplification, hence 

eliminating the need for a PCR step. As this method is mainly dependent on the 

presence of adapters on each fragment, extra steps need to be taken to quantify the 

amount of fully ligated fragments to determine the portion of the DNA library that will 

be successfully sequenced. Due to the lack of PCR, which increases the representation 

for each fragment, this PCR-free method generally requires a larger volume of DNA 

to improve the representation of each fragment on the flow cells (van Dijk, 

Jaszczyszyn & Thermes, 2014; Oyola et al., 2012; Kozarewa & Turner, 2011). 

In a comparison of the enzymes used for PCR, Kapa Hifi (Kapa Biosystems) was 

found to provide better coverage across a genome than the routinely used Phusion 

polymerase (Quail et al., 2012). The use of Kapa reduced the amplification bias and 

resulted in an improved coverage for both AT-rich and GC-rich fragments. Its 

improvements were close to those of the amplification-free library preparation 

protocol without the need for increased volumes of DNA. 

Oyola et al. (2012) proposed an alternative PCR protocol which used Kapa in 

combination with tetramethylammonium chloride (TMAC). This reaction mix led to 

vast improvements in the coverage of extremely AT-rich genomes such as 

Plasmodium falciparum. The addition of TMAC improved the stability of AT base 

pairs (Chevet, Lemaitre & Katinka, 1995). 

 
7 The melting temperature (Tm) of double stranded DNA is the temperature at which half of the template 

strand is disassociated from its complementary strand. 
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2.6.5 Slipped strand mispairing 

Slipped strand mispairing, also called Simple Sequence Repeats (SSRs), is an artefact 

of PCR amplification caused by repetitive nucleotide sequences. It usually occurs 

when a polymerase stalls elongation of a template strand due to nucleotide repeats. 

The polymerase dissociates from the strand and disrupts the base pairing process. This 

causes the template strand to form a loop in the repeat region, which results in the 

deletion of nucleotides in the loop when elongation is reinitiated. These repeats are 

mostly found in AT-rich genomes (Fazekas, Steeves & Newmaster, 2010). 

2.6.6 Chimera formation 

Chimera formation is another artefact produced during the PCR stage of sequencing. 

A chimera is a sequence composed of DNA from two or more sources (Zhang & Min, 

2005). This artefact is caused by incomplete primer extension (Figure 15a). The partial 

elongation product can attach to a template strand as a primer in the next PCR cycle 

(Figure 15b). This will synthesise a new strand formed of the 2 template strands 

(Figure 15c), therefore creating chimeric DNA (Sharifian, 2010). 

 

Figure 16: Chimera formation. Modified from (EzBioCloud, 2019) 

Sections 2.6.7 and 2.6.8 discuss artefacts from the sequencing by synthesis stage of 

sequencing which is out of the scope of this thesis. 

2.6.7 Phasing and Pre-phasing 

Phasing and pre-phasing are errors, which are caused by inefficiencies of the chemistry 

during the sequencing by synthesis stage. Pre-phasing occurs when nucleotides 

(a) Aborted elongation

Next PCR cycle

Next PCR cycle

(b) Incomplete elongation
product

(c) Elongation occurs
using strand B

Template strand A

Template strand B

Chimeric DNA strand
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without effective 3’ end terminators are incorporated in a cycle; this results in the 

continuous attachment of nucleotides and therefore skipping a base during base 

calling. Conversely, phasing occurs when 3’ end terminators and fluorescent markers 

are not washed out at the end of a cycle resulting in a failed incorporation during the 

next cycle. The failed incorporation causes the base call for that cycle to fall behind 

(Kircher, Heyn & Kelso, 2011). 

2.6.8  Crosstalk 

In sequencing by synthesis, the sequencer uses two lasers and four filters to excite and 

detect the dyes attached to each nucleotide. Frequency crosstalk occurs when the 

fluorescent dyes of the nucleotides overlap creating non-independent images for each 

base during a sequencing cycle. It is measured using a 4x4 matrix called a colour 

matrix. The matrix shows how the 4 nucleotides (A, C, G, T) crosstalk into the 4 

spectral channels used for exciting the fluorescent dyes (Li & Speed, 1999). 

2.7 NGS Read Simulation 

Simulating the NGS process can aid researchers in planning sequencing experiments 

and testing hypothesis at a lower cost. With a simulator, several parameters of the 

sequencing process can be tested to find their outcomes without wasting resources on 

actual sequencing runs. Several computational tools have been developed that are able 

to generate NGS data. Here, I outline three of such tools and their functionality. 

ART (Huang et al., 2012) is a sequencing read simulator that supports the generation 

of Roche/454, Illumina and SOLiD reads. It utilises platform-specific and user-

generated profiles to generate sequencing data. The user-customised profiles are able 

to generate sequencing data with custom read length and base call error characteristics. 

Specifically, it is able to model two types of sequencing errors: indels8 and base 

substitutions. The characteristics for the errors are derived from empirical models built 

for each platform. The main error mode for its Illumina read simulation is base 

substitution. For Roche/454 read simulation, indels are the principal error type used. 

However, for SOLiD read simulation, the developer failed to state a dominant error 

 
8 An indel (insertion or deletion) is a genetic variation where a specific sequence of nucleotides is either 

present(insertion) or absent(deleted). (Rodriguez-Murillo & Salem, 2013) 
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type. ART is also able to emulate PCR amplification bias by specifying the number of 

reads for each copied fragment (Escalona, Rocha & Posada, 2016). The simulated 

reads for ART are returned as SAM and BED files.  

The pIRS (Profile-based Illumina pair-end reads simulator) is an Illumina read 

simulator (Hu et al., 2012). It generates Illumina reads using empirical base calling 

and GC%-depth (relationship between GC content and coverage depth) profiles. The 

GC%-depth profile enables the simulation of reads that have sequence-dependent 

coverage bias. Its empirical base calling profiles are derived from the analysis of 

sequence alignment results of known genomes. The tool also provides error profiles 

that are based on empirical models or can be user-generated. Errors modelled include 

indels, base substitution and single nucleotide polymorphisms (SNPs). A completed 

run of the tool generates results in the FASTQ file format. 

GemSIM is an NGS read simulator supporting both Ilumina and Roche/454 reads 

(McElroy, Luciani & Thomas, 2012). It utilises empirical sequence-context based 

error models, fragment length and quality score distributions to simulate sequencing 

data. The tool consists of four modules: GemErr, GemHaps, GemReads and GemStats. 

GemErr is used to generate error models from real sequencing data using SAM format 

alignment data as input. GemStats is an optional module that generates statistics for 

the generated error models when simulating paired-end reads. It reports error rates for 

base positions and each nucleotide within a read. The GemHaps module accepts a 

DNA sequence, haplotype9 frequency and the number of SNPs in the haplotypes. This 

input data is used to randomly generate SNP positions which can optionally be used 

for read generation. Finally, the GemReads module takes a FASTA file, error model 

generated by GemErr, a haplotype file generated by GemHaps and a species-

abundance file when the GemSIM metagenomic mode is utilised. This data is 

processed and used to generate reads which are returned as FASTQ files. 

The tools outlined here provide a lot of features and are efficient at their specific task 

of generating NGS reads. In my search for simulators, the functionality of most of the 

tools I found was solely focused on the sequencing-by-synthesis stage of NGS and its 

related errors. Three tools (ART, Flowsim, Grinder) did offer a simulation of PCR 

amplification, but I was unable to find any tools that mainly focused on the library 

 
9 A haplotype is a set of DNA variations on a chromosome that are usually inherited from a single parent 

(Silverman, 2007). These variants can be SNPs and alleles. 
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preparation stage of NGS, which introduces its own fair share of errors into sequencing 

data. In my work, I propose a tool, LpSIM, that simulates the library preparation stage 

of NGS and integrates some of the artefacts and biases that can occur at this stage. 

LpSIM and its implemented features are discussed in the next chapter. 

2.8 Third Generation Sequencing 

Third generation sequencing (TGS) is a newer iteration of sequencing technologies. 

Oxford Nanopore Technologies and Pacific Biosciences (PacBio) introduced 

platforms based on this technology in 2011.  

The Oxford Nanopore platform utilizes nanopores immersed in an electrically resistant 

membrane to sequence a DNA sample. When an electrical charge is applied to the 

membrane the current only flows through the nanopore. The flow of current is then 

observed to determine the composition of DNA in a molecule (Figure 17). 

 

Figure 17: Nanopore Sequencing. (Xiao & Zhou, 2020) 

The Pacific Biosciences platform utilizes single molecular real time (SMRT) 

technology. This technology relies on a SMRT cell containing millions of tiny wells 

called zero-mode waveguides (ZMWs). Each molecule from a volume of DNA is 
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immobilized in the ZMWs and polymerase is used to incorporate fluorescent labelled 

nucleotides that are used to identify the nucleotide composition of the molecules. A 

camera system records the colour of the emitted fluorescence in real time to identify 

each nucleotide (Figure 18). 

 

Figure 18: SMRT Sequencing (Xiao & Zhou, 2020) 

This newer generation of sequencing technology brings with it advantages such as the 

ability to produce much longer reads when compared to NGS technologies, this 

provision tackles issues in genome assembly caused by shorter reads (Bleidorn, 2016). 

It also provides faster sequencing speeds which are a great advantage in clinical 

settings where quick analysis is usually required. Despite these improvements the issue 

of accuracy still remains a major issue when using TGS as error rates are much higher 

compared to NGS technologies (Bleidorn, 2016). 

2.9 Chapter Summary 

In this chapter, the theoretical background needed to understand the research carried 

out for this thesis is outlined. An overview of the structure and function of DNA is 

provided, followed by a discussion of DNA sequencing from the initial procedures 

introduced in 1977 to those introduced with the inception of NGS. 

The focus of this thesis is the analysis of artefacts in the library preparation stage of 

NGS using a simulation. Therefore, NGS and the Illumina sequencing platform are 

described in more detail. The main content of this chapter is found in Sections 2.5 and 

2.6. These sections delivered a systematic description of the different stages of 

sequencing using the Illumina platform followed by descriptions of the artefacts that 

can occur, along with indications of why they may occur and measures that have been 

taken to reduce their presence in sequencing outcomes. 
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Finally, a brief description of existing simulators is laid out in Section 2.7 along with 

their limitations and an introduction to Third generation sequencing technologies is 

provided in Section 2.8. The next chapter gives the details of the library preparation 

simulator that I have developed in order to carryout research into the effects of artefacts 

that occur in this stage of sequencing. 
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Chapter 3 Modelling the Library 

Preparation of NGS  

This chapter describes the library preparation model used in my work and the methods 

used to analyse its output. The main objective of the model is to provide a virtual 

platform to simulate the different stages of the Illumina sequencing library preparation 

workflow and the possible artefacts that may be introduced at each stage. The 

simulator aims to uncover the effects of flaws (variations and biases) at each stage and 

their concurrent influence on subsequent stages. The table below outlines the stages 

that have been developed and their implemented parameters and biases. 

Table 2: LpSIM parameters 

Stage Parameters Bias 

DNA Fragmentation Fragment size distribution 

parameters (μ, σ) 

Probability of cleavage at a 

CpG site 

Adapter Ligation  Probability of ligation 

PCR Amplification Denaturation temperature 

Elongation temperature 

Number of PCR cycles 

Temperature dependent 

amplification 

 

The model simulates three stages of DNA library preparation: DNA fragmentation, 

adapter ligation and PCR amplification (Figure 19). The first stage involves creating 

fragments, the size of which is derived from a lognormal distribution and cleavage 

points are drawn randomly from a uniform distribution. In the second stage, adapters 

are attached to the DNA fragments based on a user defined probability of ligation and 

the identity of the nucleotides at their terminus. Finally, the fragments are amplified 

depending on their melting temperature. The result of the simulation is the dispersal 

of fragments of different sizes over an input DNA sequence. From this, the number of 

fragments at each nucleotide (coverage) and the uniformity of coverage across the 

sequence (evenness) can be computed. 
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Figure 19: Library preparation workflow in LpSIM. 

3.1 DNA Sequence Generator 

In order to develop and test the model, artificial DNA sequences with modifiable 

characteristics were needed. Having such a sequence allows for the testing of the 

effects of such things as different levels of GC content. A pseudo-random DNA 

generator is used to produce a series of four types of nucleotides such that the identity 

of a nucleotide at a given position 𝑁𝑖 does not depend on the identity of the preceding 

nucleotides (Algorithm 1). Creating DNA sequences with regions of biased 

nucleotide content (high GC or AT) involves specifying the required regions and the 

percentage of GC or AT content for that region of the sequence. So, for example, 

setting p(C) = p(G) = 0.4 and p(A) = p(T) = 0.1 would create a GC-rich sequence. 

Algorithm 1: Generate artificial DNA 

1. Select DNA sample size 𝐷  

2. Set proportions of nucleotides 𝑝(𝐴), 𝑝(𝐶), 𝑝(𝐺), 𝑝(𝑇) 

3. for 𝑖 ∶=  1 to 𝐷 do 

4.  if random number (0,1) ≤ p(A) 

5.   𝑁𝑖 = “A” 

6.  else 

7.   if random number (0,1) ≤  𝑝(𝐴) +  𝑝(𝐶) 

8.    𝑁𝑖 = “C” 

9.   else 

10.   if random number (0,1) ≤ p(A) + p(C) + p(G) 

11.     𝑁𝑖 = “G” 

12.    else 𝑁𝑖 = T 

13. return 𝑁 
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A pre-existing sequence generator could have been used for generating basic 

sequences, but I chose to implement this solution to enable customization of sequences 

for my use case. For example, creating sequences with varying nucleotide content in 

different regions to enable visualisation of the effects of biases on nucleotide content. 

3.2 DNA Fragmentation 

This stage of the model involves splitting of an input DNA sequence into fragments. 

The distribution of fragment sizes appears to depend on the method of shearing. 

Fragments resulting from acoustic shearing, sonication and enzymatic fragmentation 

are typically distributed with a positive skew, whereas nebulization may result in 

negatively skewed distributions (Figure 20). 

 

Figure 20: Size distributions of DNA fragments sheared using A: Bioruptor Pico sonicator 

(Diagenode, 2013), B: KAPA enzymatic fragmentation kit (Kapa Biosystems, 2016), C: Nebulization 

(Lundin et al., 2010), D: Covaris acoustic shearing (Covaris, 2016).  

On theoretical grounds, Kolmogorov (1941) concluded that particle sizes from 

sequential breakage processes tend to be lognormally distributed. This pattern mostly 

occurs when solid materials are subjected to mechanical forces (Neĭkov, Naboychenko 

& Yefimov, 2018). Thus, the lognormal distribution is extensively used to model 

breakage processes, for instance in geological research to model grain size 

distributions derived from explosive rock fragmentation (Fowler & Scheu, 2016), and 
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mathematical modelling of brain parcellation in neural circuit research (Ferrante, Wei 

& Koulakov, 2014). 

Using the lognormal distribution here allows for the regulation of the skew of the 

fragment size distribution to better match what is found in reality (Figure 20) and to 

also find the effects of this skewness. Its use in modelling breakage processes as 

discussed above makes it the preferred choice for modelling the resultant sizes of the 

DNA fragmentation process in this simulator. 

The lognormal distribution is a continuous probability distribution where the logarithm 

of a random variable 𝐿𝑛(𝑥) is normally distributed (Maymon, 2018). It is a positively, 

semi-bounded (i.e. only considers positive values) skewed distribution that is 

characterised of positive values. A shape and location parameter (𝜎 and 𝜇) are used to 

specify the distribution and can be set to obtain different degrees of skewness (Figure 

21). The mean and variance of lognormal random variables can be derived from these 

parameters. 

 
Figure 21: Lognormal density function with different shape parameters. 

To generate lognormally distributed fragments from input DNA a chosen number n of 

fragment sizes 𝑓 are drawn from a lognormal distribution with a mean of 𝒎 =

𝐞𝐱𝐩 (𝝁 +
𝝈𝟐

𝟐
) and variance of  𝒗 = 𝐞𝐱𝐩(𝟐𝝁 + 𝝈𝟐) (𝐞𝐱𝐩(𝝈𝟐) − 𝟏). For each fragment 

size 𝑓𝑖, a random cleavage start point 𝐶𝑠𝑡𝑎𝑟𝑡 is drawn from a uniform distribution [1, 𝐿] 

where 𝐿 denotes the length of the input DNA sequence. Given 𝐶𝑠𝑡𝑎𝑟𝑡, the cleavage end 

point 𝐶𝑒𝑛𝑑  is computed as 𝑓𝑖 + 𝐶𝑠𝑡𝑎𝑟𝑡. In this way the cleavage start and end points are 

defined for each of the 𝑛 fragments. A sequence-dependent (CpG) cleavage bias 

(Section 2.6.1) is integrated in the fragmentation model by implementing a probability 
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0 ≤ B.SPLIT ≤ 1, where B.SPLIT = 0 means no bias and B.SPLIT = 1 implies that a 

split between C and G always occurs. The model returns an array of DNA fragments 

ready for the ligation stage (Algorithm 2). 

Algorithm 2: Fragment DNA 

1. Given a DNA sample (𝐷) generate a list of fragment sizes (𝑓) from a lognormal distribution 

2. Set splitting probability 𝑝(𝑆) 

3. Create fragment list (𝐹)  

4. for 𝑖 in 𝑓 

5.  𝐶𝑠𝑡𝑎𝑟𝑡 = random number (0, length(𝐷)) 

6.  𝐶𝑒𝑛𝑑 = 𝑓𝑖 + 𝐶𝑠𝑡𝑎𝑟𝑡 

7.  if  𝐷[𝐶𝑒𝑛𝑑] = “G” and 𝐷[𝐶𝑠𝑡𝑎𝑟𝑡] − 1 = “C” and random number (0,1) <= 𝑝(𝑆) 

8.   𝑛 = 𝐷[𝐶𝑠𝑡𝑎𝑟𝑡: 𝐶𝑒𝑛𝑑]  

9. else if  𝐶𝑒𝑛𝑑  ! = “G” and 𝐶𝑠𝑡𝑎𝑟𝑡 − 1 ! = “C” and random number (0,1) >= 𝑝(𝑆) 

10.   𝑛 = 𝐷[𝐶𝑠𝑡𝑎𝑟𝑡: 𝐶𝑒𝑛𝑑] 

11. else go to step 4 

12. 𝐹  𝑛    

13. return 𝐹  
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3.3 Adapter Ligation 

After the DNA has been fragmented following the procedure described above, a pre-

set string representing an adapter is appended to each fragment from a list of fragments 

depending on the probability parameter B.LIGATE. When the value of B.LIGATE is 

zero all fragments are ligated. As the parameter goes up, the likelihood of adapters not 

ligating to fragments increases. Also, the identity of the nucleotide at the ends of the 

fragments is taken into account: adapters probabilistically bind to fragments with a T 

on their 5’ end or an A on their 3’ end based on the value of B.LIGATE. Consequently, 

there will be fragments with adapters on only one end. These fragments, like the ones 

without any adapters, will not go through to the next (PCR) stage (Algorithm 3). 

Algorithm 3: Ligate DNA 

1. Given a list of fragments (𝐹) ligate adapters 𝐴 and 𝐵 to each fragment (𝐹𝑖) 

2. Set ligation probability 𝑝(𝐿) 

3. Create list of ligated fragments (𝐿𝐹) 

4. for 𝑖 in 𝐹 

5.  if 𝐹𝑖[0] = "T" and random number (0,1) >= 𝑝(𝐿) 

6.   𝐹𝑖 = 𝐴 + 𝐹𝑖 

7.  else if 𝐹𝑖[0] ! = "T" 

8.   𝐹𝑖 = 𝐴 + 𝐹𝑖  

9. if 𝐹𝑖[−1] = "A" and random number (0,1) >= 𝑝(𝐿) 

10.   𝐹𝑖 = 𝐹𝑖 + 𝐵 

11. else if 𝐹𝑖[−1] ! = "A" 

12.  𝐹𝑖 = 𝐹𝑖 + 𝐵 

13. 𝐿𝐹 ←  𝐹𝑖   

14. return 𝐿𝐹 

3.4 PCR Amplification 

The polymerase chain reaction (PCR) amplifies a volume of DNA exponentially by 

duplicating the number of fragments in a series of cycles. Heating up the DNA sample, 

splits the double-stranded fragments into single strings (denaturation), then followed 

by ramping down to a lower temperature to attach PCR primers to the single-stranded 

fragments (annealing). Subsequently, the temperature is increased once again to the 

optimal temperature for an enzyme (a polymerase) to synthesize a new complementary 

strand (elongation). These thermal cycles are run several times until the desired 
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number of clones is attained. One issue that plagues the PCR process is amplification 

bias (Section 2.6.4): due to the stronger bonds between complementary GC pairs (three 

hydrogen bonds) it requires a much higher temperature to denature GC-rich fragments. 

AT pairs are connected with just two hydrogen bonds and denature at a lower 

temperature. However, the higher temperature needed for elongation could therefore 

lead to dissociation of such fragments which in turn would lead to a lower yield of 

cloned AT-rich fragments.  

To model this amplification process the melting point of a double stranded DNA 

fragment has to be determined. The melting point (𝑇𝑚) of DNA refers to the 

temperature at which 50% of the nucleotide pairs dissociate. Several procedures exist 

for establishing the melting point of short DNA sequences (e.g. fragments and 

primers). For my simulation,  I used  a nearest-neighbour model formulated by 

Breslauer et al. (1986).  

This method predicts the stability and melting behaviour of nucleotide pairs by using 

the temperature-dependent behaviour (DG) and relative stability (DH) of bonds 

between neighbouring nucleotide pairs (Breslauer et al., 1986). The predicted relative 

stabilities of all possible nearest-neighbour combinations are used to calculate the 

overall thermal stability of a given fragment (Equation 1). 

T𝑚 =  {
∆𝐻° × 1000

∆𝑆° + 𝑅 ln (
𝐶𝑡

4 )
} − 273.15 

Equation 1: Nearest-neighbour model equation (Le Novere, 2001) 

In this equation, D𝐻 and D𝑆 respectively represent the sum of nearest-neighbour 

enthalpy and entropy changes for a given DNA fragment, of which the values can be 

looked up from a table as shown (Table 3). 𝑅 is the gas constant (1.987 cal deg-1 mol-

1(calorie per degree per mole)) and 𝐶𝑡 represents the total molar ratio of strands (Le 

Novere, 2001; Sigma-Aldrich, 2015). The melting temperature calculations for my 

model were computed using the Biopython MeltingTemp module (Cock et al., 2009). 
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Table 3: Nearest-Neighbour (NN) thermodynamic values for D𝐻 and D𝑆 (Allawi & SantaLucia, 

1997). These values were experimentally derived from optical melting studies. 

NN interactions1 D𝐻 (kcal/mol) D𝑆 (kcal/mol) 

AA/TT -7.9 -22.2 

AT/TA -7.2 -20.4 

TA/AT -7.2 -21.3 

CA/GT -8.5 -22.7 

GT/CA -8.4 -22.4 

CT/GA -7.8 -21.0 

GA/CT -8.2 -22.2 

CG/GC -10.6 -27.2 

GC/CG -9.8 -24.4 

GG/CC -8.0 -19.9 

Terminal G/C base pair2 0.1 -2.8 

Terminal A/T base pair2  2.3 4.1 

1
 The sum of interaction values is taken for the subject sequence (fragment). 

2 These are duplex initiation parameters which account for stability changes when a sequence is 

  terminated by a G/C or A/T base pair. 

The PCR step of my model accepts: an array of ligated fragments, a pre-set 

denaturation and elongation temperature, and the required number of PCR cycles as 

input. First, partially ligated, and non-ligated fragments are filtered out because they 

are missing the adapters required for primer attachment during the annealing stage of 

PCR (Quail et al., 2008). Next, the melting temperature is computed for each fragment 

after which fragments with a 𝑇𝑚 higher than the set denaturation temperature10 are 

filtered out (because their strands will not dissociate). Fragments are also discarded 

during the elongation step, namely those with a 𝑇𝑚 lower than the set elongation 

temperature (because their strands would disassociate at higher elongation 

temperatures). This rejection is controlled by a function that probabilistically allows 

 

10 The required temperature values are set by the user 
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fragments with a 𝑇𝑚 that is in close proximity to the set temperatures to go through the 

process. The module output is an array of duplicated fragments spread out over the 

input DNA sequence (Algorithm 4). 

Algorithm 4: PCR processing 

1. Given a list of ligated fragments (𝐿𝐹) process each fragment (𝐿𝐹𝑖) with a denaturation temperature 

   (d) and elongation temperature (e) based on its melting temperature (𝑇𝑚) 

2. Set a denaturation probability 𝑝(𝐷) based on denaturation temperature difference (𝑑𝑑) 

3. Set an elongation probability 𝑝(𝐸) based on elongation temperature difference (𝑒𝑑) 

4. Create a list of PCR processed fragments (𝑃𝐹) 

5. for 𝑖 in 𝐿𝐹 

6.  𝑑𝑑 = 𝑇𝑚[𝐿𝐹𝑖] − 𝑑 

7.  𝑒𝑑 = 𝑒 − 𝑇𝑚[𝐿𝐹𝑖] 

8.  if 𝑑𝑑 < 0 

9.   if 𝑒𝑑 < 0 

10.   𝑃𝐹𝑖 = 𝐿𝐹𝑖 

11.   else if random number (0,1) <= 𝑝(𝐸) 

12.   𝑃𝐹𝑖 = 𝐿𝐹𝑖 

13. else if random number (0,1) <= 𝑝(𝐷) 

14.  if 𝑒𝑑 < 0 

15.   𝑃𝐹𝑖 = 𝐿𝐹𝑖 

16.  else if random number (0,1) <= 𝑝(𝐸)  

17.    𝑃𝐹𝑖 = 𝐿𝐹𝑖   

18. return 𝑃𝐹 

3.5 Fragment Coverage Metrics 

In sequencing, coverage is an important metric that shows how many reads cover a 

nucleotide position using a reference genome to confirm the nucleotide identity of each 

position. A reference genome is an already known genome, which is sequenced from 

several individuals using different sequencing platforms to ensure accuracy. These 

reference sequences may not be completely accurate, but they are updated frequently 

to improve their accuracy. Due to this coverage results may not be completely accurate 

in some cases and will need to be revised when a reference sequence is updated.  

A high coverage value signifies the reliability of a read for that particular nucleotide 

position. As the main output of this simulation is DNA fragments, coverage is 

characterised as the number of fragments covering a nucleotide position (“fragment 

coverage”).  



 
43 

Here I utilise this metric to observe how implemented parameters and biases might 

affect fragment coverage across a given sequence. To compute the fragment coverage 

value, the number of fragments covering each nucleotide position of a sequence is 

calculated and an array of coverage values is returned. A visualisation of this output is 

shown below (Figure 22). 

 

       

Figure 22: Coverage plot of an artificial GC-rich sequence. 

The colour bar in Figure 22 visualizes the GC-content across a DNA sequence and 

allows for inspecting possible associations between coverage and DNA structure. The 

colour scale is blue when GC-content is low (AT-rich), then transitions to green when 

GC-content is neutral and finally to red when GC-content is high. The GC-content is 

calculated as a moving average for a window size of 80bp. This size was chosen as it 

was the best of a range of values (0 – mean fragment size) at revealing the intensity of 

GC-content across a sequence, as found by a quick experiment that was undertaken. 

To emulate the reads from the real coverage data used in comparisons (Chapter 4) 

made in this thesis, paired end reads (Section 2.5.4), which take in to account the 

identity of nucleotides on both ends of a fragment are used. A read length of 80bp for 

each end of a fragment was used to ensure consistency between the real and simulated 

coverage results and across all tests carried out in Chapter 5.  

Another important metric in determining the quality of sequencing output is the 

homogeneity of coverage across a given sequence (Gnirke et al., 2009). This metric 

determines the variation in coverage across a sequence. Higher levels of homogeneity 

GC-richAT-rich Neutral
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indicate that a sequence is evenly covered by reads (fragments in this case), thus 

providing reliable read quality (Sims et al., 2014). A low level of homogeneity would 

signify uneven coverage leading to poor quality sequencing output. This metric is most 

often calculated by three methods: listing regions in a DNA sequence with coverage 

above a specific value (Horton, 2016), using the coefficient of variation to measure 

variability of the coverage values, and using an evenness score (Mokry et al., 2010) 

which is the chosen method for this simulation. The evenness score (E) is defined as 

the portion of coverage values that are evenly distributed across a sequence (Mokry et 

al., 2010) and is stated as: 

𝐸 = {∑
𝑃𝑖

𝐶𝑎𝑣𝑒 ∗  𝑁𝑇𝑃

𝐶𝑎𝑣𝑒

𝑖=1

} ∗ 100% 

Equation 2: Evenness score 

Where 𝐶𝑎𝑣𝑒 is the average coverage depth of the whole sequence (sum of coverage 

values/length of sequence), 𝑃𝑖 is the number of nucleotide positions having a coverage 

value of at least 𝐶𝑖, and 𝑁𝑇𝑃 is the length of the sequence (Mokry et al., 2010). A high 

value for 𝐸 means that the coverage of a given sequence is homogeneous, while a 

lower value signifies poor homogeneity. 

I have chosen the approach by Mokry et al. because it allows for comparing the quality 

of coverage from different experiments with different average coverage depths (𝐶𝑎𝑣𝑒), 

as the value of  𝐸 is independent of 𝐶𝑎𝑣𝑒. This relative independence made it the best 

choice for my work as I will need to compare different sets of coverage values for 

different levels of the parameters implemented in the simulation. So using this metric 

and analysis of variance (ANOVA) tests, a comparison of the effects of varying 

parameters at the different stages of library preparation on coverage can be made 

(Chapter 5). 

3.6 Analysis of variance 

Analysis of variance (ANOVA) is a statistical procedure for testing the significance of 

possible differences of a dependent variable between two or more samples (Searle, 

1997), where a sample represents a set of values of that dependent variable measured 

under a particular (experimental) condition. In other words, ANOVA tests for possible 
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significant effects of the conditions (the independent variable) on the dependent 

variable. 

Formally this is done by checking if the variance between samples (due to factors like 

experimental conditions) outweighs the variance within them (due to error). If the 

variance between conditions is larger (as expected by chance) than the variance within 

conditions, then the null hypothesis of no effect of (experimental) conditions has to be 

rejected. However, if this is not the case, the error within conditions overrules the 

effect of the experimental conditions and hence there is no significant difference 

between the samples. An ANOVA table with the formulas needed for its calculation 

is presented below (Table 4). 

Table 4: ANOVA Table 

Source of 

variation 

Sum of squares 

(SS) 

Degrees of 

freedom (DF) 

Mean Sum of 

Squares 

(MS) 

F P 

Between 

conditions 

(B) 

𝑆𝑆𝐵 = 𝑛 ∑(𝑥𝑗 − 𝑥𝑡)2 𝐷𝐹𝐵 = 𝑐 –  1 

𝑀𝑆𝐵 =  
𝑆𝑆𝐵

𝐷𝐹𝐵
 

𝑀𝑆𝐵

𝑀𝑆𝑊
   

𝑝 

Within 

Conditions 

(W) 

𝑆𝑆𝑊 = ∑(𝑥𝑖𝑗 − 𝑥𝑗)2 𝐷𝐹𝑊 = 𝑐(𝑛 − 1) 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝐷𝐹𝑊
 

  

Total (T) 𝑆𝑆𝑇 = ∑(𝑥𝑖𝑗 − 𝑥𝑡)2 𝐷𝐹𝑇 = 𝑁 − 1 
𝑀𝑆𝑇 =

𝑆𝑆𝑇

𝐷𝐹𝑇
 

  

a 𝑛 = number of repeated outcomes for each condition 
a 𝑥𝑗 = group means 

b 𝑥𝑡 = grand mean
 

c 𝑥𝑖𝑗  = individual observation 
d c is the number of conditions. 
e 𝑁 = 𝑐 ∗ 𝑛 
f p is the probability of obtaining an F value under the null hypothesis  

 

The table is structured as follows:  

• The variance between conditions  is calculated by dividing SSB, the sum of the 

squared differences between each sample mean and the grand mean multiplied 

by the number of repeated outcomes for each condition (n), by the corrected 

number of conditions (DFB). 

• The variance within conditions is computed by dividing the sum of the squared 

differences between each individual observation and its sample mean (SSW) 

by the appropriate degrees of freedom (DFW) 
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• The total sum of squares (SST) is calculated by summing up the squared 

differences between each observation and the grand mean. This boils down to 

summing the sums of squares between (SSB) and within (SSW) samples, 

𝑆𝑆𝐵 +  𝑆𝑆𝑊. 

• The degrees of freedom for the between conditions is 𝐷𝐹𝐵 = 𝑐 − 1 and for the 

within conditions 𝐷𝐹𝑊 = 𝑐(𝑛 − 1). The total degrees of freedom can also be 

represented as 𝐷𝐹𝑇 = 𝐷𝐹𝐵 + 𝐷𝐹𝑊. 

• The mean squares are derived by dividing the sum of squares by the degrees 

of freedom for each row and thus yield the between and within sample 

variances 

• Finally, the difference between the within and between variances is measured 

by the variance ratio F as 𝐹 =  
𝑀𝑆𝐵

𝑀𝑆𝑊
 . The distribution of F under the null 

hypothesis is a mathematically defined and known probability density 

function. 

• The null hypothesis assumes that all samples are drawn from a population 

whose means are equal, H0: 𝜇1 = 𝜇2 = 𝜇3 = ⋯ =  
𝑐
 . If this hypothesis is 

true, the computed variance ratio follows the F-distribution for given degrees 

of freedom (DFB and DFW respectively). This allows for the probability (p) 

of obtaining an F value under the null hypothesis to be calculated. A 

significance level of 𝛼 = 0.05 is typically set. This means that if a computed 

variance ratio exceeds a critical F value (i.e. an F value which, by pure chance, 

would occur with a probability lower than the set significance level) the null 

hypothesis has to be rejected. In that case, at least one of the sample means is 

said to differ significantly from any one of the others and a significant effect 

of the conditions is found. 

The main requirements of an ANOVA are: 

• Equality of sample variances (Heteroscedasticity): The variance of the 

tested samples should not differ significantly.  

• Normality: The error (deviations from the sample means) should be normally 

distributed. 

In the data analysis of this thesis, the Levene, Kolmogorov-Smirnov and Shapiro-Wilk 

tests have been used to check these assumptions. The Levene test is used to assess the 
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homogeneity of variances between groups (Levene, 1960). A p-value greater than the 

set alpha of 0.05 for this test indicates there is no significant difference between the 

groups tested thereby retaining the null hypothesis for the assumption of homogeneity. 

While a p-value lower than 0.05 signifies a failure to meet this assumption. When 

faced with a failure,  a log transformation of the data can be effective in restoring the 

equality of variance in most cases. This transformation modifies the skewness of the 

data and can restore the required symmetry. The Kolmogorov-Smirnov (KS) and 

Shapiro-Wilk (SW) tests are both used in testing the assumption of normality. The KS 

test quantifies the distance between a population’s observed cumulative distribution 

function (CDF) and its hypothesized CDF (normal distribution), the percentage of 

values deviating from the hypothesised distribution are used as the test statistic 

(Massey, 1951). If this percentage is low the null hypothesis of normality is accepted 

as a lower percentage would result in a p-value larger than 0.05. When a higher 

percentage of deviation is observed, and the p-value is less than 0.05 the null 

hypothesis is rejected. The SW test measures a W statistic that quantifies if a random 

sample is from a normally distributed population (Shapiro & Wilk, 1965). A small W 

value signifies a departure from normality while higher W values would signify the 

samples have been drawn from a normal distribution. If the assumption of normality 

is not met, a log or square root transformation can be used to modify the skew of the 

data to make it normally distributed. 

Higher order ANOVAs 

In my analysis, two- and three-way ANOVAs are used to compare the effects of the 

six different library parameters on the coverage of specific DNA sequences (Sections 

5.1 and 5.2). Whereas in a single-factor ANOVA the conditions are the levels of a 

single independent variable or “factor”, higher order ANOVAs (also called multi-

factor ANOVAs) deal with designs containing more than one factor. These multi-

factor ANOVAs assess the proportion of the overall variance that is due to the effect 

of treatments (conditions). The variance explained by each factor is computed as a 

main effect and the more factors that are included, the less unexplained variance (i.e. 

error or within variance) remains. Not only does this reduction of within variance lead 

to a larger variance ratio than would result from separate single factor ANOVAs, it 

also circumvents repeated testing of the same data. The latter is an ill-advised strategy 

because it increases the number of outcomes that are statistically significant by chance 

alone. Furthermore, multi-factor ANOVAs have the added advantage of allowing to 
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test for a possible effect of combinations of treatment levels, so-called interaction 

effects. An interaction between two main factors A and B (denoted as A*B), implies 

that the effect of one or more levels of A depends on that of one or more levels of B 

(Figure 23). A two-way ANOVA with formulas for each of its elements is provided 

in Table 5. 

 

 

 

Figure 23: Examples of interactions in ANOVAs. A: The mean of dependent variable X measured 

under condition B1 is larger than condition B2 of factor B, but only for condition A1 of factor A. B: 

For all levels of A, the lowest values of X are found in condition B1 of factor B. However, significant 

differences in X due to conditions B2 and B3 are found under conditions A1 and A3, but not under 

condition A2 of factor A. 

Table 5: Two-way ANOVA table 

Source of variation Sum of 

squares 

(SS) 

Degrees of freedom 

(DF) 

Mean Sum of 

Squares 

(MS) 

F P 

Factor X Between 

conditions (B) 

SSBX 𝐷𝐹𝐵𝑋 = 𝑥 –  1 

𝑀𝑆𝐵𝑋 =  
𝑆𝑆𝐵𝑋

𝐷𝐹𝐵𝑋
 

𝑀𝑆𝐵𝑋

𝑀𝑆𝑊
   

𝑝 

Factor Y Between 

conditions (B) 

SSBY 𝐷𝐹𝐵𝑋 = 𝑦 –  1 
𝑀𝑆𝐵𝑌 =  

𝑆𝑆𝐵𝑌

𝐷𝐹𝐵𝑌
 

𝑀𝑆𝐵𝑌

𝑀𝑆𝑊
 

p 

Interaction X * Y SSXY 𝐷𝐹𝑋𝑌 = (𝑥 –  1)(𝑦 − 1) 
𝑀𝑆𝑋𝑌 =  

𝑆𝑆𝑋𝑌

𝐷𝐹𝑋𝑌
 

𝑀𝑆𝑋𝑌

𝑀𝑆𝑊
 

p 

Within Conditions (W) SSW 𝐷𝐹𝑊 = 𝑥𝑦(𝑛 − 1) 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝐷𝐹𝑊
 

  

Total (T) SST 𝐷𝐹𝑇 = 𝑁 − 1 
𝑀𝑆𝑇 =

𝑆𝑆𝑇

𝐷𝐹𝑇
 

  

a 𝑥 = number of repeated outcomes for each condition of factor X 
b 𝑦 = number of repeated outcomes for each condition of factor Y 
c c is the number of conditions 
d 𝑁 = 𝑥𝑦 ∗ 𝑛 
e p is the probability of obtaining an F value under the null hypothesis  
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3.7 LpSIM 

LpSIM is a library preparation simulator that produces estimated coverage of a DNA 

sequence. Its main function is to test the effects of the different stages of library 

preparation on sequence coverage. 

It is developed in Python and utilises several Python libraries to model the library 

preparation process. The fragmentation, ligation and PCR stages of library preparation 

are implemented in the tool.  

3.7.1 Installation 

LpSIM is available to download at https://github.com/ebewo/LpSIM 

Requirements: 

1. Unix based operating system 

2. Python 3 

3. Git 

Installation instructions: 

1. Clone the git repository: 

 

2. Install the required python libraries: 

 

3.7.2 Usage 

LpSIM has two command scripts: “seqgen.py” for generating an in-silico DNA 

sequence and “run.py” for running the simulator on an input DNA sequence. 

Generating an in-silico DNA sequence 

The sequence generation command depends on the configuration file “generator.yaml” 

which contains the characteristics of the required DNA sequence: 

 

https://github.com/ebewo/LpSIM


 
50 

Running the command returns the input parameters and a confirmation of completion 

of the task. This generates a sequence using the input parameters which is then saved 

to a sequence directory. 

 

The created DNA sequences can be used in LpSIM to test the effects of library 

preparation on different types of DNA compositions (e.g. GC-rich and AT- Rich). 

Generate coverage values for a given DNA sequence 

To run the simulator on a given sequence a configuration file “parameters.yaml” is 

populated with the required parameters for the implemented stages of the library 

preparation process: 

 

Executing the “run.py” script returns a confirmation of the input parameters followed 

by a confirmation of completion for each library preparation stage. After the 

simulation is completed the resultant coverage is calculated and saved to a csv file 

containing the nucleotide identity for each base position and its coverage value (Table 

6). The coverage values and GC content across the sequence are then used to generate 

a plot that will help in identifying regions lacking coverage (Figure 24). Finally, the 

evenness score for the given coverage values is returned. 
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Table 6: Sample coverage results 

base position nucleotide id coverage 

1 C 0 

2 C 1 

3 G 1 

4 G 1 

5 G 1 

6 C 1 

 

Figure 24: Coverage plot 

In Chapter 5, LpSIM is used to test the effects of different levels of parameters for 

each library preparation stage on the coverage of different types of DNA structures 

than can be found in natural genomes. It is expected that such experiments where the 

influence of library preparation parameters are studied will be the main use case for 

this tool. 
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3.7.3 Performance Metrics 

The specifications of the computer used for the performance tests in this section is 

given below:  

 

 

Testing the performance of the sequence generator involved generating sequences of 

varying sizes and measuring computational time and memory usage. The collected 

metrics are presented in Table 7 and Figure 25. Generating a 10000bp sequence takes 

0.103 seconds and the run time scales linearly with sequence size. Utilised memory 

slightly increases with larger sequence sizes.   

Table 7: Sequence generator test results 

 

 

 

Figure 25: Performance results for the sequence generator 

Processor AMD Ryzen 3700X @ 4.3 GHz 

Installed RAM 32GB 

Operating System Ubuntu 18.04 LTS 

Python Version 3.6.9 

DNA 

sequence size 

Time 

(seconds) 

Memory 

(kilobytes) 

10000 0.103 56 

20000 0.103 56.2 

30000 0.113 56.2 

40000 0.12 56.6 

50000 0.123 56.5 

60000 0.131 57.2 

70000 0.14 57.2 

80000 0.143 57.2 

90000 0.153 57.2 

100000 0.158 57.4 
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The same approach as above was used to test the simulator. Each sequence generated 

in the previous test was used to run the simulator with a static set of parameters (Table 

8). In Figure 26 the same trend as above can be seen where the computational time 

scales linearly with increasing fragment sizes. Memory utilisation is mildly erratic but 

generally sits between 160kb – 195kb for the sequence sizes tested. These results will 

be used to determine the computational time and memory requirements for 

experiments to be carried out in Chapters 4 and 5. 

Table 8: Simulator Parameters 

Library 

Preparation Step 

Parameter Value 

Fragmentation Mean1 300 

 Standard Deviation 1 30 

 Splitting Bias 0 

Ligation Ligation Bias 0 

Amplification Denaturation Temperature 98 

 Elongation Temperature 50 
1 Parameter of the fragment size distribution (lognormal). 

Table 9: Simulator test results  

DNA 

sequence size 

Time 

(seconds) 

Memory 

(kilobytes) 

10000 12.8 172.5 

20000 21.7 166.3 

30000 31 171.7 

40000 40 162.2 

50000 48.3 172.2 

60000 57.6 166.9 

70000 67.1 165 

80000 76 165.8 

90000 83.8 167.4 

100000 94.6 192.6 

 

Figure 26: Performance metrics for the simulator 
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3.8 Chapter Summary 

This chapter described the development of the library preparation model and metrics 

used to measure the quality of the simulator’s output. The functionality of methods 

and modules that simulate different stages of the library preparation process and 

quantify its output were outlined. The functionality of ANOVAs used to check the 

effects of the parameters of each implemented module was also discussed. Finally, the 

installation, usage and performance of the developed tool is presented. The next 

chapter discusses the validation of LpSIM using a genetic algorithm. 



 
55 

Chapter 4 Matching Model Outcomes with 

Results of Real Sequencing using a 

Genetic Algorithm  

Following the development of the simulator, it became necessary to ensure the 

coverage results returned were comparable to those found in real-world sequencing. 

To obtain such results, a search for optimal parameters needs to be carried out. Genetic 

Algorithms have been found to provide a robust parameter search solution for 

optimisation problems (Selig & Coverstone-Carroll, 1996). 

Genetic algorithms are a type of optimisation algorithm inspired by evolution which 

was introduced by Holland (1975). They are used to implement optimisation strategies 

by imitating the natural processes of reproduction and natural selection to provide very 

good solutions to a computational problem (Goldberg, 1989).  

These natural processes are simulated by first creating a random population of 

individuals, then the fittest individuals are selected for a crossover step where they 

produce offspring which are further diversified by a mutation step (Mitchell, 1996).  

The individuals take the form of values representing a solution to a given problem. 

Each individual is assessed by a fitness function that assigns a score to it based on its 

ability to solve an assigned problem. Following the allocation of scores to each 

individual, a selection process picks the highest scoring individuals. The crossover 

operator mimics the sexual reproduction process found in nature where the genes from 

a pair of parent chromosomes combine to form offspring. Mutations can occur during 

the reproduction process which can lead to errors in copying the genes of the parents 

to the offspring. This randomly changes the solution offered by an individual. The 

probability of this occurring is typically low (Mitchell, 1996). 

The stages of the GA are run for several iterations until the fittest individual stays 

consistent for many generations. At the end, this individual is picked as the best 

solution for the problem presented. 
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The following sections outline how the genetic algorithm was setup for finding the 

best possible parameters for my simulator and the coverage results obtained with the 

parameters found.  

The Distributed Evolutionary Algorithms in Python (DEAP) framework (Fortin et al., 

2012) was used to implement the genetic algorithm used in this thesis. 

4.1 Initial Population 

The initial population consists of 50 randomly generated individuals. Each individual 

is encoded as an array of values representing the simulator’s six parameters: fragment 

distribution parameters (mean and standard deviation), splitting bias level, ligation 

bias level, denaturation temperature and elongation temperature. A randomly chosen 

real number from the domain of each parameter is allocated to each individual with a 

uniform probability. With this, the values of each encoded individual are used to run 

the simulator and its fitness is assessed. In using random numbers, it is assumed that 

the parameters are independent of each other, allowing for a large variety of solutions 

and thereby increasing the search space. 

4.2 Fitness Function 

After the initial population is generated, parameters for each individual are used to run 

the simulator on a preselected DNA sequence. The result of this is a set of coverage 

values for these individuals. For the comparison, real-world coverage results for the 

preselected DNA sequence are obtained from sequencing experiments stored on the 

NCBI (National Center for Biotechnology Information) SRA (Sequence Read 

Archive) database (Leinonen et al., 2011). The fitness function checks the correlation 

between the coverage generated by the simulator and coverage from the real-world 

sequencing experiment. This similarity is measured using the Pearson correlation 

efficient (r) which assigns numerical values between -1 and 1, where -1 represents a 

negative linear relation, 0 represents no linear relation and 1 represents a positive linear 

relation. The r value assigned to each individual is used as its fitness score. 
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4.3 Selection 

With fitness scores assigned to each individual, the best individuals are chosen using 

tournament selection. This is a commonly used strategy in GAs, that starts out with 

randomly choosing a group of individuals from the population with equal probability. 

The individual with the highest fitness score from this group is inserted into a 

secondary population (“mating pool”). Several tournaments are run until the secondary 

population list is the same size as the original population list (50 tournaments). 

Increasing the size of tournament groups improves the chances of getting an individual 

with a much higher fitness score. This modification of group sizes is known as 

“selection pressure” (Xie & Zhang, 2013). For this work a tournament size of three is 

used as the selection pressure at this size was found to produce the best fitness scores 

in my experiments. 

An elitist approach was not used here as some parameters (the fragment distribution 

parameters and resultant cleavage points) lead to variable outcomes and are better 

served by new solutions (parameter values) from each GA run. 

The mating pool is processed by the crossover and mutation operators which are 

explained in the succeeding sections. 

4.4 Crossover 

The crossover stage combines two individuals (parents)  from the mating pool to create 

a possibly improved set of solutions (Sastry, Goldberg & Kendall, 2005). Here the 

blend crossover (BLX-α) operator (Eshelman & Schaffer, 1993) is used to create 

offspring.  

This operator accepts parents 𝑦1 and 𝑦2 formed of real numbers. For each parameter 

𝑦𝑖
𝑐 (i-th parameter) in an offspring 𝑦𝑐 , it randomly selects a value between 𝑌𝑖

1 and 𝑌𝑖
2

 

based on a uniform probability, where  

𝑌𝑖
1  =  𝑚𝑖𝑛(𝑦𝑖

1, 𝑦𝑖
2)  −  𝛼𝑑𝑖 

𝑌𝑖
2  =  𝑚𝑎𝑥(𝑦𝑖

1, 𝑦𝑖
2) +  𝛼𝑑𝑖 

𝑑𝑖 =  |𝑦𝑖
1 −  𝑦𝑖

2| 
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 Modifying the α of this operator has an effect on the range 𝑦𝑖
𝑐 is picked from. The 

default α of 0 leaves the original range between 𝑦𝑖
1 and 𝑦𝑖

2. An α greater than 0 

increases the range which could lead to a value outside the interval, while a negative 

α reduces the range (Takahashi & Kita, 2001). Thus, this crossover stage produces one 

offspring for each pair of parents. The value of each parameter in the child solution is 

based on its parents’ values but is markedly different from either. An α of 0 is used in 

my experiments to retain offspring parameter values within the range of both parent 

solutions.  

4.5 Mutation 

After offspring are created in the crossover stage, they are then subjected to the 

mutation operator. I have chosen to use the polynomial bounded mutation operator 

(Deb & Agrawal, 1999) as it is better suited to real numbers. 

This method uses a polynomial probability distribution to change a current parameter 

value 𝑦𝑖 to a mutated value 𝑧𝑖. The distribution has its mean at the current parameter 

value and its variance is a function of the distribution index 𝑗. To mutate 𝑦𝑖 a 

perturbance factor 𝛿 is defined as: 

𝛿 =
𝑧𝑖 −  𝑦𝑖

𝛽𝑚𝑎𝑥
 

Where 𝛽𝑚𝑎𝑥 is the pre-set maximum perturbation value allowed between 𝑦𝑖 and 𝑧𝑖. 

The polynomial probability distribution used to calculate the mutated value depends 

on the perturbance factor 𝛿 and is defined as: 

𝒫(𝛿) = 0.5(𝑗 + 1)(1 − |𝛿|)𝑗 

The valid range of the distribution is between -1 and 1. Next a random number 𝑤 

between 0 and 1 is generated and used in the equation below to calculate the 

perturbance factor 𝛿 corresponding to it using the probability distribution: 

𝛿̅ =  {
(2𝑤) 

1
𝑗+1 − 1,                     𝑖𝑓 𝑤 < 0.5

1 − [2(1 − 𝑤)] 
1

𝑗+1,        𝑖𝑓 𝑤 ≥  0.5

 

Finally, a mutated value is calculated as follows: 

𝑧𝑖 = 𝑦𝑖 +  𝛿̅𝛽𝑚𝑎𝑥 

 Setting a high distribution index value results in a mutant akin to the original 

parameter value, while a smaller index produces a less similar value (Deb & Goyal, 
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1996; Deb & Agrawal, 1999; Zeng et al., 2016). The probability of a parameter being 

mutated is 1/𝑠, where 𝑠 is the size of an individual. The distribution index value is set 

at 20 for my experiments in order to obtain mutated values near the original value. 

4.6 Results 

The GA was run using sections of three genomes to derive parameters that result in 

coverage comparable to what was found in actual sequencing experiments. The first 

was a 50kbp (kilo base pair) section of the Mycobacterium tuberculosis strain H37Rv 

genome. The second a 50kbp section of the Plasmodium falciparum strain 3D7 

genome. And finally, TP53 (Tumor Protein P53), a gene from chromosome 17 of the 

human genome, which is 19,148bp long. These sequences were respectively selected 

to represent the different types of nucleotide composition bias (GC-rich and AT-rich) 

and a sequence with neutral base content (equal levels of A, C, G and T). This allows 

me to ensure the simulator can handle such sequences. 

For each DNA sequence, the GA was run for a number of generations. I found the 

solutions to have converged at the 20th generation or earlier in all cases (Figure 27).  

 

Figure 27: GA runs for each of the sequences tested (the red marks signify the generation where the 

highest fitness was achieved). 
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Coverage results from different actual sequencing runs for each genome were tested. 

Those results with which the GA was able to produce the highest fitness score 

(similarity of coverage) are presented here. In the case of M. tuberculosis the GA 

successfully produced a set of parameters (Table 10) which, when applied to my 

simulator was able to produce coverage similar to what was found in an actual 

sequencing run SRR625710911 (Figure 28). A key trend seen here is the ability of the 

simulator to better mimic coverage in areas of homogeneous GC-content. The same 

trend is also seen after running my simulator with the best parameters (Table 11) found 

for the Plasmodium falciparum sequence (SRR5161262)12 (Figure 29). Here the 

mimicking capability is better in areas of homogeneous AT-content. In the coverage 

comparison for M. tuberculosis (Figure 28) there is a clear overestimation of coverage 

in the region between nucleotide position 30000 and the end of the sequence. This is 

most likely due to the lack of homogeneous nucleotide content (AT- or GC-rich) in 

this region. A possible reason for this is that the simulator preferentially captures the 

coverage of homogenous regions while failing to properly capture the features of areas 

with a higher variability in nucleotide content. 

Interestingly, the denaturation temperature chosen by the GA for the GC-rich M. 

tuberculosis sequence was low (85C). Possibly, but this is a speculation, the 

denaturation temperature in the original experiment was low, leading to lower 

coverage in GC-rich areas (which are notoriously difficult to denature). If this was the 

case, then the simulator was particularly able to capture that effect. Similarly, the 

elongation parameter value chosen for P. falciparum was high (75C). This would 

affect coverage in an AT-rich sequence as such a high temperature would lead to a loss 

of fragments during PCR.  

Table 10: Best parameters for M. tuberculosis 

Parameter Value 

Fragment distribution mean 224.602 

Fragment distribution standard deviation 43.585 

Splitting bias probability 0.731 

Ligation bias probability 0.360 

Denaturation temperature 85.289 

Elongation temperature 85.289 

 
11 https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=run_browser&run=SRR6257109  

12 https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=run_browser&run=SRR6257109  

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=run_browser&run=SRR6257109
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=run_browser&run=SRR6257109
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Figure 28: Mycobacterium tuberculosis coverage comparison. The colour bar shows levels of base 

composition bias (blue → red = increasing GC content) 

Table 11: Best parameters for P. falciparum 

Parameter Value 

Fragment distribution mean 464.894 

Fragment distribution standard deviation 64.085 

Splitting bias probability 0.567 

Ligation bias probability 0.455 

Denaturation temperature 89.259 

Elongation temperature 75.844 

 

 

Figure 29: Plasmodium falciparum coverage comparison 

Mycobacterium tuberculosis 

GC-richAT-rich Neutral

Plasmodium falciparum

GC-richAT-rich Neutral
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There were difficulties in obtaining parameters (Table 12) to mimic the coverage 

found in sequencing results for TP5313 (Auton et al., 2015). This is evident from the 

lower fitness scores attained in the GA run (Figure 27) and the poor overlap of the 

two plots in Figure 30.  Here there were no large areas of homogeneous biased 

nucleotide content as the sequence is made of a neutral base composition. This led me 

to believe the simulator is better able to mimic real world coverage values when there 

are homogeneous areas of biased nucleotide content. 

Table 12: Best parameters for TP53 

Parameter Value 

Fragment distribution mean 490.172 

Fragment distribution standard deviation 50.077 

Splitting bias probability 0.398 

Ligation bias probability 0.329 

Denaturation temperature 75.524 

Elongation temperature 77.343 

 

 

Figure 30: TP53 coverage comparison 

To ensure the failure in obtaining parameters was not due to the genetic structure of 

TP53, a GA run was carried out on an entire contig (AC012627.414) of the human 

genome containing both coding and non-coding regions. Such regions are usually 

 
13 HG00154: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00154/  

14 HG00154: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00154/ 

GC-richAT-rich Neutral

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00154/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/HG00154/
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harder to sequence due to the presence of nucleotide repeats. Once again, the simulator 

failed to capture coverage from this new region (Figure 31). Although the chosen 

region does include repeats, they do not cover large areas as in the case of P. 

falciparum and M. tuberculosis. This further reiterates my previous view that the 

simulator works better when an input sequence includes large areas of homogeneous 

nucleotide content. The reason for this occurrence is further discussed in the next 

section. 

Table 13: Best parameters for AC012627.4 

Parameter Value 

Fragment distribution mean 525.016 

Fragment distribution standard deviation 52.368 

Splitting bias probability 0.593 

Ligation bias probability 0.446 

Denaturation temperature 73.259 

Elongation temperature 53.884 

 

 
Figure 31: AC012627.4 coverage comparison 

4.7 Chapter Summary and Discussion 

In this chapter, I set out to find if my simulator is able to produce coverage results that 

bear a resemblance to what is found in real-word sequencing. The implemented GA 

was able to derive parameters that led to a good fit between the actual and simulated 

coverages for the selected regions of DNA samples from P. falciparum and M. 

tuberculosis but was less successful for the human samples. The parameters derived 

for the tested region of P. falciparum were also able to provide similar coverage when 
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tested on other parts of the genome (Figure 32). This was not the case for M. 

tuberculosis as the parameters derived for the tested region did not always lead to 

similar coverage for other parts of the genome (Figure 33).  

 

 

Figure 32: Parameters with the highest fitness score taken from a section of the P. falciparum 

genome are tested on other parts of the genome. Each point is the fitness score (R) for the tested 

region. The benchmark line is the level at which below it the coverage of the given point lacks 

similarity to the original coverage values for that region 

 

Figure 33: Parameters with the highest fitness score taken from a section of the M. tuberculosis 

genome are tested on other parts of the genome. 
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The explanation for these observations is that the GA is best able to optimise 

parameters for sequences that are characterised by well-defined homogeneous areas 

(i.e. areas that are dominated by two nucleotide types such as in GC-rich or AT-rich 

regions). The human genome is relatively free of such regions compared to P. 

falciparum and M. tuberculosis. In the latter, homogeneous regions (GC-rich) are 

distributed less regularly over the genome than the homogeneous regions of P. 

falciparum (Figure 34). 

 
 

Figure 34: Nucleotide identity across the P. falciparum and M. tuberculosis genomes. 

As the sequencing results used here are not without their own deficiencies, it appears 

that the GA is particularly able to mimic low coverage areas. However, the good 

performance of the GA is not caused by low coverage, but because it is better able to 

make predictions in problem areas that are characterised by homogeneous nucleotide 

content which would already have poor coverage. This lower coverage could be a 

result of inappropriate choices of melting and elongation temperatures during PCR; an 

insufficient melting temperature would fail to denature GC-rich regions of the genome, 

leading to underrepresentation of these regions. While an elongation temperature that 

is too high affects the cloning of AT-rich fragments. The implication of this is that 

using parameters from the GA, the simulator is better able to reconstruct the 

shortcomings of the original sequencing procedures. In the next chapter, the individual 

and combined effects of each simulated library preparation parameter is tested on 

different types of DNA sequences. 
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Chapter 5 Effects of Library Preparation 

This chapter examines the individual and combined effects of the three implemented 

steps of library preparation: fragmentation, ligation and amplification. The aim is to 

evaluate the extent to which these steps lead to a deviation from optimal (uniform) 

coverage. The uniformity of coverage is measured using the evenness score (E) as 

described in section 3.5.  

The effects of the library preparation steps on evenness of coverage were analysed 

using multiway analysis of variance (ANOVA) with replication in two stages. In the 

first stage, two independent variables were tested, the first being the DNA structure 

(S.DNA) and the second representing one of the three library preparation steps. In all 

cases, evenness of coverage is the dependent variable. 

As an example, the library preparation step of attaching adaptors to the fragments is 

represented by chosen values of the parameter ligation bias. These values are the levels 

of the independent variable representing ligation bias (B.LIGATION) and the test is a 

two-factor ANOVA (S.DNA and B.LIGATION) with replication where S.DNA 

represents different types of DNA sequence structures (The tested sequences are 

outlined below). Besides assessing the proportion of variance accounted for by the 

main factors S.DNA and B.LIGATION, the ANOVA also evaluates their interaction, 

i.e., in how far the effect of one independent variable depends on the levels of the 

other. For an overview of the other independent variables and their levels, see Table 

14. 

Table 14: Overview of independent variables. 

Library 

Preparation Step 

Parameter Independent 

Variable 

Levels  

(Increment) 

Default Parameter 

Value 3 

Fragmentation Mean1 M.SIZE 100 – 1000 (100) 300 

 Skewness 1,2 SKEW 10 – 100 (10) 30 

 Splitting Bias B.SPLIT 0.0 – 1.0 (0.1) 0 

Ligation Ligation Bias B.LIGATION 0.0 – 1.0 (0.1) 0 

Amplification Denaturation Temperature T.DENAT 90 – 100 (1) 120 

 Elongation Temperature T.ELON 60 – 74 (2) 60 

1 Parameter of the fragment size distribution (lognormal). 
2 Measured as standard deviation. The relationship between skewness and standard deviation is 

described in the text. 

3 These are tested baseline values at which there is no effect on coverage output. 
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In the second stage, three independent variables were analysed; DNA structure 

(S.DNA) was tested together with a combination of two of the three library preparation 

steps.  

The main assumptions of the ANOVAs were checked by means of Kolmogorov - 

Smirnov and Shapiro - Wilk tests (for normality) and Levene’s test (for 

heteroscedasticity) (For results of the verification of assumptions, see appendix A). 

Violations of the assumptions was one of the reasons to carry out several ANOVAs 

instead of one overall test including all six library preparation variables. Also, such an 

ANOVA would be difficult to interpret because of the large number and complexity 

of interactions. All ANOVA results were generated using IBM SPSS Statistics for 

Windows, Version 25.0 (IBM Corp., 2017). 

Concerning DNA structure, natural genomes differ by their nucleotide content and 

sequential dependency. Some are characterised by having high GC-content or having 

high AT-content or some other deviations from equal proportions of nucleotide bases. 

In addition, the bases may not be distributed independently of each other thus forming 

a heterogeneous (“clumped”) sequence. To study how far these structural features 

affect the evenness of coverage, the following four types of artificial DNA sequences, 

each 20,000 bp long, representing these characteristics were generated for this part of 

my study: 

• Sequence 1 (GC80) is GC-rich: 40% of its nucleotides are G and 40% are C 

(i.e. a GC composition of 80 %). 

• Sequence 2 (AT80) has an AT composition of 80% (“AT-rich”). 

• Sequence 3 (GCAT80) consists of two regions of 5000bp situated at each side 

of the central base position, the first has an 80% GC content and the second an 

80% AT content. The remaining regions of 5000bp at the start and end of the 

sequence have a neutral base composition (A:25%, C:25%, G:25%, T:25%). 

• Sequence 4 (GC50) has neutral base composition (A:25%, C:25%, G:25%, 

T:25%). 

These sequences respectively represent genomes with high GC-content, high AT-

content, with clumped areas of biased nucleotide content (AT-rich and GC-rich) and 

with equal quantities of all bases. 
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5.1 Single Effects 

The effects of the separate library preparation steps on evenness of coverage were 

analysed using a two-way ANOVA. Two independent variables were tested, the first 

being the DNA structure (S.DNA) and the second being one of the six parameters 

associated with the library preparation steps (See Chapter 3). 

5.1.1 Fragmentation 

This section is devoted to the effects of the distribution of fragment sizes on coverage 

uniformity. Also, attention will be paid to a possible fragmentation bias, where 

splitting preferentially occurs between CpG dinucleotides (Poptsova et al., 2014). This 

bias is discussed in Chapter 2.  

In my model, fragmentation was modelled by drawing values, representing fragment 

sizes, from a lognormal distribution (Section 3.2). This distribution is characterised by 

a shape and location parameter. The first is related to the standard deviation of the 

distribution and the second to the mean of lognormally distributed fragment sizes. The 

values of the mean were varied between 100 and 1000 with increments of 100 and the 

standard deviation between 10 and 100 with increments of 10. These values were 

transformed to the location and shape parameter of the lognormal distribution 

respectively and used to generate fragment sizes. Modifying the standard deviation 

here affects the skewness of the lognormal distribution (see Section 0 for a formal 

description of this relationship).  

Mean Fragment Size 

For each of the artificial DNA sequences, the value of E was plotted for varying mean 

fragment sizes. The same trend can be seen in all four artificial sequences (Figure 35): 

E is high for mean fragment sizes between 200bp and 500bp and declines as mean 

fragment size increases from 500bp to 1000bp. 

The results of the ANOVA show that the main factors, mean fragment size (M.SIZE, 

p = 0.000) and DNA structure (S.DNA, p = 0.000), both have a statistically significant 

effect on coverage uniformity (Table 15). However, the interaction between S.DNA 

and M.SIZE is not significant (p = 0.430), implying that the effects of a main factor 

do not depend on the level of the other. 
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Figure 35 confirms this as the line plots retain the same shape for each type of DNA 

structure: the only difference found is the height of the curves, with the lowest values 

found in GCAT80 (see also Figure 37). It demonstrates the main effect of DNA 

structure as stated above, the significantly lower evenness of coverage of DNA with 

sequentially dependent (“clustered”) nucleotides (GCAT80), and the absence of an 

interaction effect. 

 

Figure 35: Effects of mean fragment size on the uniformity of coverage for all four generated 

sequences. For all figures in this chapter, the error bars are standard deviations. 

 

Table 15: ANOVA of S.DNA and M.SIZE. 

Dependent Variable:  E  

Source 

Sum of 

squares 

(SS) 

Degrees of 

freedom 

(df) 

Mean square 

(MS) 

F – Value 

(F) 

P – Value 

(p) 

S.DNA 0.001 3 0.000 17.202 0.000 

M.SIZE 0.005 9 0.001 23.007 0.000 

S.DNA * M.SIZE 0.001 27 2.283E-5 1.032 0.430 

      

Error 0.004 160 2.212E-5   

Total 0.010 199    
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Skewness 

Skewness was altered by varying the standard deviation of the fragment size 

distribution; for the lognormal distribution, skewness is (almost) linearly dependent 

on standard deviation, especially for smaller mean values (Figure 36). 

 

Figure 36: Skew dependence on standard deviation for different mean values. 

The effects of skewness (SKEW) for each of the four types of DNA sequences are 

shown in Figure 37. As expected, the effects of DNA structure are significant (p = 

0.000). The factor S.DNA was kept in the ANOVA design because the second factor 

(SKEW) and the possible interaction S.DNA * SKEW, lead to a different error term 

(and hence result in different F and p values) than when left out. 

The ANOVA reveals that the effect of SKEW is not statistically significant (p = 0.150) ( 

Table 16) and that there is no indication of an interaction effect between S.DNA and 

SKEW (p = 0.562). As before, the effect of DNA type shows up as lower values seen 

in the heterogeneous series GCAT80 (Figure 37). 

 

 

Figure 37: Effects of the skewness of the fragment distribution on uniformity of coverage. 
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Table 16: ANOVA of S.DNA and SKEW. 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.001 3 0.000 8.793 0.000 

SKEW 0.000 9 3.117E-5 1.505 0.150 

S.DNA * SKEW 0.001 27 1.936E-5 0.935 0.562 

      

Error 0.003 160 2.072E-5   

Total 0.005 199    

 

Splitting Bias 

In the model, non-random DNA fragmentation is simulated by a parameter governing 

the probability of a split between a C and a G (see Section 0). The values of this 

parameter are the levels of the independent variable (B.SPLIT). 

The main factors B.SPLIT (p = 0.000) and S.DNA (p = 0.000) both have a statistically 

significant effect on coverage uniformity. There is also a statistically significant 

interaction (S.DNA * B.SPLIT, p = 0.000) (Table 17).  

Coverage uniformity appears to be somewhat lower for the highest levels of B.SPLIT. 

This trend is especially noticeable in the clumped sequence (GCAT80), with a sharp 

decline in E for B.SPLIT in the range from 0.7 to 0.9 (Figure 38). This difference is 

the cause of the significant interaction (S.DNA * B.SPLIT) in the ANOVA. Note that 

of all three variables representing aspects of fragmentation (M.SIZE, SKEW and 

B.SPLIT), B.SPLIT most strongly elevates the effects of DNA structure. 

Table 17: ANOVA of S.DNA and B.SPLIT 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.005 3 0.002 76.711 0.000 

B.SPLIT 0.013 8 0.002 71.563 0.000 

S.DNA * B.SPLIT 0.019 24 0.001 35.013 0.000 

      

Error 0.003 144 2.279E-5   

Total 0.041 179    
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Figure 38: Effects of non-random fragmentation bias on the uniformity of coverage. 

5.1.2 Ligation 

The ligation of adapters to fragments during library preparation could influence 

coverage, as it determines which fragments will be cloned during PCR. As explained 

in Chapter 3, this process is modelled in my simulation by a ligation bias parameter, 

which reflects the likelihood of fragments to be ligated given the identity of their 

terminal base. The ligation bias parameter is the probability with which a fragment 

with a T at the 5’ end will be attached to an adaptor. Because adapters are biased 

against fragments with a T on their 5’ end, a high value of this parameter corresponds 

to a low binding affinity. To investigate the possible effect of ligation bias, the 

coverage uniformity at different values of the bias are compared. These values are the 

levels of the independent variable B.LIGATION 

Both of the main factors (B.LIGATION and S.DNA) have a significant effect on 

coverage uniformity (p = 0.000 and p = 0.000 respectively) (Table 18). The significant 

interaction term (p = 0.000) means the effect of B.LIGATION depends on the DNA 

structure of the sequences tested. Whereas the AT-rich (AT80) and clumped sequence 

(GCAT80) show a decline in E as B.LIGATION increases (Figure 39), the GC-rich 

sequence does not show any trend, while the neutral base composition sequence 

(GC50) shows a less steep reduction in E compared to the sequences with high AT 

content. 

Table 18: ANOVA of S.DNA and B.LIGATION. 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.008 3 0.003 81.782 0.000 

B.LIGATION 0.015 8 0.002 58.798 0.000 

S.DNA * B.LIGATION 0.008 24 0.000 10.776 0.000 

      

Error 0.005 144 3.152E-5   

Total 0.035 179    
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Figure 39: Effects of the ligation bias on coverage uniformity. 

5.1.3 Amplification 

The thermodynamics at play during the PCR amplification process can pose a 

challenge in situations where inappropriate (low) temperatures are selected. In my 

simulation, the denaturation and elongation stages of PCR are modelled by parameters 

expressing the temperature at which a template DNA strand disassociates from its 

complementary strand (see Chapter 3). A range of temperatures is applied to a 

sequence during the PCR denaturation and elongation phases to determine their effects 

on coverage.  

For denaturation, temperatures from 90C to 100C with increments of 1C were 

chosen. This covers the 94C to 98C range used in standard PCR protocols (Lorenz, 

2012). A temperature range from 60C to 74C with increments of 2C was chosen to 

test the effects of elongation. This range includes the conventionally used temperature 

of 72C (Innis & Gelfand, 1999). In both cases, the ranges were chosen in order to 

check if the routinely used values were the only appropriate temperatures. The selected 

values of the denaturation and elongation temperatures are the levels of the 

independent variables T.DENAT and T.ELON respectively. 

Denaturation 

The ANOVA indicates the main factors (T.DENAT and DNA) as both having a 

statistically significant effect on coverage uniformity (p = 0.000 and p = 0.000 

respectively) (Table 19). Also, the interaction between DNA and T.DENAT is 

significant (p = 0.000). 

The sequences with high GC-content (GC80 and GCAT80) perform worst (have lower 

values of E) between 90C and 93C (Figure 40). At higher temperatures, E converges 

to its maximum. For the sequences with lower levels and average levels of GC (AT80 

and GC50), E attains maximal uniformity and does not vary across the range of 
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temperatures. These differences in coverage uniformity between the sequences with 

high and low GC-content explain the significant effect of DNA base composition and 

the interaction term. The coverage plot in Figure 41 shows how a low denaturation 

temperature (90C) affects coverage in the GC-rich region (red area in the colour bar) 

of GCAT80. 

Table 19: ANOVA of S.DNA and T.DENAT. 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.305 3 0.102 3432.120 0.000 

T.DENAT 0.660 10 0.066 2229.626 0.000 

S.DNA * T.DENAT 0.930 30 0.031 1047.855 0.000 

      

Error 0.005 176 2.958E-5   

Total 1.900 219    

 

 

Figure 40: Effects of denaturation temperature on coverage uniformity. 

 

                                  

Figure 41: Coverage plot of GCAT80 sequence. The colour bar shows levels of base composition 

bias (blue - red = increasing GC content). 

 

 

GC-richAT-rich Neutral



 
75 

Elongation 

Because the data did not meet the assumptions of normality (Kolmogorov-Smirnov 

test: p = 0.022), I applied a one-way ANOVA for each separate DNA sequence type 

(Table 20). The effect of elongation temperature (T.ELON) was significant in the AT-

rich sequence (AT80) (p = 0.000) and clumped sequence (GCAT80) (p = 0.000), but 

not in the other two sequences (GC80 and GC50) (p = 0.457 and p = 0.366 

respectively).  

The results suggest that sequences with high AT content (AT80 and GCAT80) suffer 

from reduced levels of E at higher elongation temperatures (72C to 74C) (Figure 

42). At lower temperatures (60C to 70C) E remains stable through the range. In 

sequences with lower and average levels of AT content (GC80 and GC50), the range 

of temperatures has no effect on E. The effect of a high elongation temperature (74C) 

on the AT-rich region (blue area in colour bar) of GCAT80 can be seen in Figure 43. 

Table 20: ANOVA of S.DNA and T.ELON. 

Dependent Variable:  E  

DNA Source SS df MS F p 

AT80 T.ELON 0.618 7 0.088 1582.283 0.000 

Error 0.002 28 5.580E-5   

Total 0.620 35    

GC50 T.ELON 0.000 7 3.532E-5 1.135 0.366 

Error 0.001 32 3.110E-5   

Total 0.001 39    

GC80 T. ELON 0.000 7 1.900E-5 0.988 0.457 

Error 0.001 32 1.923E-5   

Total 0.001 39    

GCAT80 T.ELON 0.229 7 0.033 1848.080 0.000 

Error 0.001 32 1.773E-5   

Total 0.230 39    

 

  

Figure 42: Effects of elongation temperature on coverage uniformity. 
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Figure 43: Coverage plot of GCAT80 sequence. The colour bar shows levels of base 

composition bias (blue - red = increasing GC content). 

 

5.1.4 Amplification-Free 

In Section 2.6.4, Kozarewa and colleagues’ amplification-free library preparation 

method, which skips the PCR stage was explored (Kozarewa et al., 2009). To assess 

the benefits of this approach, all parameters were retested without the PCR module. 

The results of this test ( Figures Figure 44,Figure 45,Figure 46 and Figure 47 ) 

match the previous results found when static PCR parameters emulating optimal 

denaturation and elongation temperatures (Table 14) were used. This shows that 

excluding the PCR stage is indeed beneficial in avoiding the coverage deficiencies 

caused by it, but on the other hand this exclusion has no real influence on the individual 

effects of its preceding stages (fragmentation and ligation). 

 

Figure 44: PCR-free mean fragment size test 

GC-richAT-rich Neutral
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Figure 45: PCR-free skewness test. 

 

 

Figure 46: PCR-free splitting bias test. 

 

Figure 47: PCR-free ligation bias test.  



 
78 

5.2 Combined Effects 

This section examines the combined effects of the three implemented steps of library 

preparation. This is done using a multi-way ANOVA of three independent variables 

the first being the DNA structure (S.DNA) the other two being combinations of the six 

parameters associated with the library preparation steps. Only significant effects 

(listed in Table 21) are discussed. The library parameter SKEW is not considered here, 

because, as shown in Section 5.1.1, it has no effect on uniformity of coverage. 

This analysis is carried out to examine the possible knock-on effects of preceding 

library steps, that is how far does a preceding step combine with the next step to affect 

coverage uniformity. For example, in the fragmentation step, a strong splitting bias 

creates a larger number of fragments that begin with a C and end with a G (Poptsova 

et al., 2014). This effect was also observed in my analysis of the splitting bias (Section 

5.1.1). The effect may interact with the subsequent step, ligation, where higher levels 

of the ligation bias lead to a loss of fragments starting with a T and ending with an A 

(see Section 2.6.3). Therefore, in a sequence with areas of biased nucleotide content 

(i.e. GC-rich and AT-rich), the splitting bias would cause the majority of splits to occur 

in the GC-rich regions, leading to a lower representation of AT-rich regions. In turn, 

this may be exacerbated by the ligation bias, which will further reduce region 

representation due to the loss of AT-rich fragments. The question then becomes, to 

what extent would this affect uniformity of coverage, which will be explored in detail 

in the next section. 

Table 21: Results of combined effects analysis 

 

  M.SIZE B.SPLIT B.LIGATE T.DENAT T.ELON 

M.SIZE  0 0 1 1 

B.SPLIT   1 0 0 

B.LIGATE    0 0 

T.DENAT     0 

T.ELON      

1 = Significant, 0 = Not significant 
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5.2.1 Splitting Bias and Ligation Bias 

An analysis of the combined effects of varying levels of the splitting bias (B.SPLIT) 

and ligation bias (B.LIGATION) was carried out. The three-way interaction (S.DNA, 

B.SPLIT and B.LIGATE) and two-way interaction (B.SPLIT and B.LIGATE) were 

significant (p = 0.000 and p = 0.001 respectively) (Table 22). The reason for the 

statistical significance of the interaction between the three main factors is due to the 

steep decline of coverage uniformity in the clumped sequence (GCAT80) (Figure 48). 

This decline is especially noticeable for maximum splitting bias in combination with 

the coverage uniformity reducing effects of increasing ligation bias. In other words, 

coverage uniformity reduces with increasing levels of both biases in the clumped 

sequence (GCAT80). Thus, the combination of both biases leads to a stronger effect 

on coverage uniformity than each would have on its own.  

Table 22: ANOVA of S.DNA, B.SPLIT and B.LIGATE. 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.103 3 0.034 1066.022 0.000 

B.LIGATE 0.062 3 0.021 638.810 0.000 

B.SPLIT 0.051 3 0.017 531.294 0.000 

S.DNA * B.LIGATE 0.031 9 0.003 107.249 0.000 

S.DNA * B.SPLIT 0.106 9 0.012 364.754 0.000 

B.LIGATE * B.SPLIT 0.001 9 0.000 3.430 0.001 

S.DNA * B.LIGATE * 

B.SPLIT 

0.006 27 0.000 6.336 0.000 

      

Error 0.008 256 0.000   

Total 0.368 319    

 
 

Figure 48: Effects of B.SPLIT and B.LIGATE on E. 
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5.2.2 Fragment Size and Denaturation 

This section deals with the effects of DNA structure (S.DNA) along with those of 

mean fragment size (M.SIZE) and denaturation temperature (T.DENAT). The 

ANOVA shows that all main effects and interactions are significant (Table 23). The 

effect of the interactions can be seen in Figure 49: for the GC-rich sequence (GC80) 

coverage is less uniform for larger fragment sizes when the denaturation temperature 

is low (94°C). To a lesser extent, the same holds for the clumped sequence GCAT80. 

Table 23: ANOVA of S.DNA, M.SIZE and T.DENAT 

Dependent Variable:  E  

Source SS df MS F p 

S.DNA 0.011 3 0.004 122.723 0.000 

T.DENAT 0.015 3 0.005 172.008 0.000 

M.SIZE 0.014 3 0.005 156.824 0.000 

S.DNA * T.DENAT 0.033 9 0.004 127.659 0.000 

S.DNA * M.SIZE 0.012 9 0.001 46.719 0.000 

T.DENAT * M.SIZE 0.020 9 0.002 75.035 0.000 

DNA * T.DENAT * M.SIZE 0.033 27 0.001 41.539 0.000 

      

Error 0.007 256 0.000   

Total 0.145 319    

 
 

Figure 49: Effects of M.SIZE and T.DENAT on E. Note the low values of E for the low denaturation 

temperature (94°C) in GC-rich sequences (GC80 and GCAT80), especially for larger fragment sizes. 
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5.2.3 Fragment size and Elongation 

With respect to the combined effects of mean fragment size and elongation 

temperature, my results show that both the three-way interaction (S.DNA, M.SIZE and 

T.ELON) and two-way interaction (M.SIZE and T.ELON) are significant (p = 0.000 

and p = 0.000 respectively) (Table 24). A similar trend can be seen for the AT-rich 

sequence (AT80) and clumped sequence (GCAT80); larger fragments sizes in 

combination with higher elongation temperatures bring about a reduction in coverage 

uniformity (E) (Figure 50).  

Table 24: ANOVA of S.DNA, M.SIZE and T.ELON 

Dependent Variable:  E  

Source SS df MS F p 

DNA 0.003 3 0.001 50.127 0.000 

T.ELON 0.004 3 0.001 66.150 0.000 

M.SIZE 0.004 3 0.001 68.825 0.000 

DNA * T.ELON 0.007 9 0.001 41.380 0.000 

DNA * M.SIZE 0.001 9 0.000 7.068 0.000 

T.ELON * M.SIZE 0.002 9 0.000 9.665 0.000 

DNA * T.ELON * M.SIZE 0.003 27 0.000 5.880 0.000 

      

Error 0.005 256 0.000   

Total 0.030 319    

 

 
 

Figure 50: Effects of M.SIZE and T.ELON on E. Note the low values of E for the high elongation 

temperatures in AT-rich sequences (AT80 and GCAT80), especially for larger fragment sizes. 
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5.3 Validation of tests with actual DNA 

To ensure the above results have a resemblance to what occurs in reality a set of real 

DNA sequences with features similar to those of the previously used artificial 

sequences were tested. The effects of each stage of library preparation are tested here 

and a comparison of results from real and artificial DNA are made. The chosen DNA 

sequences and their matching artificial sequences are presented below (Table 25). A 

common trend that will be found in the comparisons below is the lower evenness of 

coverage for Tuberculosis and Plasmodium. This is due the varying sequential 

dependencies in different genomes leading to difficulties in delivering similar levels 

of coverage uniformity for each genome. 

Table 25: Matched real and artificial DNA sequences. 

Real DNA sequence Artificial DNA sequence 

Mycobacterium tuberculosis1 GC80 

Plasmodium Falciparum2 AT80 

Human (TP53 gene)3 GC50 

1 GC-content: 70.46%, Region: 3,920,000bp – 3,970,000bp 
2 GC-content: 19.26%, Region: 450,000bp – 500,000bp 
3 GC-content: 47.77%, Region: 7,668,401bp – 7,687,550bp 

 

 

Figure 51: Comparison of evenness of coverage for real and artificial DNA sequences. 
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Mean Fragment Size 

The effects of applying different mean fragment sizes to the selected actual sequences 

differ to an extent when compared to the artificial sequences (Figure 52). When 

comparing the GC- and AT-rich sequences the lower E observed when an average 

fragment size below 200bp is used can be observed in both real and artificial 

sequences. However, a difference can be seen when larger fragment sizes are used 

(>200bp). In the real sequences the level of E does not reduce by as much when 

average fragment size increases as it does in the artificial AT- and GC-rich sequences. 

The trend in both neutral sequences are very similar, showing only minor differences. 

 

Figure 52: Comparison of effects from varying mean fragment sizes. 

 

Skewness 

In the previous analysis of the effects of skewness on coverage uniformity for the 

artificial sequences, there was no clear trend in its impact on coverage. This same 

result is found with the real sequences tested (Figure 53). This confirms that 

modifying the skewness of the fragment distribution has no effect on the evenness of 

coverage. 
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Figure 53: Comparison of effects from varying the standard deviation. 

Splitting Bias 

In this comparison we see a minute reduction in E at higher levels (0.8 – 0.9) of the 

splitting bias for the different nucleotide compositions for both the real and artificial 

sequences (Figure 54). The splitting bias does not adversely affect coverage 

uniformity for these sequences. However in section 5.1.1 this bias was seen to be more 

effective on the artificial sequence with large areas of homogenous nucleotide content 

(GCAT80). 

 
 

Figure 54: Comparison of the effects from varying splitting bias levels. 
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Ligation Bias 

The ligation bias parameter mostly affects sequences with an AT proportion of 50% 

or higher and also sequences with  areas of homogeneous AT content. This effect can 

be seen in the real sequences (Figure 55). Plasmodium and TP53 share a similar trend 

with their artificial counterparts, where as the level of the ligation bias increases the 

evenness of coverage reduces. The trend in the Tuberculosis plot is slightly different 

from GC80, showing a slight reduction in E at the highest levels of the bias (0.8 – 0.9). 

Due to the minimal difference in E this change can be ignored. The results seen here 

confirm the effects of the ligation bias on coverage. 

 

 

Figure 55: Comparison of the effects from varying ligation bias levels. 

Denaturation and Elongation Temperatures 

The temperatures set and structure of the sequences provided have a key influence on 

coverage levels after PCR. When applying different denaturation temperatures to  both 

GC-rich sequences (real and artificial), a similar effect is seen (Figure 56). Lower 

temperatures (< 94C) lead to a reduction in E, especially in the artificial sequence, 

where its GC-level is higher (80%) than the Tuberculosis sequence (70.46%). The 

levels of E are the same when comparing both types of AT-rich and neutral sequences. 

Varying the Elongation temperature resulted in closely matching trends once again 
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(Figure 57). AT80 and Plasmodium show a steep decline in E with elongation 

temperatures above 68C. In the case of the GC-rich and neutral sequences there is no 

effect. 

 

Figure 56: Comparison of the effects from varying denaturation temperatures. 

 

Figure 57: Comparison of the effects from varying elongation temperatures. 
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In conclusion, the results of these comparisons show that the effects of the tested 

parameters are not only effective on simulated DNA sequences but also on actual DNA 

sequences. 

5.4 Chapter Summary and Discussion 

Fragmentation, ligation, and amplification are important steps of the NGS library 

preparation process. Irrespective of the particular library preparation steps, the 

structure of the genome in terms of composition and serial dependence of the 

nucleotides, has a clear impact on the uniformity of coverage. The results show that a 

clumped sequence leads to lower coverage uniformity (Error! Reference source not 

found.). This suggests that sequencing results of DNA with areas of biased nucleotide 

content (AT-rich and GC-rich) are less reliable because of poorer coverage. 

My study shows that these steps individually affect the uniformity of coverage at 

distinct levels of their parameters (mean fragment size, skewness, splitting bias, 

ligation bias, denaturation, and elongation). 

With regards to fragmentation, the skewness of the underlying fragment distribution 

does not have any effects on coverage uniformity, but fragment size does. When 

fragments are large, there is a decline in coverage uniformity and the highest evenness 

of coverage was found for fragments between 200 and 400 bp (Figure 35). 

Interestingly, this is indeed the range of fragment sizes routinely employed by the 

Illumina platform (Bronner et al., 2009). My study indicates that these values should 

be adhered to. 

Moreover, and in correspondence with the outcomes of the model, Bronner et al. 

(2009) found that larger fragment sizes reduce the efficiency and yield of sequencing 

experiments. Tan et al. (2019) also found that using fragment sizes above 500bp result 

in lower base call quality and higher error rates when compared with shorter fragments 

in paired-end sequencing. Read quality only improved when libraries were prepared 

following Illumina’s specifications with fragment sizes of 350bp.  

Splitting bias affects the evenness in coverage of the clumped sequence (GCAT80) 

stronger than the other types of simulated DNA, with a sharp decline in coverage 

uniformity at higher levels of the splitting bias (Figure 38). 
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This effect is due to the increased presence of CpG dinucleotides in the GC-rich area 

of the clumped sequence. The preferential splitting between C and G nucleotides leads 

to an over-representation of fragments from GC-rich areas and of fragments that start 

with a C or are terminated at a G. The same was reported by Poptsova et al. (2014) in 

an empirical study. Furthermore, this effect is more pronounced in heterogeneous 

sequences with clumped areas of GC and AT dinucleotides (e.g. GCAT80). The 

preferential splitting would place a majority of fragments in the GC-rich area, therefore 

reducing representation of the AT-rich area. 

Ligation bias is the tendency for adaptors to connect to fragments with a T at their 5’ 

end (Seguin-Orlando et al., 2013). Because adapters are biased against fragments with 

a T on their 5’ end, a high value of this parameter corresponds to a low binding affinity. 

A consequence of this bias, a reduced coverage of AT-rich regions of a genome, 

became apparent in my simulation: it negatively affects the coverage uniformity 

especially in AT-rich sequences (AT80 and GCAT80) but not in AT-poor DNA 

(Figure 39). 

The previously mentioned effect of a strong splitting bias was observed to interact with 

ligation in sequences with areas of biased nucleotide content (GC-rich and AT-rich). 

In such regions the splitting bias would cause the majority of fragmentation to occur 

in the GC-rich regions, leading to a lower representation of AT-rich regions. In turn, 

this may be exacerbated by the ligation bias, which will further reduce region 

representation due to the loss of AT-rich fragments. 

With respect to amplification, the analysis of the effects of PCR denaturation 

temperatures indicates a lower coverage uniformity at lower denaturation temperatures 

for GC-rich sequences (GC80 and GCAT80) (Figure 40). The higher melting 

temperature of GC-rich double-stranded fragments from such sequences are 

responsible for this. Incomplete denaturation is one of the main causes of PCR failure 

(Innis & Gelfand, 1999). At lower temperatures, double-stranded fragments with high 

GC-content do not completely separate and therefore do not go through the PCR cycle, 

hence yielding a lower coverage and a lower uniformity of coverage for GC-rich 

sequences. 

During PCR elongation, higher temperatures cause a reduction in coverage uniformity 

for AT-rich sequences (GCAT80 and AT80) (Figure 42) most likely because of the 

lower melting temperature of AT-rich double-stranded fragments. 
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 AT-rich fragments are denatured usually at an elongation temperature of 72C 

(López-Barragán et al., 2011), because AT bonds can be disrupted easily due to their 

lower melting temperature (Yakovchuk, 2006). Consequently, if the PCR elongation 

temperature is too high there will be a loss of AT-rich fragments and concurrent 

coverage loss in AT-rich areas of a sequence, thus leading to uneven coverage. In a 

previous study, Su et al. (1996) found that reducing the PCR elongation temperature 

from the typical 72C to 60C, improves amplification of AT-rich fragments. This 

reduced temperature can lead to increased coverage yield in AT-rich areas of a 

sequence. The effects of reduced elongation temperature can be seen in my results 

where coverage uniformity is higher at lower temperatures (Figure 42). 

Fragmentation and amplification appear to be interacting library preparation steps in 

the sense that a lower coverage uniformity of larger fragments is particularly 

noticeable at low denaturation and high elongation temperatures for respectively GC-

rich and AT-rich DNA (Figures Figure 49 and Figure 50). These combined effects of 

fragmentation, amplification and genome structure may be due to a sampling effect, 

as I found in the output of my simulation, larger fragment size is associated with a 

lower standard deviation of the mean GC/AT content of those fragments (Figure 58). 

 

 
 

Figure 58: Standard deviation of mean GC/AT content vs fragment size. 
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This might be a consequence of the central limit theorem, which states that the sample 

mean and population mean converge and the variance of the distribution of sample 

means reduces as sample size increases (Figure 59) 

 

 

Figure 59: In line with the central limit theorem, the distribution of mean GC content approaches a 

normal distribution with a smaller variance as sample size increases. The data in this plot was 

generated from my simulation. 

 

To further explain this, if the number of strong (G or C) or weak binding (A or T) 

bases in a string of n nucleotides is represented by the binary variable Y (i.e. Y takes 

on the values {G or C} = 1, {A or T} = 0), then the proportion of G’s or C’s in that 

string is the mean (m) of Y for a sample size of n. According to the central limit 

theorem, given a set of N such samples (indexed as i = 1, 2, …, N), the corresponding 

sample means mi are normally distributed with an overall mean of 𝝁𝒎 = �̅�𝒊, a 

variance of 𝝈𝒎
𝟐 =

𝝈𝟐

𝒏
, and a standard deviation of 𝝈𝒎 =

𝝈

√𝒏
 . The latter can be estimated 

from a sample as the standard error, 
𝒔

√𝒏
 . From this, it follows that larger samples have 

on average a smaller variation of Y than smaller samples. The implication is that 

smaller DNA fragments on average have a more diverse base composition than larger 

samples. 
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Thus, larger fragments tend to be either more AT-rich or GC-rich than smaller ones 

although the average base composition of large and small fragments is the same. A 

similar suggestion has been put forward by Elhaik et al. (2010). Logically, the 

sampling effect found here should intrinsically lead to the same occurrence in real 

sequencing.  

The consequence for sequencing is that, as fragment size increases there will be a 

higher number of fragments with increased GC/AT content. During the denaturation 

stage of PCR, an abundance of such GC-rich fragments leads to a loss of coverage if 

temperatures are inadequate, as they are less likely to denaturise at lower temperatures. 

AT-rich fragments are similarly affected during elongation if the elongation 

temperature is set too high because this results in a loss of such fragments due to their 

lower melting temperature. Thus, the increased GC/AT content of larger fragments 

could explain the difficulties seen in the simulated PCR amplification step. These 

effects will ultimately lead to uneven coverage across the genome. 
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Chapter 6 Conclusions 

The main aim of this body of work was to analyse how artefacts that can occur during 

the library preparation stage of sequencing affect coverage. To do this, I implemented 

a model, LpSim, that simulates the fragmentation, ligation and PCR stages. These 

stages are represented by designated parameters. By varying the parameters, the 

outcomes of the simulation showed which alterations in library preparation influenced 

coverage and to what extent. 

I used a genetic algorithm to find parameter settings that produced coverage values 

similar to those from actual sequencing experiments. LpSim simulated real-world 

coverage well for DNA sequences characterised by a serial dependency due to the 

presence of distinct stretches of homogeneous nucleotide content (especially AT and 

GC rich regions). The simulation was less successful for sequences that lacked such 

regions. 

These findings corresponded with results from applying the model to computationally 

generated DNA sequences. The artificial sequences were especially designed to reflect 

sequential dependency and the presence or lack of regions with homogeneous 

nucleotide content. 

The model was applied to four types of in silico DNA. Three of these were generated 

as zero-order Markov chains (i.e. lacked sequential dependency) and consisted of 

respectively 80% AT (“AT-rich”), 80% GC (“GC-rich”) and equal proportions of all 

four nucleotides (“neutral”). The fourth type was made to contain blocks of neutral as 

well as AT/GC rich composition (“clumped”). 

After running the simulator on these sequences, I found that the parameter settings 

modify the evenness of coverage in the following ways:  

1. The size of fragments affects coverage in all tested sequences. This is in line with 

the suggestions by Bronner et al. (2009) and Tan et al. (2019) to limit fragment 

sizes to between 200 – 500 as larger sizes may negatively affect coverage 

uniformity.   
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2. The splitting bias alters the evenness of coverage of a “clumped” sequence because 

fragmentation occurs mostly in GC-rich regions thus lowering the proportion of 

fragments from other regions.  

3. Increased ligation bias influences coverage for sequences with high AT content. 

This is because the adapters are less likely to attach to fragments that terminate 

with a T.  

4. Denaturation and elongation temperature respectively impact GC-rich and AT- 

rich sequences due to the well-known temperature-related effect of PCR on such 

sequences. 

The effects of some parameters were found to interact with each other, leading to 

additional reduction in coverage uniformity:  

5. The splitting bias reinforces the effect of ligation bias. Reduced coverage of AT-

rich regions caused by the splitting bias is decreased even further by the ligation 

bias because of the lower binding affinity of adapters to fragments from such 

regions. The resulting low number of AT-rich fragments brings about a less even 

coverage overall. 

6. Fragment size interacts with the impact of PCR related temperature settings. Due 

to sampling effects, larger fragments have a less diverse base composition than 

smaller fragments. This leads to difficulties in denaturing these large fragments at 

lower temperatures if a sequence is GC-rich and a loss of fragments at higher 

elongation temperatures when a sequence is AT-rich. 

Because all the tests were carried out using in silico DNA, these results have to be 

viewed as suggestions for further research on real sequences. 

To gauge the usefulness of these suggestions, a validation with real DNA was 

necessary to ensure the effects found bear relevance to data from the real world. To do 

this, each step of the model was applied to sequences that match the features of those 

that were previously tested. In all steps the effects of coverage were quite similar but 

being that the sequential dependencies of the sequences are quite different an exact 

match was not expected. 

My research provides an insight from a generic perspective on how library preparation 

methods can affect the reliability of sequencing output. This sets the scene for 

investigating a lot of shortcoming that can occur during this sample preparation phase. 
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By providing an in-silico method to do this it is now easier to test different 

combinations of parameters which would be rather unrealistic to test in the lab. 

6.1 Future Work 

Further extensions can be applied to this body of work: 

1 To simulate fragmentation, fragment sizes were derived from a lognormal 

distribution because this distribution is commonly used in the modelling of 

breakage processes. This could be complemented by bottom-up oriented 

models that consider the finer details of fragmentation such as the physics 

underlying the breaking up of DNA molecules for the different fragmentation 

techniques. 

2 The model may be further extended by adding library artefacts that were not 

implemented in my model. These may include artefacts such as slipped strand 

mispairing and chimera formation which can occur during the PCR step, the 

former causes a deletion of nucleotides in AT-rich fragments characterised by 

nucleotide repeats, while the latter leads to the formation of chimeric DNA due 

to incomplete primer extension during PCR. 

3 A model implementing the sequencing stages following library preparation can 

be used in conjunction with LpSim to find the interactive effects of the 

properties of these stages and their inherent biases on sequencing output. For 

example, in the sequencing by synthesis stage, phasing and pre-phasing can 

lead to the omission of nucleotides in base calling. It would be of interest to 

see how errors from the follow-on steps interact with library preparation 

parameters. 

4 A genetic algorithm can be used in conjunction with my model to create a tool 

which searches for parameters that would lead to uniform coverage of a given 

sequence. The fitness assessment here will utilise the evenness score to rate the 

parameters. This kind of tool can further assist wet-lab researchers in deciding 

what set of actions can be taken to improve coverage in a sequencing 

experiment. 
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April 17, 2019 
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Appendix A – Assumption Checks 

A.1 Single Effects 

A.1.1 Fragmentation 

A.1.1.1 Mean Fragment Size 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 2.814 39 160 0.000 

Based on Median 1.138 39 160 0.285 

Based on Median and 

with adjusted df 

1.138 39 61.915 0.320 

Based on trimmed mean 2.749 39 160 0.000 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: Intercept + S.DNA + M.SIZE + DNA * M.SIZE 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.059 200 0.085 0.987 200 0.059 

a. Lilliefors Significance Correction 
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A.1.1.2 Skewness 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 1.128 39 160 0.297 

Based on Median 0.523 39 160 0.990 

Based on Median and 

with adjusted df 

0.523 39 92.839 0.987 

Based on trimmed mean 1.072 39 160 0.372 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: Intercept + DNA + SKEW + DNA * SKEW 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.053 200 0.200* 0.995 200 0.693 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.1.1.3 Splitting Bias 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 1.507 35 144 0.049 

Based on Median 0.571 35 144 0.973 

Based on Median and 

with adjusted df 

0.571 35 84.299 0.967 

Based on trimmed mean 1.444 35 144 0.070 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: Intercept + DNA + B.SPLIT + DNA * B.SPLIT 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.053 180 0.200* 0.989 180 0.156 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.1.2 Ligation 

A.1.2.1 Ligation Bias 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 2.829 35 144 0.000 

Based on Median 0.829 35 144 0.737 

Based on Median and 

with adjusted df 

0.829 35 77.584 0.728 

Based on trimmed mean 2.734 35 144 0.000 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: Intercept + DNA + B.LIGATE + DNA * B.LIGATE 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for 

E 

0.051 180 0.200* 0.992 180 0.388 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 

 

 

 

 

 

 

 

 

 

 



 
112 

A.1.3 Amplification 

A.1.3.1 Denaturation 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 3.918 43 176 0.000 

Based on Median 1.322 43 176 0.108 

Based on Median and 

with adjusted df 

1.322 43 38.051 0.192 

Based on trimmed mean 3.753 43 176 0.000 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: DNA + T.DENAT + DNA * T.DENAT 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.046 220 0.200* 0.977 220 0.001 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.1.3.2 Elongation (failed two-way ANOVA) 

Tests of Between-Subjects Effects 

Dependent Variable:   E   

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

DNA 0.273 3 0.091 3013.578 0.000 

T.ELON 0.527 7 0.075 2496.467 0.000 

DNA * T.ELON 0.566 21 0.027 893.229 0.000 

Error 0.004 124 3.016E-5   

Total 128.961 156    

Corrected Total 0.950 155    

 

 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 3.281 30 124 0.000 

Based on Median 0.966 30 124 0.525 

Based on Median and 

with adjusted df 

0.966 30 25.211 0.540 

Based on trimmed mean 3.078 30 124 0.000 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: Intercept + DNA + T.ELON + DNA * T.ELON 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.078 156 0.022 0.965 156 0.001 

a. Lilliefors Significance Correction 
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A.1.3.3 Elongation (assumption tests for one-way ANOVA) 

 

Levene's Test of Equality of Error Variancesa,b 

DNA 

Levene 

Statistic df1 df2 Sig. 

AT80 E Based on Mean 5.237 6 28 0.001 

Based on Median 1.027 6 28 0.428 

Based on Median and 

with adjusted df 

1.027 6 7.251 0.477 

Based on trimmed mean 4.760 6 28 0.002 

GC50 E Based on Mean 1.901 7 32 0.102 

Based on Median 1.193 7 32 0.335 

Based on Median and 

with adjusted df 

1.193 7 26.556 0.340 

Based on trimmed mean 1.876 7 32 0.107 

GC80 E Based on Mean 1.213 7 32 0.324 

Based on Median 0.281 7 32 0.957 

Based on Median and 

with adjusted df 

0.281 7 25.423 0.956 

Based on trimmed mean 1.170 7 32 0.347 

GCAT80 E Based on Mean 1.828 7 32 0.116 

Based on Median 0.774 7 32 0.613 

Based on Median and 

with adjusted df 

0.774 7 20.721 0.615 

Based on trimmed mean 1.744 7 32 0.134 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups. 

a. Dependent variable: E 

b. Design: Intercept + T.ELON 
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Tests of Normality 

DNA 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

AT80 Residual for E 0.101 36 0.200* 0.932 36 0.028 

GC50 Residual for E 0.106 40 0.200* 0.981 40 0.723 

GC80 Residual for E 0.190 40 0.001 0.916 40 0.006 

GCAT80 Residual for E 0.135 40 0.064 0.962 40 0.194 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.2 Combined Effects 

A.2.1 Splitting Bias and Ligation Bias 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 1.703 63 256 0.002 

Based on Median 0.916 63 256 0.654 

Based on Median and 

with adjusted df 

0.916 63 97.442 0.643 

Based on trimmed mean 1.583 63 256 0.007 

Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Dependent variable: E 

b. Design: DNA + B.LIGATE + B.SPLIT + DNA * B.LIGATE + DNA * 

B.SPLIT + B.LIGATE * B.SPLIT + DNA * B.LIGATE * B.SPLIT 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.038 320 0.200* 0.978 320 0.000 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.2.2 Fragment Size and Denaturation 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 2.127 63 256 0.000 

Based on Median 0.984 63 256 0.516 

Based on Median and 

with adjusted df 

0.984 63 140.342 0.519 

Based on trimmed mean 2.062 63 256 0.000 

Tests the null hypothesis that the error variance of the dependent variable is equal 

across groups. 

a. Dependent variable: E 

b. Design: DNA + T.DENAT + M.SIZE + DNA * T.DENAT + DNA * M.SIZE + 

T.DENAT * M.SIZE + DNA * T.DENAT * M.SIZE 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.027 320 0.200* 0.997 320 0.777 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
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A.2.3 Fragment Size vs Elongation 

Levene's Test of Equality of Error Variancesa,b 

 

Levene 

Statistic df1 df2 Sig. 

E Based on Mean 1.842 63 256 0.001 

Based on Median 0.781 63 256 0.878 

Based on Median and 

with adjusted df 

0.781 63 133.167 0.863 

Based on trimmed mean 1.762 63 256 0.001 

Tests the null hypothesis that the error variance of the dependent variable is equal 

across groups. 

a. Dependent variable: E 

b. Design: DNA + T.ELON + M.SIZE + DNA * T.ELON + DNA * M.SIZE + 

T.ELON * M.SIZE + DNA * T.ELON * M.SIZE 

 

 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Residual for E 0.047 320 0.081 0.989 320 0.016 

a. Lilliefors Significance Correction 
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Validation of a DNA library preparation model using a genetic 

algorithm 

Nathan Beka1*, Rene te Boerkhorst1, and Rod Adams1, and Neil Davey1 
1University of Hertfordshire 

*n.beka@herts.ac.uk 
 
Our research is a study of artefacts associated with the library preparation stage of DNA sequencing and how they may 

be overcome to improve final sequencing outcomes. To investigate these issues a library preparation model was 

developed, and its associated issues were implemented in the model. To validate our model a genetic algorithm (GA) is 

used to find optimal parameters for our library preparation model. Our final results show that using parameters selected 

by the GA we were able to acceptably mimic real-world coverage. 

Keywords: Next Generation Sequencing; Library Preparation; Genetic Algorithm; DNA; Coverage 
 

Introduction 

Next-generation sequencing has empowered genomics by making it possible to sequence genomes at 

a lower cost and less time compared to the traditional Sanger method [1]. However, these 

improvements suffer from reduced accuracy when compared with the Sanger method. During the 

library preparation stage of sequencing, artefacts can be introduced that affect the reliability of a read 

[2]. These artefacts can arise from biases due to the structure of the genome, such as preferential 

splitting of DNA between specific nucleotides [3], bias of adapter ligation towards certain base pair 

identities [4], and temperature dependent denaturation due to nucleotide composition [5]. 

Experimental 

To investigate this a library preparation model was developed to simulate the occurrences and effects 

of such artefacts. Our model simulates the following steps of the library preparation process: i) DNA 

fragmentation, ii) adapter ligation and iii) PCR amplification. To do this a set of parameters 

characterizing these three steps and a DNA sequence are fed as input to the model and the expected 

output is coverage scores across the genome. In order to find optimal parameters that would lead to 

coverage values comparable to those found in real-world sequencing a Genetic Algorithm (GA) was 

applied. As a fitness function we used the correlation between an actually sequenced genome and the 

coverage from subjecting that genome to the model. 

Results and discussion 

After running the GA, we were able to acquire parameters which delivered coverage results that 

matched the actual coverage for 2 genomes. The first was a 50kbp (kilo base pairs) section of the 

Mycobacterium tuberculosis strain H37Rv genome where the fitness score was 0.83 (Figure 1a). In 

the second a 50kbp section of the Plasmodium falciparum strain 3D7 genome where the fitness 

score was 0.86 (Figure 1b). In both cases the acquired parameters were able to acceptably mimic 

coverage. Following these results, we decided to test the acquired parameters on contiguous 

sections of the tested genomes. In the case of the tuberculosis genome it was not possible to mimic 

coverage across the genome (Figure 2a), but with plasmodium the parameters were able to mimic 

coverage (Figure 2b). This led us to believe that mimicking coverage across a genome was 

dependent on its structure. 
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Figure 1. Comparison of results for simulated sequencing and actual sequencing run after evolving model parameters. The 

colour bar shows levels of base composition bias (blue - red = increasing GC content). (A) Results for section of 

Mycobacterium tuberculosis genome. (B) Results for section of Plasmodium falciparum genome. 

  

Figure 2. Parameters with the highest fitness score taken from a section of the genome are tested on other parts of the 

genome. (A) The parameters could not reliably mimic coverage across the Mycobacterium tuberculosis genome. (B) For the 

Plasmodium falciparum genome, the parameters were able to mimic coverage across the genome. 

Conclusion 

These results confirm that a GA can be used to optimize our model to obtain coverage values similar 

to those obtained in real-world sequencing runs. However, in how far the parameters acquired by the 

GA are representative across a genome depends on the species-specific structure of that genome Our 

next objective is to analyze the effect of combined and possible knock-on effects of chosen parameter 

values on coverage given the nucleotide composition of an input genome. 
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