
Assessing Variability of EEG and
ECG/HRV Time Series Signals using a

Variety of Non-Linear Methods

Submitted to the University of Hertfordshire in
partial fulfilment of the requirements for the degree

of

Doctor of Philosophy

Ronakben P. Bhavsar
Department of Computer Science

October 2019



This thesis is dedicated to

. . . to my beloved son, Dhven Vyas for his endless love, support,
encouragement, giving me strength, and allowing me to stay away from

him to pursue my goals.

. . . to my beloved husband, Mr. Chiragkumar Vyas, for his love and
presence that always gives me strength and support to face the challenges,
and urges me to strive to achieve my goals in life. He is a constant source

of inspiration in my life.

-Ronakben Bhavsar



Acknowledgements

I take this opportunity to express profound gratitude and deep regards to my su-
pervisor, Dr. Na Helian, for her exemplary guidance, stimulating suggestions,
monitoring and constant encouragement throughout the course of the project.
With her calm, patient and attentive approach, I was encouraged to give my
best efforts in this thesis. Also, I thank her for her constant availability to
discuss any doubts related to the project.

I would like to acknowledge with much appreciation the crucial role of Dr. Yi
Sun, and Dr. Neil Davey, my second supervisors, who helped me understand
the various concepts giving me a clear view of the project. I would like to
thank them for the timely guidance provided with respect to the analysis. I
am grateful to Mr. David Mayor for his insights to the data provided and
suggestions related to the research for the project, and Mr. Tony Steffert for
giving me the training to collect the EEG and ECG recordings. I was able to
get knowledge of EEG and ECG inside out with their support and advice.

Ramon Y. Cajal, the father of modern neurobiology, almost a hundred years
ago wrote: ”more than once I was hopelessly discouraged about my ability to
pursue science”. Such times have been aplenty in my career and in the devel-
opment not only of this thesis, but also in the investigation of a novel area of
research that is different from traditional approaches. In these times, there is
one certainty: that solace is needed around you to overcome even the high-
est of obstacles. This is why I am eternally grateful for my cornerstone, my
husband Chiragkumar, my son Dhven, my In-laws Jayantilal and Ramaben,
and my parents Dipaben and Prafulkumar, for their love, support, and con-
stant encouragement. I would like to thank almighty, my husband and son for
their constant support, motivation and sacrifices while I couldn’t be with them.
My parents for blessing me with this wonderful life and positive attitude. My
friends for their encouragement and confidence in me achieving my goals. A
special thanks to my friends – Helen Partou, Zaheed Mahmood, and Weam
Binjumah for their endless support and motivation which helped me in pursuit
of my goals for this project.



Abstract

Time series signals, such as Electroencephalogram (EEG) and Electrocardio-
gram (ECG) represent the complex dynamic behaviours of biological sys-
tems. The analysis of these signals using variety of nonlinear methods is es-
sential for understanding variability within EEG and ECG, which potentially
could help unveiling hidden patterns related to underlying physiological mech-
anisms. EEG is a time varying signal, and electrodes for recording EEG at dif-
ferent positions on the scalp give different time varying signals. There might
be correlation between these signals. It is important to know the correlation
between EEG signals because it might tell whether or not brain activities from
different areas are related. EEG and ECG might be related to each other be-
cause both of them are generated from one co-ordinately working body. Inves-
tigating this relationship is of interest because it may reveal information about
the correlation between EEG and ECG signals.

This thesis is about assessing variability of time series data, EEG and ECG, us-
ing variety of nonlinear measures. Although other research has looked into the
correlation between EEGs using a limited number of electrodes and a limited
number of combinations of electrode pairs, no research has investigated the
correlation between EEG signals and distance between electrodes. Further-
more, no one has compared the correlation performance for participants with
and without medical conditions. In my research, I have filled up these gaps
by using a full range of electrodes and all possible combinations of electrode
pairs analysed in Time Domain (TD). Cross-Correlation method is calculated
on the processed EEG signals for different number unique electrode pairs from
each datasets. In order to obtain the distance in centimetres (cm) between
electrodes, a measuring tape was used. For most of our participants the head
circumference range was 54-58cm, for which a medium-sized I have discov-
ered that the correlation between EEG signals measured through electrodes
is linearly dependent on the physical distance (straight-line) distance between
them for datasets without medical condition, but not for datasets with medical
conditions.



Some research has investigated correlation between EEG and Heart Rate Vari-
ability (HRV) within limited brain areas and demonstrated the existence of
correlation between EEG and HRV. But no research has indicated whether or
not the correlation changes with brain area. Although Wavelet Transforma-
tions (WT) have been performed on time series data including EEG and HRV
signals to extract certain features respectively by other research, so far correla-
tion between WT signals of EEG and HRV has not been analysed. My research
covers these gaps by conducting a thorough investigation of all electrodes on
the human scalp in Frequency Domain (FD) as well as TD. For the reason of
different sample rates of EEG and HRV, two different approaches (named as
Method 1 and Method 2) are utilised to segment EEG signals and to calculate
Pearson’s Correlation Coefficient for each of the EEG frequencies with each
of the HRV frequencies in FD. I have demonstrated that EEG at the front area
of the brain has a stronger correlation with HRV than that at the other area in
a frequency domain. These findings are independent of both participants and
brain hemispheres.

Sample Entropy (SE) is used to predict complexity of time series data. Recent
research has proposed new calculation methods for SE, aiming to improve the
accuracy. To my knowledge, no one has attempted to reduce the computational
time of SE calculation. I have developed a new calculation method for time
series complexity which could improve computational time significantly in the
context of calculating a correlation between EEG and HRV. The results have
a parsimonious outcome of SE calculation by exploiting a new method of SE
implementation. In addition, it is found that the electrical activity in the frontal
lobe of the brain appears to be correlated with the HRV in a time domain.

Time series analysis method has been utilised to study complex systems that
appear ubiquitous in nature, but limited to certain dynamic systems (e.g. analysing
variables affecting stock values). In this thesis, I have also investigated the na-
ture of the dynamic system of HRV. I have disclosed that Embedding Dimen-
sion could unveil two variables that determined HRV.

Keywords: Time series Signals, EEG, ECG, HRV, Cross-Correlation (CC),
Pearson Correlation Coefficient (PCC), Wavelet Transform (WT), Sample En-
tropy, Embedding Dimension (ED), False Nearest Neighbours (FNN).
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Chapter 1

Introduction

In recent years, time series data analysis has been widely used to study complex behaviours
and different structures of biological systems (Al-Angari and Sahakian, 2007). Time series
data Electroencephalogram (EEG) and Electrocardiogram (ECG) are recordings of biolog-
ical systems and are commonly used for checking human medical conditions. Time series
analysis has been proven to be a robust approach for the assessment of different biological
systems because it can unveil hidden patterns related to underlying physiological mecha-
nisms (Alcaraz and Rieta, 2010) (Richman and Moorman, 2000).

Electroencephalogram (EEG) is the electric potentials on the surface of the human
scalp, which can reflect different brain activities at different areas of the brain. The ner-
vous system of the human brain contains about 100 billion neurons (nerve cells), and each
neuron communicates with approximately 7000 others (Quiroga, 1998). While you think,
dream, see, and sense, your brain is constantly active: absorbing information, compact-
ing and re-connecting information, and integrating everything into a consistent experience.
EEG signals change with people’s behaviours (Bob et al., 2010) (Jeong et al., 2015) and
medical conditions (Na et al., 2002). Analysing these brain activities recorded through EEG
signals should help to understand the functionalities of the brain. This could be beneficial
for the people working in neurology and medical area.

Electrocardiogram (ECG) is a recording of the heart’s rhythm and electrical activity.
ECG can reflect a variety of intertwined and complex chemical, electrical, and mechanical
processes present in the heart (Burch and DePasquale, 1990). It conveys a great deal of
valuable diagnostic information describing not only the function of the heart but also other
systems, such as blood circulation and nervous systems. Analysing ECG could help check
whether or not a heart is functioning well, for example, to identify people at risk for a
cardiovascular disease (Cooper et al., 2007).

Analysing EEG and ECG data could give a better understanding of the phenomenon of
interest. However, the issues with the data, such as noise and artefacts, may prevent this.
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Therefore, data preprocessing could be beneficial for data analysis performance because
it sustains important information, and removes noise and artefacts. For given EEG and
ECG data, appropriate data analysis techniques should be utilised in order to achieve good
results. The following two paragraphs will briefly describe what those two approaches
could achieve, respectively.

Data preprocessing can be utilised to eliminate noise and artefacts in order to make
useful components of data eminent(Beckmann et al., 2005). This is because the power of
noise and artefacts is much stronger than real signals in EEG(Proakis et al., 1992). Hence,
without data preprocessing, the analysis of data might be misleading. In most applications,
there might be a need for more than one form of data preprocessing techniques. Identifying
appropriate types of data preprocessing might be a crucial task for a given data EEG.

Data analysis is the basis for investigations in many fields, from science to engineer-
ing, and from management to process control. Data analysis comprises a wide variety of
methods that allow extracting various characteristics of data (Kantz and Schreiber, 2004).
EEG and ECG data which contain nonstationary and unpredictable signals are generated
by a highly complex system. Data analysis could quantify distinct states of the brain and
heart, which helps diagnose medical conditions (da Silva et al., 1994), (Ku’nkel and Dolce,
1975), (Silva, 1987).

1.1 Research Motivation

The human brain is very complex to be understood because each of the billions of neurons
can communicate with many others. A huge amount of research has been carried out on
EEG analysis to understand human brain activities. It has been suggested by (Niedermeyer
and da Silva, 2005) that various characteristics of EEG signals are representative of distinct
states of brain activities. Researchers (Na et al., 2002), (Li et al., 2013) have demonstrated
that brain activities might be similar within the same (local) brain region, but different from
other regions (globally). Those researches imply that EEG might change gradually from
one region to another. But, to my knowledge, I have not seen anybody showing how EEG
signal (measured through electrode) changes with electrode location. This motivated me
to think whether or not there is any variation in correlation value of EEG signals with the
distance between them. Talking about a distance between electrodes, there could be three
possible definitions: a) straight-line distance, b) geodesic distance and c) travelled distance
between neurons. Therefore, investigating whether EEG changes with distance or not, and
if so with which distance definition will form one of my research questions.
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EEG and ECG time series signals represent complex dynamic behaviours of biological
systems and might be related to each other because both of them are generated from one
co-ordinately working body. Investigating this relationship is of interest because it may
reveal information about the correlation between EEG and ECG signals. In recent years,
the correlation between EEG and ECG during sleep (Miyashita et al., 2003), (Yang et al.,
2002), (Ako et al., 2003), (Jurysta et al., 2003), (Abdullah et al., 2010), (Chua et al., 2012),
(Berg et al., 2005) and during meditation (Takahashi et al., 2005), (Kim et al., 2013) have
been analysed. The results from these studies have shown a correlation between EEG and
ECG, but each of the studies only focused on part(s) of the brain, rather than the whole
brain. Therefore, the results are not comprehensive. (Na et al., 2002) indicates that EEG
from the left side of the brain is correlated with ECG, and (Bob et al., 2010) demonstrated
the correlation was from the right side of the brain. These findings have made me curious to
find out if there is any particular area within the brain having a stronger correlation between
EEG and ECG.

Time series could be very complex because it might contain regular signals, as well as
disordered and random signals of a dynamic system. In practice, it is difficult to predict
the complex time series. Analysing complexity of time series might provide insights into
time series data (Abásolo et al., 2006), (Ramdani et al., 2009) so that the state of the system
could be predicated. For example, the complexity of the heart and brain data sometimes
can predict heart attack and mental medical conditions (Kantz et al., 2012). But calculating
complexity might be very time consuming, particularly while the number of data points is
large. I, therefore, would like to explore more on this.

A time series is a sequence of one visible signal taken in time from a dynamic system.
There might be many underlying variables determining the visible signal. In practice, it can
be difficult to know what variables determine the behaviour of the dynamic system. For ex-
ample, stock data could be affected by many interacting variables, such as economic data,
exchange rates and so on. Time series signal ECG might be the results of the interaction of
many underlying variables (Chun-Hua and Xin-Bao, 2004) and finding those variables con-
tributing to ECG might be important to understand the behaviour of the dynamic system.
It will be interesting to find out whether or not the actual underlying variables determining
ECG could be unveiled.

1.2 Research Questions

1. How does the correlation between EEG signals measured through electrodes vary
with the physical distance (straight-line distance) between them?
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2. Is there any particular area within the brain having a stronger correlation between
EEG and ECG?

3. Can the efficiency (computational time) for the calculation method for time series
complexity be improved in the context of calculating a correlation between EEG and
ECG?

4. Could underlying variables determining ECG be unveiled?

1.3 Research Contribution

My contributions are:

• Discovered that the correlation between EEG signals measured through elec-
trodes is linearly dependent on the physical (straight-line distance) distance be-
tween them.

Although other research has looked into the correlation between EEGs using a lim-
ited number of electrodes and a limited number of combinations of electrode pairs,
no research has investigated the correlation between EEG signals and distance be-
tween electrodes. My research filled up this gap by using a full range of electrodes
and all possible combinations of electrode pairs.

• Demonstrated that EEG at the front area of the brain has a stronger correlation
with Heart rate variability (HRV) than the other area.

HRV is the physiological phenomenon of variation in time interval between heart-
beats, which is retrieved from ECG. Some research has investigated correlation be-
tween EEG and HRV limited to certain brain areas and demonstrated the existence
of correlation between EEG and HRV. But no research has indicated whether or not
the correlation changes with brain area. My research covers this gap by conducting
a thorough investigation of all electrodes on the human scalp.

• Designed a new calculation method for time series complexity which could im-
prove computational time significantly in the context of calculating a correlation
between EEG and HRV.

Recent research has proposed new calculation methods for time series complexity,
but their focus was on improving accuracy. No one has attempted to reduce the com-
putational time of it. My application required a fast calculation method, therefore, I
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designed three calculation methods for time series complexity. Experimental results
show that one of the methods can improve efficiency dramatically.

• Two variables determining ECG (HRV) were unveiled.

Time series analysis method has been utilised to study complex systems that appear
ubiquitous in nature, but limited to certain dynamic systems (e.g. analysing variables
affecting stock values). No literature has investigated the nature of the underlying
dynamic system of HRV. My research highlights this matter by analysing actual vari-
ables determining HRV. The results strongly suggest that the Autonomic Nervous
System driving the heart is a two-dimensional dynamic system.

1.4 Publications on This Thesis

During my PhD study, I have published five conference papers: three papers are published
in the conference journal, and two in conference proceedings. For all details about the five
papers, please see Appendix E. The lists of all five publications are shown below:

1. The Correlation between EEG Signals Measured at Different Positions on Scalp
Varying with Distance by Ronakben Bhavsar, Yi Sun, Na Helian, Neil Davey, David
Mayor, and Tony Steffert - presented at 8th International Conference of Biological
Inspired Cognitive Architectures (BICA), 1-6 August 2017, Moscow, Russia (I have
received an Outstanding Research Award by BICA Society).

2. An Investigation of How Wavelet Transform Can Affect the Correlation Performance
of Biomedical Signals- The Correlation of EEG and HRV Frequency Bands in the
Frontal Lobe of the Brain by Ronakben Bhavsar, Neil Davey, Yi Sun, and Na Helian
- presented at the 11th Joint Conference on Biomedical Engineering Systems and
Technologies (BIOSTEC 2018), 19-22 January 2018, Funchal, Portugal

3. Efficient Methods for Calculating Sample Entropy in Time Series Data Analysis by
Ronakben Bhavsar, Na Helian, Neil Davey, Yi Sun, Tony Steffert, and David Mayor
- presented at 8th International Conference of Biological Inspired Cognitive Archi-
tectures (BICA), 22-26 August 2018, Prague, Czech Republic.

4. Time Series Analysis using Embedding Dimension on Heart Rate Variability by Ron-
akben Bhavsar, Neil Davey, Na Helian, Yi Sun, Tony Steffert, and David Mayor -
presented at 8th International Conference of Biological Inspired Cognitive Architec-
tures (BICA), 22-26 August 2018, Prague, Czech Republic.
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5. The Correlation between EEG Signals Measured at Different Positions on Scalp
Varying with Distance for Datasets With and Without Medical Conditions by Ron-
akben Bhavsar, Yi Sun, Na Helian, Neil Davey, David Mayor and Tony Steffert -
presented at Engineering and Computer Science Conference, 17th April 2019, Uni-
versity of Hertfordshire, UK (I have received an Highest Recommended Research by
Engineering and Computer Science Society, UH).

1.5 Structure of this Thesis

The structure of the rest of the thesis is as follows:
Chapter 2 gives the concept of time series data derived from nonlinear systems. This

is because EEG and ECG are time series data and they form the datasets of this research.
Then, a literature review about the analysis of EEG, ECG and their correlation is presented.

Chapter 3 provides the information of the datasets utilised in this research: the first-
hand dataset (which I have recorded in person) and second-hand datasets (obtained from
the Internet and that were given to me).

Chapter 4 explains the importance of time series data preprocessing. Then, commonly
used preprocessing methods for EEG and ECG data are described.

Chapter 5 describes the nonlinear analysis methods used for time series data analysis.
The explanation of each method is provided in this chapter.

Chapter 6 is the first result chapter of the thesis, in which the correlation between EEG
signals measured through electrodes and the distance between electrode is presented using
a time series data analysis method.

Chapter 7 is the second result chapter of the thesis, in which the correlation between
EEG and HRV is shown utilising various time series data preprocessing and time series
analysis methods.

Chapter 8 is the third result chapter of the thesis, in which designs for calculation
methods of time series complexity are given. The aim is to improve efficiency in the context
of calculating a correlation between EEG and HRV.

Chapter 9 is the fourth (final) result chapter, in which the actual underlying variables
that determine HRV are unveiled using a time series analysis method.

Chapter 10 summarises all the findings in this thesis. Besides, some future work is
indicated.
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1.6 Terminology Abbreviations

The terminology and expressions used frequently in the time series data studies and this
thesis are listed in Table 1.1, and computational methods used in this thesis are listed in
Table 1.2.

Table 1.1: Words and Expressions

Index Terminology Abbreviation
1 Electroencephalogram EEG
2 Electrocardiogram ECG
3 Heart Rate Variability HRV
4 Heart Rate HR
5 Inter Beat Interval IBI
6 Autonomic Nervous System ANS
7 Peripheral Nervous System PNS
8 Very Low Frequency VLF
9 Low Frequency LF
10 High Frequency HF
11 Time Domain TD
12 Frequency Domain FD
13 Transcutaneous Electro Acupuncture Stimulation TEAS
14 Electro Acupuncture EA
15 Manual Acupuncture MA

Table 1.2: Methodology

Index Terminology Abbreviation
1 Approximate Entropy AE
2 Sample Entropy SE
3 Pearson Correlation Coefficient PCC
4 Cross-Correlation CC
5 Embedding Dimension ED
6 False Nearest Neighbours FNN
7 Pearson Correlation Coefficient PCC
8 Fast Furious Transform FFT
9 Independent Component Analysis ICA
10 Wavelet Transform WT
11 Discreet Wavelet Transform DWT
12 Continuous Wavelet Transform CWT
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Chapter 2

Literature Review: Assessing Variability
of Time Series Data EEG and ECG

2.1 Introduction

This chapter sets the stage to the relevance of time series analysis to the scientific study of
complex systems. The key concepts that have motivated the development and application
of nonlinear methods, including the notion of a dynamical system, concepts such as chaos,
and nonlinear dynamics. Descriptions of nonlinear time series data analysis on EEG and
ECG is provided, followed by their relative importance in time series analysis.

2.1.1 Dynamical, Nonlinear and Chaos System

A dynamical system is a system which changes in time - what changes is the state of the
system. Studies of dynamical systems have led to the understanding of important concepts
for biologists (Mpitsos and Soinila, 1992). The way a set of functions can describe the
state of a dynamical system change over timecitepjames1999primer. We may define these
functions either in continuous time or discrete time by differential equations. Within the
realm of dynamical systems, many will exhibit nonlinear characteristics. Among those
nonlinear systems, exists a subset of chaotic systems, as shown in Figure 2.1. Chaos (a
state of disorder and confusion) often thought in terms of noise within a system that is
unpredictable. However, its technical meaning is random and unpredicted phenomenon.
Chaotic behaviour exists in many simple systems such as the movement of a ferromagnetic
beam buckled between two magnets under the effect of sinusoidal oscillations (Moon and
Holmes, 1979), a double pendulum (Richter and Scholz, 1984), or a dripping tap (Shaw,
1984). Dynamical systems have been used in a variety of applications, including hu-
man motion (action) modelling (Al-Angari and Sahakian, 2007), Bissacco et al. (2001),
(Bregler, 1997), (Wang et al., 2007) and dynamic textures (Chan and Vasconcelos, 2007),
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(Doretto et al., 2003), (Ghanem and Ahuja, 2007), (Liu et al., 2006), (Yuan et al., 2004),
(Wang and Zhu, 2002), (Schödl et al., 2000). Most of these approaches utilised linear dy-
namical systems, while others use nonlinear dynamical systems. Time series (detail about
time series data is available in section 2.1.2) modelling and prediction has been an active
area of research because of the wide variety of applications in the financial market, weather,
biology, etc. More sophisticated approaches rely on nonlinear modelling (Casdagli, 1989)
and state space projection of the time series (Ralaivola et al., 2004). It is necessary to
understand the space that it occupies to understand the underlying properties of a dynam-
ical system. For example, Electrocardiogram (ECG) data, might result from underlying
variables from the Autonomous Nervous System (ANS).

Figure 2.1: Not all nonlinear systems are chaotic, but all chaotic systems are nonlinear.
Nonlinear systems are in turn a particular form of dynamical systems (Redrawn from
(James and Walker, 1999)).

It is important to know that not all nonlinear dynamical systems are chaotic, but all
chaotic systems are nonlinear (Hilborn et al., 2000). A nonlinear system is defined as a
system that does not have a linear origin. This includes a system that may contain nonlin-
earity, but the underlying dynamics are linear. In this case, the presence of nonlinearity is
caused by some measurement distortion, but it is originally generated by a linear stochastic
process. There are two major approaches to identify the evidence of nonlinearity in a time
series. The first approach involves the direct application of nonlinear methods (Kaplan
and Glass, 1995), (Mitra et al., 1997), while the second approach involves the applica-
tion of surrogate methods (Stergiou, 2004), (Breakspear and Terry, 2002), (Dingwell and
Cusumano, 2000), (Paluš, 1996). Methods commonly used for the first approach include
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the application of the correlation dimension or the largest Lyapunov exponent. The corre-
lation dimension is a measure of self-similarity of a time series, while the largest Lyapunov
exponent quantifies the exponential rate of divergence of nearby trajectories in the state
space. The use of other nonlinear methods besides correlation dimension and the largest
Lyapunov exponent are also limited in terms of detecting nonlinearity in a time series, since
the probability distributions of those methods of time series with finite data length are un-
known (Paluš, 1995), (Pompe, 1993), (Prichard and Theiler, 1995). Thus, applications of
these nonlinear measures alone in detecting nonlinearity, possibly chaotic behaviour in the
system have been shown to be difficult (Miller et al., 2006), (Schreiber and Schmitz, 2000),
(Theiler and Rapp, 1996). Methods commonly used for the second approach include sur-
rogate methods. Surrogate methods were originally developed to prevent misdiagnoses of
random stochastic processes from being characterised as chaotic dynamical processes or
vice versa (Stergiou, 2004), (Theiler et al., 1992), (Theiler and Rapp, 1996). They take
a form of hypothesis testing to determine whether a given time series is consistent with a
specific null hypothesis. Surrogate method has been applied to identify the evidence of non-
linearity in many biological systems such as postural control, ECG, EEG, gait mechanics,
and so forth (Breakspear and Terry, 2002), (Stergiou, 2004), (Paluš, 1996), (Miller et al.,
2006), (Acharya et al., 2005), (Buzzi et al., 2003), (Chang et al., 1994), (Cignetti et al.,
2009), (Collins and De Luca, 1995), (Costa et al., 2014), (Ehlers et al., 1998), (Govindan
et al., 1998), (Ivanov et al., 1996), (Janjarasjitt et al., 2008), (Kunhimangalam et al., 2008),
(Ladislao and Fioretti, 2007), (Martinerie et al., 1998), (Nurujjaman et al., 2009), (Porta
et al., 2006), (Rieke et al., 2003), (Rombouts et al., 1995), (Stam et al., 1997), (Zhao et al.,
2008). Applying surrogate methods to nonstationary time series can lead to problems re-
garding the proper interpretation of results (Breakspear and Terry, 2002), (Paluš, 1996).
Breakspear and Terry noted this problem in their study of electroencephalographic (EEG)
data (Breakspear and Terry, 2002). Citeppeng1995quantification in the analysis of heart
rate variability also highlighted the problem of nonstationary. Specifically, nonstationary
makes it difficult to determine whether the structure of the time series results from the
dynamics of the system or from changes in the external environment.

A chaotic system is known to be nonlinear. The theory of chaos has been applied to
many fields of biological and nonbiological analysis. It has been used in systems ranging
from psychology (Ayers, 1997) hydrology (Sivakumar, 2000) and to analyse the financial
markets (Peters et al., 1994). When a dynamical system displays sensitivity to its initial
conditions, which leads to irregularity, it can be termed chaotic (Kaplan and Glass, 2012).
Such a system while appearing irregular is actually deterministic (Kaplan and Glass, 2012);
however, it is impossible to make long-term predictions for such a system. (Kaplan and
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Glass, 2012) add further to the definition of chaos, noting the same state is never repeated
and that it is bounded. Representation of system behaviour in phase space provides a pow-
erful basis for both visualizing and quantifying the dynamics of both nonlinear and chaotic
systems (Figure 2.2). The phase space provides the underlying variables of the system. Fig-
ure 2.2 shows 3-dimensional representation of periodic (Figure 2.2a), chaotic (Figure 2.2b)
and random signals (Figure 2.2c). The concept of a phase space representation rather than
a time or frequency domain approach is the hallmark of nonlinear dynamical time series
analysis (Kantz and Schreiber, 2004). Understanding if a system is chaotic may provide
important information concerning whether the system is deterministic and the feasibility of
making a longer-term prediction about future states of the system.

For nonlinear time series EEG and ECG analysis, my focus is on characterising non-
linear dynamics by applying nonlinear tools. Nonlinearity is considered as one of the key
features of EEG and ECG time series that exhibit chaos, which has been shown to have a
potential link with overall health of the biological system (Amato, 1992), (Buchman et al.,
2001), (Cavanaugh et al., 2009), (Garfinkel et al., 1992), (Goldstein et al., 1998), (Orsucci,
2006), (Slutzky et al., 2001), (Wagner et al., 1996). Therefore, to detect chaos in EEG and
ECG time series, identifying nonlinearity in the system is essential. In recent years, sev-
eral methods have been proposed to compute dynamical parameters from EEG and ECG
time series. Such parameters are extracted by using the information dimension, entropy,
Lyapunov exponents, correlation dimensions, embedding dimensions, recurrence plot, and
so on. In all cases, it is assumed that the EEG and ECG time series are obtained from
an autonomous dynamical system. It is also assumed that EEG and ECG times series are
much longer than the characteristics times of the dynamical system.

2.1.2 Time Series Data

Time series could be a list of numbers, assumed to measure some process sequentially in
time (Stergiou, 2004). Mathematicians have a more formal definition, a set or a sequence
of observations, with each one recorded at specific times, or at least sequentially (Brock-
well et al., 2002), (Box et al., 2015). Time series could be created from multiple sources
for research to understand various behaviours. For example, social scientists could col-
lect graduation rates, physiologists record heart rates and brain waves, economists study
consumer spending, and climatologists examine weather patterns. Time series inherently
possess dependence between adjacent observations. This dependence is of interest because
it reveals information about the source producing the behaviour (Stergiou, 2016). Time se-
ries analysis is essential for assessing variability because time series analysis reveals how
the system evolves.
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Figure 2.2: Phase space plots provide a means to geometrically show chaotic behaviour
which may not be readily apparent within a time series James and Walker (1999). Left
side of the figure shows the signal, and right side is the phase plane plot (Embedding
Dimension), where (a) Periodic signal, (b) Chaotic signal, and (c) Random signal with
white noise.
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The term ‘continuous data’ or ‘continuous time series’ is described in various ways.
According to Brockwell and Davis, continuous series are those in which observations are
recorded continuously for a specific amount of time (Brockwell et al., 2002). A continuous
measure is one that evolves continuously. The outcome is, thus, a function of time, for
example, x = f (t). Consider the children’s story character Pinocchio; his nose grows when
he tells lies. We can create a function to describe the length of Pinocchio’s nose. Let
us say that his nose grows 0.1 cm, multiplied by the time in minutes, raised to the third
power: L = 0.1× t3 (James and Walker, 1999). When plotted, this appears, as shown in
Figure 2.3a. Discrete time series is also described as a sampling of continuous time series
at certain intervals (Box et al., 2015). Discrete time series is a series in which observations
made in discrete sets, such as a specific, fixed time intervals(Brockwell et al., 2002). If the
length of Pinocchio’s nose calculated (and grows) at discrete intervals, say at the end of
each minute, then the length grows, as shown in Figure 2.3b.

Figure 2.3: The length of Pinocchio’s nose: (a) continuous growth and (b) growth using
discrete measurements.

Time series analysis is useful in many applications whenever you are trying to describe
the change of a system with time; that is, the dynamics of the system. For example, a psy-
chologist has subjects filling out a survey once per day for 4 weeks, scoring the answers,
and creating a time series that has 28 points (Fredrickson and Losada, 2005). Astronomers
have observed sunspot activity annually since 1700 by counting sunspots visible on the
sun - creating a time series of length 314 (James and Walker, 1999). Physiologists anal-
ysed blood samples for luteinising hormone every 10 min for 4 days - creating a time
series 577 points long (Liou et al., 2014). Neurologists analyse brain signals for changes
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in brain activity while participants are under acupuncture treatments (see Figure 2.4), or
watching a documentary film or short videos (Koelstra et al., 2012) (see Figure 2.5). Scien-
tists, engineers, and clinicians from many disciplines use time series analysis to provide an
understanding of the dynamics of whatever system they are studying. While all these dif-
ferent applications may seem entirely unrelated, the methodologies of the analysis overlap
considerably.

The time series which are analysed using techniques described in my research are dis-
crete time series with observations made at equal intervals (Brockwell et al., 2002), (Box
et al., 2015). Although time series that look continuous, in Figure 2.4 and 2.5, they are
sampled at specific time intervals.

Figure 2.4: Plot of 20 seconds ECG data from a participant under acupuncture treatment.
The data were gathered using sampling frequency of 256Hz.

Figure 2.5: Plot of 10 seconds EEG data from a participant watching a short documentary
film. The data were gathered using sampling frequency of 500Hz.
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Linear time series analysis methods assume observations are independent of history
(Cryer and Kellet, 1991). However, continuous observations of nonlinear time series, are
rarely independent of each other (Abarbanel et al., 1993). This chapter acknowledges this
and approaches EEG and ECG from this perspective that seems mostly lost in the current
literature. Therefore, the essential features discussed here are entered on nonlinear algo-
rithmic methods to investigate time series data EEG and ECG. However, regardless of the
investigative approach, it is always essential to consider several fundamental issues of time
series analysis. These include a length of the time series, sampling frequency, noise, fil-
tering and smoothing, and stationary. This chapter details what makes up time series data
such as Electroencephalogram (EEG) and Electrocardiogram (ECG), and describes specific
considerations that should be kept in mind when working with these data.

2.1.2.1 Length of the Time Series

The length of the time series could be seen as a major limitation for the utilisation of a
certain analyses of time series data. In particular, for nonlinear analysis, the mathematicians
who have derived the formulas suggest that a certain number of data points are critical for
performing the analysis. The problem is not that the nonlinear calculation with the fewer
data points cannot be done, but the problem is whether the answer received from using
a shorter time series is really an accurate characterisation of the dynamics of the system
(Warner, 1998).

As an example, consider the Electrocardiogram (ECG) data. It takes 1 minute to gather
heart rate of an individual from ECG data. If you only record 30 seconds ECG, you could
not discover what would be the heart rate of an individual. If you collect 2 minutes of ECG,
you will observe heart rate per minute from ECG, but you would not know that if the same
pattern will be repeated. Therefore, The longer the ECG we have, the better our ability
to characterise the dynamics (Shaffer and Ginsberg, 2017). So how long is long enough
for the time series? This depends on which analytical technique you want to use — some
require more data than others.

2.1.2.2 Sampling Frequency

The sampling frequency is a critical consideration when dealing with time series data. It is
a measure of how often you gain a data sample, and thus, sampling frequency multiplied
by the total time that you sampled, gives the number of data points in time series (Scargle,
1982). The sampling frequency needs to be high enough to capture the dynamics of the
quick changes in the system. So going up to a sampling frequency of about five times
faster frequency is a good rule of thumb for periodic data (Theiler et al., 1992).
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To show how different frequencies contribute to a signal, consider: a sine wave of 5
Hz, a sine wave of 20 Hz, a sine wave of 50 Hz, and the sum of these three wave functions.
The peak in the power spectrum corresponds to the frequency of the wave function in the
time series (Figure 2.6a through c), and the time series that is a sum of three wave functions
has three peaks, corresponding to the three frequencies which were added together (Figure
2.6d). The reason for wanting to divide data into a sine function is because then you can
see which frequencies are contributing the most to the data just by examining the peak
positions. If the peak corresponding to 50 Hz is very high, then you likely have a 50 Hz
component in the signal. If the 50 Hz component of your signal is the highest frequency that
is significant, then we need a sampling frequency of at least 100 Hz (2× 50Hz = 100Hz)
to see it, but something more like 250 Hz (5× 50Hz = 250Hz) would be best to define it
better. For Electroencephalogram (EEG) data, the highest frequencies that occur at gamma
rhythm with 50 Hz. Thus, a 250 Hz (50×5) sampling rate should be satisfactory; however,
in reality, neurologists usually sample at 5 to 10 times the highest frequency in the signal
(that is between 250Hz-500Hz for EEG). If data are under-sampled, it does not capture
the entire signal. If data are over-sampled, it could introduce more measurement noise
(Antoniol and Tonella, 1997).

2.1.2.3 Noise

In any experimental measurement, there are always concerns about measurement error or
contamination of what you are trying to measure with other information that you are not
trying to measure. The problem with noise in the nonlinear dynamics analysis is that you
are trying to detect the dynamics of the system of interest, and a signal with unknown
dynamics may contaminate the experimental data. As with any experiment, anything that
can optimise the signal-to-noise ratio is beneficial. The example of a power spectrum of a
time series without noise and with noise is shown in Figure 2.7a, and 2.7c, respectively.

Another example would be for EEG, for example, If I want to record EEG signals
with eyes open, what needs to be recorded, is the brain’s electrical activity. But during
the recording process, noise from a known source (eye blinks, eye movements, muscle
movements, etc.) or an unknown source (cable movement, equipment, etc.) can be found
with EEG.

2.1.2.4 Filtering/Smoothing

Experimental noise is a problem in time series analysis. As highlighted in the previous sub-
section, interference from biological signals, movement artefacts or high-frequency noise
contaminate the dynamics of our signal of interest. One approach commonly used to deal

16



Figure 2.6: Time series data (left) and corresponding power spectra (right) for a (a) sine
wave of 5 Hz, (b) a sine wave of 20 Hz, (c) a sine wave of 50 Hz, and (d) the sum of these
three wave functions.

with these issues in time series analysis is filtering/smoothing the data (Woltring, 1985),
(Busby and Trujillo, 1988), (Vaughan et al., 1999), (Giakas, 2004). The more filtering that
is performed, or the more frequencies that are removed, the smoother the signal will be.

There are different methods that can be implemented to filter the data correctly. Two of
the most common implementations of this technique are the Butterworth filter, the critically
damped filter, and the Jackson filter (Smith, 2002). The algorithms will use the selected cut-
off and contain different bands depending on what type of data is being smoothed. One can
select whether to remove frequencies above a certain cutoff frequency, called a “low-pass”
filter, because it allows lower frequencies to pass through the filter. A “high-pass” filter
would block low frequencies and allow high frequencies to pass through. A “band-pass”
or “notch-pass” filter passes through frequencies in an intermediate range while rejecting
higher and lower frequencies. Because random noise is a high-frequency component of the
measured signal, a low-pass filter is used to remove it. We must carefully select the cutoff
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Figure 2.7: Time series data (left) and corresponding power spectra (right) for a (a) sine
wave of 20 Hz, (b) white noise, and (c) the sum of the sine wave and white noise.

frequency to remove noise without removing the signal of interest.
The time series and its power spectrum of filtered and unfiltered time series are shown

in Figure 2.8. Figure 2.8b shows that a cutoff frequency above the three features of interest
leaves them intact, but if the cutoff frequency is too low (Figure 2.8c and d), the peaks of
interest are removed. It is important to select a cutoff frequency that will preserve most of
the data of interest.

Filtering data is a very common method of data manipulation for many types of linear
analyses. The problem is that most of the filtering techniques are based on statistically
preserving the linear features of the data. There is no reason to believe that the nonlinear
dynamics of the time series would still be intact after filtering, and in fact, one would expect
that these methods would be counterproductive for nonlinear analysis Rapp (1994), Theiler
et al. (1992).
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Figure 2.8: Time series left and power spectrum right: (a) unfiltered, (b) filtered using a
cutoff frequency of 33 Hz, (c) filtered using a cutoff frequency of 15 Hz, and (d) filtered
using a cutoff frequency of 5 Hz. The filter used was a “brick wall” filter (very high-order
Butterworth filter), and cutoff frequency is indicated by vertical bar (James and Walker,
1999).

2.1.2.5 Stationarity

The concept of stationary is the requirement that there is a statistical similarity of succes-
sive parts of a time series. It shows that the mean and the variance should not change as
a function of time in the time series (James and Walker, 1999). The stationary issue is
perplexing because the exact nature of the stationarity required for nonlinear analysis is not
clear. The stationarity requirement for the experimental data comes from an assumption
commonly made by mathematicians in the derivation of the mathematical algorithms that
are used for the nonlinear analysis. For example, Pincus assumes stationarity in the algo-
rithm’s derivation for approximate entropy (Pincus, 1991), and (Wolf et al., 1985). The
stationaity assumed in the algorithm’s derivation for maximum Lyapunov exponent (Wolf
et al., 1985). Some authors have attempted to quantify nonstationarity of a time series as a
useful measure (Rieke et al., 2003), (Cao et al., 2004), (Mäkinen et al., 2005), (Gourévitch
and Eggermont, 2007), (Tong et al., 2007). For example, some debate about global climate
change centres on the stationarity, or lack thereof, of climate-related variables (Kärner,
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2002). Nonstationary may be inherent to biological systems and should be embraced and
studied, and not be considered as a limitation.

A commonly used technique to remove nonstationary of time series data is to differ-
entiate the data (Chatfield, 2016). Differentiating is subtracting values between two data
points to create a new point in a differenced series. Another technique that can address
nonstationary is de-trending. Briefly, de-trending occurs before the application of a non-
linear algorithm, usually as a first step in the calculation process. In Figure 2.9a, there is a
stationary white noise time series, in Figure 2.9b, the time series is not stationary because
the mean is different in the first half compared to the second half, and in Figure 2.9c, the
time series is not stationary because the variance is different in the first half compared to
second half.

Figure 2.9: White noise time series data showing (a) stationarity, (b) nonstationarity due
to change in mean, and (c) nonstationarity due to change in variance (James and Walker,
1999).

2.1.3 Time Series Data Analysis Methods

There are many methods being considered for time series data analysis depending on the
discipline of the time series data has been produced. There are regression methods, for

20



example, for forecasting prediction (Hurvich and Tsai, 1989), which I have not considered
in my work. I describe some of the popular and most suitable methods used for time series
data analysis in this section.

The concept of entropy was first developed in classical thermodynamics, where it grew
out of the work by (Carnot, 1824) on steam engines, to develop an understanding of the
limits of a mechanical work such engines could produce that. The term entropy was in-
troduced to the vocabulary of classical thermodynamics by (Clausius, 1867). Entropy is
defined as losing information in a time series or signal. It is based on what you know about
the current state of a time series or signal, how well can you predict the next state of the
system? If a system has a very low entropy, the next state of the system is very predictable.
However, high entropy would show a higher level of uncertainty in what the next state will
be. The aim to compute entropy of time series data, is to determine the sensitivity changes.
There are a number of different algorithms that have been used to estimate the entropy of
a time series. Historically, the most popular was Approximate Entropy (AE), so it is dis-
cussed in detail in Chapter 3. In addition to being popular, other techniques such as Sample
Entropy (SE) is built upon the AE algorithm, so understanding AE in some detail is worth-
while. This does not mean that AE is the best entropy measure to apply to all data. There
are several items that I have carefully considered before choosing the correct entropy mea-
sure to answer my research questions. Considering the limitation of AE with bias, relative
inconsistency, and depending on the sample length (Alcaraz and Rieta, 2010), SE would be
most suitable for time series data like EEG and HRV. SE has been used widely to investi-
gate various biological conditions in the human body, such as arrhythmia studied through
ECG (Alcaraz and Rieta, 2010), Alzheimer‘s patients’ EEG background activity (Abásolo
et al., 2006), analysing human postural sway data (Ramdani et al., 2009) and studying HRV
in the case of obstructive sleep apnoea syndrome (Al-Angari and Sahakian, 2007). SE is
also used to detect the termination of a particular medical condition like seizures Yoo et al.
(2012) and to test the effect of a therapy like ketogenic diet used for controlling intractable
seizures (Takahashi et al., 2010). These studies have concluded that SE is a robust quan-
tifier of complexity, which offers an accurate nonlinear metric for quantification (Alcaraz
and Rieta, 2010). It gives a good dynamical signature and is a helpful tool that provides
insights into various biological time series (Abásolo et al., 2006),(Ramdani et al., 2009).

A time series can be used to reconstruct the attractor of the underlying dynamic process.
State-space reconstruction of a time series is a powerful approach for the analysis of the
complex, nonlinear systems that appear ubiquitous in the natural and human world. This
is a very important step in identifying the structural characteristics of a time series. Em-
bedding is a transformation of a single sequence in time into a higher dimensional space.
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This transformation provides increased information that increases the uniqueness of the
signal being analysed. The goal of an embedding Dimension (ED) is to create a state-space
where the structure of a system is embedded. If the dimension of the space that contains
the true structure of the time series can be identified correctly, then it is possible to observe
the actual variable of the time series. The dimension of the space that contains the true
structure of this system is called the embedding dimension, and it is the minimum number
of variables required to form a valid state-space from a given time series. The technique
False Nearest Neighbour (FNN) is the most commonly used method for finding an ED
(Abarbanel et al., 1993), (Kennel et al., 1992), (Stergiou, 2004). This approach is based
on eliminating false projections that can occur when the dimension is not large enough to
unfold the dynamics of the attractor. FNN discusses in detail in Chapter 3. ED would be
suitable to find the underlying variables for time series data such as Heart Rate Variability
(HRV) since many underlying variables might drive HRV.

The Pearson‘s correlation coefficient (PCC) measures how closely two different time
series are related to each other with the same sequence length and linear dependency. The
correlation coefficient ranges between 1 (when the matching entities are the same) and
−1 (when the matching entities are inverses of each other). A value of zero shows no
relationship existing between the signals (Benesty et al., 2009). Cross-correlation (CC)
measures how closely two different time series are related to each other taking time lag
into consideration, at the same or different time. CC can be performed to analyse the time
delay between two related time series. For example, CC has been successfully applied in
analysing EEG signals in the Time Domain (TD) (Bob et al., 2010), as well as Frequency
Domain (FD) (Li et al., 2013). This method can be used to determine the relationship
between activities in global and local areas, and also among the different local areas of the
human brain.

The typical approach to analysing data is to describe the data in terms of how they
change over time, which is known as the TD. An alternative approach arises in the form
of data analysis in the FD. This analysis presents data as a function of the frequencies in
the signal rather than a function of amplitudes. FD analysis is used extensively to provide
additional insights into health and pathological movement (Giakas, 2004), (Giakas et al.,
1996), (Giakas and Baltzopoulos, 1997), (Stergiou et al., 2002), (Wurdeman et al., 2011),
and (McGrath et al., 2012). To decipher frequencies in time series data, one method is
spectral analysis, which entails breaking down the biological signal into simple signals.
Spectral analysis is a numerical technique to write data as the sum of multiple discrete sine
and cosine functions of different frequencies. There are different frequency transforms
available, but the most commonly used transform is the Fourier transform. This transform
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uses sums of sine and cosine functions to represent the more complex function. There
are several software programs that will allow to calculate the power spectrum of your data
(Percival et al., 1993), (Stoica and Moses, 1997), (Huang et al., 1998), (Beard, 2013), and
(Prabhu, 2013). To find the insights into time series data, EEG and HRV, FFT would be
more suitable because it can tell us the functionality of the brain, and could differentiate
functionality for participants with and without medical conditions.

FFT can transform TD to FD and show us the presence of frequencies in the signal.
However, FFT loses the time information and shows only frequency information. Whereas,
Wavelet Transform (WT) can keep both time and frequency information. The WT of the
signal can be thought of as an extension of the classic Fourier transform (FT) - it works on
a multi-scale basis, instead of working on a single scale (Time or Frequency) as FT. This is
achieved by decomposition of the signal over dilated (scale) and translated (time) version
of the wavelet. So, for spectral analysis, WT is more suitable than FFT (Akin, 2002).
For example, various methods based on Discrete Wavelet Transform (DWT) reported for
removing noise by using WT for EEG (Faust et al., 2015), and ECG data (Sudarshan et al.,
2017).

2.2 Electroencephalogram (EEG)

Electroencephalogram (EEG) signals provide a measure of brain nerve cell electrophysi-
ological activity accessible on the surface of the scalp Lewis et al. (1988), thus provide
information about different brain activity. The electrical activity of the brain is recorded
via electrodes attached to the surface of the scalp. The EEG signals vary, depending on the
location of the electrodes on the scalp. To analyse these signals, it is essential to understand
the basics of the nervous system, EEG recordings, different EEG frequencies, and artefacts.

2.2.1 The Nervous System

The nervous system of a human brain contains about 100 billion neurons (nerve cells), and
each neuron communicates to approximately 7000 others (Quiroga, 1998). When the body
responds an action from an outside world, it sends messages via spinal cords to the brain.
Then the parts of neuron cell called dendrites and axons between one neuron and other neu-
rons receive and transmits messages to each other across a synapse as known as synaptic
transmission Siegel and Sapru (2006). This synaptic transmission allows two cells trans-
ferring information and passing the message back to different parts of the body along the
spinal cord for the reaction. The transmission and reception of messages provide the stan-
dard human functions, such as social behaviour, personality, movement, cognition, feeling,
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thinking and perception (McAllister et al., 1995). The complex electrical signals generated
in brain control all body activities and understanding, and these allow us to identify and cre-
ate links between certain brain activities and disease states which are very useful in clinical
areas and scientist (Quiroga, 1998). The first human brain measuring recorded by Hans
Berger, the German psychiatrist in 1924. He also gave the name EEG for the electrical im-
pulses of brain activities. The process of generating the electrical signal among membranes
while two neurons transmit a message to each other is called Electroencephalogram (EEG)
(Luck, 2014).

2.2.2 EEG Recordings

The electrical activities in the brain recorded via measurement electrodes attached to the
surface of the scalp to capture the voltage from billion active neurons lying under the skull
(Subasi, 2005). Recording EEG requires several channels of electrode placement. There
are various electrode placement systems used, including internal 10%-20% system with
21 channels, 10%-5% system with 128 channels and 32 channels (Jurcak et al., 2007).
The commonly used system is 10%-20% electrode placement system which contains 21
positions (19 positions around the brain, and 2 reference electrode positions on each ear)
and can be recorded by the following processes: apply the gel on the scalp to maximise skin
contact and aid a low-resistance recording through the scalp. The electrodes then detect the
electrical signals generated by different parts of the brain. The different voltage between
sets of electrodes measured by a voltmeter (subsequently picked up by an amplifier) to
magnify the signal, is then processed by a computerised system (Tatum IV et al., 2008).
Recording voltage after a while results as EEG (Chall and Mirsky, 1978).

Following the standard 10%-20% system, as shown in Figure 2.10, 21 electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, A1 and A2) for
EEG recording were used. The values of 10%-20% shown refer to the distances between
adjacent electrodes: either 10% or 20% of the total front-to-back or right-to-left distance
over the skull. The front-to-back distance is based on the measurement from the Nasion (a
point between forehead and nose) to Inion (the lowest point of the skull from the back of the
head showed by a prominent bump), and right-to-left distance is based on the measurement
between the left and right pre-auricular points. Measuring the length of the skull is of
paramount importance for choosing and positioning right sized EEG cap. In this 10%-
20% system, most electrodes usually are labelled with a letter and a number; a ‘number’
referring to the position of the electrode on the scalp, and a ‘letter’ corresponding part of the
cerebral cortex lying beneath. The letters used are F, T, P, O and C which represents Frontal
lobes, Temporal lobes, Parietal lobes, Occipital lobes and Central electrodes (which overlie
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the central sulcus or Rolandic Fissure of the brain) respectively. In some cases, lower
case letters “p” and “z” follow the original letter of the part corresponding to the cerebral
cortex. For example, Fp1 and Fp2 refer to electrodes placed just above the eyes over the
“frontal poles” of the frontal lobes referred to as Frontopolar (Fp) electrodes. The letter
“z” indicates the midline; therefore, Fz would imply Frontopolar electrodes lying over the
midline and Fz, Cz and Pz imply Frontal lobe, central and parietal lobe electrodes lying
over the midline.

Figure 2.10: The international 10%-20% system seen from A (left side of the head) and B
(above the head). The letter F, T, C, P, O, A, Fp and Pg stands for frontal, temporal, central,
parietal, occipital, earlobes, frontal polar, and nasopharyngeal, respectively. The figure is
obtained from (Klem et al., 1999).

2.2.3 Types of EEG Frequencies

EEG recordings reflect different brain activities from different areas of the brain. The pres-
ence of five different brain activities is usually found with five different EEG frequencies:
Delta (0.5 Hz -4 Hz), Theta (4 Hz - 7.5 Hz), Alpha (7.5 Hz -13 Hz), Beta (13 Hz - 30 Hz),
and Gamma (30 Hz - 50 Hz). The presence of these activities can be different for different
participants. Figure 2.11 shows the different brain wave that could be recorded by an EEG.

Gamma (γ) frequency band ranges from 30Hz−50Hz. It is the highest frequency wave,
which indicates fast activities. It also presents when objects, sounds and tactile sensations
are matched, such as in short-term memory(Teplan, 2002). This wave reflects the mecha-
nism of consciousness when persons notice different combined senses, for example, sound
and sight. Beta (β) frequency band ranges from 14Hz−30Hz. It mostly presents on Front-
central areas of the head, especially with electrode Fz. This brain wave activity appears
in vigorous activity. It is the dominant rhythm of alert, active thinking, active attention,
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Figure 2.11: Traced Frequencies from EEG. The Amplitude (Power) of the signals in-
creases as the frequencies decreases (Gastaut, 1952).

focuses on an outside world, concentration, fear, or stress. It has found that the presence of
Beta is higher with open eyes (Quiroga, 1998).

Alpha (α) frequency band ranges from 7.5Hz− 14Hz. It presents during relaxation,
inattention, empty mind, light trances, and so on. Alpha mostly appears in the Posterior
and Frontal areas, such as electrodes P3, Pz, P4, and electrodes F3, Fz, and F4. The effect
of the Alpha wave reduces when an individual becomes aroused by certain other brain
activities, such as thinking, calculating, super learning, and hearing strange sounds. Alpha
wave increases when eyes closed, but decreased when eyes are open. (Teplan, 2002).

Theta (θ) frequency band ranges from 4Hz−7.5Hz. It is often known as slow activity
in children, due to the density of its neural layers, the hippocampus generates some of the
largest EEG signals and often continuing for many seconds. Theta also appears during
dreaming sleep or in waking state of adult (Teplan, 2002).

Delta (δ) frequency band ranges from 0.5Hz− 4Hz. It presents with the lowest fre-
quency and high amplitude. The Delta frequency appears in deep, dreamless sleep and
in profound, transcendental meditation where awareness is fully detached. Sometimes it
appears in waking state such as during quiet or drowsiness (Teplan, 2002). It also may be
easily confused with the artefact signals of the muscle near the skin surface, such as the
muscle of the neck and jaw.

Figure 2.6 shows the traced frequencies from EEG signals.
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2.2.4 EEG Artefacts

Although EEG records cerebral activity, it also records electrical activities arising from
sites other than a brain. Theses recorded non-cerebral activities known as artefacts and
divided into physiologic and extra-physiologic artefacts. Physiologic artefacts get gener-
ated from participants. They arise from sources other than the brain (that is another part
of the body). Extra-physiologic artefacts arise from outside the body (types of equipment,
environment). There are a few types of artefacts commonly found with EEG: 1) Cardiac
artefacts, 2) Electrode artefacts, 3) Ocular artefacts, and 4) Muscle artefacts (Teplan, 2002).
Cardiac artefacts (electrical or mechanical) are most easily identifiable by their synchroni-
sation with complexes in the ECG channel. The presence of cardiac artefact mainly de-
pends on the referential montages (placement of electrodes) of 10%-20% because of their
greater inter-electrode distances. Montages with an average reference have a minimal car-
diac artefact, and with bipolar montages, the artefact occurs with maximum amplitude and
clearest QRS morphology over the temporal regions Carmichael et al. (2012). Electrode
artefacts mostly occur due to poor connection of electrodes or electrode lead movement,
leading to sharp and slow wanes of varying morphology and amplitude (Teplan, 2002).

The ocular artefact is the most common one in the EEG; it can occur during eye blinks,
eye flatter, lateral eye movement, roving eye. Roving eye movements, occur with drowsi-
ness and are an involuntary and repeated horizontal ocular movement. The movements
have a relatively constant period and show a phase reversal because of the eyes’ dipoles.
The field around the right front-temporal electrodes becomes positive, and the left front-
temporal electrodes become negative, with gaze (Vigário, 1997). Blinking produces an
ocular artefact because of the rapid movement of the eyes, both up and down and appears
in EEG with a field that does not extend beyond the frontal region. Muscle artefacts can
occur during the chew/swallow, talking, and movement of any facial muscle. Movement
during the recording of an EEG may produce an artefact through both the electrical fields
generated by muscle and through a movement effect on the electrode contacts and their
leads (O’Regan et al., 2010).

The visual appearance of the four types of artefacts described earlier, such as Cardiac
artefacts, Lead Movements, Ocular artefacts, and Muscle movements, can found in Figure
2.12-2.15, respectively. However, artefacts caused by Cardiac and cable movement have
not found with the datasets utilised in this research. Therefore, results shown in Figures
2.12 and 2.13, are not for the datasets I have used- information about the datasets utilised
in my research described in Chapter 4.
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Figure 2.12: Cardiac Artefact presents in the Data Grouiller et al. (2007)

2.2.5 Research on EEG

In recent years, research has been done on EEG signals to analyse the conditions of the
brain, not only by comparing brain activities between different part of the brain but also by
finding differences between participants with and without medical conditions. For exam-
ple, (Na et al., 2002) examined information transmission between different cortical areas in
participants with medical condition schizophrenia and Alzheimer. EEG signals have been
investigated by (Jeong et al., 2015) to distinguish the EEG signals of participants with-
out any medical conditions, and participants with conditions, such as Parkinson’s related
dementia and Alzheimer. (Kannathal et al., 2005) and (Sun et al., 2018) has studied the
complexity of the EEG signals from participants with Epilepsy and participants without
any medical condition. (Oberman et al., 2005) and (Rajaguru and Prabhakar, 2017) inves-
tigated whether individuals with Autism Spectrum Disorder (ASD) showed dysfunction in
the mirror neuron system, given their behavioural impairments in understanding and re-
sponding appropriately to others’ behaviours. (Choi and Cho, 2019) investigated the effect
of electroacupuncture at different frequencies and intensities via EEG, and found decreased
in absolute power for Theta band. Furthermore, EEG is used in the acupuncture research
area to explore the effect of acupuncture stimulation in the central nervous system (Rastiti
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Figure 2.13: Electrode Artefact showing noise caused by lead movement Grouiller et al.
(2007)

et al., 2018).
Various characteristics of EEG signals represent distinct states of brain activity (Nieder-

meyer and da Silva, 2005). We can quantify these distinct states using linear or non-linear
measures. Previous research has showed a correlation between EEG signals (or brain ac-
tivity) from different part of the brain (Left and right brain hemisphere) (Bob et al., 2010),
(Na et al., 2002), (Jeong et al., 2015), (Bilucaglia et al., 2019), (Abdulla et al., 2019). A
high correlation between the signals from different electrodes indicates similar brain activ-
ity, and a low correlation suggests that the brain activity at the different measurement sites
is relatively independent. Researchers (Na et al., 2002), (Li et al., 2013), (Hevia-Orozco
et al., 2017), (Almanza-Sepúlveda et al., 2018), and (Gartstein et al., 2020) have expressed
that brain activities within the same (local) region might be similar, but that they might
be different among non-identical regions (globally). One question my research address is
whether the activities of the two brain hemispheres are similar.

So far, various numbers of electrodes and combinations of electrode pairs have been
used to analyse EEG signals. The combinations of electrode pair depend on the total num-
ber of electrodes. For example, if there are 19 electrodes, then the number of different
potential electrode pairs is 171. According to recent research on EEG signal analysis, elec-
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Figure 2.14: Ocular Artefacts: (a) Eye blinks with rapid movement of the eyes both up and
down, and (b) Lateral Eye Movement

trodes from the central part of the brain deserve the best consideration, possibly because of
the minimum noise found in the recorded signals (Klein and Thorne, 2006). Consideration
of the central part of the brain was one reason I found papers in which they analysed EEG
signals using only limited numbers of electrodes and combinations of electrode pairs. For
example, the cortical EEG, recorded from 6 electrodes, during performance of working
memory (WM) tasks in each trimester of pregnancy has been studied. Their result sug-
gested characteristic patterns of EEG synchronization between the prefrontal and parietal
cortices during performance of both WM tasks in each trimester of pregnancy (Almanza-
Sepúlveda et al., 2018). Furthermore, the EEG correlation during a social decision making
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Figure 2.15: Muscle Artefacts: (a) Swallow effect, and (b) Jaw movement.

task (Ultimatum Game) in a group of institutionalized (INST) adolescents with a never
institutionalized group (NINST), with 6 electrodes (Hevia-Orozco et al., 2017). Their re-
sults have suggested significant changes in the EEG signals of electrodes from the right
side of the brain when compared to those on the left side. Na et al. (Na et al., 2002),
examined 16 electrodes with 38 pairs of electrodes within the right hemisphere and within
the left hemisphere. Their results showed less complex EEG activity in the left temporal
regions. Bob et al. (Bob et al., 2010), inspected 8 electrode and 16 electrode pairs to ex-
amine the relation between EEG activity with the Dissociative Experiences Scale (DES)
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in paranoid schizophrenia patients. Their results demonstrated a significant correlation of
DES in 9 EEG electrode pairs. Similar electrode pair effects have been found by Cuevas
et al. (Cuevas and Bell, 2011), who studied 8 electrodes and 16 electrode pairs in their
investigation of patterns with EEG signals of children’s developing brains. Their results
suggested an age-related increase in EEG power for 9 electrode pairs. Li et al. (Li et al.,
2013), examined 16 electrodes and 4 electrode pairs and proposed more significant changes
in the EEG signals of electrodes from the right side of the brain when compared to those
on the left side.

In recent research, the correlation between EEG signals has been analysed in the Fre-
quency Domain (FD) using various methods, such as Mutual information, Coherence anal-
ysis, Wavelet coherence, Correlation coefficient, Auto-correlation and Cross-Correlation.
Mutual information has been utilised to examine information transmission between differ-
ent cortical areas in subjects with both schizophrenia and Alzheimer’s diseases (Na et al.,
2002). This research found lower mutual information between EEG signals of subjects with
these conditions when compared to EEG signals without a medical condition. Coherence
analysis has been applied to study brain interactions between EEG signals (Nolte et al.,
2004), showing a significant correlation in EEG Beta (β) frequency range between the left
and right motor areas of the human brain of participants without any medical conditions.
Wavelet coherence has been applied to distinguish between EEG signals of participants
without medical conditions, and EEG signals of participants with medical conditions, such
as Parkinson’s related dementia and Alzheimer’s diseases (Jeong et al., 2015). Correlation
coefficient has been utilised to discover changes in EEG signals and autonomic nervous
activity, and the association of these with personality traits (Takahashi et al., 2005), with
an increase in EEG theta (θ) power and EEG alpha (α) power predominantly in the frontal
area. Cross-Correlation has been utilised to study the degree of association between activi-
ties in symmetrical (left and right) parts of the brain (Li et al., 2013), (Hevia-Orozco et al.,
2017), and (Almanza-Sepúlveda et al., 2018) with the indication of stronger correlation in
the delta (δ) frequency range on the right side of a brain than the left.

In my research, I have also used EEG data to differentiate the brain activity of partici-
pants with and without any medical condition, like recent research as shown earlier. From
the research above, I have found that the focus of the analysis of EEG was on either left or
right brain hemisphere when comparing the EEG activity from different part of the brain.
However, in my research, I have focused on the combination of EEG electrode pairs from
and between both brain hemispheres. In addition, to my knowledge, they have conducted
limited research to analyse EEG signals in the Time Domain (TD) with all combination
of electrode pairs. TD analysis is used to analyse a signal in its actual state, which is the
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earliest and direct way of analysing EEG signals - it is utilised to analyse changes in EEG
signals, such as power (or amplitude) over time. Previous research, as described earlier, fo-
cused on FD. There is a necessity to conduct TD analysis on EEG. Therefore, it is essential
to perform a comparative analysis and an interpretation of EEG signals in the TD, not just
the FD. The summary of the research work reported in this section shown in Table 2.1.

Table 2.1: Summary of Some of the Research work for Correlation Between EEG Signals.

Reference Electrodes Pairs TD FD CC Other Methods
(Lewis et al., 1988) 8 28 pairs X - - MI
(Klem et al., 1999) 19 38 pairs - X - CA

(Na et al., 2002) 16 120 pairs X - - MI
(Nolte et al., 2004) 122 No pairs - X - CA

(Niedermeyer and da Silva, 2005) 6 No pairs - X - CC
(Takahashi et al., 2005) 1-Cz No pairs X - X -

(Klein and Thorne, 2006) 21 No pairs - X - SC
(Fields, 2008) 106 No pairs - X X CC

(Bob et al., 2010) 8 16 pairs X - X -
(Cuevas and Bell, 2011) 16 8 pairs - X - CA

(Li et al., 2013) 16 4 pairs - X X -
(Jeong et al., 2015) 19 56 pairs X X - WC

(Hevia-Orozco et al., 2017) 6 No pairs - X - PCC
(Almanza-Sepúlveda et al., 2018) 6 No pairs - X - rEEG

MI = Mutual Information, CA = Coherence Analysis, CC = Correlation Coefficient, SC = Spear-
man’s Correlation, WC = Wavelet Coherence, PCC= Pearson’s correlation Coefficient.

2.3 Electrocardiogram (ECG) and Heart Rate Variability
(HRV)

2.3.1 Electrocardiography (ECG)

Electrocardiography (ECG) signals reflect activities of heart muscles. They are related
to a variety of intertwined and complex chemical, electrical, and mechanical processes
present in the heart. They convey a great deal of valuable diagnostic information not only
describing the functioning of heart but also other systems such as circulation or nervous
systems. The ECG signal has been a subject of studies for over 100 years. The English
physiologist August Waller has realised the first recording of electrical activities of the heart
in 1887, who used surface electrodes placed on the skin and connected to the capillary
electrometer. He was the first to call the registered signal ECG (Burch and DePasquale,
1990). Nevertheless, W.Einthoven is regarded to be the father of electrocardiography who
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in 1902 recorded the first ECG with the use of a string galvanometer (Einthoven, 1912).
Furthermore, ECG records electrical activities of the heart, where each beat of the heart
started by an electric signal from the heart vagus. ECG signals might contain a plethora of
information with and without pathological physiology of the heart and its health.

2.3.2 Heart Rate Variability (HRV)

Heart Rate Variability (HRV) can be extracted from ECG. HRV is the estimation of Neuro-
cardiac function that reflects heart-brain interactions and autonomic nervous system dy-
namics (McCraty et al., 2001). The measurement of HRV is a valuable investigative tool in
clinical cardiology as it gives a primary method to test the physiological state of the heart
directly. Many neurological and psychological investigations have used HRV to assess the
effects of stress, emotion, and work on the autonomic nervous system (Malik and Camm,
1990). The heart rate and rhythm are mainly under the control of the Autonomic Nervous
System (ANS), which is part of the Peripheral Nervous System (PNS). PNS act as a control
system functioning mostly below the level of consciousness to control physical functions.
ANS contains two primary components: the Sympathetic and Parasympathetic Nervous
system. Both the sympathetic and parasympathetic nervous systems innervate the heart.
The parasympathetic nervous system functions in regulating heart rate through the vagus
nerve, with increased vagal activity producing a slowing of heart rate. The sympathetic
nervous system has an excitatory influence on heart rate and contractility (Robinson et al.,
1966). The study of HRV series helps to determine the interaction between sympathetic
and parasympathetic activity (Karmakar et al., 2011).

HRV is widely adopted to measure the heart function, which can help identify patients
at risk for a cardiovascular event or death (Cooper et al., 2007). HRV analysis is not only
a non-invasive tool for assessing cardiovascular system function but also serves as a useful
index for evaluating the function of the autonomic nervous system (ANS) in regulating hu-
man organs and muscles (Lin and Hu, 2007). HRV testing is concerned about an analysis
of the changes in heart rhythm. This analysis helps us evaluate the quality of the autonomic
heart control system. The autonomic nervous system controls the functioning of the heart
comprises sympathetic and parasympathetic systems. These two systems work in two op-
posite directions regarding the frequency of heart action, controlling it depending upon the
existing situation. The heart rhythm is increased when there is an increased activity of the
sympathetic system. When the activity of the parasympathetic system increases, the heart
rhythm decreases. In a healthy individual, there are some fluctuations of the rhythm within
the bounds of the adaptation. However, under certain stimulus (say, alcohol, nicotine, some
medications) and because of some diseases (for instance, failure of kidneys), the change of
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the heart rhythm is made difficult, and it significantly reduces the variability (Acharya et al.,
2006). The analysis of the variability of heart rhythm reduces to the analysis of changes
in the length of RR distances for QRS complexes of sinus origin. An essential component
of the analysis is a precise localisation of the peaks of the R waves. The analysis of RR
distances (RR periods) is done in a time domain, frequency domain by utilising methods
of time-frequency analysis or other nonlinear methods (Acharya et al., 2006), (Sörnmo and
Laguna, 2005).

The R waves of the ECG detected through a QRS complex detection algorithm, e.g.
Pan-Tomkins QRS detection algorithm (Pan and Tompkins, 1985), after the ECG recording
is digitised. Pan-Tomkins QRS detection algorithm detects R waves and finds the difference
between consecutive R peaks, which is known as HRV. R waves typically have the largest
amplitudes compared to surrounding P, Q, S, and T waveforms, as shown in Figure 2.16.
Thus a beat-to-beat interval can be defined as the time difference between consecutive R
peaks (RR Interval). RR intervals originate from normal sinus rhythms, sometimes referred
to as normal-to-normal (NN) or Inter-Beat Interval (IBI) intervals. Thus, standard nomen-
clature of ”NN” can be used in place of IBI or RR to indicate IBI's containing no ectopic
intervals. Figure 2.16 shows a hypothetical ECG and how IBI's are determined based on R
waves. IBI (1) and IBI (2) represent the first and second data point of the IBI time series
signal. Therefore, the HRV series consists of RR intervals representing the fluctuations in
the interval between heartbeats (Brennan et al., 2001).

Figure 2.16: Determination of Inter Beat Interval (IBI). Simulated ECG containing three
beats with arbitrary units of time and amplitude. Time intervals corresponding to the IBI
are indicated by IBI(1) and IBI(2). ECG morphology is shown by five characteristic waves
P, Q, R, S, and T.
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2.3.2.1 Types of HRV frequencies

The HRV frequencies help to determine the interaction of sympathetic and parasympathetic
activities. These frequencies can be useful for understanding the state of the heart of a
person. There are three main frequencies in HRV: Very Low Frequency (VLF) ranging
from 0-0.04 Hz, Low Frequency (LF) ranging from 0.04-0.15 Hz, and High Frequency
(HF) ranging from 0.15-4 Hz.

The presence of VLF found if a person is angry, stressed or with anxiety (Shaffer et al.,
2014). This frequency results from the sympathetic nervous activity of the ANS (Petretta
et al., 1997). The presence of HF found if the person is feeling relaxed, calmed or with
appreciation. This frequency results from the parasympathetic nervous activity of the ANS
(Petretta et al., 1997). Figure 2.17 shows how the brain and heart interact with each other,
and how HRV pattern being dominant by ANS (Sympathetic and Parasympathetic). The
cerebral cortex of the brain is the body’s ultimate control and information processing (Mc-
Craty et al., 2009). The usual Heart-Brain communication path is through the spinal cord.
Figure 2.17 shows that the brain and heart communicate through ‘Medulla’(cardiovascular
centre placed in medulla controls the heart beating), which is part of the brain stem.

Figure 2.17: HRV pattern, showing the contribution of Sympathetic and Parasympathetic
Nervous Activity (Steffert and Mayor).

36



Spectral analysis for one HRV shown in Figure 2.18, as an example, where the presence
of all three HRV frequencies shown. Besides, the detail about traced frequencies of HRV
signals are shown in Figure 2.19.

Figure 2.18: Power Spectrum of HRV showing presence of traced HRV frequencies

Figure 2.19: Traced Frequencies from HRV. The Amplitude (Power) of the signals in-
creases as the frequencies decreases (Lin et al., 2010).

2.3.2.2 HRV Artefacts

Artefacts in IBI time series can cause significant distortion of HRV analysis results, and
thus, all artefacts should be either corrected or excluded from analysis as recommended
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in (Electrophysiology, 1996). Typical artefacts include missing, extra or misaligned beat
detections and ectopic beats, such as premature ventricular contractions (PVC) or other
arrhythmias. The procedure of removing these artefacts is shown in Chapter 7.

Figure 2.20 shows the presence of an extra beat type of artefacts in HRV as an example.

Figure 2.20: Presence of extra beat and premature ventricular contractions (PVC) artefact
in HRV. The highlighted in red circles are the extra beat

2.3.3 Research on ECG and HRV

ECG analysis is a very useful diagnostic tool for clinical purposes. The ECG varies from
person to person due to the differences in position, size, and anatomy of the heart, age, sex,
relative body weight, chest configuration, and various other factors (Simon and Eswaran,
1997). Biel et al. (Biel et al., 1999), (Biel et al., 2001) showed that it is possible to identify
individuals based on an ECG signal. (Shen et al., 2002) has used ECG as a new biomet-
ric for human identity verification in which, they have demonstrated successfully that it
is possible to identify a specific person from a group of candidates using a one-lead ECG
(Shen et al., 2002). There are numbers of study devoted to the analysis and classification
of ECG signals by using combinations of syntactic and probabilistic methods (Horowitz,
1975), (Udupa and Murthy, 1980), (Papakonstantinou and Gritzali, 1981), (Skordalakis,
1986), (Trahanias and Skordalakis, 1990). neural networks were used to arrhythmia anal-
ysis (Wang et al., 2001), determination of P waves (de Azevedo Botter et al., 2001)), and
classification of heart evolution with the use of second order cumulants (Osowski and Linh,
2001). They also used fuzzy systems in the analysis of ECG and EEG signals (Moon
et al., 2002). Fuzzy rule-based systems were used in the detection of arrhythmias (Chowd-
hury and Ludeman, 1994) and construction of ECG signals (Wang et al., 1991). Many
algorithms for automatic detection and classification of ECG heartbeat patterns have been
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presented in the literature including signal processing techniques such as frequency anal-
ysis (Minami et al., 1999), wavelet transform (Shyu et al., 2004), (Ince et al., 2008)), and
filter banks (Afonso et al., 1999), statistical (Willems and Lesaffre, 1987) and heuristic
approaches (Talmon, 1983), hidden Markov models (Coast et al., 1990), support vector
machines (Osowski et al., 2004), artificial neural networks (ANNs) (Hu et al., 1993), and
mixture-of-experts method (Hu et al., 1997).

Some research supports the idea of reporting an inverse relationship between inflamma-
tory cytokines and vagally-mediated HRV using both short-term (less than 1 hour) (Soares-
Miranda et al., 2012), (Young et al., 2014), and long-term (greater than 1 hour) (Araújo
et al., 2006), (Janszky et al., 2004) recordings of HRV. Prospective studies have also found
similar results, showing vagally-mediated HRV to predict negatively inflammation four
years into the future (Jarczok et al., 2014). In the biomedical setting, they often use HRV
metrics for risk stratification, where clinical endpoints (e.g., myocardial infarction) across
a range of chronic health conditions may be forecaster by earlier measurements of HRV.
Low HRV, for example, is associated with mortality in participants with coronary artery
disease (Huikuri and Stein, 2013), (Martin et al., 1987), chronic heart failure (Nolan et al.,
1998), and among those with a history of myocardial infarction (Bigger Jr et al., 1992),
(Bigger Jr et al., 1988), (Buccelletti et al., 2009), (Camm et al., 2004), (Kleiger et al.,
1987). Beyond mortality, hypertension (Singh et al., 1998), end-stage renal disease (Brot-
man et al., 2010), and diabetes (Schroeder et al., 2005) are also associated with low HRV.
Notably, higher HRV does not always signal apparent protection, as high HRV confers risk
for atrioventricular (AV) block, sick sinus syndrome, and atrial fibrillation (Vikman et al.,
2003). Besides clinical applications, HRV metrics are often employed to better understand
the peripheral physiological correlates of complex brain and behavioural processes, such
as emotion and its regulation (Graziano and Derefinko, 2013), (Rottenberg et al., 2007)
and executive cognitive functioning (Thayer and Lane, 2000), (Thayer et al., 2009), pos-
sibly by reflecting the functionality of higher brain systems, such as the pre-frontal cortex
(Beauchaine and Thayer, 2015). The predictive utility of pretreatment HRV has been in-
vestigated for outcomes of antidepressant medication in major depressive disorder (MDD),
with pretreatment anxious depression as a hypothesised moderator of HRV effects (Kir-
canski et al., 2019). The increased resting heart rate (HR) in heart transplant patients is
associated with enhanced metabolic demand, the potential for fatigue, and lower quality
of life. (Moreira et al., 2019) presented that transcutaneous electrical acupoint stimulation
(TEAS) can modulate autonomic balance and reduce resting HR in heart transplant pa-
tients. The effect of acupuncture was studied through HRV to investigate the possible role
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of the autonomic nervous system in mediating, and showed an increase in the LF/HF ratio
(indicating greater sympathetic activity) (Chang et al., 2010).

The main goal of the use of HRV in my applications is to draw more specific infer-
ences about the autonomic nervous system (ANS) activity that is enabled by the heart
period. Changes in heart period, cannot be necessarily interpreted as reflecting symmetric,
but opposite, changes in cardiac sympathetic and parasympathetic (that is vagal) control
(Berntson et al., 1991), (Berntson et al., 1994), (Gianaros and Quigley, 2001). Instead,
heart period and evoked changes in heart period are ambiguous with respect to their au-
tonomic origins. Furthermore, the utilization of HRV is to understand the complex brain
employing HRV metrics.

2.4 Correlation Between EEG and HRV Signals

A series of data points in time order, or time series, provides a view of a signal as it evolves,
in Time Domain (TD). TD analysis is used to analyse the signal in its actual state - in
biomedical signals, the power (or amplitude) over time is utilised to analyse changes. In
parallel, the frequencies present in the signal investigated, and such an analysis take place
in the Frequency Domain (FD). FD analysis is used to identify frequencies present in the
signal.

Recent studies seem to indicate that executive function: processes that control and reg-
ulate thought and action (e.g., suppressing habitual responses) (Friedman et al., 2006) are
correlated with brain activity in the resting state (Mennes et al., 2010), (Takeuchi et al.,
2011), (Mackey et al., 2013), (Martı́nez et al., 2013), (Thompson et al., 2016), (Fox et al.,
2005), (Fox et al., 2006), (Seeley et al., 2007). The two brain networks in the resting state
has been identified by (Fox et al., 2006). One network comprises regions that are routinely
positively correlated with cognitive task performance, and the other includes regions that
are routinely negatively correlated. The presence of significant positive/negative correla-
tions between a cerebral region and a task across participants suggests that at least some
part of the cerebral response induced by a particular task is intrinsically represented in the
brain (Mennes et al., 2010). Similarly, when variability is disrupted, the brain has little ca-
pacity to adapt to environmental conditions, resulting in neuropathological diseases such as
epilepsy and attention-deficit/hyperactivity disorder (Mizuno et al., 2010), (Catarino et al.,
2011), (Vakorin et al., 2011), (Ramon and Holmes, 2013), (Alba et al., 2016), (Chen et al.,
2017).

Lately, relations between HRV and the endogenous dynamic of brain regions involved
in autonomic control and emotional regulation during the resting state have been explored.
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These studies showed that high- and low-frequency components of HRV are strongly cou-
pled with functional connectivity (Chang et al., 2013), (Jennings et al., 2016), (Sakaki et al.,
2016). However, these studies have not addressed the relationship between the variability
of functional connectivity and HRV or whether both factors might predict the outcomes of
cognitive tasks. (Palva et al., 2013) correlated the variability of functional connectivity us-
ing magneto-encephalography (MEG) and HRV during a stimulus detection task and during
the resting-state period. Strong correlations were found between neuronal oscillations and
task performance during the task and during the resting-state period. These results suggest
that the variability of functional connectivity in the resting state is not specific to the task
but is related to the performance of cognitive tasks. This study found that HRV in both task
and rest conditions predicted task performance. Normally, any EEG measure is estimated
during the resting state by averaging its values in a certain number of EEG segments. This
procedure assumes that resting-state EEG remains static during the recording period. Even
in this case, recent evidence (Kitzbichler et al., 2009), (Botcharova et al., 2014) suggests
that brain synchronisation assessed from neurophysiological signals is not constant, but
during this time, it presents significant variability, which is disrupted in neuropathological
conditions (Ramon and Holmes, 2013), (Alba et al., 2016). The aim of this study was to
determine whether there is any functional connectivity of EEG with HRV in the resting
state.

In recent research, the correlation between the EEG and HRV signals have been anal-
ysed in FD using well-known methods. There are various reasons people have investigated
the relationship between these signals. For example, to find changes in EEG activity and
autonomic nervous system during sleep (Miyashita et al., 2003). This research found a
striking correlation between the frequencies of the EEG and sympathetic activity (Low
Frequency (LF)) of HRV. The relationship between the depth of sleep and the changes in
autonomic nervous system have been explored (Yang et al., 2002),(Ako et al., 2003),(Ju-
rysta et al., 2003),(Abdullah et al., 2010), (Chua et al., 2012) and (Moeynoi and Kitjaidure,
2017). Most of these studies suggest a negative correlation between the Delta frequency
range of EEG with LF of HRV, and some of these studies demonstrate a significant cor-
relation between the Delta frequency range of EEG with parasympathetic activity (High
Frequency (HF)) of HRV. (Berg et al., 2005) has investigated the sleepiness and drowsi-
ness of drivers by analysing the correlation between EEG and HRV. A strong correlation
between Delta, Alpha, and Theta frequency range of EEG with LF of HRV was found,
respectively, which suggested that HRV as an indicator of sleepiness. The changes in EEG
and HRV during meditation have also analysed in (Takahashi et al., 2005). Their results
suggest a significant correlation between Alpha and Theta frequency range of EEG with
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LF and HF of HRV during meditation, respectively. investigated the EEG and ECG fea-
tures that can reveal status change during cycling exercise (Jao et al., 2017). Their result
suggests that the Cardiac Stress Index and high alpha in EEG electrode C4 are the most
suitable signals in ECG and EEG for predicting status changes during exercise

The relationship between EEG and HRV has been analysed in different conditions. For
example, the correlation analysis of EEG signals and ECG signals between epileptic and
normal population was carried out based on the improved synchronization algorithm IRC
(Sun et al., 2018). This research has found that the correlation between EEG signals and
ECG signals in the left forehead and left anterior temporal regions of normal and epileptic
populations has been distinguished using the IRC algorithm. Furthermore, the impacts of
the driving duration and circadian rhythm on the vigilance level of the drivers has been
examined and the correlations between the vigilance and driving performance has been
identified (Wang et al., 2019). (Doufesh et al., 2018) investigated the correlations between
alpha electroencephalography (EEG) and other physiological parameters during Muslim
prayer utilizing the self organizing map (SOM). Their result indicated that alpha power of
EEG showed significant positive correlation in the occipital and parietal electrodes with the
normalized unit of high-frequency (HF) power of HRV. The effect of fast cable car ascent
on both the autonomic and central nervous system has been analysed (Edlinger and Guger,
2006) and suggested a positive correlation of Alpha, and Beta frequency range of EEG with
LF of HRV. The effect of acupuncture on EEG and HRV has also been analysed (Sakai
et al., 2007) and found a negative correlation between power in all EEG frequency bands
with the LF/HF ratio of HRV. An investigation has been done to assess the relationship
between cerebral cortices with peripheral cardiac autonomic (PAN) in uremic and healthy
controls (Liou et al., 2014). Their study suggests the correlation between Delta / Theta
ratio frequency range of EEG with LF of HRV, and between the Beta frequency range of
the EEG with HF of the HRV. The relationship between HRV and Rolandic mu rhythm in
relaxed condition of resting state has been observed (Triggiani et al., 2016) and observed a
negative correlation between the Beta frequency range of EEG with LF of HRV. (Prinsloo
et al., 2013) analysed the effect of HRV biofeedback (concentrative meditation) on EEG,
and suggested a correlation between HRV biofeedback and EEG- significantly for Theta,
and Beta frequency range of the EEG.

As discussed, the correlation between EEG and HRV signals has analysed in FD. Table
2.2, indicates that the Pearson correlation coefficient (PCC) is a well-known method for the
FD analysis. I also aim to use well-known method PCC for the correlation performance of
EEG and HRV in my research. However, the focus is not only in FD as shown in current
research, but both FD and TD. I have found little information on the use 19 EEG electrodes
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to analyse correlation performance between EEG and HRV in FD. Therefore, my prime
focus for EEG and HRV correlation is to conduct analysis in both domains (TD and FD)
including all 19 EEG electrode data (please refer to Chapter 7).

Table 2.2: Summary of Correlation Research on EEG and HRV.

Reference TD FD PCC Other Method EEG Electrodes
(Miyashita et al., 2003) - X X - 4

(Yang et al., 2002) - X X - 2
(Ako et al., 2003) - X X - 1

(Jurysta et al., 2003) - X - Coherency Analysis 3
(Takahashi et al., 2005) - X X - 6

(Edlinger and Guger, 2006) - X X - 2
(Berg et al., 2005) - X X - 2
(Sakai et al., 2007) - X X - 19

(Abdullah et al., 2010) - X - Cross-Correlation 1
(Chua et al., 2012) - X - X 4
(Kim et al., 2013) - X - Coherency Analysis 19

(Prinsloo et al., 2013) X - X - 3
(Liou et al., 2014) - X X - 19

(Triggiani et al., 2016) - X X - 19
(Jao et al., 2017) - X - Poincare Analysis 4
(Sun et al., 2018) X - - IRC 16

Table 2.3: Summary of Research on Well known Wavelet Transformation Methods for
EEG and HRV.

Reference EEG ECG/HRV TD FD Preprocessing Method
(Kutlu and Kuntalp, 2012) - X X - DWT-Daubechies Wavelet

(Thomas et al., 2015) - X X - DWT-Daubechies Wavelet
(Sudarshan et al., 2017) - X X - DWT-Daubechies Wavelet
(Acharya et al., 2017) - X - X DWT-Daubechies Wavelet

(Dolatabadi et al., 2017) - X X X PCA
(Kumari et al., 2014) X - X X DWT-Daubechies Wavelet
(Mumtaz et al., 2017) X - X X DWT-Daubechies Wavelet

(Kevric and Subasi, 2017) X - - X DWT-Daubechies Wavelet
(Faust et al., 2015) X - X - DWT-Daubechies Wavelet

2.4.1 Significance of the Wavelet Transformation on EEG and HRV
Signals

Wavelet Transformations (WT) can be performed on time series data, including EEG and
ECG signals to extract features. For EEG signals, various methods based on Discrete
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Wavelet Transform (DWT) reported for removing noise by using WT. (Faust et al., 2015)
presented a review of wavelet methods on continuous wavelet transform (CWT) and DWT
for computer-aided seizure detection and epilepsy diagnosis. Their findings show that more
scientific work carried out using the DWT methods than the CWT because EEG are dis-
crete time series signals.(Kevric and Subasi, 2017) used Daubechies wavelet for the de-
composition of the EEG signals for a classification task. (Mumtaz et al., 2017) also utilised
Daubechies wavelet extracting features from frontal and temporal EEG data to improve the
quality of life for major depressive disorder (MDD) patients. Their results suggested that
the low frequencies of the EEG signals, such as delta and theta, may predict antidepres-
sant’s treatment outcome for MDD patients. (Kumari and Vaish, 2014) examined brain-
wave energy features extracted by using Daubechies wavelet to differentiate one person
from another. Their results found to differentiate a person from another person showing the
energy distribution over the sub-bands of EEG signal corresponding to a delta, theta, alpha,
beta and gamma waves.

For the HRV signal, various methods based on DWT reported for removing noise
by using WT. (Sudarshan et al., 2017), extracted alarming features from the ECG using
Daubechies wavelet to detect Congestive Heart Failure (CHF). Their results obtained accu-
rate detection of CHF using only 2 seconds of ECG signal. (Acharya et al., 2017), devel-
oped an automated diagnostic system for the detection of Coronary Artery Disease (CAD)
and Myocardial Infarction (MI) using three noises removing methods such as DWT, EMD
and Discrete Cosine Transform (DCT). Their results indicated that detection of CAD is
done more accurately with extracted features. (Thomas et al., 2015) proposed a novel tech-
nique using DWT based Daubechies wavelet for the automatic classification of cardiac
arrhythmias, and indicated that the novel technique of feature extraction which utilised
DWT based db wavelet for automatic heartbeat recognition, achieve better accuracy than
the standard DWT method. (Kutlu and Kuntalp, 2012). Their results obtained success in
discriminating five different ECG beats.

Based on the recent research, as shown in Table 2.3 on WT, it is straightforward to
conclude that the DWT based methods are well known for EEG and ECG feature extrac-
tion and analysis. Among the DWT-based methods, Daubechies wavelet method has been
considered by the researchers. Daubechies wavelet is the most popular wavelet family used
for texture feature analysis, because of its support abilities with orthogonal support: the in-
verse of wavelet transform is the adjoint (a complex number with real part and an imaginary
part equal in magnitude but opposite in sign) of the wavelet transform, and compact: the
wavelet has a finite non-zero length which will result in increasing the probability of cap-
turing events in short time instances. The Daubechies wavelet uses overlapping windows,
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so the results reflect all changes between pixel intensities. The Daubechies D4 transform,
for example, has four wavelet and scaling coefficients. The sum of the scaling function
coefficients is also one; thus, the calculation is averaging over four adjacent data points.
Although Wavelet Transformations (WT) have been performed on time series data includ-
ing EEG and ECG signals, so far the correlation between WT signals has not been analysed
(please refer to Chapter 7 for the correlation performance of EEG and HRV with and with-
out WT signals.)

2.5 Summary

An underlying assumption of the most time series analysis is that EEG and ECG time se-
ries inherently possess dependence between adjacent observations. This dependence is of
interest because it reveals information about the source producing the behaviour. In this
way, time series analysis is essential for understanding variability within EEG and HRV,
because time series analysis of EEG and HRV reveals how the system evolves. EEG and
HRV signals represent complex dynamic behaviours of the biological system. Therefore,
these endogenous electrical brain and heart signals need to be analysed further to under-
stand the variation in a biological system.

SE has been used widely to investigate various biological conditions in the human body
such as through ECG (Alcaraz and Rieta, 2010), HRV (Al-Angari and Sahakian, 2007), and
EEG (Abásolo et al., 2006) determining sensitive changes. These studies have concluded
that SE is a robust quantifier of complexity, which offers an accurate nonlinear metric
for quantification (Alcaraz and Rieta, 2010). It gives a good dynamical signature and is
a helpful tool that provides insights into various biological time series (Abásolo et al.,
2006),(Ramdani et al., 2009), (Ramdani et al., 2009), (Al-Angari and Sahakian, 2007),
(Yoo et al., 2012), (Takahashi et al., 2010). Therefore, SE is considered as an effective
method for investigating different time series data.

A time series can be used to reconstruct the attractor of the underlying dynamic process.
State-space reconstruction of a time series is a powerful approach for the analysis of the
complex, nonlinear systems that appear ubiquitous in the natural and human world. The
goal of an embedding Dimension (ED) is to create a state-space where the structure of a
system is embedded. The technique False Nearest Neighbour (FNN) is the most commonly
used method for finding an ED (Abarbanel et al., 1993), (Kennel et al., 1992), (Stergiou,
2004). I discuss FNN in Chapter 3. ED would be suitable to find the underlying variables
for time series data such as Heart Rate Variability (HRV) since HRV might be driven by
many underlying variables.
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In recent research, the correlation between EEG signals has been analysed in the Fre-
quency Domain (FD) using various methods, such as Mutual information (Na et al., 2002),
Coherence analysis (Nolte et al., 2004), Wavelet coherence (Jeong et al., 2015), Correla-
tion coefficient (Takahashi et al., 2005), Auto-correlation and Cross-correlation (Li et al.,
2013). The focus of the analysis of EEG was on either left or right brain hemisphere when
comparing the EEG activity from different part of the brain (Lewis et al., 1988), (Klem
et al., 1999), (Na et al., 2002), (Jeong et al., 2015), (Li et al., 2013), (Cuevas and Bell,
2011), (Hevia-Orozco et al., 2017), (Almanza-Sepúlveda et al., 2018). In addition, to my
knowledge, limited research has been conducted to analyse EEG signals in the Time Do-
main (TD) (Lewis et al., 1988), (Na et al., 2002), (Takahashi et al., 2005), (Bob et al.,
2010), (Jeong et al., 2015), (Hevia-Orozco et al., 2017), (Almanza-Sepúlveda et al., 2018).
In Chapter 6, I have covered the research gaps found to show the correlation between EEG
signals for participants with and without medical conditions.

The recent research on the correlation between EEG and HRV has focused on Fourier
analysis of the frequencies presents in these signals, to analyse their functionalities under
certain conditions and to check whether these functionalities are related to each other. Re-
search (Kim et al., 2013), (Chua et al., 2012), (Abdullah et al., 2009), (Sakai et al., 2007),
(Berg et al., 2005), (Edlinger and Guger, 2006), (Sun et al., 2018), (Wang et al., 2019),
(Doufesh et al., 2018), for example, suggesting the correlation between spectral bands of
EEG and HRV has been conducted to assess the interaction between them, and remark-
able correlation has been found. The WT of the signals is an important method not only
to analyse EEG and HRV signals individually but also to analyse the correlation between
them. According to recent research (Thomas and Moni, 2016), (Chandra et al., 2017),
(Mirsadeghi et al., 2016), (Mporas et al., 2015), (Valderrama et al., 2012), (Nasehi and
Pourghassem, 2011), (Cvetkovic et al., 2008), WT has been used to analyse either EEG or
ECG signal, but the correlation between these transformed signals has not yet been con-
ducted. In Chapter 7, I have shown both the correlation between WT signals and without
WT signals.
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Chapter 3

Data Description

3.1 Introduction

In this chapter, I am going to describe datasets used in my research. The chapter consists of
two parts: the description of a dataset recorded by myself, and the description of datasets
provided to me by David Mayor and Dr. Tony Steffert or obtained from the Internet. For
EEG, all of these datasets follow 10%-20% electrode placement system, as shown (see
Figure 2.7) and discussed in Chapter 2. In this chapter, some datasets contain both EEG
and ECG signals, and some only EEG or ECG. However, what I meant by dataset is that it
contains either both or one (EEG/ECG or EEG and ECG) signals.

3.2 Self Recording Dataset

This non-invasive dataset was collected for a joint study, conducted by a team of three
people: myself, David Mayor 1 and Dr Tony Steffert 2, to explore the effects of Elec-
troacupuncture (EA). Transcutaneous Electrical Acupoint Stimulation (TEAS) is a type of
EA. This EA is a treatment used in a wide variety of medical conditions and has beneficial
effects on both cerebral and cardiac functions. The self-recording dataset was collected by
using TEAS. TEAS is a safe, standardised acupuncture technique in which there is no nee-
dle insertion (V.Kaye, 1998-2019). As shown in Figure 3.1, it involves applying cutaneous
electrical stimulation by placing electrodes at classical Chinese acupoints. A TEAS system
consists of an electrical power unit connected by wires to one or more pairs of electrodes.
I attach these electrodes to the participant's skin. When the power unit is switched on, a
mild electrical current travels through the electrodes into the body. Participants may feel

1https://www.welwynacupuncture.co.uk/
2http://qeeg.co.uk/
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localised tingling or warmth during treatment. A session typically lasts from five to thirty
minutes, and treatments may be applied as often as needed.

Figure 3.1: Transcutaneous Electrical Acupoint Stimulation (TEAS), a safe and standard-
ized acupuncture technique, which does not require needles insertion (V.Kaye, 1998-2019)

The main aim of recording this dataset was to determine whether the electrical activity
of the cerebral cortex (electroencephalograph, EEG) and heart (heart rate variability, HRV)
change in different ways in response to different frequencies of TEAS applied to the hands
of human participants.

3.2.1 Recording Process

For this study, I have been trained by an EEG specialist Dr Tony Steffert 3 working in this
area for more than 20 years. This training took nearly two months to complete, including
the understanding of the types of equipment being used, learning new software WinEEG
and Biotrace to collect EEG and ECG data, record data, how to prepare myself before
recordings, what precautions needed while recording, how to identify artefacts visually
appearing on the system during recording.

In order to understand the recording process and to know a participants’ feeling, I had
been as a participant before recording this dataset.

The recording of this dataset was conducted in the premises of the University of Hert-
fordshire, approved by Health and Human Science (HHS) Ethics Committee with HHS
Protocol Number HSK/SF/UH/00076. Once the ethical approval was granted, prospective
participants have called and given opportunities to ask questions. During this conversation,

3http://qeeg.co.uk/
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Figure 3.2: Visit to Acupuncture Clinic, showing myself as a participant, along with Dr.
Tony Steffert (EEG Specialist and Researcher) and Dr. Na Helian (My Principal Supervi-
sor).

they were asked to give their verbal agreements to proceed and to complete a 10-minute
online questionnaire before attending their first sessions which were about a week later.
There were certain requirements needed from participants before the recording. They are
shown as follows:

1. To remove any bangles or bracelets and to keep still during measurements.

2. To wear comfortable ordinary clothing: not too tight anywhere.

3. To abstain from consuming caffeine, nicotine, alcohol or a heavy meal for at least
two hours before attending for a session.

4. To wash hair not more than 12 hours before a session, and not to wear any hair
products (such as conditioner) during the sessions.

5. To wear glasses rather than contact lenses during the EEG recording.

6. To avoid any strenuous activity for two hours before a session.

7. To bring with a list of any medication currently taking (including non-prescription
drugs, nutritional supplements or herbal products).

People who had suffered a severe head injury in the past, suffered from epilepsy or
diabetes, had cancer, wore an implanted electronic device, or dependent on psychoactive
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medication were not eligible to take part in this study. Nor was anyone who was pregnant,
or who had a condition in which they impaired peripheral circulation (such as Raynaud's
syndrome), or who had any shoulder, arm or hand injury.

The steps used for recording, and some photos from the recording process of this dataset
are available in Appendix A.

3.2.2 Dataset 1

This dataset consists of EEG and ECG recordings from 15 participants without any known
medical conditions. The dataset was obtained for ten 5-minute time sequential slots in
a single session in a relaxed state with eyes open. EEG and ECG recording were made
simultaneously.

For EEG data, the sampling rate used was 250Hz (because of the storage rate of the
Mitsar device (Mitsar-EEG-BT) used for EEG recording was 250Hz), and the reference
was linked to ear electrodes (A1 and A2). 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3,
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) were used. A mild skin abrasive gel was
used to abrade the scalp lightly and then an electrically conductive gel was applied to their
scalp at the electrodes (both gels have been washed out of their hair easily).

For ECG data, the sampling rate was 256Hz (because of the storage rate of the Biotrace
device used for ECG recording was 256Hz). The measurement of ECG involved detecting
the heart electrical signals via two electrodes to record the electrical activity of the heart
over time- one electrode was positioned on the volar surface of each forearm, with an addi-
tional electrode as a ground on the dominant side. However, during the data preprocessing
steps we have encountered ECG data was very noisy, and we could not remove the noise
(obtained from a faulty device) from the signals. Therefore, for this dataset, I have used
Blood Volume Pulse (BVP) data, which was measured using the sensor attached to the par-
ticipant’s finger. According to (Kushki et al., 2011), Heart Rate Variability (HRV) can be
estimated using the ECG or BVP. Chapter 2 describes the detail about HRV.

Each participant attended for a single session 85-minutes (50-minute recording, and
35-minute set-up time) sessions (in randomised, counterbalanced order), at intervals of 1-2
weeks. In each session, TEAS were applied to a different combination of points on the
hands, at different frequencies by David Mayor 4 (Who is an acupuncturist, and has over
25 years experience in using TEAS). The intensity of stimulation was always adapted to
what participants found comfortable.

4https://www.welwynacupuncture.co.uk/
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At the beginning of each recording, participants were required to sit in a comfortable
chair with forearms supported and asked to complete two short questionnaires about med-
ical conditions, medications, recent intake of food, drink, how well they slept, and their
concern to use their data in research (10-minute) and a quick measurement scale of current
feelings (5-minute). After this, the EEG electrode cap was positioned on the participant’s
head. Other sensors were attached to arms and fingers to record heart rate, skin blood flow,
and temperature. Following an initial 5-minute baseline recording (with no acupuncture
stimulation), TEAS were applied on both hands for 5-minute at one acupuncture stimula-
tion frequency (2.5 Hz/10 Hz/80 Hz) in a randomised order for each participant, followed
by a 10-minute break during which monitoring was continued. Halfway through this break,
I asked participants to complete the same measurement scale as before and had the oppor-
tunity to move around to make themselves comfortable. Another 5-minute of stimulation at
a different frequency was followed, again with a 10-minute break afterward during which
they completed the measurement scale. This process was repeated for the third time, and
then the various electrodes and sensors were removed. Finally, participants were asked to
complete the initial questionnaire again, and any other feedback provided was recorded at
this time as well.

Figure 3.3: Dataset 1- Time line diagram showing slot’s information

3.3 Other Datasets

In this section, I am going to give information for the other nine datasets: Datasets 2-10;
Datasets 2, 3, 4 and 6 belong to EEG researcher Dr. Tony Steffert 5 and Acupuncturist
David Mayor 6(Steffert, 2018), (Steffert and Mayor, 2013), (Steffert and Mayor), (Mayor

5http://qeeg.co.uk/
6https://www.welwynacupuncture.co.uk/
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and Steffert, 2016), (Mayor and Steffert, 2013), (Mayor and Steffert, 2016), (MAYoR),
(Mayor and Steffert), who gave me their permission to use these datasets (Datasets 2, 3, 4,
and 6) in my research; and Datasets 5, 7, 8, 9, and 10 was obtained from Internet.

3.3.1 Dataset 2

This dataset consists of EEG and ECG recordings from 7 participants with no prior history
of neurological or psychiatric disorders, learning disabilities, drug abuse, or chronic illness.
Participants were asked to refrain from drinking caffeine or alcohol during the 12 hours
prior to the recording sessions, and to arrive with clean, dry hair. The main aim of recording
this dataset was to determine whether the electrical activity of the cerebral cortex (EEG)
and heart (HRV) change in different ways in response to different frequencies of TEAS
method applied to four different body locations (Left Hand, Below Left Knee, Right Hand,
and Below Right Knee). These data were obtained over ten 5-minute slots with eyes open,
including resting state data in the first and the last slot. The EEG and ECG recording were
made simultaneously.

For EEG data, the sampling rate used was 250Hz, and the reference was linked to ear
electrodes. 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, and O2) for EEG recording were used.

For ECG data, the sampling rate was 256Hz. Measurement of heart rate variability
(HRV) involves detecting the heart’s electrical signals via two electrodes to record the elec-
trical activity of the heart over time; one electrode was positioned on the volar surface of
each forearm, with an additional electrode as the ground on the dominant side.

The EEG and ECG recording are 50-minute long, dividing data into ten 5-minute slots:
three baseline slots and six acupuncture stimulation slots. The stimulation parameters (e.g.,
body location) are kept constant within each intervention but varies between interventions.
Each participant visited twice, during which the TEAS stimulation of either 2.5Hz or 10Hz
is applied (randomised order used) at four different body locations (Slot 3 to 8) with eyes
closed. The baseline measurements are slots 1, 2, and 9.

3.3.2 Dataset 3

This dataset consists of EEG and ECG data of 12 participants with no prior history of
neurological or psychiatric disorders, learning disabilities, drug abuse, or chronic illness.
Participants were asked to refrain from drinking caffeine or alcohol during the 12 hours
prior to the recording sessions, and to arrive with clean, dry hair. This dataset is derived us-
ing both Electroacupuncture (EA) and Manual Acupuncture (MA) method of acupuncture
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Figure 3.4: Dataset 2- Time line diagram showing slot’s information

in turn. The main aim of recording this dataset was to determine whether the electrical ac-
tivity of EEG and heart HRV change in different ways in response to different frequencies
of EA and MA methods applied. EA is an acupuncture method, with needles being inserted
at specific points on the body (Dr.Evans, 1998-2019), as shown in Figure 3.5. The needles
are then connected to a device that generates continuous electric pulses. These devices are
used to adjust the frequency and intensity of the impulse being delivered, depending on
the condition being treated. EA uses pairs of needles so that the impulses can pass from
one needle to the other. Manual Acupuncture (MA) is an acupuncture method, similar to
EA, needles are inserted at specific points on the body (Dr.Xie, 1998-2019). As shown in
Figure 3.6, instead of passing electric pulses through the needle, needles are twisted by or
otherwise manipulated by an acupuncturist for MA.

Figure 3.5: Electro acupuncture (EA) technique (Dr.Evans, 1998-2019).

For EEG data, the sampling rate used was 250Hz, and the reference was linked to ear
electrodes (A1 and A2). 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, and O2) for EEG recording were used.
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Figure 3.6: Manual Acupuncture (MA) technique (Dr.Xie, 1998-2019)

For ECG data, the sampling rate was 256Hz. Measurement of heart rate variability
(HRV) involves detecting the heart’s electrical signals via two electrodes to record the elec-
trical activity of the heart over time; one electrode was positioned on the volar surface of
each forearm, with an additional electrode as the ground on the dominant side.

All participants attended four visits, during each visit stimulation performed at four
different locations (in randomised order): Right (Below Right Knee and Right Hand), Left
(below Left Knee and Left Hand), Upper Body (Right and Left Hands) and Lower Body
(below Left and Right Knees). EEG and ECG monitoring was carried out in eight 5-minute
sequential slots with stimulation at a single location: EA stimulation of 2.5Hz, 10Hz, 20Hz,
and 80Hz is applied (Slot 3 to 6), MA stimulation applied in two slots (Slot 2 and Slot 7),
and baseline measurements are slots 1 and slot 8.

Figure 3.7: Dataset 3- Time line diagram showing slot’s information
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3.3.3 Dataset 4

This dataset consists of scalp EEG recordings from 20 participants, while they watched a
short documentary movie. All participants were healthy with no prior history of neuro-
logical or psychiatric disorders, learning disabilities, drug abuse, or chronic illness. Par-
ticipants were asked to refrain from drinking caffeine or alcohol during the 12 hours prior
to the recording sessions, and to arrive with clean, dry hair. This dataset was obtained
with four slots (three 3-minute slots, and one 60-minute slot) in a relaxed state. The main
aim of recording this dataset was to determine whether EEG activity change with different
emotions shown in the film.

The sampling rate of this dataset was 500Hz, and the reference was linked to ear elec-
trodes (A1 and A2). 10 electrodes (F7, F3, Fz, F4, F8, T5, P3, Pz, P4, and T6) were
used.

The EEG recording is 69-minutes long, which is divided into four slots: three baseline
slots and one film-watching slot. Each participant visited once, during which 1-hour long
documentary film was played. The recordings of 20 participants took 4 days to complete-
recording two sessions a day with each session collecting EEG recordings of three par-
ticipants simultaneously. The baseline measurements are slots 1, 2, 4, and 60-minute slot
watching a film is slot 3.

Figure 3.8: Dataset 4- Time line diagram showing slot’s information

3.3.4 Dataset 5

This dataset consists recordings of EEG signals for the analysis of human affective states
(Koelstra et al., 2012). 32 participant's EEG signals and peripheral physiological signals
were recorded while the participants watched forty 1-minute long excerpts of music videos.
Participants rated each video in terms of the levels of arousal, valence, like/dislike, dom-
inance, and familiarity. For 22 of the 32 participants, the frontal face video was also
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recorded. In my thesis, I have only utilised EEG signals of 32 participants from this
dataset. The main aim of this dataset was to detect emotional cues occurring during human-
computer interaction and synthesizing emotional responses.

For EEG data, the sampling rate used was 512Hz, and the reference was ear electrodes.
This dataset contains 48 recorded electrodes (32 EEG electrodes, 12 peripheral electrodes,
3 unused electrodes, and 1 status electrode). As they used the standard EEG electrode
names (according to the 10%-20% system) I was able to identify 15 electrodes (from the
standard EEG electrodes name from 10%-20% system) detail based on the information
provides (Koelstra et al., 2012). These are the 15 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8,
C3, Cz, C4, P3, Pz, P4, O1, and O2).

Furthermore, The data were recorded in two separate locations. Participants 1-22 were
recorded in Twente and participants 23-32 in Geneva. The EEG electrodes’ numbering
was slightly different. Based on dataset information provided on 7, I could identify the
difference and used the appropriate channels accordingly. More information about this
dataset can be found on the link above, and in (Koelstra et al., 2012), where they utilised
this dataset for the first time.

3.3.5 Dataset 6

This dataset consists of EEG recordings from 13 participants with medical condition Autism.
Autism is a mental condition, and presented from early childhood, is characterized by great
difficulty in communicating and forming relationships with other people and in using lan-
guage and abstract concepts (Frith, 2003). This dataset was recorded with a 5-minute time
slot in a relaxed state with eyes opened.

The sampling rate of this dataset was 250Hz, and the reference was linked to ear elec-
trodes (A1 and A2). 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, and O2) were used.

3.3.6 Dataset 7

This dataset consists of EEG recording from 5 participants with medical condition Epilepsy.
Epilepsy is a neurological disorder marked by sudden recurrent episodes of sensory dis-
turbance, loss of consciousness, associated with abnormal electrical activity in the brain
(Lennox, 1960). This dataset was obtained from machine learning repository (Dheeru and
Karra Taniskidou, 2017), and belongs to (Andrzejak et al., 2001). This dataset was recorded
with a 5-minute time slot. The aim of this dataset was to analyse sets of EEG time series:

7https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
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surface EEG recordings from healthy participants with eyes closed and eyes open, and
intracranial EEG recordings from epileptic patients during the seizure free interval from
within and from outside the seizure generating area as well as intracranial EEG recordings
of epileptic seizures (Andrzejak et al., 2001).

The sampling rate of this dataset was 173Hz, and the reference was linked to ear elec-
trodes (A1 and A2). An EEG cap of 100 Electrode had been used, out of which 19 elec-
trodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2)
following the standard 10%-20% system (Klem et al., 1999), were selected in my research.
More Information about this dataset is available at 8.

3.3.7 Dataset 8

This dataset contains EEG recording from 22 participants with medical condition Seizure
(Goldberger et al., 2000). A Seizure is a sudden, uncontrolled electrical disturbance in
the brain. It can cause changes in behaviour, movements or feelings, and in the levels of
consciousness. If a participant has two or more seizures or a tendency to have recurrent
seizures, then they might have epilepsy (MayoClinic, 1998-2018). This database, collected
at the Children’s Hospital Boston, consists of EEG recordings from pediatric participants
(5 males, ages 3–22; and 17 females, ages 1.5–19) with intractable seizures. Participants
were monitored for up to several days following withdrawal of anti-seizure medication
in order to characterize their seizures and assess their candidacy for surgical intervention
(Goldberger et al., 2000). This dataset consists of twelve 5-minute time slots.

The sampling rate used was 256Hz, and the reference was linked to ear electrodes (A1
and A2). 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1, and O2) were used. This dataset was obtained from PhysioNet Database, more
information about this dataset is available at 9.

3.3.8 Dataset 9

This dataset contains ECG recordings from 10 participants; including 5 participants without
any medical condition; and 5 participants with medical condition Congestive Heart Failure
(CHF). The aim of this dataset was to determine whether normal heart rate is chaotic and to
identify the difference between participants with CHF and without CHF. CHF occurs when
the heart cannot pump sufficient, to maintain blood flow to meet the needs of the body.

8http://epileptologie-bonn.de/cms/upload/workgroup/lehnertz/eegdata.html
9https://archive.physionet.org/pn6/chbmit/
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Symptoms commonly include shortness of breath, tiredness and leg swelling. This dataset
was obtained from PhysioNet Database 10, and belongs to (Goldberger et al., 2000).

Each ECG time series is about 24-hours long (roughly 100,000 intervals). One ECG
electrode (placed on the left chest) was used to record the ECG signals. The sampling rate
used for ECG data is 256 Hz. More information about this dataset can be found on 11.

3.3.9 Dataset 10

This data set consists of ECG recordings from 5 women in labour, between 38 and 41 weeks
of gestation, with cardiac condition Fetal echo-cardiography (Fetal ECG). Fetal ECG is the
name of the test used to diagnose cardiac conditions in the fetal stage. Cardiac defects
are amongst the most common congenital disabilities. The diagnosis in the fetal stage is
important because it might provide an opportunity to plan and manage a baby when the
baby is born. The main aim of this dataset was to assess reliability of indirect abdominal
electrocardiography as an alternative to the commonly used Doppler ultrasound monitoring
technique. I have obtained this dataset from PhysioNet Database (Goldberger et al., 2000),
(Matonia et al., 2006).

The sampling rate used for ECG data was 1000 Hz (1 kHz). Each recording comprises
four different signals acquired from the maternal abdomen and the reference direct fetal
electrocardiogram registered from the fetal head. Four ECG electrodes were placed around
the navel, and a reference electrode placed above the pubic symphysis and a common mode
reference electrode (with active-ground signal) placed on the left leg. In all cases, the scalp
electrode was placed for a clinical indication, and all women consented to participate in
this study. More information about this dataset can be found at 12

3.4 Summary

In this chapter, I have presented the description of datasets I have used in my research,
dividing them into two parts: Self Recording Dataset, Other Datasets. I will use these
datasets in the chapters, as shown in Table 3.1.

The differences among these datasets, other than participants and the number of elec-
trodes are:

10https://archive.physionet.org/challenge/chaos/
11https://physionet.org/challenge/chaos/
12https://physionet.org/physiobank/database/adfecgdb/?C=D;O=A
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1. Body location where TEAS stimulation has been performed. For example, for Dataset
2, four different body location (Left Hand, Below Left Knee, Right Hand, and Be-
low Right Knee) has been used to perform TEAS stimulation, and for Dataset 1, and
Dataset 3 only one body location (Dominant Hand),

2. Stimulation technique used. For Example, Dataset 1, Dataset 2 used TEAS, whereas
Dataset 3 used EA and MA both, the rest of the datasets did not use any stimulation,

3. Total time length and individual slot length is also different for each of them,

4. Medical conditions: Datasets 1-5 contains participants without any medical condi-
tions, whereas Datasets 6-10 contains participants with medical conditions, such as
Autism, Epilepsy, Seizure, Congestive Heart failure, and fetal ECG, respectively.

Last and most important is the utilisation of these datasets in individual Chapters in my
thesis, as summarised in Table 3.1. For Example, Dataset 1 is used in Chapter 6, 7, and 8.
Dataset 4, Dataset 5, and Datasets 6-8 are used in Chapter 6. Dataset 2 is used in Chapter
7 and 9. Finally, Dataset 3, and Datasets 9-10 are used in Chapter 9.
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Chapter 4

Time Series Data Preprocessing

4.1 Introduction

Data preprocessing is to keep valuable information about the raw data excluding noise. The
effect of how well data are processed can be found in the analysis process. Without pre-
processing, the analysis of the data wont be accurate and might be misleading. Therefore,
in this chapter the focus is to describe what is data preprocessing, why is it important, pre-
processing techniques used for time series data, and in particular for EEG and HRV time
series data are discussed. Furthermore, well-known data preprocessing techniques for time
series data, such as Independent Component Analysis (ICA), Fast Fourier Analysis (FFT),
and Wavelet Transform (WT), are described, and illustrated along with an example. The
aim of this chapter is to provide thorough overview of data preprocessing techniques with
concrete examples, which could be very helpful to understand how the different techniques
work, how can I justify the preprocessing outcome obtained for my dataset and how can I
be sure to conclude my research contributions.

4.1.1 Data Preprocessing and Its Importance

Data analysis is the basis for investigations in many fields of knowledge, from science to
engineering and from management to process control. Data on a particular topic acquired
in the form of symbolic and numeric attributes. The source of these data varies from human
beings to sensors with different degrees of complexity and reliability. Analysis of these data
gives a better understanding of the phenomenon of interest. The main objective of any data
analysis is, therefore, to discover knowledge used to solve problems or make decisions.
However, problems with data may prevent this. Therefore, data preprocessing analyse data
intelligently. Data preprocessing might be a time-consuming task, and may be performed
on the data to understand the nature of the data by performing a more meaningful data
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analysis, and extracting more meaningful knowledge. In most applications, there is a need
for more than one form of data preprocessing. Identifying types of data preprocessing are,
therefore, a crucial task.

Noise in data can be attributed to several sources, noise added by amplifiers and sig-
nal conditioning circuitry, jittering in the sampling device, non-linearities and quantisation
noise in the analogue-to-digital (A/D) converter, extraneous noise picked up from the envi-
ronment (Rubel et al., 1991), and data transmissions between channels and sensor thresh-
olds (upper/lower).

When data exhibits too much variation or non-stationary behaviour, the use of time
series models may provide a reliable approach. Variation is present in data from most ap-
plication domains. For example, the variation could be because of: (i) process equipment,
(ii) raw material used, (iii) process environment, (iv) human operating procedures and (v)
individual decisions or process plans (Yarling, 1993). In most process monitoring applica-
tions, time series means transforming data into a static collection of features that represent
a view of the operation.

4.1.2 Preprocessing Techniques for Time Series Data

Moving Average (MA) smooths data by replacing each data point with the average of the
neighbouring data points. The method is based on the idea that large irregular component
will exert a smaller effect with its immediate neighbours when averaged. MA smooths
the data and makes it easier to spot a trend, removing short term noise from a data set
(Shumway and Stoffer, 2011). MA can be used for time series data such as economical,
signal processing and financial data.

Regression Analysis (RA) is the process of estimating the relationships among variables
(a dependent variable and one or more independent variables), which is used for prediction
and forecasting (Shumway and Stoffer, 2011). RA helps to understand how the typical
value of the dependent variable changes when any one of the independent variables varies,
while the other independent variables are held fixed. The theory associated with linear
regression is well understood and allows for the construction of different types of easily
interpretable statistical intervals for predictions, calibrations, and optimizations.

Singular Spectrum Analysis (SSA) is a non-parametric spectral estimation method.
SSA combines elements of classical time series analysis, multivariate statistics, multivari-
ate geometry, dynamical systems and signal processing (Elsner and Tsonis, 2013). SSA,
aiming to answer following: what time series components can be separated by SSA, and
how to choose the window width and make proper grouping for extraction of a desirable
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component (Golyandina et al., 2001). SSA can be used for classical time series analy-
sis, multivariate statistics (observation and analysis of more than one outcome variable),
multivariate geometry, dynamical systems and signal processing data.

Morphological Component Analysis (MCA) is the method of decomposing a signal into
its components. This method is based on the assumption that every signal component has a
different shape that enables its reconstruction using sparse representation. Each component
is sparsely represented by different bases (Discrete Cosine Transform (DCT), wavelet and
Dirac basis). MCA separates features that present different morphological aspects in an
image, and it can be deemed as a fast and simple basis pursuit (Gao et al., 2010), in which
1) its dictionary is a concatenation associated with a fast transformation and 2) constraints
can be easily imposed on decomposed components. MCA can be applied to single-channel
EEG signals to remove artefacts (Yong et al., 2009) even though it has been shown to have
interesting applications in image inpainting (Elad et al., 2005) and Magnetoencephalogra-
phy (MEG) signal decomposition (Ozkurt et al., 2007).

Principal Component Analysis (PCA) transforms a set of multivariate data with corre-
lated components into a set of uncorrelated components by finding the orthogonal direction
of the largest variance in the EEG signals. PCA can be used for image processing, bio-
logical data, telecommunication, audio processing, etc. PCA finds orthogonal directions of
greatest variance in the data. For example, a method to remove eye artefacts from multi-
channel EEG It explains the maximum amount of variance with few components (Duszak
and Koczkodaj). Independent Component Analysis (ICA) observes that random data are
linearly transformed into components that are maximally independent of each other and
simultaneously have interesting distributions (Comon, 1994). ICA is an application that
can be found in many areas, such as audio processing, biomedical signal processing, image
processing, telecommunications, and econometrics. ICA can be formulated as the estima-
tion of a latent variable model. This method can be used to detect and remove a wide
variety of artefacts (including eye blinks, muscle noise, heart signal, and line noise) from
spontaneous EEG data.

Fast Fourier Transform (FFT) is among the most common methods of noise modelling
for data preprocessing. Classic Fourier transform/spectral analyses signals in terms of fre-
quency components among the whole spatial domain, which loses time localisation. The
Fourier transform is therefore appropriate for long time periodic signals. Short time win-
dow Fourier transform uses a set of window functions to restrict transform length and can
be used to provide better time localisation. The popularity of FFT is evidenced by the wide
variety of application areas. In addition to conventional radar, communications, sonar, and
speech signal processing application, the current field of FFT usage include biomedical
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engineering, imaging, analysis of stock market data, spectroscopy, metallurgical analysis,
nonlinear system analysis, mechanical analysis, and so on (Brigham and Brigham, 1988).

The Wavelet Transform (WT) is similar to the Fourier transform (or much more to the
windowed Fourier transform) with a completely different merit function. The main dif-
ference is this: Fourier transform decomposes the signal into sines and cosines, i.e. the
functions localised in Fourier space; in contrary the wavelet transform uses functions that
are localised in both the real and Fourier space (Bultheel et al., 1995). WT is a mathe-
matical tool that can be used for extracting information from a variety of data forms, such
as image and audio signals (Lee and Lim, 2012). The theory of wavelet is utilised as an
essential technique in specialised research in electronics, mechanics, computers, commu-
nications, medicine, biology, astronomy and so on (Addison, 2017). It is important in the
deconstruction of non-stationary and/or non-periodic signals. Therefore, it has been used
in different places in signal processing to compress and de-noise data (Sifuzzaman et al.,
2009).

For time series data such as EEG and HRV, certain preprocessing techniques work better
than others, and they are described in the following section.

4.1.3 Preprocessing Techniques for EEG and HRV Time Series Data

In the previous section general preprocessing techniques for time series, in general, are
described. Some preprocessing technique suits to analyse EEG and ECG signals, but not
all of them. For example, MCA is the best technique when analysing images, MA and RA
are perfect for economic data and when prediction are needed. ICA, FFT and WT would
be most appropriate techniques for EEG and ECG, not just because of their extensive use
by researchers, but because of their ability to analyse signals in both domains time and
frequency.

The main goal of identifying PCA is to select proper attributes. However, due to some
drawbacks with PCA, such as it cannot completely separate eye movements from EEG
signals, especially when they have comparable amplitudes. It does not recover original
signals because it only uses covariance. Whereas ICA is computationally efficient than
PCA (Comon, 1994), it can simultaneously separate the EEG and artefacts into independent
components without relying on the availability of reference artefacts. It avoids the problem
of mutual contamination between EEG and Electrooculography (EOG) channels that could
not be solved with filters, regression and PCA. ICA is able to separate superimposed signals
into components having different statistical characteristics. It is applicable to removal of
the wide variety of EEG artefacts, and it can find original co-ordinate (Beckmann et al.,
2005), (Makeig et al., 1996).
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Fourier/spectral analysis of a signal involves decomposition of the signal into its fre-
quency (sinusoidal) components. In other words, the original signal can be separated into
its sub-spectral components by using spectral analysis methods (Akin et al., 2000). Among
spectral analysis techniques, FFT is considered being the best transformation between time
and frequency domains because of it being time shift invariant (Proakis et al., 1992).

The fact is that EEG signals, are nonstationary, and by the use of the FFT, small changes
may not be realised and the analysis may change depending on the length of data. So, for
spectral analysis, it can be said that WT is more suitable than FFT (Akin, 2002). The
reason for this success depends on the scaling and the shifting properties of the mother
wavelet (Lee and Yamamoto, 1994). Another advantage of the WT is a 3 dimensional
representation of signals as amplitude, frequency, and time.

For EEG signals, various methods based on discrete wavelet transform (DWT) are re-
ported for the pre-processing (Faust et al., 2015), (Kevric and Subasi, 2017), (Mumtaz
et al., 2017), (Kumari and Vaish, 2014), (Kumari et al., 2014). Their results recommended
that more scientific work has been carried out using the DWT methods than the Continu-
ous Wavelet Transform (CWT) because EEG and ECG are discrete signals. These research
suggests, that using WT, it is possible to differentiate a person from another person, based
on the coefficient of variation over each brain region such as frontal, cerebral, parietal and
occipital. For ECG signal, various feature extraction methods based on DWT are reported
(Sudarshan et al., 2017), (Acharya et al., 2017), (Dolatabadi et al., 2017), (Thomas et al.,
2015), (Kutlu and Kuntalp, 2012). WT has been successfully utilised to extract features
from ECG data, For example, for accurate detection of congestive heart failure (CHF)
(İşler and Kuntalp, 2007), coronary artery disease (CAD) (Giri et al., 2013) and myocar-
dial infarction (MI) (Jayachandran et al., 2010), cardiac arrhythmias (Khadra et al., 1997).
Their results suggest, that the detection of heart disorders can be done more accurately with
DWT.

In summary, the different types of preprocessing techniques which have been used for
EEG and ECG are Fast Fourier Analysis (FFT), Independent Component Analysis (ICA),

and Discrete Wavelet Transform (DWT). In this chapter, the explanation of these methods,
how these methods work and why they are best for preprocessing EEG and ECG times
series are available. In addition, it also describes each method along with an illustrative
example.
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4.2 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a blind source separation (BSS) method that
finds statistically independent and non-Gaussian components of multivariate data. The tar-
get of ICA is to separate non-Gaussian signals. The concept of the ICA was first proposed
by (Jutten and Herault, 1991). In the early 1990s (Tong et al., 1991b), and (Tong et al.,
1991a) conducted a more systematic study of the uncertainty of the BSS problem solution,
that is identifiable. The basic of ICA for solving BSS problems were defined by (Comon,
1994), assuming that the components recovered from the mixed signals using appropriate
linear transformations are statistically independent of each other.

ICA is mainly used to solve BSS problems of finding signals from observations (more
than 1 unknown source). In the cases where the source signals and the mixed signals are
unknown, assuming that the source signals are statistically independent ensures that ICA
can separate the source signals from the mixed signals well. In practical problems, the
assumption of independence is reasonable, therefore, ICA can be applied in many fields.
The reason for using ICA in this work is to remove artefacts from EEG. There are different
types of artefacts presenting EEG signals. For example, muscle movement includes: chew,
swallow, facial muscle, and so on. These artefacts usually contain high amplitude and
very fast activities. For example, muscle artefacts contain a greater number of amplitudes.
For facial muscle and scalp movements, the amplitudes should be higher than of clinical
EEG and too fast to be visually estimated. These artefacts most commonly occur in frontal
and temporal electrodes. For chew and swallow movement, the artefacts have a wide field
with maximal amplitude frontally and comprise isolated slow waves, Delta frequency range
activity, or more typically slowing with faster frequencies. Therefore, the ICA focusses to
remove the artefacts from signals.

To illustrate the fundamental principle of ICA, let’s consider a cocktail party example,
where two groups are talking, and their conversations are being recorded using two micro-
phones. Let's consider signal S1(t) and S2(t) are being recorded from two microphones
X1(t) and X2(t). However, during these recordings, only the mixing of these two signals
can be recorded (for example from Microphone 1: a bit of signal S1(t) and a bit of signal
S2(t)).

Two recordings from microphone X1(t) and X2(t) are as below:

X1(t) = a11 ·S1(t)+a12 ·S2(t);
X2(t) = a21 ·S1(t)+a22 ·S2(t);
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Figure 4.1: Illustration of BSS problem that Independent Component Analysis (ICA) ad-
dresses using the popular cocktail-party problem. The goal is to recover the individual
signals S1(t) and S2(t) from the mixtures signals X1(t) and X2(t) measured from Micro-
phone 1 and 2, respectively.

Where, ai j is mixing coefficient.

Now the question is can we, with the two measurements, separate these two signals
S1(t) and S2(t). As shown in Figure 4.1, signals X1(t) and X2(t) are linear combinations
of signals S1(t)and S2(t). Now, what we have is X1(t) and X2(t), but what we want
is S1(t) and S2(t). In practice, we do not really know what ai j coefficients are. The
technique needed here is not how to get ai j, but to get approximate ai j. Once we know the
approximate mixing coefficient matrix A, then we can easily get our signals S1(t) and S2(t).
The determination of matrix A can be dependent on the actual location of the microphones.

Apart from the cocktail party problem, ICA application includes Radar detection, EEG
analysis, and so on. In Radar detection, we aim at detecting the returning signal which
we sent out bounces on an aircraft. The problem occurs when more than one aircraft
multi-returning signals. In this situation, we have to figure out how to pick up the target
aircraft from all the objects in the air. For EEG, each electrode measures the brain activities
collectively. In practice, we need to separate different activity signals that are going around
the brain.

The formal framework for ICA is, given N distinct linear combinations of N signals,
determine the original N signal. More general settings for the cocktail party problem can
be described here:

X = A ·S
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Where, X is the measurement used, S is the signal, A is the coefficient matrix:

U and V are unitary matrix (unitary matrix is the one, if its conjugate transpose is equal
to its inverse A∗ = A−1, please refer (Periwal and Shevitz, 1990) for more detail) to make
rotation, and Σ is a stretching matrix (Sparse matrix method that makes matrices sparser
by making them larger (Grcar, 2012), (Pissanetzky, 1984)) to stretch according to prin-
ciple components (set of values of linearly uncorrelated variables (Johnson and Bjordal,
2011)) (Comon, 1994). In the context of ICA, according to X = A · S, this will become
X = (U ·Σ ·V T ) ·S, where U ·Σ ·V is the singular value decomposition matrix A , T is the
transpose, and S is the signal. Once we know U , V and Σ, the process for ICA becomes
easy, because we just need to get our independent signals considering S = (U ·Σ ·V T )−1 ·X ,
which becomes S = A−1 ·X .

The task is to recover the source signals given no advance knowledge of the nature of
the sources or of the mixing process. To do this, it is necessary to find a square matrix,
A, specifying a filter that linearly inverts the mixing process. The key assumption used to
identify source signals from measures is that sources, Si, are statistically independent.

Let’s use Figure 4.2 to illustrate the fundamental concept of ICA:
The problem here is we don’t know the values for matrix A. All we are given is the

mixed unitary matrix U resulted from rotating V , stretching Σ of the signal S. Once, we
have mixed unitary matrix U , all we need to do is get the maximum variance along the
direction to find the angel Θ (between 0 to 90 degrees) of the data. Once, we have found
Θ, we can rotate it back to UT , and Σ−1, calculating the variance. The most tricky part is
how to separate the probability distribution (p).

The problem with recovering the source signals is that we don’t know the values of
matrix A, all we need to consider is the mixed matrix U for ICA. Once, we have mixed
matrix U , using PCA first get the maximum variance in the data to find the Θ of the data.
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Figure 4.2: Illustration of Independent Component Analysis (ICA) showing two stage pro-
cess: Do stage (left hand side of the figure), and Undo stage (right hand side of the figure).

Once, we have found Θ, we can rotate it back to UT , and Σ−1 calculating the variance, by
using ICA.

As shown in Figure 4.2, we need four steps to separate signals S1 and S2 from the
mixture of sources independently. The assumption is that the ”DO” stage, as shown, is we
already know, and the ”UNDO” stage is the one that we will need to get though ICA.

1. Calculate angle Θ to get a maximum variance.

Θ0 =
1
2

tan−1 −2∑U1U2
∑(U22−U12)

(4.1)

UT =

(
cosΘ0 sinΘ0
−sinΘ0 cosΘ0

)
(4.2)

where, U1, and U2 are the unitary rotation vectors for signal S1 and S2, resulted
after subtraction of the mean for U1, and U2, respectively. Therefore, U1 = U1−
Mean(U1), and U2 =U2−Mean(U2)

2. Undo Scaling of Singular Values.
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Σ =

(
1√

var1
0

0 1√
var2

)
(4.3)

where,

var1 = ∑((U1× cos(Θ0)+U2× sin(Θ0)
2)

var2 = ∑((U1× cos(Θ0− π

2 )+U2× sin(Θ0)
2)

where, var1 is the variance against principal component angel Θ0, and var2 is the
variance against orthogonal angel for second principal component direction.

3. Undo last unitary transformation calculating fourth-moment Kurtosis to make prob-
ability density separable. Φ0 calculation is based on the data after applying U∗, and
Σ−1.

V =

(
cos(Φ0) sin(Φ0)
−sin(Φ0) cos(Φ0)

)
(4.4)

where,

Φ0 = 0.25× tan[−∑(2×U1Sigma3×U2Sigma−2×U2Sigma3×U1Sigma)×
∑(3×U1Sigma2×U2Sigma2−0.5×U1Sigma4−0.5×U2Sigma4)]

U1Sigma = Σ(1,1)× (UT (1,1)×X1+UT (1,1)×X2);
U2Sigma = Σ(2,2)× (UT (2,1)×X1+UT (2,2)×X2);

where, U1Sigma and U2Sigma are the mixed vectors, as a result of unitary rotation
UT , stretching Σ−1, and mixed signals X1, X2. The U1Sigma and U2Sigma are
considered as an input to V for the unitary rotation again.

4. Once, these three steps are measured, we need to combine all steps, following Eq.(4.4):

S1ICA =V (1,1)×U1Sigma+V (1,2)×U2Sigma (4.5)

S2ICA =V (2,1)×U2Sigma+V (2,2)×U1Sigma (4.6)
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4.2.1 An Example of ICA Calculation

In order to understand how ICA works, let us mix and then separate two sources. First, let’s
define the time series of 2 independent sources S1(tople f t) and S2(topright) in Figure 4.3,
where,

S1 = [0,−0.66,−0.99,−0.81,−0.22,0.47,0.94,0.92,0.44,−0.26]

S2 = [−0.95,0.30,0.60−0.99,0.51,0.41,−0.98,0.70,0.18,−0.91]

Then we linearly mix these two sources. For this let us define matrix AA for the mixing
values to be used in the signals S1 and S2 to create mixed signals X1 and X2.

AA =

(
0.75 0.15
0.85 0.25

)

The target is to create mixed signals X1 and X2, where mixture will be the result of both
signals S1 and S2. For example, X1 will contains 75 percentages of S1 and 15 percentage
of S2. Whereas, X2 will contain 85 percentages of S1 and 25 percentage of S2. Adding
these values of mixing matrix AA matrix, mixed signals X1 and X2 will be as follow:

X1 = AA(1,1)×S1+AA(1,2)×S2
= 0.75×S1+0.15×S2
= [−0.14,−0.45,−0.65,−0.76,−0.09,0.42,0.56,0.80,0.36,−0.33]

X2 = AA(2,1)×S1+AA(2,2)×S2
= 0.85×S1+0.25×S2
= [−0.24,−0.49,−0.69,−0.95,−0.06,0.51,0.55,0.96,0.43,−0.45]

The mixed signals X1 and X2 are shown Figure 4.3. The middle panel on the left is
X1, middle panel on the right is X2. Finally, input these two signals into the ICA algorithm
which is able to uncover the original activation of S1 and S2, as shown in Figure 4.3 bottom
left and bottom right, respectively. In order to get source signals S1 and S2 separating from
the mixture X1 and X2 for the result shown in Figure 4.3, we will need to follow four steps
described earlier. They are as follows:
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1. According to Eq. (4.1 and 4.2):
Θ0 = 0.71, and

UT =

(
0.76 0.65
−0.65 0.76

)

2. According to Eq. (4.3):
var1 = 5.99 (the variance against principal component angel Θ0) , and var2 = 5.17
(the variance against orthogonal angel for second principal component direction).

Therefore, Σ =

(
0.41 0

0 0.44

)

3. According to Eq. (4.4):
Φ0 = 0.17.

Therefore, V =

(
0.99 0.17
−0.17 0.99

)

4. According to Eq. (4.5 and 4.6):
S1ICA = [−0.11,−0.27,−0.39,−0.50,−0.04,0.27,0.32,0.51,0.23,−0.23];
S2ICA = [−0.02,0.01,0.02,−0.01,0.01,0.00,−0.03,0.01,0.00,−0.02];

The result shows that information of mixed signal X1 and X2 are lost from original
signals S1 and S2 after applying ICA. The resulted signals S1ICA, and S2ICA, obtained
using ICA are not the same as S1 and S2, but they are approximated by ICA. The aim of
ICA is to approximate the probability distribution of signals S1 and S2, as seen earlier in
the discussion of ICA.

The software Mitsar/WinEEG is used for removing artefacts visually from EEG using
method ICA in my research.

4.3 Fast Fourier Transform

Fourier Transform (FT) allows us to examine signal from the perspective of both Time
Domain (TD) and Frequency Domain (FD). FT transforms the TD signal to FD which
allow the possibility to see the frequency components of a signal. The essence of the FT of
a signal is to decompose a signal into different frequencies of sinusoids. If these sinusoids
sums to the original signal at TD, then we have constructed the FT of a signal. A signal
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Figure 4.3: ICA example, a) showing two signals in blue colour S1(top left) and S2(top
Right), b) showing two mixed sources in red colour X1 (middle panel on left) and X2 (mid-
dle panel on right), with a linear mixture of sources S1 and S2, and c) showing uncovering
original activation in green colour of two signals S1 (bottom left) and S2 (bottom right)
after ICA.

in real life, EEG signal, for example, consists of a bunch of sine waves presenting in TD
(Burrus and Parks, 1991). This kind of signal presenting in TD is difficult to identify
the component by looking at them. The best way to identify specific components is to
transform the signal from time to frequency domain. Therefore, it is essential to convert
these signals from a time domain to the frequency domain, to find out the presence of
different frequency range within time series signals, such as EEG and ECG.

Discrete Fourier Transform (DFT) is widely used to transfer digital data to understand-
able data (in terms of frequencies of the signals). DFT provides both convert and reverse
functions. Converting function is to convert the TD to FD, and reversing function is to
revert it back to TD (Duhamel and Vetterli, 1990). However, DFT requires a complex com-
putation which spends a long time to calculate which is the biggest problem with it. It
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requires complex multiplication for the number of samples N (N •N = N2), therefore; it is
computationally expensive. The formula for DFT is given below:

x[k] =
N−1

∑
n=0

x[n] •W nk
N (4.7)

Where, W nk
N =− j2πk n

N is the constant stored in a table precomputed, x[k] is sampled in
frequency, x[n] is sampled in time, n is time index, k is frequency index, and N is the
number of samples.

Fast Fourier Transform (FFT) algorithm is developed from Discrete Fourier Transform
(DFT), to reduce the computation time (Cooley and Tukey, 1965). FFT processing faster
than DFT, which can be beneficial for a huge data set. FFT is mostly used in digital signal
processing to provide a frequency spectrum analysis. FFT is a computational algorithm that
reduces the computing time of DFT Eq. (4.7) to a time proportional to Nlog2N (Duhamel
and Vetterli, 1990). For example, let's have a look at a different value for N, as shown in
Table 4.1 below:

Table 4.1: Complex multiplication required for DFT and FFT for different value of N.

Length of N For DFT N2 For FFT Nlog2N
1000 106 104

106 1012 20×106

109 1018 30×109

As shown in Table 4.1, for N = 109, DFT will calculate N •N = N1018 samples. If each
operation took a nanosecond (NS) for the complex multiplications, then N1018 NS turn out
to be 31.2 years. In contrast, with FFT we can cut this down to Nlog2N = 30× 109 NS
taking only 30 seconds for the operation of multiplying N. The general idea of FFT is to
divide the data into the sequence as the even and odd index subsequence to compute the
DFT, assuming N must be a power of 2, for being faster. The formula for the FFT is given
below:

x[k] = ∑
nEven

x[n] •W nk
N + ∑

nOdd
x[n] •W nk

N (4.8)

where, even and odd indices are n = 2r, and n = 2r+1, respectively. r = 0,1,2, ..., N
2 −1.

x[k] =

N
2−1

∑
r=0

x[2r] •W kr
N
2
+W k

N

N
2−1

∑
r=0

x[2r+1] •W kr
N
2

(4.9)
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Where,
the first part of the addition is the N

2 DFT of even samples XE [k], the second part of the
addition is the N

2 DFT of Odd samples XO[k], W k
N is the phase factor.

Therefore,

x[k] = XE [k]+W k
N •XO[k] (4.10)

Figure 4.4: An example of 4 data point FFT algorithm structure, using a decomposition into
half-size FFTs. XE [k] is representing even samples, and XO[k] is representing Odd samples.

Figure 4.4 shows the graphical presentation of how the FFT works, where the even
indexes are shown as x[0],x[2], and odd indexes as x[1],x[3]. The output of these sequences
through N

2 DFT will be xE [0] and xE [1] for the FFT on even sequence, and xO[1] and xO[3]
for the FFT on odd sequence. Combining these two N

2 DFT’s of even and odd sequences
can give us the DFT of the overall sequence. The arrow indicates multipliers.

1. To calculate even sequence from the Eq 4.10:
xE [0] = x[0]+ x[2]
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xE [1] = x[0]+W k
N× x[2]

2. To calculate odd sequence from the Eq 4.10:
xO[0] = x[1]+ x[3]
xO[1] = x[1]+W k

N× x[3]

3. To calculate DFT of the overall sequence with Eq 4.10:
W4

0 = xE [0]+ xO[0]
W4

1 = xE [0]+W k
N× xO[0]

W4
2 = xE [1]+ xO[1]

W4
3 = xE [1]+W k

N× xO[1]

4.3.1 An Example of FFT Calculation

In order to understand how Fast Fourier Transform work, let us consider the following
example:

Find the FFT x[k] of the sequence [11,22,33,44], where N = 4, and k = 0,1,2,3. Based
on Eq. (4.8) and Figure 4.4, the result of the FFT calculation is shown in Figure 4.5.

To calculate the DFT of the overall sequence, we need to first calculate FFT on even and
odd samples, and then combining these two N

2 DFT’s of even and odd sequences, as seen
earlier in Figure 4.4. The steps to calculate the overall DFT for the sequence [11,22,33,44],
for N = 4 we will need to compute the DFT into 2 stages (log2N = 2), and total complex
multiplication we will need be (Nlog2N = 4). Here, the complex multiplication WN

k =−1
The calculation for FFT following Eq 4.10 is as follows:

1. To calculate even sequence from the Eq 4.10:
xE [0] = x[0]+ x[2] = 11+(33) = 44
xE [1] = x[0]+W k

N× x[2] = 11+(−1)×33 =−22

2. To calculate odd sequence from the Eq 4.10:
xO[0] = x[1]+ x[3] = 22+44 = 66
xO[1] = x[1]+W k

N× x[3] = 22+(−1)×44 =−22
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Figure 4.5: An example of 4 point FFT algorithm structure, using a decomposition into
half-size FFTs of odd and even sequences. xE [k] is representing even samples, and xO[k] is
representing Odd samples.

3. To calculate DFT of the overall sequence with Eq 4.10:
W4

0 = xE [0]+ xO[0] = 44+66 = 110
W4

1 = xE [0]+W k
N× xO[0] = 44+(−1)×66 =−22

W4
2 = xE [1]+ xO[1] =−22−22 =−44

W4
3 = xE [1]+W k

N× xO[1] =−22+(−1)×−22 = 0

Based on the example the output x[k] for the sequence [11,22,33,44] is WN
n = [110,−22,−44,0].

However, putting them in the right order for k= 0,1,2,3, the output x[k] = [110,−44,−22,0].
The sequence in TD X [n] and in FD x[k] are plotted in Figure 4.6.

The example we have seen earlier is the illustration of how to calculate the FFT. Let
us now see another example of how the FFT can transform TD to FD and display the
frequencies present in the signal. To illustrate this, I will show an FFT example on a
sinusoid signal using MATLAB. Let us create a signal containing a 50 Hz sinusoid of
amplitude 0.5 and a 120 Hz sinusoid of amplitude 1. The parameters needed to create this
signal are Sampling frequency Fs= 1000, Sampling period T = 1/Fs, Length of signal L=

1000, and Time vector t =(0 : L−1)×T . S= 0.5×sin(2×π×50×t)+sin(2×π×120×t)
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Figure 4.6: The sequence in TD X [n] (top in blue color) and in FD x[k] (bottom in red
colour).

In Figure 4.7, the top panel shows a sinusoidal signal (in blue), and the bottom (in
green) shows the FFT of the Signal S(t).

As seen in Figure 4.7, the presence of frequencies and their amplitude values can be
clearly visible by transforming the TD signal to FD using FFT. Therefore, FFT is used in
this research, to gather information of frequency ranges from EEG and ECG signals.

A MATLAB function, which is fft(), was used to find the frequency components of EEG
and HRV. It takes four parameters as follows:

FFT = f f t(r,NFFT )/L;

Where, Fast Fourier Transform f f t was used, r is the input signal, NFFT is used for
making FFT faster, assuming N must be the power of 2 from the original signal length L.
This pads the signal r with trailing zeros to improve the performance of the FFT.
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Figure 4.7: An example of FFT performance of signals S (Bottom panel- as shown in colour
green).

4.4 Wavelet Transform

FFT can transform TD to FD and show us the presence of frequencies in the signal. How-
ever, FFT loses the time information and shows only frequency information. Whereas,
Wavelet Transform (WT) can keep both time and frequency information. The WT of the
signal can be thought of as an extension of the classical Fourier transform (FT) - it works
on a multi-scale basis, instead of working on a single scale (Time or Frequency) as FT. This
is achieved by decomposition of the signal over dilated (scale) and translated (time) version
of the wavelet. So, for spectral analysis, WT is more suitable than FFT (Akin, 2002). WT
is designed to address the problem of signals with nonstationary. It includes representa-
tion of time function in terms of simple blocks, termed wavelets. These blocks are derived
from a signal generating a function called the mother wavelet by translation and dilation
operations. Dilation, also known as scaling, compresses or stretches the mother wavelet
and translation shifts it along the time axis (Daubechies, 1990), (Akay, 1997), (Unser and
Aldroubi, 1996). The WT can be categorised into continuous and discrete. Continuous
wavelet transform (CWT), implies that the scaling and translation parameters change con-
tinuously, and thus, represent considerable effort and a vast amount of data calculation for
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every possible scale. In addition, time series signals EEG and ECG are discrete signals.
Therefore, I have considered a discrete wavelet transform (DWT).

When undertaking the WT, two components are extracted from the signal: the approx-
imation and detail components. The approximation sub-signal is defined as the high scale,
the low-frequency component of the original signal. It is also referred to as a smoothed
signal. The detail sub-signal is the low scale, the high-frequency component of the original
signal. An input signal is decomposed by using a low-pass filter and high-pass filter fol-
lowed by down-sampling in each stage. The output of the first stage high-pass filter gives
the detail coefficient d1

m, whereas the low-pass filter gives the approximation coefficient a1
m,

where m is the scaling with the support of time-units (translation in time by an even number
of time-units). The decomposition of a signal up to three scales is shown in Figure 4.8.

Figure 4.8: Three level sub-band decomposition of discrete wavelet transform (DWT) im-
plementation; g[n] is the low-pass filter, and h[n] is the high-pass filter. g[n] is the approx-
imation part of the signal containing high scale and low frequencies, and h[n] is the detail
part of the signal containing low scale and high frequencies (Akay, 1997).

At each level in the above diagram, DWT decomposes the signal into low and high
frequencies. The approximation part of a signal contains high scale and low frequencies,
and detail part of a signal contains low scale and high frequencies The output of low pass
and high-pass filters for an input signal x[n] is given by:

ylow = ∑
n

x[n].g[−n+2k] (4.11)

yhigh = ∑
n

x[n].h[−n+2k] (4.12)

4.4.1 Haar Wavelet

In this section, I start with the simplest wavelet transform: Haar wavelet transform, which
can be used for signal decomposition (James and Walker, 1999). I have used extensively
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haar wavelets as examples in teaching because of its simplicity. In fact, it is the simplest
wavelet and has been a prototype for all other types of wavelet transforms (Malik and
Verma, 2012). Suppose a signal x consists of N elements in TD:

x = {xi}N
i=1 (4.13)

Like all wavelet transforms, the Haar transform decomposes a signal into two sub-
signals of half its length. One sub-signal is a running average or approximation; the other
sub-signal is a running difference or detail. The approximation part captures the trend of
the signal, and the detail part keeps the fluctuations of each feature. The precise formula
for the value of a1

m and d1
m for m = 1,2,3, ...N/2 are defined as follows:

am =
x2m−1 + x2m√

2
(4.14)

dm =
x2m−1− x2m√

2
(4.15)

It can be seen from Eq.(4.14), that the approximation part consists of a set of average
values for each pair in the original signal, divided by the square root of 2. Eq.(4.15) shows
that the detail part captures the difference of each pair in the original signal. Note that an
important property of the Haar transform is that it conserves the energies of signals. The
energy of the signal E is defined as follows:

E =
∫

x2dt, (4.16)

In the discrete case, where the energy is defined as the sum of the squares of signal
values, that is:

E =
N

∑
i=1

x2
i (4.17)

The energy of the approximation part accounts for a large percentage of the total energy.√
2 is used in Eq. (4.14) and (4.15) so that the Haar transform conserves the energy of a

signal (James and Walker, 1999).
The Haar transform can be performed at multiple levels. At the top level, that is level

one (level-1), a signal is transformed to two sub-signals a1
m (see Eq. (4.14) and d1

m (see Eq.
(4.15)). The second level is then carried out by computing a second trend a2

m and a second
fluctuation d2

m for the a1
m only. That is, we can continue recursively with the same process

to work on the next level, where the signal is always the approximation part obtained from
the preceding level.
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Figure 4.9 shows an example of the scaling and the wavelet function of Haar wavelet
transforms. As we can see from Figure 4.9, the Haar wavelets have two constant scaling
and wavelet numbers for the approximation and detail parts. Haar wavelet is discontinuous
and like a step function. The transformation with Haar wavelet is a simple wavelet that
involves averaging and differencing terms, storing detailed coefficients, eliminating data,
and reconstructing the matrix in a way that the resultant matrix is similar to the initial
matrix. It is not well adapted to approximate smooth functions.

Figure 4.9: Scaling (a) and Wavelets (b) functions being considered for Haar Wavelet (Mu-
tihac, 2006).

4.4.1.1 An Example of Haar Wavelet Calculation

In this section, how to calculate Haar Wavelet up to 2-levels are explained using a simple
time series, as an example. Let the input time series be x = [4,6,10,12,8,6,5,5], consisting
of eight values. The first approximation a1

m, and first detail d1
m of the signal x are computed

as follows:

a1
m = [4+6√

2
, 10+12√

2
, 8+6√

2
, 5+5√

2
] = [7.07,15.55,9.89,7.07]]
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d1
m = [4−6√

2
, 10−12√

2
, 8−6√

2
, 5−5√

2
] = [−1.41,−1.41,1.41,0]]

The second approximation, and detail parts of the signal x are computed by decompos-
ing the first approximation part a1. The second approximation a2, and second detail d2 of
the signal x are computed as follows:

a2
m = [7.07+15.55√

2
, 9.89+7.07√

2
] = [16,12]

d2
m = [7.07−15.55√

2
, 9.89−7.07√

2
] = [−6,2]

Figure 4.10 shown the original time series x = [4,6,10,12,8,6,5,5], the first level ap-
proximation part, and the first level detail part, to check the performance of Haar Wavelet
transformation.

Figure 4.10: Example of Haar Wavelet Transform: The top panel shows original signal in
magenta colour, the middle panel shows approximation part of WT in red colour, and the
bottom panel shows detail part of WT in blue colour.

How Haar works on EEG signal is displayed in Figure 4.11, the top panel shows the
EEG signal. The panels in the middle (approximation part of WT signal) and the bottom
(detailed part of WT signal) show the 1-level Haar transform of the original signal at the
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top. We can see it that the approximation part of the signal (in the middle panel) becomes
smoother than the original noisy one.

Figure 4.11: Example of 1-level Haar Wavelet Transform (WT) on EEG signal: The top
panel shows EEG signal, the middle panel (approximation part of WT signal) and the bot-
tom panel(detailed part of WT signal).

4.4.2 Daubechies Wavelet

Apart from the Haar transform, there are many other different types of wavelet transforms.
For example, another widely used type is Daubechies wavelets. Daubechies wavelet trans-
form has been successfully applied in many engineering related works (Amaratunga et al.,
1994). Similar to the Haar wavelets, it decomposes signals into the approximation and de-

tail parts, and preserves the energy of each signal. However, Daubechies uses more data
points to compute both the approximation and detail, rather than using just pairs of data as
was done in the Haar transform. Moreover, unlike the Haar wavelets using

√
2, Daubechies

uses different numbers to multiply with data points so that the signal’s energy can be kept
(Daubechies, 1990).

There are many Daubechies transforms, but they are all very similar. In this section, I
am concentrating on the simplest and commonly used for time series signals, the Daub4
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wavelet transform (Daubechies, 1990). The Daub4 wavelet transform is defined in essen-
tially the same way as the Haar wavelet transform.

By using Daub4 transform, the signal can be decomposed into the approximation and
detail. The precise formula for the value of a1

m and d1
m for window m = 1,2,3, ...N/2 are

defined as follows:
a1

m = x ·V 1
m (4.18)

d1
m = x ·W 1

m (4.19)

Where, x is the signal, am, and dm are the scalar product of x with a 1-level scaling

signal V 1
m, and wavelet W 1

m, respectively.
The only difference between the Haar and Daub4 wavelet transform lies in the way that

the scaling signals and wavelets are defined. Therefore, let’s discuss the scaling signals

first. Let the scaling numbers p1, p2, p3, p4 be defined by

p1 =
1+
√

3
4
√

2
, p2 =

3+
√

3
4
√

2
, p3 =

3−
√

3
4
√

2
, p4 =

1−
√

3
4
√

2
(4.20)

According to Eq.(4.20) p1 = 1.61, p2 = 3.61, p3 = 2.38, p4 = 0.38. Using these scal-

ing numbers, the 1-level Daub4 scaling signals are defined by:

V 1
1 = (p1, p2, p3, p4,0,0,0,0)

V 1
2 = (0,0, p1, p2, p3, p4,0,0)

V 1
3 = (0,0,0,0, p1, p2, p3, p4)

V 1
N/2 = (p3, p4,0,0,0,0, p1, p2)

Each scaling signal has the support of just four-time units. Notice also that the second
scaling signal V 1

2 is just translation by two time-units of the first scaling signal V 1
1 . Like-

wise, each subsequent scaling signal is a translation by the multiplication of two times-units
of 1

1. For V 1
N/2, we wrap-around to the start, since (p1, p2, p3, p4) has length 4, this would

send p3,and p4 beyond the length N of the signal x.
Using the natural basis of signals V1

0,V2
0,VN

0, the first level Daub4 scaling numbers

satisfy

V 1
m = p1 ·V 0

2m−1 + p2 ·V 0
2m + p3 ·V 0

2m+1 + p4 ·V 0
2m+1 (4.21)
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We now turn the discussion of the Daub4 wavelets. Let the wavelet numbers q1,q2,q3,q4

be defined by

q1 =
1−
√

3
4
√

2
, q2 =

√
3−3

4
√

2
, q3 =

3+
√

3
4
√

2
, q4 =

−1−
√

3
4
√

2
(4.22)

Notice that the wavelet numbers in Eq. (4.22) are related to the scaling numbers in
(4.20) by: q1 = p4, q2 = −p3, q3 = p2 ,and q4 = −p1. According to Eq.(4.20), q1 =

−0.12, q2 = −0.22, q3 = 0.84, q4 = −0.48. Using these wavelet numbers, the 1-level
Daub4 wavelets signals are defined by:

W 1
1 = (q1,q2,q3,q4,0,0,0,0)

W 1
2 = (0,0,q1,q2,q3,q4,0,0)

W 1
3 = (0,0,0,0,q1,q2,q3,q4)

W 1
N/2 = (q3,q4,0,0,0,0,q1,q2)

These wavelets are all translates of W 1
1 , with wraparound for the last wavelet. Each

wavelet has the support of just four-time units. The first level Daub4 wavelets satisfy

W 1
m = q1 ·V 0

2m−1 +q2 ·V 0
2m +q3 ·V 0

2m+1 +q4 ·V 0
2m+1 (4.23)

Figure 4.12 shows an example of the scaling and wavelet function of Daubechies (db4)
wavelet transforms. As we can see from Figure 4.12, the Daubechies wavelets has four
variable scaling and wavelet numbers for the approximation and detail parts. Daubechies
wavelet (db) is a family of orthogonal wavelets and known as most popular wavelet among
others. This mother wavelet is characterised by a maximal number of vanishing moments.
It is well adapted to approximate smooth functions.

4.4.2.1 An Example of Daubechies Wavelet Calculation

In this section, how to calculate Daubechies Wavelet at 1-level is explained using a simple
time series, as an example. Let the input time series be the same as previously defined in
her wavelet example, x = [4,6,10,12,8,6,5,5], consisting of eight values.

By examining Eq.(4.21), first level approximation a1 of the signal x is now computed
as follows:
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Figure 4.12: Scaling (a) and Wavelets (b) functions being considered for Daubechies
Wavelet (Mutihac, 2006).

a1
1 = [1.61∗4+3.61∗6+2.38∗10+0.38∗12] = [14.16]

a2
1 = [1.61∗10+3.61∗12+2.38∗8+0.38∗6] = [20.22]

a3
1 = [1.61∗8+3.61∗6+2.38∗5+0.38∗5] = [12.11]

a4
1 = [1.61∗5+3.61∗5+2.38∗4+0.38∗6] = [9.5]

Therefore,

am
1 = [14.16,20.22,12.11,9.5]

By examining Eq.(4.23), first level detail d1 of the signal x is now computed as follows:

d1
1 = [(0.38∗4+−2.38∗6+3.61∗10+−1.61∗12) = [1]
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d2
1 = (0.38∗10+−2.38∗12+3.61∗8+−1.61∗6) = [−1.38]

d3
1 = (0.38∗8+−2.38∗6+3.61∗5+−1.61∗5) = [−0.30]

d4
1 = (0.38∗5+−2.38∗5+3.61∗4+−1.61∗6)] = [−1.30]

Therefore,

dm
1 = [1,−1.38,−0.30,−1.30]

Figure 4.13 shown the original time series x = [4,6,10,12,8,6,5,5], the first level ap-
proximation part, and the first level detail part, to check the performance of Daubechies
Wavelet transformation.

Figure 4.13: Example of Daubechies Wavelet Transform: The top panel shows the original
signal in magenta colour, the middle panel shows approximation part of WT in red colour,
and the bottom panel shows detailed part of WT in blue color..

How Daubechies works on EEG signal is displayed in Figure 4.14, the top panel shows
the EEG signal. The panels in the middle (approximation part of WT signal) and the bottom
(detailed part of WT signal) show the 1-level Daubechies transform of the original signal at
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the top. We can see that the approximation part of the signal (in the middle panel) becomes
smoother than the original noisy one.

Figure 4.14: Example of 1-level Daubechies Wavelet Transform (WT) on EEG Signal: The
top panel shows EEG signal, the middle panel (approximation part of WT signal) and the
bottom panel(detailed part of WT signal).

Daubechies wavelet found to provide a better results than the Haar wavelet transform
for the datasets used in this work, also it is best suited for EEG and ECG data based on the
literature. Therefore, I have focused on the Daubechies wavelet transform.

A MATLAB function, which is dddtree(), was used to decompose the signals. It takes
four parameters as follows:

wt = dddtree(typetree;x; level;d f )

Where, discrete wavelet transform ’dwt’ was used as a typetree, x is the input signal, level

is the number of times the transform is applied, and d f is the decomposition filters that is
used by the wavelet transform, which are ’haar’ and ’db4’ in this research. The argument
’wfilters’ was used for wavelet filters.
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4.5 Summary

One of the most important problems in data preprocessing is how we know what valuable
information exists in the raw data so that we can make sure it is preserved. This may
depend upon our definition of data preprocessing. Some may argue that data preprocessing
is not a completely ”pre” process of data analysis. It needs feedback from the main data
analysis process. After all, the ultimate judgement whether one has done a good job for
data preprocessing is to see if the valuable information has been found in the later data
analysis process. It is very clear from the research shown in this chapter, that key features
of EEG and ECG signal can improve the analytical performance. Therefore, preprocessing
of these signals is vital, before any further analysis on analysing them. In this Chapter, I
have focused on the well-known data preprocessing techniques for time series data such as
ICA, FFT, and WT.
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Chapter 5

Methods for Analysing EEG and HRV
Time Series Data

5.1 Introduction

A general aim of time series analysis is to understand patterns in data. The understanding
of pattern in the time series data will influence the analysis that needs to be performed,
such as nonlinear or linear system. Time series analysis includes forecasting, determining
a transfer function for predictive purposes, describing relationships between related time
series, studying the effects of interventions on the time series, developing control schemes,
and other (Schiecke et al., 2016). Nonlinear time series analysis is a practical spin-off from
complex dynamical system theory and chaos theory. It allows one to characterise dynamical
systems in which nonlinearity gives rise to a complex temporal evolution. Importantly,
this concept allows extracting information that cannot be resolved using classical linear
techniques, such as power spectrum or spectral coherence.

Nonlinear time series dynamic analyses has been widely used to study the complex
behaviours and different structures of biological systems (Al-Angari and Sahakian, 2007).
Nonlinear dynamic analysis proves to be a robust approach for the assessment of differ-
ent physiological time series because it can unveil hidden patterns related to underlying
physiological mechanisms (Alcaraz and Rieta, 2010) (Richman and Moorman, 2000). The
chaotic behaviours of a cardiac system and brain waves indicate nonlinearity (Abásolo
et al., 2006). With the given nature of nonlinearity with Electroencephalogram (EEG) and
Heart Rate Variability (HRV), it turns out to be appropriate for analysing these nonlinear
time series data using well known nonlinear methods (Abásolo et al., 2006).

The framework of nonlinear time series analysis comprises a wide variety of methods
that allow one to extract various characteristic features of a dynamical system underlying
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some measured signal (Kantz and Schreiber, 2004). These methods include Correlation Di-
mension (CD) as an estimate of the number of independent degrees of freedom. Lyapunov
Exponent (LE) as a measure for the divergence of similar system states in time. Prediction
errors as detectors for the characteristic traits of deterministic dynamics. Detrended Fluc-
tuation Analysis (DFA) to determine the statistical self-similarity. Approximate Entropy
(AE), Sample Entropy (SE), and Multi-scale entropy (MSE) for measuring complexity of
the signals. Embedding Dimension (ED), and Poincare plots (PP) as state-space reconstruc-
tion for finding nature of the underlying dynamic system, Pearson’s Correlation Coefficient
(PCC) and Cross-Correlation (CC) for finding similarity between time series signals, and
so on. The aforementioned nonlinear time series measures are univariate, which means,
they are applied to a single signal measured from individual dynamics. In contrast, bivari-
ate measures are in analysing pairs of signals measured simultaneously from two dynamics.
Such bivariate time series analysis measures aim to distinguish whether two dynamics are
independent or interacting through some coupling. Some of these bivariate measures aim
to indicate not only the strength, but also the direction of these couplings.

Entropy is to predict the next state of a system based on what is known about the current
state of a time series. There are a number of different algorithms that have been used to
estimate entropy of a time series, Historically, the most popular was Approximate Entropy,
so it will be discussed in detail in this chapter. Approximate Entropy is popular, other
methods, with Sample Entropy as one of them, are built upon the Approximate Entropy with
the purpose of overcoming the drawbacks of Approximate Entropy such as bias, relative
inconsistency, and dependency with the sample length. Therefore, Sample Entropy will be
discussed in this chapter.

Pearson’s Correlation Coefficient is used to find the linear dependency between time
series data, whereas, Cross-correlation can find both linear and nonlinear dependency be-
tween time series data (Zou et al., 2003). Therefore, in this chapter I have used both Pear-

son’s Correlation Coefficient and Cross-Correlation methods for analysing EEG and HRV.
A time series can be used to reconstruct the attractor of the underlying dynamic process.
State-space reconstruction of a time series is a powerful approach for the analysis of com-
plex, nonlinear systems that appear ubiquitous in the nature and human world. Therefore,
the method Embedding Dimension for state-space reconstruction is also considered in this
chapter.

In summary, the different types of nonlinear methods for analysing EEG and HRV used
in this Chapter are Approximate Entropy (AE), Sample Entropy (SE), Pearson’s Correlation

Coefficient (PCC), Cross-Correlation (CC), and Embedding Dimension (ED). I have dis-
cussed the importance of linearity and nonlinearity along with their application in Chapter
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2. This Chapter describes, the nonlinear methods used to analyse for assessing variability
of time series data. The explanation of these methods, how these methods work, why these
methods are chosen, and why they are best for analysing EEG and HRV time series are
available in this Chapter. In addition, it also describes each method along with an example
of each method in this chapter. The aim of this chapter is to provide thorough overview
of data analysis techniques with concrete examples, which could be very helpful to under-
stand how the different techniques work, how can I justify the analysis outcome obtained
for my dataset and how can I be sure to conclude my research contributions (for example,
how to improve computational time for time series complexity).

5.2 Approximate Entropy

Approximate Entropy (AE) is a regularity statistic that quantifies the unpredictability of
fluctuations in a time series. It was introduced by (Pincus, 1991) to measure system com-
plexity of a different time series. AE reflects the likelihood that the similar patterns of
observations will not be followed by additional similar observations. A time series con-
taining many repetitive patterns has a relatively small AE; a less predictable time series has
a higher AE. AE was used in (Srinivasan et al., 2007) to detect epilepsy from EEG signals,
by using an artificial neural network Elman and probabilistic neural networks.

AE(m,r,N) is defined as approximately the negative average natural logarithm of the
conditional probability for a data set of length N, where two sequences similar to m points
remain similar, within a tolerance value r at the next m+1 point (Richman and Moorman,
2000),(Lake et al., 2002). Here, the parameter m is the length of the sub-sequences also
known as the pattern length to compare, and r is the tolerance value for accepting matches,
N represents the length of the time series (Richman and Moorman, 2000). AE(m,r,N)

analyses the time series of similar epochs. It uses a template wise approach to find the
conditional probability for matches (Richman and Moorman, 2000).

For this research, “Fast Approximate Entropy” code available at Mathworks (2016)
by Kijoon Lee is used. The value of m is 2, and the value of r is 0.2× SD (SD is the
standard deviation of the time series) (Lake et al., 2002). The description of AE(m,r,N)

implemented in this work following the one shown in (Manis, 2008), is:

Cm
i (r) =

∑
N−m+1
j=1 f (i, j,m,r)

N−m+1
, (5.1)

Cm
i (r) represents the probability of the pattern of length m that resembles the patterns

of similar length beginning at an interval i, for the match f .
(
Cm

i (r) = number of x j such

93



that d[xi,x j]≤ r)/(N−m+1); d represents the distance between xi and x j
)
.

f (i, j,m,r) = 1,‖−→xi −−→x j‖, is m < r, otherwise

f (i, j,m,r) = 0

Here, −→xi , and −→x j are vectors of the same size of m.
In order to calculate AE(m,r,N), the following steps need to be taken:

1. Fix values for m, r, and N.

2. For each m, define the sequence of vectors.

3. Use the sequence to calculate Cm
i (r) as the equation 5.1

4. Define
Φ

m(r) =
logCm

i (r)
N−m+1

(5.2)

5. Finally, calculate difference between m

AE(m,r,N) = Φ
m(r)−Φ

m+1(r) (5.3)

5.2.1 An Example of Approximate Entropy Calculation

In this section, how to calculate AE is illustrated by using an example with a simple time
series. In order to understand how Approximate Entropy work, let us consider the following
example:

Let the input time series be x(n) = [0.01,0.1,0.11,0.2,0.01]. The standard Deviation
of this series is 0.0796.

1. m = 2, r = 0.2×SD (that is 0.2×0.0796 = 0.0159), and N = 5.

2. Sequence of vectors for m = 2 and m = 3, are listed shown in Tables 5.1 and 5.2,
respectively.

3. Cm
i (r) calculation, as shown in Tables 5.1 and 5.2.

Figure 5.1 shows the comparison is considered for each length of sequence at m =
1;2; and 3 for the first point from the input time series x(n). The probability of
sequence matches for all points at m = 2, and m = 3 are shown in Table 5.1, and 5.2,
respectively.
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Figure 5.1: Comparison for matches at each length of sequence of m, for the input time
series x(n). Where, Length of the sequence is shown as red, and point sequences are shown
in black at m= 1;2; and 3.

Table 5.1: Probability of Sequence matches obtained at m = 2.

Length of sequence Point Sequences Sequence Matches at r = 0.0159(0.2×SD)
Matches ( f ) Total Matches Probability of Matches Cm

i (r)

(0.01, 0.1)

(0.01,0.1) (1,1) 1 1/4 = 0.25
(0.1,0.11) (0,0)
(0.11,0.2) (0,0)
(0.2,0.01) (0,0)

(0.1, 0.11)

(0.01,0.1) (1,1) 1 1/4 = 0.25
(0.1,0.11) (0,0)
(0.11,0.2) (0,0)
(0.2,0.01) (0,0)

(0.11, 0.2)

(0.01,0.1) (1,1) 1 1/4 = 0.25
(0.1,0.11) (0,0)
(0.11,0.2) (0,0)
(0.2,0.01) (0,0)

(0.2, 0.01)

(0.01,0.1) (1,1) 1 1/4 = 0.25
(0.1,0.11) (0,0)
(0.11,0.2) (0,0)
(0.2,0.01) (0,0)

As shown in Table 5.1, to calculate the probability of matches Cm
i (r), the number

of matches obtained is counted as “1” for respective point sequences. The ”Total
Match” column of the table indicates counting for the total number of matches ob-
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Table 5.2: Probability of Sequence matches obtained at m = 3.

Length of sequence Point Sequences Sequence Matches at r = 0.0159(0.2×SD)
Matches ( f ) Total Match Probability of Matches Cm

i (r)

(0.01, 0.1, 0.11)

(0.01, 0.1, 0.11) (1,1,1) 1 1/3 = 0.33
(0.1, 0.11, 0.2) (0,0,0)
(0.11, 0.2, 0.1) (0,0,0)

(0.1, 0.11, 0.2)

(0.01, 0.1, 0.11) (1,1,1) 1 1/3 = 0.33
(0.1, 0.11, 0.2) (0,0,0)
(0.11, 0.2, 0.1) (0,0,0)

(0.11, 0.2, 0.01)

(0.01, 0.1, 0.11) (1,1,1) 1 1/3 = 0.33
(0.1, 0.11, 0.2) (0,0,0)
(0.11, 0.2, 0.1) (0,0,0)

tained. For a particular length of sequence m, the point matches are obtained by cal-
culating the absolute difference between the points in the sequences. The difference
should be below the tolerance value r = 0.2. Considering the following sequence
(xk(i),xk( j)) = [(0.01,0.1),(0.1,0.11)], where i and j are the point sequence , and k

is the index for these point sequences. To test the match, (|0.01−0.1|, |0.1−0.11|)=
(−0.09,−0.01) is calculated. It can be observed that x1(i) and x1( j) (that is 0.01 and
0.1, and x2(i) and x2( j) (that is 0.1 and 0.11) both satisfies the condition because the
absolute difference is greater than the tolerance value r. Since the point sequence is a
complete match under the tolerance value r, this sequence is considered as a match,
and shown as (1,1).

Table 5.1 and 5.2 represents the point sequence match at a given length of sequence
for m = 2 and m = 3 for the tolerance value r(0.2), respectively. In third columns,
“1” represents a match and “0” represent no match at tolerance value r.

3.1. Calculating Φm(r) using the equation 5.2

For m = 2, as shown in Table 5.1:
Φ2(0.2) = [log (0.25) + log (0.25) + log (0.25) + log (0.25)] / (5 - 2 + 1)
= (−5.5452)/4
= −1.3863

For m = 3, as shown in Table 5.2:
Φ3(0.2) = [log (0.33) + log (0.33) + log (0.33)] / (5-3+1)
= (−3.3260)/3
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= −1.1087

4. Calculating AE(m,r,N) using the equation 5.3:

AE(2,0.0159) :
= -1.3863 - (-1.1087)
= -1.3863 + 1.1087
= -0.2776

In order to avoid the occurrence of log0, Approximate Entropy includes self-matches for
each sequence (Richman and Moorman, 2000). Due to this, Approximate Entropy is said
to have a strong bias (Lake et al., 2002). A low value of Approximate Entropy indicates
many similar data points and a high degree of regularity in the time series (Richman and
Moorman, 2000). For the given example, a value closer to 0 is obtained, which indicates
that the data points are very frequent and has similar values under the given tolerance.

Approximate Entropy suffers a few shortcomings such as bias, relative inconsistency,
and dependency with the sample length (Alcaraz and Rieta, 2010), (Richman and Moor-
man, 2000). To overcome these drawbacks with Approximate Entropy, a new complexity
measure called Sample Entropy (SE) was proposed by (Richman and Moorman, 2000).

5.3 Sample Entropy

Sample Entropy (SE) has been used widely to investigate various biological conditions in
the human body, like arrhythmia through ECG (Electrocardiogram) (Alcaraz and Rieta,
2010), EEG background activity with Alzheimer′ (Abásolo et al., 2006), human postural
sway data (Ramdani et al., 2009) and obstructive sleep apnoea syndrome (Al-Angari and
Sahakian, 2007). Sample Entropy is also used to detect the termination of a particular med-
ical condition like seizures (Yoo et al., 2012) and to test the effect of therapy like ketogenic
diet used for controlling intractable seizures (Takahashi et al., 2010). These studies have
concluded that SE is a robust quantifier of complexity, which offers an accurate nonlinear
metric for quantification (Alcaraz and Rieta, 2010). It gives an excellent dynamical signa-
ture and is a helpful tool that provides insights into various biological time series (Abásolo
et al., 2006),(Ramdani et al., 2009). Therefore, Sample Entropy has been considered as an
effective method for investigating different types of time series data.

For a time series of length N, SampleEntropy(m,r,N) can be defined as the negative
logarithm of conditional probability that two sequences are similar to m point (Lake et al.,
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2002) within a tolerance value r, excluding any self-matches (Richman and Moorman,
2000). The equation can be represented according to (Richman and Moorman, 2000), as:

Sample Entropy(m,r,N) =− ln
(

A
B

)
, (5.4)

where, m is the length of the sequences to be compared, r is the tolerance value for accept-
ing matches, N is the length of the original data, and A and B are defined as follow:

A =
[(N−m−1)(N−m)]

2
Am(r), (5.5)

B =
[(N−m−1)(N−m)]

2
Bm(r), (5.6)

where, Am(r) is the probability that the two sequences match for m+ 1 points, and Bm(r)

is the probability that the two sequences match for m points. Each Sample Entropy value
indicates relative consistency with respect to any value of (m,r) (That is, if one m point has
a lower Sample Entropy value, then it will be lower for any part of fixed m and r values
(Lake et al., 2002). Sample Entropy is independent of the data length and shows an elimi-
nation of self-matching. In order to approximate the conditional probabilities of matches,
Sample Entropy uses a point-wise approach (Richman and Moorman, 2000). Instead of
finding differences between each point m with Approximate Entropy, point-wise approach
of Sample Entropy calculates the probability for each point separately. Therefore, Sample

Entropy can overcome the drawbacks of relative inconsistency, sample length dependency
and biased with Approximate Entropy.

5.3.1 An Example of Sample Entropy Calculation

In this section, how to calculate Sample Entropy is explained using a simple time series, as
an example. Let the input time series be x(N) = [0.1,0.1,0.2,0.5,0.22], with m = 2,r =
0.2,N = 5.

The value of m specifies the length of the sequences to be considered for Sample En-

tropy. The default value of m is up to 2 (that is the maximum length of sequences consid-
ered is 2). The value of r represents the tolerance value below which a match is deemed.
The input point sequence for Am(r) is n points, while Bm(r) considers n− 1 points of
the input sequence. That means, the input point sequence is

{
0.1,0.1,0.2,0.5,0.22

}
and{

0.1,0.1,0.2,0.5
}

, for Am(r) and Bm(r) respectively.
Figure 5.2 show the comparison considered for each length of sequence at m = 1;2; and

3 for the first point from the input time series x(n). The probability of sequence matches
for all points at m = 1;2; and 3, are shown in Table 5.3.
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Figure 5.2: Comparison for matches at each length of sequence of m, for the input time
series x(n). Where, Length of the sequence is shown as red, and point sequences are shown
in black at m = 0;1; and 2.

As shown in Table 5.3, to calculate the probability for A and B, the number of matches
obtained is counted as “1” for respective sequences of Am(r) and Bm(r). A(m) and B(m)

indicates the count for the total number of matches obtained. For a particular length of
sequence m, the point matches are obtained by calculating the absolute difference be-
tween the points in the sequences. The difference should be below the tolerance value
r = 0.2. The calculation of similar segments can be summarized as: |x(i)− x( j)| < r.
Considering the following sequence (xk(i),xk( j)) = [(0.1,0.1),(0.2,0.5)], where i and j

are the point sequence , and k is the index for these point sequences. To test the match,
(|0.1−0.2|, |0.1−0.5|) = (0.1,0.4) is calculated. It can be observed that x1(i) and x1( j)

(that is 0.1 and 0.2) satisfy the condition, but x2(i) and x2( j) (that is 0.1 and 0.5) do not
satisfy the condition because the absolute difference is greater than the tolerance value r.
Since the point sequence is not a complete match under the tolerance value r, this sequence
is not considered as a match.

Table 5.3 represents the point sequence match at a given length of sequence for m(1 to
3) for the tolerance value r(0.2). In third and fourth columns, “1” represents a match and
“0” represents no match at tolerance value r.

According to equation (5.4), SE(m,r,n) value can be calculated as follows:

SE(1,0.2,5) = − ln(A[1]÷ ((n×n−1)/2)) = − ln(6÷10) = 0.5108
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Table 5.3: Point sequences at m = 1;2; and 3 along with the count of match obtained for
Am(r) and Bm(r). Here, X represents that the point sequence was not considered for B(m).
Columns A(m) and B(m) indicates count for the total number of matches obtained .

Length of sequence for m Point Sequences Point Matches at r = 0.2
Am(r) Bm(r) A(m) B(m)

m = 1

[0.1, 0.1] 1 1 6 3
[0.1, 0.2] 1 1
[0.1, 0.5] 0 0
[0.1, 0.22] 1 X
[0.1, 0.2] 1 1
[0.1, 0.5] 0 0
[0.1, 0.22] 1 X
[0.2, 0.5] 0 0
[0.2, 0.22] 1 X
[0.5, 0.22] 0 X

m = 2

[(0.1, 0.1),(0.1, 0.2)] (1, 1) (1, 1) 1 1
[(0.1, 0.1),(0.2, 0.5)] (1, 0) (1, 0)
[(0.1, 0.1),(0.5, 0.22)] (1, 0) X
[(0.1, 0.2),(0.2, 0.5)] (1, 0) (1, 0)
[(0.1, 0.2),(0.5, 0.22)] (1, 0) X
[(0.2, 0.5),(0.5, 0.22)] (0, 0) (0, 0)

m = 3
[(0.1, 0.1, 0.2),(0.1, 0.2, 0.5)] (1, 1, 0) (1, 1, 0) 0 0
[(0.1, 0.1, 0.2),(0.2, 0.5, 0.22)] (1, 0, 1) X
[(0.1, 0.2, 0.5),(0.2, 0.5, 0.22)] (1, 0, 0) (1, 0, 0)

SE(2,0.2,5) = − ln(A[2]÷B[0])) = − ln(1÷3) = 1.0986

SE(3,0.2,5) = − ln(A[3]÷B[1])) = − ln(0÷0) = NaN

From the Sample Entropy values obtained from the above examples, a low Sample Entropy

value has been obtained at m = 1, and the Sample Entropy value increases with the increase
of m. This increase indicates that for a longer point sequence, the similarity has decreased
for this time series. A lower Sample Entropy value indicates a high degree of similarity in
time series (Richman and Moorman, 2000).

5.4 Pearson’s Correlation Coefficient

The Pearson′s Correlation Coefficient (PCC) measures how closely two different time se-
ries are related to each other with the same sequence length and linear dependency. Corre-
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lation coefficient ranges between 1 (when the matching entities are the same) and−1 (when
the matching entities are inverses of each other). A value of zero indicates no relationship
existing between the signals. Let a and b be the time series signals. Pearson′s correlation

coefficient is defined as (Benesty et al., 2009):

ρ(a,b) =
∑

N
i=1((a−µa)(b−µb))√

∑
N
i=1(a−µa)2 ∑

N
i=1(b−µb)2

(5.7)

where, ρ(a,b)) is the correlation coefficient between a and b, N is the length of the two
signals, i is the index of the signal points, and µa and µa are the mean of the signal a and b,
respectively.

It has been found that the Pearson′s correlation coefficient is the best-known method
for performing correlation between time series data with the same length (Taylor, 1990).

5.4.1 An Example of Pearson’s Correlation Coefficient

In this section, I explain how the Pearson′s correlation coefficient (PCC) is calculated in
practice by giving an example. Suppose if the physical activity done by an individual is
being affected by the number of hours slept. I believe when I sleep well, I can exercise
more. To test my hypothesis, I have tracked 10 day record of physical activity I did each
day, and the number of hours I slept the night previous. Let the input signals be:
a = [9,8,5,8,7,7,6,4,6,5],
b = [60,55,25,50,40,45,35,10,30,20],
µa = 6.50, and µb = 37, are the mean for a and b, respectively.

Where a is the number of hours slept each day and b is the total minutes the physical ac-
tivity done for the corresponding day. Table 5.4 shows the Pearson’s correlation calculation
with the given example.

1. Calculate (a−µa), (b−µb), ((a−µa)× (b−µb)), (a−µa)
2, and (b−µb)

2

2. Calculate ∑((a−µa)(b−µb)) = 225,

∑(a−µa)
2 = 22.5,

and ∑(b−µb)
2 = 2310

3. Calculate
√

∑(a−µa)2 ∑(b−µb)2 =
√

(22.5×2310) =
√

51975 = 227.98

4. Finally, Perform Pearson′s correlation coefficient as per equation (5.7).

ρ(a,b) = 225÷227.98 = 0.9869
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Table 5.4: Pearson’s Correlation Calculation.

a b (a−µa) (b−µb) (a−µa)× (b−µb) (a−µa)
2 (b−µb)

2

1 9 60 2.5 23 57.5 6.25 529
2 8 55 1.5 18 27 2.25 324
3 5 25 -1.5 -12 18 2.25 144
4 8 50 1.5 13 19.5 2.25 169
5 7 40 0.5 3 1.5 0.25 9
6 7 45 0.5 8 4 0.25 64
7 6 35 -0.5 -2 1 0.25 4
8 4 10 -2.5 -27 67.5 6.25 729
9 6 30 -0.5 -7 3.5 0.25 49

10 5 20 -1.5 -17 25.5 2.25 289

The result obtained here 0.99 is a positive value which suggests that there is a strong
positive correlation between my hours of sleep gotten the night before a physical activity.
The degree of the positive correlation is 1 (when the matching entities are the same), 0
(when there is no match), and -1 (when the matching entities are opposite).

In order to find the correlation between different time series data, Pearson’s Correlation

Coefficient is an ideal measure. However, it requires the same length of input data for the
comparison (Taylor, 1990). Time series data, EEG and HRV differ in the length based on
their sampling rate, and Pearson’s Correlation Coefficient might not be suitable to analyse
these signals in their Time Domain. Therefore, Cross-Correlation, which does not require
a similar length of input data, is also utilised to find the correlation, along with Pearson’s

Correlation Coefficient.

5.5 Cross-Correlation

Cross-Correlation (CC) can be performed to analyse the time delay between two related
time series. It offers a valuable and sensitive method for investigating two time series
signals, such as EEG, that are recorded at the same time from different electrodes with
amplitudes. To analyse time series signals in time domain, Cross-Correlation stands out
as the most appropriate correlation method, because of its ability to assess signal similarity
at all possible time delays. Cross-Correlation has been successfully applied in analysing
EEG signals in the time domain (Bob et al., 2010), as well as frequency domain (Li et al.,
2013). This method can be used to determine the relationship between activities in global
and local areas, and also among the different local areas of the human brain. Furthermore,
Cross-Correlation has been utilized to study the degrees of association between activities
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in symmetrical (left and right) parts of the brain (Li et al., 2013), and the results indicated
that there was a stronger correlation in the delta δ frequency range on the right side of a
brain than on the left.

Cross-Correlation measures how closely two different time series are related to each
other taking time lag into consideration, at the same or different time. In this research,
to find the similarity between two time series signals, “Normalized Cross-Correlation”
(Lewis, 1995) is used, to get ranges between 1 (when the matching signals are the same)
and −1 (when the matching signals are inverses of each other). A value of zero indicates
no relationship existing between the signals. The Normalized Cross-Correlation for time
sequence Pt and Qt of signals P and Q, respectively, is defined as follows:

Rxy(T ) =
1
N ∑

N−T
t=1

[
(Pt)(Qt+T )]

σPσQ
, (5.8)

T is the time lag at which the similarity between signals is investigated, N is the length of
signals P and Q. σP is the standard deviation of Pt and σQ is the standard deviation of Qt .
Note that both the Cross-Correlation and Normalized Cross-Correlation can be evaluated
for any length of Pt and Qt , and they are not required to be the same (Lewis, 1995). If Pt

and Qt are of different length, then the shorter one is zero-padded (Buck et al., 2002).

5.5.1 An Example of Cross-Correlation

In this section, how the Normalized Cross-Correlation is calculated in practice, is explained
using an example with a simple time series. Let the input time series be:

P= [0.1,0.2,−0.1,4.1,−2,1.5,−0.1], and Q= [0.1,4,−2.2,3.6,0.1,0.1,0.2], with T =

±0−6, and N = 7.
Figure 5.3 illustrates the position of two signals P and Q at the time lag of 0, Figure 5.4

illustrates shifting position of signal Q at the positive time lag of 1, Figure 5.5 illustrates
shifting position of signal Q at the positive time lag of 2, and Figure 5.6 illustrates shifting
position of signal Q at the negative time lag of 1. When one of the signals (signal Q) has
finished shifting right and left, the correlation at each lag is then calculated. For example,
the correlation at the lag of 0, 1 and −1 is shown below, respectively:

1. Correlation at Lag of 0 is:

1.1. For, 1
N ∑

N−T
t=1

[
(Pt)(Qt+T )]:

= (1/7)× [(0.1)(0.1) + (0.2)(4) + (−0.1)(−2.2) + (4.1)(3.6) + (−2)(0.1) +
(1.5)(0.1)+(−0.1)(0.2)]
= 0.1429×15.72
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Figure 5.3: Correlation at Lag of 0.

= 2.2457

1.2. For, σPσQ:
= 1.8786×2.1946
= 4.1228

1.3. As per the equation 5.8, Normalized Cross-Correlation:
= 2.2457/4.1228
= 0.5448

2. Correlation at Lag of 1 is :

2.1. For, 1
N ∑

N−T
t=1

[
(Pt)(Qt+T )]:

= (1/6)×[(0.2)(0.1)+(0.1)(4)+(4.1)(−2.2)+(−2)(3.6)+(1.5)(0.1)+(−0.1)(0.1)]
= 0.1667×−16.46
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Figure 5.4: Correlation at Lag of 1.

= −2.7438

2.2. For, σPσQ:
= 2.0474×2.3839
= 4.8808

2.3. As per the equation 5.8, Normalized Cross-Correlation:
= −2.7438/4.8808
= −0.5621

3. Correlation at Lag of 2 is :

3.1. For, 1
N ∑

N−T
t=1

[
(Pt)(Qt+T )]:

= (1/5)× [(−0.1)(0.1)+(4.1)(4)+(−2)(−2.2)+(1.5)(3.6)+(−0.1)(0.1)]
= 0.2000×26.18
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Figure 5.5: Correlation at Lag of 2.

= 5.2360

3.2. For, σPσQ:
= 2.2786×2.6243
= 5.9797

3.3. As per the equation 3.6, Normalized Cross-correlation:
= 5.2360/5.9797
= 0.8756

4. Correlation at Lag of -1 is:

4.1. For, 1
N ∑

N−T
t=1

[
(Pt)(Qt+T )]:

= (1/6)× [(1.5)(0.2)+(0.1)(−2)+(4.1)(0.1)+(−0.1)(3.6)+(0.2)(−2.2)+
(0.1)(4)]
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Figure 5.6: Correlation at Lag of -1.

= 0.1667×0.11
= 0.0183

4.2. For, σPσQ:
= 2.0354×2.3771
= 4.8383

4.3. As per the equation 5.8, Normalized Cross-Correlation:
= 0.0183/4.8383
= 0.003

The correlation is performed until N−1 lags for both positive and negative lags. Once,
the correlation for each lag is performed, the correlation sequence of all lags will be:

The results in Table 5.5 show that the highest correlation is found at the positive lag
of 2. This result suggests that the lag of 2 values between both signals (that is ignoring
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Table 5.5: Cross-correlation Calculation for corresponding lag

Lags Correlation Value
-6 0.0007
-5 0.0018
-4 0.0004
-3 0.0425
-2 0.0179
-1 0.0039
0 0.5448
1 -0.5621
2 0.8756
3 -0.4019
4 0.2151
5 -0.0089
6 -0.0004

first two values from P, and last two values from Q) gives the highest positive correlation
between these two signals.

5.6 Embedding Dimension

A time series, such as HRV, the measurement sequence of one or more visible variable of
an underlying dynamic system, whose state changes with time. These time series could be
the results of the interaction of many underlying variables. For example, a stock market
is affected by many interacting factors, such as economic data, exchange rates and so on.
In practice, it is difficult to know what variables determine the behaviour of the actual dy-
namic system. It is shown by (Takens, 1981) that, if only one scalar value can be measured
from an active system, then the nature of the original multi variable dynamic system can
be recaptured, by considering a sufficient number of consecutive values. In fact, (Takens,
1981) also mentioned, if the original dynamic system had a dimension of N, then an em-
bedding of size 2N will fully regain the original system. The size of this consideration is
called the Embedding Dimensions (ED) (Abarbanel et al., 1993).

Embedding Dimensions is used to find out the nature of an underlying dynamical sys-
tem. The method False Nearest Neighbours (FNN) is used to determine how many di-
mensions are sufficient to embed a particular time series (Kennel et al., 1992). The False

Nearest Neighbours is designed to determine how many features are enough to present a
specific time series (Kennel et al., 1992). The basic idea behind False Nearest Neighbours

is that points in a state space should be close to each other because their dynamical state is
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similar, not because of how they react in each dimension. In an embedding of dimension
D, a series of scalar points has established as a lagged vector.

The False Nearest Neighbour method can be summarised as follows:

1. Find the nearest neighbour for each point in an embedding of dimension d;

2. Find the percentage of those nearest neighbours which do not remain the nearest
neighbour within an embedding of dimension d+1, such points turns as false nearest
neighbours;

3. Increase the embedding dimension until the number of false nearest neighbour is
sufficiently small.

5.6.1 An Illustration of Embedding Dimension

To find the correct embedded dimensions, d, an incremental search, from n = 1, is per-
formed. A set of time lagged vectors xn(t), for a given t, is formed, where n is the index
for x, and t is the time. The nearest neighbour relation within the set of xn(t)‘s is then
computed. When the correct value of d has been reached, the addition of an extra dimen-
sion to the embedding should not cause these nearest neighbours to spring apart. Any pair
whose additional separation is of a high relative size is deemed False Nearest Neighbours.
Specifically, if xn(t) has nearest neighbour

∼
xt , then the relative additional separation when

the embedding dimension is incremented is given by (Abarbanel et al., 1993):

False Nearest Neighbours(x,d) =
∣∣∣∣
d(xt ,

∼
xt)−d(xt+1,

∼
xt+1)

d(xt ,
∼
xt)

∣∣∣∣> Rtol, (5.9)

False Nearest Neighbours(x,d) =
∣∣∣∣
d(xt ,

∼
xt)−d(xt+1,

∼
xt+1)

σ

∣∣∣∣> Atol, (5.10)

When the d value exceeds an absolute value, then xt and
∼
xt are denoted as FNN. In

the equation 5.9, Rtol is the false neighbour Euclidean distance tolerance, the default value
is Rtol = 15. If the ratio of the Euclidean distances between neighbour candidates in suc-
cessive embedding dimensions exceeds Rtol , then those neighbours are declared as false
neighbours. For example, if Rtol = 5 neighbour candidates that are separated five times
more so than in the previous embedding dimension are declared false neighbours, (Abar-
banel et al., 1993). The equation 5.10 is the alternative equation to find a False Nearest

Neighbours (Kennel et al., 1992), where Atol arbitrary threshold value for a dataset with a
short length, the default value is Atol = 2. Atol is a neighbour tolerance based on attractor
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size. If the Euclidean distance between two neighbour candidates is Atol times larger the
estimated ”size” of the attractor, then those neighbours are declared as false neighbours.
To calculate closeness of neighbours, Euclidean Distance has been used (Kruskal, 1964).
For example, a time series is a sequence of values xn(t), where x is the time series, n is the
index for x, and t represent the time. Theoretically, x may be a value which varies contin-
uously with t. An Embedding Dimension of 2 forms, vectors (x0,x1),(x1,x2) and so on.
An Embedding Dimension of 3 forms the vectors (x0,x1,x2), (x1,x2,x3) and so on. Since
these are numeric vectors, we can calculate the distance of any pair of these vectors. So for
each vector in a given embedding, the nearest neighbour can be found. However, some of
these nearest neighbours may be the false neighbour, in a sense that they are not the nearest
neighbour in the embedding with one extra dimension (Frank et al., 2001). A geometric ex-
planation of the concept is at the core of the False Nearest Neighbours technique is shown
in Figure 5.7.

Figure 5.7: Geometric explanation of the False Nearest Neighbours Method (Kennel
et al., 1992): (a) In one-dimensional, the nearest neighbour for Red is Green, (b) In two-
dimensional, the nearest neighbour for Red is Blue, and not Green (This means Green was
a false nearest neighbour in one-dimensional), and (c) In three-dimensional, the Blue is still
the nearest neighbour for Red, so they are real nearest neighbour.

The line at the left represents a dimensional state space x1(Red Point), x2 (Green Point),
and x3 (Blue Point)) and the nearest neighbour of the x1 (Red Point) is the x2 (Green Point).
Next, the time series embedded in two-dimensional state space, represented by the oval in
the middle of the picture. The x1 (Red Point) and x2 (Green point) are no longer near to
each other. So, x2(Green point) is labelled as a false nearest neighbour because it was only
near to the x1 (Red Point) due to the projection of the time series onto the line. Next, the

110



nearest neighbour for each point in the two-dimensional state space found. Now the nearest
neighbour to the x1 (Red Point) is the x3 (Blue Point). The time series is now embedded
into a three-dimensional state space as represented in the rotated parabola at the right of
the picture. The x1 (Red Point) and the x3 (Blue Point) are still near to each other, so x3

(Blue Point) is not a false nearest neighbour. This process continues until either there are
no further false nearest neighbour or the data set becomes so sparse in a high dimensional
space that no points can be considered being near neighbours, to begin with. The resulting
percentage of False Nearest Neighbours for each Embedding Dimension is then plotted to
create False Nearest Neighbours plot.

5.6.2 An Example of Embedding Dimension Calculation

In this section, the explanation of how the Embedding Dimension is calculated in practice
is demonstrated by using an example. Let a time series be represented by a sequence
of x1,x2,x3, ....,xn, where x1, x2, x3, and xn represents first, second, and Nth data point,
respectively. An actual construction of the state-space requires a great amount of data
points, but for the sake of this calculation, let us use a sequence of observations that has 21
data points (n = 21). Suppose we want to reconstruct the state-space with an embedding
dimension of 3. We can do as described in the following example.

1. Gather input series of vectors to consider for the FNN calculation for each dimension.

As illustrated in Figure 5.8, first, take the data points from x1 to x19 and set this
sequence, called x(t) aside. Next, take the data points from x2 to x20 and set this
sequence, called x(t +1), next to x(t). Finally, we take data points from x3 to x21 and
set this sequence, called x(t +2), next to x(t +1). Now, a matrix with 18 rows and 3
columns has been created.

The first row of this matrix is defined as vector v1, the second row as vector v2, and
so on. Thus, 18 vectors have been created, with each vector having one element x(t),
x(t +1), and x(t +2), respectively. Therefore, v1 contains x1(t) that is 210, x1(t +1)
that is 214, and x1(t + 2) that is 202. v2 contains x2(t) that is 214, x2(t + 1) that is
202, and x2(t +2) that is 206 and so forth.

2. Calculate Euclidean Distance between each pair of vectors for each dimension.

In the two-dimensional space (m= 2), there is a vector at time t, v1= [x1(t),x1(t+1)]
(that is v1 = [210, 214]), and its neighbour v2 = [x2(t),x2(t + 1)](that is v2= [214,
202]). In three-dimensional space (m = 3), these vectors will be v1 = [x1(t),x1(t +

111



Figure 5.8: Reconstruction of the state-space with a embedding dimension of 3, from a
scalar time series represented by a sequence of x1,x2, .....,x21, considering Time Lag (t) =
1.

1),x1(t +2)] (that is v1 = [210, 214, 202]), and v2 = [x2(t),x2(t +1),x2(t +2)] (that
is v2 = [214, 202, 206]).

2.1. The distance between the two vectors in the two-dimensional space is:
d(xt−

∼
xt) =

√
(210−214)2 +(214−202)2

=
√
−4+12

=
√

8
= 2.8284

2.2. The distance between the two vectors in the three-dimensional space is:
d(xt+1−

∼
xt+1) =

√
(210−214)2 +(214−202)2 +(202−206)2

=
√
−4+12+(−4)
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=
√

4
= 2

2.3. Calculate FNN(x,τ,m) =

∣∣∣∣
d(xt ,

∼
xt)−d(xt+1,

∼
xt+1)

d(xt ,
∼
xt)

∣∣∣∣> Rtol

= (2.8284 - 2)/ 2.8284
= 0.2929

Figure 5.9: The percentage of False Nearest Neighbour example. The percentage of False
Nearest Neighbour hits zero when the dimension is three.

The False Nearest Neighbour value obtained is less than the default threshold value
Rtol = 15, when dimension is 3, as shown in Figure 5.8. Therefore, these two vectors are
not False Nearest Neighbour. In this way, every point is examined to calculate how many
nearest neighbours are false neighbours, and the percentage of False Nearest Neighbour

to true nearest neighbour is computed at different dimensional space. The percentage of
False Nearest Neighbour should drop at a higher-dimensional space as the dynamics of
the system are being unfolded (Schiecke et al., 2016). The value of the dimension where
the percentage of False Nearest Neighbour reaches 0 is considered as the dimension that
is large enough to describe the dynamics of the system. That dimension is selected as the
embedding dimension. In the case of the example above, the accurate dimension would be
3.
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5.6.3 An Example of Lorenz Attractor

The well known Lorenz Attractor as shown in Figure 5.10 has three underlying cross-
coupled variables. However, the attractor itself is almost two-dimensional. The minimum
dimension of the attractor for the original Lorenz dataset, and new noisy version in which a
significant amount of normal noise has then added. The visual effect of the noise is shown
in Figures 5.10 and 5.11.

Figure 5.10: A visualisation of the Lorenz attractor in 3-dimensional phase space x(t),
y(t),z(t)(Frank et al., 2001).

Figure 5.11: A visualisation of the Lorenz attractor in Three-dimensional phase space x(t),
y(t),z(t) with Noise (Frank et al., 2001).
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Figure 5.12: The percentage of False Nearest Neighbours in the Lorenz data set (Frank
et al., 2001).

The false nearest neighbour results as shown in Figure 5.12, suggest that, in both cases,
an embedding of 4 or 5 should be sufficient to represent the attractor. This result corre-
sponds well with the theoretical upper bound of about 5, from the embedding theorem. The
singular-value analysis shows the contrast between the clean and noisy data very clearly.
For the noisy data, a “noise floor” for eigenvalues five onwards is apparent, but such a floor
is, as expected, utterly absent from the clean data (Frank et al., 2001).

5.7 Conclusion

In this chapter, the explanations and examples of the methods used for nonlinear time
series analysis have been discussed and illustrated. With the extensive use of the methods,
such as Approximate Entropy, Sample Entropy, Pearson’s Correlation Coefficient, Cross-

Correlation, and Embedding Dimension (ED) for the time series analysis, these measures
prove to be appropriate to investigate the EEG and HRV time series.

Approximate Entropy was introduced (Pincus, 1991) to measure system complexity,
which could be applied to different time series. However, due to few shortcomings with
Approximate Entropy, such as bias, relative inconsistency and dependency with the sample
length, a new complexity measure called Sample Entropy was proposed by (Richman and
Moorman, 2000). Many studies such as (Alcaraz and Rieta, 2010), (Abásolo et al., 2006),
(Ramdani et al., 2009), (Al-Angari and Sahakian, 2007), (Yoo et al., 2012), and (Takahashi
et al., 2010) have concluded that Sample Entropy is a robust quantifier of complexity, which
offers an accurate nonlinear metric for quantification (Alcaraz and Rieta, 2010). It gives a
good dynamical signature and is a helpful tool that provides insights into various biological
time series (Ramdani et al., 2009). Therefore, Sample Entropy has been considered as an
effective method for investigating EEG and HRV time series data.

In order to find the correlation between different time series data, Pearson’s Correlation

Coefficient is an ideal measure. However, it requires the same length of input data for the
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comparison. Therefore, Cross-Correlation has been utilised to find the correlation between
time series data, along with Pearson’s Correlation Coefficient.

Reconstructing of a state-space is a very important procedure in terms of doing non-
linear time series analysis. Embedding Dimension is required for the reconstruction of the
state-space. There are several different algorithms to find an embedding dimension, but
I have presented the most commonly used methods, False Nearest Neighbour method, to
find an Embedding Dimension. The Embedding Dimension plays a vital role in nonlinear
time series analysis(Chun-Hua and Xin-Bao, 2004). It has been successfully used in neural
network approaches for time series prediction (Frank et al., 2001). They concluded that
optimal performance could be achieved using the correct embedded dimensions. Further-
more, Embedding Dimension has been adopted by (Wendi et al., 2018), for recurrence plot
generation of the reconstructed phase space to represent many real application scenarios
when not all variables describe a system are available.
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Chapter 6

The Correlation between EEG Signals
Measured at Different Positions on Scalp
Varying with Distance

Results shown in Figures 6.3-6.7 are already published in the conference proceeding of

BICA (9th International Conference Biological Inspired Cognitive Architecture, Moscow,

Russia, August 2017).

6.1 Introduction

Electroencephalogram (EEG) is a time varying signal, and different position of electrodes
gives different time varying signals. There might be a correlation between these signals. It
is likely that the correlation relates to the actual positions of the electrodes. This Chapter
investigates the correlation of EEG signals in the TD using Cross-Correlation method in-
troduced in Chapter 5. This analysis was carried out on a dataset with and without medical
conditions.

Cross-Correlation can be used to analyse two related processes with time delay. In the
present context, it offers a valuable and sensitive method for investigating EEG signals that
are recorded at the same time from different electrodes. To analyse EEG signals in TD,
CC method stands out as the most appropriate correlation method, because of its ability
to assess signal similarity at all possible time delays. CC has been successfully applied in
analysing EEG signals in the FD (Li et al., 2013), as well as TD (Bob et al., 2010). This
method can be used to determine the relationship between activities in global and local
areas, and also among the different local areas of the human brain.

The brief review of research on the correlation of EEG signals, as discussed in Chapter
2, indicated that investigations have been focused on the FD, and limited information has
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been found in the correlation of EEG signals in the TD. In addition, this review has shown
that the numbers of paired electrodes investigated, the number of datasets used, and use
of CC for analysing EEG signals are limited. Instead, researchers’ focus has been primar-
ily on electrode combinations within the left and right brain hemispheres, respectively. It
has been found from the recent research, that EEG signals with medical conditions tends
to be similar when compared the EEG signals without any medical conditions from, and
shows possible dysfunction. Huge amount of research is already conducted to understand
correlation between EEG signals. Those researches imply that EEG might change gradu-
ally from one region to another. But, to my knowledge, I have not seen anybody showing
how EEG signal (measured through electrode) changes with electrode location and the ef-
fect of the distance between two EEGs on the correlation performance is not considered.
Talking about a distance between electrodes, there could be three possible definitions: a)
straight-line distance, b) geodesic distance and c) travelled distance between neurons. This
hypothesis is investigated in this chapter. The motivation is to find whether or not there is
any variation in correlation value of EEG signals with distance between them. The follow-
ing Table 6.1 shows the research gap I have addressed in this chapter.

Table 6.1: Summary of Work in this Chapter

This Study Electrodes Paired Electrodes TD FD CC Method Other Methods
Dataset 1 19 171 pairs X - X -
Dataset 4 10 45 pairs X - X -
Dataset 5 15 105 pairs X - X -
Dataset 6 19 171 pairs X - X -
Dataset 7 19 171 pairs X - X -
Dataset 8 19 171 pairs X - X -

To my knowledge, very limited work has been done on the correlation of EEG signals
using all number of electrodes and their possible electrode pair combination as shown in
Chapter 2. In this chapter, six datasets (3 datasets without any medical condition, and 3
datasets with a medical condition) are used to investigate the differences between EEG
signals of subjects with and without medical conditions. Three datasets contain EEG sig-
nals of participants without any medical condition, and are named as Dataset 1, Dataset 4,
Dataset 5, and three datasets contain EEG signals of participants with a specific medical
condition and are named as Dataset 6, Dataset 7, and Dataset 8, as described in Chapter 3.
Each dataset includes a different number of electrodes. Therefore, the number of unique
electrode pairs to perform Cross-Correlation is different. From Datasets 1, 4-8 there are
171, 45, 105, 171, 171, and 171 pairs, respectively.
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6.2 Dataset Information

Six datasets used in this study consist of different numbers of participants, electrodes and
conditions. All of these datasets following the standard 10%-20% system (Klem et al.,
1999), as shown in Chapter 2 (Figure 2.10). For more detail about the six datasets please
refer to Chapter 3.

6.3 Experiments and Results

6.3.1 Experiments

The EEG signals were processed to remove artefacts, such as eye blinks, eye movements,
jaw movements and muscle movements, by using Independent Component Analysis (ICA),
as specified in Chapter 4. Cross-Correlation has been calculated on the processed EEG
signals for the 171 (i.e 19*18/2 = 171) electrode pairs of Dataset 1, the 45 (i.e 10*9/2 = 45)
electrode pairs of Dataset 4, the 105 (i.e 15*14/2 = 45) electrode pairs of Dataset 5, 171
(i.e 19*18/2 = 171) electrode pairs of Dataset 6, 171 (i.e 19*18/2 = 171) electrode pairs of
Dataset 7, and 171 (i.e 19*18/2 = 171) electrode pairs of Dataset 8.

In order to obtain the distance in centimetres (cm) between electrodes, a measuring tape
was used. For most of our participants from Datasets 1, 4, 5 and 6 the head circumference
range was 54-58cm, for which a medium-sized ‘electro-cap’ is appropriate. According
to (Song et al., 2015), the circumference of the medium-sized EEG cap is ideal for 64%
of adults, both male and female. Therefore, I utilized a medium-sized EEG cap made of
an elastic material which stretches according to the participant's head circumference, and
measured distances using a straight line on the cap - not a curved line over the skull. Note
that the distance between electrodes as shown in Figure 6.4-6.9 is a straight line distance
between electrodes, not the distance as measured over the surface of the scalp.

6.3.2 Results

The maximum absolute correlation was found at lag 0. For example, Figure 6.2 shows the
information for all electrode pairs for the Electrode Fp1 from Dataset 1, where all signals
measured from the frontal lobe of the brain are positively correlated with electrode Fp1, and
all signals measured from the back lobe of the brain are negatively correlated with electrode
Fp1. The results of all other electrode pairs are available in Appendix B (Figure B.1-B.8).
The other datasets present similar results as shown in Figure 6.1. Figure 6.2, and Figure
6.3 illustrate the closer look from Figure 6.1 for electrode pairs Fp1-Fp2, and Fp1-O1,
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respectively, as an example. In Figures 6.2 and 6.3, the x-axis (horizontally) denotes the
time lag where a lag of 1 corresponds to 4 milliseconds. Positive time lags (0 to 1000) and
negative time lags (0 to -1000) indicate when the signal (the signal which being compared)
shifts to the right and left the side of the reference signal Fp1, respectively. The y-axis
(vertically) denote the Cross-Correlation value. The blue colour line is for an individual
participant, and the red is for the average of all participants for each electrode pair.

Figure 6.1: Cross-Correlation at all possible Lags for all electrode pairs for Electrode Fp1.
Blue colour shows the result of one of the participants, and Orange colour shows the aver-
age of 15 participants result from Dataset 1

Electrode Fp1 from Dataset 1, Dataset 5, Dataset 6, Dataset 7, Dataset 8, and Electrode
F7 from Dataset 4 have been chosen randomly from both hemispheres to show the Cross-
Correlation performance. The result for other electrodes from these datasets are available in
Appendix B (Figure B.9-B.23). The results show the averages for all participants. Figures
6.5, 6.6, 6.7, 6.8 show that there is an inverse linear relationship between Cross-Correlation
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Figure 6.2: Dataset 1 - Positive Cross-Correlation at Lag 0.

Figure 6.3: Dataset 1 - Negative Cross-Correlation at Lag 0.

and distance. Whereas, Figures 6.9, and 6.10 do not show such a linear dependency. The
linear regression has been plotted to fit the data with a probability of p < 0.001. This
indicates that the Cross-Correlation value decreases while the distance from Fp1 and F7
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Figure 6.4: Cross-Correlation between electrodes at varying distance on Dataset 1.

increases, irrespective of brain hemisphere.

Figure 6.5: Cross-Correlation between electrodes at varying distance on Dataset 4.

The results of all other electrodes of all six datasets are similar to the ones shown
in Figures 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9. In order to evaluate linear dependency, the
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Figure 6.6: Cross-Correlation between electrodes at varying distance on Dataset 5.

Figure 6.7: Cross-Correlation between electrodes at varying distance on Dataset 6
(Autism).

differences between each Cross-Correlation value and the corresponding value on the fitted
linear function line were calculated. The results show that the difference between them
is tiny (about 0.03, giving us 98% accuracy in the result obtained), which suggests that a
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Figure 6.8: Cross-Correlation between electrodes at varying distance on Dataset 7
(Epilepsy).

Figure 6.9: Cross-Correlation between electrodes at varying distance on Dataset 8
(Seizure).

close linear dependency exists in Figures 6.4, 6.5, 6.6, and 6.7. Whilst, Figures 6.8 and 6.9
do not show linear dependency with the distance.
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6.4 Conclusion

The result suggest that, for dataset without any medical condition, the linear dependency
with the physical distance measured at different position on the scalp is observed. However,
for the dataset with medical conditions (excluding Autism dataset), such as Epilepsy and
Epileptic Seizure, the linear dependency does not exist.

One of the main conclusions of this work is that electrical activity correlates linearly
with distance within the brain, that is when the distance increases the correlation decreases.
To my knowledge, previous research has not described this linear relationship in Time
Domain (TD) (Li et al., 2013), (Jeong et al., 2015), (Bob et al., 2010), (Cuevas and Bell,
2011). The results from this research cover a gap in the research concerning the correlation
of EEG signals in the TD using Cross-Correlation and combinations of all electrode pairs.
It is important to note that the straight line distance between two electrodes is measured
directly using a straight line on the cap, and not over the surface of the skull.

It is interesting to see that participants without medical condition shows the linear de-
pendency with the physical distance on the scalp. However, participants with medical
conditions such as Epilepsy and Epileptic Seizure, the linear dependency does not exist. It
is important to note that data presented in Figure 6.8 and 6.9 have been collected during
seizures. I have a lack of the expertise to find out the reason for this, but I think this might
be of interest to the people working in the medical area.

The second conclusion from this work is that the correlation is independent of brain
hemisphere for all six datasets. I do not know the exact reason for this independence
of correlation result. However, it is well known that white matter in the brain could be
significant in the transmission of electrical activity. Brain’s white matter is a labyrinth un-
derneath the outer gray matter, which is comprised of myelin-covered bundles of axons
that connect billions of neurons and carry electrical signals between brain regions (Fields,
2008). According to the research (Durante et al., 2018), highly creative people have signif-
icantly more white matter connections between the right and left hemispheres of the brain.
Connectomics research suggests that functional connectivity between brain regions may be
linked to IQ (Men et al., 2014). Hopefully, future research will help us pinpoint a variety of
ways to optimize functional connectivity and coordination between brain hemispheres to
boost cognitive function and creative capacity for people from all walks of life across their
lifespan. One issue I address here is how electrical activity can be communicated across
the surface of the brain. My research focuses on evaluating the correlation of EEG signals
between different brain regions. The aim is to determine the relationship between EEG
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signals and electrode location on the scalp, and to check whether this relationship differs in
the two brain hemispheres.

In summary, regardless of the anatomical substrates involved, the main finding is that
the correlation between electrical activities in different parts of the brain is linearly related
to the electrode distance between them for the participants without any medical condi-
tion across both hemispheres. Whereas, for participants with medical conditions such as
Epilepsy and Epileptic Seizure, there is no such relationship found.
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Chapter 7

Correlation Analysis between EEG and
HRV Time series data

Results shown in Figure 7.6, Table 7.2 and Table 7.3 have already been published in the

conference proceedings of BIOSTEC (11th International Conference on Biomedical Engi-

neering System and Technology, Funchal, Madeira, January 2018).

7.1 Introduction

The correlation between biomedical signals, such as electroencephalograms (EEG) and
electrocardiograms (ECG) time series signals, has been analysed using Pearson correlation
coefficient method (Miyashita et al., 2003), (Yang et al., 2002), (Ako et al., 2003), (Ju-
rysta et al., 2003), (Takahashi et al., 2005), (Edlinger and Guger, 2006), (Berg et al., 2005),
(Sakai et al., 2007), (Abdullah et al., 2010), (Chua et al., 2012), (Kim et al., 2013), (Prinsloo
et al., 2013), (Liou et al., 2014), (Triggiani et al., 2016). Although, Wavelet Transforma-
tions (WT) have been performed on time series data, including EEG and ECG signals, so
far the correlation between signals preprocessed by WT has not been analysed. In this
Chapter, the correlation between the EEG and ECG, with and without WT is analysed.

WT acts on the frequency and time of the recorded signals. Therefore, WT has been
widely utilised for analysing time series including biomedical signals. The WT of a signal
can be thought of as an extension of the classic Fourier transform (FT) - it works on multi-
scale basis (Time and Frequency), instead of working on a single scale (Time or Frequency)
as FT, and gives detailed and clear information of the signal. Recent research on the cor-
relation between EEG and HRV, as seen in Chapter 2, has focused on Fourier analysis of
the frequencies presented in these signals. These research to analyse brain’s functionali-
ties under certain conditions and to check whether these functionalities are related to each
other.
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The literature review in Chapter 2 shows the correlation between EEG and HRV has
been analysed in FD using well-known method Pearson correlation coefficient (PCC). It is
worth noting that, different numbers of EEG electrodes have been used to analyse the rela-
tionship between an EEG and HRV. The results from studies, as shown in Chapter 2, have
shown a correlation between EEG and ECG, but each of the studies only focused on part(s)
of the brain, rather than the whole brain. Therefore, the results are not comprehensive. For
example, (Na et al., 2002) indicates that EEG from the left side of the brain is correlated
with ECG, and (Bob et al., 2010) demonstrated the correlation was from the right side of
the brain. To the best of my knowledge, very limited work has been done on the correlation
between EEG and HRV, with and without WT signals, using 19 EEG electrodes. More-
over, no one has analysed these signals under the same condition (with TEAS acupuncture
applied) that is utilised in this chapter. The aim of this chapter is to check if there is any par-
ticular area (not just one part) within the brain having a stronger correlation between EEG
and ECG. Therefore, the correlation between EEG and HRV, with and without WT signals
in FD using Pearson correlation coefficient considering all 19 EEG electrodes under the
same condition are shown in this chapter. FD illustrates the functionality of EEG and HRV,
comparing this functionality will be the base for the analysis. However, in this chapter the
analysis of correlation performance between EEG and HRV in the TD is also presented.
The performance of TD and FD is then analysed. Table 7.1 shows the information about
the datasets utilised in this chapter.

Table 7.1: Summary of the Research on the correlation of EEG and HRV.

Datasets Utilised TD FD PCC Method Other Method EEG Electrodes Condition
Dataset 1 X X X - 19 TEAS
Dataset 2 - X X - 19 TEAS

It is obvious from the research on WT as shown in Table 2.3 in Chapter 2, that ex-
tracting the key feature of EEG and ECG signals can improve the analytical performance.
Therefore, it is interesting to analyse not just either EEG or ECG, but also the correlation
between EEG and HRV. To my knowledge, I have yet to find the research on the correlation
between wavelet transformed signals. In this work, we describe such an analysis.

7.1.1 Dataset Information

Two different datasets, Dataset 1 and Dataset 2, were obtained from Chapter 3, with each
of them containing different numbers of participants, acupuncture stimulation location, and
total time length, as shown in Chapter 3 (Table 3.1).
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7.2 Experiments

The EEG signals were pre-processed to remove artefacts caused by the electrical activi-
ties in muscles, including eye, jaw and muscle movements using Independent Component
Analysis (ICA), as explained in Chapter 4. It was straightforward to remove these using
ICA (Hyvärinen and Oja, 2000).

The HRV signals were pre-processed to remove ectopic beats, extra beats, and pre-
mature ventricular contractions artefacts using Kubios HRV standard software (Tarvainen
et al., 2014). This software considers the threshold-based correction method, in which the
artefacts and ectopic beats are simply corrected by comparing every IBI value against a
local average interval. The local average is obtained by median filtering the IBI time series,
and thus, the local average is not affected by single outliers in IBI time series. If an IBI
differs from the local average more than a specified threshold value (threshold in seconds),
the interval is identified as an artefact and is marked for correction. We can select the value
for threshold from:

1. Very low: 0.45 seconds

2. Low: 0.35 seconds

3. Medium: 0.25 seconds

4. Strong: 0.15 seconds

5. Very strong: 0.05 seconds

6. Custom, for setting a custom threshold in seconds

For example, the ”Medium” level will identify all IBIs that are larger/smaller than 0.25
seconds compared to the local average. The correction is made by replacing the identified
artefacts with interpolated values using a cubic spline interpolation (Daskalov and Chris-
tov, 1997). The cubic spline interpolation is a series of unique cubic polynomials fitted
between each of the data points, with the stipulation that the curve obtained are continuous
and appear smooth. These cubic splines can then be used to determine rates of change and
cumulative change over an interval (Unser, 1999). Please note that the thresholds shown
above are when 60 beats per minute (bpm) heart rate and are adjusted according to mean
heart rate (that is lower thresholds for a higher heart rate). The correction level has been
adjusted individually, because inter-individual difference in HRV is significant and there-
fore a fixed threshold did not work optimally for all participants. The optimal threshold
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is the lowest correction level, which identifies all artefacts, but does not identify too many
normal RR intervals as artefacts.

The sampling rate is 1Hz for the extracted HRV, and 250Hz for the EEG. In order to
perform Pearson Correlation Coefficient (PCC), which requires the same sampling rate for
both signals, I have reduced the sampling rate of EEG to be the same as the one for the
HRV.

7.2.1 Time Domain (TD) Analysis

For TD analysis, the sampling rate was reduced by segmenting EEG signals using 1 second
window and representing each window by its mean value (the mean amplitude value of
each segment - 250 samples), unlike normal down sampling with which much of the data
are thrown away. For each participant’s EEG signal, this process was repeated for all 5
minute slots. The aim of the TD analysis is to identify whether the correlation changes
with change in amplitude of EEG and HRV signals.

7.2.2 Frequency Domain (FD) Analysis

The power spectrum for each frequency band of EEG - Delta (0.3-4 Hz), Theta (4-7.5
Hz), Alpha (7.5-13 Hz), Beta (13-30 Hz), and Gamma (30-50 Hz) were obtained by Power
Spectrum Density (PSD)- the measure of signal’s power content versus frequency (Stoica
and Moses, 1997). Similarly, the power spectrum for each frequency band of HRV - VLF
(0-0.04 Hz), LF (0.04-0.15 Hz), and HF (0.15-4Hz) were obtained by Power Spectrum
Density (PSD) (Stoica and Moses, 1997). The reason for using PSD is to describe the dis-
tribution of power into each frequency band of EEG and HRV. The aim of the FD analysis
is to identify whether the correlation changes with change in the frequency power of EEG
and HRV signals. Furthermore, FD analysis is the focus of the researchers when it comes
to the correlation between EEG and HRV signals, as shown in Chapter 2.

For FD analysis, the segmentation was done using two different approaches (Method 1
and Method 2) to perform PCC between EEG and HRV. The reason for using two different
approaches is to check whether the correlation changes with the change in the way of
segmenting the signals.

7.2.2.1 Method 1

This method is about segmenting EEG signals using 1 second window and representing
each window by its mean value (the mean value of each segment - 250 samples), unlike
normal down sampling with which much of the data are thrown away. For each participant’s
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EEG data, this process was repeated for all 5 minute slots. After windowing, spectral anal-
ysis was performed. From each frequency band of the EEG and the HRV, the mean of the
amplitude value across the frequency range has been measured. From each 5 minute slot,
a single value for each frequency range was obtained. This means from each five-minute
slots, five values representing five frequency ranges. This process was repeated for all ten
slots, and ten values obtained for each frequency range. Then, the correlation between these
frequency values obtained from each slot (that is 10 frequency values for each frequency
range of EEG and HRV) is performed. Figure 7.1 illustrates the experimental process using
Method 1.

7.2.2.2 Method 2

This method is about segmenting EEG signals using 1 second window and perform spectral
analysis on each 1 second window to extract frequency bands first. After windowing, from
each 1 second window, the mean of the amplitude value within the frequency range has
been measured for each frequency band of the EEG and the HRV. Once single amplitude
value was gathered for each frequency band, there were 300 amplitude values obtained in
total from 300 windows (1 Second × 5 Minute = 300 Seconds). From each 5 minute slot,
a single value for each frequency range was obtained. This means from each five-minute
slots, five values representing five frequency ranges. This process was repeated for all ten
slots, and ten values obtained for each frequency range. Then, the correlation between these
frequency values obtained from each slot (that is 10 frequency values for each frequency
range of EEG and HRV) is performed. Figure 7.2 illustrates the experimental process using
Method 2.

In order to perform correlation based on wavelet transformed EEG and/or HRV signal,
the WT-Daubechies Wavelet up to level 5 is performed on the signals before extracting
frequency bands. However, loss of information from the signals has been found with level
4 and level 5. Therefore, the WT-Daubechies Wavelet up to level 3 is performed on the
signals before extracting frequency bands for both methods Method 1 and Method 2, re-
spectively. For the datasets I have, the low-pass filter worked very well because the low-
pass filter contains the high scale and low frequencies of the signal. As shown in Figure
7.3, the low-pass filter works better than the high-pass filter on EEG signals. Therefore, we
considered low-passed WT signals to perform the correlation.
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Figure 7.1: Method 1 - experiment steps of the correlation performance.

7.3 Experimental Results and Discussion

7.3.1 TD Analysis

For Dataset 1, I have performed PCC to investigate the correlation between each of the
EEG electrodes with HRV, and plotted averaged result of correlation performance over all
participants for each 5-minute slots (information about slot details is described in Chapter
4). The Figures 7.4 and 7.5 show the correlation performance of Dataset 1, where each
slot is representing 5 minutes of EEG and HRV data. The x-axis (horizontal) denotes the
number of EEG electrodes, and the y-axis (vertical) denotes the PCC values.

As shown in Figures 7.4 and 7.5, the correlation between EEG and HRV is not present
in the TD for Dataset 1 and Dataset 2, respectively. The results indicate that PCC values
are between -0.05 to 0.05 for both datasets, suggesting no correlation. However, in slot 6
and Slot 7 PCC values were obtained between -0.17 to 0.17 for Dataset 2. This increase in
PCC values in two slots might be the effect of the acupuncture stimulation performed on
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Figure 7.2: Method 2- experiment steps of the correlation performance.

participants (please see Chapter 4 for more detail on Dataset 2).
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Figure 7.3: WT EEG signals showing: a) unfiltered EEG signal in blue colour, b) Low-pass
filtered EEG shown in red colour (Approximation part, showing trend of the EEG signal),
c) High-pass filtered EEG shown in green colour (Detailed part, showing fluctuation of the
EEG signal), and d) WT EEG signal with low-passed filter.
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Figure 7.4: Dataset 1 - Time domain (TD) analysis of correlation performance between
each of the EEG electrodes with HRV for each 5-minute slot.
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Figure 7.5: Dataset 2 - Time domain (TD) analysis of correlation performance between
each of the EEG electrodes with HRV for each 5-minute slot.
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7.3.2 FD Analysis

For each dataset, I used both Method 1 and Method 2 to investigate the correlation between
each of the EEG frequencies (Delta, Theta, Alpha and Beta) with each frequency of the
HRV (LF and HF) in three different experiments:

1. The correlation between pre-processed signals.

2. The correlation between pre-processed and WT signals of the EEG and HRV.

3. The correlation between pre-processed HRV with pre-processed and WT signals of
EEG.

The Gamma frequency of EEG did not give any correlation effect. Therefore, it is not
included in the results shown in Figures 7.6, 7.7 and Tables 7.2 - 7.7.

For both datasets, Experiment 2) correlation between both WT signals did not give
better results than Experiments 1) and 3). This might be because HRV is usually less noisy.
Moreover, when the WT has been performed on HRV, the signal became flatter and I have
lost information. From all 3 experiments, I have found the most interesting results from
Experiments 1) and 3).

For each dataset, there are many things to consider: different number of electrodes,
different number of participants, different number of frequency combination (5 EEG Fre-
quencies against two HRV frequencies) for the correlation analysis. Therefore, for each
participant, correlation result is first obtained for each electrode for all frequency combina-
tion. Then for each frequency combination, I have calculated the average of the correlation
value over all participants for each EEG electrode. Then each electrode has been ranked
in the term of their performance, where, I have given the ranking based on the electrode
correlation result. The average of electrode ranking for each frequency combination is
then gathered and the five electrodes with the top five performances have been looked into
closely. I have found some common electrodes in all the frequency combinations investi-
gated. Figures 7.6 and 7.7 show the results for both Dataset 1 and 2, employing Method
1 and Method 2, respectively. Please refer Appendix F to see electrodes ranking before
averaging.

As shown in Figures 7.6 and 7.7, for Dataset 1 (a) and (b), some electrodes (P3, Pz
and O1) from the backside of the brain are giving better results than Dataset 2 (a) and (b),
respectively. This is due to more randomness in the EEG signals from Dataset 1. Also, the
location where TEAS have been performed might contribute to this result.
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Figure 7.6: Method 1 - Best Electrodes Correlation Performance, highlighted in yellow
colour: (a) Experiment 1 - Dataset 1 Correlation performance on pre-processed HRV and
EEG, (b) Experiment 3 - Dataset 1 Correlation performance on pre-processed HRV and WT
signals of EEG ,(c) Experiment 1 - Dataset 2 Correlation performance on pre-processed
HRV and EEG, (d) Experiment 3 - Dataset 2 Correlation performance on pre-processed
HRV and WT signals of EEG.

Based on the results shown in Figures 7.6 and 7.7, we can see it that the frontal lobe
of the brain is correlated with the heart. The frontal lobe involved in higher mental func-
tions, such as concentration, creativity, speaking, muscle movement and in making plans
and judgements, is a part of cerebral cortex (body’s ultimate control and information pro-
cessing) of the brain (McCraty et al., 2009). The usual Heart-Brain communication path is
through the spinal cord. In order to have a relationship between frontal lobe of the brain
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Figure 7.7: Method 2 - Best Electrodes Correlation Performance, highlighted in yellow
colour: (a) Experiment 1 - Dataset 1 Correlation performance on pre-processed HRV and
EEG, (b) Experiment 3 - Dataset 1 Correlation performance on pre-processed HRV and WT
signals of EEG ,(c) Experiment 1 - Dataset 2 Correlation performance on pre-processed
HRV and EEG, (d) Experiment 3 - Dataset 2 Correlation performance on pre-processed
HRV and WT signals of EEG.

and heart, I assume the communication might have done through ”Medulla”(cardiovascular
centre placed in medulla controls the heart beating) which is part of the brain stem. The
signal has been then directed to the thalamus and then to the cerebral cortex (Lane et al.,
2001), (ATKINSON and BRADLEY, 2004).

Tables 7.2 and 7.4 show the averaged correlation result of participants for each fre-
quency comparison from Dataset 1 employing Method 1 and Method 2, respectively. Ta-
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Figure 7.8: Key neuronal projections that maintain alertness, and possibly the path from
the cardiovascular centre to the frontal lobe of the brain’s communication. The figure is
obtained from (Saper et al., 2005).

bles 7.3 and 7.5 show the averaged correlation result of participants for each frequency
comparison from Dataset 1 employing Method 1 and Method 2, respectively. Where Level
0 indicates without WT, and Levels 1, 2 and 3 indicate with WT, shown as (a), (b), (c), and
(d), respectively. The correlation results showed more negative values in Tables 7.4 - 7.5
(Method 2) than Tables 7.2 - 7.3 (Method 1). This is because they both are analysed using
different approaches: Method 1 (as shown in Figure 7.1) used to average 1 second EEG
signals, whereas, Method 2 (as shown in Figure 7.2) utilised averaging power spectrum
results. Furthermore, the correlation value shown in Tables 7.2 - 7.5 is very low, where it
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is possible that the biggest value shown in the tables could be the effect of ± signs of the
averaged peak values of frequency. Therefore, I considered absolute of the averaged peak
values of frequency obtained and repeated the correlation performance between EEG and
HRV frequency values. The Heat map with absolute correlation values are shown in Table
7.6 (employing Method 1) and Table 7.7 (Employing Method 2). Please note that I have
shown only the averaged result for electrodes in Table 7.6 and Table 7.7. Where, Level
0 indicates without WT, and Level 1, 2 and 3 indicates with WT. The heat map of these
results (”Red” is strongest and ”Dark-Blue” means weakest) indicates the change in corre-
lation performance with levels of WT. Please refer Appendix F to check the result before
averaging across electrodes for Tables 7.6-7.7.

Tables 7.6 and 7.7 show the average absolute correlation result of participants for each
frequency comparison from Dataset 1 (Table 7.4 (a) and Table 7.5 (a)) and Dataset 2
(Table 7.4 (b) and Table 7.5 (b)). Where, Level 0 means the correlation between pre-
processed data, and Level 1 to 3 means, the correlation between pre-processed HRV with
pre-processed and WT EEG. The heat map of these results (”Red” is strongest and ”Dark-
Blue” means weakest) indicates the correlation performance changes with the levels of WT.
The difference in the correlation values shown in 7.6 and 7.7 is for Method 1 and Method 2,
respectively, indicates different phases of analysis as discussed earlier. We found the signal
became flat after level 2 and lost information when levels have been increased. Therefore,
I have not considered the result of levels 3 in Figure 7.6 (b) and (d), and Figure 7.7 (b) and
(d).

Results shown in Tables 7.2-7.7 are showing negative correlation at most of the EEG
electrodes. However, positive correlation is found at some of the EEG correlation, as shown
in Figure 7.6 and 7.7. However, few frequencies of EEG have shown some correlation,
which are Delta, Theta, Alpha, and Beta. They have shown a correlation at both LF and
HF of HRV. Each of these frequencies represents the activities of these signals. For exam-
ple, Delta will be higher if the person is in deep sleep, Theta will appear if the person is
daydreaming, Alpha will appear if the person is calm, relaxed or in creative visualisation,
and Beta will show if the person is working or feeling more alert. For HRV, LF and HF
represent the sympathetic and parasympathetic activities of the autonomic nervous system
(ANS), respectively.

7.4 Conclusion

In this chapter, no correlation found between EEG and HRV when analysed in TD. In recent
years, TD was not the focus of the correlation performance between EEG and HRV (See

141



Table 7.2: Dataset 1- Method 1 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)

Chapter 2 for more details on the TD correlation analysis). I assume this could be because
no useful information can be found when comparing the amplitude of these signals.

The main conclusion of this work is that electrical activity in the frontal lobe of the
brain is correlated with the HRV for the given two datasets in the FD analysis. To the
best of my knowledge this is a new result. This suggests that most probably the electrical
signals could be transmitted through the cerebral cortex, Thalamus, and Medulla of the
brain (Saper et al., 2005). Figure 7.8 shows the possible path of the key neuronal projections
that maintain alertness. I believe this neuronal projection shows the possible path of why
frontal lobe is showing correlation with heart, as shown in this chapter. However, I have
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Table 7.3: Dataset 2- Method 1 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)

lack of expertise to find out possible reason for this, but I think this might be of interest to
the people working in the medical area.

The second conclusion from this work is that, WT signals also give correlation from the
frontal lobe of the brain when analysed in FD. To the best of my knowledge, the correlation
between WT signals of EEG and ECG/HRV has not yet been investigated.

A more tentative conclusion of this work is that four frequencies in the EEG Delta,
Theta, Alpha and Beta are correlated with both LF and HF of HRV. Whereas, most of
previous studies, (Yang et al., 2002),(Ako et al., 2003),(Jurysta et al., 2003),(Abdullah et al.,
2010) and (Chua et al., 2012), have shown a negative correlation between these frequency
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Table 7.4: Dataset 1- Method 2 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)

bands due to the condition in which these signals have been analysed.
In summary, the number of EEG electrodes used by other people to investigate correla-

tion was limited. My results cover a gap in the research concerning the correlation between
the EEG and the HRV using 10%-20% electrode placement system. My work suggests a
correlation between the frontal lobe of the EEG and the HRV, with and without WT signals.
This could be because the frontal lobe is related to higher mental functions of the cerebral
cortex and responsible for muscle movements of the body (Stuss and Benson, 1986).
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Table 7.5: Dataset 2- Method 2 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)
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Table 7.6: Method 1 - Heat Map Results of Averaged participants’ correlation performance:
(a) Dataset 1, (b) Dataset 2. Colour coding is from Red to Dark Blue, Red=Strongest,
Dark-Blue=Weakest)
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Table 7.7: Method 2 - Heat Map Results of Averaged participants’ correlation performance:
(a) Dataset 1, (b) Dataset 2. Colour coding is from Red to Dark Blue, Red=Strongest,
Dark-Blue=Weakest)
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Chapter 8

Efficient Methods for Calculating
Sample Entropy in Time Series Data
Analysis

Results shown in Figures 8.1, 8.3, and Table 8.1 are already published in the conference

proceeding of BICA (9th International Conference on Biological Inspired Cognitive Archi-

tecture, Prague, Czech Republic, August 2018).

8.1 Introduction

In recent years, different algorithms attempting to improve SE have been proposed. Quadratic
Sample Entropy (QSE) was introduced to reduce the influence of arbitrary constants of se-
quence comparison and tolerance on SE, as well as to reduce the skewing of results when
either the top or the bottom of the conditional probabilities was very small or very large
(Lake, 2011). Another attempt to improve SE was with the introduction of Fuzzy Entropy
(FuzzyEn) (Chen et al., 2007), using the concept of fuzzy sets to determine a fuzzy mea-
surement of the similarity of two vectors based on their shapes. Multi Scale Entropy (MSE)
established by (Takahashi et al., 2010), was a useful extension of SE to multiple time scales,
in recognition of the likelihood that the dynamical complexity of biological signals may
operate across a range of temporal scales. Although new methods for calculating SE have
been proposed, improving the efficiency (computational time) of SE calculation methods
has not been considered so far.

In this chapter, the type of nonlinear complex measures of variability exploited is SE.
The aim of the research is not to propose another new method derived from SE, but to
efficient method improving the computational time for the SE calculation. I will compare
the computational time for SE calculation using the new and original SE methods. This
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Chapter shows an analysis of calculating correlation between Electroencephalogram (EEG)
and Heart Rate Variability (HRV) based on their SE values in time domain.

8.1.1 Dataset Information

The dataset consists of EEG and ECG recordings from 15 participants. This data was
obtained over 5 minute time slots in a relaxed state with eyes opened. The dataset used in
this chapter is Dataset 1 as described in Chapter 3.

8.2 Sample Entropy and Proposed Implementation

SE is considered as an effective method for investigating different types of time series data.
A lower SE value indicates a high frequency of similarity in time series (Richman and
Moorman, 2000). The description of how SE works can be found in Chapter 5.

8.2.1 Efficient and Parsimonious way for Sample Entropy Calculation

SE measures the probabilities of matches for a time series data using point-wise approach.
Instead of finding differences between each point m with Approximate Entropy, the point-
wise approach of SE calculates the probability for each point separately. This can be time-
consuming when a long sequence of points needs to be compared. The computation time
for SE can be reduced without losing much information from the signals by using the three
methods proposed in this section. Thus, the calculation time for SE could be shortened and
computational expense would be cheaper. Figure 8.1 illustrates how these three methods
work.

SE-Method 1 is about shortening the time series signal without the loss of too much
information to the point-wise approach. For example, instead considering the original data
length of the 5-minute signal (250Hz×300Sec = 75000 data points), it could be shortened
by dividing the original data length by 1.1 (ignoring last 25 seconds data) (75000/1.1 =

68181, equivalent to 275 seconds data points). Binary chop (Knuth, 1998) is performed
ignoring the number of neighbours for comparison, in order to find out, at which point
the most accurate result with the shortest length for SE could be obtained. Due to much
less combination results, consequently, less comparison, the computational time is much
cheaper than the original method.

SE-Method 2 is about SE calculation on a moving window. For example, using a 2
seconds moving window, SE is calculated for a window size of 500 points (2× (250Hz) =
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500 data points). Using this method, I calculate SE on individual windows and find out
which window size gives the SE values that are most similar to the original SE value.

SE-Method 3 is to calculate the mean of input data for a given window first before
performing SE. This data window could be as long as a minute or as short as a second.
For example, if the mean of each 1 second data (250 points) is gathered, then it will give
us a reduced length of n = 300 data points on which to perform SE calculation, and not
n = 75000. By this way the SE computational time should be reduced dramatically.

Figure 8.1: An example of how the SE can be calculated efficiently.

8.3 Experimental Results

The EEG signals were pre-processed to remove artefacts caused by electrical activity in
muscles, including the eye, jaw and other muscle movements using Independent Compo-
nent Analysis (ICA) as mentioned by (Hyvärinen and Oja, 2000). It is relatively straight-
forward to remove these artefacts using ICA.
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8.3.1 Experiments using three proposed SE Calculation Methods

For each of the five minutes of EEG data, the following three experiments have been under-
taken, and the results are shown in Table 8.1 and Figure 8.2. For the purpose of comparison,
SE values of the original SE performance are also shown. All code is run on a personal
computer: Windows 7 Enterprise, Intel (R) Core (TM) i7-3770T, 64-bit Operating System,
16 GB RAM.

Experiment 1 is the implementation of SE-Method 1, by restricting the number of
neighbours for comparisons on SE calculation. It is found that ignoring the last 25 seconds
of data (300Seconds− 275Seconds = 25Seconds) still achieves similar results as if they
are included, but with the improving computational time of 13 seconds. The ignorance of
25 second data was considered because due to binary chop process, difference chops have
been applied, and the SE was applied to each chopped data. During which, no change in
SE found between 275 - 300 seconds data. Therefore, 25 seconds data were ignored in SE
calculation.

Experiment 2 is about experimenting SE-Method 2, I considered 10 different window
sizes (i.e. 2 Sec, 10 Sec, 20 Sec, 30 Sec, 40 Sec, 50 Sec, 60 Sec, 70 Sec, 80 Sec and 90 Sec
windows) on which the SE calculation was performed, in order to find out which window
size gives the SE values that are most similar to the original one. As shown in the Table 8.1
the smaller the window size, the shorter the calculation time. Moreover, it is found that the
smallest window size gives most similar results to the original SE calculation.

Experiment 3 demonstrates SE-Method 3, calculating the mean of each window (e.g. 1
Sec= mean of 250 points). The experiment is done with 8 different window sizes (i.e. 0.06
Sec, 0.12 Sec, 0.25 Sec, 0.55 Sec, 1 Sec, 2 Sec, 3 Sec and 4 Sec) on which to calculate the
mean, as shown in Table 8.1. The SE is then performed on the mean values of the signal.
As expected, the bigger the window size, the shorter the calculation time. Moreover, the
best match with the original SE calculation results is the mean of each 1 second window.

Figure 8.2 shows the results of Experiments 1-3 for all 15 participants, where the results
for individual participants is the average for all electrodes. For each of these methods except
SE-Method 1, different window sizes on which to calculate SE are utilised, as shown in
Table 8.1. Figure 8.2 shows the results of Experiment 1 (SE-Method 1), Experiment 2 (SE-
Method 2 for 2 seconds moving window), and Experiment 3 (SE-Method 3 for the mean of
each 1-second window). The SE result for all other window sizes are available in Appendix
C.

Experiments 1-3 demonstrate strong positive correlation between the results obtained
using the original method and each of the new three SE approaches. The correlation values
are 0.99, 0.68, and 0.96 for SE-Method 1, SE Method 2 (2 seconds moving window) and
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Figure 8.2: Comparison of original SE calculation and proposed SE methods, showing
average results for all electrodes are shown for the individual participants : (a) Method 1-
Shortened Neighbours comparison, (b) Method 2- Using Moving Window of 2 seconds of
data, and (c) Method 3- Calculating SE from Mean values of each 2 seconds of data. Red=
Original SE performance, Blue= Proposed Method’s SE Performance.
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Table 8.1: Computation time for the SE calculation using the Original approach and the
three efficient methods.

Experiments Details Computation Time
SE-Original Original Performance 75 Sec

SE-Method 1 Shortening the neighbour comparison 62 Sec

SE-Method 2

2 Seconds Moving Window 0.002 Sec
10 Seconds Moving Window 0.08 Sec
20 Seconds Moving Window 0.38 Sec
30 Seconds Moving Window 0.72 Sec
40 Seconds Moving Window 1.30 Sec
50 Seconds Moving Window 1.94 Sec
60 Seconds Moving Window 3 Sec
70 Seconds Moving Window 4 Sec
80 Seconds Moving Window 6 Sec
90 Seconds Moving Window 9 Sec

SE-Method 3

Mean of Each 0.06 Seconds Window 0.38 Sec
Mean of Each 12 Seconds Window 0.11 Sec
Mean of Each 25 Seconds Window 0.02 Sec
Mean of Each 50 Seconds Window 0.007 Sec
Mean of Each 1 Seconds Window 0.003 Sec
Mean of Each 2 Seconds Window 0.008 Sec
Mean of Each 3 Seconds Window 0.01 Sec
Mean of Each 4 Seconds Window 0.02 Sec

SE-Method 3 (mean of each 2 second window), respectively, along with the probability of
0. Whilst SE-Method 1 and SE-Method 2 is not following the trend of SE values and do
not improve the computational time for SE calculation significantly, SE-Method 3 clearly
works best in terms of trend and computational time, providing the most predictive value
for SE performance to those provided by original SE.

8.3.2 Experiment 4

The aim of experiment 4 is to compare the correlation performance of the new methods and
original methods for SE calculation through SE values of EEG and HRV data using Pearson
Correlation Coefficient (PCC). The previous three experiments show that SE-Method 3 is
the best one in terms of improving SE calculation time without losing much information.
Hence, only SE-Method 3 is considered in this experiment. PCC works on the same length
of the signals, and SE-Method 3 could give us the same length of samples for EEG and
HRV. In the previous chapter, the TD correlation between EEG and HRV data has been
performed, and results suggested no correlation. In this chapter, the TD correlation analysis
has been conducted through SE values. In order to demonstrate a correlation between EEG
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and HRV in TD, for each of the five minutes of EEG and HRV data, the following steps have
been undertaken for both original and the new approach (SE-Method 3) of SE calculation.

1. For each electrode’s EEG, divide data into 10 equal width bins to perform SE cal-
culation. Similarly, for HRV data, divide data into 10 equal width bins to perform
SE calculation. By this way, 10 SE values of EEG and 10 SE values of HRV will be
gathered. This process has been repeated for each participant.

2. For each Participant, compute PCC on the 10 SE values of the EEG and 10 SE values
of the HRV obtained in step 1.

Pearson′s correlation is used to perform the correlation coefficients. It measures how
closely two different observables are related to each other. Pearson′s correlation co-efficient
R ranges between 1 (when the matching entities are exactly the same) and −1 (when the
matching entities are inverses of each other). A value of zero indicates no relationship
existing between the entities.

Once the correlation values are gathered for each electrode, the best performance elec-
trodes have been ranked, where the ranking has been given based on electrode correlation
values, the bigger the value, the higher the rank. The top three best performance elec-
trodes’ results have been looked closely. Some common best electrode rankings are found
for all the participants investigated. Figure 8.3 shows the results of Experiment 4, showing
common best electrode ranking for all participants, highlighted in yellow colour.

It is found that the electrical activity in the frontal lobe of the brain appears to be cor-
related with the HRV in time domain. Moreover, the new approach (SE-Method 3) of SE
calculation is giving more focused results than the original SE calculation.

8.4 Discussion and Conclusion

The main conclusion of this work is that parsimonious results for SE can be achieved using
the proposed new methods of preprocessing the data prior to SE calculation. SE-Method
3 works best because it improves the SE performance, giving good predictive values with-
out changing the trends visible in the SE, calculated using the original standard approach.
SE-Method 1 can provide SE values very close to those obtained using the original SE ap-
proach, but it does not improve computational time much. Similarly, SE-Method 2 is not
robust because it does not improve the trend nor computational time significantly.

The second conclusion from this work is that there is a strong positive correlation
(R=0.96, Probability = 0) between results obtained using the original and the new (SE-
Method 3) SE approaches. Also, we found low positive correlations between SE values of
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Figure 8.3: Electrode Ranking based on correlation performance between SE values of
EEG and HRV, showing best three performing electrodes across participants, highlighted
in yellow colour: (a) Ranking based on the original approach for SE calculation, and (b)
Ranking based on the new approach (SE-Method 3) for SE calculation.

EEG and HRV in the time domain. The results shown in the previous chapter (Chapter 7)
suggested that the electrical activity in the frontal lobe of the brain is correlated with the
HRV at frequency domain. The work in this Chapter shows that the electrical activity in
the frontal lobe of the brain appears to be correlated with the HRV in the time domain as
well.

In summary, SE-Method 1 and SE-Method 2 does not improve the trend or the compu-
tational time for SE calculation much. SE-Method 3 does not give values similar to those
provided by the original SE approach, but it provides the most predictive value for SE per-
formance. Although the result is not exactly similar as the original SE performance, the
trend is the same. Therefore, we demonstrated that the most efficient way for SE calculation
is SE-Method 3.
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Chapter 9

Heart Rate Variability Time Series
Analysis using Embedding Dimension

Results shown in Figures 9.1 and 9.2 are already published in the conference proceeding of

BICA (9th International Conference on Biological Inspired Cognitive Architecture, Prague,

Czech Republic, August 2018, Elsevier’s Procedia Computer Science).

9.1 Introduction

Heart Rate Variability (HRV) is a measurement sequence with one or more visible variable
of an underlying dynamic system, whose state changes with time. In practice, it is difficult
to know what variables determine the actual dynamic system. Embedding Dimension (ED)
plays an important role in time series analysis(Chun-Hua and Xin-Bao, 2004). The aim of
this chapter is to find the nature of underlying dynamical systems for HRV time series using
the ED. For analysing predicting variables responsible for HRV time series, False Nearest
Neighbour (FNN) method of estimating ED is adapted. The description and illustration of
ED along with FNN method are available in Chapter 5. In this chapter, four datasets are
used to analyse the HRV signals of participants with and without medical conditions. The
HRV time series taken from participants are over a fixed period.

9.1.1 Dataset Information

This Chapter utilised four datasets including two (Dataset 2, and Dataset 3) without a med-
ical condition and two (Dataset 9, and Dataset 10) with a medical condition. The detail of
these datasets is available in Chapter 3.
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9.2 Experiments and Results

9.2.1 HRV Analysis using ED

The purpose of this experiment is:

• To find out underlying variables in the HRV time series.

• To find out if there is any difference between individual participant’s HRV based on
their ED results?

• To find out if there is any difference between the ED result of individual 5-minute
slots of each participant?

For each participant, the percentage of FNN obtained as an increase in the ED. I use
the MATLAB code to obtain ED of HRV (Mirwais, 2012). Once the percentage of FNN
for the ED for each 5-minute slot is obtained, the results are plotted for each participant, as
shown in Figures 9.1, 9.2, 9.3, and 9.4. A comparison on ED result of different participants
and each 5-minute slots has analysed in detail.

For Dataset 2 and Dataset 3, the ED results of 4 participants, two from each dataset
(Participant 1 and Participant 2 from Dataset 2, and Participant 3 and Participant 4 from
Dataset 3) are shown in Figure.9.1 and Figure 9.2, respectively. For all the other partici-
pants from these datasets, results are similar to what as shown in Figures 9.1 and 9.2. The
results of other participants of Dataset 2 and Dataset 3 are available in Appendix D (See
Figure D.1 and Figure D.2, respectively).

For Dataset 9, the ED results of two participants (Participant 2, and Participant 4) are
as shown in Figure 9.3 (a) and (b), respectively. For all the other participants from Dataset
9, results are similar to what is shown in Figure 9.3 (a) and (b). The results of other
participants are available in Appendix C (See Figure C.3).

For Dataset 10, the ED results of two participants (Participant 2, and Participant 4) are
as shown in Figure 9.4 (a) and (b), respectively. For all the other participants from Dataset
10, results are similar to what is shown in Figure 9.4 (a) and (b). The results of other
participants are available in Appendix C (See Figure C.4). Note, for each participant in
Figure 9.4 (a) and (b), comparison of ED performance is among HRV time series measured
with different electrode (Please refer to Chapter 4 for more detail about the four electrodes),
and not between the slots as shown in Figures 9.1, 9.2, and 9.3 respectively. The reason for
not showing the slot’s information is because the datasets only contain a 5-minute recording
of each participant, and therefore, lack of slots information is available with this dataset.
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Figure 9.1: Dataset 2- Embedding Dimension Result: Two participants (Participant 1 and
2) ED result from Dataset 2.

In Figures 9.1, 9.2, 9.3, and 9.4., the X axes (Horizontally) represent ED from 1 to 10,
and Y axes (Vertically) represent the percentage of FNN for the ED. In Figures 9.1, 9.2,
and 9.3 the 8-9 different colours (Curves) in the graph correspond to slots. In Figure 9.4,
the five different colours (Curves) in the graph correspond to different Electrodes. There
are three important findings from these results:

1. The first notable finding for all participants/Datasets, is that the optimal ED is about
4. It is also notable that this optimal ED is independent of the stimulus locations. As
shown in Figures 9.1, and 9.3, the different colours represent different slots, contain-
ing different stimulus locations. Therefore, it suggests the independence of stimula-
tion. These results indicate that an ED of 4 is most appropriate for HRV data for all
slots and all participants.
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Figure 9.2: Dataset 3 - Embedding Dimension Result: Two participant’s (Participant 3 and
4) ED result from Dataset 3.

2. In Figures 9.1 and 9.2, the bottom figures (Participant 2 and Participant 4) show
increasing numbers of FNN while ED rises above its optimal value of 4, whereas the
top figures (Participant 1 and Participant 3) do not display this. An increase in the
number of false nearest neighbours with increasing ED usually is suggestive of noise
in the data (Abarbanel et al., 1993).

3. In Figures 9.3 and 9.4, nevertheless of the medical condition of the data, the results
are similar to datasets without a medical condition. However, less noise has been
found in the participants with a medical condition such as for Fetal ECG (Figure
9.4). These results suggest that an ED of 4 is most appropriate for HRV data with the
medical condition as well.
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Figure 9.3: Dataset 9 - Embedding Dimension Result: (a) Two Participants (Participant 3
and 4) ED result for HRV without medical condition, (b) Two Participants (Participant 1
and 3) ED result for HRV with a medical condition Congestive Heart Failure (CHF).
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Figure 9.4: Embedding Dimension Result: Two participants (Participant 2 and participant
4 (5 measured Electrodes, as shown in different colour)) from Dataset 10.

9.2.2 HRV Prediction using Linear Regression

The standard Linear Regression is utilised to produce a linear predictor for the embedded
data. It was suggested by Kil (Kil et al., 1997) that the size of a window, in which the time
series embedded, plays an important role to project a time series. Therefore, to predict the
window size for the HRV series to achieve the best result, Linear Regression is used in
this chapter. To perform Linear Regression, I have considered a 5 minute HRV time series
data. The embedding dimension, the size of the input layer, is increased from 2-units to 6
units. For each window, data are split into a training set of 250 vectors and a test set of 106
vectors; moving window size by one vector point. The size of the window is the size of the
previous window excluding the first data point and adding the last data point to make the
similar length windows. For example, for the window 2, the size of the window will be as
follows:
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Figure 9.5: Window Size selection for the HRV prediction, where red coloured data points
are not considered, and the yellow highlighted data points are repeated in the window size
of 1 and 2.

After results from five different window sizes are obtained, the relative errors are cal-
culated using the following equation:

RelativeErrors =

√√√√√
∑
t
(observationt− predictiont)

2

∑
t
(observationt− predictiont+1)

2 (9.1)

The results for five different window size are as shown in Figure 9.6. It is clear that the
best regressor has four inputs and changing this number either way harms the projection of
HRV time series. Figure 9.6 shows that error rises as the window increases, and this cannot,
here, be due to contamination in the higher dimensions. It is probably due to over-fitting
on the training set.

Figure 9.6: Relative error of the predictor for varying window size for HRV Time series.

The linear prediction of the HRV suggests that the window size of 4 will be enough to
fit the HRV time series data. Also, this reflects the ED result of 4 as the minimum ED for
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the HRV Data with/without any medical condition shown in Figures 9.1, 9.2, 9.3, and 9.4,
respectively.

9.3 Discussion and Conclusion

Results shown in this chapter, prove that ED can produce evidence of dynamic variables
which contribute to the HRV time series. Moreover, the embedding of the HRV time se-
ries into a four-dimensional space produced the smallest number of FNN. Based on Takens
(Takens, 1981), if the original dynamic system had a dimension of N, then an embedding
of size 2N will be fully regained the original system. The results shown in this chap-
ter estimated ED of 4 (2×N = 2× 2 = 4), which suggests that the underlying dynamic
system of HRV has N = 2 features. This result is impressive because HRV is driven by
two underlying variables, the sympathetic and parasympathetic neural pathways. HRV is
a marker of sympathetic and parasympathetic influences on the modulation of heart rate
(Zhong et al., 2004), and this is reflected in the ED result. The effect of the sympathetic
pathway is to increase heart rate and blood pressure (Fight or Flight response), whereas
the parasympathetic path acts to decrease heart rate and blood pressure (Rest and Digest
response). Therefore, the main finding here is that, in all circumstances, an Embedding
of the HRV time series in a four-dimensional space generates the smallest number of false
nearest neighbours. This finding strongly suggests that the Autonomic Nervous System
that drives the heart is a two-dimensional dynamic system.

From the participants questionnaires from Dataset 2 and Dataset 3, a variety of subjec-
tive responses to the acupuncture stimulation were found. However, this did not appear to
have much effect on the HRV time series, which robustly kept its two-dimensional dynamic
system.

In some circumstances, the percentage of FNN increase as the ED became more mas-
sive than the optimal value. This increase suggests noise in the data that may have come
from the ECG measuring equipment.

It was suggested by Kil (Kil et al., 1997) that the performance of a time series prediction
is affected by the window size, in which the time series embedded. So the best predictor
would be the one that used correct ED. The experiments, reported in this Chapter, using a
Linear Regression to predict the HRV series, confirmed that a window size of four gave the
best prediction result.
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Chapter 10

Conclusion and Future Work

This Chapter is the concluding chapter of the thesis. It contains a summary of each pre-
ceding chapters, contributions to the knowledge and future work in Section 10.1, 10.2 and
10.3, respectively. It is worth mentioning that the work shown in this thesis is an interdisci-
plinary study between Computer Science and bio-informatics. Hence, researching on both
sides has been a challenging experience for me.

10.1 Summary of Chapters

This section summarises the main points in the thesis.

• Chapter 1 explains the necessity of time series data analysis, specifically on EEG
and ECG. In this chapter, state-of-the-art research in this area is briefly introduced,
and how those work motivated me to extend the research is depicted.

• Chapter 2 opens the required background to understand time series data: EEG, ECG
(HRV). This chapter is divided into a few parts to echo individual components of the
interdisciplinary area. The first part is the general description of dynamic, linear,
nonlinear and chaos systems. In the second and third parts, information about EEG
and ECG (HRV) signals is provided, respectively. Furthermore, these parts also show
the existing research work on analysing EEG and ECG (HRV) signals. The fourth
(final) part describes the research work done on investigating correlation between
EEG and ECG (HRV) signals.

• Chapter 3 presents the datasets used in this thesis. This chapter is divided into two
parts with the first part providing the description of the dataset (Dataset 1) recorded
by myself and the second part explaining all the other datasets (Datasets 2-10), either
given to me or obtained from the internet. The datasets from the second part contain
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EEG and ECG (HRV) data of participants with and without medical conditions. The
medical conditions include Autism, Epilepsy, Epileptic Seizure, Congestive Heart
Failure and Fetal ECG, respectively.

• Chapter 4 talks about what data preprocessing is and its importance in analysing
time series data. Commonly used data preprocessing techniques for the time series
data is listed in this chapter. Further to this, the well-known data preprocessing tech-
niques utilised for the EEG and ECG (HRV) data, such as Independent Component
Analysis (ICA), Fast Fourier Transform (FFT) and Wavelet Transform (WT), along
with an example for each, are described. The utilisation of these techniques in my
thesis is as follow: FFT and WT are utilised only in Chapter 7, whereas ICA in
Chapters 6, 7 and 8. WT and ICA are employed on the raw data in order to remove
artefacts, whereas FFT is used to extract useful component of the data.

• Chapter 5 gives a description of data analysis and its importance in finding infor-
mation from time series data. It enumerates commonly used data analysis methods
for the time series data. Further to this, well-known data analysis methods utilised
for the EEG and ECG (HRV) data, such as Approximate Entropy, Sample Entropy
(SE), Pearson’s Correlation Coefficient (PCC), Cross-Correlation (CC), and Embed-
ding Dimension (ED), along with an example for each, are described. The utilisation
of these methods in my thesis is as follow: SE is used in Chapter 8, PCC in Chapter
7, CC in Chapter 6, and ED in Chapter 9. SE is adopted for measuring time series
complexity, ED for unveiling underlying variables of the time series, and PCC as
well as CC for finding correlation between two time series.

• Chapter 6 is the first result chapter of the thesis, in which correlation between EEG
signals measured through electrodes is investigated using Cross-Correlation method.
This chapter shows correlation performance between EEG signals of participants
with and without medical conditions. The main findings of this chapter are:

1. The correlation decreases linearly when the distance between the electrode in-
creases. This means that electrical activity correlates with the physical distance
between electrodes.

2. The presence of linear dependency is only found in the participants without
medical conditions. For the participants with medical conditions, such as Epilepsy
and Epileptic Seizures, linear dependency does not exist.
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3. The correlation found is independent of brain hemispheres for all six datasets
utilised in this chapter. This result suggests that most probably the electrical
signals are transmitted through the white matter of the brain. This means that
in practice it might not matter which side of the medial plane you place the
electrodes.

• Chapter 7 is the second result chapter of the thesis, in which Pearson’s Correlation
Coefficient between EEG and HRV signals in Time Domain (TD) and Frequency
Domain (FD) are shown. In FD, both with and without WT processed data are anal-
ysed, whilst TD is only for the data without WT due to the time limitation of this
research. In FD, to investigate correlation between EEG frequencies and HRV fre-
quencies, three experiments are conducted: 1) Correlation of preprocessed signals
HRV and EEG, 2) Correlation of preprocessed as well as WT on both signals HRV
and EEG, and 3) Correlation of preprocessed as well as WT only on EEG and HRV.
For the reason of different sample rates of EEG and HRV, two different approaches
(named as Method 1 and Method 2) are utilised to segment EEG signals and to cal-
culate Pearson’s Correlation Coefficient for each of the EEG frequencies with each
of the HRV frequencies in FD.

1. In TD, no correlation has been found between EEG and HRV.

2. In FD, for both with and without WT processed EEG, electrical activities in the
frontal lobe of the brain correlates with the HRV without WT process. This re-
sult suggests that the electrical signals might be transmitted through the cerebral
cortex, Thalamus, and Medulla of the brain (Saper et al., 2005).

3. In FD, a more tentative conclusion of this work is that EEG frequencies (Delta,
Theta, Alpha and Beta) are positively correlated with HRV frequencies (Low
Frequency and High Frequency). Whereas, most of previous studies, (Yang
et al., 2002), (Ako et al., 2003), (Jurysta et al., 2003), (Abdullah et al., 2010)
and (Chua et al., 2012), shown a negative correlation between these frequencies.
The reason for this contradictory results could be the condition in which these
signals have been analysed.

• Chapter 8 is the third result chapter of the thesis. The aim of this chapter is to design
a new calculation method for time series complexity to improve computational time.
In order to find an efficient method for SE calculation, three different calculation
methods (named as SE-Method 1, SE-Method 2, and SE-Method 3) are experimented
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on preprocessed EEG and HRV data. Out of the three methods, the one having
the best performance (SE-Method 3) is chosen to compare against the original SE
method in the context of calculating a correlation between EEG and HRV in the
Time Domain (TD). The main findings are:

1. Parsimonious results for SE calculation is achieved using a proposed new method.
SE-Method 3 gives the best SE values among the three proposed methods. In
addition, it improves the computational time without changing the original pre-
diction trends visible in the SE.

2. The work in this chapter shows that the electrical activities in the frontal lobe
of the brain appears to be related to the HRV in the TD. This finding is in con-
sistency with the results shown in Chapter 7 which suggests that the electrical
activities in the frontal lobe of the brain correlates with the HRV in FD.

• Chapter 9 is the last result chapter of the thesis, which unveils the underlying vari-
ables determining HRV using Embedding Dimension (ED). False Nearest Neigh-
bours (FNN) method is exploited for analysing variables responsible for the HRV
time series. In this chapter, four datasets are used to analyse the HRV signals of
participants with and without medical conditions. The main findings are:

1. For Both participants with and without medical condition, the results present
that the HRV has an ED of four, which suggests that the underlying dynamic
system has two variables. This is because, if the original dynamic system has
a dimension of N, then an embedding size of 2N is fully regained from the
original system(Takens, 1981). This finding is interesting because it was found
that HRV is a marker of sympathetic and parasympathetic influences on the
modulation of heart rate (Zhong et al., 2004).

2. The results show an increase in the percentage of FNN when the ED increases,
which might be the effect of noise in the data (Abarbanel et al., 1993).

10.2 Contribution to knowledge

My contributions are:

• Discovered that the correlation between EEG signals measured through elec-
trodes is linearly dependent on the straight-line (Euclidean) distance between
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them for participants without medical conditions, but not for participants with med-
ical conditions.

Over the past few years, correlation between EEGs was investigated in frequency
domain using limited number of electrodes, and limited number of combinations of
electrode pairs. Their focus was primarily on electrode combinations within either
the left or right brain hemisphere. To my knowledge, no research has investigated
the correlation between EEG signals and distance between electrodes. Furthermore,
no one has compared the correlation performance for participants with and without
medical conditions. In my research, I have filled up these gaps by using a full range of
electrodes and all possible combinations of electrode pairs analysed in Time Domain
(TD).

• Demonstrated that EEG at the front area of the brain has a stronger correlation
with HRV than the other area in frequency domain.

The recent research for correlation between EEG and HRV has focused on Fourier
analysis of the frequencies presented in these signals, to analyse their functionalities
under certain conditions. Some research has investigated correlation between EEG
and HRV limited to certain brain areas and demonstrated the existence of correlation
between EEG and HRV. But no research has indicated whether or not the correla-
tion changes with brain area in either frequency domain or time domain. Although
Wavelet Transformations (WT) have been performed on time series data including
EEG and HRV signals to extract certain features respectively by other research, so
far correlation between WT signals of EEG and HRV has not been analysed. My
research covers these gaps by conducting a thorough investigation of all electrodes
on the human scalp.

• Designed a new calculation method of sample entropy which could improve
computational time significantly in the context of calculating a correlation be-
tween EEG and HRV.

Recent research has proposed new calculation methods for Sample Entropy, aiming
to improve the accuracy. To my knowledge, no one has attempted to reduce the com-
putational time of SE calculation. My application required a fast calculation method
because of the huge data length. Therefore, I designed three methods for SE calcu-
lation: Method 1 (SE-Method 1) is about shortening the time series signals without
loss of too much information, Method 2 (SE-Method 2) is about SE calculation on
the moving window, and Method 3 (SE-Method 3) is about calculating means for a

168



given window first before calculating SE. Method 1 and Method 2 do not improve
computational time. Method 3 (SE-Method 3) improves the computational time for
SE calculation significantly whilst has similar SE value pattern with time as that of
the original SE.

• Two variables determining ECG (HRV) were unveiled .

Embedding dimension (ED) is utilised to study complex systems that appear ubiq-
uitous in nature, but limited to certain dynamic systems (e.g. analysing variables
affecting stock values). No literature has investigated the nature of the underlying
dynamic system of HRV. My research highlights this matter by analysing actual vari-
ables determining HRV using ED technique. ED is a well-known technique for dy-
namic system analysis. In this thesis, I have not proposed a new idea on finding ED,
but presented experimental results of using it on analysing HRV. The results strongly
suggest that the autonomic nervous system driving the heart is a two-dimensional
dynamic system. This finding is interesting because HRV is a marker of sympathetic
and parasympathetic influences on the modulation of heart rate (Zhong et al., 2004),
and this is reflected in the ED results.

10.3 Future Work

The future work to perform after this research includes:

• Utilise more datasets to support the research questions in this thesis:

1. Extend correlation analysis between EEG and HRV signals on other datasets
recorded under the same condition. In this thesis, only Dataset 1 and Dataset 2
contains EEG and HRV signals under the same condition.

2. Apply the new, improved method of SE calculation on other datasets to see the
effect of it, compared with the original SE calculation method.

• Consider more nonlinear methods to assess the variability of EEG and ECG/HRV:

1. Cross-Correlation (CC) method is used to investigate correlation between EEG
signals in TD. The reason for using CC is to consider different time lags. It is
worth extending correlation performance using other method, such as Pearson’s
Correlation Coefficient.
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2. Pearson’s Correlation Coefficient was utilised to analyse correlation between
EEG and HRV in frequency domain. It would be interesting to extend the cor-
relation analysis using other methods such as, Mutual Information, Correlation
Dimensions, Autocorrelation, and Spearman’s Correlation.

3. Use other entropy methods, such as Shannon Entropy and SE-based Multi scale
Entropy, to assess variability of EEG and HRV, and compare the results of these
methods with the new SE calculation method proposed in this thesis.
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Appendix A

Dataset 1- Recording Photos

After completing my training with Dr Tony Steffert, I started recording EEG and ECG data.
In order to make the recording smoothly, I followed the steps below:

1. Position Electroencephalography (EEG) and Electrocardiogram (ECG) equipment
on a table: (1) Gel jar (a jar of 10/20 NuPrep), stick, alcohol wipes, cotton wool ball,
two sponges, Harness belt for holding EEG cap tight. (2) ECG cables (Red, Black,
and White (ground) electrodes), Respiration belt, Blood Volume Pulse (BVP) cable,
Temperature cable.

2. Equipment checks: NeXus10 batteries (checked/replaced after every 3 sessions),
NeXus10 / BioTrace (plug all sensors leads into NeXus10 except for Respiration
belt) function, Mitsar/WinEEG function.

3. Position harness (standard size ), Respiration belt (tight, c level of the umbilicus);
strain gauge just to one side of midline (note where the cable comes off for NeXus10).

4. Position cushion on a lap, and clean participants’ wrists with an alcohol wipe (P6
acupoint, or medial to tendons; avoid tendons); put swab back in its sleeve for later
use.

5. Position temp sensor and BVP plethysmograph on the nondominant middle finger;
the temperature to socket F; make participants’ hands positioned palms down.

6. Place NeXus on Mitsar storage box beneath participant chair and start NeXus and
BioTrace to check to record before capping up.

7. For EEG Capping: (1) Measure head circumference and check the size on cap la-
bel, (2) Position 2 rings around Fp1/Fp2 electrodes. Approach capping up from
behind/right. Ensure nasion to level of Fpz and inion to level Oz is 10% of nasion
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to inion distance, using a tape measure, (3) Then gel ear clip cup and clip onto the
earlobe (with a cotton wool ball between clip and neck), pull cap ring down and at-
tach to harness. Remember to cross attachments to harness, (4) Attach D plug to
Mitsar socket, and ear leads to A1 and A2 (keeping L and R parallel, not crossed
over). 9. Tie leads together just behind the cap, keeping them loose. (5) Check cap
symmetrical (sideways) and correctly positioned back/front.

8. Explain black vs. white or yellow (more important is that all should be the same
colour rather than all white) using impedance screen. Note that Fp1 and Fp2 are the
‘most tickly‘ (use that word, to emphasise not invasive). Once a participant is looking
at the traces on screen, need to balance saying too much about eye-blink and to relax
jaw with them relaxing, can talk about smiley muscles and frowny muscles.

9. Start with Ground (behind Fz). Need to ensure ground contact has a good connection
if there is no white at all on impedance screen. If there is some white, the ground is
okay. Ears should be white (this is must, as reference to ears).

10. Use’ transport tape’ (non-tacky, 3M) to hold specs to be outside of the cap, and check
for any cap slippage.

11. Ensure participant is comfortable – supply back cushion if required.

12. EEG monitoring; (a) Start EEG monitoring immediately, while organising BioTrace,
then start BioTrace recording a little earlier than WinEEG recording. Stop (WinEEG)
and Pause (BioTrace) simultaneously. (b) Use ‘Stop’ button between slots; if need to
re-check impedance screen (Stop, check, and then restart with a new recording/new
label, so best not to have to do this). If a participant needs to sneeze or move, use
the ‘Pause’ button, and then push Green to continue. (c) At the end of the recording,
‘Save As’ with the label copied and pasted into three fields in the ‘Participant Card’
already (participant ID, Date of Birth and gender, but NOT an identifiable name).

13. BioTrace : (1) use the ‘Pause’ button between slots. When the session ends, ‘Stop’
and save. (2) Export IBI into the export folder. Ensure codes for slots identical for
BioTrace and WinEEG, copying and pasting as necessary between slots (WinEEG)
and sessions (BioTrace).

14. When Finished: (1) Switch off NeXus10 gently (just holding down Off button), (2)
Unplug EEG leads from Mitsar first, then undo harness; take ear clips off; remove
cap with tissue in hand (so that participant doesn’t get to rub a hand over the head
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before you do); check how much gel there is or not. (3) Use wet wipe on scalp/ears,
then offer it to a participant to complete cleansing. (4) Remove all NeXus10 sensors
carefully and position safely. (5) soak ECG electrodes thoroughly.

15. Cap maintenance: (1) Gently wrap cap, then at the home immerse cap (NOT D
plug!) in water, wash the sponges out; keep participant’s stick to go through the
holes while washing, (2) Drip dry over bath, taking care with where leads are joined
to electrodes, (3) Take care when cleaning ear clip electrodes – only tin, so don’t
want to wear surface away. (Don’t leave too long for the gel to dry out), (4) Use
alcohol wipes on a syringe, wash and rotate the needle (OR: arrange drying facility
in the storage room). Cap should have dried by the time the next, but one person
comes through. Use a hairdryer (not too close to the cap!) if necessary.

In this section, the process of EEG and ECG recording is shown through some photos
taken during the recording process. Participants shown in the pictures have given their
permission to share their pictures in my research.

Figure A.1: Location of the Recording at the University of Hertfordshire Premises.
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Figure A.2: Device used to control Transcutenous Electroacupuncture Stimulation (TEAS)
Stimulation Frequency.

Figure A.3: ECG electrodes attached on both wrists, TEA electrodes attached on both
hands, and sensor attached on the indexed finger.
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Figure A.4: Tie leads together just behind cap, keeping them loose.

Figure A.5: Explaining one of the participants the next step of getting a good connection
between the surface of the scalp and EEG electrodes. Explaining (black = no connection
vs white = very good connection or yellow = good connection colour) what colours repre-
sented on the screen in front of them.
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Figure A.6: Adjustment between the gel and the hair is needed to make the connection be-
tween the electrodes and the surface of the scalp. Therefore, rubbing the gel, and checking
the connection on the laptop screen (This process can be seen by participants also).

Figure A.7: Impedence screen showing all 21 electrodes before them, being connected on
the surface of the scalp (Black colour = No connection).
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Appendix B

Cross-correlation performance of
Electrodes Pair against Time lags and
Distance

B.1 Cross-correlation performance of Electrodes Pair against
Time Lags

In all electrode pairs from Dataset 1, and Dataset 4-8, the result is similar to what is shown
in Chapter 6 (Figure 6.2). Therefore, in this section, I have chosen only two datasets
(Dataset 1 and Dataset 4) randomly, to show Cross-correlation performance for one elec-
trode from each lobe of the brain from. For example, the chosen electrodes from Dataset
1 are: Fp2 (from Front polar-right side of the brain), T3 (from Temporal-left side of the
brain), T4 (from Temporal-Right lobe of the brain), O1 (from Occipital-left side of the
brain) and O2 (from Occipital-right side of the brain). The chosen electrodes from Dataset
1 are: F8 (from Frontal-right side of the brain), P3 (from Parietal-left side of the brain), and
P4 (from Parietal-Right lobe of the brain).

B.1.1 Dataset 1

The result in the figures B.1-B.5 suggests that all signals measured from the particular lobe
of the brain are positively correlated with the signals measured within the same lobe of the
brain, but negatively correlated with signals measured from another lobe of the brain. For
example, Figure B.1 shows the information for all electrode pairs for the electrode Fp2,
where all signals from the frontal lobe of the brain are positively correlated with Fp2, and
all signals from the back lobe are negatively correlated.
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Figure B.1: Cross-correlation at all possible Lags for all electrode pairs for Electrode Fp2.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 1
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Figure B.2: Cross-Correlation at all possible Lags for all electrode pairs for Electrode T3.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 1
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Figure B.3: Cross-Correlation at all possible Lags for all electrode pairs for Electrode T4.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 1
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Figure B.4: Cross-Correlation at all possible Lags for all electrode pairs for Electrode O1.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 1
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Figure B.5: Cross-Correlation at all possible Lags for all electrode pairs for Electrode O2.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 1
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B.1.2 Dataset 4

The result in the figures B.6-B.8 suggests that all signals measured from the particular lobe
of the brain are positively correlated with the signals measured within the same lobe of
the brain, but negatively correlated with signals measured from another lobe of the brain.
For example, Figure B.6 shows the information for all electrodes pairs for the electrode
F8, where all signals from frontal lobe (Top five plots) of the brain are showing a strong
positive correlation with F8, and all signals from the back lobe (Bottom five plots) are not
showing such as strong connections.
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Figure B.6: Cross-Correlation at all possible Lags for all electrode pairs for Electrode F8.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 4
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Figure B.7: Cross-Correlation at all possible Lags for all electrode pairs for Electrode P3.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 4
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Figure B.8: Cross-Correlation at all possible Lags for all electrode pairs for Electrode P4.
Blue color shows the result for one of the participant, and Orange color shows the average
of 15 participants result from Dataset 4
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B.2 Cross-Correlation performance of Electrodes Pair against
Distance between them

Cross-Correlation performance of Electrodes Pair against Distance between two electrodes
shown in the following figures is a straight line distance between two electrodes, not the
distance as measured over the surface of the scalp. In Chapter 6, the results for Electrode
Fp1 and F7 are shown (Figure 6.5-6.10) from respective datasets. In this section result of
all other electrodes Cross-Correlation performance against distance is shown.

B.2.1 Dataset 1

For this dataset, Cross-Correlation performance between electrodes at varying distance
for electrode Fp1 is shown in Chapter 6 (Figure 6.5). Therefore, in this section Cross-
Correlation performance for remaining 18 electrodes are shown.
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(a) Electrode Fp2 (b) Electrode F7

(c) Electrode F3 (d) Electrode Fz

(e) Electrode F4 (f) Electrode F8

(g) Electrode T3 (h) Electrode C3

Figure B.9: Cross-Correlation between electrodes at varying distance on Dataset 1 for: (a)
Electrode Fp2, (b) Electrode F7, (c) Electrode F3, (d) Electrode Fz, (e) Electrode F4, (f)
Electrode F8, (g) Electrode T3, and (h) Electrode C3
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(a) Electrode Cz (b) Electrode C4

(c) Electrode T4 (d) Electrode T5

(e) Electrode P3 (f) Electrode Pz

(g) Electrode P4 (h) Electrode T6

Figure B.10: Cross-Correlation between electrodes at varying distance on Dataset 1 for:
(a) Electrode Cz, (b) Electrode C4, (c) Electrode T4, (d) Electrode T5, (e) Electrode P3, (f)
Electrode Pz, (g) Electrode P4, and (h) Electrode T6
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(a) Electrode O1 (b) Electrode O2

Figure B.11: Cross-Correlation between electrodes at varying distance on Dataset 1 for:
(a) Electrode O1, and (b) Electrode O2.

B.2.2 Dataset 4

For this dataset, Cross-Correlation performance between electrodes at varying distance
for electrode F7 is shown in Chapter 6 (Figure 6.6). Therefore, in this section Cross-
Correlation performance for the remaining 9 electrodes are shown.
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(a) Electrode F3 (b) Electrode Fz

(c) Electrode F4 (d) Electrode F8

(e) Electrode T5 (f) Electrode P3

(g) Electrode Pz (h) Electrode P4

(i) Electrode T6

Figure B.12: Cross-Correlation between electrodes at varying distance on Dataset 4 for:
(a) Electrode F3, (b) Electrode Fz, (c) Electrode F4, (d) Electrode F8, (e) Electrode T5, (f)
Electrode P3, (g) Electrode Pz, (h) Electrode P4, and (i) Electrode T6
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B.2.3 Dataset 5

For this dataset, Cross-Correlation performance between electrodes at a varying distance
for electrode Fp1 is shown in Chapter 6 (Figure 6.7). Therefore, in this section Cross-
Correlation performance for the remaining 14 electrodes are shown.
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(a) Electrode Fp2 (b) Electrode F7

(c) Electrode F3 (d) Electrode Fz

(e) Electrode F4 (f) Electrode F8

(g) Electrode C3 (h) Electrode Cz

Figure B.13: Cross-Correlation between electrodes at varying distance on Dataset 5 for:
(a) Electrode Fp2, (b) Electrode F7, (c) Electrode F3, (d) Electrode Fz, (e) Electrode F4,
(f) Electrode F8, (g) Electrode C3, and (h) Electrode Cz.
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(a) Electrode C4 (b) Electrode P3

(c) Electrode Pz (d) Electrode P4

(e) Electrode O1 (f) Electrode O2

Figure B.14: Cross-Correlation between electrodes at varying distance on Dataset 5 for:
(a) Electrode C4, (b) Electrode P3, (c) Electrode Pz, (d) Electrode P4, (e) Electrode O1,
and (f) Electrode O2.

194



B.2.4 Dataset 6

For this dataset, Cross-Correlation performance between electrodes at a varying distance
for electrode Fp1 is shown in Chapter 6 (Figure 6.8). Therefore, in this section Cross-
Correlation performance for the remaining 18 electrodes are shown.
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(a) Electrode Fp2 (b) Electrode F7

(c) Electrode F3 (d) Electrode Fz

(e) Electrode F4 (f) Electrode F8

(g) Electrode T3 (h) Electrode C3

Figure B.15: Cross-Correlation between electrodes at varying distance on Dataset 6 for:
(a) Electrode Fp2, (b) Electrode F7, (c) Electrode F3, (d) Electrode Fz, (e) Electrode F4,
(f) Electrode F8, (g) Electrode T3, and (h) Electrode C3
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(a) Electrode Cz (b) Electrode C4

(c) Electrode T4 (d) Electrode T5

(e) Electrode P3 (f) Electrode Pz

(g) Electrode P4 (h) Electrode T6

(i) Electrode O1 (j) Electrode O2

Figure B.16: Cross-Correlation between electrodes at varying distance on Dataset 6 for:
(a) Electrode Cz, (b) Electrode C4, (c) Electrode T4, (d) Electrode T5, (e) Electrode P3, (f)
Electrode Pz, (g) Electrode P4, (h) Electrode T6, (i) Electrode O1, and (j) Electrode O.
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B.2.5 Dataset 7

For this dataset, Cross-Correlation performance between electrodes at a varying distance
for electrode Fp1 is shown in Chapter 6 (Figure 6.9). Therefore, in this section Cross-
Correlation performance for the remaining 18 electrodes are shown.
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(a) Electrode Fp2 (b) Electrode F7

(c) Electrode F3 (d) Electrode Fz

(e) Electrode F4 (f) Electrode F8

(g) Electrode T3 (h) Electrode C3

Figure B.17: Cross-Correlation between electrodes at varying distance on Dataset 7 for:
(a) Electrode Fp2, (b) Electrode F7, (c) Electrode F3, (d) Electrode Fz, (e) Electrode F4,
(f) Electrode F8, (g) Electrode T3, and (h) Electrode C3
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B.2.6 Dataset 8

For this dataset, Cross-Correlation performance between electrodes at a varying distance
for electrode Fp1 is shown in Chapter 6 (Figure 6.10). Therefore, in this section Cross-
Correlation performance for the remaining 18 electrodes are shown.
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(a) Electrode Fp2 (b) Electrode F7

(c) Electrode F3 (d) Electrode Fz

(e) Electrode F4 (f) Electrode F8

(g) Electrode T3 (h) Electrode C3

Figure B.18: Cross-Correlation between electrodes at varying distance on Dataset 8 for:
(a) Electrode Fp2, (b) Electrode F7, (c) Electrode F3, (d) Electrode Fz, (e) Electrode F4,
(f) Electrode F8, (g) Electrode T3, and (h) Electrode C3
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(a) Electrode Cz (b) Electrode C4

(c) Electrode T4 (d) Electrode T5

(e) Electrode P3 (f) Electrode Pz

(g) Electrode P4 (h) Electrode T6

(i) Electrode O1 (j) Electrode O2

Figure B.19: Cross-Correlation between electrodes at varying distance on Dataset 8 for:
(a) Electrode Cz, (b) Electrode C4, (c) Electrode T4, (d) Electrode T5, (e) Electrode P3, (f)
Electrode Pz, (g) Electrode P4, (h) Electrode T6, (i) Electrode O1, and (j) Electrode O.
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Appendix C

Additional SE performance of
SE-Method 2 and SE-Method 3

In this section, SE performance with SE-Method 2 and SE-Method 3 is shown. In order to
show the SE results, I have selected two 5-minute slots from Dataset 1. In Chapter 8, I have
shown SE performance only on one 5-minute slot (Slot 1) for each SE-Methods. In this
section, I am showing the SE performance of the remaining window sizes of SE-Method
2 and SE-Method 3 for Slot 1, which are not shown in Chapter 8. In addition, I am also
showing SE performance for SE-Method 1, SE-Method 2, and SE-Method 3 for 5-minute
data from Slot 5. The results of all other slots are similar to the one shown here.

C.1 Slot 1 Result

In Chapter 8, the result of the SE-Method 1, SE-Method 2 (2 Seconds Moving Window),
and SE-Method 3 (Mean of Each 2 Seconds Window) is shown. In this section, SE perfor-
mance for the remaining windows of SE-Method 2 and SE-Method 3 are shown.

C.1.1 SE-Method 2
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(a) 10 Seconds (b) 20 Seconds

(c) 30 Seconds (d) 40 Seconds

(e) 50 Seconds (f) 60 Seconds

(g) 70 Seconds (h) 80 Seconds

(i) 90 Seconds

Figure C.1: SE-Method 2 - Comparison of original SE calculation and proposed SE meth-
ods, showing average results for all electrodes are shown for the individual participants:
SE-Method 2 on moving windows for: (a) 10 Seconds, (b) 20 Seconds, (c) 30 Seconds, (d)
40 Seconds, (e) 50 Seconds, (f) 60 Seconds, (g) 70 Seconds, (h) 80 Seconds, and (i) 90
Seconds.
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C.1.2 SE-Method 3

(a) 0.06 Seconds (b) 0.12 Seconds

(c) 0.25 Seconds (d) 0.55 Seconds

(e) 1 Seconds (f) 3 Seconds

(g) 4 Seconds

Figure C.2: Slot 1 - Comparison of original SE calculation and proposed SE methods,
showing average results for all electrodes are shown for the individual participants: SE-
Method 3 on moving windows for: (a) 0.06 Seconds, (b) 0.12 Seconds, (c) 0.25 Seconds,
(d) 0.55 Seconds, (e) 1 Seconds, (f) 3 Seconds, and (g) 4 Seconds.
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C.2 Slot 5 Result

In Chapter 8, the results shown are for only Slot 1 data. In this section, SE performance for
Slot 5 EEG data is shown for SE-Method 1, SE-Method 2 and SE-Method 3. The Slot 5
result is chosen randomly, and the SE results for all other slots are similar to what is shown
here.

C.2.1 SE-Method 1

Figure C.3: SE-Method 1 - Comparison of original SE calculation and proposed SE meth-
ods, showing average results for all electrodes are shown for the individual participants:
SE-Method 1-Shortened Neighbours comparison.

C.2.2 SE-Method 2
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(a) 2 Seconds (b) 10 Seconds

(c) 20 Seconds (d) 30 Seconds

(e) 40 Seconds (f) 50 Seconds

(g) 60 Seconds (h) 70 Seconds

(i) 80 Seconds (j) 90 Seconds

Figure C.4: SE-Method 2 - Comparison of original SE calculation and proposed SE meth-
ods, showing average results for all electrodes are shown for the individual participants:
SE-Method 2 on moving windows for: (a) 2 Seconds, (b) 10 Seconds, (c) 20 Seconds,
(d) 30 Seconds, (e) 40 Seconds, (f) 50 Seconds, (g) 60 Seconds, (h) 70 Seconds, (i) 80
Seconds, and (j) 90 Seconds.
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C.2.3 SE-Method 3

(a) 0.06 Seconds (b) 0.12 Seconds

(c) 0.25 Seconds (d) 0.55 Seconds

(e) 1 Seconds (f) 2 Seconds

(g) 3 Seconds (h) 4 Seconds

Figure C.5: Slot 5 - Comparison of original SE calculation and proposed SE methods,
showing average results for all electrodes are shown for the individual participants: SE-
Method 3 on moving windows for: (a) 0.06 Seconds, (b) 0.12 Seconds, (c) 0.25 Seconds,
(d) 0.55 Seconds, (e) 1 Seconds, (f) 2 Seconds (g) 3 Seconds, and (h) 4 Seconds.
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Appendix D

Additional ED Results for Chapter 9

The ED results of all other participants from Datasets 4, 5, 9 and 10 are shown below.

209



Figure D.1: Dataset 4- Embedding Dimension Result: Five participant’s (Participants 3, 4,
5, 6 and 7) ED result from Dataset 4.
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Figure D.2: Dataset 5- Embedding Dimension Result: Ten participant’s (Participants 1, 2,
5, 6, 7, 8, 9, 10, 11 and 12) ED result from Dataset 4.
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Figure D.3: Dataset 9 - Embedding Dimension Result: (a) Three Participant’s (Participant
1, 2 and 5) ED result for HRV without medical condition, (b) Three Participant’s (Par-
ticipant 2, 4 and 5) ED result for HRV with medical condition Congestive Heart Failure
(CHF).

212



Figure D.4: Dataset 10- Embedding Dimension Result: Three participant’s (Participants 1,
3 and 5 ) ED result from Dataset 10 showing 5 measured Electrodes, as shown in different
colour).
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Appendix E

Publications
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Abstract  
Biomedical signals such as electroencephalogram (EEG) are the time varying signal, and different 
position of electrodes give different time varying signals. There might be a correlation between these 
signals. It is likely that the correlation is related to the actual position of electrodes. In this paper, we 
show that correlation is related to the physical distance between electrodes as measured. This finding is 
independent of participants and brain hemisphere. Our results indicate that the EEG signal is not 
transmitted via neurons but through white matter in a brain.  
 
Keywords: EEG, Biomedical signal processing, Time Series Data Analysis, Cross-Correlation. 

1 Introduction 
Electroencephalogram (EEG) signals provide a measure of brain nerve cell electro-physiological 

activity that is accessible on the surface of the scalp (EEG indices of G-induced loss of consciousness 
(G-LOC), 1988), thus provide information about different types of brain activity. The electrical activity 
in the brain is recorded via measurement electrodes attached to the surface of the scalp. The EEG signals 
detected will vary, depending on the location of the electrodes on the scalp. Identifying changes in EEG 
signals has improved our understanding of the relationship of these signals to people’s moods, and 
behavior (Han, 2012). 

Research (Niedermeyer, 2005) suggests that various characteristics of EEG signals are 
representative of distinct states of brain activity. These distinct states can be quantified using linear or 
non-linear measures. Previous research has demonstrated a correlation between EEG signals (or brain 
activity) from different part of the brain (Na, 2002), (Bob, 2010), (Jeong, 2015). A high correlation 
between the signals from different electrodes indicates similar brain activity, and a low correlation 
indicates that the brain activity at the different measurement sites is relatively independent.  

Researchers (Na, 2002), (Li, 2013) have demonstrated that brain activities within the same (local) 
region might be similar, but that they might be different among non-identical regions (globally). One 
question that we address here is whether the activities of the two brain hemispheres are similar.  

White matter, which modulates the distribution of action potentials, is brain tissue that is composed 
of bundles of axons. It acts to coordinate communication between different brain regions (Fields, 2008). 
One issue we address here is how electrical activity can be communicated across the surface of the brain. 
We believe that white matter makes a significant contribution to this communication. Our research 
focuses on evaluating the correlation of EEG signals between different brain regions. The aim of this 
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of bundles of axons. It acts to coordinate communication between different brain regions (Fields, 2008). 
One issue we address here is how electrical activity can be communicated across the surface of the brain. 
We believe that white matter makes a significant contribution to this communication. Our research 
focuses on evaluating the correlation of EEG signals between different brain regions. The aim of this 

                                                           
 

 

 

study is to determine the relationship between EEG signals and electrode location on the scalp, and to 
check whether this relationship differs in the two brain hemispheres. 

2 Related Work 
A series of data points in time order, or time series, provides the view of a signal as it evolves over 

time, i.e. in the Time domain (TD). TD analysis is used to analyse the signal in its actual state, which is 
the earliest and direct way of analysing EEG signals - it is utilised to analyse changes in EEG signals, 
such as power (or amplitude) over time. In addition, the frequencies present in the signal are open to 
investigation (for example, by using the Fast Fourier Transform (FFT)). Such an analysis is said to take 
place in the Frequency domain (FD). FD analysis is used to identify frequencies present in the signals. 
Furthermore, it can be utilized to establish the relationship between EEG frequency and its 
corresponding power (amplitude), and so the energy distributions in EEG signals. 
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interactions between EEG signals (Nolte, 2004), indicating significant correlation in EEG Beta (β) 
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TD, not just the FD. 
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method can be used to determine the relationship between activity in global and local areas, and also 
among the different local areas of the human brain.  
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EEG signals is different. Usually, the combination of electrode pairs depends on the total number of 
electrodes. For example, if there are 19 electrodes then the number of unique potential electrode pair is 
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hemisphere. Their results showed less complex EEG activity in the left temporal regions.  Bob et al. 
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94 Ronakben Bhavsar  et al. / Procedia Computer Science 123 (2018) 92–97 

 

at the Dissociative Experiences Scale (DES) in paranoid schizophrenia patients. Their results explored 
a significant correlation of DES in 9 EEG electrode pairs. Similar electrode pair effects have been found 
by Cuevas et al. (Cuevas, 2011), who studied 8 electrodes and 16 electrode pairs in their investigation 
of patterns of EEG signals in developing children's brains. Their results suggested an age-related 
increase in EEG power for 9 electrode pairs. Li et al. (Li, 2013), examined 16 electrodes and 4 electrode 
pairs, and proposed more significant changes in the EEG signals of electrodes from the right-side of the 
brain when compared to those of the left-side. 

This brief review of research on the correlation of EEG signals indicates that investigations have 
been focused on the FD. Furthermore, limited information was found on the correlation of EEG signals 
in the TD. Additionally, the numbers of paired electrodes investigated, the number of datasets used, and 
use of Cross-correlation for analysing EEG signals are limited. Instead, researchers focus has been 
primarily on electrode combinations within the left and right brain hemispheres. The summary of 
research work reported in this paper to be replicated can be found at 
https://ronak2.wixsite.com/mysite/research-blog. 

To our knowledge, very limited work has been done on the correlation of EEG signals using multiple 
electrode. This paper investigates the correlation of EEG signals in the TD using Cross-correlation. 
Three datasets have been used and are named as Data-set 1, Data-set 2 and Data-set 3. Each dataset 
involves a different number of electrodes. Therefore, the number of unique electrode pairs to perform 
Cross-correlation is different. From Data-sets 1, 2 and 3 we have 171 pairs, 45 pairs, and 105 pairs, 
respectively.  

3 Data Collection 
Three different datasets were obtained with each of them containing different numbers of 

participants and electrodes. All of these datasets follow the 10-20 electrode placement system shown in 
Fig 1. The 10-20 system is the recognized method to describe the location of electrodes (Klem, 1999). 
The values of 10% and 20% shown in Fig. 1 refer to the distances between adjacent electrodes: either 
10% or 20% of the total front-to-back or right-to-left distance over the skull - front-to-back distance is 
based on the measurement from Nasion (point between forehead and nose) to Inion (lowest point of the 
skull from the back of the head indicated by a prominent bump), and right-to-left distance is based on 
the measurement between the left and right preauricular ear points.   

 
Figure 1: The international 10-20 system seen from A (left side of the head) and B (above the head). 

The letter F, T, C, P, O, A, Fp and Pg stands for frontal, temporal, central, parietal, occipital, earlobes, 
frontal polar, and  nasopharyngeal, respectively (Klem, 1999). 

 

 

 

Data-set 1 consists scalp EEG recordings of 16 participants obtained over 5 minutes in a relaxed 
state with eyes opened. 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, 
T6, O1, and O2) were used, following the 10-20 system. The sampling rate used was 250Hz, and the 
reference was to linked ear electrodes.  

Data-set 2 consists of scalp EEG recordings of 20 participants, while they watched a short 
documentary movie. 10 electrodes (F7, F3, Fz, F4, F8, T5, P3, Pz, P4, and T6) were used following the 
10-20 system. The sampling rate used was 500Hz, and the reference was to linked ear electrodes. 

Data-set 3 presents a multi-modal dataset for the analysis of human affective states (Koelstra, 2012). 
32 participants EEG signals were recorded while the participants watched 40 one-minute long excerpts 
of music videos. Out of 32 electrodes recorded, 15 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, 
P3, Pz, P4, O1, and O2) following the 10-20 system were used for this study. The sampling rate used 
was 512Hz, and the reference was to linked ear electrodes. 

4 Methodology 
As described in the Related Work section, Cross-correlation measures how closely two different 

observables are related to each other at the same or different time, taking time lag into consideration. 
Normalized Cross-correlation (Lewis J. , 1995) is used in this work to find the similarity between two 
time series signals. The normalized Cross-correlation for time sequence xt and yt of signals x and y, 
respectively, is defined as follows:  

 

𝑅𝑅𝑥𝑥𝑥𝑥(𝒯𝒯) =
1
𝑁𝑁 ∑ [( 𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑥𝑥 ) (𝑥𝑥(𝑡𝑡+𝒯𝒯)  −𝜇𝜇 𝑦𝑦 ) ]𝑁𝑁−𝒯𝒯

𝑡𝑡=1
𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦              

 
𝓣𝓣 is the time lag, N is the length of signals x and y, μx is the mean of xt and μy is the mean of yt. σx 

is the standard deviation of xt and σy is the standard deviation of yt. The values of the normalized Cross-
correlation range between 1 (when the matching entities are exactly the same) and −1 (when the 
matching entities are inverses of each other). A value of zero indicates no relationship existing between 
the entities. Note that the Cross-correlation can be evaluated for any length of xt and yt, and they are not 
required to be the same (Lewis J. , 1995). 

5 Experiments & Results 
The EEG signals were processed to remove artefacts, such as eye blinks, eye movements, jaw 

movements and muscle movements, by using Independent Component Analysis (ICA). Cross-
correlation has been calculated on the processed EEG signals for the 171 electrode pairs of Data-set 1, 
the 45 electrode pairs of Data-set 2 and the 105 electrode pairs of Data-set 3.  

In order to obtain the distance in centimeters (cm) between electrodes, a measuring tape was used. 
For most of our participants the head circumference range was 54-58cm, for which a medium-sized 
‘electro-cap’ is appropriate. According to (Mitsar, 1996), the circumference of the medium-sized EEG 
cap is ideal for 64% of adults, whether male or female. Therefore, we utilized a medium-sized EEG cap 
made of an elastic material which stretches according to the participants head circumference, and 
measured distances using a straight line on the cap - not a curved line over the skull. Note that the 
distance between electrodes as shown in Fig. 3 is straight line distance between two electrodes, not the 
distance as measured over the surface of the scalp. 

The maximum absolute correlation was found at lag 0. Fig. 2 shows the information for electrode 
pairs Fp1-Fp2, as an example. The other two datasets show similar results. In Fig. 2, the x-axis 
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(horizontally) denotes the time lag; a lag of 1 corresponds to 4 milliseconds - positive time lags (0 to 
1000) and negative time lags (0 to -1000) indicate when one of the signals shifted to the right and left 
side of the reference signal Fp1, respectively. The y axis (vertically) denotes the cross-correlation value. 
The blue color line is for an individual participant, and the red is for the average of all participants’ 
correlation performance for each electrode pair. 

Electrode F7 from Data-set 2 have been chosen randomly to show the Cross-correlation 
performance. The other two datasets show similar results. The results show the averages for all 
participants. Fig. 3 show that there is an inverse relationship between Cross-correlation and distance. 
The linear regression has been plotted to fit the data with a probability of p < 0.001. This indicates that 
the Cross-correlation value decreases while the distance from F7 increases, irrespective of brain 
hemisphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
 

 
The results of all other electrodes of all three datasets are similar to the ones shown in Fig. 3. The 

differences between each Cross-correlation value and the corresponding value on the fitted linear 
function line were calculated. The results show that the difference between them is very small (about 
0.03 98%), which suggests that a close linear dependency does exist.  

6 Discussion & Conclusion 
One of the main conclusions of this work is that electrical activity correlates linearly with distance 

within the brain, i.e. when distance increases the correlation decreases. To our knowledge, previous 
research has not described this linear relationship in TD. Our results cover a gap in the research 
concerning the correlation of EEG signals in the TD using Cross-correlation and possible combinations 
of electrodes pairs; and also the linear dependence of Cross-correlation with electrodes location. It is 
important to consider physical separation as measured directly through the skull, and not over the surface 
of skull when you position electrodes on the skull. 

 The second conclusion from this work is that the correlation is independent of brain hemisphere. 
This suggests that most probably the electrical signals are transmitted through the white matter of the 
brain. We assume signal transmission is through white matter because of the commissural tracts within 
the white matter which connect the two hemispheres of the brain. This means in practice it does not 
matter which side of the medial plane you place the electrodes. 

 

Figure 2: Positive Cross-correlation at Lag 0 Figure 3: Cross-correlation between electrodes 
at varying distance on Data-set 2 
 

 

 

 

 

Our work suggests that this white matter in the brain is significant in the transmission of electrical 
activity. White matter is composed of bundles of axons which connect various grey matter areas (the 
locations of nerve cell bodies) of the brain to each other and carry nerve impulses between neurons. 
White matter might actively affect how the brain learns and functions, and modulates the distribution of 
action potentials, acting as a relay and coordinating communication between different brain regions 
(Fields, 2008). In summary, regardless of the anatomical substrates involved, our main finding is that 
the correlation between electrical activities in different parts of the brain is linearly related with the 
electrode distance between them. At the moment we are extending this work to find the correlation 
between EEG and Electrocardiogram (ECG) signals. 
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Abstract: Recently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocar-
diograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although
Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so
far the correlation between WT signals has not been analysed. This research shows the correlation between
the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of
the brain is best correlated with the HRV. We assume this is because the frontal lobe is related to higher mental
functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a
positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high
frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.

1 INTRODUCTION

Biomedical signals are a record of electrical activity
within human body, and they may indicate the state
of health of human. Among many biomedical sig-
nals, Electroencephalograph (EEG) and Electrocar-
diograph (ECG) signals are considered in this work.
EEG signals provide a measure of brain nerve cell
electro-physiological activity, that is accessible on the
surface of the scalp (Lewis et al., 1988), thus pro-
vide information about different types of brain activ-
ity. Identifying changes in EEG signals has improved
our understanding of the relationship of these signals
to people ′s moods, and behaviour (Han et al., 2012),
(Ebersole and Pedley, 2003). ECG signals contains
a plethora of information on the normal and patho-
logical physiology of the heart and its health. Fur-
thermore, ECG signals provide vital information with
regards to the function and rhythm of the heart. The
heart rate variability (HRV) has been extracted from
the ECG signals. HRV describes the variation in time
between consecutive heart beats, which is commonly
referred to as the RR (R wave to R wave) or NN (Nor-
mal beat to normal beat) intervals.

In recent years, the correlation between the EEG

and the ECG have been conducted to analyse their
functionality under certain conditions and to check
whether this functionality is related to each other. Re-
search (Kim et al., 2013), (Chua et al., 2012), (Ab-
dullah et al., 2009), (Sakai et al., 2007), (Berg et al.,
2005), (Edlinger and Guger, 2006), suggests that the
correlation between spectral bands of EEG and HRV
has been conducted to assess the interaction between
them, and achieved remarkable correlation.

The recent research on correlation between these
two signals as mentioned earlier has focused on the
Fourier analysis of the frequencies presents in these
signals. Whilst, the wavelet transform (WT), acts on
frequency and time of the recorded signals. There-
fore, WT has widely utilized for analysing biomedi-
cal or time series signals. The WT of the signal can
be thought of as an extension of the classic Fourier
transform (FT) - it works on multi-scale basis, instead
of working on a single scale (Time or Frequency) as
FT, and gives detailed and clear information of the
signals. Therefore, WT of the signals is an important
method not only to analyse EEG and ECG/HRV sig-
nals individually, but also to analyse the correlation
between them. According to recent research (Thomas
and Moni, 2016), (Chandra et al., 2017), (Mirsadeghi
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et al., 2016), (Mporas et al., 2015), (Valderrama et al.,
2012), (Nasehi and Pourghassem, 2011), (Cvetkovic
et al., 2008), WT has been used to analyse either
EEG or ECG signal, but the correlation between these
transformed signals has not yet been conducted. In
this paper we are not only focusing on the correlation
between without wavelet transform signals but also
between wavelet transformed signals.

2 RELATED WORK

A series of data points in time order, or time series,
provide the view of a signal as it evolves over time, in
the Time domain (TD). TD analysis is used to anal-
yse the signal in its actual state - it is utilised to anal-
yse changes in biomedical signals, such as the power
(or amplitude) over time. In addition, the frequencies
present in the signal are open to investigation (for ex-
ample, by using the Fast Fourier Transform (FFT)).
Such an analysis is said to take place in the Frequency
domain (FD). The FD analysis is used to identify fre-
quencies present in the signals. Furthermore, it can be
utilized to establish the relationship between frequen-
cies and its corresponding power (amplitude), and so
the energy distributions in signals.

In recent research, the correlation between EEG
and ECG/HRV signals have been analysed in the FD
,as shown in Table 1, which indicates that the Pear-
son correlation is the best method for the FD analy-
sis. In addition, different numbers of EEG electrodes
have been used to analyse the relationship with the
ECG/HRV. To the best of our knowledge, very lim-
ited work has been done on the correlation between
EEG and ECG/HRV signals using 19 EEG electrodes.
Moreover, no one has analysed these signals under the
same condition (i.e. with TEAS acupuncture applied)
that utilised in this research. This paper investigates
the correlation between EEG and ECG/HRV signals
in FD using Pearson correlation considering all 19
EEG electrodes under the same condition.

Based on the research as shown in Table 2 on WT,
it is straightforward that the DWT based methods are
well known for EEG and ECG feature extraction and
analysis. Furthermore. Among the DWT based meth-
ods mentioned, db wavelet method has been consid-
ered by the researchers. It is obvious from the re-
search on WT that key features of EEG and ECG sig-
nal can improve the analysis performance. Therefore,
it is important to analyse not just either EEG or ECG
as shown in Table 2, but also the correlation between
EEG and ECG. To our knowledge, we have not yet
found information on the correlation between wavelet
transformed signals. In this work, we describes such

an analysis.

3 DATASET INFORMATION

Two different datasets were obtained with each of
them containing different numbers of participants,
stimulation location, and total time length as shown in
Table 3. All of these datasets follow the 10-20 elec-
trode placement system shown in Figure 1. The 10-20
system is the recognized method to describe the lo-
cation of electrodes (Klem et al., 1999). The values
of 10 and 20 percentage shown in Figure 1 refer to
the distances between adjacent electrodes: either 10
or 20 percentage of the total front-to-back or right-to-
left distance over the skull - front-to-back distance is
based on the measurement from the Nasion (point be-
tween forehead and nose) to the Inion (lowest point
of the skull from the back of the head indicated by a
prominent bump), and right-to-left distance is based
on the measurement between the left and right preau-
ricular ear points.
Dataset 1 and 2 consist of EEG and ECG recordings
from 16 and 7 participants, respectively. These data
were obtained over ten 5 minutes slots with eyes open
using Transcutaneous Electro Acupuncture (TEAS)
method, including resting state data in the first and
the last slot. The EEG and ECG recording were made
simultaneously. 19 electrodes (Fp1, Fp2, F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
and O2) for EEG recording were used, following the
10-20 system. The sampling rate used for EEG was
250Hz, and the reference was to linked ear electrodes.
For ECG data, two electrodes were placed on both
side of the wrist (having one electrode as ground) to
record the electrical activity of the heart over time,
and the sampling rate used was 256Hz.

Table 3: Information about the Datasets.

Label Dataset 1 Dataset 2
Number of Participants 16 7

EEG-Electrodes 19 19
EEG-Sampling Rate 250Hz 250Hz

ECG-Electrode 1 1
Stimulation Location 1 4
ECG-Sampling Rate 256Hz 256Hz
Total Time Length 50 minutes 45 minutes
Slot Time Length 5 minute 5 minute

The difference between these datasets, other than
the participants, is the body location where TEAS
stimulation has been performed. For Dataset 1, only
one body location (Dominant Hand), and for Dataset
2, four different body location (Left Hand, Below Left
Knee, Right Hand, and Below Right Knee) has been
used to perform TEAS stimulation.
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Table 1: Summary of Correlation Research on Biomedical Signals since 2003 to 2017.

RefDetail TD FD Pearson Correlation Method Other Correlation Method EEG Electrodes Investigated
(Miyashita et al., 2003) - X X - 4

(Yang et al., 2002) - X X - 2
(Ako et al., 2003) - X X - 1

(Jurysta et al., 2003) - X - Coherency Analysis 3
(Takahashi et al., 2005) - X X - 6

(Edlinger and Guger, 2006) - X X - 2
(Berg et al., 2005) - X X - 2
(Sakai et al., 2007) - X X - 19

(Abdullah et al., 2010) - X - Cross-correlation 1
(Chua et al., 2012) - X - X 4
(Kim et al., 2013) - X - Coherency Analysis 19

(Prinsloo et al., 2013) X - X - 3
(Liou et al., 2014) - X X - 19

(Triggiani et al., 2016) - X X - 19

Table 2: Summary of Research on Well known Wavelet Transformation Methods for Biomedical Signals since 2012 to 2017.

RefDetail EEG ECG/HRV TD FD Feature Extraction Method
(Kutlu and Kuntalp, 2012) - X X - DWT-Daub Wavelet

(Thomas et al., 2015) - X X - DWT-Daub Wavelet
(Sudarshan et al., 2017) - X X - DWT-Daub Wavelet
(Acharya et al., 2017) - X - X DWT-Daub Wavelet

(Dolatabadi et al., 2017) - X X X Principal Component Analysis (PCA)
(Kumari et al., 2014) X - X X DWT-Daub Wavelet
(Mumtaz et al., 2017) X - X X DWT-Daub Wavelet

(Kevric and Subasi, 2017) X - - X DWT-Daub Wavelet
(Faust et al., 2015) X - X - DWT-Daub Wavelet

Figure 1: The international 10-20 system seen from A (left side of the head) and B (above the head). The letter F, T, C, P, O,
A, Fp and Pg stands for frontal, temporal, central, parietal, occipital, earlobes, frontal polar, and nasopharyngeal, respectively.
The figure is obtained from (Klem et al., 1999).

4 METHODS

4.1 Pearson Correlation

The Pearson′s correlation coefficient measures how
closely two different observables are related to each
other. Correlation co-efficient range between 1 (when
the matching entities are exactly the same) and −1

(when the matching entities are inverses of each
other). A value of zero indicates no relationship ex-
isting between the entities.

4.2 Wavelet Transform

The Wavelet Transform (WT) is designed to direct
the problem of signals with nonstationarity. It in-
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cludes representation of time function in terms of sim-
ple blocks, termed wavelets. These blocks are derived
from a signal generating function called the mother
wavelet by translation and dilation operations. Dila-
tion, also known as scaling, compresses or stretches
the mother wavelet and translation shifts it along the
time axis (Daubechies, 1990), (Akay, 1997), (Unser
and Aldroubi, 1996). The WT can be categorized into
continuous and discrete. Continuous wavelet trans-
form (CWT), implies that the scaling and translation
parameters change continuously, and thus, represent
considerable effort and vast amount of data calcula-
tion for every possible scale. Therefore, we used dis-
crete wavelet transform (DWT). The WT of the sig-
nal can be thought of as an extension of the classic
Fourier transform (FT) - it works on multi-scale ba-
sis, instead of working on a single scale (Time or Fre-
quency) as FT. This is achieved by decomposition of
the signal over dilated (scale) and translated (time)
version of wavelet. An input signal is decomposed by
using low pass filter and high pass filter followed by
down sampling in each stage. The output of the first
stage high pass filter gives the detail coefficient (D1),
whereas the low pass filter gives the approximation
coefficient (A1).

The prototype wavelet used in this study is
Daubechies wavelet of order 4 (db4) based on our re-
search on biomedical/time series signal analysis, as
mentioned in Table 2.

5 EXPERIMENTAL SET-UP

The experimental steps are shown in Figure 2. The
EEG signals were pre-processed to remove artefacts
caused by the electrical activity in muscles includ-
ing eye, jaw and muscle movements using Indepen-
dent Component Analysis (ICA). It was straightfor-
ward to remove these using ICA (Hyvärinen and Oja,
2000). The power spectrum for each frequency band
of EEG - Delta (0.3-4 Hz), Theta (4-7.5 Hz), Alpha
(7.5-13 Hz), Beta (13-30 Hz), and Gamma (30-50
Hz) were then obtained by Power Spectrum Density
(PSD) (Stoica and Moses, 1997).

To extract HRV from ECG signals, we used
method designed by Lin et al. (Lin et al., 2010).
The results of the automatic analysis were reviewed
and any errors in R-wave detection and QRS labelling
were then removed manually. R-R interval data ob-
tained from the edited time sequence of R-wave and
QRS labelling were then transferred to a personal
computer. In order to remove artefact from extracted
HRV signal, each R-R interval has been compared
against a local average interval. If an R-R interval

differs from the local average more than a specified
threshold (Threshold in seconds) value, then that R-
R interval is defined as an artefact and is replaced
with an interpolated value using a cubic spline in-
terpolation. The power spectrum for each frequency
band of HRV - Very Low Frequency (VLF) ranges 0-
0.04 Hz, Low Frequency (LF) ranges 0.04-0.15 Hz,
and High Frequency 0.15-4 Hz were then obtained by
PSD (Power Spectrum Density).

The sampling rate is 1Hz for the extracted HRV,
and 250Hz for the EEG. In order to perform corre-
lation between these different sampling rate signals,
it was required to change the sampling rate for either
the EEG or HRV signals. Therefore, we decided to
segmenting EEG signals using 1 second window and
represent each window by its means value (the mean
value from each 250 samples), unlike normal down
sampling, where much of the data is thrown away.
For each participant’s EEG data, this process has been
repeated for all 5 minutes slots. After windowing,
the spectral analysis was performed. From each fre-
quency bands of the EEG and the HRV, the mean of
the amplitude value within the frequency range has
been measured, single value for each of these fre-
quency band, and for each 5 minute is obtained. Then,
the correlation between these frequency values is per-
formed.

In order to perform correlation based on wavelet
transformed EEG and/or HRV signal, the WT-
Daubechies (db) Wavelet up to level 5 is performed
on the signals before extracting frequency bands as
mentioned in Figure 2. For the datasets we have, the
low pass filter worked very well. Therefore, we con-
sidered low passed WT signals to perform the corre-
lation.

Figure 2: Experiment steps for the correlation performance.
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6 EXPERIMENTAL RESULTS
AND DISCUSSION

For each dataset, we investigated the correlation be-
tween each of the EEG frequencies (Delta, Theta, Al-
pha and Beta) with each frequencies of the HRV fre-
quencies (LF and HF) in three different experiments:
1). The Correlation between Pre-processed Signals,
2). The Correlation between Pre-processed and WT
signals of the EEG and HRV, and finally 3). The
Correlation between Pre-processed HRV with Pre-
processed and WT signals of the EEG. The Gamma
frequency of EEG did not give us the correlation ef-
fect. Therefore, it is not considered in the result
shown in Figure 3 and Table 4.

For both datasets, the experiment 2). correlation
between both WT signals did not give better results,
because HRV is tend to be less noisy. Therefore, when
the WT has been performed on HRV, information has
been lost and the signal became more flat. The most
interesting result has been found from experiments 1).
and 3).

For each frequency combination correlation, the
average of participants for each EEG electrode has
been calculated. Then the best performance electrode
has been ranked- where, the ranking has been given
based on electrode correlation result. The average of
electrode ranking for each frequency combination is
then gathered and five best performance electrodes re-
sult has been looked closely. We have found some
common electrodes in all of the frequency combina-
tion we have investigated. Figure 3 shows the result
of this investigation for Dataset 1 and 2.

As shown in Figure 3, for dataset 2, some elec-
trodes from the back side of the brain are giving
stronger result than dataset 1. This is due to more
randomness in the EEG signals from dataset 2. Also,
the location where TEAS has been performed might
contributed to this result.

Based on results shown in Figure 3, it can be
seen that the frontal lobe of the brain is correlated
with the heart. The frontal lobe involved in higher
mental functions, such as concentration, creativity,
speaking, muscle movement and in making plans and
judgements, is a part of cerebral cortex (body’s ulti-
mate control and information processing) of the brain
(McCraty et al., 2009). The usual Heart-Brain com-
munication path is through spinal cord. In order to
have relationship between frontal lobe of the brain
and heart, we assume the communication might have
done through ’Medulla’(cardiovascular center placed
in medullacontrols the heart beating) which is part of
brain stem. The signal has been then directed to the
Thalamus and then to the cerebral cortex (Lane et al.,

2001), (ATKINSON and BRADLEY, 2004).
Table 4 shows the average correlation result of

participants for each frequency comparison from
dataset 1 and 2. Where, Level 0 means correla-
tion between pre-processed data, and Level 1 to 5
means, correlation between pre-processed HRV with
pre-processed and WT EEG. The heat map of these
result (”Red” is strongest and ”Dark-Blue” means
weakest) as shown in Table 4, indicates the correla-
tion performance changes with the levels of WT. We
found the signal became flat after level 2, and lost in-
formation when levels has been increased. Therefore,
we have not considered result of levels 3, 4 and 5 in
Figure 3 (b) and (d).

Results shown in Table 4 are indicative and not
statistically significant, according to these, three fre-
quencies of EEG have shown some correlation, such
as Delta, Alpha, and Beta, have shown correlation at
both LF and HF of HRV. Each of these frequencies
represent the activities of these signals. For example,
Delta will be higher if the person is in deep sleep, Al-
pha will appear if the person is calmed, relaxed or
in creative visualisation, and Beta will show if the
person is working or feeling more alert. For HRV,
LF and HF represent the sympathetic and parasympa-
thetic activities of autonomic nervous system (ANS),
respectively.

7 CONCLUSIONS

The main conclusion of this work is that electrical ac-
tivity in the frontal lobe of the brain is correlated with
the HRV for the given two datasets. To the best of
our knowledge this is a new result. This suggests that
most probably the electrical signals could be trans-
mitted through the cerebral cortex, Thalamus, and
Medulla of the brain (Saper et al., 2005). The possi-
ble path of the key neuronal projections that maintain
alertness is shown in Figure 4.

The second conclusion from this work is that, WT
signals also give correlation from the frontal lobe of
the brain. To the best of our knowledge, the correla-
tion between WT signals of EEG and ECG/HRV has
not yet been investigated.

A more tentative conclusion of this work is that
three frequencies of the EEG Delta, Alpha and Beta
are correlated with the LF and HF of HRV, for dataset
1 and dataset 2, respectively. Whereas, most of previ-
ous studies, (Yang et al., 2002),(Ako et al., 2003),(Ju-
rysta et al., 2003),(Abdullah et al., 2010) and (Chua
et al., 2012), have shown negative correlation between
these frequency bands due to the condition in which
these signals have been analysed.
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Figure 3: Best Electrodes Correlation Performance, highlighted in yellow colour: (a) Dataset 1 Correlation performance
on pre-processed HRV and EEG, (b) Dataset 1 Correlation performance on pre-processed HRV and WT signals of EEG,(c)
Dataset 2 Correlation performance on pre-processed HRV and EEG, (d) Dataset 2 Correlation performance on pre-processed
HRV and WT signals of EEG.

Table 4: Heat Map Results of Averaged participants correlation performance: Dataset 1 (Left), and Dataset 2 (on Right).
Colour coding from Red to Dark Blue, Red=Strongest, Dark-Blue=Weakest).

In summary, the number of EEG electrodes used
by other people to investigate correlation was limited.
Our results cover a gap in the research concerning the
correlation between the EEG and the HRV using all
EEG electrodes. Our work suggests a correlation be-

tween the frontal lobe of the EEG and the HRV, with
and without WT signals. We assume this is because
the frontal lobe is related with higher mental functions
of cerebral cortex and responsible for muscle move-
ments of the body (Stuss and Benson, 1986).
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Figure 4: Key neuronal projections that maintain alertness,
and possibly the path from cardiovascular center to the
frontal lobe of the barin’s communication. The figure is
obtained from (Saper et al., 2005).
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Abstract

Recently, different algorithms have been suggested to improve Sample Entropy (SE) performance. Although new methods for
calculating SE have been proposed, so far improving the efficiency (computational time) of SE calculation methods has not been
considered. This research shows such an analysis of calculating a correlation between Electroencephalogram(EEG) and Heart Rate
Variability(HRV) based on their SE values. Our results indicate that the parsimonious outcome of SE calculation can be achieved
by exploiting a new method of SE implementation. In addition, it is found that the electrical activity in the frontal lobe of the brain
appears to be correlated with the HRV in a time domain.
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1. Introduction and Related Work

Nonlinear dynamic analyses have been widely used to study the complex behaviours and different structures of
biological systems [2]. Nonlinear dynamic analysis proves to be a powerful approach for the assessment of differ-
ent physiological time series as it can determine the hidden patterns related to underlying mechanisms [3] [13]. The
chaotic behaviour of cardiac system and brain waves indicate nonlinearity [1]. With the given nature of nonlinearity,
Electroencephalogram (EEG) and Heart Rate Variability (HRV) turn out to be appropriate for nonlinear time series
analysis [1]. The different types of nonlinear complex measures of variability are Lyapunov exponent, Correlation Di-
mension D2, Approximate Entropy (AE), Sample Entropy (SE), Multiscale entropy (MSE), Poincare plots, Detrended
Fluctuation Analysis (DFA) and many more.
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SE has been used widely to investigate various biological conditions in human body like arrhythmia studied through
ECG (Electrocardiogram) [3], Alzheimer′s patients’ EEG background activity [1], analyzing human postural sway
data [12] and studying HRV in the case of obstructive sleep apnoea syndrome [2]. SE is also used to detect the
termination of a particular medical condition like seizures [15] and to test the effect of a therapy like ketogenic diet
used for controlling intractable seizures [14]. These studies have concluded that SE is robust quantifier of complexity,
which offers an accurate nonlinear metric for quantification [3]. It gives a good dynamical signature and is a helpful
tool that provides insights into various biological time series [1],[12]. Therefore, SE is considered as an effective
method for investigating different types of time series data.

In recent years, different algorithms attempting to improve SE have been proposed. Quadratic Sample Entropy
(QSE) was introduced to reduce the influence of arbitrary constants of sequence comparision and tolerance on SE,
as well as to reduce the skewing of results when either the top or the bottom of the conditional probabilities was
very small or very large [9]. Another attempt to improve SE was with the introduction of Fuzzy Entropy (FuzzyEn)
[5], using the concept of fuzzy sets in order to determine a fuzzy measurement of similarity of two vectors based on
their shapes. Multi Scale Entropy (MSE) established by [14], was a useful extension of SE to multiple time scales, in
recognition of the likelihood that dynamical complexity of biological signals may operate across a range of temporal
scales.

In this work, the type of nonlinear complex measures of variability exploited is Sample Entropy (SE). The aim of
the research is not to propose another new method derived from SE, but efficient method improving the computational
time for the SE calculation. The computational time for SE calculation using the new and original SE methods will be
compared on calculating the correlation between SE values of EEG and HRV in time domain.

2. Dataset Information

Our datasets consist of EEG and ECG recordings from 15 participants. This data was obtained over 5 minute time
slots in a relaxed state with eyes opened. 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, and O2) for EEG recording were used, following the standard 10%-20% system [7], as shown in Fig.1.
The values of 10% and 20% shown in Fig.1. refer to the distances between adjacent electrodes: either 10% or 20%
percentage of the total front-to-back or right-to-left distance over the skull - front-to-back distance is based on the
measurement from the Nasion (point between forehead and nose) to Inion (lowest point of the skull from the back of
the head indicated by a prominent bump), and right-to-left distance is based on the measurement between the left and
right pre-auricular points.

The sampling rate used for EEG was 250Hz, and the reference was linked to ear electrodes. For ECG data, one
electrode was positioned on the volar surface of each forearm (with an additional electrode as ground on the dominant
side) to record the electrical activity of heart over time, and the sampling rate was 256Hz.

Figure 1. The international 10%-20% system seen from A (left side of the head) and B (above the head). The letter F, T, C, P, O, A, Fp and Pg
stands for frontal, temporal, central, parietal, occipital, earlobes, frontal polar, and nasopharyngeal, respectively. The figure is obtained from [7].
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3. Sample Entropy and Proposed Implementation

SE is considered as an effective method for investigating different types of time series data. A lower SE value
indicates a high frequency of similarity in time series [13].

For a time series of length n, SampleEntropy(m,r,n) can be defined as the negative logarithm of conditional
probability that two sequences are similar for m point [10] within a tolerance value r, excluding any self-matches [13].
The equation can be represented according to [13], as:

SE(m,r,n) =− ln
(

A
B

)
, (1)

where, m is the length of sequences to be compared , r is the tolerance value for accepting matches, n is the length of
original data, and A and B are defined as follow:

A =
{

[(n−m−1)(n−m)]
2

}
Am(r), and B =

{
[(n−m−1)(n−m)]

2

}
Bm(r)

where, Am(r) is the probability that the two sequences match for m+ 1 points, and Bm(r) is the probability that the
two sequences match for m points. Each SE value indicates relative consistency with respect to any value of (m,r).
That is, if a record has a lower SE value than another record for a part of fixed m and r values, it will be lower for any
part of fixed m and r values [10]. SE is independent of the data length and shows an elimination of self-matching. In
order to approximate the conditional probabilities of matches, SE uses a point-wise approach [13].

3.1. An Example of SE Calculation

In this section, we explain how the SE is calculated in practise by giving an example with a simple time series. Let
the input time series be x(n) =

{
0.1,0.1,0.2,0.5,0.22

}
, with m = 2, r = 0.2, n = 5.

The value of m specifies the length of sequences to be considered for SE. Thus, the default value of m is 2(i.e. the
maximum length of sequence considered is 2). The value of r represents the tolerance value below that a match is
deemed. The input point sequence for Am(r) is n points, while Bm(r) considers n−1 points of the input sequences. That
means, for Am(r) and Bm(r) the input point sequence is

{
0.1,0.1,0.2,0.5,0.22

}
and

{
0.1,0.1,0.2,0.5

}
, respectively.

As shown in Table 1, to calculate the probability for A and B, the number of matches obtained for respective
sequences of Am(r) and Bm(r) is counted as “1”. For a particular length of sequence m, the point matches are cal-
culated by calculating the absolute difference between the points in the sequences. The difference should be below
the tolerance value r (in this case 0.2). The calculation of similar segments can be summarized as: |x(i)− x( j)| < r.
Considering the following sequence (xk(i),xk( j)) = [(0.1,0.1),(0.2,0.5)], where i and j are the point sequence , and
k is the index for these point sequences. To test the match, (|0.1−0.2|, |0.1−0.5|) = (0.1,0.4) is calculated. It can be
observed that x1(i) and x1( j) (i.e. 0.1 and 0.2) satisfy the condition but x2(i) and x2( j) (i.e. 0.1 and 0.5) do not satisfy
the condition because the absolute difference is greater than the tolerance value r. Since the point sequence is not a
complete match under the tolerance value r, this sequence is not considered as a match.

Table 1 represents the point sequence match at a given length of sequence for m(0 to 2) for the tolerance value
r(0.2). In third and fourth columns, “1” represents a match and “0” represents no match at tolerance value r.

According to equation (1), SE value can be calculated as follows:
SE (0, 0.2, 5) = p (0) = − ln (A[0]/((n*n-1)/2)) = − ln(6/10) = 0.5108
SE (1, 0.2, 5) = p (1) = − ln (A[1]/B[0])) = − ln(1/3) = 1.0986
SE (2, 0.2, 5) = p (2) = − ln (A[2]/B[1])) = − ln(0/0) = inf
From the SE values obtained from the above examples, it can be seen that a low SE value is obtained at m = 0,

which increases with the increase of m. This indicates that for a longer point sequence, the similarity decreases for
this time series.
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Table 1. Point sequences at m = 0;1; and 2 along with the count of match obtained for Am(r) and Bm(r). Here, X represent that the point sequence
was not considered for B(m). Columns A(m) and B(m) indicates count for the total number of matches obtained .

Length of sequence for m Point Sequences Point Matches at r = 0.2
Am(r) Bm(r) A(m) B(m)

m=0

[0.1, 0.1] 1 1 6 3
[0.1, 0.2] 1 1
[0.1, 0.5] 0 0
[0.1, 0.22] 1 X
[0.1, 0.2] 1 1
[0.1, 0.5] 0 0
[0.1, 0.22] 1 X
[0.2, 0.5] 0 0
[0.2, 0.22] 1 X
[0.5, 0.22] 0 X

m=1

[(0.1, 0.1),(0.1, 0.2)] (1, 1) (1, 1) 1 1
[(0.1, 0.1),(0.2, 0.5)] (1, 0) (1, 0)
[(0.1, 0.1),(0.5, 0.22)] (1, 0) X
[(0.1, 0.2),(0.2, 0.5)] (1, 0) (1, 0)
[(0.1, 0.2),(0.5, 0.22)] (1, 0) X
[(0.2, 0.5),(0.5, 0.22)] (0, 0) (0, 0)

m=2
[(0.1, 0.1, 0.2),(0.1, 0.2, 0.5)] (1, 1, 0) (1, 1, 0) 0 0
[(0.1, 0.1, 0.2),(0.2, 0.5, 0.22)] (1, 0, 1) X
[(0.1, 0.2, 0.5),(0.2, 0.5, 0.22)] (1, 0, 0) (1, 0, 0)

3.2. Efficient and Parsimonious way for Sample Entropy Calculation

SE measures the probabilities of matches for a time series data using point-wise approach. This can be time con-
suming when long sequence of points need to be compare, and can be done more efficiently. Computation time for
SE can be reduced without losing much information from the signals by using the three methods proposed in this
section. Thus, calculation time for SE could be shortened and the computational expense would be more cheaper.
Fig.2. illustrates on how these three methods work.

SE-Method 1 is about shortening the time series signal without loss of too much information for the point-wise
approach. For example, instead of considering the original data length(n) of the 5-minute signal (=75000 data points),
it could be shortened by dividing 1.1 on the original data length (75000/1.1=68181 equivalent to 28 seconds data
points). Binary chop [8] is performed in order to find out at which point the most accurate result for SE could be
obtained.

SE-Method 2 is about SE calculation on a moving window, calculating SE on individual windows to find out which
window gives the SE values that are most similar to the original SE value. For example, using a 2 seconds moving
window, SE is calculated for a window size of 500 points (2*(250Hz) = 500 data points).

SE-Method 3 is to calculate the mean for a given window first before performing SE. This data window could be
as long as a minute or as short as a second. For example, if the mean of each 1 sec data (250 points) is gathered, then
it will give us a reduced length of n = 300 data points on which to perform SE calculation, and not n = 75000. This
way the SE computational time should be reduced dramatically.

4. Experimental Results

The EEG signals were pre-processed to remove artefacts caused by electrical activity in muscles, including of
the eye, jaw and other muscle movements using Independent Component Analysis (ICA) as mentioned in [6]. It is
relatively straightforward to remove these artefacts using ICA.

To extract HRV from ECG signals, the method designed by Lin et al. [11] was adopted. The results of the automatic
analysis were reviewed and then any errors in ECG R-wave detection and QRS complex (combination of three graph-
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Figure 2. An example of how the SE can be calculated efficiently.

ical deflections: Q, R and S waves) labelling were removed manually. R-R interval data obtained from the edited time
sequence of R-wave and QRS labelling was then transferred to a personal computer. In order to remove artefacts from
extracted HRV signal, each R-R interval was compared against a local average interval. If a R-R interval differs from
the local average more than a specified threshold (in seconds) value, then that R-R interval is defined as an artefact
and is replaced with an interpolated value using a cubic spline interpolation.

4.1. Experiments using three proposed SE Calculation Methods

For each of the five minutes of EEG data; the following three experiments have been undertaken, results are shown
in Table 2. For the purpose of comparison, SE values of the original SE performance is also shown. All code is run on
a personal computer: Windows 7 Enterprise, Intel(R) Core (TM) i7-3770T, 64-bit Operating System, 16 GB RAM.

Experiment 1 is the implementation of SE-Method 1, by restricting number of neighbours for comparisons on SE
calculation. It is found that ignoring the last 25 to 30 seconds of data still achieves as accurate results as if they are
included, but with improving computational time by 10 seconds.

Experiment 2 is about experimenting SE-Method 2, 10 different window size are considered (i.e. 2 Sec, 10 Sec,
20 Sec, 30 Sec, 40 Sec, 50 Sec, 60 Sec, 70 Sec, 80 Sec and 90 Sec windows) on which to perform the SE calculation,
to find out which window gives the SE values that are most similar to the original SE value, as shown in the Table 2.
It is found that the smaller the window size, the shorter the calculation time. In addition, the most similar results to
the original SE calculation results is the smallest window size.

Experiment 3 is demonstrating SE-Method 3, calculating the mean of each window of a second of data (i.e 1 Sec=
mean of 250 points). The experiment is done with 8 different window sizes (i.e. 0.06 Sec, 0.12 Sec, 0.25 Sec, 0.55
Sec, 1 Sec, 2 Sec, 3 Sec and 4 Sec) on which to calculate the mean, as shown in Table 2. The SE is then performed on
the mean values of the signal. It is found that bigger the window size, the shorter the calculation time. Moreover, the
best match to the original SE calculation results is at the mean of each 1 seconds window.

Experiment 1-3 demonstrated a strong positive correlation between the results obtained using the original and each
of the new three SE approaches with the correlation values of 0.99, 0.68, and 0.96 for SE-Method 1, SE Method 2 and
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Table 2. Computation time for the SE calculation using the Original approach and our three Experimental methods.
Experiments Details Computation Time
SE-Original Original Performance 75 Sec

SE-Method 1 Shortening the neighbour comparison 62 Sec

SE-Method 2

2 Seconds Moving Window 0.002 Sec
10 Seconds Moving Window 0.08 Sec
20 Seconds Moving Window 0.38 Sec
30 Seconds Moving Window 0.72 Sec
40 Seconds Moving Window 1.30 Sec
50 Seconds Moving Window 1.94 Sec
60 Seconds Moving Window 3 Sec
70 Seconds Moving Window 4 Sec
80 Seconds Moving Window 6 Sec
90 Seconds Moving Window 9 Sec

SE-Method 3

Mean of Each 0.06 Seconds Window 0.38 Sec
Mean of Each 12 Seconds Window 0.11 Sec
Mean of Each 25 Seconds Window 0.02 Sec
Mean of Each 50 Seconds Window 0.007 Sec
Mean of Each 1 Seconds Window 0.003 Sec
Mean of Each 2 Seconds Window 0.008 Sec
Mean of Each 3 Seconds Window 0.01 Sec
Mean of Each 4 Seconds Window 0.02 Sec

SE-Method 3, respectively, along with the probability of 0. Whilst SE-Method 1 and SE-Method 2 do not improve
the trend and the computational time for SE calculation, SE-Method 3 clearly works best because it provides the
most predictive value, and trend for SE performance to those provided by original SE performance with improving
computational time.

4.2. Experiment 4

The aim of experiment 4 is to compare the performance of new methods and original methods for SE calculation.
The previous three experiments shows that SE-Method 3 is the best one in terms of improving SE calculation time
without losing much information. Hence, Only SE-Method 3 is considered for this experiment because correlation
coefficient works on similar length of the signals, and SE-Method 3 gives us the same length of samples for EEG as of
HRV. In order to demonstrate correlation between EEG and HRV, for each of the five minutes of EEG and HRV data;
the following steps have been undertaken for both original and the new approach (SE-Method 3) of SE calculation.

1. For each electrode’s data, divide data into 10 equal bins to perform SE calculation. This process has been repeated
for each participant.

2. Compute correlation coefficients on the 10 SE values of the EEG and 10 SE values of the HRV obtained in step
1.

Pearson′s correlation is used to perform the correlation coefficients. It measures how closely two different ob-
servables are related to each other. Pearson′s correlation co-efficient R ranges between 1 (when the matching entities
are exactly the same) and −1 (when the matching entities are inverses of each other). A value of zero indicates no
relationship existing between the entities.

Once the electrode’s SE correlation performance are gathered, the best performance electrodes have been ranked-
where, the ranking has been given based on electrode correlation values, the bigger the value, the higher the rank. The
three best performance electrodes’ results have been looked closely. Some common electrode rankings are found for
all the participants investigated, highlighted in yellow colour, as shown in the Fig.3.
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It is found that the electrical activity in the frontal lobe of the brain appears to be correlated with the HRV in time
domain. Moreover, the new approach (SE-Method 3) of SE calculation is giving more focused result than the original
SE calculation.

Figure 3. Electrode Ranking based on correlation performance between SE values of EEG and HRV, showing best three performing electrodes
across participants, highlighted in yellow colour: (a) Ranking based on the original approach for SE calculation, and (b) Ranking based on the new
approach (SE-Method 3) for SE calculation.

5. Discussion and Conclusion

The main conclusion of this work is that parsimonious results for SE can be achieved using the proposed new
methods of pre-processing the data prior to SE calculation. SE-Method 3 clearly works best for improving the perfor-
mance because it gives good predictive values without changing the trends visible in SE calculated using the original
standard approach. SE-Method 1 provides SE values very close to those obtained using the original SE approach, but
it does not improve computational time much. Similarly, SE-Method 2 is not robust because neither the trends nor
computational time are improved significantly.

The second conclusion from this work is that there is a strong positive correlation (R=0.96, Probability = 0) between
results obtained using the original and the new (SE-Method 3) SE approaches. Also, we found low positive correlations
between SE values of EEG and HRV in the time domain. The results shown in our previous work suggested that the
electrical activity in the frontal lobe of the brain is correlated with the HRV. It shows that the electrical activity in
the frontal lobe of the brain appears to be correlated with the HRV in time domain, which is in consistant with our
previous finding on frequency domain in paper [4].

In summary, SE-Method 1 and SE-Method 2 do not improve the trend or the computational time for SE calculation.
SE-Method 3 does not give values similar to those provided by the original SE approach, but it does provide the most
predictive value for SE performance. Although the result is not exactly similar as the original SE performance, the
trend is. Therefore, we believe the most efficient way for SE calculation is SE-Method 3.
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Abstract

Heart Rate Variability (HRV) is the measurement sequence with one or more visible variables of an underlying dynamic system,
whose state changes with time. In practice, it is difficult to know what variables determine the actual dynamic system. In this
research, Embedding Dimension (ED) is used to find out the nature of the underlying dynamical system. False Nearest Neighbour
(FNN) method of estimating ED has been adapted for analysing and predicting variables responsible for HRV time series. It shows
that the ED can provide the evidence of dynamic variables which contribute to the HRV time series. Also, the embedding of
the HRV time series into a four-dimensional space produced the smallest number of FNN. This result strongly suggests that the
Autonomic Nervous System that drives the heart is a two features dynamic system: sympathetic and parasympathetic nervous
system.
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1. Introduction and Related Work

Heart Rate Variability (HRV) can be measured using Electrocardiography (ECG). ECG records the electrical ac-
tivities of the heart, where each beat of the heart is initiated by an electric signal from the heart muscle (Vague). HRV
is the estimation of neurocardiac function that reflects heart-brain interactions and autonomic nervous system dynam-
ics [12]. The measurement of HRV is a valuable investigative tool in clinical cardiology as it gives a fundamental
method to evaluate the physiological state of the heart directly. Many neurological and psychological investigations
have used HRV to assess the effects of stress, emotion, and work on the autonomic nervous system [11]. The heart rate
and rhythm are mainly under the control of the Autonomic Nervous System (ANS) and is the part of the Peripheral
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Nervous System (PNS) that acts as a control system that functions mostly below the level of consciousness to con-
trol physical functions. ANS contains two primary role on components: Sympathetic and Parasympathetic Nervous
system. Both the sympathetic and parasympathetic nervous systems innervate the heart. The parasympathetic nervous
system functions in regulating heart rate through the vagus nerve, with increased vagal activity producing a slowing
of heart rate. The sympathetic nervous system has an excitatory influence on heart rate and contractility, and it serves
as the final common pathway for controlling the smooth muscle tone of the blood vessels [15].

Time series, such as HRV, is the measurements sequence of one or more visible variables of an underlying dynamic
system, whose state changes with time. These time series will be the results of the interaction of many underlying
variables. For example, a stock market is affected by many interacting factors, such as economic data, exchange rates
and so on. In practice, it is difficult to know what variables determine the actual dynamic system. It is shown by [16], if
only one scalar value can be measured from an active system, then by windowing a sufficient number of consecutive
values, the nature of the original multivariable dynamic system can be recaptured. In fact, [16] also mentioned if
the original dynamic system had a dimension of N, then an embedding of size 2N will be fully regained the original
system. The size of this window is called the Embedding Dimensions (ED) [1]. ED estimation has successfully used in
neural network approaches for time series prediction [7]. They concluded that optimal performance could be achieved
using the correct ED. Furthermore, ED has been adopted by [18], for recurrence plot generation from the reconstructed
phase space to represent many real application scenarios when not all variables to describe a system were available.
The number of independent variables sufficient for modeling the hair cell response has been estimated utilizing ED
approach [6]. Moreover, ED has been considered in a multilayer perceptron neural network to measure hyperchaotic
Rssler system state variables [2].

The ED plays a vital role in nonlinear time series analysis[5], as discussed earlier. With its extensive use of finding
the nature of an underlying dynamical system, ED is used in this work for HRV time series analysis. The False Nearest
Neighbours (FNN) method of estimating ED has been adapted for analysing and predicting variables responsible for
the HRV time series. HRV time series taken from participants over a fixed period.

2. Dataset Information

The HRV time series used in this work are of the data where participants undergoing acupuncture in the experi-
mental settings. Three different methods of acupuncture have been used: Electro-Acupuncture(EA), Transcutaneous
Electro-Acupuncture (TEA) and Manual Acupuncture (MA). EA is a method of inserting needles at specific points on
the body. The needles have then been connected to a device that generates continuous electric pulses. These devices
are used to adjust the frequency and intensity of the delivered impulse [3]. TEA is a safe, standardized acupuncture
technique in which there is no needle insertion. It involves applying cutaneous electrical stimulation by placing elec-
trodes at classical Chinese acupoints [14]. The electrodes (patches) are attached to the participant’s skin when the
unit is switched on; mild electrical current travels through the electrodes wires into the body. MA is an acupuncture
method similar to EA, in which needles have inserted at specific points on the body. These needles are then twisted
by or otherwise manipulated by the acupuncturist instead of passing electric pulses through the needle [17].

2.1. Dataset 1

This dataset consists of HRV data of 7 participants, derived using TEA method of acupuncture. HRV monitoring
was carried out in nine 5-minute slots: three baseline slots and six acupuncture stimulation slots. The stimulation
parameters (e.g., body location) are kept constant within each intervention but varies between interventions. Each
participant visited twice, during which the TEA stimulation of either 2.5Hz or 10Hz is applied (randomised order
used) at six different body locations (Slot 3 to 8) with eyes closed. The baseline measurements are slots 1, 2, and 9.

1. No stimulation with Eyes Closed.
2. No stimulation with Eyes Open.
3. TEA stimulation on Left Hand and below Left Knee.
4. TEA stimulation on Right Hand and below Right Knee.
5. TEA stimulation on 3. and 4. together.
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6. TEA stimulation on Upper Body (Left and Right Hands).
7. TEA stimulation on Lower Body (below Left and Right Knees).
8. TEA stimulation on 6. and 7. Together.
9. No stimulation with Eyes Open.

2.2. Dataset 2

This dataset consists of HRV data of 12 participants, derived using both EA and MA method of acupuncture. All
participants attended for four visits, during which stimulation performed at a different location (in randomized order):
Right (Below Right Knee and Right Hand), Left (below Left Knee and Left Hand), Upper Body (Right and Left
Hands) and Lower Body (below Left and Right Knees). HRV monitoring was carried out in eight 5-minute sequential
slots with stimulation at a single location: EA stimulation of 2.5Hz, 10Hz, 20Hz and 80Hz is applied (Slot 3 to 6),
MA stimulation applied in two slots (Slot 2 and Slot 7), and baseline measurements are slots 1 and slot 8.

1. No stimulation with Eyes Open 1
2. MA Stimulation 1
3. EA Stimulation at 2.5Hz
4. EA Stimulation at 10Hz
5. EA Stimulation at 20Hz
6. EA Stimulation at 80Hz
7. MA Stimulation 2
8. No stimulation with Eyes Open 2

3. Embedding Dimension

ED is used to find out the nature of an underlying dynamical system. The method FNN is used to determine how
many dimensions are sufficient to embed a particular time series [8]. The FNN is designed to determine how many
features are enough to integrate a specific time series [8]. The basic idea behind FNN is that points in a state space
should be close to each other because their dynamical state is similar, not because they have been projected close
to each other as an artefact of constructing the embedding with a dimension which is too low. In an embedding of
dimension D, each point is established as a vector.

The FNN algorithm can be summarized as follows:

1. Find the nearest neighbour for each point in an embedding of dimension D;
2. Find the percentage of those nearest neighbours which do not remain the nearest neighbour within embedding of

dimension D+1, such points turns as false nearest neighbours;
3. Increase the embedding dimension until the number of false nearest neighbour is sufficiently small.

3.1. An Example of Embedding Dimension Calculation

In order to find the correct embedding dimension, n, an incremental search, from n = 1, is performed. A set of time
lagged vectors xn , for a given n, is formed. The nearest neighbour relation within the set of xn’s is then computed.
When the correct value of n has been reached, the addition of an extra dimension to the embedding should not cause
these nearest neighbours to spring apart. Any pair whose additional separation is of a high relative size is deemed FNN.
Specifically, if xn has nearest neighbour

∼
xn , then the relative additional separation when the embedding dimension is

incremented is given by [1]:

FNN =

∣∣∣∣
d(xn,

∼
xn)−d(xn+1,

∼
xn+1)

d(xn,
∼
xn)

∣∣∣∣, (1)
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When this value exceeds an absolute value, then xn and
∼
xn are denoted as FNN. Where, x is the time series, n is

the index for x, and d is the euclidean distance. In roder to calculate nearness of neighbours, Euclidean Distance is
used [10]. For example a time series is a sequence of values xn(t), where x is the time series, n is the index for x,
and t represent time. Theoretically, x may be a value which varies continuously with t. An ED of 2 forms vectors
(x0,x1),(x1,x2) and so on. An ED of 3 forms the vectors (x0,x1,x2) and so on. Since this is numeric vectors, the
distance apart of any pair of these vectors could be calculated. So for each vector in a given embedding, the nearest
neighbour can be found. However, some of these nearest neighbour may be false neighbour, in a sense that they are
not nearest neighbour in the embedding with one extra dimension [7]. A geometric explanation of the concept that is
at the core of the FNN technique is as shown in Fig.1.

Figure 1. Geometric explanation of the FNN Algorithm [8]: (a) In one-dimensional, Red and Green Point are nearest neighbour, (b) In two-
dimensional Red and Green point are not nearest neighbour (i.e. false nearest neighbour), but Red and Blue are nearest neighbour, and (c) In
three-dimensional Red and Blue are still nearest neighbour, so they are real nearest neighbour.

The line at the bottom represents a dimensional state space X1(Red Point), X2 (Green Point), and X3 (Blue Point))
and the nearest neighbour of the X1 (Red Point) is the X2 (Green Point). Next, the time series embedded into two-
dimensional state space, represented by the oval in the middle of the picture. The X1 (Red Point) and X2 (Green point)
are no longer near to each other. So, the X2(Green point) is labelled as a false nearest neighbour because it was only
near to the X1 (Red Point) due to the projection of the time series onto the line.

Next, the nearest neighbour for each point in the two-dimensional state space found. Now the nearest neighbour
to the X1 (Red Point) is the X3 (Blue Point). The time series is now embedded into a three-dimensional state space as
represented in the rotated parabola at the top of the picture. The X1 (Red Point) and the X3 (Blue Point) are still near
to each other, and so the X3 (Blue Point) is not a false nearest neighbour. This process continues until either there are
no further malicious nearest neighbour or the data set becomes so sparse in a high dimensional space that no points
can be considered to be near neighbours, to begin with. The resulting percentage of FNN for each ED is then plotted
against the corresponding ED to create FNN plot.

3.2. An Example of Lorenz Attractor

The well known Lorenz Attractor as shown in Fig.2. has three underlying cross-coupled variables. However, the
attractor itself is almost two dimensional. The minimum dimension of the attractor for a Lorenz data set as shown in
Fig.3. is 4 or 5, which suggests that the actual underlying dimension system has features of around 2 [7].

4. Experiments and Results

4.1. HRV Analysis using ED

For analysing the HRV time series using the ED, for each participant in each 5-minute slot, the number of FNN has
been calculated as the ED has increased. MATLAB code is used to gather ED performance of HRV [13]. Once, the
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Figure 2. A visualisation of the Lorenz attractor in 3-dimensional phase space x(t), y(t),z(t)[7].

Figure 3. The percentage of false nearest neighbours in the Lorenz data set [7].

percentage of FNN for the ED is gathered for each 5-minute slot, the result is plotted for each participant, as shown
in Fig.4. A comparison is made on the changes of various stimulus locations for each participant (i.e., between each
slot’s result), and among the ED result of different participants. The first notable result for all participants is that the
optimal ED is about 4. It is also noteworthy that this optimal ED is independent of stimulus location.

The ED results of 4 participants, two from each dataset (Participant 1 and Participant 2 from Dataset 1, and Partic-
ipant 3 and Participant 4 from Dataset 2) as shown in Fig.4. For all the other participants from both datasets, results
are similar to as shown in Fig.4. It is important to note that, some health-related problems found for few participants.
For example, Participant 1 from dataset 1 has Thyroid insufficiency and menstrual irregularity, and participant 4 from
dataset 2 have Asthma.

In the Fig.4., the X axes (Horizontally) represent ED from 1 to 10, and Y axes (Vertically) represent the percentage
of FNN for the ED 1-10. The 8-9 different colors (Curves) in the graph correspond to slots containing baseline and
acupuncture stimulation locations for an individual participant. There are two important findings from these results:

1. The first notable result for all participants is that the optimal ED is about 4. It is also notable that this optimal ED
is independent of the specific stimulus location. This result suggests that an ED of 4 or 5 is most appropriate for
HRV data for all slots and all participants.

2. In Fig.4., right-hand side figures (Participant 2 and Participant 4) shows increasing numbers of false nearest
neighbours as ED increases above its optimal value of 4, whereas left-hand side figures (Participant 1 and Par-
ticipant 3) does not display this. An increase in the number of false nearest neighbours with increasing ED is
normally suggestive of noise in the data [1].
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Figure 4. Embedding Dimension Result: (a) Two participant’s (Participant 1 and 2) ED result from Dataset 1, and (b) Two participant’s (Participant
3 and 4) ED result from Dataset 2.

4.2. HRV Prediction using Linear Regression

The standard Linear Regression is utilized to produce a linear predictor for our embedded data. It was suggested
by [9], that the performance of a time series predictor is affected by the size of a window, in which the time series
embedded. Therefore, Linear Regression is used to predict the window size for HRV series to achieve the best result.
For each window, data is split into a training set of 250 vectors and a test set of 106 vectors. The size of the embedding
varies between 2 and 6. Errors are calculated as relative error [4], and results for five different window size has shown
in Fig.5. It is clear that the best regressor has four inputs, and changing this number either way harms the performance.

The linear prediction of the HRV suggests that window size of 4 will be enough to fit the HRV time series data.
Also, this reflects the ED result 4 is the minimum ED for the HRV Data as shown in Fig.4.

5. Discussion and Conclusion

Our result indicating that the HRV has an estimated ED of 4 suggests that the underlying dynamic system has 2 fea-
tures; based on [16], if the original dynamic system had a dimension of N, then an embedding of size 2N will be fully
regained the original system. This result is interesting because HRV is driven by two underlying systems, the sympa-
thetic and parasympathetic neural pathways; HRV is a marker of sympathetic and parasympathetic influences on the
modulation of heart rate [19], and this reflects in the ED result. The effect of the sympathetic pathway is to increase
heart rate and blood pressure (Fight or Flight response), whereas the parasympathetic path acts to decrease heart rate
and blood pressure (Rest and Digest response). Therefore, the main finding here is that in all circumstances an Embed-
ding of the HRV time series into a four-dimensional space produced the smallest number of false nearest neighbours.
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Figure 5. Relative error of the predictor for varying window size for HRV Time series.

This finding strongly suggests that the Autonomic Nervous System that drives the heart is a two-dimensional dynamic
system.

From the participant’s questionnaire, a variety of subjective responses to the acupuncture stimulation found. How-
ever, this did not appear to have much effect on the HRV time series, which robustly kept its two-dimensional dynamic
system.

In some circumstances, the number of FNN increase as the ED became more massive than the optimal value. This
increase is suggestive of noise in the data that may have come from the ECG measuring equipment.

It was suggested by [9], that the performance of a time series predictor is affected by the window size, in which
the time series embedded. So that the best predictor would be the one that used correct ED. Our experiments, reported
here, using a Linear Regression to predict the HRV series confirmed this as a window size of four gave the best result.
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Electroencephalogram (EEG) are time varying signal, and give different signals at the different position of electrodes. There 
might be a correlation between a pair of these signals; more likely related to the actual positions of electrodes. In this 
paper, we show that the correlation is related to the physical distance between electrodes as measured on the scalp for 
datasets without medical condition, but might not for datasets with medical conditions. This finding is independent of 
participants and brain hemisphere. Our results indicate that the EEG signal is not transmitted via neurons but through 
white matter in a brain. 
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Introduction  

An Electroencephalogram (EEG) is a time varying signal, and the electrodes at different positions give 
different time varying signals. Our previous work indicated that there was a correlation between these 
signals [1]. However, that research only focused on datasets without any medical conditions. In this 
work, we analyse datasets not only without medical conditions, but also with medical conditions, such 
as Epilepsy, Autism, and Seizure.  

Dataset Information  

This research utilised six datasets including; 3 (Dataset 1, Dataset 2, and Dataset 3) without medical 
condition [2], and 3 (Dataset 4, Dataset 5, and Dataset 6) with medical condition [3] [4], as shown in 
Table 1.  

Labels Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 
Medical 

Condition 
None None None Epilepsy Autism Seizure 

Participants 16 20 32 5 13 12 

Electrodes 19 10 15 19 19 19 

Paired 
Electrodes 

171 Pairs 45 Pairs 105 Pairs 171 Pairs 171 Pairs 171 Pairs 

Table 1. Datasets Information  
 

Experiments and Results 

The EEG signals were processed to remove artefacts, such as eye blinks, eye movements, jaw 
movements and muscle movements, by using Independent Component Analysis (ICA). In order to 
obtain distance in centimetres (cm) between electrodes, a measuring tape was used to measure 
distance using a straight line distance between two electrodes on a cap - not the distance as measured 
over the surface (curved line) of the scalp. Cross-correlation has been calculated on the processed EEG 
signals. Figure 1 shows the average correlation results of participants for electrode Fp1 on analysing 
all six datasets, where electrode Fp1 has been chosen randomly across all 19 electrodes for all datasets 
to show the Cross-correlation performance - other electrodes have similar results. Figure 1 (A), (B), 
(C), and (E) demonstrates that there is an inverse linear relationship between Cross-correlation value 
and distance. Whereas Figure 1 (D), and (F) do not indicate any linear dependency.  
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Discussion and Conclusion  

One of the main conclusions of this work is that electrical activity correlates linearly with straight line 
physical distance (that is when the distance increases the correlation decreases) for participants 
without medical conditions. However, participants with medical conditions such as Epilepsy and 
Seizure, the linear dependency might not exist. We lack of the expertise to provide possible reasons 
for this, but think this might be of interest to the people working in medical area. The second 
conclusion from this work is that the correlation is independent of brain hemisphere for all datasets. 
This suggests that most probably the electrical signals are transmitted through the white matter of 
the brain [3]. We assume that signal transmission is through white matter because of the commissural 
tracts within the white matter which connect the two hemispheres of the brain. This means, in practice 
it does not matter which side of the median plane you place the electrodes. 

 
Figure 1. Cross-correlation between electrodes at varying distance on all datasets. Where, (A) Dataset 1, (B) Dataset 2, (C) 
Dataset 3, are without any medical condition, and (D) Dataset 6, (E) Dataset 7, and (F) Dataset 8, are with medical 
condition Autism, Epilepsy, and Epileptic Seizures, respectively. 
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Pain is the major complaint of patients who choose acupuncture treatment. Analyse the effect of electro
acupuncture related methods on the EEG (electroencephalography) is important to assess changes in
their brain activity due to stimulation Location.
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1. Motivation

5. Conclusion & Discussion

2. Experimental Techniques

3. Description of the Datasets
The EEG data is taken from signals provided by 7 patients on whom
acupuncture was performed. During this visit EEG monitoring was
carried out in six 5 minute ‘slots’ with stimulation at six different
locations:

1. First stimulation – Left (LI4, a point on the left hand, and ST36, a
point on the left leg)
2. Second stimulation – Right (LI4, a point on the right hand, and ST36,
a point on the right leg)
3. Third stimulation- Bilateral (both ‘Left’ and ‘Right’)
4. Fourth stimulation- LL or Upper (left LI4 and right LI4)
5. Fifth stimulation-SS or Lower (left ST36 and right ST36)
6. Sixth stimulation-LLSS (both upper and Lower)

Here we try to detect variation in the EEG signals following a 
Transcutaneous Electrical Acupoint System (TEAS) at different 
stimulation locations. 
Here we use Sample Entropy to measure the complexity of the EEG
signals.

EEG 

TEAS for Acupuncture 

4. Results

Table 1: The average Sample Entropy result for all patients with all their 6 Locations

The Location Effect of electrical acupoints on the EEG signals of Subject 1. (No
response towards location). The lines are a guide for the eye and do not
represent a graph

The location Effect of electrical acupoints on the EEG signals of Subject 2.
(responded towards locations)

Sample Entropy as non-linear measure 

In this research the Electroencephalography (EEG) signals of patients
have been recorded when acupuncture is performed.

Fp = Frontal pole
F = Frontal
C = Central (no central lobe) 
T = Temporal
O = Occipital 
P = Parietal 
Odd numbered on the left.
Even numbers on the right
“Z" (zero) refers to the electrode on the midline. 
The smaller the number the closer to the midline
A is for ear lobe 

M is for mastoid 

TEAS is a safe, standardized acupuncture
technique in which there is no needle
insertion. It involves applying cutaneous
electrical stimulation by placing electrodes
at classical Chinese acupoints.

http://emedicine.medscape.com/article/325107-overview 

Sample Entropy measures the predictability of a time series. If the Sample
Entropy is 0, then the time series is completely predictable, as is the case
for example if the time series is constant. On the other hand, if the time
series is completely unpredictable the sample entropy is 1 (for a binary
series).
EEG signals represent the complex dynamic behaviours of a biological
system. In order to understand the complex behaviours Sample Entropy is
used.

EEG is a method of recording brain activity
(NHS, 2012).The electrical signals that travel
through the active brain cells are recorded by
placing small electrodes onto the scalp. The
signals are measured using only 19 electrodes
because 1 electrode is considered as ground.
The readings obtained in EEG can be used to
investigate some brain conditions. A EEG
signal is a symptomatic indicator which helps
in determining brain activities under a
physiological condition.

• Subject 1 didn’t give response to any of the location
• Subject 2 responded highly when upper body was stimulated. (Higher

Sample Entropy value obtained)
• Result in Table 1 suggest the average Sample Entropy value.

The higher sample entropy value the higher disorder in EEG recording of
patient. This result can help to identify their mental state (such as
anxious, actively thinking, relax, sleeping) and suggest that different
patient reacted differently on different location when they were under
acupuncture treatment.
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circulatory physiology 278 (6): H2039–49. PMID 10843903

The Sample Entropy analysis proves to be a powerful approach for
assessment of different physiological time series as it can determine the
hidden patterns related to the underlying mechanism. With the extensive
use of Sample Entropy in the field of medical science, this non-linear
measure proves to be appropriate to investigate the EEG series with
certain parameters such as bodily location.

Six Locations
Sample 
Entropy Left Right Left & Right LL (Upper) SS(Lower) LLSS

Mean SE 0.02 0.02 0.04 0.2 0.03 0.03

Min 0.0007 0.008 0.0008 0.1 0.0008 0.0008

Max 0.2 0.3 0.4 0.5 0.2 0.3

SD 0.05 0.07 0.1 0.09 0.08 0.1

“This EEG cap is stretchable 
and can fit any size of head”

The figure shows the Sample Entropy for a typical patient over 19
electrodes. The first thing to note is that the Sample Entropy is low
showing that the EEG time series is fairly predictable. It can also be seen
that there is not much difference in location or stimulus site.

Table 1: The average Sample Entropy result for all patients on six locations.
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Subject 2 however showed a completely different response. When
stimulated on the Upper body the EEG became extremely disordered.
The Sample Entropy is between the range of 1.6 to 1.8. This suggests a
strong response to the TEAS stimulation at this location. Interestingly
electrode 5 and electrode 9 gives higher Sample Entropy than other
electrodes.



Appendix F

Publications

Method 1-Experiment 1
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Table F.1: Dataset 1- Method 1 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)
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Table F.2: Dataset 2- Method 1 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)
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Table F.3: Dataset 1- Method 2 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)
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Table F.4: Dataset 2- Method 2 - Averaged participants’ correlation performance: (a) Level
0 (No WT), (b) Level 1 WT, (c) Level 2 WT, (d) Level 3 WT)
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D. Cvetkovic, E. D. Übeyli, and I. Cosic. Wavelet transform feature extraction from human
ppg, ecg, and eeg signal responses to elf pemf exposures: A pilot study. Digital signal

processing, 18(5):861–874, 2008.

F. H. L. da Silva, J.-P. Pijn, and W. J. Wadman. Dynamics of local neuronal networks: con-
trol parameters and state bifurcations in epileptogenesis. In Progress in brain research,
volume 102, pages 359–370. Elsevier, 1994.

I. Daskalov and I. Christov. Improvement of resolution in measurement of electrocardio-
gram rr intervals by interpolation. Medical engineering & physics, 19(4):375–379, 1997.

284



I. Daubechies. The wavelet transform, time-frequency localization and signal analysis.
IEEE transactions on information theory, 36(5):961–1005, 1990.

E. de Azevedo Botter, C. L. Nascimento, and T. Yoneyama. A neural network with asym-
metric basis functions for feature extraction of ecg p waves. IEEE Transactions on

Neural Networks, 12(5):1252–1255, 2001.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

J. B. Dingwell and J. P. Cusumano. Nonlinear time series analysis of normal and patholog-
ical human walking. Chaos: An Interdisciplinary Journal of Nonlinear Science, 10(4):
848–863, 2000.

A. D. Dolatabadi, S. E. Z. Khadem, and B. M. Asl. Automated diagnosis of coronary
artery disease (cad) patients using optimized svm. Computer methods and programs in

biomedicine, 138:117–126, 2017.

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic textures. International Journal

of Computer Vision, 51(2):91–109, 2003.

H. Doufesh, F. Ibrahim, N. A. Ismail, and W. A. Wan Ahmad. Application of self orga-
nizing map for correlation hunting between alpha band power of eeg signals and other
physiological parameters during muslim prayer (salat). Biomedical Engineering: Appli-

cations, Basis and Communications, 30(04):1850029, 2018.

Dr.Evans. Acupuncture with electric stimulation, 1998-2019. URL http://www.

evansacupuncture.com/acupuncturewes.html.

Dr.Xie. Acupuncture and chinese herbel medicines for pain and health, 1998-2019. URL
https://acupunctureforhealthcare.com/services/manual-acupuncture/.

P. Duhamel and M. Vetterli. Fast fourier transforms: a tutorial review and a state of the art.
Signal processing, 19(4):259–299, 1990.

D. Durante, D. B. Dunson, et al. Bayesian inference and testing of group differences in
brain networks. Bayesian Analysis, 13(1):29–58, 2018.

Z. Duszak and W. Koczkodaj. Using principal component transformation in machine learn-
ing.

285

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.evansacupuncture.com/acupuncturewes.html
http://www.evansacupuncture.com/acupuncturewes.html
https://acupunctureforhealthcare.com/services/manual-acupuncture/


G. Edlinger and C. Guger. Correlation changes of eeg and ecg after fast cable car ascents.
In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual

International Conference of the, pages 5540–5543. IEEE, 2006.

C. L. Ehlers, J. Havstad, D. Prichard, and J. Theiler. Low doses of ethanol reduce evidence
for nonlinear structure in brain activity. Journal of Neuroscience, 18(18):7474–7486,
1998.

W. Einthoven. The different forms of the human electrocardiogram and their signification.
The Lancet, 179(4622):853–861, 1912.

M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon and texture
image inpainting using morphological component analysis (mca). Applied and Compu-

tational Harmonic Analysis, 19(3):340–358, 2005.

T. F. o. t. E. S. o. C. t. N. A. S. o. P. Electrophysiology. Heart rate variability: standards
of measurement, physiological interpretation, and clinical use. Circulation, 93(5):1043–
1065, 1996.

J. B. Elsner and A. A. Tsonis. Singular spectrum analysis: a new tool in time series

analysis. Springer Science & Business Media, 2013.

O. Faust, U. R. Acharya, H. Adeli, and A. Adeli. Wavelet-based eeg processing for
computer-aided seizure detection and epilepsy diagnosis. Seizure, 26:56–64, 2015.

R. D. Fields. White matter matters. Scientific American, 298(3):54–61, 2008.

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle.
The human brain is intrinsically organized into dynamic, anticorrelated functional net-
works. Proceedings of the National Academy of Sciences, 102(27):9673–9678, 2005.

M. D. Fox, M. Corbetta, A. Z. Snyder, J. L. Vincent, and M. E. Raichle. Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings

of the National Academy of Sciences, 103(26):10046–10051, 2006.

R. J. Frank, N. Davey, and S. P. Hunt. Time series prediction and neural networks. Journal

of Intelligent and Robotic Systems, 31(1-3):91–103, 2001.

B. L. Fredrickson and M. F. Losada. Positive affect and the complex dynamics of human
flourishing. American Psychologist, 60(7):678–686, 2005.

286



N. P. Friedman, A. Miyake, R. P. Corley, S. E. Young, J. C. DeFries, and J. K. Hewitt. Not
all executive functions are related to intelligence. Psychological science, 17(2):172–179,
2006.

U. Frith. Autism: Explaining the enigma. Blackwell Publishing, 2003.

X. Gao, Y. Wang, X. Li, and D. Tao. On combining morphological component analysis and
concentric morphology model for mammographic mass detection. IEEE Transactions on

Information Technology in Biomedicine, 14(2):266–273, 2010.

A. Garfinkel, M. Spano, and W. Ditto. Weiss. J. N., Controlling cardiac chaos, Science,
257:12, 1992.

M. A. Gartstein, G. R. Hancock, N. V. Potapova, S. D. Calkins, and M. A. Bell. Model-
ing development of frontal electroencephalogram (eeg) asymmetry: Sex differences and
links with temperament. Developmental science, 23(1):e12891, 2020.

H. Gastaut. Electrocorticographic study of the reactivity of rolandic rhythm. Revue neu-

rologique, 87(2):176–182, 1952.

B. Ghanem and N. Ahuja. Phase based modelling of dynamic textures. In 2007 IEEE 11th

International Conference on Computer Vision, pages 1–8. IEEE, 2007.

G. Giakas. Power spectrum analysis and filtering. Innovative analyses of human movement,
1:223–223, 2004.

G. Giakas and V. Baltzopoulos. Time and frequency domain analysis of ground reaction
forces during walking: an investigation of variability and symmetry. Gait & Posture, 5
(3):189–197, 1997.

G. Giakas, V. Baltzopoulos, P. H. Dangerfield, J. C. Dorgan, and S. Dalmira. Comparison
of gait patterns between healthy and scoliotic patients using time and frequency domain
analysis of ground reaction forces. Spine, 21(19):2235–2242, 1996.

P. J. Gianaros and K. S. Quigley. Autonomic origins of a nonsignal stimulus-elicited brady-
cardia and its habituation in humans. Psychophysiology, 38(3):540–547, 2001.

D. Giri, U. R. Acharya, R. J. Martis, S. V. Sree, T.-C. Lim, T. A. VI, and J. S. Suri. Au-
tomated diagnosis of coronary artery disease affected patients using lda, pca, ica and
discrete wavelet transform. Knowledge-Based Systems, 37:274–282, 2013.

287



A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit,
and physionet: components of a new research resource for complex physiologic signals.
Circulation, 101(23):e215–e220, 2000.

B. Goldstein, D. Toweill, S. Lai, K. Sonnenthal, and B. Kimberly. Uncoupling of the auto-
nomic and cardiovascular systems in acute brain injury. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 275(4):R1287–R1292, 1998.

N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky. Analysis of time series structure: SSA

and related techniques. Chapman and Hall/CRC, 2001.

B. Gourévitch and J. J. Eggermont. A simple indicator of nonstationarity of firing rate in
spike trains. Journal of neuroscience methods, 163(1):181–187, 2007.

R. Govindan, K. Narayanan, and M. Gopinathan. On the evidence of deterministic chaos
in ecg: Surrogate and predictability analysis. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 8(2):495–502, 1998.

P. Graziano and K. Derefinko. Cardiac vagal control and children’s adaptive functioning:
A meta-analysis. Biological psychology, 94(1):22–37, 2013.

J. F. Grcar. Matrix stretching for linear equations. arXiv preprint arXiv:1203.2377, 2012.

F. Grouiller, L. Vercueil, A. Krainik, C. Segebarth, P. Kahane, and O. David. A comparative
study of different artefact removal algorithms for eeg signals acquired during functional
mri. Neuroimage, 38(1):124–137, 2007.

J. Hevia-Orozco, A. Sanz-Martin, M. Guevara, and M. Hernández-Gonzalez. Eeg cor-
relation during social decision-making in institutionalized adolescents. Abnorm Behav

Psychol, 3(131):2472–0496, 2017.

R. C. Hilborn et al. Chaos and nonlinear dynamics: an introduction for scientists and

engineers. Oxford University Press on Demand, 2000.

S. L. Horowitz. A syntactic algorithm for peak detection in waveforms with applications
to cardiography. Communications of the ACM, 18(5):281–285, 1975.

Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso. Applications of artificial neural
networks for ecg signal detection and classification. Journal of electrocardiology, 26:
66–73, 1993.

288



Y. H. Hu, S. Palreddy, and W. J. Tompkins. A patient-adaptable ecg beat classifier using
a mixture of experts approach. IEEE transactions on biomedical engineering, 44(9):
891–900, 1997.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.
Tung, and H. H. Liu. The empirical mode decomposition and the hilbert spectrum for
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971):903–
995, 1998.

H. V. Huikuri and P. K. Stein. Heart rate variability in risk stratification of cardiac patients.
Progress in cardiovascular diseases, 56(2):153–159, 2013.

C. M. Hurvich and C.-L. Tsai. Regression and time series model selection in small samples.
Biometrika, 76(2):297–307, 1989.

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4):411–430, 2000.

T. Ince, S. Kiranyaz, and M. Gabbouj. Automated patient-specific classification of prema-
ture ventricular contractions. In 2008 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pages 5474–5477. IEEE, 2008.
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