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Abstract 

This PhD thesis presents a comprehensive investigation into power control (PC) optimization 

in cellular (CL) and cell-free (CF) massive multiple-input multiple-output (mMIMO) systems 

using machine learning (ML) techniques. The primary focus is on enhancing the sum spectral 

efficiency (SE) of these systems by leveraging various ML methods. 

To begin with, it is combined and extended two existing datasets, resulting in a unique 

dataset tailored for this research. The weighted minimum mean square error (WMMSE) 

method, a popular heuristic approach, is utilized as the baseline method for addressing the 

sum SE maximization problem. It is compared the performance of the WMMSE method with 

the deep Q-network (DQN) method through training on the complete dataset in both CL and 

CF-mMIMO systems. 

Furthermore, the PC problem in CL/CF-mMIMO systems is effectively tackled through the 

application of ML-based algorithms. These algorithms present highly efficient solutions with 

significantly reduced computational complexity [3]. Several ML methods are proposed for 

CL/CF-mMIMO systems, tailored explicitly to address the PC problem in CL/CF-mMIMO 

systems. Among them are the innovative proposed Fuzzy/DQN method, proposed DNN/GA 

method, proposed support vector machine (SVM) method, proposed SVM/RBF method, 

proposed decision tree (DT) method, proposed K-nearest neighbour (KNN) method, proposed 

linear regression (LR) method, and the novel proposed fusion scheme. The fusion schemes 

expertly combine multiple ML methods, such as system model 1 (DNN, DNN/GA, DQN, 

fuzzy/DQN, and SVM algorithms) and system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT 

algorithms), which are thoroughly evaluated to maximize the sum spectral efficiency (SE), 

offering a viable alternative to computationally intensive heuristic algorithms. Subsequently, 

the DNN method is singled out for its exceptional performance and is further subjected to in-

depth analysis. Each of the ML methods is trained on a merged dataset to extract a novel 

feature vector, and their respective performances are meticulously compared against the 

WMMSE method in the context of CL/CF-mMIMO systems. This research promises to pave 

the way for more robust and efficient PC solutions, ensuring enhanced SE and ultimately 

advancing the field of CL/CF-mMIMO systems.  

The results reveal that the DNN method outperforms the other ML methods in terms of 

sum SE, while exhibiting significantly lower computational complexity compared to the 

WMMSE algorithm. Therefore, the DNN method is chosen for examining its transferability 

across two datasets (dataset A and B) based on their shared common features. Three 

scenarios are devised for the transfer learning method, involving the training of the DNN 

method on dataset B (S1), the utilization of model A and dataset B (S2), and the retraining of 

model A on dataset B (S3). These scenarios are evaluated to assess the effectiveness of the 

transfer learning approach. Furthermore, three different setups for the DNN architecture 

(DNN1, DNN2, and DNN3) are employed and compared to the WMMSE method based on 
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performance metrics such as mean squared error (MSE), root mean squared error (RMSE), 

and mean absolute error (MAE). 

Moreover, the research evaluates the impact of the number of base stations (BSs), access 
points (APs), and users on PC in CL/CF-mMIMO systems using ML methodology. Datasets 
capturing diverse scenarios and configurations of mMIMO systems were carefully assembled. 
Extensive simulations were conducted to analyze how the increasing number of BSs/APs 
affects the dimensionality of the input vector in the DNN algorithm. The observed 
improvements in system performance are quantified by the enhanced discriminative power 
of the model, illustrated through the cumulative distribution function (CDF). This metric 
encapsulates the model's ability to effectively capture and distinguish patterns across diverse 
scenarios and configurations within mMIMO systems. The parameter of the CDF being 
indicated is the probability. Specifically, the improved area under the CDF refers to an 
enhanced probability of a random variable falling below a certain threshold. This 
enhancement denotes improved model performance, showcasing a greater precision in 
predicting outcomes.  Interestingly, the number of users was found to have a limited effect 
on system performance. The comparison between the DNN-based PC method and the 
conventional WMMSE method revealed the superior performance and efficiency of the DNN 
algorithm. Lastly, a comprehensive assessment of the DNN method against the WMMSE 
method was conducted for addressing the PC optimization problem in both CL and CF system 
architectures. 

In addition to, this thesis focuses on enhancing spectral efficiency (SE) in wireless 

communication systems, particularly within cell-free (CF) mmWave massive MIMO 

environments. It explores the challenges of optimizing SE through traditional methods, 

including the weighted minimum mean squared error (WMMSE), fractional programming 

(FP), water-filling, and max-min fairness approaches. The prevalence of access points (APs) 

over user equipment (UE) highlights the importance of zero-forcing precoding (ZFP) in CF-

mMIMO. However, ZFP faces issues related to channel aging and resource utilization. To 

address these challenges, a novel scheme called delay-tolerant zero-forcing precoding (DT-

ZFP) is introduced, leveraging deep learning-aided channel prediction to mitigate channel 

aging effects. Additionally, a cutting-edge power control (PC) method, HARP-PC, is proposed, 

combining heterogeneous graph neural network (HGNN), adaptive neuro-fuzzy inference 

system (ANFIS), and reinforcement learning (RL) to optimize SE in dynamic CF mmWave-

mMIMO systems. This research advances the field by addressing these challenges and 

introducing innovative approaches to enhance PC and SE in contemporary wireless 

communication networks. 

Overall, this research contributes to the advancement of PC optimization in CL/CF-

mMIMO systems through the application of ML techniques, demonstrating the potential of 

the DNN method, and providing insights into system performance under various scenarios 

and network configurations. 
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Chapter 1. 

1 Introduction 

In this chapter, a brief introduction is provided. This includes the provision of basic 

information, the motivation behind the research, the original contributions made, and an 

outline of the thesis organization. 

1.1 Multiple-input-multiple-output (MIMO) systems 

Increased transmission or reception directivity can be achieved by employing a greater 

number of transmitting/receiving antennas. In the case of transmission, by appropriately 

time-synchronizing the individual transmissions at each antenna, the total signal energy can 

be directed towards any desired direction. As a result, the signal components combine 

constructively in the air, giving rise to a beam. A signal receiver positioned in the intended 

direction will observe a signal that is 𝑀-times stronger than the signal transmitted from each 

antenna. This technique is known as beamforming, with 𝑀 representing the beamforming 

gain. Provided that the transmitting antennas are spaced half a wavelength apart, the 

beamforming gain is equivalent to the number of transmitting antennas. Therefore, an 

increased number of antennas leads to a narrower beam, a larger beamforming gain, and 

enhanced spectral efficiency (SE). Importantly, in any undesired direction, destructive 

interference occurs, resulting in minimal interference experienced by receivers located in 

those directions [11]. 

This ability to focus a transmission on a single point in space enables the service of 

multiple users simultaneously using the same time-frequency resources and spatially 

separating them. This phenomenon is known as spatial multiplexing or space-division multiple 

access (SDMA), and the resulting increase in SE is referred to as spatial multiplexing gain. The 

utilization of multiple transmitting/receiving antennas not only leads to an increase in SE but 

also provides additional benefits. As a signal traverses different channels, which may be 

independent, it undergoes diverse alterations. This diversity enhances the signal quality at 

the receiver, thereby improving the link's robustness and reliability. This phenomenon is 

referred to as spatial diversity gain. While various MIMO concepts have existed for decades, 

long-term evolution (LTE), commercially known as 4G, was the first mobile standard to fully 

implement multiuser MIMO technology since 2010. An LTE base station (BS) can be equipped 

with up to 8 antenna ports, covering a 120-degree horizontal sector, resulting in a total of 24 

antenna ports. The aforementioned performance gains are evident in LTE but come with the 

complexity of signal processing and the requirement for substantial channel estimation 

resources, which actually constitute the inherent bottleneck of multiuser MIMO technology. 

However, significant advancements are necessary to meet the enhanced mobile broadband 

(eMBB) requirements of 5G. 
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A generic wireless communication system is shown in Figure 1-1, whereas Figure 1-2 

presents the block diagram of a generic MIMO wireless system. In this setup, there is a single 

transmitter (Tx) with N transmit antennas, along with k users, each equipped with a receiver 

(Rx) comprising M receive antennas. 

 
 

  

 

 

 

 

 

 

 

Figure 1-2. Block diagram of a generic MIMO wireless system [4]. 

Consider a MIMO system with 𝑁𝑡 transmit antennas and 𝑁𝑟  receive antennas, where 

𝑁𝑡 > 𝑁𝑟. The transmitted signal vector at time instant t is represented as 𝑥(𝑡) ∈ ℂ𝑁𝑡×1, and 

the received signal vector at time instant  𝑡 is denoted as 𝑦(𝑡) ∈ ℂ𝑁𝑟×1. The MIMO channel 

matrix H ∈ ℂ𝑁𝑟×𝑁𝑡  represents the channel gain between the transmit and receive antennas. 

The received signal 𝑦(𝑡) can be expressed as:  

𝑦(𝑡) =  H 𝑥(𝑡) + 𝑛(𝑡)                                 (1.1) 

where 𝑛(𝑡) is the additive noise vector with each element being independent and identically 

distributed complex Gaussian noise with zero mean and variance 𝜎2. The channels matrix H 

varies over time due to channel fading, which can be modelled as a random process.  
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Figure 1-1. A generic wireless communication system model. 
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1.2 Massive MIMO systems 

SISO systems utilize a single antenna at both the transmitters (i.e., BSs) and the receivers (i.e., 

UEs), whereas MIMO systems employ multiple antennas at both ends. MIMO systems offer 

higher capacity and reliability compared to SISO systems due to the advantages of MIMO 

channels in terms of multiplexing, diversity, and array gains. The diversity gains in MIMO 

systems increase with the number of independent channels between the transmitter and 

receiver, while the maximum multiplexing gain is limited by the minimum number of 

antennas at the transmitter or receiver units. However, achieving maximum multiplexing and 

diversity gains simultaneously in MIMO systems is challenging due to a fundamental trade-

off between them. The two gains cannot be maximized concurrently. On the other hand, 

massive MIMO (mMIMO) employs a significantly larger number of antennas compared to 

conventional MIMO systems [4]. A highly spectrally efficient coverage tier in a cellular system 

can be characterized as follows [12]: 

• It utilizes SDMA to achieve multiplexing gain by serving multiple UEs on the same time-

frequency resources. 

• It has more BS antennas than UEs per cell to efficiently suppress interference. If the 

number of UEs increases in a cell, the BS should be upgraded to proportionally increase 

the number of antennas. 

• It operates in time-division duplex (TDD) mode to reduce CSI acquisition overhead due to 

multiple antennas and avoid reliance on parametrizable channel models. 

Massive MIMO [13], also known as a large-scale antenna system, scales up multiuser 

MIMO technology. It involves equipping BSs with a much larger number of antennas than the 

number of active users per time-frequency resource. In this "mMIMO regime," the BS 

provides significant beamforming gain and spatial diversity. Notably, the surplus of BS 

antennas compared to users leads to a phenomenon called favourable propagation [11]. 

Favourable propagation also enables the effectiveness and near-optimality of linear signal 

processing schemes such as maximum ratio (MR) and zero forcing (ZF), thereby simplifying 

circuitry complexity. Additionally, in most propagation environments, mMIMO offers another 

benefit known as channel hardening [14]. The effective scalar channel observed by any user 

becomes nearly deterministic as small-scale fading is averaged out across numerous channel 

observations. TDD operation is advocated in mMIMO to conserve radio resources as the 

channel estimates in the uplink are valid for the downlink. Channel reciprocity and channel 

hardening render instantaneous downlink channel estimation unnecessary, as users can rely 

on channel statistics for data decoding. Consequently, the number of resources dedicated to 

channel estimation is independent of the number of antennas but scales with the number of 

users, making mMIMO a scalable technology. Moreover, the achievable SE can be derived to 

predict system performance, enabling optimization of spectral and energy efficiency as well 

as simplification of resource allocation tasks such as PC [13]. 
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Current mMIMO implementations have validated theoretical studies, and mMIMO is a 

key enabler of 5G new radio (NR). The mMIMO BSs are being deployed globally, and 

telecommunication companies are competing to achieve new records in achievable SE. The 

AIR 6468 by Ericsson, showcased in 2017, was the world's first commercial 5G NR radio for 

mMIMO, utilizing 64 transmit and 64 receive antennas operating in the sub-6 GHz bands [11]. 

Subsequently, other companies such as Huawei, Nokia, ZTE, and Facebook have 

demonstrated impressive SE by using mMIMO BSs equipped with 128 antennas. This has 

disproven scepticism arguing that the entire mMIMO theory relies solely on asymptotic 

results (i.e., for an infinite number of BS antennas). 

Table 1-1 presents a summary of the essential advantages and challenges associated with 

the antenna technologies discussed in this chapter. While advancements in diversity, 

multiplexing, and array gains have been made along the evolutionary path, there are new 

complexities in terms of computational and signal processing, channel estimation, pilot 

contamination, and other areas. To address these challenges, a multitude of techniques and 

concepts are currently being investigated with the aim of maximizing system benefits and 

optimizing cost-benefit trade-offs. 

In the case of legacy mMIMO, exemplified here, proposals have been made for near-

optimal linear precoders, including the maximum ratio (MR) and zero-forcing (ZF) precoders 

[15], which exhibit lower computational complexities and improved feasibility for 

implementation compared to non-linear precoders such as dirty-paper coding (DPC) [16], 

vector perturbation (VP) [17], and lattice-aided methods [9], all without significant 

performance loss. To mitigate pilot contamination in mMIMO, various techniques have been 

suggested, including protocol-based methods [15], blind methods  [18], precoding-based 

methods [19], and angle of arrival (AoA)-based methods [20]. However, the incorporation of 

mMIMO for cell-free (CF) communication remains limited to a few studies, making it an 

ongoing open issue that is being actively considered within the realm of 5G technology. 

Understanding the cost-benefit trade-offs of this technology in relation to improved system 

performance is a vital task for 5G and continues to be an open issue [9]. 

Table 1-1. Summary of benefits and challenges for antenna technologies [9]. 
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In a cellular mMIMO system, the coverage area is divided into multiple cells, and each 

cell is served by a BS equipped with multiple antennas. Users within each cell are served by 

the corresponding BS. The received signal at user k in cell c from BS b can be expressed as: 

𝑦𝑘𝑐  =  ∑ H𝑘𝑏𝑐
𝐵
𝑏=1 𝑥𝑏𝑐 + 𝑛𝑘𝑐                                (1.2) 

where 𝑦𝑘𝑐 ∈ ℂ𝑁𝑟×1  is the received signal vector at user k in cell c, H𝑘𝑏𝑐 ∈ ℂ𝑁𝑟×𝑁  represents 

the channel matrix between BS b in cell c and user k, 𝑥𝑏𝑐 ∈ ℂ𝑁×1 is the transmitted signal 

vector from BS b in cell c, and 𝑛𝑘𝑐 ∈ ℂ𝑁𝑟×1 is the additive noise vector at user k in cell c. 

1.3 Cell-free massive MIMO (CF-mMIMO) 

The concept of CF-mMIMO [21]  potentially combines the three fundamental 5G technologies 

(ultra-densification, mmWave, and mMIMO) and holds the promise of achieving 

unprecedented levels of throughput. In CF-mMIMO, a network deploys numerous antennas 

that are geographically distributed, rather than being collocated at a single BS. These 

antennas, known as access points (APs), collaborate in a coordinated, synchronous, and 

coherent manner to serve users within the same time-frequency resources. The APs 

collectively operate as a single mMIMO BS, with coordination facilitated by one or more 

central processing units (CPUs) through a fronthaul system.  

Consider a CF-mMIMO system with M distributed APs, N antennas per AP, and K user 

equipments (UEs) in the network. The received signal at UE k from AP i can be represented 

as: 

𝑦𝑘 =  ∑ H𝑘𝑖
𝑀
𝑖=1 𝑥𝑖 + 𝑛𝑘                      (1.3) 

where 𝑦𝑘ℂ𝑁𝑟×1 is the received signal vector at UE k, H𝑘𝑖 ∈ ℂ𝑁𝑟×𝑁  represents the channel 

matrix between AP i and UE k, 𝑥𝑖 ∈ ℂ𝑁×1  is the transmitted signal vector from AP i, and 𝑛𝑘 ∈

ℂ𝑁𝑟×1 is the additive noise vector at UE k. 

The co-processing of signals across multiple distributed APs brings forth three primary 

benefits, in addition to beamforming and spatial multiplexing gain: 

• Macro-diversity gain: This gain arises directly from the aggressive deployment 

densification strategy. Macro-diversity occurs when the distance between transmitters 

significantly exceeds the wavelength, introducing geographical elements that enrich the 

level of spatial diversity. Relocating APs in closer proximity to users leads to a substantial 

reduction in path loss and shadowing effects. Additionally, the presence of surrounding 

APs enhances link reliability, resulting in a low probability of obstruction from any 

direction. These features make CF-mMIMO particularly suitable for mmWave 

communications, showcasing amplified channel gains. 

• Inter-cell interference mitigation: This benefit stems from signal co-processing, which 

enables the transformation of inter-cell interference into useful signals. In CF-mMIMO, 

all APs serve users within their respective surroundings, effectively erasing cell 
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boundaries during data transmission and reception. Consequently, CF-mMIMO surpasses 

small cell systems that are constrained by inter-cell interference and lack macro-diversity. 

• More equitable quality of service across users: This advantage directly follows from the 

preceding points. In a CF system, there are no cell-edge users; instead, users in the cell-

center experience approximately similar advantageous channel conditions. 

The potential of cooperative multi-antenna transmission/reception techniques has been 

extensively explored since the early 2000s, leading to parallel research on distributed MIMO 

systems. Various terms have been used to describe different flavours of system MIMO, 

including distributed antenna systems (DAS), cooperative MIMO, virtual MIMO, and 

coordinated multipoint (CoMP). These approaches share the fundamental concept of 

mitigating inter-cell interference by grouping multiple cells into fixed cooperation clusters. 

However, this approach merely shifts the management of interference from the cell level to 

the cluster level, with the inter-cluster interference presenting a fundamental limitation to 

cooperation. Consequently, LTE-Advanced (4.5G) implementations of CoMP did not meet the 

initial expectations. 

In contrast, CF-mMIMO is regarded as a crucial beyond-5G enabling technology, 

distinguishing it from CoMP, based on at least five key factors  [22]: (i) the foundational 

operation of mMIMO, (ii) the establishment of a user-centric perspective through dynamic 

cooperation clustering, (iii) the potential for predictable performance facilitating simplified 

resource optimization, (iv) the possibility of effective integration with mmWave, and (v) the 

emergence of cost-efficient deployment solutions. Nevertheless, implementing the user-

centric philosophy of CF-mMIMO requires a widespread and costly architecture, precise 

synchronization and coordination among APs, and the implementation of resource allocation 

schemes that are both simple and effective in minimizing accompanying signalling overhead. 

It is noteworthy that the canonical form of CF-mMIMO lacks scalability, thereby presenting 

challenges in handling a growing number of users and APs within the system. Understanding 

the optimal allocation of network tasks, either in a distributed manner at each AP or in a 

centralized manner at the CPU, is crucial for preserving system scalability and ensuring the 

practicality of CF-mMIMO. 

The practical implementation of large-scale CF-mMIMO deployment presents a major 

challenge, particularly in terms of computational complexity for signal processing, resource 

allocation, fronthaul requirements, and other factors, which grow polynomially with the 

number of APs and UEs. Additionally, due to concerns related to economy, operations, and 

the environment, simply increasing transmit power to improve SE is not a sustainable solution 

given the significant growth in the number of connected devices. Therefore, effective PC 

strategies must be developed specifically for CF-mMIMO systems. 

Features of CF-mMIMO include: 

1. MMIMO baseline operation: In CF-mMIMO, APs and CPUs function as a single mMIMO 

cell, inheriting all the exceptional characteristics of collocated mMIMO and embodying 

all its components. 
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2. Extraordinary macro-diversity: CF-mMIMO, with its distributed topology and ultra-

densification, offers unprecedented levels of macro-diversity gain. This results in a more 

reliable communication link and stronger channel gains. 

3. User-centric implementation [22]: The user-centric approach in CF-mMIMO is crucial for 

mitigating inter-cluster interference and maintaining system scalability. 

4. Uniformly excellent service: The outstanding macro-diversity and user-centric approach 

in CF-mMIMO naturally ensure uniformly excellent quality of service (QoS) for all users. 

Interestingly, egalitarian PC strategies, such as max-min fairness, are more effective in 

CF-mMIMO compared to collocated mMIMO, where performance of cell-center users is 

compromised by cell-edge users. 

Challenges and key enablers: CF-mMIMO inherits the advantages and disadvantages of 

system MIMO. Coherent processing among APs can be computationally demanding, requiring 

a high capacity fronthaul system, significant signalling overhead, and the exchange of either 

instantaneous or statistical CSI. 

Initial studies on CF-mMIMO [22] aimed to provide an initial understanding of the 

performance of this promising concept, albeit under impractical assumptions. In these 

studies, all distributed APs were jointly and coherently served by a single CPU over an 

infinitely-capacity fronthaul in an infinitely wide system. This canonical form of CF-mMIMO 

modelled the system as an infinitely wide mMIMO single cell. 

While the canonical form of CF-mMIMO exhibits scalability through local one-way CSI 

acquisition and distributed linear precoding/combining schemes, treating the entire world as 

a single system is impractical and non-scalable. A practical and scalable implementation must 

acknowledge the CPU and fronthaul as the bottleneck of the architecture. Thus, it is necessary 

to: 

• The confinement of data sharing and resource allocation tasks (e.g., PC, pilot assignment, 

etc.) within a limited number of AP clusters is crucial to minimize computational 

complexity at the CPU and reduce signalling overhead. 

• Avoiding fully centralized precoding and combining schemes is necessary to overcome 

the need for instantaneous CSI at the CPU. 

• Any attempt to improve performance through "non-conventional" resource allocation 

and decoding schemes involving the CPU should rely exclusively on large-scale fading 

quantities. This approach reduces the amount of information exchanged over the 

fronthaul and the frequency of such exchanges. 

• Symbol-level synchronization plays a crucial role in enabling joint coherent transmission, 

while clustering is essential for minimizing delay and synchronization errors. 

• Development of signal quantization techniques is necessary to address the constraints of 

limited fronthaul and backhaul capacity. 
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These studies provide ample evidence to strengthen the assertion that CF-mMIMO 

represents a scalable and practical incarnation of system MIMO. However, CF-mMIMO 

possesses two noteworthy advantages that solidify its position as the ultimate manifestation 

of system MIMO: 

1. The potential combination of well-established mMIMO technology with mmWave 

frequencies offers not only an opportunity to increase SE by operating at higher 

frequencies but also the potential to substitute expensive optical fiber cables with more 

cost-effective and flexible mmWave links for the fronthaul. 

2. The emergence of affordable and adaptable solutions for CF system deployments, such 

as pCell [23] and radio stripes [24], further enhances the feasibility and appeal of CF-

mMIMO. 

Figure 1-3 presents a comparison between CF-mMIMO and system MIMO systems, 

highlighting their differences. The benefits of CF-mMIMO are demonstrated in Table 1-2, 

while Figure 1-4 illustrates the flowchart outlining the three-stage transmission procedure for 

CF-mMIMO. 

 

(a) Network MIMO                                                              (b) CF-mMIMO 

Figure 1-3. Comparison of network MIMO and CF-mMIMO systems [21]. 

CF-mMIMO employs a distributed antenna system where a small number of UEs are 

simultaneously served by a large number of geographically distributed antennas, utilizing a 

fronthaul network and a CPU for coordination. In network MIMO, a small number of antennas 

are deployed across a cell to collectively serve all UEs within the cell. Each cell is equipped 

with a CPU to facilitate the exchange of local CSI with neighbouring cells [10]. 

 

 

 

 



  

CHAPTER 1 – INTRODUCTION 

9 
 

Table 1-2. Benefit of CF-mMIMO systems [10]. 

No. Positive points 

1.  Large energy efficiency 
2.  Flexible and cost-effective deployment 
3.  The channel hardening and the favourable propagation conditions 
4.  Appealingly uniform quality of service 

 

Figure 1-4. Flow chart of three-stage transmission procedure for CF-mMIMO [5]. 

Figure 1-4 illustrates the connectivity between the CPU and all APs, established through 

fronthaul connections in a flexible manner. These connections facilitate cooperative 

operations among the APs, including the coherent joint transmission of data signals to the 

UEs and the coherent joint reception of data signals from the UEs. The system can operate in 

either TDD mode or frequency-division duplex (FDD) mode, although for this particular case, 

TDD mode is assumed for all APs and UEs. The propagation channels exhibit variations over 

time and frequency, which are represented using a block fading model. 

1.4 Power control (PC) problem 

The optimization of PC is a critical task in wireless systems, dating back to the era of single-
antenna wireless setups. It plays a pivotal role in ensuring effective data transmission while 
adhering to quality-of-service (QoS) constraints, especially in the presence of fading channels. 
On one hand, increasing transmission power levels can mitigate temporary communication 
failures caused by deep fades. On the other hand, energy consumption in wireless 
communication is a pressing concern due to limited energy supplies in wireless devices. 
Therefore, PC is essential in maximizing the longevity of wireless devices while maintaining 
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QoS requirements for various wireless applications. Additionally, PC is crucial for interference 
management and optimizing downlink performance. 
 

The PC problem remains challenging to solve optimally, particularly in multi-user 
scenarios where interference from other users complicates the task. Achieving the sum 
performance maximization objective, even in single-antenna wireless systems with single-
carrier transmission, has been proven to be a difficult task [25]. As a practical approach, 
suboptimal algorithms with reasonable complexity are developed to achieve acceptable 
performance. However, obtaining perfect instantaneous channel knowledge in mMIMO 
systems, which is commonly assumed in PC literature, is challenging due to the large number 
of antennas. Thus, there is a need to consider channel estimation errors in the design of PC 
algorithms for mMIMO systems [26]. 
 

The literature on the PC problem can be categorized into three main areas: 1) max-min 
fairness, 2) maximization of energy efficiency (EE), and 3) maximization of sum SE. Max-min 
fairness solutions aim to provide equal SE [21], [27], [28] and [29] to all user equipments (UEs), 
but in distributed systems, this may result in significantly reduced overall network 
performance by prioritizing UEs with "poor" channels. The EE optimization for cell-free 
mMIMO systems has been explored [30] and [31], and maximizing sum SE has also been a 
focus, prioritizing UEs with good channels to maximize data throughput. However, these 
approaches may lack guarantees of fairness among UEs. 
 

To address the limitations of sum SE, unequal PC can be employed, taking advantage of 
the different propagation conditions of UEs to improve the sum SE. Moreover, alternative 
utility functions have been proposed to strike a balance between aggregate throughput and 
fairness [26]. Ensuring fairness among UEs is crucial to avoid substantial unfairness in the 
system. On of the characteristic of channel hardening in mMIMO systems allows for the 
adaptation of transmit powers based on large-scale fading rather than small-scale fading 
variations, making advanced PC schemes practically feasible without excessive complexity. 
 

In summary, the PC optimization problem is not fully solved, and there are several open 

challenges that require attention and improvement. These challenges include developing 

practical, and efficient suboptimal algorithms for multi-user scenarios, considering channel 

estimation errors in mMIMO systems, ensuring fairness while optimizing PC, low complexity 

and exploring utility functions that balance aggregate throughput and fairness. Further 

research and development in these areas will lead to more effective and efficient PC solutions 

in wireless communication networks. 

1.5 Motivation 

After reviewing traditional schemes, the motivations of authors in the surveyed literature to 

adopt machine learning (ML)-based approaches can be clarified as follows: 

• Developing low-complexity algorithms for wireless problems: 
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This is a primary reason for researchers to utilize deep neural networks (DNNs) or other 

ML methods to approximate resource allocation algorithms with high complexity. In 

particular, a study [32] has demonstrated that a well-trained DNN can significantly reduce the 

time required for PC while maintaining a satisfactory performance compared to the 

traditional WMMSE approach. Additionally, this motivation has led some researchers to 

explore reinforcement learning techniques. For instance, authors in [33] employ distributed 

Q-learning, which enables the development of a low-complexity sleep mode control 

algorithm for small cells. To summarize, this motivation applies to the literature sources [32], 

[34], [35], [36], [37], [38], [33], and  [39-46]. 

• Overcoming the lack of network information/knowledge:  

One of the challenges in centralized optimization approaches is the requirement for 

global network information, which can be difficult to obtain. For instance, the baseline 

scheme in [47] for BS switching relies on precise knowledge of traffic loads, which may not be 

readily available. However, transfer learning (TL) offers a solution by leveraging past 

experiences in BS switching to guide current switching control, even in the absence of traffic 

load information. To adjust handover parameters, fuzzy logic controller-based approaches 

can be employed. These controllers are based on predefined rules that determine specific 

actions based on the system's state. However, these rules heavily rely on expert knowledge 

about the system, which may not be accessible in new communication systems or 

environments. Additionally, accurate understanding of user content popularity is crucial for 

efficient cache resource management, and this can be achieved through recurrent neural 

network (RNN) and extreme ML techniques. Furthermore, model-free reinforcement learning 

enables network nodes to make optimized decisions without detailed information about 

network dynamics. Overall, this motivation serves as a fundamental rationale for the adoption 

of ML techniques across all the reviewed literature. 

• Facilitating self-organization capabilities: 

To streamline the coordination, optimization, and configuration processes within the 

system, self-organizing networks (SONs) have garnered significant attention [48]. Researchers 

have explored the integration of ML techniques as a means to enable self-organization 

capabilities. Through ML, particularly reinforcement learning, each BSs can autonomously 

optimize their resource allocation and configure handover parameters. This motivation is 

evident in the studies presented in [34], [49], and [33]. 

• Reducing signalling overhead: 

Distributed reinforcement learning enables each learning agent to make decisions with 

only partial network information, thereby reducing the need for extensive information 

exchange and mitigating the associated signalling overhead. In contrast, traditional 

approaches often necessitate numerous information exchanges, resulting in significant 

signalling costs. For instance, as highlighted in [50], ad hoc on demand distance vector routing 

leads to constant flooding of routing messages in a cognitive radio network (CRN). 

Additionally, in [51], the centralized approach, serving as the baseline, allocates spectrum 
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resources based on complete information about secondary users (SUs). The importance of 

this motivation has been emphasized in [35], and [51]. 

• Avoiding past faults:  

Some heuristic and classical approaches, which rely on fixed rules, lack the ability to learn 

and therefore may lead to unsatisfactory results that have occurred previously. Examples of 

such approaches include the open shortest path first (OSPF) routing strategy, taken as the 

baseline in [52], the handover strategy based on the comparison of received signal strength 

indicator (RSSI) values, used as the baseline in [53], and the heuristic BS switching control 

strategies compared in [54]. Additionally, approaches like max-SINR based user association 

face similar limitations. In [52], the authors provide an illustrative example where OSPF 

routing leads to congestion at a router under certain circumstances. When these 

circumstances recur, the OSPF routing protocol will make the same routing decision, leading 

to congestion once again. However, by training deep learning models using historical network 

data, it becomes possible to predict whether a routing strategy will result in congestion under 

the current traffic pattern. Similar issues arise with the other listed approaches. 

Reinforcement learning approaches, as presented in [53], [55], and [54], address this problem 

by evaluating each action based on its past performance. Consequently, actions with poor 

performance can be avoided in the future. The motivation outlined above applies to the 

surveyed literature in [53], [34], [47], [55], and [52]. 

• Learning robust patterns:  

Neural networks (NNs) provide a means to extract valuable patterns related to systems 

and users, which can be beneficial for tasks such as resource management and localization. 

In particular, researchers in [36] employ a convolutional neural network (CNN) to learn the 

spatial features of the channel gain matrix, enabling more informed PC decisions compared 

to the WMMSE method. In the case of fingerprint-based localization, traditional approaches 

like Horus rely solely on received signal strength data, which can be prone to inaccuracies. 

ML-based techniques offer the potential to overcome these limitations and improve the 

accuracy of localization. This motivation is relevant to the surveyed literature [36], [38], and 

[55]. 

• Improvements: 

Efforts are made to reduce the overall interference in the system and enhance the 

throughput [56], improve power efficiency, and achieve network convergence [57]. These 

objectives are essential for optimizing the performance and efficiency of the wireless 

communication system. 

• Affected by the complex indoor propagation environment: 

Researchers have been motivated to enhance localization accuracy by utilizing NNs to 

learn more robust fingerprint patterns. This approach has been explored in various literature, 

including [32], [36], [37], [49], and [58]. 

• Achieving better performance than traditional optimization: 
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In addition, there is a drive to achieve superior performance compared to traditional 

optimization methods. Traditional optimization techniques such as submodular optimization 

theory and dual decomposition have been widely used. However, study such as [55] has 

demonstrated that reinforcement learning-based user association outperforms the dual 

decomposition approach. These findings suggest that machine learning has the potential to 

deliver better system performance compared to traditional optimization methods. 

The proposed work falls under the category of "Developing low-complexity algorithms 

for wireless problems" as it aims to utilize machine learning (ML) methods, specifically deep 

neural networks (DNNs), to address power control (PC) challenges in cellular and cell-free 

massive multiple-input-multiple-output (CL/CF-mMIMO) systems. In the first part of the 

thesis, a dataset is created by merging and extending existing datasets, providing a valuable 

resource for research in CL/CF-mMIMO systems. Several ML methods are proposed for these 

systems, tailored explicitly to address the PC problem in CL/CF-mMIMO systems. Among them 

are the innovative proposed Fuzzy/DQN method, proposed DNN/GA method, proposed 

support vector machine (SVM) method, proposed SVM/RBF method, proposed decision tree 

(DT) method, proposed K-nearest neighbor (KNN) method, proposed linear regression (LR) 

method, and the novel proposed fusion scheme. The fusion scheme expertly combines 

multiple ML methods, such as system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM 

algorithms) and system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), which 

are thoroughly evaluated to maximize the sum spectral efficiency (SE), offering a viable 

alternative to computationally intensive heuristic algorithms. The DNN method, showing 

superior performance, is selected for further analysis. These efforts aim to develop low-

complexity algorithms for efficient PC in CL/CF-mMIMO systems. 

In the second part, transfer learning (TL) with DNNs is explored as a potential technique 

for enhancing PC performance in CL/CF-mMIMO systems. TL, a powerful approach for 

improving DNNs, is investigated in the context of PC, which to the best of this thesis’s 

knowledge, has not been explored before. Pretrained DNN models are leveraged for PC in 

both CL/CF-mMIMO systems, and the transferability of the DNN method across two datasets 

is examined. The impact of system parameters on the DNN method is analyzed, providing 

insights into the behavior of the algorithm under varying network conditions. This 

investigation further contributes to the development of low-complexity ML-based algorithms 

for PC in CL/CF-mMIMO systems. 

In the third part, the focus is on evaluating the effects of the number of base stations 

(BSs), access points (APs), and the number of users on PC in CL/CF-mMIMO systems using 

DNNs. The proposed ML-based approach improves PC performance in terms of sum SE and 

cumulative distribution function (CDF) by optimizing PC based on the proximity between 

users and their nearest APs. Additionally, the proposed DNN-based method significantly 

reduces execution time compared to the traditional WMMSE approach, addressing the low-

complexity requirement. By comparing the network performance with different sample sizes, 

the study investigates the impact of the number of APs/BSs, antennas, and UEs on the system. 

The findings highlight the influence of these parameters on the input vector of the DNN 



  

CHAPTER 1 – INTRODUCTION 

14 
 

algorithm, providing valuable insights for the development of efficient and scalable ML-based 

PC algorithms in CL/CF-mMIMO systems. Overall, the proposed work aligns with the category 

of "Developing low-complexity algorithms for wireless problems" and contributes to 

advancing the field of PC in CL/CF-mMIMO systems with ML methodologies. 

1.6 Thesis contribution 

1. Fusion scheme and evaluation of ML algorithms for PC problem in CL/CF-mMIMO systems 
(Chapter 3): 
 

• The one of the contribution of this thesis is the creation of a unique and distinctive 
dataset by combining and extending two existing datasets. The dataset encompasses 
a wide range of scenarios, characteristics, and variables, providing a valuable resource 
for research in CL/CF-mMIMO systems. The dataset was utilized to address the sum-
SE maximization problem by employing the widely recognized WMMSE method as the 
baseline approach. 

• The ML and WMMSE methods were trained and compared using the complete dataset 
in both CL/CF-mMIMO systems. 

• Fuzzy/DQN methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• DNN/GA methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• SVM methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• SVM/RBF methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• DT methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• KNN methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• LR methodology for PC in CL/CF-mMIMO systems is proposed in Chapter 3. 

• Fusion schemes for PC in CL/CF-mMIMO systems are proposed in Chapter 3. 

• The fusion scheme expertly combines multiple ML methods, such as system model 1 
(DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) and system model 2 (DNN, 
SVM-RBF, DQL, LR, KNN, and DT algorithms), which are thoroughly evaluated to 
maximize the sum spectral efficiency (SE), offering a viable alternative to 
computationally intensive heuristic algorithms.   

• Subsequently, the DNN method, which demonstrates superior performance, is 
selected for further analysis. The five ML methods are trained on the merged dataset 
to obtain a novel feature vector, and their performance is evaluated against the 
WMMSE method in the CL/CF-mMIMO systems. 
 

2. PC in CL/CF-mMIMO systems using transfer learning (TL) with DNNs and effects of the 
number of BS, APs, and the number of users in PC in CL/CF- mMIMO systems with ML 
methodology (Chapter4): 
 

• TL has emerged as a powerful technique for enhancing the performance of DNNs [59]. 
While TL has been widely used in various applications, its potential in the PC task for 
mMIMO systems [19], and [20] has not been extensively explored and to the best of 
this thesis’s knowledge, this is the first implementation of TLDNN in the context of PC 
in CL/CF-mMIMO systems. Previous studies mainly focused on TL for channel 
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estimation [60] and CSI feedback [61, 62], neglecting its application to PC. This chapter 
aims to fill this gap by investigating the potential of TL in the PC task. Pretrained DNN 
models are leveraged for PC in both CL/CF-mMIMO systems. 

• Examination of the transferability of the DNN method across two datasets, dataset A 
and B, focusing on their shared common features. 

• Training of model A (MA) based on dataset A and the development of three TL 
scenarios (S1, S2, and S3). 

• In S1, training of the DNN method using 60% of dataset B to create model B (MB), with 
the remaining 40% of dataset B used for testing. 

• Similar procedures followed for S2 and S3, utilizing model A and different percentages 
of dataset B. 

• Comparison of the performance of the DNN method and three DNN architecture 
setups (DNN1, DNN2, and DNN3) with the WMMSE method. 

• Evaluation of the methods using metrics such as mean squared error (MSE), root mean 
squared error (RMSE), and mean absolute error (MAE). 

• Analysis of the impact of system parameters on the DNN method. 

• Finding that an increase in the number of user equipments (UEs) did not affect the 
dimensionality of the input vector, keeping the area under the curve (AUC) 
unchanged. 

• Observing that an increase in the number of BSs, APs, or antennas led to changes and 
increases in the AUC, indicating the influence of these parameters on the 
dimensionality of the input vector. 

• Introduction of a ML-based approach for PC in CL/CF-mMIMO systems using DNNs. 
Evaluation of the proposed approach in two different mMIMO systems to analyze the 
effects of the number of UEs and APs/BSs. 

• Improved PC performance in terms of sum SE and cumulative distribution function 
(CDF) by assigning power based on proximity between UEs and nearest APs. 

• Significantly reduced execution time of the DNN compared to the traditional WMMSE 
method. 

• Comparison of the network performance with different sample sizes (50,000 and 
100,000 samples) to investigate the impact of the number of APs/BSs, antennas, and 
UEs on the system. 

• Findings that the number of UEs has no effect on the input vector of the DNN 
algorithm, while the number of antennas and APs/BSs significantly influence the input 
vector. 
 
 

3. Heterogeneous Graph Neural Network (HGNN), Adaptive Neuro-Fuzzy Inference System 
(ANFIS), and Reinforcement Learning (RL) – HARP method for PC in CF mmWave-mMIMO 
wireless communication system (Chapter 5):  

 

• Optimization of SE in CF mmWave-mMIMO wireless communication systems have 
been thoroughly examined. With a focus on PC strategies, various advanced methods 
were introduced and evaluated for their effectiveness in enhancing SE.  

• Traditional optimization techniques struggled with the intricacies of optimization 
problems such as the WMMSE, fractional programming (FP), water-filling, and max-
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min fairness methods due to their high computational complexity. To surmount these 
challenges, a novel PC method, HARP-PC, was devised by combining HGNN, ANFIS, and 
RL. HARP-PC addressed the complexities of dynamic CF mmWave-mMIMO systems by 
integrating HGNN's network topology understanding, ANFIS's fuzzy logic-based 
interpretability, and RL's adaptability.  

• Additionally, a ground-breaking scheme named delay-tolerant zero-forcing precoding 
(DT-ZFP) was introduced. This innovation harnessed deep learning-aided channel 
prediction to alleviate the impact of outdated channel state information (CSI). By 
parallelizing CSI and precoded data transmission, DT-ZFP deftly overcame channel 
aging, significantly enhancing SE in CF mmWave-mMIMO systems. 
 

In response to the open challenges of the PC optimization task, the proposed work in this 

thesis makes significant strides towards addressing the issue of low complexity in wireless 

systems. By leveraging ML methodologies, specifically DNNs, the research focuses on 

developing efficient PC algorithms for CL/CF-mMIMO systems. The creation of a unique and 

comprehensive dataset, merging and extending existing datasets, provides a valuable 

resource for further research in CL/CF-mMIMO systems, addressing the challenge of data 

availability. Several ML methods are proposed, and evaluated and compared to traditional 

heuristic algorithms to maximize the sum SE. The selection of DNN as the superior performing 

method contributes to the development of low-complexity algorithms for PC optimization. 

Furthermore, the exploration of transfer learning (TL) potential in the PC task for mMIMO 

systems demonstrates innovative thinking and opens new avenues for enhancing PC 

performance. The TL with DNNs allows the efficient adaptation of pretrained models, 

addressing the challenge of optimizing PC in dynamic and evolving network conditions. The 

investigation of the impact of system parameters on the DNN method provides insights into 

the behavior and scalability of ML-based PC algorithms, addressing the challenge of adapting 

to varying network configurations. The proposed ML-based approach in CL/CF-mMIMO 

systems showcases improvements in sum SE and reduction in execution time, tackling the 

challenge of computational efficiency. By comparing the network performance with different 

sample sizes, the study analyzes the effects of the number of BSs, APs, and the number of 

users on the PC optimization process, contributing to the understanding of system scalability. 

Overall, the proposed contributions effectively respond to the open challenges of the PC 

optimization task by providing innovative and low-complexity ML-based solutions for efficient 

power control in CL/CF-mMIMO systems. 

As part of this Ph.D., several research articles have been published in peer-reviewed 
journal and presented at conferences between the years 2020 and 2023. These publications 
have laid the foundation for the proposed optimizations discussed in this thesis. The following 
is a list of some of the notable publications: 

 

• Ahmadi, N. (2020). Review of Terrestrial and Satellite Networks based on Machine 
Learning Techniques. Journal of Soft Computing & Decision Support Systems, 7(3). 
 

• Ahmadi, N., Mporas, I., Kourtessis, P., & Senior, J. (2022, July). Evaluation of Machine 
Learning Algorithms on Power Control of Massive MIMO Systems. In 2022 13th 
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International Symposium on Communication Systems, Networks and Digital Signal 
Processing (CSNDSP) (pp. 715-720). IEEE. 

 

• Ahmadi, N., Mporas, I., Papazafeiropoulos, A., Kourtessis, P., & Senior, J. (2022, 
November). Power Control in massive MIMO Networks Using Transfer Learning with 
Deep Neural Networks. In 2022 IEEE 27th International Workshop on Computer Aided 
Modelling and Design of Communication Links and Networks (CAMAD) (pp. 89-93). IEEE. 

 

1.7 Organization 

The rest of this work is organized as follows: In Chapter 2, a comprehensive literature review 
is presented, focusing on the topics of MIMO and mMIMO. The chapter examines a wide 
range of relevant research and scholarly articles to establish a strong foundation of 
knowledge in these areas. Various aspects of MIMO and mMIMO systems, including their 
principles, advantages, challenges, and applications are explored. The review highlights key 
findings, methodologies, and advancements made by researchers in the field, providing 
readers with a thorough understanding of the current state of the art in MIMO and mMIMO 
technology. This chapter serves as a vital resource for readers to grasp the context and 
significance of the subsequent chapters in the thesis, laying the groundwork for the research 
conducted in the following chapters. 
 

In Chapter 3, the focus is on proposed ML methods, proposed fusion scheme and 

evaluating ML algorithms for the PC problem in CL/CF-mMIMO systems. Through training and 

comparison on the complete dataset, the ML methods, proposed ML methods and WMMSE 

methods are evaluated in both CL/CF-mMIMO systems. Furthermore, the proposed methods 

are trained on the CL/CF-mMIMO dataset, and their performances are compared against the 

WMMSE method.  

In chapter 4, the focuse is on PC in mMIMO systems using TL with DNNs. The 

transferability of the DNN method is examined across two datasets, dataset A and B, with a 

specific emphasis on their shared common features. The performance of the DNN method, 

along with three DNN architecture setups (DNN1, DNN2, and DNN3), is compared to the 

traditional WMMSE method.  

In addition in this chapter, it is investigated the effects of the number of BSs, APs, and 

UEs on PC in CL/CF-mMIMO systems using a ML-based approach with DNNs. The chapter 

begins with an introduction to the proposed methodology, which leverages DNNs for PC in 

mMIMO systems. The approach is evaluated in two distinct mMIMO systems, aiming to 

analyze how varying the number of UEs and APs/BSs impacts PC.  

In Chapter 5, the optimization of spectral efficiency (SE) in cell-free (CF) mmWave massive 

MIMO wireless communication systems have been thoroughly examined. With a focus on 

power control (PC) strategies, various advanced ML methods were introduced and evaluated 

for their effectiveness in enhancing SE.  
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Chapter 2. 

2 Literature review 

 
2.1 System model 

2.1.1 Cell-free architecture 

Consider an mMIMO system in the CF system, where N, APs serve K, UE using the same time-

frequency resource in time division duplex (TDD) mode. The CF system is equipped with Z 

fronthaul links connecting all APs to the central processing unit (CPU). Each AP is equipped 

with M antennas, while each UE has a single antenna. The channel gain vector between AP n 

and UE k is defined as follows: 

𝐠𝑛,𝑘(𝑘) = 𝛽
𝑛,𝑘

1

2 𝐡𝑛,𝑘                                            (2.1) 

where the channel gain vector is defined as follows: 𝛽𝑛,𝑘 ≥ 0 represents the large-scale 

fading coefficient between AP n (n = 1, …, N) and UE k (k = 1, …, K). The small-scale fading 

vector, 𝐡𝑛,𝑘 ∈ ℂ𝑀×1 consists of elements that follow a complex Gaussian distribution with 

zero mean and unit variance, representing Rayleigh fading. It is important to note that the 

channels between UEs and AP antennas are typically not identical, and each channel follows 

a correlated Rayleigh fading model. In simple word, in a CF-mMIMO wireless system, there 

are many APs serving multiple UEs at the same time and frequency. The system uses time 

division duplex (TDD) mode, where APs and UEs take turns transmitting and receiving. In the 

context of a TDD model, it is important to consider the presence of errors associated with the 

estimation of reciprocal channels. These imperfections in channel estimation can introduce 

adverse effects that influence the overall performance of the system. It becomes necessary 

to account for the impact of imperfect channel estimation on system performance. Each AP 

has multiple antennas (M), and each UE has just one antenna. The communication between 

an AP and a UE is affected by two types of fading: Large-scale fading: This represents the 

effect of distance and obstacles between an AP (n) and a UE (k). It shows how the signal 

weakens as it travels through the environment. Small-scale fading: This represents the 

random fluctuations in the wireless signal due to reflections and scattering. It follows a 

complex Gaussian distribution with zero mean and unit variance, which is called Rayleigh 

fading. It is important to know that each UE has a different channel to each AP, and the 

wireless channels are not the same for all UEs. The fading of each channel follows a correlated 

Rayleigh model, which means that the fluctuations are somewhat related between antennas 

and UEs. 
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2.1.1.1 Channel estimation 

The estimation of channels in the uplink is carried out by the APs using uplink pilots. The 

estimation process employs minimum mean-square error (MMSE) estimation, resulting in an 

estimate �̂�𝑛,𝑘 that comprises M independent Gaussian elements with similar statistical 

characteristics. The mean square of the m-th element is denoted as follows: 

𝛾𝑛,𝑘 =
𝜏𝑝𝑝𝑝𝛽𝑛,𝑘

2

𝜏𝑝𝑝𝑝 ∑ 𝛽𝑛,𝑘′|𝝍𝑘′𝝍𝑘
𝐻|2𝐾

𝑘′=1 + 1
⁄                     (2.2) 

It is considered 𝑝𝑝 as a normalized pilot power and a time sequence 𝝍𝑘 consisting of 

pairwise orthogonal elements, satisfying the condition ||𝝍𝑘|2 = 1. Additionally, it is assumed 

that 𝜏𝑐 represents the coherence time, where a duration of 𝜏𝑝 < 𝜏𝑐 is allocated for channel 

estimation, while the remaining section 𝜏𝑐 − 𝜏𝑝 is dedicated to downlink data transmission. It 

should be noted that due to the limited coherence time 𝜏𝑐, there may be instances where pilot 

sequences are reused, resulting in 𝜏𝑝 < 𝐾. The presence of pilot contamination in CF-mMIMO 

systems has a detrimental effect on their SE, leading to performance degradation.  

2.1.1.2 Downlink data transmission 

Based on the channel estimation, the AP employs normalized conjugate beamforming (NCB) 

to transmit signals towards the UEs. Assuming 𝑞𝑘 with 𝔼{|𝑞𝑘|2} = 1 represents the intended 

signal for user k, the transmitted signal from AP n, denoted as  𝐱𝑛, can be expressed as follows: 

𝐱𝑛 = ∑ √𝑝𝑛,𝑘′

�̂�𝑛,𝑘′

√𝔼 {‖�̂�𝑛,𝑘′‖
2

}

𝐾

𝑘′=1
𝑞𝑘′ = 

∑ √𝑝𝑛,𝑘′

�̂�
𝑛,𝑘′

√𝑀𝛾𝑛,𝑘′

𝐾
𝑘′=1 𝑞𝑘′                                      (2.3) 

Let 𝑝𝑛,𝑘′  denote the downlink transmission power from AP n to user 𝑘′, subject to the 
constraint 𝑝𝑛,𝑘′ ≤ 𝑝𝑚𝑎𝑥, where 𝑝𝑚𝑎𝑥 represents the transmission power limit. 𝑀𝛾𝑛,𝑘′shows 
the average received signal-to-noise ratio (SNR) at the receiver.  

 The received signal 𝑦𝑘 by user k is a composite of the signals transmitted by all APs in the 

network, given by the following expression: 

𝑦𝑘 = ∑ ∑ √𝑝𝑛,𝑘′

𝐠𝑛,𝑘
𝑇 �̂�

𝑛,𝑘′

√𝑀𝛾𝑛,𝑘′

𝑞𝑘′ + 𝑤𝑘    𝐾
𝑘′=1

𝑁
𝑛=1              (2.4) 

where the additive noise at UE k is denoted by 𝑤𝑘~𝒞𝒩(0,1). In simple words, the signal 
received by user k (𝑦𝑘) is a combination of signals from all the APs in the network. Each AP 
transmits a signal to user k, and the signals from different APs and users get added together at 
user k. The formula for 𝑦𝑘 looks a bit complex, but it is just a sum of contributions from all APs 
(n) and all users (k'). Each contribution is scaled by the square root of the power allocated for 
each AP-user pair (𝑝𝑛,𝑘′)) and a term related to the channel gain estimation (𝐠𝑛,𝑘

𝑇 �̂�𝑛,𝑘′). This 
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term ensures that the signals are properly combined to achieve the best possible reception at 
user k. The term 𝑤𝑘 represents the noise at user k, which is a random variable with a Gaussian 
distribution. In summary, the equation describes how the received signal at user k is formed 
by combining signals from different APs and users, considering their transmission power, 
channel conditions, and the noise present in the communication environment. 

2.1.1.3 Spectral efficiency (SE) 

Sum SE maximization is a fundamental objective in the PC problem, with the aim of optimizing 

the allocation of transmit power levels in communication systems. The primary goal is to 

maximize the overall SE, which quantifies the effectiveness of utilizing the available spectrum 

for data transmission. Achieving sum SE maximization necessitates the implementation of 

intelligent PC techniques that consider various factors such as channel conditions, 

interference levels, and power limitations. Through optimal PC, the system can enhance data 

rates, capacity, and overall performance, thereby ensuring efficient utilization of the limited 

spectrum resources. Furthermore, sum SE maximization plays a crucial role in modern 

communication systems, enabling improved system efficiency and enhanced user 

experiences [63]. The downlink spectral efficiency 𝑆𝐸𝑘 for user k is denoted as follows: 

𝑆𝐸𝑘 = (1 −
𝜏𝑝

𝜏𝑐
⁄ ) log2 (1 +

𝑀(∑ √𝑝𝑛,𝑘𝛾𝑛,𝑘
𝑁
𝑛=1 )

2

𝑀 ∑ (∑ √𝑝𝑛,𝑘′𝛾𝑛,𝑘′
𝛽𝑛,𝑘

𝛽𝑛,𝑘′
⁄𝑁

𝑛=1 )

2

|𝜓𝑘𝜓
𝑘′
𝐻 |

2
+∑ ∑ 𝑝𝑛,𝑘′𝛽𝑛,𝑘+1𝑁

𝑛=1

𝐾=1

𝑘′=1
𝑘′≠𝑘

)   (2.5) 

 

 

2.1.1.4 Maximization of sum SE PC 

As the constant pre-log factor does not impact the optimization process, the sum SE 

maximization problem was formulated by the authors [63] as follows: 

max𝑝𝑛,𝑘
∑ SE𝑘

𝐾
𝑘=1                                                 (2.6) 

 

𝑠. 𝑡. 𝑝𝑛,𝑘 ≤ 𝑝max,       ∀𝑛,𝑘   

In simple words, the goal is to maximize the total data transmission rate (sum SE) in the 

system. Each user (k) wants to receive as much data as possible. However, there is a constraint 

that limits the maximum power (𝑝max) that each AP can use for transmission. So, the objective 

is to find the best power allocation (𝑝𝑛,𝑘) for each AP-user pair that maximizes the total data 

rate, while respecting the constraint that the power used by each AP does not exceed the 

maximum allowed value. 
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2.1.1.5 WMMSE method for PC problem in mMIMO systems 

The WMMSE method is a widely recognized and commonly used technique employed in PC 

for communication systems. It addresses the task of optimizing PC to maximize system 

performance. In this method, the objective is to minimize the MSE between received and 

desired signals, taking into account both the channel conditions and the interference 

introduced by other users. Through iterative adjustments of transmit power levels, the 

WMMSE method optimizes various aspects of the system's performance, such as signal 

quality, capacity, and SE. It offers an efficient computational solution that effectively 

distributes power among users, mitigates interference, and enhances overall system 

performance in diverse communication scenarios. 

The WMMSE method is an iterative algorithmic approach utilized to solve sum SE 

maximization problems. When applied to equations (2.5) - (2.6), the WMMSE method initiates 

by defining the MSE in data detection. Subsequently, the MSE is expanded and formulated to 

express the optimization problem in terms of minimizing the MSE while adhering to power 

constraints. Through iterative adjustments in PC, the WMMSE method strives to find a local 

optimum that maximizes the sum SE. This iterative process allows the WMMSE method to 

effectively balance the trade-off between maximizing the system's SE and minimizing the 

interference caused by multiple users, ultimately resulting in enhanced overall performance 

of the communication system. 

The PC problem can be addressed using various heuristic algorithms such as the WMMSE 

[39], max-min fairness [64], or fractional programming [65]. For instance, the WMMSE 

heuristic algorithm estimates the allocated power 𝑃𝑛,𝑘 based on the channel gain vector 𝐠𝑛,𝑘. 

 𝑃𝑛,𝑘 = 𝐷(𝐠𝑛,𝑘)                                (2.7) 

The maximization problem presented in equation (2.6) is non-convex, and its 

computational complexity increases exponentially with the escalation of N and K. A widely 

recommended approach to address equation (2.6) is the WMMSE algorithm [39, 43], which 

transforms the problem of maximizing sum SE into a minimization problem of MSE. 

Specifically, the algorithm can be formulated as follows: 

𝑚𝑖𝑛
{𝜔𝑛,𝑘,𝜇𝑛,𝑘,𝜐𝑛,𝑘}𝑛=1,𝑘=1

𝑁,𝐾
∑ ∑ 𝛼𝑛,𝑘(𝜔𝑛,𝑘𝑒𝑛,𝑘 − log( 𝜔𝑛,𝑘))

𝐾

𝑘=1

𝑁=1

𝑛

 

𝑠. 𝑡.       0 ≤ 𝜐𝑛,𝑘 ≤ √𝑃𝑛,𝑘
𝐷𝐿 , 𝑛 = 1, … , 𝑁, 𝑘 = 1, … , 𝐾                       (2.8) 

The optimization variables 𝜔𝑛,𝑘, 𝜇𝑛,𝑘 and 𝜐𝑛,𝑘are real numbers in the given equation. The 

parameter 𝛼𝑛,𝑘 represents the priority of AP n and user k, while 𝜔𝑛,𝑘 defines positive weights. 

The transmit and receive beamformer coefficients are denoted as {𝜇𝑛,𝑘, 𝜐𝑛,𝑘 ∈ ℝ }. 

Additionally, the term 𝑒𝑛,𝑘 is used to represent the MSE, which is defined as follows: 

𝑒𝑛,𝑘 = (𝜇𝑘|ℎ𝑘𝑘|𝜐𝑘 − 1)2 + ∑ (𝜇𝑛|ℎ𝑛𝑘|𝜐𝑛)2
𝑛≠𝑘 + 𝜎𝑛,𝑘

2 𝜇𝑛,𝑘
2                        (2.9) 
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To enhance the sum SE using the WMMSE algorithm, the algorithm initiates the search 

for a local optimum by updating one of the three variables: 𝜇𝑛,𝑘, 𝜔𝑛,𝑘, or  ,n k  at each time 

step t, while keeping the other two variables constant. The algorithm computes the optimal 

value for 𝜇𝑛,𝑘 based on a given set of variables {𝜔𝑛,𝑘, 𝜐𝑛,𝑘}. The specifics of the WMMSE 

algorithm for the CF system are outlined in Algorithm 2-1. The algorithm terminates when the 

condition 𝜔𝑛,𝑘 < 𝜀 is satisfied, where 𝜀 is a threshold dependent on the convergence 

behavior of the WMMSE algorithm. In this context, ℎ𝑘𝑘 ∈ ℂ represents the direct channel 

between transmitter k and receiver k, ℎ𝑛𝑘 ∈ ℂ denotes the interference channel from 

transmitter n to receiver k, and 𝜎𝑛,𝑘
2  refers to the noise power at AP n and user k. 

Algorithm 2-1. Pseudo Code of WMMSE algorithm for CF-mMIMO system. 

Input: {𝐠
𝑛,𝑘

} , {𝑃𝑚𝑎𝑥
𝑛,𝑘 }, ∀𝑛, 𝑘 

1: Initialise 𝜐𝑛,𝑘
0  such that 0 ≤ (𝜐𝑛,𝑘

0 )2 ≤ √𝑃𝑚𝑎𝑥
𝑛,𝑘 , ∀𝑛, 𝑘  

2. Compute 𝜇𝑛,𝑘
0 =

|ℎ𝑘𝑘|𝜐𝑛,𝑘
0

∑ |ℎ𝑛𝑘|2(𝜐𝑛
0 )2+𝜎𝑛,𝑘

2𝐾
𝑛=1

, ∀𝑛, 𝑘 

3. Compute 𝜔𝑛,𝑘
0 =

1

1
− 𝜇𝑛,𝑘

0 |ℎ𝑘𝑘|𝜐𝑛,𝑘
𝑜 , ∀𝑛, 𝑘 

4: Set 𝐼 = 0 

5: Repeat; 

6: Set 𝐼 = 𝐼 + 1             // iterations 

Update ,n k :  

𝜐𝑛,𝑘
𝐼 = [

𝛼𝑘𝜔𝑘
𝐼−1𝜇𝑘

𝐼−1|ℎ𝑘𝑘|

∑ 𝛼𝑛𝜔𝑛
𝐼−1(𝜇𝑛

𝐼−1)2+|ℎ𝑛𝑘|2𝐾
𝑛=1

]0

√𝑃𝑚𝑎𝑥
𝑛,𝑘

, ∀𝑛, 𝑘  

Update 𝜇𝑛,𝑘: 𝜇𝑛,𝑘
𝐼 =

|ℎ𝑘𝑘|𝜇𝑛,𝑘
𝐼

∑ |ℎ𝑛𝑘|2(𝜐𝑛
𝐼 )2+𝜎𝑛,𝑘

2𝐾
𝑛=1

, ∀𝑛, 𝑘 

Update 𝜔𝑛,𝑘: 𝜔𝑛,𝑘
𝐼 =

1

1
− 𝜇𝑛,𝑘

𝐼 |ℎ𝑘𝑘|𝜐𝑛,𝑘
𝐼 , ∀𝑛, 𝑘 

7: Until 𝜔𝑛,𝑘 < 𝜀 

8: Output: 𝑝𝑛,𝑘 = (𝜐𝑛,𝑘)2, ∀𝑛, 𝑘 

 

The WMMSE algorithm is a method used to allocate power in communication systems 

with many antennas and users. It aims to maximize the system's performance while 

considering the channel conditions and interference. The algorithm starts by setting initial 

power values and then iteratively adjusts them to find the best power distribution. It takes 

into account the quality of received signals, user priorities, and power constraints. In each 

iteration, the algorithm updates the power values based on calculations involving channel 

conditions and noise levels. The process continues until the power allocation stabilizes. 

Finally, the algorithm outputs the optimized power values, which are then used for data 

transmission, leading to improved system performance. 
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2.1.2 Cellular architecture 

Consider the downlink in a mMIMO system denoted as L, which consists of a BS with M 

antennas and K user equipment utilizing the same time-frequency resource. The channel gain 

vector from an antenna at BS n to UE k in cell l is represented as 𝐠𝑙𝑘
𝑛 . 

𝐠𝑙𝑘
𝑛 = 𝛽𝑙𝑘

𝑛 𝐡𝑙𝑘
𝑛                                              (2.10) 

The large-scale fading coefficient between UE k and BS n is denoted as 𝛽𝑙𝑘
𝑛 , where 𝛽𝑙𝑘

𝑛  ≥

0. It is considered 𝐡𝑙𝑘
𝑛 ∈ ℂ𝑀 as a small-scale fading vector, with its elements assumed to follow 

a complex Gaussian distribution with zero mean and unit variance, representing Rayleigh 

fading. The channel between them is defined as 𝐡𝑙𝑘
𝑛 ~𝒩ℂ(0𝑀, 𝐑𝑙𝑘

𝑛 ), where 𝐑𝑙𝑘
𝑛 ∈ ℂ𝑀×𝑀 

represents a correlated Rayleigh fading model at the BS. 

2.1.2.1 Channel estimation 

The channels are estimated by the BSs using uplink pilots. The estimation process employs 

MMSE estimation, resulting in an estimate �̂�𝑙𝑘
𝑛  that consists of M independent Gaussian 

elements with similar statistical characteristics. The mean square of the m-th element can be 

expressed as follows: 

𝛾𝑙𝑘
𝑛 =

𝜏𝑝𝑝𝑝𝛽𝑙𝑘
𝑛

𝜏𝑝𝑝𝑝 ∑ 𝛽
𝑙𝑘′
𝑛 |𝝍𝑘′𝝍𝑘

𝐻|
2𝐾

𝑘′=1
+1

                                     (2.11) 

It is considered a normalized pilot power 𝑝𝑝 and a time sequence 𝝍𝑘 consisting of 0 - 1 

elements, where |𝝍𝑘|2 = 1. Additionally, it is assumed that 𝜏𝑐 represents the coherence time, 

where 𝜏𝑝 < 𝜏𝑐 is allocated for channel estimation, and the remaining duration 𝜏𝑐 − 𝜏𝑝 is 

dedicated to downlink data transmission. It is assumed that 𝜏𝑝 is greater than or equal to K, 

and the elements 𝝍1, 𝝍2, … , 𝝍𝑘  are pairwise orthogonal. However, due to the limited 

coherence time 𝜏𝑐, it is generally the case that 𝜏𝑝 < 𝐾. 

2.1.2.2 Downlink data transmission 

Based on the channel estimation, the BS utilizes normalized conjugate beamforming (NCB) to 

transmit signals towards the UEs. It is assumed that 𝑞𝑘 with 𝔼{|𝑞𝑘|2} = 1 represents the 

intended signal for user k. The transmitted signal 𝐱𝑛 from BS n can be expressed as follows: 

𝑥𝑙
𝑛 = ∑ √𝑝𝑙𝑘

𝑛
�̂�𝑙𝑘

𝑛

√𝔼 {‖�̂�𝑙𝑘
𝑛 ‖

2
}

𝐾

𝑘=1
𝑞𝑘 = 

∑ √𝑝𝑙𝑘
𝑛 �̂�𝑙𝑘

𝑛

√𝑀𝛾𝑙𝑘
𝑛

𝐾
𝑘=1 𝑞𝑘                                                   (2.12) 
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The downlink transmission power from BS n to user k is denoted as 𝑝𝑙𝑘
𝑛 , and it is subject 

to the constraint 𝑝𝑙𝑘
𝑛 ≤ 𝑝𝑚𝑎𝑥, where 𝑝𝑚𝑎𝑥 represents the maximum transmission power limit. 

The user 𝑘 receives the signal 𝑦𝑙𝑘 from all BSs in the network, as illustrated below: 

𝑦𝑙𝑘  = ∑ ∑ √𝑝𝑙𝑘
𝐾 (𝐠𝑙𝑘

𝑛 )𝑇�̂�𝑙𝑘
𝑛

√𝑀𝛾𝑙𝑘
𝑛

𝐾
𝑘=1 𝑞𝑙𝑘 + 𝑤𝑙𝑘

𝑁
𝑛=1        (2.13) 

The additive noise at user 𝑘 in cell l is denoted as 𝑤𝑙𝑘 and it follows a complex Gaussian 

distribution with zero mean and unit variance. 

 

2.1.2.3 Spectral efficiency  

The SE of the downlink, denoted as 𝑆𝐸𝑙𝑘, represents the measure of data transmission 

efficiency for user k in cell l. 

𝑆𝐸𝑙𝑘 = (1 −
𝜏𝑝

𝜏𝑐
⁄ )log

2
(1 +

𝑀(∑ √𝑝𝑙𝑘
𝑛 𝛾𝑙𝑘

𝑛𝑁
𝑛=1 )

2

𝑀 ∑ (∑ √𝑝
𝑙𝑘′
𝑛 𝛾

𝑙𝑘′
𝑛 𝛽𝑙𝑘

𝑛

𝛽
𝑙𝑘′
𝑛⁄𝑁

𝑛=1 )

2

|𝜓𝑘
𝑙

𝜓
𝑘′
𝑙𝐻|

2

+∑ ∑ 𝑝
𝑙𝑘′
𝑛 𝛽𝑙𝑘

𝑛
+1𝑁

𝑛=1

𝐾=1

𝑘′=1
𝑘′≠𝑘

)                (2.14) 

2.1.2.4 Maximization of sum SE PC 

The objective of maximizing the sum SE for PC is formulated as follows: 

𝑚𝑎𝑥𝑝𝑙𝑘
𝑛 ∑ 𝑆𝐸𝑙𝑘

𝐾
𝑘=1                                                   (2.15) 

 

  𝑠. 𝑡. 𝑝𝑙𝑘
𝑛 ≤ 𝑝max,       ∀𝑙𝑘

𝑛  

2.1.2.5 WMMSE method for power control in mMIMO systems 

The PC problem in the mMIMO system is addressed using WMMSE algorithm, where the 

allocated power 𝑝𝑙𝑘
𝑛  is estimated based on the channel gain vector 𝐡𝑙𝑘

𝑛 , which is expressed as 

follows: 

 𝑝𝑙𝑘
𝑛 = 𝐷(𝐡𝑙𝑘

𝑛 )                                               (2.16) 

The maximization problem presented in equation (2.15) is non-convex, and its 

computational complexity increases exponentially with the growth of N and K. To address this 

issue, the widely recommended approach is to use the WMMSE algorithm [39, 43]. This 

algorithm converts the problem of maximizing the sum SE into a problem of minimizing the 

MSE. The formulation of the WMMSE algorithm is as follows: 

𝑚𝑖𝑛𝑙𝑘
𝑛

{𝜔𝑙𝑘
𝑛 ,𝜇𝑙𝑘

𝑛 ,𝜐𝑙𝑘
𝑛 }𝑘=1,𝑛=1

∑ ∑ 𝛼𝑙𝑘
𝑛 (𝜔𝑙𝑘

𝑛 𝑒𝑙𝑘
𝑛 − log( 𝜔𝑙𝑘

𝑛 ))

𝐾

𝑘=1

𝑁

𝑛=1
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𝑠. 𝑡.       0 ≤ 𝜐𝑙𝑘
𝑛 ≤ √𝛼𝑙𝑘

𝑛 ,    𝑛 = 1, … , 𝑁, 𝑘 = 1, … , 𝐾                             (2.17) 

In the above equation, the optimization variables 𝜔𝑙𝑘
𝑛 , 𝜇𝑙𝑘

𝑛 , and 𝜐𝑙𝑘
𝑛  are all real numbers. 

The parameter 𝛼𝑙𝑘
𝑛   represents the priority of base station n and user k. The weights 𝜔𝑙𝑘

𝑛  are 

positive values, and the coefficients {𝜇𝑙𝑘
𝑛 , 𝜐𝑙𝑘

𝑛  } belong to the set of real numbers (ℝ). The term 

𝑒𝑙𝑘
𝑛  represents the MSE, which is defined as follows: 

𝑒𝑙𝑘
𝑛 = (𝜇𝑙𝑘

𝑛 |ℎ𝑙𝑘𝑘
𝑛 |𝜐𝑙𝑘

𝑛 − 1)2 + ∑ (𝜇𝑙
𝑛|ℎ𝑙𝑘

𝑛 |𝜐𝑙
𝑛)2

𝑛≠𝑘 + (𝜎𝑙𝑘
𝑛 )2(𝜇𝑙𝑘

𝑛 )2                         (2.18) 

 

To enhance the sum SE in the WMMSE algorithm, the search for a local optimum begins 

by updating one of the three variables: 𝜇𝑙𝑘
𝑛 , 𝜐𝑙𝑘

𝑛  and 𝜔𝑙𝑘
𝑛  at each time step t, while keeping the 

other two variables constant. The algorithm calculates the optimal value of 𝜇𝑙𝑘
𝑛  based on a 

given set of variable values {𝜔𝑙𝑘
𝑛 , 𝜐𝑙𝑘

𝑛 }. The specific details of WMMSE algorithm for PC 

problem in CL-mMIMO systems are outlined in Algorithm 2-2. The algorithm terminates when 

the condition 𝜔𝑙𝑘
𝑛 < 𝜀 is satisfied, where the value of 𝜀 depends on the convergence behavior 

of the WMMSE algorithm. Let ℎ𝑙𝑘𝑘
𝑛 ∈ ℂ represent the direct channel between transmitter k 

and receiver k, ℎ𝑙𝑘𝑘
𝑛 ∈ ℂ denote the interference channel from transmitter n to receiver k, and 

(𝜎𝑙𝑘
𝑛 )2 represents the noise power at base station n and user k. 

 

Algorithm 2-2. Pseudo Code of WMMSE algorithm for PC problem in CL-mMIMO system. 

Input: {𝐡𝑙𝑘
𝑛 }, {𝑃𝑚𝑎𝑥}, for all 𝑛, 𝑙, 𝑘 

1: Initialise 𝜐𝑙𝑘
𝑛  such that 0 ≤ (𝜐𝑙𝑘

𝑛 )2 ≤ √𝑃𝑚𝑎𝑥, for all 𝑛, 𝑙, 𝑘 

2. Compute 𝜇𝑙𝑘
𝑛 =

|ℎ𝑙𝑘𝑘
𝑛 |𝜐𝑙𝑘

𝑛

∑ |ℎ𝑙𝑘
𝑛 |

2
(𝜐𝑙𝑘

𝑛 )2+(𝜎𝑙𝑘
𝑛 )2𝑁

𝑛=1

, for all 𝑛, 𝑙, 𝑘 

3. Compute 𝜔𝑙𝑘
𝑛 = 1 − 𝜇𝑙𝑘

𝑛 |ℎ𝑙𝑘𝑘
𝑛 |𝜐𝑙𝑘

𝑛 , for all 𝑛, 𝑙, 𝑘 

4: Set 𝐼 = 0 

5: Repeat; 

6: Set 𝐼 = 𝐼 + 1             // iterations 

Update   𝜐𝑙𝑘
𝑛 :  

(𝜐𝑙𝑘
𝑛 )𝐼 = [

𝛼𝑙𝑘
𝑛 (𝜔𝑙𝑘

𝑛 )(𝐼−1)(𝜇𝑙𝑘
𝑛 )(𝐼−1)|ℎ𝑙𝑘𝑘

𝑛 |

∑ ∑ 𝛼𝑙
𝑛(𝜔𝑙

𝑛)(𝐼−1)((𝜇𝑙
𝑛)(𝐼−1))2+|ℎ𝑙𝑘

𝑛 |
2𝐾

𝑘
𝑁
𝑛=1

]0

√𝑃𝑚𝑎𝑥, for all 𝑛, 𝑙, 𝑘 

 

Update 𝜇𝑙𝑘
𝑛  : (𝜇𝑙𝑘

𝑛 )𝐼 =
|ℎ𝑙𝑘𝑘

𝑛 |(𝜇𝑙𝑘
𝑛 )𝐼

∑ ∑ |ℎ𝑙𝑘
𝑛 |

2
((𝜐𝑘

𝑛)𝐼)2+(𝜎𝑙𝑘
𝑛𝐾

𝑘=1
𝑁
𝑛=1 )2

, for all 𝑛, 𝑙, 𝑘 

Update 𝜔𝑙𝑘
𝑛 : (𝜔𝑙𝑘

𝑛 )𝐼 =
1

1
− (𝜇𝑙𝑘

𝑛 )𝐼|ℎ𝑙𝑘𝑘
𝑛 |(𝜐𝑙𝑘

𝑛 )𝐼, for all 𝑛, 𝑙, 𝑘 

7: Until 𝜔𝑙𝑘
𝑛 < 𝜀 

8: Output: 𝑝𝑙𝑘
𝑛 = (𝜐𝑙𝑘

𝑛 )2, for all 𝑛, 𝑙, 𝑘 

 

2.2 Classical/heuristic methods for PC problem 

In the context of fading channels, adjusting the transmission power level is generally 

recognized as an effective approach to ensure QoS-constrained data transmission. By 

increasing the transmission power level in a timely manner, the occurrence of temporary 
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communication failures caused by deep fades can be mitigated. However, it is important to 

address the issue of energy consumption in wireless communication, considering the limited 

energy supply of wireless devices. PC plays a vital role in maximizing the lifetime of wireless 

devices while meeting the QoS requirements of wireless applications. Among the various 

heuristic PC problems, three of the most popular ones are geometric water-filling, sum SE 

maximization, and max-min fairness, which will be elaborated upon in the following sections. 

2.2.1 Geometric water-filling 

Geometric water-filling, as a power allocation technique in communication systems, is 

designed to optimize the power distribution across various frequency bands based on both 

channel capacity and channel gain. By considering the geometric properties of channel gains, 

this method assigns more power to frequency bands characterized by higher signal strengths. 

Consequently, it enhances system performance in terms of data transmission rates and signal 

quality. Geometric water-filling is widely applicable in wireless systems, cognitive radio 

networks, and multi-user scenarios, offering an efficient approach to maximize system 

capacity while effectively utilizing available power resources [6, 7]. 

2.2.1.1 Concept of water tank and geometric relations of the variables 

A water tank is depicted with K steps or stairs, representing the K channels. In the case of 

equal weighting, each step has a width of one unit. The 𝑑𝑖 ‘step depth’ of the 𝑖 -th stair, which 

refers to the height of the 𝑖 -th step from the bottom of the tank, is denoted by  

𝑑𝑖 =
1

𝑎𝑖
, 𝑖 = 1,2, . . . , 𝐾           (2.19) 

Given that the sequence {𝑎𝑖} is arranged in a monotonically decreasing order, the step 

depth of the stairs indexed by {1, . . . , 𝐾} exhibits a monotonically increasing pattern. As water 

(power) 𝑃 is introduced into the tank, it reaches a water level 𝜇. The PC mechanism that 

maximizes throughput for each channel corresponds to the region above the stair up to the 

water level. The water tank is depicted in Figure 2-1. 

In Equation (2.19), the variable 𝑎𝑖 represents the weighting factor associated with each 

of the K channels, where 𝑖 denotes the channel index. These weighting factors, {𝑎𝑖}, play a 

crucial role in determining the step depth, 𝑑𝑖, of the respective stairs in the water tank 

analogy. The water tank model is used to illustrate how power is allocated to different 

channels or steps, with each step's depth inversely proportional to its corresponding 

weighting factor. Additionally, it's important to note that the sequence {𝑎𝑖} is organized in a 

monotonically decreasing order, which results in a monotonically increasing pattern of step 

depths in the water tank. 
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Figure 2-1. Illustration for a water tank. (a) Water level step 𝑘∗ = 3, allocated power for the third step 𝑠3

∗, and 

step/stair depth 𝑑𝑖 =
1

𝑎𝑖
, (b) the weighted case, the width of the i-th step is denoted as 𝑤𝑖 [6, 7]. 

The geometric water filling (GWF) algorithm was introduced in [6, 7]. The fundamental 

concept of this algorithm can be summarized as follows: The index 𝑘∗represents the highest 

(or shallowest) step that is submerged beneath the water level. 

𝑘∗ = max{𝑘|𝑃𝑢(𝑘) > 0,1 ≤ 𝑘 ≤ 𝐾}              (2.20) 

where 𝑃𝑢(𝑘)is a function in 𝑘 that represents the total volume of water above the k-th 

step. The value of can be determined based on the geometric relationship 𝑃𝑢(𝑘) between the 

water level and the step depths. 

𝑃𝑢(𝑘) = [𝑃 − ∑ (
1

𝑎𝑘
−

1

𝑎𝑖
)

𝑘−1

𝑖=1
]+, 1 ≤ 𝜅 ≤ 𝛫             (2.21) 

Then the power allocated to the 𝑘∗ step is  

𝑠𝑘∗ =
1

𝑘∗ 𝑃2(𝑘∗)               (2.22) 

and the completed solution is given by 

𝑠𝑖 = {
𝑠𝑘∗ +

1

𝑎𝑘∗
−

1

𝑎𝑖
, 1 ≤ 𝑖 ≤ 𝑘∗

0, 𝑘∗ < 𝑖 ≤ 𝐾
                  (2.23) 

The GWF algorithm is denoted by 𝐺𝑊𝐹({𝑎𝑘}𝑘=1
𝐾 , 𝑃), i.e., the mapping from {{𝑎𝑘}𝑘=1

𝐾 , 𝑃} to 

{𝑘∗, 𝑃𝑢(𝑘∗)}.  

In simple word, imagine a water tank with K steps, each representing a communication 
channel. The height of each step corresponds to the power allocated to that channel. It is 
assumed that to maximize the system's performance by filling the tank with water (power) 
up to a certain level called the water level. The idea is to allocate more power to channels 
with better conditions and less power to channels with worse conditions. The geometric 
water filling (GWF) algorithm helps to achieve this. In the GWF algorithm, it is started with 
the highest step (channel) and determine the amount of water (power) it can hold based on 
its step depth. Step depth refers to how high the step is from the bottom of the tank. Then, 
the next step is to allocate power accordingly. This process will continue until it reaches the 
water level, ensuring that the power allocation is optimized to maximize the system's 
performance. Mathematically, the GWF algorithm calculates the power allocation for each 
step (channel) using the following equations: The total water volume above the k-th step is 
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represented by the function 𝜔(𝑘). The water level 𝜇 is related to the total volume of water 
above each step, and it is determined by the relationship between the water level and step 
depths. The power allocated to the k-th step is proportional to the difference between the 
water level 𝜇 and the step depth 𝑑𝑖. The final power allocation for each step is obtained by 
solving the GWF algorithm. In summary, the GWF algorithm helps distribute power efficiently 
among different channels, optimizing the system's performance by considering the channel 
conditions and power constraints. It ensures that more power is allocated to channels with 
better conditions while maintaining a balance between different channels to achieve the 
highest throughput. 

2.2.2 Sum SE maximization for PC problem 

It is described in Section 2.1.1.4. 

2.2.2.1 WMMSE method 

It is described in Section 2.1.1.5. 

2.2.3 Max-min fairness PC problem 

The aim of max-min fairness in PC is to maximize the minimum SE in the system. This problem 

can be formulated with the per-AP transmit power constraints, as shown in [63]. 

max
𝜇𝑘≥0,∀𝑘

 min
𝑘

(𝑎𝑘
𝛵𝜇𝑘)2

∑ 𝜇𝑖
𝛵B𝑘𝑖𝜇𝑖−(𝑎𝑘

𝛵𝜇𝑘)2+𝜎2
𝐾

𝑖=1

           (2.24) 

Subject to                                                      ∑ 𝜇𝑘𝑙
2 ≤ 𝑃max

𝑑𝑙𝐾

𝑘=1
, 𝑙 = 1, . . . , 𝐿             (2.25) 

where 𝜇𝑘 represents the transmit PC for the k-th user. It is a non-negative scalar value that 

indicates the amount of power allocated to user k for transmission. 𝑎𝑘 represents a vector 

that characterizes the signal received at the k-th AP from all the users in the system. Each 

element of this vector corresponds to the signal received from a specific user. B𝑘𝑖 represents 

a matrix that characterizes the channel conditions between the i-th user and the k-th AP. Each 

element of this matrix characterizes the channel gain or the quality of the communication link 

between the i-th user and the k-th AP. 𝜎2 represents the noise power at the k-th AP. It is a 

constant value that indicates the level of background noise present at the AP. The objective 

of this optimization problem is to maximize the minimum SINR among all users in the system. 

The SINR is determined based on the transmit PC (𝜇𝑘), the received signal at the AP (𝑎𝑘), the 

channel conditions (B𝑘𝑖), and the noise power (𝜎2). The optimization is subject to the 

constraint that the transmit power for each user (𝜇𝑘) should be non-negative. The goal is to 

find the optimal PC that maximizes the fairness of data rates among all users while considering 

the channel conditions and noise in the communication system. 

The equivalence between maximizing the lowest SE in the system and maximizing the 

lowest SINR among all users is utilized in the formulation. The max-min fairness problem 
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stated in equations (2.24) and (2.25) represents a generalized version of the problem. This 

problem exhibits quasi-convexity, indicating that its global optimal solution can be achieved 

through a bisection search over the minimum guaranteed SINR, coupled with solving a 

sequence of second-order cone programming problems. In this study [63], the authors 

employed the alternating direction method of multipliers (ADMM) to address the 

subproblems in the max-min fairness optimization, replacing the bisection search approach. 

The utilization of ADMM was motivated by two primary factors: (i) the adoption of the fixed-

point (FP) formulation from [65] resulted in simpler ADMM steps, and (ii) the avoidance of 

solving a series of complex feasibility detection problems using ADMM. Previous studies have 

demonstrated that ADMM is a highly efficient and rapid solver for convex quadratic problems 

[66, 67]. By employing the FP approach, they derived an equivalent form of the max-min 

fairness problem presented in equations (2.24) and (2.25) as follows: 

max
𝑧,𝜇𝑘,∀𝑘

 𝑧              (2.26) 

Subject to         ∑ 𝜇𝑘𝑙
2 ≤ 𝑃max

𝑑𝑙 , 𝑙 = 1, . . . , 𝐿
𝐾

𝑘=1
                                  (2.27) 

  𝑦𝑘
2(∑ 𝜇𝑖

𝛵𝐵𝑘𝑖𝜇𝑖 − (𝑎𝑘
𝛵𝜇𝑘)2 + 𝜎2𝐾

𝑖=1
) ≥ 𝑧2, 𝑘 = 1, . . . , 𝐾                    (2.28) 

The non-negativity constraints on the power coefficients {𝜇𝑘} were eliminated as it can 
be demonstrated that the optimal solution inherently satisfies these constraints.  
𝑦𝑘 represents a constant that is related to the QoS or data rate requirement for user k. 𝑧 
represents an optimization variable that is used to find the minimum SINR among all users in 
the system. In simple word, in the max-min fairness PC problem, the goal is to maximize the 
minimum data rate among all users in the system. This means ensuring that even the weakest 
connection gets a reasonable data rate. The problem is formulated with constraints on the 
transmit power of each AP. The objective is to find the optimal PC that achieves the maximum 
fairness while meeting the power constraints. 

 
To solve this problem, researchers use mathematical equations and optimization 

techniques. The problem can be represented with equations (2.24) and (2.25), which 
represent a generalized version of the problem. It is known as quasi-convex, and a global 
optimal solution can be found through a bisection search and solving a sequence of second-
order cone programming problems. In their study, the authors used the alternating direction 
method of multipliers (ADMM) to address the subproblems, which simplified the optimization 
process. They derived an equivalent form of the max-min fairness problem represented by 
equations (2.26) and (2.27). The non-negativity constraints on the power coefficients were 
removed because the optimal solution automatically satisfies these constraints. Algorithm 2-
3 outlines the fractional programming (FP) method employed to solve the max-min fairness 
problem. 
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Algorithm 2-3. FP approach for solving max-min fairness problem. 

Input: Initialize optimization variables 𝜇𝑘𝑙
(0)

, ∀𝑘, 𝑙. Set the iteration index 𝑛 ← 0 and the solution accuracy 

𝜀𝐹𝑃 > 0. 

1. repeat 

2. Update the variables {𝑦𝑘
(𝑛+1)

}  according to 𝑦𝑘 =
𝑎𝑘

𝛵𝜇𝑘

∑ 𝜇𝑖
𝛵B𝑘𝑖𝜇𝑖−(𝑎𝑘

𝛵𝜇𝑘)2+𝜎2
𝐾

𝑖=1

, 𝑘 = 1, . . . , 𝐾 with {𝑦𝑘
(𝑛)

}. 

3. Set {𝜇𝑘
(𝑛+1)

} to the solution obtained with {𝑦𝑘
(𝑛+1)

} 

4. Set 𝑛 ← 𝑛 + 1 

5. Until stopping criterion in min 
𝑘

𝑆𝐼𝑁𝑅𝑘
(𝑛)

− min
𝑘

𝑆𝐼𝑁𝑅𝑘
(𝑛−1)

)2 ≤ 𝜀𝐹𝑃 is satisfied. 

Output: 𝜇𝑘
(𝑛)

, ∀𝑘 

 

where 𝜇𝑘𝑙
(0) is the initialization of the optimization variables, representing the power 

coefficients for each user k and AP l. 𝑛 is the iteration index, used to keep track of the number 

of iterations in the algorithm. 𝜀𝐹𝑃 is the solution accuracy, a small positive value that 

determines the stopping criterion for the algorithm. 𝑦𝑘
(𝑛) is a set of variables representing the 

SINR for each user k at iteration 𝑛. It is computed based on the current values of 𝜇𝑘𝑙 using the 

formula 𝑦𝑘, where 𝑎𝑘 is the received signal, B𝑘𝑖 represents channel conditions, and 𝜎2 is the 

noise power. 𝜇𝑘
(𝑛) is a set of variables representing the power coefficients for each user k at 

iteration 𝑛. These coefficients are updated based on the SINR values {𝜇𝑘
(𝑛+1)} computed in the 

previous step. 𝑆𝐼𝑁𝑅𝑘
(𝑛) is the SINR for user k at iteration 𝑛. It is related to the variable 𝑦𝑘

(𝑛) and 

is used to determine the stopping criterion in the repeat-until loop. In simple word, this 

algorithm uses a method called FP to address the max-min fairness problem. The algorithm 

starts by initializing certain variables and setting the iteration index and solution accuracy. It 

then enters a loop where it updates the optimization variables based on specific rules. In each 

iteration, it sets one variable to a new value and keeps the others constant. This process 

continues until a stopping criterion is met, indicating that the solution is sufficiently accurate. 

Finally, the algorithm outputs the obtained solution, which represents the optimized values 

of the variables that achieve max-min fairness in the system. 

2.3 ML-based methods for PC problem 

2.3.1  Deep Q-learning method for PC problem 

Q-learning [2] is widely recognized as one of the most popular reinforcement learning (RL) 

algorithms designed to address Markov decision process (MDP) problems. At time instant t, 

the agent observes the state 𝑠𝑡 ∈ 𝑆, takes action 𝑎𝑡 ∈ 𝐴, interacts with the environment, and 

subsequently receives the reward 𝑟𝑡 at time t (immediate reward) and transitions to the next 

state 𝑠𝑡+1. The action set is denoted as A, and the state set is denoted as S. Given that the 

state space S can be continuous, the DQN algorithm was proposed to combine Q-learning 

with a flexible DNN to handle infinite state spaces. 𝑅𝑡is the cumulative discounted reward 

function and can be expressed as 
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𝑅𝑡 = ∑ 𝛾𝑟𝑟(𝑡+𝑟+1)∞

𝑟=0
            (2.29) 

where the discount factor 𝛾 ∈ [0,1) trades off the importance of immediate and future 

rewards, while the summation variable is denoted as 𝑟.  The Q-function for the agent with 

action 𝑎 in state s is defined under a certain policy. 

𝑄𝜋(𝑠, 𝑎; 𝜃) = 𝔼𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]            (2.30) 

In the equation, 𝔼[. ] represents the parameters of the DQN, and 𝔼[. ] denotes the 

expectation operator. Q-learning focuses on determining how agents should interact with an 

unknown environment to maximize the Q function. In simple word, this equation defines the 

Q-function. It tells us how good it is for the agent to take a specific action (a) when it is in a 

certain state (s), following a certain policy (𝜋). This Q-function helps the agent decide which 

action is best in a given situation. The term "𝑎𝑡 = 𝑎 " means that the action at time 𝑡 (𝑎𝑡) is 

equal to a specific action denoted by "𝑎." The maximization of equation (2.30) is equivalent 

to the Bellman optimality equation [68], which can be described as follows: 

 𝑦𝑡 = 𝑟𝑡 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′; 𝜃𝑡)     (2.31) 

In the equation, 𝑦𝑡 represents the optimal Q value. In simple word, this equation shows 

how the Q-value at a certain time (𝑦𝑡) is calculated. It combines the immediate reward (𝑟𝑡) 

with the maximum Q-value the agent can get by taking any action in the next state (𝑠𝑡+1). This 

equation helps the agent learn what actions are better for maximizing rewards. 𝑎′and 

𝜃𝑡  represent a different action (𝑎′) and the parameter values (𝜃𝑡) used in the Q-function at 

time 𝑡. The DQN is trained to approximate the Q function, and the update of the parameters 

𝜃 in standard Q learning is described as follows: 

𝜃𝑡+1 = 𝜃𝑡 + 𝜂(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡))𝛻𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)         (2.32) 

In the equation, 𝜂  is the learning rate. This update resembles stochastic gradient descent, 

gradually updating the current value 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡) towards the target 𝑦𝑡. The agent's 

experience data is stored as (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). The DQN is trained using randomly sampled 

batch data from the experience replay memory, which operates as a first-in first-out queue. 

The objective of the DQN is to maximize the Q function. In equation (2.32), the symbol 𝛻 (del 

or nabla) represents the gradient operator. The gradient of a function with respect to its 

variables indicates the direction of the steepest increase of the function at a specific point. In 

the context of the equation, 𝛻𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡) represents the gradient of the Q-function with 

respect to the parameters 𝜃𝑡. This gradient is used to update the parameters of the neural 

network (θ) to adjust its approximation of the Q-function toward the optimal values during 

the learning process. Let  𝛾 = 0 denote the target value obtained from equation (2.30), then, 

there is the following relationship: 

max𝑄 = max 
𝑎∈𝐴

𝔼𝜋[𝑟𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]        (2.33) 

In a PC problem, it is evident that the action space A is continuous. In simple word, this 

equation shows that the goal of the DQN is to maximize the expected reward (𝔼𝜋[𝑟𝑡|𝑠𝑡 =

𝑠, 𝑎𝑡 = 𝑎]) when taking different actions (a) in a specific state (s). This helps the agent learn 
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the best actions to take to achieve high rewards. The policies are defined  𝑠 = 𝑔𝑡 , 𝑎 = 𝑝𝑡 and 

𝑟𝑡 = 𝐶𝑡. Then, the following expression is obtained: 

max 𝑄 = max
0≤𝑝𝑡≤𝑝max

𝔼[𝐶𝑡|𝑔𝑡 , 𝑝𝑡]          (2.34) 

In simple word, in the context of PC problems, this equation represents the goal of finding 

the maximum expected data rate (𝐶𝑡) when adjusting the power levels (𝑝𝑡) based on certain 

conditions (𝑔𝑡). The agent aims to maximize data rates while considering power constraints. 

During the execution phase, the policy is deterministic, and as a result, equation (2.34) can be 

expressed as:  

max𝑄 = max
0≤𝑝𝑡≤𝑝max

𝐶𝑡(𝑔𝑡 , 𝑝𝑡)         (2.35) 

In simple word, during the execution phase, when the policy is deterministic, this 

equation simplifies the goal to finding the maximum data rate (𝐶𝑡) by adjusting power (𝑝𝑡) 

within certain limits (0 ≤ 𝑝𝑡 ≤ 𝑝max) based on given conditions (𝑔𝑡). 

       
max

𝑝𝑡
∑ ∑ 𝐶𝑛,𝑘

𝑡
𝑘

𝑛

𝑠. 𝑡. 0 ≤ 𝑝𝑛,𝑘
𝑡 ≤ 𝑃max, ∀𝑛,𝑘

                          (2.36) 

The given equation is an equivalent form of (2.35). sum of data rates (∑ ∑ 𝐶𝑛,𝑘
𝑡

𝑘
𝑛

) 

subject to power constraints (0 ≤ 𝑝𝑛,𝑘
𝑡 ≤ 𝑃max) for each user (k) and AP (n). During the 

inference process, the parameters are assumed to be  𝛾 = 0 and 𝑟𝑡 = 𝐶𝑡, indicating that the 

optimal solution to (2.36) is identical to that of (2.30) under these two conditions. It is widely 

recognized that the optimal solution  𝑝𝑡∗ of  𝑝𝑡 is solely determined by the current CSI 𝑔𝑡, and 

the sum-rate  𝐶𝑡 is calculated using (𝑔𝑡 , 𝑝𝑡). Theoretically, the optimal PC  𝑝𝑡∗ can be obtained 

using a DQN with the input being only 𝑔𝑡. However, in practice, the performance of this 

designed DQN is poor due to the non-convex nature of the problem and the difficulty in 

finding the optimal point. In the context of this research, it is important to acknowledge that 

DQN-based approaches have demonstrated promise and have achieved significant results. 

However, it is essential to highlight that their performance can be sensitive to the problem's 

characteristics, particularly the presence of non-convexity. While DQN-based approaches 

offer valuable solutions, their effectiveness may vary depending on the specific problem 

instance and the quality of training data. This research recognizes the strengths of DQN-based 

approaches while acknowledging the challenges associated with non-convex optimization 

problems. Figure 2-2 illustrates the general block diagram of the deep reinforcement learning 

method. Also, algorithm 2-4 is shown the pseudo code of DQN algorithm. 

In simple terms, the DQN is a technique used to solve problems where an agent interacts 

with an environment to make decisions and maximize its rewards. In this method, the agent 

observes a state, takes an action, receives a reward, and moves to the next state. The goal is 

to find the best actions to take in different states to get the highest overall reward. The 

algorithm uses a mathematical function called the Q-function to estimate the expected 

rewards for each action in a given state. The DQN combines Q-learning with a DNN to handle 
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complex situations with many possible states. The DNN is trained to approximate the Q-

function, and the algorithm updates its parameters based on the difference between 

predicted and actual rewards. In a practical application to PC problems, the DQN helps 

determine how to allocate power to maximize data rates in a communication system. The 

method uses the current state and channel information to decide the optimal power 

allocation, but due to the complexity of the problem, finding the best solution can be 

challenging. Algorithm 2-4 provides a step-by-step guide on how the DQN algorithm works. 

 

 

 

 

 

 

 

 

 

 

Algorithm 2-4. Pseudo code of DQN algorithm [2]. 

1: Initialize replay memory 𝐷 to capacity 𝑁 
2: Initialize action-value function 𝑄 with random weights 𝜃 
3: Initialize target action-value function 𝑄′ with weights 𝜃′ = 𝜃 
4: for episode = 1, · · ·, 𝑀 do 
5: Allocate a random power vector 
6: for 𝑡 = 1, . . . , ∞ do 
7: Calculate the channel quality indicator (CQI) vector as well as the location indicator for every user in the 
network. 
8: Use the CQI vector and the location indicator as state 𝑠𝑡. 
9: for k = 1, · · · , K do 
10: With probability 𝜀 select a random action 𝑎𝑘 
11: Otherwise select 𝑎𝑘 = argmax𝛼∈𝔸𝑘

𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)  

12: end for 
13: Execute action 𝑎𝑡 = [𝑎1, 𝑎2, . . . , 𝑎𝐾] and observe reward 𝑟𝑡  and state 𝑠𝑡+1 
14: Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in D  
15: Sample random minibatch of transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) from 𝐷 
16: Set 𝑦𝑡 = 𝑟𝑡 if episode terminates at step 𝑡 + 1 
17: Otherwise set 𝑦𝑡 = 𝑟𝑡 + 𝛾max𝑎′𝑄′(𝑠𝑡+1, 𝑎′; 𝜃′) 
18: Perform gradient descent step on (𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡))2 with respect to the network parameters 𝜃 
19: Every B steps reset 𝑄′ = 𝑄 
20: end for 
21: end for 

State s 

Agent 

DNN Policy  
𝜋(𝑎, 𝑠) 

Environment 

Reward r 

Observed state s 

Parameter  𝜃 

Action a 

Figure 2-2. A general block diagram of deep Q-learning method [2]. 
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2.3.2 Support vector machine (SVM) method  

Support vector machine (SVM) is a highly efficient technique utilized for solving problems in 

nonlinear classification and regression  [1]. SVM has demonstrated its superiority in boundary 

resolution and generalization performance compared to artificial neural networks (ANN). It 

has been widely adopted and applied in various fields, and hybrid models combining 

optimization techniques with SVM have been proposed in literature [69-71]. These models 

aim to achieve optimal results for the hyperparameters of SVM, although the specific design 

of the hybrid model varies depending on the problem domain. 

In [72, 73], the authors addressed the antenna selection problem as a multi-class 

classification task using k-nearest neighbours (KNN), SVM, and naive Bayes (NB) algorithms. 

They utilized the CSI as the training data and trained a multi-class classifier with KNN and SVM 

algorithms to improve communication performance [74]. The following block diagram 

illustrates the steps involved in the SVM algorithm for PC problems. Based on the diagram 

below. According to the block diagram bellow, it is summarized the Pseudo code of SVM in 

algorithm 2-5. 

 

 

 

 

 

 

 
 

 

Algorithm 2-5. Pseudo code of SVM algorithm [1]. 

1: Random 𝐿 training user group 𝐴𝑙, get 𝑃𝑜𝑝𝑡 = {𝑃𝑘
𝑐𝑜𝑝𝑡

, 𝑃𝑘
𝑑𝑜𝑝𝑡

} from the conventional algorithm, for 𝑙 =

1, 2, . . . , 𝐿. 
2: Initialization: 𝑙 = 0, 𝑢 = 0, 𝐹 = 𝑅 = 𝐾 ∈ {20,40}, 𝑈 = 20, 𝐿 = 103; 
3: 𝑢 = 𝑢 + 1, random 𝑢-th normalized testing user group 𝐸𝑢 = [𝐸1

𝑢, 𝐸2
𝑢, . . . , 𝐸𝐹

𝑢]; 
4: 𝑙 = 𝑙 + 1, get the normalized 𝑙-th training user feature matrix T𝑙 = [𝑡(1)𝑙 , 𝑡(2)𝑙 , . . . , 𝑡(𝐾)𝑙] and define its 

class label vector 𝐶𝑙 = [𝑐1
𝑙 , 𝑐2

𝑙 , . . . , 𝑐𝐾
𝑙 ]𝑇; 

5: For every testing user sample 𝐸𝑓
𝑢 ∈ 𝐸𝑢, get the 𝑓𝑟

𝑙(𝐸𝑓
𝑢)and get the final classification result according to 

the class which has the largest 𝑓𝑟
𝑙(𝐸𝑓

𝑢), for 𝑟 = 1,2, . . . , 𝑅, 𝑓 = 1,2, . . . , 𝐹 if 𝑙 = 𝐿, go to step 6, otherwise go 

to step 4; 
6: Get the 𝛾 according to the minimum of 𝜀; 
7: If 𝑢 = 𝑈, go to step 8, otherwise go to step 3; 
8: Calculate the SE of every testing user group and obtain the average of them. 

 

Establish a training set 

Build a learning system 

PC based on SVM  

SVM method 

Figure 2-3. Block diagram of SVM algorithm [1]. 
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where 𝐴𝑙 is a training user group, 𝑃𝑜𝑝𝑡 represents optimal power levels calculated from a 

conventional algorithm.  𝑃𝑘
𝑐𝑜𝑝𝑡

 and 𝑃𝑘
𝑑𝑜𝑝𝑡

 represent optimized power levels for different 

scenarios. 𝑃𝑘
𝑐𝑜𝑝𝑡

 refers to the optimized power level for the conventional scenario. In wireless 

communication systems, allocating the right amount of power to each user is crucial for 

efficient data transmission. It represents the optimal power level for user k in a conventional 

communication scenario, where users' transmission needs and channel conditions are taken 

into account to achieve effective communication. 𝑃𝑘
𝑑𝑜𝑝𝑡

 represents the optimized power level 

for the D2D (Device-to-Device) communication scenario. In some wireless setups, devices can 

communicate directly with each other without necessarily involving the base station. It 

signifies the optimal power level for user k in such a D2D communication setting, considering 

factors like interference, distance, and power constraints. In simpler terms, 𝑃𝑘
𝑐𝑜𝑝𝑡

 and 𝑃𝑘
𝑑𝑜𝑝𝑡

 

are the best power levels that have been calculated for user k in different communication 

scenarios, ensuring efficient data transmission while managing interference and power usage. 

𝐿 represents the total number of different training user groups, 𝑢 is a counter to keep track 

of the testing user group being processed. 𝐹, 𝑅 and 𝐾 are the number of normalized testing 

users in a group, The number of iterations and the number of users or items being considered, 

respectively. 𝑈 represents the maximum value for the testing user group counter. 𝐸𝑢 is a 

normalized testing user group chosen randomly, 𝑙 represents a counter for the current 

training user group being processed, T𝑙 is Feature matrix for the training user group.  𝐶𝑙 shows 

the class labels corresponding to the training user group, 𝐸𝑓
𝑢 is a specific user sample from 

the testing user group. The outcome of a function representing how well the user sample 

matches with certain classes. 𝑓𝑟
𝑙(𝐸𝑓

𝑢). 𝛾 is the value determined based on a minimum value 

𝜀. In the context of the provided algorithm, 𝜀 represents a small positive value that is used as 

a criterion for making decisions. It is a parameter that helps determine when certain 

conditions are satisfied or when a stopping criterion is met during the algorithm's execution. 

Specially, in step 6 of the algorithm, 𝜀 is used as a threshold for comparing the minimum value 

of 𝛾 with the value of 𝜀. If the minimum 𝛾 is smaller than 𝜀, then a certain condition is 

considered satisfied, and the algorithm proceeds accordingly. 

In simple terms, the algorithm trains and tests a SVM model for classifying users based 

on their features. It iteratively goes through different training and testing user groups, 

optimizing power levels for training, and then classifying testing users to calculate their 

Spectral Efficiency. The goal is to find the best configuration that leads to high classification 

accuracy and efficient use of the wireless spectrum.  

2.3.3 Deep neural network (DNN) method for PC problem 

Deep learning [75] is a widely utilized data-driven approach for solving complex problems, 

demonstrating impressive performance in various domains such as image restoration and 

pattern recognition. Although its training phase is intricate and heuristic, deep learning has 

shown promising results in communication applications [76, 77]. Leveraging the universal 

approximation theorem  [78], deep learning can approximate functions for which closed-form 
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expressions are not available. This capability makes it suitable for resource allocation 

problems, offering significant reductions in computational complexity. 

In [32], the authors propose a fully connected DNN to allocate transmit power, aiming to 

maximize the sum SE in a wireless system serving multiple users. The back-propagation (BP) 

algorithm [79] is an efficient method for solving complex non-linear problems, enabling the 

utilization of trained DNN models with low computation time [80]. Recently, deep learning 

has been applied in various wireless communication systems, including signal classification 

[81], channel estimation and signal detection [80], indoor localization [82], and constellation 

mapping optimization for orthogonal frequency division multiplexing systems [83]. 

Furthermore, the practical feasibility of DNN in wireless communication systems has been 

verified through testbed experiments [84]. Notably, [79] considers a dense net-based 

transmit PC approach, regenerating the output of a WMMSE PC strategy to address the high 

computational complexity associated with WMMSE-based schemes. The process of DNN 

algorithm is shown as Algorithm 2-6. 

 

Algorithm 2-6. Pseudo code of DNN algorithm [75]. 

Data generation: 
1: for 1n = to the size of data set do 
2: repeat 
3: for  𝑏 in  𝐵 do 
4: for  𝑚 in  𝑀 do  

5: Calculate  𝛥𝑝𝑏,𝑚 =
𝜕𝑓

𝜕𝑝𝑏,𝑚
/

𝜕2𝑓

𝜕2𝑝𝑏,𝑚
 

6: Calculate  𝑝𝑏,𝑚(𝑡 + 1) = 𝑝𝑏,𝑚(𝑡) + 𝛿(𝑡)𝛥𝑝𝑏,𝑚 

7: end for 
8: end for 
9: until convergence or  𝑡 = 𝑇max 
10: end for 
Training stage: 
1: Initialize the layers DNN structure with  𝑛𝑗 neurons in each layer, the weight  𝑤 and bias  𝑏 

2: for  𝑚 = 1 to training-epochs do 
3: for  𝑛 = 1 to batch-size do 
4: Update the weight  𝑤 and bias  𝑏 
The activation function: (linear, elu, tanh, tanh, relu), 𝑆1, 𝑆2 and 𝑆3 (elu, relu, relu, relu, relu, linear)   
The optimization algorithm: Adam algorithm. 
5: end for 
6: end for 
Testing stage: 
1: Generate the testing dataset. 
2: Pass testing dataset through the trained power optimization model. 
3: Evaluate the performance through DNN model. 

 

where 𝐵 and 𝑀 are loop indices that iterate through different values during the 
algorithm's execution, 𝛥𝑝𝑏,𝑚 represents a change in power level for a specific iteration, 

𝑝𝑏,𝑚(𝑡 + 1) shows the updated power level based on the change calculated in 𝛥𝑝𝑏,𝑚, 𝛿(𝑡) 

represents the step size that determines how much the power level should change. 𝑛𝑗 is the 

number of neurons in each layer of the DNN. training-epochs is the number of times the DNN 
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goes through the entire training dataset, batch-size is the number of data points used in each 
iteration of the training process. Activation function is a mathematical function that 
determines the output of each neuron in the DNN. 𝑆1, 𝑆2: and 𝑆3 illustrate designate specific 
layers in the DNN and the corresponding activation functions used in those layers. Adam 
algorithm is an optimization algorithm used to update the weights and biases of the DNN 
during training and testing dataset is a separate dataset used to evaluate how well the trained 
DNN performs on unseen data. In summary, the algorithm trains a DNN to optimize power 
levels for wireless communication. It involves iterating through data, updating power levels, 
training the DNN with various parameters, and then testing its performance on new data. 

2.3.3.1 Data set 

The data used is created from the two datasets in the following manner. First, the channel 

realizations  {ℎ𝑗𝑘
(𝑖)

} is generated, where (𝑖) is used to denote the index of the training sample. 

For simplicity, it is considered fix  𝑃max and  𝜎𝑘 for all k. Then, for each tuple 

(𝑃max, {𝜎𝑘}, {|ℎ𝑘𝑗
(𝑖)

|}), the corresponding optimized power vectors  {𝑝𝑘
(𝑖)

} is generated by 

running the WMMSE, with  𝜐𝑘
0 = √𝑃max, ∀𝑘 as initialization, and with  𝑜𝑏𝑗𝑛𝑒𝑤 − 𝑜𝑏𝑗𝑜𝑙𝑑 <

10−3 as termination criteria. Then, the tuple  ({|ℎ𝑘𝑗
(𝑖)

|}, {𝑝𝑘
(𝑖)

}) is called the 𝑖-th training sample. 

After that, the above process is repeated for multiple times to generate the entire training 

data set, as well as the validation data set. Also, it is used  𝑇 and  𝑉 to collect the indices for 

the training and validation sets, respectively and they help organize the data for training and 

evaluating the model. In simple word, ℎ𝑗𝑘
(𝑖)

 is the channel realizations, of how wireless signals 

behave between different points. 𝑃max  is the maximum power level that can be used in the 

wireless system. 𝜎𝑘  represents the noise level in the system, 𝑝𝑘
(𝑖)

is the optimized power 

settings for each channel in a training. 𝜐𝑘
0  is the initial value used for calculations in the 

WMMSE method, 𝑜𝑏𝑗𝑛𝑒𝑤 − 𝑜𝑏𝑗𝑜𝑙𝑑 is a difference in objectives used as a criterion to stop the 

WMMSE optimization process.  

2.3.3.2 Training stage  

The entire training data set  ({|ℎ𝑘𝑗
(𝑖)

|}, {𝑝𝑘
(𝑖)

}) is used to optimize the weights of the neural 

network. The MSE cost function is used between the label  ({|ℎ𝑘𝑗
(𝑖)

|}, {𝑝𝑘
(𝑖)

}) and the output of 

the network. For the optimization algorithm, it is used an efficient implementation of Adam 

optimizer algorithm, which divides the gradient by a running average of its recent magnitude. 

The decay rate is selected to be 0.9 as suggested in [85] and select the proper learning rate 

and batch size by cross-validation. To further improve the training performance, the weights 

are initialized using the truncated normal distribution and then divided the weights of each 

neuron by the square root of its number of inputs to normalize the variance of each neuron’s 

output.  
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2.3.3.3 Testing stage 

In the testing stage, the channels are generated following the same distribution as the training 

stage. For each channel realization, it is passed through the trained network and collect the 

optimized power. Then, the result of sum SE of the PC generated by DNN is computed and 

compared it with the WMMSE algorithm. 

2.3.4 DNN method with genetic algorithm (GA) method for PC problem 

The problem of training ANNs is of significant importance. A common approach to optimize 

the weights and biases of neural networks is the use of a genetic algorithm (GA) [86]. The GA 

is a population-based metaheuristic optimization algorithm inspired by the natural evolution 

of species. It operates on a set of solutions, referred to as a population, to address the 

optimization problem. Each individual solution is iteratively combined through crossover to 

generate new individuals, and the fittest individuals, based on their solution quality with 

respect to the objective function, are selected to maintain a constant population size. 

Additionally, some individuals may undergo mutations, introducing changes to their 

associated solutions. This ensures exploration of different regions in the search space, 

preventing a focus on only one area. After a specified number of iterations, when the 

algorithm terminates, the fittest individual is chosen as the best solution to the problem. 

In the selected implementation for the comparison, within the context of a GA execution 

at timestep 𝑡, an individual  𝑥𝑘,𝑡 is defined as an array of power coefficients   

{𝑃1,𝑡
𝑘 , 𝑃2,𝑡

𝑘 , . . . , 𝑃𝑁𝑏,𝑡

𝑘 } for 𝑘 ≥ 1. To satisfy the constraints  𝑃𝑏,𝑡 ≤ 𝑃𝑏
max, ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ {1, . . . , 𝑇} 

and  𝑃𝑏,𝑡 ≥ 0, ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ {1, . . . , 𝑇} for each beam 𝑏, the values of the power coefficients 

are restricted to the range between 0 and 𝑃𝑏
max. The population is comprised of  𝑁𝑝 

individuals. When generating new individuals through the aforementioned procedures, they 

are denoted as 𝑥𝑁𝑝
+ 1, 𝑡, 𝑥𝑁𝑝

+ 2, 𝑡, and so forth. 

Depending on the specific case, the population is either randomly initialized or the final 

population from the previous timestep's execution is used as the initial population for the 

subsequent timestep's execution. In other words, the decision regarding population 

initialization depends on the situation at hand. 

 {𝑥1,𝑡 , . . . , 𝑥𝑁𝑝,𝑡
} = {𝑥𝑓1,𝑡−1

, . . . , 𝑥𝑓𝑁𝑝,𝑡−1
}                                 (2.37) 

where at each timestep  𝑡 − 1 of the GA execution, the indexes of the fittest individuals 𝑁𝑝, 

denoted as 𝑓1, . . . , 𝑓𝑁𝑝
, are determined. These indexes represent the individuals in the 

population that have achieved the highest fitness values. The genetic operations are then 

carried out based on these indexes. 

• Crossing: The crossing operation is performed by randomly pairing individuals from the 

original population. There is a probability denoted by  𝑝𝑐𝑥 of performing the crossing 

operation. If this probability is met, the PC values of both individuals are compared. With 
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a probability denoted by 𝑝𝑐𝑥
𝑖 , the PC value for each beam is selected from one of the 

individuals. 

• Selection: In this implementation, a multi-objective approach is used with total power as 

one of the objective metrics. The selection method employed is NSGA-II, which is a well-

known and efficient sorting and elite multi-objective genetic algorithm. NSGA-II 

prioritizes non-dominated individuals that achieve optimal solutions for both objectives. 

• Mutation: Following the generation of offspring, there is a probability denoted by  𝑝𝑚𝑢𝑡 

for each new individual to undergo a mutation. In the mutation operation, the PC for 

each beam is randomly changed with a probability denoted by 𝑝𝑚𝑢𝑡
𝑖 . 

• To expedite the convergence towards a global optimum, the algorithm takes into 

consideration whether each beam is underserving or overserving its users during both 

the crossing and mutation operations. If a beam is determined to be underserving, the 

algorithm restricts allocation changes that would decrease the power allocated to that 

beam, and vice versa. 

• Lastly, after each iteration of the algorithm, constraints ∑ 𝑃𝑏,𝑡 ≤ 𝑃𝑡𝑜𝑡, ∀𝑡 ∈ {1, . . . , 𝑇}
𝑁𝑏

𝑏=1
 

and ∑ 𝑃𝑏,𝑡 ≤ 𝑃𝑎
max, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ {1, . . . , 𝑇}

𝑏∈𝑎
  are enforced. If a specific individual fails 

to meet either of these constraints, the PC levels are proportionally decreased until the 

constraints are satisfied. 

2.3.5 Transfer learning (TL) for PC problem 

Transfer learning (TL) is a machine learning technique that has gained significant popularity 

and importance in recent years. It is a method that allows a model trained on one task to be 

adapted or fine-tuned for a different but related task. The fundamental idea behind TL is to 

leverage knowledge learned from one domain (source domain) and apply it to a different but 

related domain (target domain). In traditional ML, models are trained from scratch for each 

new task. However, transfer learning aims to reuse and transfer knowledge from one task to 

another, which can save time, data, and computational resources.  In TL, there are typically 

two domains: the source domain (where the model is pre-trained) and the target domain 

(where you want to apply the model). Each domain can involve different tasks. For example, 

the source domain might involve training a model to recognize objects in images (e.g., 

ImageNet dataset), while the target domain could involve classifying diseases in medical 

images. TL often makes use of pre-trained models, which are neural networks that have been 

trained on large datasets for tasks like image classification, natural language processing, or 

other complex tasks. These models have already learned useful features from vast amounts 

of data, making them a valuable starting point for many tasks. After obtaining a pre-trained 

model, you fine-tune it on your specific target task using a smaller dataset. During fine-tuning, 

you adjust the model's parameters to make it more suitable for the new task. This involves 

modifying the final layers of the neural network while retaining the knowledge gained in the 

initial layers. 
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2.3.5.1 Types of Transfer Learning 

• Feature Extraction: In this approach, the weights of the pre-trained layers freeze and 

only modify the output layers to suit the target task. This is common in computer 

vision tasks. 

• Fine-tuning All Layers: some or all layers of the pre-trained model unfreeze and retrain 

them using the target dataset. This is common in natural language processing tasks. 

• Domain Adaptation: This is used when the source and target domains are slightly 

different. The model adapts its knowledge to the target domain by aligning the feature 

distributions. 

In recent years, the application of TL has emerged as a powerful technique to enhance the 

performance of DNNs [59]. While ML has been used in mMIMO systems, TL has primarily been 

applied in mMIMO systems for tasks such as channel estimation [60] and CSI feedback [61, 

62], but not for PC. 

TL can lead to faster convergence, better generalization, and improved performance, 

especially when you have limited data for the target task. It is widely used in various fields, 

including computer vision, natural language processing, and speech recognition. Choosing the 

right pre-trained model, deciding which layers to fine-tune, and handling domain shifts 

between the source and target domains are some of the challenges in transfer learning. In 

summary, TL is a powerful technique in machine learning that enables models to leverage 

knowledge gained from one task or domain to improve their performance on related tasks, 

ultimately leading to more efficient and effective machine learning systems. 

2.4 Performance metrics  

There are several popular fundamental performance metrics for communication systems, 

which are explained as follows: 

1. Throughput maximization [87]: This metric measures the maximum data transfer rate in 

the system and is calculated as follows: 

• Throughput = Total transmitted data / Total time taken for transmission 

max ∑ ∑ ∑ [𝕀(𝐴𝑘,𝑓 = 𝑢)𝐵log(1 + 𝛼𝑆𝐼𝑁𝑅𝑢,𝑘,𝑓)]
𝐹

𝑓=1
𝑢∈𝑢𝑘

𝑘∈{1,...,𝐾}

                  (2.38) 

∑ 𝑃𝑘,𝑓 ≤ 𝑃𝑘
max, ∀𝑘 ∈ {1, . . . , 𝐾}

𝑓∈𝐹
                                (2.39) 

where α is a constant for a given target bit error rate (BER). The SINR of user 𝑢 when served 
by cell k which transmits over frequency sub-band f is expressed as 𝑆𝐼𝑁𝑅𝑢,𝑘,𝑓 =

𝑃𝑘,𝑓𝐺𝑢,𝑘,𝑓

𝜂𝑢+∑ 𝑃𝑙,𝑓𝐺𝑢,𝑙,𝑓
𝑙≠𝑘

 where 𝜂𝑢 represents the receiver noise and 𝐺𝑢,𝑘,𝑓denotes the link gain from 



 

CHAPTER 2 – LITERATURE REVIEW  

41 
 

cell k to user 𝑢 over frequency sub-band f defined as 𝐺𝑢,𝑘,𝑓 = 10−(𝑃𝐿𝑢+𝑋𝛼)/10. |𝐻𝑢,𝑘,𝑓|
2

where 

|𝐻𝑢,𝑘,𝑓| is the Rayleigh fading gain of user 𝑢 from cell k over frequency sub-band 𝑓, 𝑋𝛼 is the 

log-normal shadowing, and 𝑃𝐿𝑢 is the path-loss of user 𝑢. 𝑃𝑘,𝑓 is the transmit power in cell k 

and frequency f, 𝐵 is a constant multiplier, 𝐴𝑘,𝑓 represents the user association decision for a 

particular channel and frequency. It indicates which user (or users) is connected to that 
channel and frequency combination. It's a variable that helps determine which user's data is 
being transmitted on a specific channel and frequency. 𝕀 in (𝐴𝑘,𝑓 = 𝑢) stands for the indicator 

function. An indicator function takes on the value of 1 if a certain condition is true and 0 if the 
condition is false. In this case, it is used to represent whether the user association decision 
𝐴𝑘,𝑓 is equal to 𝑢 or not. If it is equal, the indicator function will be 1, indicating that the 

condition is satisfied; otherwise, it will be 0, indicating that the condition is not satisfied. This 
helps in summing up the term [𝕀(𝐴𝑘,𝑓 = 𝑢)𝐵log(1 + 𝛼𝑆𝐼𝑁𝑅𝑢,𝑘,𝑓)] only for the relevant users 

associated with that particular channel and frequency combination. The utility of the system 
which is the total system throughput is defined as follows: 

∑ ∑ ∑ [𝕀(𝐴𝑘,𝑓 = 𝑢)𝐵log(1 + 𝛼𝑆𝐼𝑁𝑅𝑢,𝑘,𝑓)]
𝐹

𝑓=1
𝑢∈𝑢𝑘

𝑘∈{1,...,𝐾}

   (2.40) 

2. The max sum SE problem [43] is focused on maximizing the total sum SE in a 

communication system. This problem can be formulated as equation (2.14) – (2.15). 

3. To compute the CDF of the downlink SE per UE, taking into account the randomness 

caused by the UE locations [55], the following approach is adopted. Firstly, a large 

number of random realizations of the sum SE are stored. Then, utilizing the estimator of 

the cumulative distribution function (ECDF) in MATLAB, an approximate CDF curve can 

be generated based on these realizations. This numerical method enables the authors to 

obtain the desired CDF curve for the downlink SE per UE. 

• To enable a clear differentiation between the evaluated ML regression models, the 

AUC measurement was utilized for the CDF curves. The distance between the CDF 

curve of each ML regression model and the CDF curve of the WMMSE algorithm was 

calculated in terms of AUC differences (𝛥𝐴𝑈𝐶). 

 

𝛥𝐴𝑈𝐶(𝑘) = |𝐴𝑈𝐶𝑘 − 𝐴𝑈𝐶𝑊𝑀𝑀𝑆𝐸|                   (2.41) 

 

where k corresponds to the k-th ML regression algorithm evaluated here, 𝐴𝑈𝐶𝑘 represents 

the AUC of the specific ML regression model k, 𝐴𝑈𝐶𝑊𝑀𝑀𝑆𝐸 represents the AUC of the WMMSE 

algorithm. In simple words, CDF is a way to describe how likely a random variable is to take 

on a certain value or be less than a certain value. Imagine there is a bunch of data points, like 

test scores of students. The CDF gives the information about how many students scored 
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below a certain score. It is like a way to see the distribution of the data and understand the 

probabilities of different outcomes. 

4. The problem of maximizing the average minimum rate [88] can be formulated as follows: 

max
𝑝(𝑡)

𝔼𝑡 [min𝑅𝑘(𝑡)
𝑘

] , 0 ≤ 𝑝𝑘(𝑡) ≤ 𝑃, ∀𝑘, 𝑡 ∈ 𝑇   (2.42) 

where 𝑝(𝑡) ≜ [𝑝1(𝑡), . . . 𝑝𝑘(𝑡)]𝑇, 𝑃 indicates the transmit power constraint at the nodes, and 

𝑇 with |𝑇| = (
𝑍
𝐾

)is the set of all possible combinations of the TA values. In this scenario, the 

aim is to solve a problem that involves maximizing the average minimum data rate for a group 

of users. Each user has a certain transmission power level, and the objective is to determine 

how to allocate power to these users. The goal is to find the highest average of the smallest 

data rate among all the users. Every user can use a specific amount of power denoted as 𝑃. 

The problem is solved for various time instances or scenarios, represented by 𝑡, and for 

different combinations of user settings, denoted by 𝑇. The equation (2.42) presents this 

problem mathematically, where 𝑝(𝑡) signifies the power allocation vector, 𝔼𝑡 represents the 

average across different scenarios, min𝑅𝑘(𝑡)
𝑘

 stands for the lowest data rate for user k at time 

𝑡 and 0 ≤ 𝑝𝑘(𝑡) ≤ 𝑃 indicates the power limits for each user and time. 

Furthermore, three error metrics are used to test and measure the accuracy of algorithm 

namely MSE, root mean square error (RMSE), and MAE. MAE describes the mean off- set 

between actual values and predicted values by using absolute error, while RMSE denotes the 

standard deviation of the residuals of the actual and predicted values. Both MAE and RMSE 

are scale- dependent indices and describe prediction errors in their original scale. These 

metrics can be defined as Equations (2.43), (2.44) and (2.45) as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑖 − �̂�𝑖)2𝑛

𝑖=1
             (2.43) 

where in simple terms, it is a way to measure how different a set of predicted values (𝑎𝑖) are 

from the actual values (�̂�𝑖). The 𝑛 represents the number of data points that are comparing. 

The equation adds up the squared differences between each predicted value and its 

corresponding actual value, then divides that sum by the number of data points (𝑛). The result 

gives an average measure of how much the predictions deviate from the actual values, with 

larger differences having a bigger impact on the overall value. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑖 − �̂�𝑖 )2𝑛

𝑖=1
            (2.44) 

where in simple word, it is a method to measure the average difference between predicted 

values (𝑎𝑖 and actual values (�̂�𝑖 ), considering all the data points. The 𝑛 represents the number 

of data points that are comparing. The equation calculates the squared differences between 
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each predicted value and its corresponding actual value, then adds up these squared 

differences and divides by 𝑛. Finally, it takes the square root of this average value. The RMSE 

gives you an idea of how much the predictions typically deviate from the actual values, with 

larger deviations having a bigger impact on the overall value. It is a common way to 

understand the accuracy of predictions in various fields. The key difference between the two 

is that RMSE includes an additional step of taking the square root of the average squared 

differences. Both MSE and RMSE are measures of how well predictions or estimates match 

actual data points, and they both give an idea of the average error or deviation between 

predictions and actual values. RMSE is commonly used when you want the error measure to 

be in the same unit as the original data, as taking the square root "undoes" the squaring 

operation in the calculation of MSE. In simpler terms, RMSE provides a more interpretable 

error metric that reflects the typical size of the prediction errors. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑎𝑖 − 𝑎|𝑛

𝑖=1              (2.45) 

where  �̂�𝑖 is the estimated value, 𝑎𝑖  is the real data and 𝑛 is the number of samples. It is a 

measure used to understand how far, on average, predictions or estimates are from the actual 

data points. The equation represents the process of finding the absolute difference between 

each prediction (𝑎𝑖) and its corresponding actual value (𝑎), summing up these differences, 

and then taking the average by dividing by the number of data points (𝑛). In simpler terms, 

MAE tells the average size of the errors between predictions and actual values without 

considering their direction, and it is especially useful when you want a straightforward 

measure of prediction accuracy. 

2.5 Comparison between ML and heuristic methods 

Basic alternatives to PC in communication systems include simple heuristic schemes such as 

uniform PC among resource blocks [34], transmitting with full power [47], and smart PC [89]. 

However, these heuristic schemes can have poor performance in sophisticated radio 

environments where PC decisions are coupled among BSs, and their computational 

complexity is often too high. For instance, in [34], it is reported that a Q-learning-based 

scheme achieves a 125% performance improvement compared to uniform PC, while Q-

learning enhances the average femtocell capacity by 50.79% compared to smart PC in [89]. 

When power levels are discrete, numerical search methods can be adopted, such as 

exhaustive search and GA, which are heuristic searching algorithms inspired by the theory of 

natural evolution [90]. In [35], it is shown that multi-agent Q-learning can achieve near-

optimal performance with significantly reduced control signalling compared to centralized 

exhaustive search. Similarly, in [37], a trained deep learning model based on an auto-encoder 

is capable of outputting the same resource allocation solution as the GA in 86.3% of cases 

with lower computational complexity. 
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Another classical approach to PC is the WMMSE algorithm, which is used to generate 

training data in [32] and [36]. The WMMSE algorithm is originally designed to optimize 

beamformer vectors and transforms the weighted sum rate maximization problem into a 

higher dimensional space to make it more tractable [91]. In [32], for a system with 20 users, 

the DNN-based PC algorithm is demonstrated to achieve over 90% of the sum rate achieved 

by the WMMSE algorithm, while its CPU time accounts for only 4.8% of the latter. 

2.5.1 Classical PC methods 

The optimal PC depends on various factors such as the availability of channel state 

information at the transmitter (CSIT), the type of precoding scheme implemented, individual 

user priorities, and the objective function. For single-transmitter scenarios with full CSIT, the 

optimal PC can often be determined in closed-form for performance metrics such as SINR, 

weighted sum rate (WSR), or fairness [92]. Linear precoding combined with water-filling 

optimization, as described in [93] and [94], is commonly used to find the optimal PC for WSR 

maximization. This approach separates the signals into orthogonal spatial directions and 

allocates power based on the effective channel gains. 

In scenarios where the set of users is fixed and the precoding scheme is coupled with 

power allocation, the PC can involve WSR maximization with rate control, sum power 

minimization with individual SINR constraints, or max-min SINR problems [95], [96], [26], and 

[97]. PC algorithms for these problems are designed based on optimization theory [26] and 

the Perron-Frobenius theory for non-negative matrices [98], and [99]. Unlike WSR 

maximization, other objective functions require different PC strategies. For example, power 

balancing to improve error rates for weaker users [100], power allocation based on target 

SINRs [101], and [102], or considering queue stability constraints [103]. Some works model 

the precoder weights to implicitly perform PC, such as optimizing directions and magnitudes 

of the precoder weights [104], and [105]. 

Equal power allocation (EPA) is a sub-optimal strategy used when full CSIT is not available 

to simplify the evaluation of the utility function 𝑈(). EPA allows for a more tractable system 

performance analysis and derivation of closed-form expressions [106]. In scenarios where full 

CSIT is assumed and the WSR maximization problem is optimized using zero-forcing (ZF) based 

precoding schemes, EPA achieves performance close to optimal water-filling PC at high SNR 

[107]. 

In systems with partial CSIT, numerical methods are required for PC based on the 

optimized performance metric [108].  In multi-transmitter scenarios, the level of 

coordination, availability of user data and CSIT, and the precoding scheme influence the 

choice of the best PC policy. In fully coordinated scenarios, where all transmitters belong to 

the same infrastructure, a CPU determines the PC across the cluster. With global CSIT, a fixed 

set of users K, and linear precoding schemes, the PC that optimizes a global performance 

metric subject to per-transmitter power constraints can be achieved through numerical 

methods or water-filling techniques [109], and [110]. In scenarios with partial coordination 
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between transmitters and global knowledge of set K, the PC depends on precoding schemes 

computed from local CSI and individual priorities known by each transmitter [111], and [112]. 

Table 2-1 provides an overview of some classical PC approaches. 

Table 2-1. Several classical power control (PC) methods. 

Literature Scenario Objective Classical methods Main conclusion 

[113] 
Stackelberg game model is 

used for selecting source 

and controlling the power 

Improvement in the device to 

device (D2D) transmission 

quality 

Game theory-based PC 

scheme 

Guaranteeing quality of 

service (QoS) 

[114] 

Maximize the sum rate of 

the cellular users in the 

system and guaranteeing 

QoS in the system at the 

same time 

Coexistence of both CL and 

D2D users contributing 

towards improving system 

throughput 

Joint Power and rate 

control in cellular 

systems 

Maximize the sum rate 

and reduce computational 

complexity 

[114] 

Centralized PC ensures 

sufficient coverage 

probability of CL users and 

distributed method 

Improved throughput 

performance of CL users 

achieved 

Centralized and 

distributed PC 

algorithms using 

stochastic geometry 

Maximizes sum 

rate 

[115] 
Joint resource allocation 

and PC technique 

The problem is formulated as 

a nonconvex optimization 

problem, and solved 

using a two-layer scheme 

Penalty function 

approach is adopted for 

PC in the system 

 

Maximizing energy 

efficiency of the system 

[116] Distributed PC scheme 

Optimal SINR target, to 

control the user equipment 

power 

Augmented Lagrangian 

penalty function (ALPF) 

method 

Minimize the overall 

power consumption of the 

system 

[117] 

Applying a simple algorithm 

achieving near optimal 

utility 

A simple algorithm achieving 

near optimal utility, 

efficiently supporting a large 

number of D2D pairs in the CL 

network 

Binary PC scheme 
Improve SE and power 

efficiency 

[118] 

Applying PC method 

according to the distance 

mobile association scheme 

Access point selection, mode 

switching, relay selection and 

PC, all are considered, and 

basis of this technique is the 

location of UEs in the 

network 

Distance based mobile 

association 

Scheme 

Better trade-off 

achieved between 

energy efficiency 

and complexity, in 

comparison to other 

techniques 

[119] 

Performing PC algorithm to 

overcome the pilot 

contamination 

A fast-converging algorithm 

proposed to overcome pilot 

contamination. It is an 

optimal choice for practical 

considerations. 

Revised Graph colouring-

based pilot allocation 

Considerable reduction in 

pilot overhead  

[120] 
PC for the forecasted 5G 

channel 

Granger causality test to 

verify the Granger causality 

correlation of two random 5G 

channels 

Inverse water-filling 

(IWF) 

Ensure that the two 

channels can be 

forecasted using the 

Transfer Entropy method, 

PC for the forecasted 

channels and compare it 

with the equal gain (EG) 

algorithm 

[121] 

joint optimization of 

remote-radio-heads (RRH) 

association, sub-channel 

assignment, and PC in 

single-carrier frequency 

division multiple access (SC-

FDMA)-based multi-tier 

cloud-radio access network 

(C-RAN) 

Solves this non-linear mixed 

integer problem in two steps 

and improve the SE of the 

network.  

Iterative algorithm Sum rate maximization 
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Table 2-2. Various PC-based ML approaches. 

Literature Scenario Objective ML methods Main conclusion 

[122] 

A heterogenous 
network with 
picocells underlaying 
macro-cells 

Achieve a target SINR for each 
UE under total transmission 
power constraints 

Two-level Q-
learning 

The algorithm makes the 
average throughput improve 
significantly 

[47] A small cell network 
Optimize the data rate of each 
SBS 
 

Distributed Q- 
learning 

The long-term expected data 
rates of SBSs are increased 

[123] 
A cognitive radio 
networks 
 

Keep the interference at the 
primary receivers below a 
threshold 
 

Distributed Q- 
learning 
 

The proposals outperform 
comparison schemes in terms 
of outage probability 
 

[124] 
A heterogenous 
network comprised 
of FBSs and MBSs 

Optimize the throughput of 
fractional UEs (FUEs) under the 
QoS constraints of main UEs 
(MUEs) 

Reinforcement 
learning with joint 
utility and strategy 
estimation 

The algorithm can converge to 
the Logit equilibrium, and the 
SE is higher when FBSs take the 
system performance as their 
utility 

[35] 
A D2D enabled 
cellular network 

Optimize the reward of each 
D2D pair defined as the 
difference between achieved 
data rate and transmit power 
cost under QoS constraints 

Distributed Q- 
learning 
 

The algorithm is proved to 
converge to the optimal Q 
values and improves the 
average throughput 
significantly 

[125] 
A cognitive radio 
network 

Optimize transmit power level 
selection to reduce 
interference 

SVM 
 

The proposed algorithm not 
only achieves a trade-off 
between energy efficiency and 
satisfaction index, but also 
satisfies the probabilistic 
interference constraint 

[126] A CL network 
Minimize the total transmit 
power of devices in the 
network 

SVM 
 

The scheme can balance 
between the chosen transmit 
power and the user SINR 

[89] 

A heterogenous 
network with 
femtocells and 
macro-cells 

Optimize the capacity of 
femtocells under the transmit 
power constraints and QoS 
constraints of MUEs 

Knowledge 
transfer-based Q-
learning 
 

The proposed scheme works 
properly in multi-user OFDMA 
networks and outperforms 
conventional PC algorithms 

[36] 
A scenario with 
multiple transceiver 
pairs coexisting 

Optimize the SE and EE of the 
system 

Convolutional 
neural networks 

The proposal can achieve 
almost the same or even 
higher SE and EE than WMMSE 
at a faster computing speed 

[37] 
Downlink CL network 
with multiple cells 

Optimize system throughput 

A multi-layer 
neural network 
based on auto-
encoders 

The proposal can successfully 
predict the solution of the GA 
in most of the cases 

[79] 
A scenario with 
multiple transceiver 
pairs coexisting 

Optimize system throughput 
Densely 
connected neural 
networks 

The proposal can achieve 
almost the same performance 
compared to WMMSE at a 
faster computing speed 

[57] 
A scenario in a 
cognitive radio 
system 

Optimize power efficiency and 
network convergence 

Deep 
reinforcement 
learning 

The proposed 
schemes have better 
performance than the DQN-
based PC  

 

Moreover, in [32], the WMMSE PC algorithm was approximated using a trained DNN to 

manage interference in multi-cell networks. Similarly, in [39], a deep CNN (DCNN) was 
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proposed to approximate an iterative algorithm for PC in CL-mMIMO systems. In [8], a fully 

connected neural network and a RNN were introduced to maximize SE and implement the 

max-min power policy, respectively, in CL-mMIMO. It is important to note that none of the 

aforementioned works considered CF-mMIMO systems. 

In [127], a DCNN was proposed to determine the mapping from large-scale fading 

coefficients to the optimal uplink power by solving the sum rate maximization problem using 

quantized channel information. Furthermore, [127] presented a two-stage DNN to 

approximate the bisection algorithm for PC in CF-mMIMO systems. Moreover, reinforcement 

learning approaches aim to determine the optimal actions for agents based on observed 

environmental states in order to maximize cumulative rewards [128]. 

Table 2-3 provides a comprehensive overview of the advantages and disadvantages of 

the applied optimization methods. Additionally, Table 2-4 presents a list of available datasets 

for reference. 

Table 2-3. Pros and cons of the applied optimization methods. 

Classical methods ML methods Hybrid intelligent methods 

Pros Cons Pros Cons Pros Cons 

Simple 
algorithm 
 
Easy to 
implement 
 
High precision 
 
Lots of 
literatures 

High 
computation 
time 
 
Slow 
convergence 
 
Can consider 
single objective 

Efficient 
performance 
 
Needs fewer 
iterations 
 
Can handle 
complex 
problems 
 
Easy to find 
example 
literature 

Harder to code 
 
Premature 
convergence 
 
Unstable 
results 
 
Uncertain time 
of convergence 
 

May trap in 
local optima 

 
Many settings 
parameters 

Efficient 
performance 
 
Can solve 
more 
complex 
problem 
 
Faster in 
convergence 
 

More setting 
parameters 
 
Much harder to 
code 
 
Less example 
literature 
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Table 2-4. List of available datasets for PC problem. 

Number 
Name of 
datasets 

URL 
links 

Year of 
datasets 

Short description Application 
Quantified 
information 

Paper(s) 
that 
used 
this 
dataset 

1 
• PC in multi-
cell mMIMO 
 

[8, 
129] 

2018 
 

• Simulated dataset provided by 
University of Pisa 
•   Performing max-min and max-
prod PC in the downlink of the 
mMIMO network by training the 
neural networks using the data 
samples from the dataset 
 

•   PC 
 

•    Samples: 
340000 
•   Samples for 
testing: 10000 
 

[8, 129] 
 

2 

PC for 
wireless-
powered CF-
mMIMO- 
artificial 
generated 
data 
 
 

[130] 2020 

•  Wireless uplink information and 
downlink power transfer in CF- 
mMIMO 
•  Considered Rician fading and 
maximum ratio processing based 
on either linear minimum mean-
squared error (LMMSE) or least-
squares (LS) channel estimation 
•  Objective is to maximize the 
minimum SE of the UEs’ under 
APs’ and UEs’ transmission power 
constraints 
 

•   PC 
 

 
• 3.4 GHz 
carrier 
frequency 

• 20MHz 
bandwidth 

• APs are 
uniformly 
distributed in a 
100m×100m 
square 
•  Total number 
of samples per 
coherence 
interval 
 

[130] 

3 

Artificial 
generated 
data 
 

[131] 
2018 
 

•   PC  
•   mmWave mMIMO against 
jamming 
 

•   PC                 
•   mmWave                        
•   mMIMO 

• Single 
antennas 
• Number of 
transmit 
antennas 
ranging 
between 48 and 
256 
• BS equipped 
16 RF chains 
• Chose the 
transmit power 
from 10 levels 
• Transmission 
cost = 2 
• Serve 16 users 

[131] 

4 
• Deep-EE-
opt 

[132] 
2020 
 

• The training set is generated 
from 2000 independent and 
identically distributed 
realizations of UEs’ positions and 
propagation channels.  
• Users are randomly placed in 
the service area and channels 
 are generated according to the 
channel model. 
 

•  Energy 
Efficiency                   
• Deep 
learning               
• PC 
 

• Training set: 
102,000 
samples 
• Validation set: 
10,200 samples  
• Test set: 
510,000 
samples 
• Total 
generated data 
samples = 
622,200 
 

[132] 

 

https://data.ieeemlc.org/
https://data.ieeemlc.org/
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2.6 Addressing gaps for PC problem in CL/CF-mMIMO Systems: enhancing 

performance through ML-based approaches 

Previous studies have utilized heuristic algorithms for PC optimization in mMIMO systems, 

such as the WMMSE [133], the max-min fairness [64], the successive convex approximation 

[134] algorithm and so on. However, these heuristic algorithms suffer from high 

computational complexity and slow convergence. There is a need to explore alternative 

methods with lower computational demands. 

ML-based approaches for PC have been investigated, including techniques like DNNs [41], 

deep reinforcement learning [135], Gaussian mixture models [136], and k-means algorithm 

[137]. However, there is a lack of comprehensive evaluation and comparison of these 

methods in the context of PC optimization. 

In this research, the concept of Transfer Learning (TL) is introduced as a potential strategy 

to enhance Power Control (PC) in mMIMO systems. TL is a machine learning technique that 

has demonstrated considerable success across various domains but has yet to be extensively 

explored in the context of PC for mMIMO systems, particularly in Cell-Free (CF) mMIMO 

scenarios. Moreover, its knowledge acquired from one task, often referred to as the source 

task, is harnessed to improve the performance of a related but distinct task, known as the 

target task. In TL, a pretrained neural network or model, which has already learned 

informative features from a vast dataset in the source task, can be fine-tuned or adapted for 

the target task with a smaller dataset. This approach enables the model to utilize prior 

knowledge, potentially enhancing its performance and reducing the necessity for extensive 

training on the target task. 

The potential of TL in the PC task for mMIMO systems has not been extensively explored. 

TL has shown promise in enhancing the performance of DNNs [59] but has not been applied 

widely to PC [19], and [20], particularly in CF-mMIMO systems. TL has been primarily focused 

on channel estimation [60] and channel state information (CSI) feedback [61, 62], neglecting 

its application to PC. There is a gap in investigating the potential of TL in the PC task, leveraging 

pretrained DNN models for PC in CL/CF-mMIMO systems. 

A significant research gap is identified in the exploration of the untapped potential of TL, 

specifically for the Power Control task in both Cellular (CL) and Cell-Free (CF) mMIMO systems. 

The objective is to investigate the feasibility of utilizing pretrained DNN models through TL 

techniques to enhance the efficiency and accuracy of PC within these mMIMO environments. 

PC optimization in both CL and CF systems is a complex problem due to various objectives 

and the need to mitigate interference. However, there is a lack of evaluation on how the 

number of BSs, APs, and antennas affect the performance of ML-based PC methods in CL/CF-

mMIMO systems. 

Chapter three addresses the PC problem by applying ML-based algorithms, which provide 

near-optimal solutions with lower computational complexity [3]. Multiple ML methods are 

proposed, such as system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) 
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and system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), and they are 

evaluated to maximize the sum spectral efficiency (SE), providing an alternative to 

computationally intensive heuristic algorithms. 

Chapter four fills the gap by exploring the utilization of TL in the PC task for CF-mMIMO 

systems. TL has demonstrated success in various applications but has not been extensively 

studied in the context of PC. The implementation of TL-based deep neural network (TLDNN) 

for PC in CF-mMIMO systems is a novel contribution. Furthermore, by evaluating ML methods 

and WMMSE method with varying numbers of BSs/APs and users, chapter four also 

demonstrates the impact of these factors on the performance of PC in CL/CF-mMIMO 

systems. The simulation results show how increasing the number of BSs/APs or antennas 

affects the dimensionality of the DNN's input vector, resulting in changes and increases in the 

AUC. 

In chapter 5, optimization of SE in CF mmWave-mMIMO wireless communication systems 

have been thoroughly examined. With a focus on PC strategies, various advanced methods 

were introduced and evaluated for their effectiveness in enhancing SE. An initial challenge lay 

in the optimization of PC, a key determinant of SE. Traditional optimization techniques 

struggled with the intricacies of optimization problems such as the WMMSE, fractional 

programming (FP), water-filling, and max-min fairness methods due to their high 

computational complexity. To surmount these challenges, a novel PC method, HARP-PC, was 

devised by combining heterogeneous graph neural network (HGNN), adaptive neuro-fuzzy 

inference system (ANFIS), and reinforcement learning (RL). HARP-PC addressed the 

complexities of dynamic CF mmWave-mMIMO systems by integrating HGNN's network 

topology understanding, ANFIS's fuzzy logic-based interpretability, and RL's adaptability. This 

innovative approach maximized SE by tailoring PC strategies to adapt to varying network 

scenarios and uncertainties. Additionally, a ground-breaking scheme named delay-tolerant 

zero-forcing precoding (DT-ZFP) was introduced. This innovation harnessed deep learning-

aided channel prediction to alleviate the impact of outdated channel state information (CSI). 

By parallelizing CSI and precoded data transmission, DT-ZFP deftly overcame channel aging, 

significantly enhancing SE in CF mmWave-mMIMO systems. 
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Chapter 3. 

 

3 Fusion scheme and evaluation of ML algorithms for PC problem 

in CL/CL-mMIMO systems 

 

3.1 Introduction 

The efficient management of PC in CL/CF-mMIMO systems presents a critical challenge in 

modern wireless communications. PC involves regulating the transmit power of base stations 

or access points to optimize system performance, including factors such as interference 

management, signal quality, coverage, and energy efficiency. The importance of PC in 

achieving the objectives of contemporary wireless networks cannot be overstated. 

Furthermore, PC plays a vital role in CL/CF-mMIMO systems. Various heuristic algorithms, 

such as the WMMSE algorithm, are utilized to optimize PC. However, these algorithms require 

significant computational power to perform the PC operations. 

The growing demand for high-speed data transmission, the proliferation of connected 

devices, and the emergence of technologies like the Internet of things (IoT) and 5G/6G 

communication systems necessitate a comprehensive approach to PC. Traditional methods, 

including rule-based and optimization-based techniques, have made substantial 

contributions to PC in the past. However, these methods face limitations in dealing with the 

increasing complexity and dynamic nature of modern networks. 

To address these challenges, ML algorithms have emerged as a promising solution for 

tackling the PC problem in CL/CF-mMIMO systems. ML techniques have the ability to 

automatically learn patterns and make data-driven decisions, enabling adaptive adjustments 

in response to change network conditions. Their capacity to handle large-scale datasets and 

adapt to evolving network dynamics provides a compelling motivation for exploring ML-based 

solutions to the PC problem. 

By leveraging ML algorithms, more efficient and effective PC can be achieved in CL/CF-

mMIMO systems. These algorithms have the potential to offer superior performance by 

capturing intricate relationships within the data, optimizing PC, and improving overall system 

capacity. Moreover, dynamic network environments can be effectively managed, ensuring 

robust and reliable PC. 

In this chapter, several ML methods are proposed, tailored explicitly to address the PC 

problem in CL/CF-mMIMO systems. Among them are the innovative proposed Fuzzy/DQN 

method, proposed DNN/GA method, proposed support vector machine (SVM) method, 
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proposed SVM/RBF method, proposed decision tree (DT) method, proposed K-nearest 

neighbor (KNN) method, proposed linear regression (LR) method, and the novel proposed 

fusion schemes. The fusion scheme expertly combines multiple ML methods, such as system 

model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) and system model 2 (DNN, 

SVM-RBF, DQL, LR, KNN, and DT algorithms), which are thoroughly evaluated to maximize the 

sum spectral efficiency (SE), offering a viable alternative to computationally intensive heuristic 

algorithms. Through comprehensive performance evaluations, the aim is to highlight the 

benefits, limitations, and potential trade-offs of employing ML algorithms in this context. 

The remainder of this chapter is organized as follows. Section 3.2 introduces the system 

model and problem formulation for PC in the CL/CF-mMIMO system. In Section 3.3, ML 

methods and fusion schemes for the PC problem in the CL/CF-mMIMO systems are proposed. 

These schemes involve integrating and fusing multiple ML PC algorithms to enhance PC 

performance. The experimental setup, including the dataset used and evaluation metrics 

employed, is described in Section 3.4. Section 3.5 presents the experimental results, analyzing 

and comparing the performance of the proposed fusion schemes with baseline algorithms. 

Finally, Section 3.6 concludes the chapter by summarizing the findings and discussing the 

implications. 

3.2 System model and problem formulation 

3.2.1 System model 

In this section, the focus is directed towards an mMIMO system that operates within the CF 

environment. The CF system is characterized by the presence of N, APs that serve a number 

of K, UE devices. The APs and UEs utilize the same time-frequency resource, adhering to the 

TDD mode of operation. To facilitate efficient communication and coordination, the CF 

system incorporates a total of Z fronthaul links. These links establish connections between 

the CPU and all the APs present within the system. This connectivity plays a crucial role in 

enabling effective resource allocation and PC strategies. Within the CF system, each AP is 

equipped with a set of M antennas, thereby enabling the utilization of spatial multiplexing 

and beamforming techniques. Conversely, each UE is equipped with a single antenna, which 

enables the reception and transmission of signals. To evaluate the ML methodologies for PC, 

two scenarios were considered: one for the CL system based on the network presented in [8] 

and another for the CF-mMIMO system based on the network presented in [130]. Table 3-1 

is shown the parameters of the system model 1. 
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Table 3-1. Parameters of the system model 1. 

Parameters Value 

Coverage volume 300m × 300m square 
N, number of APs 36, 40 
M, number of antennas per AP 100, 120 
K, number of UEs 10 
𝜎2, Noise power -95 dBm 
Carrier frequency 3.4 GHz 
𝑃𝑝, Pilot power 20 dBm 

Bandwidth 20 MHz 
𝑃max, maximum power constraint 15 dBm 
𝜏𝑝, Length of pilot in symbols 6 

𝜏𝑐, length of coherence time in symbols  [21] 200 

 

The network is trained using a dataset consisting of NT = 320,000 samples, each 

representing an independent realization of the positions of the UEs. The large-scale fading is 

modelled as a combination of path loss and shadowing, following the approach described in 

[130]. In cases where, there is a reuse of some pilot sequences, leading to the consideration 

of pilot contamination in the simulations. Table 3-2 is demonstrated the parameters in system 

model 2, which is used in each system.  

Table 3-2. Parameters of the system model 2. 

Parameters Value 

Coverage volume 300m×300m square 
N, number of APs 20 
M, number of antennas per AP 100, 120 
K, number of UEs 5 
𝜎2, Noise power - 95 dBm 

Carrier frequency 3.4 GHz 
𝑃𝑝, Pilot power 20 dBm 

Bandwidth 20 MHz 
𝑃max, maximum power constraint 15 dBm 
𝜏𝑝, Length of pilot in symbols 6 

𝜏𝑐, length of coherence time in symbols 
Uniform distribution of APs/BSs  
Difference between APs/BSs and UEs 
Uplink pilot length 
Random movement of UEs in up, down, left, and right directions with 
velocities uniformly distributed between UE positions uniformly 
distributed over the coverage area at time (t) 

200 modulation symbols [21] 
100m × 100m square 
5m height 
6 symbols for channel estimation 
0 and 1 m/s 

 0 

 

The dataset consists of NT = 50,000 samples of independent realizations of the UEs' 

positions for each system. The large-scale fading was modelled as a combination of pathloss 



 

 
CHAPTER 3 – FUSION SCHEME AND EVALUATION OF ML ALGORITHMS FOR PC PROBLEM IN CL/CF SYSTEMS 

54 
 

and shadowing, following the approach in [130]. All other network parameters used in the 

simulations were set the same as in [8] for the CL system and [130] for the CF-mMIMO system. 

The channel vector between a specific AP denoted as AP 𝑛 and a particular UE denoted 

as UE k is defined using equation (2.1) for CF-mMIMO system and equation (2.10) for CL-

mMIMO system. This channel vector encapsulates the characteristics of the channel, 

incorporating factors such as spatial properties, path loss, and interference effects that are 

prevalent between the AP and UE.  

The channels are estimated by the BSs using uplink pilots. The estimation process 

employs MMSE estimation, resulting in an estimate �̂�𝑙𝑘
𝑛  that consists of M independent 

Gaussian elements with similar statistical characteristics. The mean square of the m-th 

element is calculated using equation (2.2) for CF-mMIMO system and equation (2.11) for CL-

mMIMO system.  

Based on the channel estimation, the BS utilizes normalized conjugate beamforming 

(NCB) to transmit signals towards the UEs. It is assumed that 𝑞𝑘 with 𝔼{|𝑞𝑘|2} = 1 represents 

the intended signal for user k. The transmitted signal 𝐱𝑛 from BS n is calculated using equation 

(2.3) for CF-mMIMO system and equation (2.12) for CL-mMIMO system. The user k receives 

the signal 𝑦𝑘
𝑙  from all base stations (BSs) in the network, which is calculated using equation 

(2.4) for CF-mMIMO system and equation (2.13) for CL-mMIMO system.  

 

3.2.2 Problem formulation 
 

The SE of the downlink is formulated using equation (2.5) for CF-mMIMO system and equation 

(2.14) for CL-mMIMO system. Then, the objective of maximizing the sum SE for PC is 

formulated applying equation (2.6) for CF-mMIMO system and equation (2.15) for CL-mMIMO 

system. The PC problem in the mMIMO system is addressed using WMMSE algorithm, where 

the allocated power 𝑝𝑙𝑘
𝑛  is estimated based on the channel gain vector 𝐡𝑙𝑘

𝑛 , which is expressed 

utilizing equations (2.7) – (2.9) for CF-mMIMO system and equations (2.16) – (2.18) for CL-

mMIMO system. 

3.3 Proposed methods 

3.3.1 Proposed fusion schemes for PC problem in CL/CF-mMIMO systems 

Due to its high computational complexity, the WMMSE heuristic algorithm can be substituted 

with ML-based regression models. In the case of PC, an approximation of the allocated power, 

denoted as �̃�𝑛,𝑘 for CF-mMIMO system and  �̃�𝑙𝑘
𝑛  for CL-mMIMO system is defined using the 

function 𝑓. These equations are applied for Fusion Scheme 1 (DNN, DNN/GA, DQN, 

fuzzy/DQN, and SVM algorithms) and Fusion Scheme 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT 

algorithms), respectively.  
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�̃�𝑛,𝑘 = 𝑓(𝐠𝑛,𝑘)                                               (3.1) 

with �̃�𝑛,𝑘 ≈ 𝑝𝑛,𝑘. 

𝐠𝑘 = [𝐠1,𝑘, … , 𝐠𝑁,𝑘] ∈ ℂ𝑀𝑁×1                                        (3.2) 

�̃�𝑙𝑘
𝑛 = 𝑓(𝐡𝑙𝑘

𝑛 )                                                   (3.3) 

 

with �̃�𝑙𝑘
𝑛 ≈ 𝑝𝑙𝑘

𝑛  and 𝐡𝑙𝑘 = [𝐡𝑙𝑘
1 , … , 𝐡𝐿𝐾

𝑁 ] ∈ ℂ𝑀𝑁×1.                       

In simple terms, equation (3.1) says that these is a function 𝑓 that takes the values of channel 

gain 𝐠𝑛,𝑘and produces an estimated value �̃�𝑛,𝑘 for that parameter. This estimation �̃�𝑛,𝑘 is 

close to the actual value 𝑝𝑛,𝑘 but not exactly the same. The second equation, (3.3) is for CL-

mMIMO systems. So, these equations are about using functions to estimate certain values, 

and the estimated values are close to the actual ones but not identical. ℂ𝑀𝑁×1 represents a 

complex matrix with dimensions 𝑀𝑁 × 1, where M is the number of antennas and N is the 

number of APs. The notation ℂ indicates that the elements of this matrix are complex 

numbers. The matrix has 𝑀𝑁 rows and only one column, which means it is a vertical vector 

with 𝑀𝑁 elements. Each element of this vector corresponds to a specific combination of 

antennas and APs. 

In the proposed fusion scheme 1 for the PC problem, the ML PC algorithms, namely DNN, 

DNN/GA, DQN, fuzzy/DQN, and SVM, are integrated and fused together. This fusion process 

results in the creation of a new feature vector. Subsequently, this feature vector is utilized as 

an input for another ML regression model, specifically a DNN, to calculate the optimal PC. The 

proposed fusion scheme 2 includes ML PC algorithms such as DNN, SVM-RBF, DQL, LR, KNN, 

and DT, which are also combined together in a similar manner. The resulting fused model 

generates a new feature vector that is then fed into a DNN for the calculation of the optimal 

PC. Figure 3-1 and Figure 3-2 illustrate the proposed fusion scheme 1 and 2 for the PC 

problem, respectively. 
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3.3.2 Proposed Fuzzy/DQN method for PC problem in CL/CF-mMIMO systems 

The utilization of DRL algorithms enables the rapid acquisition of an optimal communication 

policy by transmitters to ensure security performance. In the paper [138], a combination of 

fuzzy logic and Q-learning methods was employed by the author. In their work, the author 

utilized three data in the state 𝑠, namely: channel information, estimated jamming power, 

and received SINR. In contrast, the proposed approach utilizes only channel information. 

Additionally, the author of the previous work employed win or learn fast-policy hill-climbing 

(WoLFPHC), FSA, and Q-learning in the learning agent. On the other hand, the proposed 
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Figure 3-2. Proposed block diagram of fusion scheme 2. 

 

Figure 3-1. Proposed block diagram of fusion scheme 1. 
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method introduces two approaches, Fuzzy-state aggregation (FSA) and deep Q-learning. The 

block diagram of the proposed approach is illustrated in Figure 3-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As depicted in Figure 3-4, the utilization of fuzzy/DQN allows the learning agent to learn 

and adapt more efficiently in dynamic and uncertain environments. Fuzzy sets and 

aggregators are employed to represent system states in Q-learning, enabling the 

representation of continuous state spaces as discrete using a fixed number of aggregate 

states. The learning agent observes the system state and receives an instantaneous reward 

through interactions with the environment. This information is then utilized to train the 

learning model, aiming to select the best policy with the maximum Q-function value. 

Subsequently, based on the selected policy, an action is chosen to make decisions regarding 

PC.  

Block diagram illustrating the components and flow of information in the proposed fuzzy-

based control system for PC. The system state (s) is observed, and the fuzzy inference system 

determines the appropriate action (a) based on fuzzy rules. The fuzzy state aggregation 

combines the fuzzy output, and the fuzzy Q-function calculation updates the Q-values. The 

fuzzy-state policy update adjusts the current policy, while parameter tuning optimizes the 

performance of the control system. Algorithm 3-1 is illustrated the proposed pseudo code of 

fuzzy/DQN for solving PC problem in CL/CF-mMIMO systems. 
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Figure 3-3. Proposed block diagram of combined Fuzzy/DQN method for PC in CL/CF-mMIMO system. 
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Algorithm 3-1. Proposed pseudo code of Fuzzy/DQN method for solving PC problem in CL/CF-mMIMO system. 

1: Input: Fuzzy/DQN learning structure  
2: Initialise: 𝑄(𝑠, 𝑎) = 0, 𝜋(𝑠, 𝑎) = 1/|𝛢|, 𝜋′(𝑠, 𝑎) = 𝜋(𝑠, 𝑎), 𝜉, 𝜉𝑙𝑜𝑠𝑠 > 𝜉𝑤𝑖𝑛, 𝐶(𝑠), 𝛾, 𝛼, and set fuzzy rules. 

3: for each episode  𝑗 = 1,2, . . . , 𝑁𝑒𝑝𝑖 do 
4: for each time step  𝑡 = 0,1,2, . . . , 𝑇 do 
5: Observe and initial system state  𝑠𝑡 
6: Select action  𝑎𝑡 based on 𝜀-greedy policy 
𝑎𝑡 = argmax

𝑎𝑡∈𝛢
𝑄(𝑠𝑡 , 𝑎𝑡) with probability 1 − 𝜀; 

 𝑎𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚{𝑎𝑖}𝑎𝑖∈𝛢 

7: Execute the exploration action 𝑎𝑡, receive a reward  𝑟(𝑠𝑡 , 𝑎𝑡) and the next state  𝑠𝑡+1 

8: Update the current policy  𝜋(𝑠𝑡 , 𝑎𝑡) by  𝜋(𝑠, 𝑎) ← 𝜋(𝑠, 𝑎) + {

𝜉, 𝑖𝑓𝑎 = argmax𝑄(𝑠, 𝑎′)
𝑎′

−
𝜉

|𝛢|−𝑎

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

9: Select the variable learning rate  𝜉 by  𝜉 = {
𝜉𝑤𝑖𝑛, 𝑖𝑓 ∑ 𝜋(𝑠, 𝑎)𝑄(𝑠, 𝑎) > ∑ 𝜋′(𝑠, 𝑎)𝑄(𝑠, 𝑎),

𝑎
𝑎

𝜉𝑙𝑜𝑠𝑠, 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒.
 

10: Update the average policy  𝜋′(𝑠𝑡 , 𝑎𝑡) by  𝜋′(𝑠𝑡 , 𝑎𝑡) ← 𝜋′(𝑠, 𝑎) +
𝜋(𝑠,𝑎)−𝜋′(𝑠,𝑎)

𝐶(𝑠)
 

11: Set  𝐶(𝑠) = 𝐶(𝑠) + 1; 

12: Compute the fuzzy Q-function  𝐹𝑄(𝑠𝑡 , 𝑎𝑡) by  𝐹𝑄(𝑠, 𝑎) = ∑ 𝑄𝑙(𝑠, 𝑎)𝜓𝑙(𝑠, 𝑎)
𝐿

𝑙=1
 

where 𝐿 represents the number of fuzzy states, 𝐹𝑄𝑙(𝑠, 𝑎) is the value function of the 𝑙-th fuzzy state and  
𝜓𝑙(𝑠, 𝑎) stands for the degree of relationship between the state s and the 𝑙-th fuzzy state with the given 
action 𝑎. 
13: Update the fuzzy-state policy  𝜋𝐹𝑆𝐴(𝑠, 𝑎) by  

𝜋𝑙(𝑠, 𝑎) ← 𝜋𝑙(𝑠, 𝑎) + {

𝜉𝜓𝑙(𝑠,𝑎)

𝐿
, 𝑖𝑓𝑎 = argmax𝐹𝑄(𝑠, 𝑎′)

𝑎′

−
𝜉𝜓𝑙(𝑠,𝑎)

𝐿(|𝛢|−1)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. ,

× ∀𝑙
 

14: Update  𝐹𝑄(𝑠𝑡 , 𝑎𝑡) by  𝐹𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝑎)𝐹𝑄(𝑠, 𝑎) + 𝑎(𝑟 + 𝛾max
𝑎∈𝛢

𝐹𝑄∗(𝑠′, 𝑎)) 

15: end for 
16: end for 
17: Return: Fuzzy/DQN-based learning model; 
18: Output: Load the learning model to achieve the PC {𝑃𝑘}𝑘∈𝐾. 

Figure 3-4. Proposed fuzzy block diagram. 
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In the proposed system model in a large communication system involves the following 

steps: Initially, Q-values 𝑄(𝑠, 𝑎) associated with a state-action pair and Probability of choosing 

an action given a state 𝜋(𝑠, 𝑎) are initialized to zero and a uniform distribution, respectively. 

𝜋′(𝑠, 𝑎) shows average policy used for updates, 𝜉  is the learning rate variable, 𝜉𝑙𝑜𝑠𝑠 and 𝜉𝑤𝑖𝑛 

are thresholds for adjusting the learning rate, 𝐶(𝑠) is the normalization factor for the average 

policy update, 𝛾 is the discount factor for future rewards, 𝛼 is the weight for combining 

previous Q-values with new ones. |𝛢|  represents the cardinality (number of elements) of the 

action space 𝛢. This action space consists of all possible actions that the algorithm can take 

in a given state.  

The initialization step is setting up the initial values for the Q-values (𝑄(𝑠, 𝑎)) and action 

probabilities (𝜋(𝑠, 𝑎)). Here, 𝜋(𝑠, 𝑎) is initialized to ensure that each action has an equal 

probability of being chosen at the beginning, which is 1 divided by the number of possible 

actions in Α (i.e., 1/|𝛢|). This initialization ensures that the algorithm starts with a balanced 

exploration of actions before learning from experience. For each episode, and within each 

episode for multiple time steps, the system state  𝑠𝑡 (i.e., channel coefficients) is observed by 

the learning agent during each episode training step through interactions with the 

environment. At each learning time slot t, the action  𝑎𝑡 (i.e., power control) is selected based 

on the probability distribution 𝜋(𝑠𝑡 , 𝑎𝑡). To balance exploration and exploitation, the 𝜀-

greedy policy algorithm is employed. Specifically, the action with the maximum Q-function 

value is chosen with a probability of 1 –  𝜀 (with a high probability), utilizing known 

knowledge, while a random action  𝑎𝑡 is selected with a probability of 𝜀 (with low probability) 

based on unknown knowledge. After executing the chosen action, the environment provides 

feedback in the form of a reward  𝑟(𝑠𝑡 , 𝑎𝑡) and a new system state  𝑠𝑡+1 to the learning agent. 

Subsequently, the fuzzy/DQN algorithm updates both the current policy  𝜋(𝑠𝑡 , 𝑎𝑡) and the 

average policy 𝜋′(𝑠𝑡 , 𝑎𝑡) based on whether the chosen action led to a higher Q-value: If the 

chosen action maximized the Q-value, increase the probability of choosing it in the future; 

otherwise, decrease it. 

 Additionally, it utilizes them to determine the variable learning rate 𝜉, aiming to improve 

the learning process based on whether the current policy change is leading to better rewards 

or not. Then, it updated the average policy 𝜋′(𝑠, 𝑎) based on the current policy and a 

normalization factor 𝐶(𝑠). With the updated policy 𝜋(𝑠𝑡 , 𝑎𝑡), the fuzzy Q-function 𝐹𝑄(𝑠𝑡 , 𝑎𝑡) 

and the fuzzy-state policy 𝜋𝐹𝑆𝐴(𝑠, 𝑎) are calculated using the FSA approach (by combining 

multiple fuzzy states' value functions with their degrees of relationship.), 𝐿 represents the 

number of fuzzy states, 𝐹𝑄𝑙(𝑠, 𝑎) is the value function of the 𝑙-th fuzzy state. 𝜓𝑙(𝑠, 𝑎) is the 

degree of relationship between the current state and the 𝑙-th fuzzy state with the given 

action. 𝑟 is reward received after taking an action, 𝜀 represents exploration rate for choosing 

actions randomly or greedily, 𝑁𝑒𝑝𝑖 is the number of episodes in the learning process and 𝑇 is 

the number of time steps in each episode. Update a fuzzy-state policy 𝜋𝐹𝑆𝐴(𝑠, 𝑎) using a 

similar process as the regular policy update but incorporating fuzzy states. Update 𝐹𝑄(𝑠, 𝑎) 

using a combination of the current Q-value, the reward received, and the expected future Q-

value. Furthermore, the algorithm updates the variables in the next time slot until 
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convergence is reached. Ultimately, the learning model is successfully trained and can be 

loaded to search for the optimal PC solution. 

In the proposed method, the fuzzy Q-function and the fuzzy-state policy are calculated 

using the FSA approach. This approach aggregates the Q-values and state information into 

fuzzy sets, enabling the learning agent to make informed decisions based on fuzzy rules. 

3.3.3 Proposed DNN/GA method for PC problem in CL/CF-mMIMO systems 

The proposed method combines the power of DNNs and GAs to optimize PC in CL/CF-mMIMO 

systems. The DNN and GA are iteratively combined to optimize the PC process. The GA 

evaluates the fitness of PC strategy using the DNN's predictions, and the DNN is retrained 

with new data generated by the GA's exploration. The DNN/GA hybrid optimization approach 

offers several advantages:  

• Efficiency: The DNN approximates the fitness function, reducing the need for 

computationally expensive simulations. 

• Adaptability: The iterative optimization allows the method to adapt to dynamic 

wireless environments and changing network conditions. 

• Performance Improvement: The hybrid approach aims to find optimal PC strategies 

that improve the SE in the overall network. 

 

• DNN evaluation: 

The DNN takes the channel gain parameter as input and produces an output representing 

the optimal transmission power level for each UE. Let the DNN function with weights and 

biases be denoted as 𝑓𝜃. The output PC vector is obtained as follows: 

                                                          �̃�𝑛,𝑘 = 𝑓𝜃(𝐠𝑛,𝑘)                                       (3.4) 

where 𝐠𝑛,𝑘 represents the channel information, which includes channel gains, for each UE 

and �̃�𝑛,𝑘 is the vector containing the optimal power levels for each UE in CF-mMIMO systems 

with �̃�𝑛,𝑘 ≈ 𝑝𝑛,𝑘. 𝐠𝑘 = [𝐠1,𝑘, … , 𝐠𝑁,𝑘] ∈ ℂ𝑀𝑁×1 and PC for CL-mMIMO is defined as �̃�𝑙𝑘
𝑛  with 

�̃�𝑙𝑘
𝑛 ≈ 𝑝𝑙𝑘

𝑛  and 𝐡𝑙𝑘 = [𝐡𝑙𝑘
1 , … , 𝐡𝐿𝐾

𝑁 ] ∈ ℂ𝑀𝑁×1as follows: 

�̃�𝑙𝑘
𝑛 = 𝑓𝜃(𝐡𝑙𝑘

𝑛 )                                        (3.5) 

 

• Fitness function approximation by DNN: 

The DNN is trained using historical data and measurements to approximate the fitness 

function. The fitness function evaluates the performance of PC strategy based on SE criteria. 

The DNN learns to predict the fitness value for any given set of inputs (𝐠𝑛,𝑘 for CF-mMIMO 

system, and 𝐡𝑙𝑘
𝑛  for CL-mMIMO system). 
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𝑓𝑖𝑡𝑎𝑝𝑝𝑟𝑜𝑥𝑛,𝑘
= 𝑓𝐷𝑁𝑁(𝐠𝑛,𝑘)                                        (3.6) 

𝑓𝑖𝑡𝑎𝑝𝑝𝑟𝑜𝑥𝑙𝑘

𝑛 =  𝑓𝐷𝑁𝑁(𝐡𝑙𝑘
𝑛 )                                        (3.7) 

 

where 𝑓𝑖𝑡𝑎𝑝𝑝𝑟𝑜𝑥𝑛,𝑘
 is the predicted fitness value obtained from the trained DNN for CF-

mMIMO system and 𝑓𝑖𝑡𝑎𝑝𝑝𝑟𝑜𝑥𝑙𝑘

𝑛  is the predicted fitness value obtained from the trained DNN 

for CL-mMIMO system. 

• Genetic algorithm evaluation: 

During the genetic algorithm (GA) optimization process, the DNN is used to evaluate the 

fitness of the PC configurations. The GA evolves a population of candidate solutions (PC 

configurations) using genetic operators like selection, crossover, and mutation. 

• GA fitness assignment: 

The fitness values of individuals (PC configurations) in the GA population are determined 

using the DNN's predictions of the fitness function. 

𝑓𝑖𝑡𝑠𝑐𝑜𝑟𝑒𝑛,𝑘
= 𝑓𝐷𝑁𝑁(𝐠𝑛,𝑘)                                        (3.8) 

𝑓𝑖𝑡𝑠𝑐𝑜𝑟𝑒𝑙𝑘
𝑛 =  𝑓𝐷𝑁𝑁(𝐡𝑙𝑘

𝑛 )                                        (3.9) 

where 𝐠𝑛,𝑘is considered for each individual in the GA population, 𝑓𝑖𝑡𝑠𝑐𝑜𝑟𝑒𝑛,𝑘
 is the fitness 

score assigned to each individual based on the DNN's prediction in CF-mMIMO system and 

𝑓𝑖𝑡𝑠𝑐𝑜𝑟𝑒𝑙𝑘
𝑛  is the fitness score assigned to each individual based on the DNN's prediction in CL-

mMIMO system. 

• Genetic algorithm operations: 

The genetic operators (selection, crossover, and mutation) are applied to the GA population 

to evolve and refine the PC configurations iteratively. 

• DNN training data generation: 

During each iteration of the GA, new training data for the DNN is generated using the best-

performing PC configurations from the GA population. The DNN is trained to improve its 

prediction of the fitness function. 

• Iterative optimization: 

The DNN/GA optimization process iterates until a termination criterion is met (e.g., a 

maximum number of generations or convergence of the solution). 

The overall goal of the DNN/GA method for PC in CL/CF-mMIMO systems is to find an 

optimal PC strategy that maximizes system performance while considering various constraints 

and objectives. The DNN assists in approximating the fitness function efficiently, reducing the 
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need for computationally expensive simulations, while the GA explores the solution space to 

discover better PC configurations. The iterative nature of the optimization allows the method 

to adapt to changing network conditions and improve overall system performance. Figure 3-

5 is demonstrated the proposed block diagram of DNN/GA methods for PC in CL/CF-mMIMO 

systems. 

 

 

3.3.4 Proposed support vector machine (SVM) method for PC problem in CL/CF-mMIMO 

systems 

The SVM method for PC in CL/CF-mMIMO systems leverages ML techniques to find an optimal 

regression model for PC. This model is trained on historical data, and it enables efficient and 

GA method 
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Figure 3-5. Proposed block diagram of DNN/GA methods for PC in CL/CF-mMIMO system. 
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effective PC decisions, leading to improved system performance and resource utilization in 

wireless communication systems. Let 𝑝𝑛,𝑘 for CF-mMIMO system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO 

system (the optimal PC vector) representing the transmission power levels of all UEs. The goal 

is to find the optimal PC vector �̃�𝑛,𝑘 for CF-mMIMO system and �̃�𝑙𝑘
𝑛  for CL-mMIMO system 

that maximizes the system performance while considering various constraints. 

3.3.4.1 SVM regression problem formulation: 

To formulate PC as an SVM problem, it is treated it as a regression task. The SVM regression 

model tries to find a function 𝑓(𝑥) that predicts the optimal PC vector 𝑝𝑛,𝑘  for CF-mMIMO 

system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO system given the input features (𝑥), which include (𝐠𝑛,𝑘) for 

CF and (𝐡𝑙𝑘
𝑛 ) for CL system. 

3.3.4.2 SVM regression model: 

The SVM regression model aims to find the optimal weight vector 𝑤 and bias term 𝑏 that best 

approximates the PC function 𝑓(𝑥). The predicted PC vector �̃�𝑛,𝑘 for CF-mMIMO system and 

�̃�𝑙𝑘
𝑛  for CL-mMIMO system is given by the inner product between the input features 𝑥 and the 

weight vector 𝑤, plus the bias term 𝑏: 

�̃�𝑛,𝑘  =  𝑤 ∗  𝑥 +  𝑏    (3.10) 

�̃�𝑙𝑘
𝑛  =  𝑤 ∗  𝑥 +  𝑏    (3.11) 

3.3.4.3 Training the SVM model: 

The SVM model is trained using a set of labelled data, where 𝑥 represents the input features, 

and the optimal PC vector 𝑝𝑛,𝑘 for CF-mMIMO system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO system is the 

target output. The training process finds the optimal 𝑤 and 𝑏 to minimize the regression error. 

3.3.4.4 Optimization objective: 

The optimization objective for the SVM regression model is to minimize the following cost 

function, which includes a regularization term to prevent overfitting: 

𝑚𝑖𝑛 (1/2)  ∗  ||𝑤||2 +  𝐶 ∗  ∑ [ 𝜀𝑖  +  𝜀𝑖∗  ]  (3.12) 

Subject to constraints for CF-mMIMO: 

𝑝𝑛,𝑘  −  �̃�𝑛,𝑘  ≤  𝜀𝑖   (3.13) 

�̃�𝑛,𝑘  −  𝑝𝑛,𝑘  ≤  𝜀𝑖∗     (3.14) 

Subject to constraints for CL-mMIMO: 
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𝑝𝑙𝑘
𝑛 − �̃�𝑙𝑘

𝑛  ≤  𝜀𝑖   (3.15) 

�̃�𝑙𝑘
𝑛  − 𝑝𝑙𝑘

𝑛   ≤  𝜀𝑖∗     (3.16) 

Where ||𝑤||2 represents the squared norm of the weight vector 𝑤. 𝐶 is the regularization 

parameter that controls the trade-off between maximizing the margin and minimizing the 

regression error. 𝜀𝑖 and 𝜀𝑖∗ are non-negative slack variables that allow for some degree of 

error in the predictions. 

3.3.4.5 Finding the optimal PC: 

Once the SVM model is trained and the optimal 𝑤 and 𝑏 are obtained, the PC vector 𝑝𝑛,𝑘  for 

CF-mMIMO system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO system can be predicted for any new set of input 

features 𝑥 using the SVM regression equation. 

3.3.4.6 Integration with CL/CF-mMIMO systems: 

The trained SVM model can be integrated into the CL/CF-mMIMO systems to perform real-

time PC. The SVM-based PC can dynamically adjust the transmission power levels of UEs 

based on the observed channel conditions and system requirements. 

Figure 3-6 is shown the proposed block diagram of SVM methods for PC in CL/CF-mMIMO 

systems, which the raw data containing (𝐠𝑛,𝑘) for CF and (𝐡𝑙𝑘
𝑛 ) for CL system is collected as 

input. The collected data undergoes pre-processing, which may include handling missing 

values, normalizing features, and eliminating noise. Then, relevant features are extracted 

from the pre-processed data to form the input features (𝑥) for the SVM model. The SVM 

model is used for regression to approximate the PC function 𝑓(𝑥). After that, the SVM model 

is trained using labelled data, where the input features (𝑥) correspond to the target output 

𝑝𝑛,𝑘 for CF-mMIMO system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO system (the optimal PC vector). 

Hyperparameter optimization is performed to find the best SVM model settings. Once the 

SVM model is trained, it can predict the optimal PC vector �̃�𝑛,𝑘 for CF-mMIMO system and �̃�𝑙𝑘
𝑛  

for CL-mMIMO system for new input features (𝑥). Finally, the predicted PC vector �̃�𝑛,𝑘 for CF-

mMIMO system and �̃�𝑙𝑘
𝑛  for CL-mMIMO system is used to adjust the transmission power levels 

of individual UEs in the CL/CF-mMIMO systems, based on the observed channel conditions 

and system requirements. Algorithm 3-2 is described the proposed SVM method for PC in 

CL/CF-mMIMO systems. 
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Algorithm 3-2. Proposed pseudo code of SVM algorithm for solving PC problem in CL/CF-mMIMO systems. 

1: Randomly select 𝐿 training user groups, get (𝐠𝑛,𝑘) for CF and (𝐡𝑙𝑘
𝑛 ) for CL system from the conventional 

algorithm for each 𝐺𝑟𝑜𝑢𝑝𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝𝑙𝑘
𝑛 . 

2: Initialization: 

   - Set the iteration counter 𝑘 =  1. 

   - Randomly select the k-th normalized testing user group, let it be 𝐺𝑟𝑜𝑢𝑝𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝𝑙𝑘
𝑛 . 

3: For every testing user sample in 𝐺𝑟𝑜𝑢𝑝𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝𝑙𝑘
𝑛 : 

   - Get the input feature vector 𝑥𝑛,𝑘 and  𝑥𝑙𝑘
𝑛  for the testing user sample. 

   - Use the SVM model to predict the optimal PC vector  �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛 for 𝑥𝑛,𝑘 and  𝑥𝑙𝑘

𝑛 . 

   - Get the final regression result according to the one which has the largest value in �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛 . 

   - For each class, compute the distance from 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛  to the class centre, let this distance be 𝑑𝑖𝑠𝑡𝑛,𝑘 and 

𝑑𝑖𝑠𝑡𝑙𝑘
𝑛 . 

4: If all the testing user samples in 𝐺𝑟𝑜𝑢𝑝𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝𝑙𝑘
𝑛  are correctly classified (𝑑𝑖𝑠𝑡𝑛,𝑘 >  0 for all 𝑛, 𝑘) and 

(𝑑𝑖𝑠𝑡𝑙𝑘
𝑛  >  0 for all 𝑛, 𝑘), go to step 6. Otherwise, go to step 5. 

5: Randomly select the k-th normalized training user group, let it be 𝐺𝑟𝑜𝑢𝑝_𝑡𝑟𝑎𝑖𝑛𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝_𝑡𝑟𝑎𝑖𝑛 𝑙𝑘
𝑛 . 

   - Get the normalized training user feature matrix 𝑋_𝑡𝑟𝑎𝑖𝑛_𝑘 and define its class label vector 𝑦_𝑡𝑟𝑎𝑖𝑛𝑛,𝑘 and 
𝑦_𝑡𝑟𝑎𝑖𝑛𝑙𝑘

𝑛 . 

6: Calculate the distance 𝑑𝑖𝑠𝑡𝑛,𝑘 and 𝑑𝑖𝑠𝑡𝑙𝑘
𝑛  from the testing user group 𝐺𝑟𝑜𝑢𝑝𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝𝑙𝑘

𝑛  to the training 
user group 𝐺𝑟𝑜𝑢𝑝_𝑡𝑟𝑎𝑖𝑛𝑛,𝑘 and 𝐺𝑟𝑜𝑢𝑝_𝑡𝑟𝑎𝑖𝑛 𝑙𝑘

𝑛  according to the minimum of 𝑑𝑖𝑠𝑡𝑛,𝑘 and 𝑑𝑖𝑠𝑡𝑙𝑘
𝑛 . 

7: If 𝑑𝑖𝑠𝑡𝑛,𝑘 and 𝑑𝑖𝑠𝑡𝑙𝑘
𝑛 is greater than a predefined threshold 𝜀, go to step 8. Otherwise, go to step 3 with the 

next testing user group. 

8: Calculate the SE of every testing user group and obtain the average of them. 

9: End of the algorithm. 
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Figure 3-6. Proposed block diagram of SVM method for PC in CL/CF-mMIMO systems. 
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3.3.5 Proposed support vector machine/ radial basis function (SVM/RBF) method for PC 

problem in CL/CF-mMIMO systems 

The proposed SVM/RBF method for PC in CL/CF-mMIMO systems is a hybrid optimization 

approach that combines the power of SVM for regression and RBF for approximation. In this 

method, SVM is employed to predict the optimal PC vector �̃�𝑛,𝑘 for CF-mMIMO system and 

�̃�𝑙𝑘
𝑛  for CL-mMIMO system for a given set of input features 𝑥, which include 𝐠𝑛,𝑘 for CF and 

𝐡𝑙𝑘
𝑛  for CL system. The RBF kernel function is used to transform the input features into a 

higher-dimensional space, allowing SVM to learn non-linear decision boundaries and achieve 

more accurate predictions. Subsequently, the RBF is applied to approximate the optimal PC 

settings for each set of input features, dynamically adjusting the transmission power levels of 

individual user devices. The iterative nature of the method enables it to adapt to changing 

wireless environments and improve PC decisions over time. By leveraging SVM regression and 

RBF approximation, the proposed method aims to enhance system performance, resource 

utilization, and overall wireless communication in complex CL/CF-mMIMO scenarios. 

3.3.5.1 SVM regression model: 

In the context of PC as a regression problem, the SVM regression model aims to predict the 

optimal PC vector �̃�𝑛,𝑘 for CF-mMIMO system and �̃�𝑙𝑘
𝑛  for CL-mMIMO system for a given set 

of input features 𝑥. The regression function is represented as follows: 

�̃�𝑛,𝑘  =  𝑓(𝐠𝑛,𝑘)    (3.17) 

�̃�𝑙𝑘
𝑛  =  𝑓(𝐡𝑙𝑘

𝑛 )     (3.18) 

Where �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛  are the predicted optimal PC vector. 𝑓 is the SVM regression function. 

The input feature vector, which include 𝐠𝑛,𝑘 parameter for CF and 𝐡𝑙𝑘
𝑛  parameter for CL 

system that influence the PC decision. 

3.3.5.2 Radial basis function (RBF) kernel: 

As mentioned earlier, the RBF kernel function is used in the SVM regression to transform the 

input features 𝑥 (𝐠𝑛,𝑘  and 𝐡𝑙𝑘
𝑛 ) into a higher-dimensional space. It measures the similarity 

between two feature vectors using the Gaussian function: 

𝐾(𝑥, 𝑥′)  =  𝑒𝑥𝑝(−𝛾 ∗  ||𝑥 −  𝑥′||2)   (3.19) 

Where 𝑥 and 𝑥′ are two feature vectors. 𝛾 is the kernel width parameter, controlling the 

influence of each data point on the regression decision boundaries. ||𝑥 −  𝑥′||2 is the squared 

Euclidean distance between 𝑥 and 𝑥′. 
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3.3.5.3 Power control approximation: 

The SVM/RBF method uses the SVM regression model to approximate the optimal PC settings 

for each set of input features 𝑥. 

3.3.5.4 Power control adjustment: 

The predicted optimal PC vector �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛 is used to adjust the transmission power levels 

of individual UEs in the CL/CF-mMIMO systems, based on the observed channel conditions 

and system requirements. 

3.3.5.5 Iterative optimization: 

Similar to the previous explanation, the method can be iteratively updated and retrained with 

new data to adapt to changing network conditions and improve the PC decisions over time. 

Figure 3-7 is illustrated the proposed block diagram of SVM/RBF for PC in CL/CF-mMIMO 

systems. 

 

 

 

 

 

 

 

The raw data contains 𝐠𝑛,𝑘 for CF-mMIMO system and 𝐡𝑙𝑘
𝑛  for CL-mMIMO system, 

forming the input feature vector 𝑥. The collected data undergoes pre-processing, where 

feature extraction and normalization are performed to prepare the data for SVM and RBF 

processing. The SVM regression model processes the pre-processed data to predict the 

optimal PC vector �̃�𝑛,𝑘  and �̃�𝑙𝑘
𝑛  for a given set of input features 𝑥. The RBF kernel function is 

used to transform the input features 𝑥 into a higher-dimensional space, allowing SVM to learn 

non-linear decision boundaries and achieve more accurate predictions for �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛 . The 

predicted optimal PC vector �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛  is utilized to dynamically adjust the transmission 

power levels of individual user devices in the CL/CF-mMIMO system, optimizing PC. Then, the 

final output of the proposed method is the predicted optimal PC vector �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛  based on 

the SVM regression and RBF approximation, which can be used for PC in the wireless 

communication system. 
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and (𝐡𝑙𝑘
𝑛 ) for CL system) 
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Figure 3-7. Proposed block diagram of SVM/RBF method for PC in CL/CF-mMIMO system. 
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In summary, the proposed SVM/RBF method for PC is indeed a regression model, and it 

leverages the strengths of both SVM and RBF to approximate the optimal PC settings for 

different input feature vectors 𝑥. 

3.3.6 Proposed decision tree (DT) method for PC problem in CL/CF-mMIMO systems 

The proposed decision tree (DT) method for PC in CL/CF-mMIMO systems is an algorithmic 

approach that utilizes a DT model to optimize the transmission power levels of individual UEs. 

In the training phase, the DT model is trained using labelled data, where the input features 

represent the UE characteristics, and the target output is the corresponding optimal PC 

vector. During the testing phase, the DT follows a set of binary decisions based on the input 

features to predict the optimal PC settings for each UE. The predicted PC vector is then used 

to dynamically adjust the transmission power levels and improving overall system 

performance. The iterative nature of the method allows it to adapt to changing network 

conditions and achieve efficient PC in complex CL/CF-mMIMO scenarios. Figure 3-8 is 

illustrated the proposed block diagram of DT method for PC in CL/CF-mMIMO systems. 

 

 

 

 

 

 

 

 

 

 

The proposed DT-based PC model for CL/CF-mMIMO systems involves a multi-step 

process. Firstly, data is collected from the CL/CF-mMIMO systems, including 𝐠𝑛,𝑘 for CF and 

𝐡𝑙𝑘
𝑛  for CL system. Then, relevant feature(s) are selected for PC decisions. The data is pre-

processed by cleaning and normalizing it for training. The optimization objective, such as sum 

SE, is defined. The DT model is trained on the pre-processed data to capture relationships 

between features and the optimization objective. Subsequently, the model is used to make 

PC decisions for each user based on the input data, and the final output presents the 

optimized PC. 

The PC decision for 𝑘 users is determined by the DT model based on the input features 

such as channel gain 𝐠𝑛,𝑘 for CF and 𝐡𝑙𝑘
𝑛  for CL system. Train two separate DT models, one for 

Figure 3-8. Proposed block diagram of DT method for PC in CL/CF-mMIMO system. 
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the CF system and another for the CL system. Each model is trained on its corresponding input 

data. The DT model for PC is represented as a series of hierarchical decision rules. Each 

internal node in the tree represents a decision based on one of the input features (𝐠𝑛,𝑘 and 

𝐡𝑙𝑘
𝑛 ), and each leaf node represents the predicted optimal PC value �̃�𝑛,𝑘 and �̃�𝑙𝑘

𝑛  for CF/CL-

mMIMO systems. 

Below are the equations to represent the DT models for both the CF and CL systems: 

𝑖𝑓 𝐠𝑛,𝑘  <=  𝑇1: 

   �̃�𝑛,𝑘  =  𝐶1  ∗  𝐠𝑛,𝑘  +  𝑖1 

𝑒𝑙𝑠𝑒:       (3.20) 

   �̃�𝑛,𝑘  =  𝐶2  ∗  𝐠𝑛,𝑘  +  𝑖2 

where 𝐠𝑛,𝑘 is the channel gain for user 𝑘 at AP 𝑛 in the CF system. 𝑇1 is for threshold_1, 

which is the splitting threshold for the first internal node in the DT. 𝐶1 and 𝐶2 are for 

coefficient _1 and coefficient_2 associated with 𝐠𝑛,𝑘 for the two branches of the tree. 𝑖1 and 

𝑖2 are intercept_1 and intercept_2 for the two branches of the tree. �̃�𝑛,𝑘 is the predicted 

optimal transmit power for user 𝑘 at AP 𝑛 in the CF-mMIMO system. 

𝑖𝑓 𝐡𝑙𝑘
𝑛  <=  𝑇2: 

   �̃�𝑙𝑘
𝑛  =  𝐶3  ∗  𝐡𝑙𝑘

𝑛  +  𝑖3 

𝑒𝑙𝑠𝑒:       (3.21) 

  �̃�𝑙𝑘
𝑛  =  𝐶4  ∗  𝐡𝑙𝑘

𝑛  +  𝑖4 

where 𝐡𝑙𝑘
𝑛  is the channel gain for user 𝑘 at AP 𝑛 in the CL system. 𝑇2 is for threshold_2, 

which is the splitting threshold for the first internal node in the DT. 𝐶3 and 𝐶4 are for 

coefficient _3 and coefficient_4 associated with 𝐡𝑙𝑘
𝑛  for the two branches of the tree. 𝑖3 and 

𝑖4 are intercept_3 and intercept_4 for the two branches of the tree. �̃�𝑙𝑘
𝑛  is the predicted 

optimal transmit power for user 𝑘 at AP 𝑛 in the CL-mMIMO system. 

3.3.7 Proposed K-nearest neighbour (KNN) method for PC problem in CL/CF-mMIMO 

systems 

The proposed approach utilizes the K-nearest neighbour (KNN) method. By collecting relevant 

data including 𝐠𝑛,𝑘 for CF and 𝐡𝑙𝑘
𝑛  for CL system. KNN can be trained to make PC decisions 

based on the characteristics of nearby users. Through label-based optimization, the KNN 

model can adjust the transmit power levels of individual UEs, optimizing system objectives 

such as SE. This KNN-based solution offers a promising avenue for enhancing the performance 

of CL/CF-mMIMO systems. 
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Let's assume, there is a set of 𝑘 users in the mMIMO system, denoted as 𝑈 =

 {1, 2, . . . , 𝐾}, and each user 𝑘 ∈  𝑈 is associated with a channel gain value 𝐠𝑛,𝑘 for CF and 𝐡𝑙𝑘
𝑛  

for CL system corresponding to its connection with the AP and BS, respectively.  

For each user 𝑘 ∈  𝑈, compute its 𝐾-nearest neighbors. These neighbors are selected 

based on their channel conditions, which can be measured using pilot signals. Once the 𝐾-

nearest neighbors for each user are identified, calculate their average channel gain: 

𝐠𝑛,𝑘𝐾𝑁𝑁 
= (

1

𝑘
) ∗ ∑ 𝐠𝑛,𝑘𝑘∈𝐾𝑁𝑁𝑛,𝑘

   (3.22) 

𝐡𝑙𝑘
𝑛

𝐾𝑁𝑁
= (

1

𝑘
) ∗ ∑ 𝐡𝑙𝑘

𝑛
𝑘∈𝐾𝑁𝑁𝑙𝑘

𝑛     (3.23) 

where 𝐾𝑁𝑁𝑛,𝑘 and 𝐾𝑁𝑁𝑙𝑘
𝑛  represent the set of 𝐾-nearest neighbors for user 𝑘 in CF/CL-

mMIMO systems, respectively and these are 𝐾 users with the strongest channel gains in 

proximity to user 𝑘, these neighbours are users with the most similar and favourable channel 

conditions to user 𝑘. Now, estimate the optimal power level �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛   for each user using 

the average channel gain of its K-nearest neighbours, which these averages represent the 

collective signal strength from the nearby users as follows: 

�̃�𝑛,𝑘 = (𝑆𝐼𝑁𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ∗ ( 𝑁0 +  ∑ 𝑝𝑛,𝑘 ∗  𝐠𝑛,𝑘 𝑛=1,𝑘=1 )) / 𝐠𝑛,𝑘𝐾𝑁𝑁 
  (3.24) 

�̃�𝑙𝑘
𝑛 = ( 𝑆𝐼𝑁𝑅𝑡𝑎𝑟𝑔𝑒𝑡 ∗ (𝑁0 + ∑ 𝑝𝑙𝑘

𝑛 ∗  𝐡𝑙𝑘
𝑛

𝑙=1,𝑘=1,𝑛=1 )) / 𝐡𝑙𝑘
𝑛

𝐾𝑁𝑁
  (3.25) 

where S𝐼𝑁𝑅𝑡𝑎𝑟𝑔𝑒𝑡 is the desired target SINR for user 𝑘, and the summation term 

∑ 𝑝𝑛,𝑘 ∗  𝐠𝑛,𝑘 𝑛=1,𝑘=1 and ∑ 𝑝𝑙𝑘
𝑛 ∗  𝐡𝑙𝑘

𝑛
𝑙=1,𝑘=1,𝑛=1  represent the total interference from other 

users. Ensure that the power level for each user satisfies certain constraint (e.g., maximum 

power levels) and 𝑁0 represents the noise level. 

The selection of the target SINR and the value of K, along with other relevant parameters, 

plays a pivotal role in achieving the ultimate objective of optimizing SE through PC in CF/CL-

mMIMO systems. Spectral efficiency optimization aims to enhance the overall data 

transmission capacity of the communication system while ensuring reliable and high-quality 

connections for users. The choice of the target SINR directly influences the balance between 

signal strength and interference, as it determines the desired level of signal quality. A higher 

SINR target might result in improved data rates but could also demand more power resources. 

Conversely, a lower target might conserve power but potentially compromise data rates. The 

value of K, representing the number of nearest neighbours considered for PC adjustments, 

has a notable impact on interference management and network capacity. A larger K could 

lead to better interference cancellation but might also introduce more complexity and 

overhead in computation and coordination.  Finally, update the power levels for all users and 

repeat the process iteratively until convergence or a termination criterion is met. Figure 3-9 

is shown the proposed block diagram of KNN method for PC in CL/CF-mMIMO systems. 
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For input data, the channel gains 𝐠𝑛,𝑘 and 𝐡𝑙𝑘
𝑛  between each user and the AP and BS are 

measured. In KNN neighbour selection, for each user 𝑘, the K-nearest neighbours (users with 

the strongest channel gains) based on the measured channel gains are selected. Then, the 

average channel gain for each user 𝑘 using the K-nearest neighbors is calculated. For target 

SINR calculation, the desired target SINR for each user 𝑘 is determined. Calculating the desired 

target SINR involves estimating the SINR level that each user aims to achieve for reliable 

communication while mitigating interference.  After that, the initial power level 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛  

for each user 𝑘 is assigned. Subsequently, the following steps are repeated until convergence 

or termination criteria is met:  

• Calculate the interference caused by other users (excluding user 𝑘) using the current 

power levels.  

• Update the power level 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛 for user 𝑘 based on the average channel gain, target 

SINR, and the interference calculated in the previous step. 

• Ensure that the updated power level �̃�𝑛,𝑘and �̃�𝑙𝑘
𝑛  satisfies the power constraint. 

The final step is PC for each user 𝑘, which optimizes the SINR and achieves the desired 

SE. 

3.3.8 Proposed linear regression (LR) method for PC problem in CL/CF-mMIMO systems 

The proposed LR method for the PC problem in CL/CF-mMIMO systems aims to address the 

challenge of optimizing PC among multiple BSs/APs to enhance system performance. In 

Figure 3-9. Proposed block diagram of KNN method for PC in CL/CF-mMIMO system. 
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mMIMO systems, with a large number of antennas distributed across cells or clusters, 

efficient PC is crucial to mitigate interference and maximize network performance. The LR 

method utilizes historical data and system measurements to build a regression model that 

relates the PC to key performance metrics, such as SE. By leveraging this model, the LR-based 

PC algorithm can predict the optimal power levels for each BS/AP to achieve desired system 

objectives, leading to significant improvements in SE, and overall network performance in 

CL/CF-mMIMO deployments. It is illustrated in Figure 3-10 the proposed block diagram of LR 

method for PC in CL/CF-mMIMO systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This block diagram represents the LR method steps for PC problem in CL/CF-mMIMO 

systems. The input data 𝐠𝑛,𝑘 and 𝐡𝑙𝑘
𝑛  for CL and CF systems are acquired. In this stage, the 

collected data undergo pre-processing and feature extraction to extract relevant features and 

prepare the data for building the LR model. It involves data cleaning, normalization, and 

transformation. The pre-processed data is used to train a LR model, the goal of training is to 

find the best-fitting coefficients that minimize the difference between the predicted output 

of the model and the actual output from the data. This is achieved by defining a loss function 

that quantifies this difference. Commonly used loss functions include MSE or RMSE that is 

used RMSE in the proposed method. The optimization process usually involves an iterative 

algorithm like Gradient descent. The algorithm adjusts the coefficients step by step to 

minimize the loss function. At each iteration, the algorithm calculates the gradients of the loss 

function with respect to the coefficients. These gradients indicate the direction and 

magnitude of the changes needed to reduce the loss. The coefficients are updated using the 

calculated gradients and a learning rate. The learning rate determines the step size in each 

Figure 3-10. Proposed block diagram of LR method for PC in CL/CF-mMIMO systems. 
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iteration. Smaller learning rates can make the optimization process stable but slow, while 

larger learning rates can lead to faster convergence but may overshoot the optimal solution. 

The model is fine-tuned and validated to ensure accurate performance prediction. The 

iterative process continues until the loss function converges to a minimum value. During each 

iteration, the coefficients 𝛽𝑛,𝑘 and 𝛽𝑙𝑘
𝑛  are adjusted to better fit the training data, ultimately 

making the predicted values �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛  closer to the actual values. Once the training is 

complete, the model's performance is evaluated using analyzing metric like RMSE on the 

training data itself. These metrics indicate how well the model captures the relationships 

between input features and output values. Then, predicts the performance metrics based on 

the current system measurements. It estimates the SE for PC scenario. The predicted 

performance metric is then fed into the optimal PC block. The optimal power levels for each 

BSs/APs are achieved by desired system objectives, maximizing SE. The PC algorithm 

determines the optimal power levels for each BSs/APs based on the regression model's 

predictions. These power levels are then adjusted accordingly in the BSs/APS. Finally, the 

adjusted power levels are used to control the transmission from each BSs/APs, resulting in 

improved performance and better system efficiency in the CL/CF-mMIMO environments. 

The linear regression model aims to predict the optimal PC as a function of the input data 

(𝐠𝑛,𝑘 and  𝐡𝑙𝑘
𝑛 ). The LR equation for PC in CL/CF-mMIMO systems can be represented as:  

�̃�𝑛,𝑘 =  𝛽0 + ∑(𝛽𝑛,𝑘 ∗ 𝐠𝑛,𝑘) + 𝜀   (3.26) 

�̃�𝑙𝑘
𝑛 =  𝛽0 + ∑(𝛽𝑙𝑘

𝑛 ∗ 𝐡𝑙𝑘
𝑛 ) + 𝜀    (3.27) 

where �̃�𝑛,𝑘 and �̃�𝑙𝑘
𝑛  are the optimal PC for CF/CL-mMIMO systems, respectively. 𝛽0 is the 

intercept (bias) term, 𝛽𝑛,𝑘 and 𝛽𝑙𝑘
𝑛  are the coefficients for the channel gain ( 𝐠𝑛,𝑘and 𝐡𝑙𝑘

𝑛 ), 

indicating the influence of the user-to-access point channel gain on the SE and 𝜀 is the error 

term representing the residual error. The LR model coefficients (𝛽𝑛,𝑘 and 𝛽𝑙𝑘
𝑛 ) are determined 

through the training process using historical data, where the sum SEs and channel gains are 

known. 

3.4 Experimental Setup 

3.4.1 Experimental setup of fusion scheme 1 

3.4.1.1 Parameter selection 

The parameters utilized in the DNN, DQN, SVM, DNN/GA, and fuzzy/DQN-based algorithms 

are described as follows. Firstly, the DNN architecture is examined to analyze the influence of 

the number of hidden layers and neurons per hidden layer on the training process. The 

dataset is created by merging two datasets, and the training process involves updating the 

weights between neurons and the bias in each layer. The learning rate is initially set to 0.005 

to ensure convergence during the initial epochs according to [41]. Afterwards, it is decreased 
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by a factor of 10 to fine-tune the weight updates. The selection of N impacts the number of 

interfering links. A larger value of N brings the PC closer to the optimal solution but increases 

the complexity. Based on [2, 43] with N = 16 and N = 5, it is chosen N = 36 and N = 40 to 

achieve a near-optimal PC. 

The maximum transmit power maxP  level of transmitter 𝑖 is set to 15 dBm [137] over a 20 

MHz frequency band, which is fully reusable across all links. The distance-dependent path loss 

between all transmitters and receivers is simulated using a logarithmic path loss model 

120.9 + 37.6log10(𝑑) (in dB), where 𝑑 represents the transmitter-to-receiver distance in 

kilometres. This path loss model complies with the LTE standard [139]. The log-normal 

shadowing standard deviation is set to 8 dB. The parameters for the DNN model are shown in 

Table 3-3, and the layouts of the DNN are illustrated in Table 3-4. 

Table 3-3.  The parameters for DNN model. 

Symbols Value 

The number of training sets 5000 
The number of testing sets 1000 
The number of layers 5 
The number of neurons per layer 800 
Learning rate 0.005 
Batch size 256 
Epochs 100 
Optimizer Adam 

 

Table 3-4. Layout of DNN. The trainable parameters are 263,253. 

 Size Parameter Activation function 

Input 360  - 
Layer 1 (Dense) 512 77312 elu 
Layer 2 (Dense) 256 131328 relu 
Layer 3 (Dense) 128 32896 relu 
Layer 4 (Dense) 64 8256 relu 
Layer 5 (Dense) 32 2080 relu 
Layer 6 (Dense) 16 528 relu 
Layer 7 (Dense) 10 85 linear 

 

For the DQN-based algorithm, the number of power levels is set to 10; hence, the number 

of neurons in the output layer for 𝑄 (𝑠, 𝑎,  ) is also set to 10. The sufficiently trained DNN 

can be used to transmit PC, which Table 3-5 shows these parameters. To determine the 

transmit power, the channel gain must be converted to decibel and normalized first, and then 

fed into the DNN model, which outputs the normalized transmit power. There are other 

parameters affecting the training process of the DQN-based algorithm namely, the discount 

factor 𝜔, the training interval 𝐶, the initial adaptive learning rate 𝑙𝑟, the adaptive  𝜀-greedy 

algorithm and the mini-batch size |𝐷𝑡|. The adaptive learning rate decays with the number of 

training time slots. Generally, a large learning rate allows the model to learn faster but may 
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end up with a sub-optimal final set of weights. A smaller learning rate may allow the model 

to learn a more optimal or even globally optimal set of weights but may take significantly 

longer. Adaptive learning balances the training time and performance. The  𝜀-greedy 

algorithm is a learning algorithm that makes use of the exploration-exploitation trade-off, in 

which the agent takes a random action with probability  𝜀 or takes an action using the policy 

of DQN with probability 1 − 𝜀. A random action may lead the training `jumps' out of a local 

optimum and explores new convergence regions. In the adaptive  𝜀-greedy algorithm the 

value of  𝜀 decays each training time slot. A large  𝜀 avoids the training ending up in local 

optima during the initial training time slots, a small value of  𝜀 makes sure that the training 

will converge in the later training time slots.  

Referring to the literature, it is selected  𝜀 ∈ {0.1,0.3,0.5,0.7,0.9} [2], and [140]; 𝑙𝑟 ∈

{0.001,0.005,0.01,0.05,0.1} [141], and [32]; 𝜔 ∈ {0.1,0.3,0.5,0.7,0.9} [128], and [2]; |𝐷𝑡| ∈

{500,1000,2000,5000,10000} [32] to find the optimal parameters. It is founded that for 

different values of 𝜔, 𝐶 and |𝐷𝑡|, the behaviour of the sum SE as a function of the training 

time slot is very similar, and implying DQN algorithm is not very sensitive to these parameters. 

However, for different values of 𝑙𝑟 and 𝜀, It is obtained very different behaviours of the sum 

SE as a function of the training time slot. This is because the learning rate and  𝜀-greedy 

algorithm affects the exploration-exploitation trade-off, which is important for the updating 

of the DNN parameters, i.e., weights and bias. It is chosen the parameters  𝜀 =  0.1, 𝑙𝑟 =

 0.005, 𝐶 =  10,   =  0.1 and  tD  =  500, which is achieved better sum SE values, in the 

proposed simulations.  

Table 3-5. DQN parameter settings. 

Parameter Value 

Learning rate of DQN 0.005 
Initial exploration 0.8 
Final exploration 0 
Discount rate 0.1 
Decay rate 0.01 
Replay memory 400 
Input dimension 10 
Output dimension 8 
Mini batch size 500 

 

For SVM algorithm, the parameters consists of the training user group 𝐿 =  310 , the 

normalized 𝑙-th training user feature matrix 𝑙 =  0, 𝑢 =  0, 𝐾 user number, 𝑓 testing user 

sample of 𝑢-th testing user group,  𝑓 =  1, 2, . . . , 𝐹, 𝐹 =  𝐾 ∈ {20,40} and 𝑈 = 20.  

In case of DNN/GA algorithm, the parameters for DNN algorithm are considered as before 

mentioned and the parameters for GA are considered in Table 3-6 as follows. 
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 Table 3-6.  GA parameter settings. 

GA parameter Setting used 

Number of variables 25 
Population size 250 
Creation function Uniform 
Selection function Tournament 
Crossover function Scattered 
Elite count 7% 
Mutation function Uniform 
Mutation rate 0.2 
Max number of generations 2500 
Function tolerance 1 × 10−5 

 

In the case of fuzzy/DQN algorithm, the parameters comprise of learning rate which is 

set to  𝛼 =  0.5 ×  210− , the discount factor is set to  𝛾 =  0.9 and the final exploration rate 

is 0.1. The cost parameters are set to  𝜆1 =  1 and  𝜆2 =  2 to balance the utility and cost. In 

the proposed method, it is considered  𝜉𝑙𝑜𝑠𝑠 =  0.04 and win  =  0.01 [142] and the other 

parameters are considered as previous DQN algorithm setting. 

3.4.2 Experimental setup of fusion scheme 2 

3.4.2.1 Parameter selection 

The parameters that are used for the DNN, SVM-RBF, DQL, LR, KNN, and DT based algorithms 

are described as follows. 

• DNN parameters 

The DNN method is employed to approximate the action-value function, consisting of three 

fully connected feedforward hidden layers. The number of neurons in each of the three hidden 

layers is 128, 256, and 512, respectively. Rectified linear units (ReLUs) are utilized as the 

activation function for the first and second hidden layers. ReLUs produce an output of zero 

when the input is negative and the raw output otherwise. The last hidden layer employs the 

tanh function as the activation function. The weights 𝜃, are updated using the Adam algorithm, 

with a minibatch size set to 256 [77]. 

• DQL parameters 

The replay memory D is assumed to contain the most recent 𝑀𝐷 =  300 transitions. The 

training of 𝜃 begins only when D stores more than 𝑆 =  200 transitions in each iteration. The 

total number of iterations is set to 𝑖 =  10,000. The probability of exploring new actions 

linearly decreases from 0.9 to 0 as the number of iterations increases and the learning rate is 

set to 0.01 [143]. 
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• SVM-RBF parameters 

The support vector machines (SVM) were used, employing the sequential minimal 

optimization algorithm with a radial basis function (RBF) kernel. The hyperparameters were 

optimized using the Bayesian optimizer, resulting in optimal values of 𝐶 =  968.88 and 

𝑔𝑎𝑚𝑚𝑎 =  0.27896 [144]. 

• KNN parameters 

The k-nearest neighbours (KNN) algorithm [145] was utilized in this study. The 

hyperparameters of the KNN algorithm were optimized using a Bayesian optimizer, resulting 

in the optimal value of K being determined as 2. This value of K was found to yield the best 

performance for PC estimation in the context of this study. 

• LR parameters 

The linear regression (LR) algorithm [146] was employed in this study. The hyperparameters 

of the LR algorithm were optimized using the 'least-squares' learner. After the optimization 

process, the optimal values for the hyperparameters lambda and beta were determined as 

1.0042e-03 and 1100, respectively. These optimized hyperparameters were found to yield the 

best performance for PC estimation in the context of this study. 

• DT parameters 

The decision tree (DT) algorithm [147] was utilized in this study for PC estimation. To optimize 

the performance of the DT algorithm, the hyperparameters were tuned using the Bayesian 

optimizer. Among the tuned hyperparameters, the minimum number of leaf node 

observations was identified as the critical factor. Through the optimization process, the 

optimal value for this parameter was determined as 10, indicating that a minimum of 10 

observations should be present in each leaf node for effective decision tree learning. It is 

important to note that the default values were retained for the other parameters that were 

not specifically mentioned in this context.  

3.5 Experimental results  

3.5.1 Experimental results of fusion scheme 1 

In the proposed fusion scheme 1, the ML algorithms consist of DNN algorithm, DQN 

algorithm, SVM algorithm, DNN/ GA algorithm and fuzzy/DQN algorithm. In order to do the 

ML regression models for the whole merged dataset, all of the mentioned ML algorithms are 

run, and, in the end, it is achieved PC estimations for each of the algorithm. Moreover, 

according to the five ML algorithms that are implemented in the merged dataset, DNN 

algorithm in terms of sum SE has higher performance rather than the other algorithms which 

it is shown in Figure 3-11. 
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                                                  (a)                                                                                           (b)        

Figure 3-11. Comparison of DNN with WMMSE algorithm on the merge dataset in CF-mMIMO networks, 𝑁 =

 40, 𝐾 =  10, and 𝑀 =  120, (a) sum SE (bit/s/Hz) vs time slot(s) with 30 episode, 10,000 iterations and 

elapsed time is 45352.682342 seconds. (b) The CDF of SE per UE, and elapsed time is 43543.724621 seconds. 

 

Figure 3-12 (a) illustrates the convergence of the DQN-based algorithm to fluctuations at 

approximately 4 bit/s/Hz over approximately 1,000 training time slots. Additionally, the sum 

SE values of the DQN-based algorithm deviate significantly from those of the WMMSE 

algorithm, requiring more time to converge. A comparison between the DNN and DQN 

algorithms reveals that the DNN algorithm converges faster and exhibits superior 

performance to the DQN algorithm. The superiority of the DNN algorithm can be attributed 

to two main reasons: Firstly, the DNN algorithm effectively learns spatial correlations among 

APs by extracting better special features from multiple observations of large-scale fading 

tensors. Secondly, the presence of residual dense blocks helps mitigate the issue of gradient 

vanishing by incorporating extra connections between the input and output of each layer. The 

performance of the DQN algorithm is reduced compared to the DNN algorithm. Moreover, it 

converges slower than the DNN algorithm, resulting in a larger performance gap between the 

DQN and WMMSE algorithms. This discrepancy can be attributed to the sensitivity of the DNN 

algorithm to the number of UEs. Therefore, continuous training of the DNN algorithm is 

necessary to achieve improved performance when the number of UEs changes. 

Figure 3-12 (b) displays the CDF of SE per UE performance. It can be observed that 

although the DQN algorithm achieves lower performance compared to the WMMSE 

algorithm, the result is approximately close to the desired target. Furthermore, when 

comparing with Figure 3-11, an increase in the number of APs (i.e., N = 40) leads to a higher 

computational complexity compared to the case of N = 36. 

In our analysis, it is considered several algorithms with their associated computational 

complexities according to our optimization and the dataset size. The Decision Tree (DT) 

algorithm operates with a computational complexity of 𝑂(𝑁𝑙𝑜𝑔𝑁). Logistic Regression (LR) 
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exhibits a computational complexity of 𝑂(𝑁3). K-Nearest Neighbors (KNN) has a 

computational complexity of 𝑂(𝑁𝑙𝑜𝑔𝑁). Support Vector Machine with Radial Basis Function 

kernel (SVM-RBF) tends to have a computational complexity of 𝑂(𝑁2). In contrast, Deep 

Neural Network (DNN) and Deep Q-Learning (DQL) algorithms, with their complexities of 

𝑂(𝑁2)., provide unique computational capabilities. These specific complexities can be 

advantageous in scenarios where computational efficiency is a priority and can aid in selecting 

appropriate algorithms for different applications and datasets, often making DNN and DQL 

preferable choices compared to algorithms like WMMSE in terms of computational 

performance. 

 

  

(a)                   (b) 

Figure 3-12. Comparison of DQN algorithm with WMMSE algorithm on the merge dataset in CF-mMIMO 

networks, and (a) sum SE (bit/s/Hz) vs time slot(s) with 30 episode, 10,000 iterations, and elapsed time is 

39286.864792 seconds. (b) The CDF of SE per UE and elapsed time is 38295.246857 seconds. 

 In Figure 3-13 (a), the comparison of different ML algorithms (DQN, SVM, fuzzy/DQN, 

DNN, and DNN/GA algorithms) with the WMMSE algorithm for the PC problem is depicted 

based on the sum SE over a period of 10,000 time slots in the CF-mMIMO network using the 

merged dataset. It can be observed that the DNN algorithm demonstrates the best 

performance and approximation compared to the other ML algorithms, converging to 

fluctuations from approximately 8 bit/s/Hz over 1,800 time slots. This indicates that the 

considered architecture of the DNN algorithm effectively addresses the PC problem in 

comparison to the other four ML algorithms. Notably, the DNN algorithm shows excellent 

prediction capabilities for the pilot and data power coefficients. Conversely, the SVM 

algorithm exhibits the lowest performance, converging to fluctuations at around 1 bit/s/Hz 

over approximately 800 time slots. Although the DNN/GA and Fuzzy/DQN algorithms exhibit 

similar trends, they converge slower than the DNN algorithm, reaching fluctuations at 

approximately 5 bit/s/Hz over about 800 time slots. Lastly, the DQN algorithm achieves a 

better sum SE than the SVM algorithm, converging to fluctuations at around 2 bit/s/Hz over 

approximately 1,700 time slots. 
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To assess the performance of DNN and other ML algorithms in achieving the desired 

objective, the CDF of downlink SE per UE [bit/s/Hz] is evaluated as shown in Figure 3-13 (b). 

While the DNN algorithm has lower SE per UE performance compared to the WMMSE 

baseline solution, it exhibits a significant improvement over the other ML algorithms. By 

zooming in on the curves of the WMMSE and DNN algorithms (in black and red colours, 

respectively), it is evident that the DNN algorithm approximates the WMMSE algorithm quite 

well. On the other hand, there is a large gap between the Fuzzy/DQN and SVM algorithms 

compared to the WMMSE algorithm, with both exhibiting similar SE performance. Regarding 

the DNN/GA algorithm, it shows a considerably low SE per UE performance and fails to 

approximate the WMMSE appropriately. 

 

   
(a)                                                                                       (b) 

Figure 3-13. Comparison of different ML algorithms (DNN, fuzzy/DQN, SVM, DQN, and DNN/GA) with WMMSE 

algorithm in CF-mMIMO network on the merged dataset, 𝑁 =  36, 𝐾 =  10, and 𝑀 =  100. (a) sum SE 

(bit/s/Hz) vs time slot(s) with 30 episode, 10,000 iterations and elapsed time is 97658.265781 seconds. (b) the 

CDF of DL SE per UE, and elapsed time is 92154.125846 seconds. 

Three other architectures for DNN (DNN1, DNN2, DNN3) were subsequently applied, and 

the details are described in Table 3-7, Table 3-8, and Table 3-9. The results can be observed 

in Figure 3-14. 

 
Table 3-7. Layout of DNN1. Parameters to be trained: 21,973. 

 size Parameters Activation function 

Input 10 - - 
Layer 1 (dense) 64 2624 linear 
Layer 2 (dense) 128 8320 elu 
Layer 3 (dense) 64 8256 tanh 
Layer 4 (dense) 32 2080 tanh 
Layer 5 (dense) 5 693 relu 
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Table 3-8.  Layout of the DNN2. The trainable parameters are 57,782. 

 Size Parameters Activation function 

Input 10  - 
Layer 1 (Dense) 256 2816 elu 
Layer 2 (Dense) 128 32896 relu 
Layer 3 (Dense) 64 8256 relu 
Layer 4 (Dense) 32 2080 relu 
Layer 5 (Dense) 16 528 relu 
Layer 6 (Dense) 5 85 linear 

 
 

Table 3-9. Layout of the DNN3. The trainable parameters are 192,583. 

 Size Parameters Activation function 

Input 10  - 
Layer 1 (Dense) 512 5632 elu 
Layer 2 (Dense) 256 131328 relu 
Layer 3 (Dense) 128 32896 relu 
Layer 4 (Dense) 64 8256 relu 
Layer 5 (Dense) 32 2080 relu 
Layer 6 (Dense) 16 528 relu 
Layer 7 (Dense) 5 85 linear 

 

In Figure 3-14, a comprehensive comparison of different Deep Neural Network (DNN) 
architectures is presented, including DNN1, DNN2, and DNN3, in relation to the WMMSE 
algorithm within the context of CF-mMIMO networks. The comparison is based on the 
merged dataset, covering 20,000 iterations, with N = 36, K = 10, and M = 100. The primary 
aim is to evaluate these DNN structures' ability to approximate the WMMSE algorithm's 
performance. Figure 3-14 (a) displays the sum Spectral Efficiency (SE) over a span of 20,000 
time slots. Three distinct DNN architectures were employed for this evaluation. Notably, 
DNN3 offers the closest approximation to the WMMSE algorithm, achieving a sum SE of 
approximately 6 bit/s/Hz. DNN3 demonstrates convergence to fluctuations over 
approximately 2,000 time slots, indicating its effectiveness in approximating the WMMSE 
algorithm. DNN2 also provides a reasonable approximation to the WMMSE algorithm 
compared to DNN1, converging to fluctuations at around 4 bit/s/Hz over approximately 1,800 
time slots. Conversely, DNN1 converges to fluctuations at approximately 1 bit/s/Hz over a 
2,000 time slot duration. Figure 3-14 (b) focuses on the Cumulative Distribution Function 
(CDF) of downlink SE per User Equipment (UE). The same three DNN structures are applied 
and compared to the WMMSE algorithm. Notably, DNN1 does not effectively approximate 
the WMMSE algorithm and exhibits a substantial gap compared to the baseline solution. In 
contrast, DNN3 demonstrates a much-improved approximation to the WMMSE algorithm 
compared to DNN2 and DNN1, resulting in a significant enhancement in SE per UE. 
 

The discrepancy in the benchmark curves observed in Figures 3-12, 3-13, and 3-14, 
particularly between Figures 3-13 and 3-14, can be attributed to differences in the number of 
iterations used in the simulations. In Figure 3-14, a total of 20,000 iterations were employed, 
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whereas Figures 3-12 and 3-13 were based on 10,000 iterations. The choice of the number of 
iterations directly impacts the convergence behavior and performance assessment of the 
algorithms. With a higher number of iterations in Figure 3-14, the algorithms had more 
opportunities to refine their performance and reach convergence. In contrast, Figures 3-12 
and 3-13 were evaluated over a shorter simulation period, which may not have allowed the 
algorithms to reach the same level of convergence. While it's a standard practice to keep the 
number of iterations consistent for a fair comparison, the variance in the number of iterations 
in this analysis was intentional, aimed at examining the impact of iteration count on algorithm 
performance. As a result, the differences in benchmark curves, particularly between Figures 
3-13 and 3-14, can be attributed to the extended simulation period in Figure 3-14, which 
allowed for further refinement of algorithm performance. 
 

    

(a)                                                                                              (b) 
Figure 3-14. Comparison of different DNN architectures (DNN1, DNN2, and DNN3) with WMMSE algorithm in 

CF-mMIMO networks on the merged dataset, 20,000 iterations, 𝑁 =  36, 𝐾 =  10, and 𝑀 =  100. (a) sum SE 

(bit/s/Hz) vs time slot(s) with 30 episode and elapsed time is 63822.854692 seconds. (b) the CDF of DL SE per 

UE and elapsed time is 52256.252660 seconds. 

 

For the proposed fusion scheme, the results of all the ML PC algorithms are fused 

together to create a new feature vector. Subsequently, this feature vector is utilized as input 

for another ML regression model, yielding the following outcomes. In Figure 3-15, a 

comparison between different ML algorithms and the WMMSE algorithm is presented based 

on the new PC feature vector obtained through the fusion of these ML algorithms in the CF-

mMIMO network. Among the ML algorithms, the DNN scheme demonstrates the highest 

performance throughout the duration, while SVM exhibits the lowest performance across the 

20,000 time slots. The DNN/GA algorithm converges to fluctuations at approximately 8 

bit/s/Hz after around 1,000 training time slots, showcasing superior performance compared 

to Fuzzy/DQN and DQN. Figure 3-15 (a) illustrates the efficacy of the fusion scheme in our 

system, resulting in improved approximation. Furthermore, in Figure 3-15 (b), DNN 

outperforms other ML algorithms, and when incorporated into the fusion scheme, enhanced 

performance is achieved, and effectively approximating the WMMSE algorithms. The sum SE 

of DNN in Figure 3-15 (b) stabilizes at approximately 9 bit/s/Hz after nearly 1,800 time slots, 
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while in Figure 3-15 (a), the sum SE of DNN is notably higher, reaching approximately 11 

bit/s/Hz and converging to fluctuations in around 1,000 time slots. Moreover, the sum SE of 

the SVM algorithm in Figure 3-15 (a) is approximately 5 bit/s/Hz, which increases to around 9 

bit/s/Hz in the fusion scheme, indicating improved approximation to the WMMSE algorithm. 

Similarly, the other ML algorithms exhibit increases in terms of sum SE. For instance, 

Fuzzy/DQN rises from around 5 bit/s/Hz to 6 bit/s/Hz, DQN increases from approximately 2 

bit/s/Hz to about 5 bit/s/Hz, and SVM improves from approximately 0 bit/s/Hz to about 1 

bit/s/Hz. 

    

   (a)                                                                                     (b) 

Figure 3-15. Comparison of different ML algorithms (DNN, fuzzy/DQN, SVM, DQN, and DNN/GA) with WMMSE 

algorithm in CF-mMIMO network; (a) on the new achieved PC feature vector (fusion scheme), sum SE 

(bit/s/Hz) vs time slot(s) with 30 episode, 20,000 iterations, 𝑁 =  36, 𝐾 =  10, and 𝑀 =  100. Elapsed time is 

72548.258963 seconds. (b) on the merge dataset. 

In Figure 3-16, the CDF of downlink SE per UE can be observed. The fusion approach has been 

employed in five ML algorithms, and their performance is compared with that of the WMMSE 

algorithm. This is referring to the utilization of a fusion scheme that combines the results of 

five specific Machine Learning (ML) algorithms: DNN, DNN/GA, SVM, DQN, and fuzzy/DQN. 

These ML algorithms are utilized in a specific manner where their outputs are merged to 

create a new feature vector. This combined feature vector is then used as input for another 

ML regression model. The purpose of employing the fusion approach is to leverage the 

collective capabilities of these five ML algorithms to enhance overall system performance. 

The subsequent analysis and comparisons presented in the following sections are based on 

the performance of these fused ML algorithms in contrast to the WMMSE algorithm.In Figure 

3-16 (a), it is observed that the best result is achieved by the DNN algorithm among the ML 

algorithms. Upon closer examination within the zoom rectangular section, a significant 

improvement in UE SE due to the fusion scheme is demonstrated. However, in Figure 3-16 

(b), a larger gap is observed between the DNN algorithm and WMMSE in comparison to Figure 

3-16 (a), while also considering that the computational complexity of the DNN algorithm is 

higher than that of the fusion scheme. 
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(a)                                                                                   (b) 

Figure 3-16. Comparison of different ML algorithms (DNN, fuzzy/DQN, SVM, DQN, and DNN/GA algorithms) 

with WMMSE algorithm in CF-mMIMO network, the CDF of SE per UE, 𝑁 =  36, 𝐾 =  10, and 𝑀 =  100, (a) 

on the new achieved feature vector (fusion scheme) and elapsed time is 68256.256874 seconds. (b) on the 

merged dataset and elapsed time is 92154.125846 seconds. 

3.5.2 Experimental results of fusion scheme 2 

Following the experimental setup presented in Section 3.4, the above-mentioned ML 

regression algorithms were evaluated. The six ML regression algorithms were evaluated on 

both a CL and a CF network dataset. The PC performance was assessed in terms of the sum SE 

(in bits/s/Hz) and the CDF subject to SE per UE (in bits/s/Hz). The comparison results are shown 

in Figure 3-17 for the CL-mMIMO system and in Figure 3-18 for the CF-mMIMO system. 

In Figure 3-17 (a) - (b), the seven curves represent the results of the WMMSE-based 

method (baseline) and the other six ML methods for the CL-mMIMO system. It can be observed 

that the DNN algorithm has provided a better approximation of the WMMSE heuristic 

algorithm compared to the other evaluated ML algorithms. Table 3-10 shows that the DNN 

algorithm also has the lowest execution time. The DQL algorithm has achieved the second-best 

performance in terms of higher SE per UE. On the other hand, the DT algorithm has 

demonstrated the lowest SE per UE among the other methods. The KNN and LR algorithms 

have shown similar performance, with higher SE compared to the DT algorithm. 
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(a)                                                (b) 

Figure 3-17. PC performance in CL-mMIMO system for WMMSE, DNN, DQL, KNN, SVM-RBF, DT and LR are 

illustrated in terms of (a) CDF subject to SE per UE, and (b) sum of SE. 

Table 3-10. AUC for each PC method in CL-mMIMO system. 

PC Method AUC 

WMMSE 1.2698e+04 

DNN 1.5502e+04 

DQL 2.3851e+04 

SVM-RBF 2.4931e+04 

KNN 2.5147e+04 

LR 2.5891e+04 

DT 2.9223e+04 

 

In Figure 3-18 (a) - (b), the seven curves represent the results of the WMMSE-based 

method (baseline) and the other six evaluated ML regression methods for the CF-mMIMO 

system. Similar to the CL-mMIMO network, the DNN algorithm provides a better 

approximation of the WMMSE algorithm in terms of both sum SE and SE per UE. The other ML 

regression models exhibit similar behaviour, with the DQL model performing as the second 

best and the DT model performing the worst. 
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(a)          (b) 

Figure 3-18. PC performance in CF-mMIMO system for WMMSE, DNN, DQL, KNN, SVM-RBF, DT and LR are 
illustrated in terms of (a) CDF subject to SE per UE, and (b) sum of SE. 

The differences between the evaluated ML regression models were quantified using the 

AUC measurement for the CDF curves. The results for the CL-mMIMO system can be found in 

Table 3-11, while the results for the CF-mMIMO system are presented in Table 3-12. The AUC 

differences (ΔAUC) were calculated as the distance between the CDF curve of each ML 

regression model and the CDF curve of the WMMSE algorithm using equation (2.28). 

Table 3-11.  AUC distance between WMMSE and ML-based PC methods in CL-mMIMO system. 

PC Method AUC Distance from WMMSE 

DNN 0.2804e+04 

DQL 1.1153e+04 

SVM-RBF 1.2233e+04 

KNN 1.2449e+04 

LR 1.3193e+04 

DT 1.6525e+04 

  

 

Table 3-12. AUC distance between WMMSE and ML-based PC methods in CF-mMIMO system. 

Methods AUC Distance from WMMSE 

DNN 0.3066e+04 

DQL 1.0559e+04 

SVM-RBF 1.1731e+04 

KNN 1.1421e+04 

LR 1.2728e+04 

DT 1.6267e+04 
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The execution time measurements for the CL-mMIMO and CF-mMIMO systems are 

presented in Tables 3-13 and 3-14, respectively. 

Table 3-13. Execution time comparison for different PC methods in CL-mMIMO system, execution time (CPU: 
Intel(R) Core i7-4790T @ 2.70 GHz, RAM: 32.0 GB). 

PC Method Execution time 

WMMSE 14,243.157 sec 

DNN 8,003.213 sec 

DQL 9,527.990 sec 

SVM-RBF 10,880.267 sec 

KNN 12,650.091 sec 

LR 14,326.831 sec 

DT 16,894.276 sec 

 

Table 3-14. Execution time comparison for different PC methods in CF-mMIMO system, execution time (CPU: 
Intel(R) Core i7-4790T @ 2.70 GHz, RAM: 32.0 GB). 

PC Method Execution time 

WMMSE 12,569.432 sec 

DNN 5,892.168 sec 

DQL 7,236.709 sec 

SVM-RBF 9,263.510 sec 

KNN 11,442.270 sec 

LR 13,678.090 sec 

DT 15,110.349 sec 

 

The execution time results in Tables 3-13 and 3-14 demonstrate a significant reduction in 

the execution time when using ML-based methods for PC estimation in both the CL and CF-

mMIMO systems. In the CL system, the execution time was reduced by approximately 50%, 

while in the CF-mMIMO system, the reduction exceeded 50%. 

In addition to evaluating the performance of different ML-based regression algorithms on 

PC, the execution time of the software implementations of WMMSE and the ML regression 

algorithms was compared. The evaluations were conducted using MATLAB version R2021a on 

a system with an Intel(R) Core (TM) i7-4790T CPU @2.70 GHz and 32.0 GB RAM.  

The evaluation indices of the algorithms used, including MSE, RMSE, and MAE, are 

presented in Table 3-15. The table displays the evaluation performance results of the various 

algorithms applied in the chapter. All values were calculated on a normalized scale. Therefore, 

the metrics presented here represent normalized error measurements. The results indicate a 

significant variation in errors across the different algorithms. In all cases, the DNN models 

demonstrated lower errors, highlighting their robustness and effectiveness when considering 

merged datasets. 
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Table 3-15. Evaluation performance results of different algorithms. 

Algorithm MAE MSE RMSE 

DNN 0.037 0.014 0.068 
DNN/GA 0.078 0.043 0.093 
DQN 0.065 0.035 0.088 
Fuzzy/DQN 0.082 0.056 0.099 
SVM 0.093 0.068 0.129 
WMMSE 0.123 0.099 0.145 
DNN1 0.065 0.028 0.075 
DNN2 0.027 0.007 0.059 
DNN3 0.022 0.003 0.055 

3.5.3 Improvement 

The enhanced decision tree (DT) approach for power control (PC) in CL/CF-mMIMO systems 

exhibits significant improvements. Notably, employing a five-layer DT structure has been 

observed to yield reduced mean absolute error (MAE) as the tree's depth increases, leading 

to enhanced overall performance. In comparison to traditional optimization-based methods, 

the fifth layer of the decision tree demonstrates remarkable performance similarity. As a 

result, DTs-based regression emerges as a promising approach, delivering impressive results 

with considerably shorter training durations. In my work, I further refined the DT technique 

based on a 5DT models, where varying depths of 20, 30, 40, 50, and 60 were employed. The 

number of leaf nodes was set at 25000, 45000, 65000, 85000, and 105000, revealing a 

noticeable reduction in MAE as the number of leaf nodes increased, as illustrated in the 

accompanying table. 

Table 3-16. Different DT structures and parameters. 

DTs Depth Leaf nodes MAE MSE RMSE 

DT1 20 25000 5.5 × 10−4 0.084 0.119 
DT2 30 45000 4.4 × 10−4 0.071 0.113 

DT3 40 65000 3.6 × 10−4 0.063 0,106 

DT4 50 85000 2.3 × 10−4 0.056 0.099 
DT5 60 105000 1.1 × 10−4 0.044 0.095 
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(a)                                                                                           (b) 

Figure 3-19 – Comparison of five DT models and WMMSE method on CL-mMIMO system. (a) Improved CDF of 

SE per UE [bit/s/Hz], (b) zoom view of (a). 

 

(a)                                                                                (b) 

Figure 3-20 – Improved performance of five DT models and comparing with WMMSE on CF-mMIMO system. 

(a) Improved CDF of SE per UE [bit/s/Hz], (b) zoom view of (a). 

 

The enhanced Decision Tree (DT) approach for power control in CL/CF-mMIMO systems 

demonstrates remarkable improvements over traditional optimization-based methods. By 

employing a five-layer DT structure, the study found that increasing the tree's depth leads to 

reduced Mean Absolute Error (MAE) and improved overall performance. Notably, even in 

comparison to conventional optimization methods, the fifth layer of the decision tree exhibits 

a significant similarity in performance. This suggests that the DT-based regression model 

holds promise as an efficient and effective approach for power control. 

Table 3-16 provides a detailed overview of the different DT models that were employed 

in the study. Each DT model is characterized by its depth and the number of leaf nodes. The 
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metrics evaluated include MAE (Mean Absolute Error), MSE (Mean Squared Error), and RMSE 

(Root Mean Squared Error). As the depth of the DT increases and the number of leaf nodes 

expands, there is a consistent reduction in MAE, indicating an improvement in the model's 

accuracy and performance. 

Figure 3-19 represents the improved performance achieved by the five different DT 

models and compares them to the traditional WMMSE method. The subplots (a) and (b) 

depict the Cumulative Distribution Function (CDF) of Spectral Efficiency (SE) per User 

Equipment (UE) in a bit/s/Hz scale. Subplot (a) illustrates the improved CDF, showcasing how 

the DT models outperform the WMMSE method across various percentiles of SE per UE. 

Subplot (b) provides a zoomed-in view, emphasizing the improvement in SE per UE as 

achieved by the proposed DT models. 

Similar to Figure 3-19, Figure 3-20 presents the enhanced performance of the five DT 

models in comparison to the WMMSE method, but this time in the context of the CF-mMIMO 

system. The subplots (a) and (b) illustrate the CDF of SE per UE, showcasing the improvements 

achieved by the DT models across different percentiles of SE per UE. Subplot (b) offers a close-

up view of the enhancement in SE per UE, emphasizing the superiority of the proposed DT 

models. 

Table 3-17 and Table 3-18 provide a comparison of the execution times for different DT 

structures in both the CL-mMIMO and CF-mMIMO systems. The execution times are 

presented for various DT models and the WMMSE method. The results indicate that the 

proposed DT models consistently demonstrate shorter execution times compared to the 

previous DT model and even the WMMSE method. This reduction in execution time highlights 

the efficiency and practicality of the enhanced DT-based approach. 

In summary, this work showcases the significant improvements achieved through the 

application of an enhanced Decision Tree approach for power control in CL/CF-mMIMO 

systems. The introduction of varying depths and leaf nodes contributes to improved accuracy, 

reduced error metrics, and shorter execution times, making the DT-based approach a 

promising solution for practical implementation. 

Table 3-17. Execution time comparison of different DT structures for PC methods in CL-mMIMO system, 
execution time (CPU: Intel(R) Core i7-4790T @ 2.70 GHz, RAM: 32.0 GB). 

PC Method Execution time 

WMMSE 14,243.157 sec 

DT1 13,437.739 sec 

DT2 12,683.552 sec 

DT3 11,274.654 sec 

DT4 10,459.129 sec 

DT5 10,154.443 sec 

DT (Proposed previous model) 16,894.276 sec 
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Table 3-18. Execution time comparison of different DT structures for PC methods in CF-mMIMO system, 
execution time (CPU: Intel(R) Core i7-4790T @ 2.70 GHz, RAM: 32.0 GB). 

PC Method Execution time 

WMMSE 12,569.432 sec 

DT1 11,872.176 sec 

DT2 11,024.361 sec 

DT3 10,327.094 sec 

DT4 9,536.967 sec 

DT5 9,213.538 sec 

DT (Proposed previous model) 15,110.349 sec 

 

3.6  Conclusion 

In this chapter several ML methods are proposed for CL/CF-mMIMO system, tailored explicitly 

to address the PC problem in CL/CF-mMIMO systems. Among them are the innovative 

proposed Fuzzy/DQN method, proposed DNN/GA method, proposed support vector machine 

(SVM) method, proposed SVM/RBF method, proposed decision tree (DT) method, proposed K-

nearest neighbor (KNN) method, proposed linear regression (LR) method, and the novel 

proposed fusion scheme. The fusion scheme expertly combines multiple ML methods, such as 

system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) and system model 2 

(DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), which are thoroughly evaluated to 

maximize the sum spectral efficiency (SE), offering a viable alternative to computationally 

intensive heuristic algorithms.  

Furthermore, the proposed fusion schemes for the power control (PC) problem in the 

cellular/cell-free (CL/CF) massive multiple-input multiple-output (mMIMO) system have 

shown promising results. By integrating and fusing multiple machine learning (ML) PC 

algorithms, the fusion schemes have effectively improved the PC performance. The fusion 

process involves creating a new feature vector by combining the results of the ML algorithms, 

which is then used as input for another ML regression model, typically a deep neural network 

(DNN), to calculate the optimal power control.  

The experimental results have demonstrated that the DNN algorithm exhibits the best 

performance and approximation compared to other ML algorithms in the fusion schemes. It 

converges to fluctuations in the sum spectral efficiency (SE) over time and shows superior 

performance in approximating the performance of the widely used weighted minimum mean 

square error (WMMSE) algorithm. The DNN algorithm's ability to learn spatial correlations 

among access points (APs) and mitigate the gradient vanishing problem with residual dense 

blocks contributes to its superior performance. 

Furthermore, the proposed fusion schemes have outperformed other ML algorithms, such 

as DQN, fuzzy/DQN, SVM, and DNN/GA, in terms of sum SE and approximation to the WMMSE 
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algorithm. The fusion of ML algorithms has led to significant improvements in sum SE and 

better approximation of the baseline solutions. 

Additionally, the comparison of different ML algorithms with the WMMSE algorithm using 

the new PC feature vector obtained through fusion has revealed the effectiveness of the fusion 

scheme. The DNN scheme consistently demonstrates the highest performance, while the SVM 

algorithm shows the lowest performance. The DNN/GA algorithm exhibits convergence to 

fluctuations with better performance compared to Fuzzy/DQN and DQN. 

The cumulative distribution function (CDF) analysis of downlink SE per user equipment 

(UE) further supports the efficacy of the fusion scheme. While there may be variations in the 

gap between the DNN algorithm and WMMSE algorithm in different scenarios, overall, the 

fusion scheme has shown improved UE SE performance. 

The proposed fusion schemes in the CL/CF-mMIMO system have successfully enhanced 

the PC performance compared to baseline algorithms. The utilization of ML algorithms, 

particularly the DNN algorithm, has resulted in better approximation and improved sum SE. 

The findings highlight the potential of using fusion schemes and ML techniques in addressing 

the PC problem in complex wireless networks. Further research can be conducted to optimize 

the fusion schemes, explore different ML algorithms, and investigate their performance in 

various network scenarios. Moreover,the evaluation of ML regression algorithms for PC in 

CL/CF-mMIMO systems has provided valuable insights into their performance and 

computational efficiency. 

The findings also reveal that the DQN algorithm ranks second in terms of SE per UE, 

indicating its effectiveness in achieving high individual user SE. The K-nearest neighbors (KNN) 

and logistic regression (LR) algorithms have demonstrated similar performance, outperforming 

the decision tree (DT) algorithm. These results emphasize the potential of ML regression 

algorithms in improving PC performance in mMIMO systems. 

Furthermore, the evaluation of area under the curve (AUC) differences between the CDF 

curves of the ML regression models and the WMMSE algorithm provides a quantitative 

measure of their performance disparity. The AUC differences confirm the superior 

performance of the DNN algorithm in approximating the WMMSE algorithm, while the DQL 

algorithm shows the second-best performance. 

Importantly, the execution time analysis highlights the computational efficiency of the 

ML-based methods compared to the software implementation of the WMMSE algorithm. The 

ML regression algorithms significantly reduce the execution time by more than 50% in both 

the CL and CF-mMIMO systems, offering a practical advantage in real-time PC applications. 

Moreover, the evaluation performance of the ML algorithms was assessed using MAE, 

MSE, and RMSE measurements. The results revealed a notable disparity in errors among the 

different algorithms. Specifically, the DNN models consistently exhibited lower errors, 

underscoring their robustness and effectiveness, particularly when applied to merged 

datasets. 
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In summary, the evaluation of ML regression algorithms for PC in CL/CF-mMIMO systems 

has demonstrated the superior performance of the DNN algorithm in approximating the 

WMMSE algorithm. The DNN algorithm, along with the DQL algorithm, has exhibited higher SE 

per UE compared to other ML algorithms. The significant reduction in execution time further 

strengthens the feasibility and practicality of ML-based PC approaches. These findings 

contribute to advancing the understanding and implementation of ML techniques for efficient 

and effective PC in mMIMO systems.  
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Chapter 4. 

 

4 PC in CL/CF-mMIMO systems using transfer learning with deep 

neural networks 

 

4.1 Introduction 

Power control (PC) is a critical aspect of massive multiple-input-multiple-output (mMIMO) 

networks. Various heuristic algorithms, such as the weighted mean square error (WMMSE) 

algorithm, have been employed to optimize PC. However, these algorithms often require 

significant computational power to allocate power efficiently. In this chapter, the focus is on 

addressing this challenge through the application of ML-based algorithms, which can provide 

close to optimal solutions with low computational complexity. The proposed approach 

involves the use of transfer learning with deep neural networks (TLDNN) to maximize the sum 

spectral efficiency (SE) in PC in cellular/cell-free (CL/CF)-mMIMO systems.  

To tackle the PC task in mMIMO systems, researchers have explored various heuristic 

methods, such as the WMMSE, successive convex approximation, and max-min algorithms. 

However, these methods often suffer from high computational complexity and convergence 

issues. To address these challenges, artificial intelligence (AI) and ML-based methodologies 

for PC have been investigated. Previous studies have considered [148] and genetic algorithms 

have been investigated in [133]. As regards, ML-based PC, deep neural networks have been 

used in [40, 41, 44, 149, 150], deep reinforcement learning in [135], k-means algorithm and 

Gaussian mixture models in [136] and k-nearest neighbours algorithm in [137] for ML-based 

PC.  

In recent years, TL has emerged as a powerful technique for enhancing the performance 

of deep neural networks (DNNs) [59]. While TL has been widely used in various applications, 

its potential in the PC task for mMIMO systems has not been extensively explored and to the 

best of our knowledge, this is the first implementation of TLDNN in the context of PC in CF-

mMIMO systems. Previous studies mainly focused on TL for channel estimation [60] and CSI 

feedback [61, 62], neglecting its application to PC. This chapter aims to fill this gap by 

investigating the potential of TL in the PC task. Pretrained DNN models are leveraged for PC 

in both CL/CF-mMIMO systems.  

The motivation behind incorporating transfer learning as a pivotal component of our 

research is deeply rooted in the urgent and evolving demands of mMIMO networks. 

Traditional PC algorithms, while effective to some extent, are increasingly facing limitations 
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due to their computational complexity and inability to adapt to the dynamic nature of modern 

wireless communication systems. 

1. Addressing Computational Complexity: One of the primary motivations for choosing 

transfer learning is to tackle the computationally intensive nature of PC optimization in 

mMIMO networks. Conventional heuristic algorithms like the weighted mean square error 

(WMMSE) require substantial computational resources, making real-time adaptation and 

efficient power allocation a significant challenge. Transfer learning allows us to harness pre-

existing knowledge from related tasks, thereby reducing the computational burden and 

facilitating more efficient PC. 

2. Leveraging the Power of Deep Neural Networks: Deep neural networks (DNNs) have 

demonstrated exceptional capabilities in various machine learning applications. By 

integrating DNNs into the context of power control, we unlock the potential for more 

intelligent and adaptable PC strategies. Transfer learning empowers us to leverage pretrained 

DNN models, benefiting from their learned representations and generalization capabilities, 

ultimately leading to improved PC performance. 

3. Adapting to Complex mMIMO Scenarios: mMIMO networks introduce complexities 

such as varying channel conditions, a large number of antennas, and heterogeneous user 

demands. Transfer learning provides a unique advantage in adapting PC strategies to these 

intricate scenarios. By transferring knowledge from tasks with similarities to PC, we can 

enhance the robustness and adaptability of our PC solutions, ensuring reliable 

communication in diverse mMIMO environments. 

4. Uncharted Potential in mMIMO: While transfer learning has found success in various 

machine learning applications, its application to PC in CL/CF-mMIMO systems is relatively 

unexplored. This research chapter pioneers the utilization of transfer learning in the context 

of mMIMO power control. We seek to unlock its untapped potential, demonstrating its 

effectiveness in addressing the specific challenges posed by mMIMO networks. 

In summary, the motivation for selecting transfer learning as a fundamental aspect of our 

research lies in its capacity to alleviate computational complexity, harness the capabilities of 

DNNs, adapt to complex mMIMO scenarios, and explore its uncharted potential in addressing 

the critical issue of power control in modern wireless communication systems. This strategic 

choice reflects our commitment to advancing the state-of-the-art in mMIMO PC while 

ensuring practicality and efficiency. 

Unlike mMIMO systems, CF-mMIMO systems lack channel hardening and favourable 

propagation conditions. As the number of APs increases, the deterministic nature of CF-

mMIMO systems is called into question, and randomness becomes a significant factor, 

especially when single-antenna APs are employed. This observation justifies the findings, 

which suggest that the accuracy of the proposed model improves with reduced randomness 

in the underlying system.  
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The evaluation results demonstrate that the TLDNN approach outperforms the DNN-

based PC method and is twice as fast as the WMMSE-based PC approach. Efficient power 

allocation at BSs or APs can alleviate inter-tier and intra-tier interference, leading to enhanced 

network efficiency. Therefore, optimizing PC is crucial in mMIMO systems. 

This chapter also delves into the exploration of PC in cellular (CL) and cell-free (CF) 

massive multiple-input-multiple-output (mMIMO) systems, specifically focusing on the 

effects of the number of base stations (BSs), access points (APs), and the number of users. 

The primary objective of this chapter is to investigate the influence of these factors on the 

performance of PC in CL/CF-mMIMO systems. Furthermore, the utilization of machine 

learning (ML) techniques to address the PC challenge is thoroughly examined. 

By employing ML methodologies, this chapter aims to provide a comprehensive analysis 

of the impact of BSs, APs, and the number of users on PC in CL/CF-mMIMO systems. The 

investigation considers varying network configurations and explores how these factors 

influence PC performance. The objective is to gain valuable insights into the optimization of 

PC strategies in CL/CF-mMIMO systems, ultimately improving overall network efficiency. 

The remaining sections of this chapter are structured as follows. Section 4.2 provides an 

introduction to the system model and problem formulation for PC in the CL/CF-mMIMO 

systems. In Section 4.3, the proposed TLDNN algorithm for the PC problem in CL/CF-mMIMO 

systems is presented. The algorithm outlines the steps involved in leveraging TL and DNN 

models to optimize power allocation. In this section, also a deep neural network-based 

approach for power control in massive MIMO systems is introduced. This section focuses on 

a comparative analysis and performance evaluation of different setups, specifically utilizing 

deep neural networks. The proposed approach aims to evaluate the PC strategies in CL/CF-

mMIMO systems by leveraging the capabilities of deep neural networks. The comparative 

analysis provides insights into the strengths and weaknesses of the different setups, enabling 

a comprehensive evaluation of their performance. 

Section 4.4 describes the experimental setup used to evaluate the proposed TLDNN 

algorithm. This includes details about the datasets utilized and the evaluation metrics 

employed to assess the performance of the algorithm. The chosen dataset and metrics ensure 

a comprehensive evaluation of the PC solution in CL/CF-mMIMO systems. 

The experimental results are presented and analyzed in Section 4.5. This section 

compares and evaluates the performance of the proposed TLDNN algorithm against baseline 

algorithms. The results provide insights into the effectiveness and efficiency of the TLDNN 

approach in solving the PC problem, highlighting its advantages and improvements over 

traditional methods. Also, in this section, it is presented the experimental results obtained 

from the evaluation of the deep neural network-based PC method. The results are analyzed 

and discussed in detail, shedding light on the performance of the evaluation proposed 

approach in comparison to other PC methods. This section provides valuable insights into the 
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effectiveness and efficiency of the deep neural network-based approach in evaluating the PC 

in CL/CF-mMIMO systems. 

Finally, Section 4.6 concludes the chapter by summarizing the key findings and discussing 

their implications. The conclusion emphasizes the significance of the proposed TLDNN 

algorithm in enhancing PC performance in CL/CF-mMIMO systems. Furthermore, this section 

highlights the contributions of the proposed evaluation approach and provides a 

comprehensive overview of the chapter, emphasizing the significance of the deep neural 

network-based PC method in the context of CL/CF-mMIMO systems. 

4.2 System model and problem formulation 

4.2.1 System model 

It is considered a mMIMO architecture with N APs in the case of CF system or N BSs in the 

case of a cellular system, which serves K UEs using the same time-frequency resource under 

TDD operation. Each AP or BS has M antennas, whereas each UE has a single antenna. All 

APs/BSs are connected to a CPU through a fronthaul link. The network setups consisted of 36 

APs/BSs, each equipped with 20 antennas, serving 10 single-antenna UEs within the coverage 

area. The UEs moved randomly in four directions (up, down, left, and right) with velocities 

uniformly distributed between 0 and 1m/s. The UEs maintained their speed and direction for 

one second before selecting new values. The initial positions of the UEs at time t = 0 were 

uniformly distributed across the coverage area. A dataset of NT = 160,000 samples capturing 

independent realizations of the UEs' positions was created for each network. The network 

parameters were based on [8] and [130], respectively. The model size was set to (300m × 

300m) with a carrier frequency of 3.4 GHz and a bandwidth of 20MHz. The APs/BSs were 

uniformly distributed in a 100m × 100m square. When calculating distances, a height 

difference of 5m between the APs/BSs and UEs was taken into account. The noise variance 

was set to 𝜎2 = −95 dBm, and the coherence time was set to 200 modulation symbols, 

following [21]. For channel estimation in simulations, the length of the uplink pilot was set to 

6 symbols. The large-scale fading was modelled as a combination of path loss and shadowing, 

following [130]. All other network parameters used in the simulations were set the same as 

in [8] for the CL and [130] for the CF-mMIMO system. The common features between the two 

networks, including coverage volume, number of APs, number of UEs, noise power, carrier 

frequency, pilot power, bandwidth, maximum power constraint, and total number of 

samples, were used to facilitate knowledge transfer.  

Furthermore, for the proposed evaluation models, it is considered this system model as 

follows: 

The evaluation encompassed a range of APs/BSs (𝑁 =  [50, 60, . . . , 400]) and a varying 

number of single-antenna UEs (𝐾 =  [5, 6, . . . , 20]). The UEs were subject to random 
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movements within the coverage area, with each UE randomly moving in one of four directions 

(up, down, left, or right) at velocities uniformly distributed between 0 and 1 m/s. The speed 

and direction of each UE remained constant for one second before new values were chosen. 

The initial positions of the UEs at time 𝑡 =  0 were uniformly distributed throughout the 

coverage region. Two datasets were generated for each network, with one containing 𝑁𝑇 =

 50,000 samples and the other containing 𝑁𝑇 =  100,000 samples. These datasets 

represented independent realizations of the UEs' positions. The simulation parameters are 

summarized in Table 4-1. 

Table 4-1. Simulation parameters. 

Parameters Value 

The CL/CF radius 
Carrier frequency 
Bandwidth 
APs/BSs radius 
noise variance 𝜎2 
coherence time 
length of the uplink pilot 
APs/BSs 𝑁 
Number of users 𝐾 
Velocity regarding the movement of each UE  
Dataset samples 𝑁𝑇 

300𝑚 ×  300𝑚 
3.4 𝐺𝐻𝑧 
20𝑀𝐻𝑧 

100𝑚 ×  100𝑚 
– 95 𝑑𝐵𝑚 

200 
6 

[50, 60, … , 400] 
[5, 6, … , 20] 
0 and 1 𝑚/𝑠 

50,000 and 100,000 

 

It is defined the 𝑀 × 1 channel gain vector between AP/BS n and UE k as formulated in 

equation (2.1) for CF-mMIMO system and equation (2.10) for CL-mMIMO system. This 

channel vector encapsulates the characteristics of the channel, incorporating factors such as 

spatial properties, path loss, and interference effects that are prevalent between the AP and 

UE. 

The channels are estimated by the BSs using uplink pilots. The estimation process 

employs minimum mean-square error (MMSE) estimation, resulting in an estimate �̂�𝑙𝑘
𝑛  that 

consists of M independent Gaussian elements with similar statistical characteristics. The 

mean square of the m-th element is calculated using equation (2.2) for CF-mMIMO system 

and equation (2.11) for CL-mMIMO system.  

Based on the channel estimation, the BS utilizes normalized conjugate beamforming 

(NCB) to transmit signals towards the UEs. It is assumed that 𝑞𝑘 with 𝔼{|𝑞𝑘|2} = 1 represents 

the intended signal for user k. The transmitted signal 𝐱𝑛 from BS n is calculated using equation 

(2.3) for CF-mMIMO system and equation (2.12) for CL-mMIMO system. The user k receives 

the signal 𝑦𝑘
𝑙  from all BSs in the network, which is calculated using equation (2.4) for CF-

mMIMO system and equation (2.13) for CL-mMIMO system.  
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4.2.2 Problem formulation 

The spectral efficiency of the downlink is formulated using equation (2.5) for CF-mMIMO 

system and equation (2.14) for CL-mMIMO system. Then, the objective of maximizing the sum 

SE for PC is formulated applying equation (2.6) for CF-mMIMO system and equation (2.15) for 

CL-mMIMO system. The PC problem in the mMIMO system is addressed using WMMSE 

algorithm, where the allocated power 𝑝𝑙𝑘
𝑛  is estimated based on the channel gain vector 𝐡𝑙𝑘

𝑛 , 

which is expressed utilizing equations (2.7) - (2.9) for CF-mMIMO system and equations (2.16) 

- (2.18) for CL-mMIMO system. 

4.3 Proposed TLDNN algorithm for PC problem in CL/CF-mMIMO system 

The equations (2.7) - (2.9) for the CF-mMIMO system and equations (2.16) - (2.18) for the CL-

mMIMO system require solving with a polynomial or quasi-polynomial complexity. However, 

the computational complexity of polynomial solutions may be too high for real-time 

applications, especially when the positions of UEs change rapidly, requiring frequent re-

evaluation of the power allocation problem. Due to its high computational complexity, the 

WMMSE heuristic algorithm can be substituted with ML-based regression models. In the case 

of PC, an approximation of the allocated power, denoted as �̃�𝑛,𝑘 for CF-mMIMO system and  

�̃�𝑙𝑘
𝑛  for CL-mMIMO system is defined using the function 𝑓. These equations ((3.1) – (3.3)) are 

applied for system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM algorithms) and 

system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), respectively.  

TL has been demonstrated to be an effective technique for enhancing the performance 

of ML models. In TL, rather than training a neural network (NN) from the beginning, a model 

is first trained on a different dataset and subsequently retrained on the target dataset, as 

illustrated in the proposed block diagram depicted in Figure 4-1. 

As depicted in Figure 4-1, a DNN regression model is initially trained using the data from 

mMIMO system A, resulting in model A for PC. This model is then retrained using data from 

mMIMO system B to develop the PC model 𝐵𝐴. 
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train ML
regression modelm-MIMO

network A

Power Control 
ML model A

re-train ML
regression modelm-MIMO

network B

Power Control 
ML model BA

 

 

Figure 4-1.  Proposed block diagram of the TL methodology for PC in CL/CF-mMIMO systems. 

To design the proposed algorithm, the first step involves constructing a DNN model for 

PC. The predicted output is obtained by the DNN model based on the source input. The 

adjustment of the weight and bias of the DNN model is performed using the Adam 

optimization algorithm, guided by the mean square error (MSE) function. Subsequently, a 

portion of the DNN model is replicated and held constant as a pre-designed filter. The TLDNN 

model is then trained using the target input and the corresponding PC output data. The 

optimization of the weight and bias of the adaptation layers in the TLDNN model is 

accomplished using the Levenberg-Marquardt (LM) algorithm, following the MSE criterion. 

Proposed steps of the TL based DNN algorithm for PC in CL/CF-mMIMO systems are presented 

in Algorithm 4-1. Figure 4-2 demonstrates the proposed block diagram of TLDNN structure. 
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Algorithm 4-1. Proposed steps of TL-based DNN algorithm for PC in CL/CF-mMIMO systems. 

Power control parameters: 

• Transmit power (𝑝𝑛,𝑘 , 𝑝𝑙𝑘
𝑛 ): The power level used by each user 𝑘 to send its signal to the BS or AP. 

• Total power constraint (𝑃𝑛,𝑘_𝑚𝑎𝑥, 𝑃𝑙𝑘
𝑛 _𝑚𝑎𝑥): The maximum allowable transmit power for each user, 

ensuring that the total power allocated to all users does not exceed a predefined budget. 
Training DNN model: 

1. Determine the structure of the DNN model. 
2. Obtain the source input and output data 𝐠𝑛,𝑘, 𝐡𝑙𝑘

𝑛 , from a pre-existing PC task using conventional 

algorithms. 
3. Define the MSE as the cost function for the DNN model to quantify the difference between the 

predicted SINR values and the target SINR values. 
4. Use the Adam optimization algorithm to optimize the DNN model based on the source data. The 

Adam optimizer updates the network coefficients (weights and bias) iteratively to minimize the MSE 
and improve the DNN model's performance. 

5. Extract a subset of the pre-trained DNN model's layers as the predesigned filter, which captures the 
knowledge learned from the source task. 

Training TLDNN model: 
1. Determine the structure of the TLDNN model, which is based on the pre-trained DNN model with 

the predesigned filter. 
2. Collect the target input and output data for the PC problem, under the defined scenario. 
3. Define the MSE as the cost function for the TLDNN model, measuring the deviation between the 

predicted SINR values and the desired target SINR values. 
4. Initialize the TLDNN model using the predesigned filter obtained from the pre-trained DNN model, 

leveraging the knowledge learned from the source task to expedite convergence. 
5. Utilize the Levenberg-Marquardt (LM) algorithm to fine-tune the TLDNN model based on the target 

data. The LM algorithm updates the network coefficients to minimize the MSE and adapt the model 
to the PC problem. 

6. Loop over 𝑑 =  1, 2, . . . , 𝐷2 (if needed) for further fine-tuning, allowing the TLDNN model to adapt 
to varying network configurations. 

7. Calculate the output of the TLDNN network, representing the adjusted transmit power levels for 
each user to achieve the desired target SINR values. 

8. Check if the performance requirements are met, such as ensuring that the total transmit power of 
each user complies with the total power constraint (𝑃𝑛,𝑘_𝑚𝑎𝑥, 𝑃𝑙𝑘

𝑛 _𝑚𝑎𝑥). If satisfied, exit the loop. 

9. Update the network coefficients (weights and bias) of the TLDNN model iteratively through the LM 
algorithm until convergence is achieved. 
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A. Source and target input 

 

The existing training data and the data to be trained are called as source input  𝑋𝑛𝑠 and 

target input 𝑋𝑛𝑡,respectively. The input items of  𝑋𝑛𝑠 and  𝑋𝑛𝑡 are the same. Source output  

𝑌𝑛𝑠 and target output  𝑌𝑛𝑡 also have the same output items. 

 

B. Pre-designed filter 

The first k layers (FC1, FC2, …, FCk) of the DNN model with 𝑁 fully connected (FC) layers are 

copied and fixed as a predesigned filter. The output of the predesigned filter is written as 
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Figure 4-2. Proposed block diagram of TLDNN structure. 
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 𝑆𝑛 = 𝑓𝑝𝑟𝑒−𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(𝑋𝑛)                  (4.1) 

where  𝑓𝑝𝑟𝑒−𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑓𝑖𝑙𝑡𝑒𝑟(. ) is the relation of the predesigned filter. 

C. Adaptation layers 

The 𝑙-layer (𝑙 =  𝑁 −  𝑘) FC layers are defined as the TL layers. TL layers (TL1, TL2, ..., TLl) 

and a new output layer are added to achieve adaptation. The output of the predesigned filter 

is the input of adaptation layers. Therefore, the output of TLi can be expressed as 

𝑆𝑖 = 𝑓1(𝑤𝑖
𝑇. 𝑆𝑖−1 + 𝑏𝑖), 𝑖 = 1,2, . . . , 𝑙             (4.2) 

where  𝑤𝑖 and  𝑏𝑖 are the weights and the bias of the TLi layer, respectively, 𝑓1(. ) is the 

activation function. The output of the predesigned filter is the input of the TL1 layer, when 

𝑖 = 1, 𝑎0 = 𝑆𝑛. The output can be written as 

𝑌𝑛 = 𝑓0(𝑤. 𝑎𝑙 + 𝑏)      (4.3) 

where  𝑤 and  𝑏 are the weights and the bias of the output layer, respectively,  𝑎𝑙  is the output 

of the TLl layer.  𝑓0(. ) is the linear activation function. 

Furthermore, it is delved into the proposed evaluation methodology employed to address 

the PC problem in CL/CF-mMIMO systems. The focus is on evaluating the performance of a 

DNN-based approach for PC in CL/CF-mMIMO systems, with particular emphasis on the sum 

SE and the CDF related to each UE. The investigation includes analyzing the effects of varying 

the number of UEs, APs/BSs, and the utilization of the DNN-based PC approach in both CL and 

CF architectures. The experimental results shed light on the influence of parameter ‘𝐠’, which 

impacts the input vector of the DNN algorithm, as demonstrated by the DNN minus WMMSE 

curve. These findings highlight the importance of considering the number of APs/BSs and 

antennas to achieve optimal PC performance in mMIMO systems. 

The simulations conducted in this chapter demonstrate that the number of UEs does not 

impact the dimensionality of the DNN's input vector, resulting in no change in the AUC. 

However, increasing the number of APs/BSs or antennas affects the dimensionality of the 

DNN's input vector, leading to changes and increases in the AUC. A comparative analysis 

between the DNN method and the conventional WMMSE method for addressing the PC 

optimization problem is performed.  

The findings contribute to a deeper understanding of PC optimization and its implications 

for the design and optimization of mMIMO systems. Specifically, the results highlight the 

potential of leveraging DNN-based methods to enhance PC performance. By considering 

various system parameters and conducting a comprehensive evaluation, this chapter provides 

valuable insights into the effectiveness of DNN-based approaches for PC in CL/CF-mMIMO 

systems. 
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4.4 Experimental setup  

4.4.1  Experimental setup for TLDNN 

The WMMSE algorithm was chosen as the baseline PC approach, and DNN-based scenarios 

were employed to approximate it. The DNN models in both the CL/CF-mMIMO systems 

received inputs of size 𝑁 ×  𝐾, with 𝑁 =  36 and 𝐾 =  10. The training parameters and 

structures of the DNN models are provided in Table 4-2 and Table 4-3, respectively. The DNN 

structure is selected empirically, similar to [8]. 

Table 4-2. Training parameters for DNN algorithm. 

Symbols Values 

Learning rate 0.005 
Batch size 200 
Epochs 100 
Optimiser Adam 

 

Table 4-3. Structure of DNN. The Trainable Parameters are 263,253. 

Layers Size Parameters Activation function 

Input 360 - - 
Layer 1 (Dense) 512 77312 elu 

Layer 2 (Dense) 256 131328 relu 

Layer 3 (Dense) 128 32896 relu 

Layer 4 (Dense) 64 8256 relu 
Layer 5 (Dense) 32 2080 relu 
Layer 6 (Dense) 16 528 relu 
Layer 7 (Dense) 10 85 linear 

 

4.4.2  Experimental setup for effects of the number of BSs, APs and UEs 

The DNN algorithm is employed to approximate the action-value function, utilizing seven fully 

connected feedforward hidden layers with the following neuron counts in each layer: 512, 256, 

128, 64, 32, 16, and 10, respectively. The first layer utilizes the elu activation function, while 

the second to sixth hidden layers utilize rectified linear units (ReLUs) as the activation function. 

The output of ReLU is 0 if the input is less than 0, and the raw output is used otherwise. The 

last layer adopts a linear activation function. The Adam algorithm is employed for weight 

updates (𝜃) with a mini-batch size of 256. The learning rate, batch size and epochs are adjusted 

with the trial and error approach [8]. 
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For both the CL and CF-mMIMO architectures, the DNN models take inputs of size 𝑁 ×  𝐾, 

with 𝑁 =  36 and 𝐾 =  10 [77]. Table 4-4 presents the training parameters, and Table 4-5 

illustrates the structure of the DNN models. The choice of the DNN structure was based on 

empirical considerations following [8]. 

Table 4-4. Training Parameters for DNN Models. 

Symbols Values 

Learning rate 0.005 

Batch size 256 

Epochs 100 

Optimizer Adam 

 

Table 4-5. Structure of DNN. The Trainable Parameters are 263,253. 

Layers Size Parameters Activation function 

Input 360 - - 
Layer 1 (Dense) 512 77312 elu 
Layer 2 (Dense) 256 131328 relu 
Layer 3 (Dense) 128 32896 relu 
Layer 4 (Dense) 64 8256 relu 
Layer 5 (Dense) 32 2080 relu 
Layer 6 (Dense) 16 528 relu 
Layer 7 (Dense) 10 85 linear 

 

4.5 Experimental results 

The TL methodology was evaluated based on the experimental setup described in Section 4.4. 

Two cases were investigated: (a) pretraining a DNN model on a CL system dataset and then 

retraining and testing it on a CF system dataset, and (b) pretraining a DNN model on a CF 

system dataset and then retraining and testing it on a CL system dataset. These cases followed 

the TL concept illustrated in Figure 4-1. For both cases, three experimental scenarios were 

examined: 

• Scenario 1 (S1): The DNN model for PC was trained using 60% of the target dataset and 

tested on the remaining 40% of the same dataset. 

• Scenario 2 (S2): The DNN model for PC was trained using a dataset different from the 

target dataset and tested on 40% of the target dataset. 

• Scenario 3 (S3): The DNN model for PC was pretrained using a dataset different from the 

target dataset, then retrained using 60% of the target dataset, and finally tested on the 

remaining 40% of the same dataset. 



 

 
CHAPTER 4 – PC IN CL/CF-MMIMO SYSTEMS USING TRANSFER LEARNING WITH DEEP NEURAL NETWORKS 

AND EFFECTS OF THE NUMBER OF BSs, APs, AND THE NUMBER OF USERS IN THESE SYSTEMS WITH ML 

METHODOLOGY 

106 
 

The details of these three scenarios for both cases can be found in Tables 4-6 and 4-7. 

Table 4-6. Three evaluation scenarios of case ‘a’, i.e., transfer learning from CL to CF system. 

Scenario Pre-Train Re-Train Train Test 

S1 - - 60% CF 40% CF 
S2 100% CL - - 40% CF 
S3 100% CL 60% CF - 40% CF 

 

Table 4-7. Three evaluation scenarios of case ‘b’, i.e., transfer learning from CF to CL system. 

Scenario Pre-Train Re-Train Train Test 

S1 - - 60% CL 40% CL 
S2 100% CF - - 40% CL 
S3 100% CF 60% CL - 40% CL 

 

The PC performance was evaluated in terms of the sum of spectral efficiency and the 

cumulative distribution function (CDF) of SE per UE (in bits/s/Hz). 

Figure 4-3 (a) illustrates the sum SE over a span of 20,000 time slots, where dataset A was 

trained using the DNN algorithm to create model A. It is evident that DNN effectively 

approximated the WMMSE algorithm with dataset A, converging to fluctuations of 

approximately 6 bit/s/Hz after 1,000 time slots. In contrast, WMMSE exhibited higher 

fluctuations of around 8 bit/s/Hz, reaching convergence after 300 time slots. Figure 4-3 (b) 

depicts the CDF of SE per UE, demonstrating that DNN consistently outperformed the 

WMMSE algorithm in terms of SE. Furthermore, it is expected that continuous training of the 

DNN algorithm will yield improved performance as the number of UEs fluctuates. 
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     (a)         (b)    

Figure 4-3. Comparison of DNN algorithm with WMMSE algorithm in CF-mMIMO network on the dataset A in 
order to make model A, L = 36, K = 10, and M = 100. (a) sum-SE (bit/s/Hz) vs time slot(s) with 30 episode, 

20,000 iterations and elapsed time is 35286.247956 seconds.; (b) the CDF of SE per UE and elapsed time is 
32258.584796 seconds. 

 

• Figure 4-4 (a) illustrates the sum SE over a span of 20,000 time slots, where the DNN 

was trained using 60% of dataset B to create model B. The performance of DNN was 

then compared to the WMMSE baseline solution. It is evident that by utilizing 60% of 

dataset B, the sum SE of DNN significantly improved, converging to fluctuations of 

approximately 5 bit/s/Hz after approximately 1,000 time slots. In comparison, the 

WMMSE algorithm, which exhibits the best performance, achieved a sum SE higher 

than that of DNN and converged to fluctuations of around 6 bit/s/Hz after 

approximately 2,000 time slots. Notably, by using only 60% of dataset B, we achieved 

a reduction in computational complexity and faster convergence of the DNN. Figure 

4-4 (b) displays the CDF of SE per UE, where the DNN algorithm achieved 

approximately 97% SE per UE. Compared to training based on dataset A, this approach 

demonstrated reduced computational complexity.  

System A, refers to a cellular system and system B, refers to a cell-free system. So, this 

research study initially trains a DNN regression model using dataset from the cellular system 

(System A), resulting in "model A for PC." Subsequently, it is retrained "model A" using dataset 

from the cell-free system (System B) to develop the "PC model BA" or "B𝐴." 
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(a)                                                                                                   (b)  

Figure 4-4. Comparison of DNN algorithm with WMMSE algorithm in CF-mMIMO network on 60% of the 
dataset B in order to make model B (MB), L = 36, K = 10, and M = 100. (a) sum-SE (bit/s/Hz) vs time slot(s) with 
30 episode, 20,000 iterations and elapsed time is 32821.124856 seconds. (b) the CDF of SE per UE and elapsed 

time is 30225.518523 seconds. 

In Figure 4-5, it is observed three scenarios: S1, S2, and S3. In the first scenario (S1), the 

DNN algorithm was trained using 60% of dataset B, resulting in the creation of model B (MB). 

Subsequently, 40% of dataset B was utilized to test the results, leading to the achievement of 

result S1. For the second scenario, model A was employed, and 40% of dataset B was used for 

testing, resulting in result S2. Finally, in the third scenario, model A was retrained using 60% 

of dataset B, yielding model A*. Testing was conducted using 40% of dataset B, leading to the 

attainment of result S3. 

In Figure 4-5 (a), the sum SE over a period of 20,000 time slots is presented, and the 

results of the three scenarios (S1, S2, and S3) are compared with the WMMSE algorithm. It is 

evident that the results of S2 are unacceptable and deemed useless. Furthermore, training on 

dataset A and testing on dataset B yielded ineffective outcomes. On the other hand, S1 

exhibited notable performance improvements, converging to fluctuations of approximately 4 

bit/s/Hz after approximately 1,000 time slots. However, the sum SE of S3 demonstrated the 

highest performance among all scenarios. 

In Figure 4-5 (b), the CDF of the SE per UE is displayed, providing a precise comparison 

with the WMMSE algorithm. The blue dotted line representing S3 showcases the highest SE 

per UE among the different scenarios, as observed in Figure 4-5 (a). Consequently, our TLDNN 

algorithm has achieved exceptional performance in solving the PC problem in CF-mMIMO 

systems. 
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(a)                                                                                   (b) 

 Figure 4-5. Applying DNN and WMMSE algorithms in CF-mMIMO network on 40% of the dataset B in order to 
test model B (MB) for S1, on model A and 40% of the dataset B in order to test the result for S2, on model A 

and retrain it with 60% of the dataset B in order to create model A* for S3, L = 36, K = 10, and M = 100. (a) sum 
SE (bit/s/Hz) vs time slot (s) with 30 episode, 20,000 iterations and elapsed time is 45025.042209 seconds. (b) 

the CDF of SE per UE, and elapsed time is 42158.145895 seconds. 

 

Figure 4-6 presents the evaluation results for case 'a', which involves transfer learning 

from a CL to a CF-mMIMO system. Figure 4-6 (a) - (b) displays four curves representing the 

WMMSE-based results (baseline system) and the DNN-based approximations using scenarios 

S1, S2, and S3. Both the sum-SE (Figure 4-6 (a)) and CDF curves (Figure 4-6 (b)) demonstrate 

that the S3 scenario, which involves TL with DNNs, outperforms the other two scenarios (S1 

and S2) where DNN-based PC models were not retrained using a pre-existing model. S3 

provides the closest approximation to the WMMSE PC, as evidenced by its CDF curve being 

significantly closer to the WMMSE curve compared to S1 and S2. 

This improvement in PC performance can be attributed to the fact that the trainable 

parameters of the evaluated DNN models converge to values closer to the optimal ones when 

parameter estimation starts from pre-trained values rather than random initialization. This 

observation aligns with other applications of TL. Notably, in this evaluation, TL was performed 

from a CL to a CF-mMIMO system, demonstrating that TL can be effective even between 

different types of mMIMO systems.  

 

 

 

 

 



 

 
CHAPTER 4 – PC IN CL/CF-MMIMO SYSTEMS USING TRANSFER LEARNING WITH DEEP NEURAL NETWORKS 

AND EFFECTS OF THE NUMBER OF BSs, APs, AND THE NUMBER OF USERS IN THESE SYSTEMS WITH ML 

METHODOLOGY 

110 
 

 

 

               (a)                                                                                                  (b) 

Figure 4-6. Case ‘a’ of TL from a CL to a CF-mMIMO system. PC performance for WMMSE, and scenarios S1, S2 
and S3 are illustrated in terms of (a) sum of SE, and (b) in terms of CDF subject to SE per UE. 

The performance difference between Scenario 1 (S1) and Scenario 3 (S3) in Fig 4-6 can 

be attributed to several factors related to the training and testing data distribution, as well as 

the utilization of transfer learning. Let's analyze why S1's performance is worse than S3: 

Training Data Distribution: In S1, 60% of the target dataset (CF system) is used for 

training. This means that the model is exposed to a relatively limited amount of CF system 

data during training. As a result, it may not fully capture the complexities and characteristics 

of the CF system, leading to suboptimal performance during testing. 

Testing Data Distribution: In S1, the remaining 40% of the CF system data is used for 

testing. Since the model has primarily seen CF system data during training, it is more adapted 

to this distribution. However, when tested on a different dataset, which could have variations 

or characteristics not seen during training, the model's performance may suffer. 

Transfer Learning: S3, on the other hand, leverages transfer learning, where the model is 

initially pretrained on 100% of the CL system data and then fine-tuned on 60% of the CF 

system data. This approach allows the model to benefit from the knowledge learned from the 

CL system and then adapt it to the CF system. As a result, S3 has a more robust foundation 

for CF system testing. 

Feature Generalization: Transfer learning helps the model generalize features and 

patterns learned from the CL system to the CF system. This aids in improving the model's 

ability to understand the CF data, even when the training data for the CF system is limited. In 

S1, this generalization capability is lacking, leading to a performance gap. 

In conclusion, while S1's results may be considered quite good given the absence of 

transfer learning, S3 outperforms it because of the advantages conferred by transfer learning. 
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Transfer learning allows the model to adapt better to the CF system's nuances, leading to 

improved performance in testing scenarios, as observed in Fig 4-6 and Table 4-6. 

Next, the PC performance for case 'b' is evaluated, involving TL from a CF to a CL-mMIMO 

system. The evaluation results, shown in Figures 4-7 (a) - (b), again indicate that the S3 

scenario, using transfer learning with DNNs, outperforms S1 and S2 in both sum-SE (Figure 4-

7 (a)) and CDF curves (Figure 4-7 (b)). The CDF curve of S3 is notably closer to the WMMSE 

curve compared to S1 and S2. 

The execution time comparison between the WMMSE method and the DNN-based PC 

method is presented in Table 4-8. The results demonstrate that the required execution time 

for the WMMSE method is significantly higher, more than two times, compared to the DNN-

based PC method. This finding highlights the value of ML-based PC methods, particularly 

when the PC performance is comparable to that of the WMMSE method, as observed in the 

TL approach. Importantly, it should be noted that TL does not result in an increase in 

execution time, as the structure of the DNN model remains unchanged. 

 

  

               (a)                                                                                                  (b) 

Figure 4-7. Case ‘b’ of TL from a CF to a CL-mMIMO system. PC performance for WMMSE, and scenarios S1, S2 
and S3 are illustrated in terms of (a) sum of SE, and (b) in terms of CDF subject to SE per UE. 

Table 4-8. Comparison of the execution time for the PC problem, execution Time (CPU: Intel(R) Core i7-4790T 
@ 2.70 GHz, RAM: 32.0 GB) 

PC method Execution Time 

WMMSE 11,056.126 sec 
TL DNN 5,482.053 sec 

 

The figures presented below illustrate the impact of the number of UEs and APs/BSs on DNN-

based PC for both CL and CF systems. The range of UEs was selected as [5 - 20], while the 

range of APs/BSs was chosen as [50 - 400]. 
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Figure 4-8 showcases the results of the ΔAUC of the DNN minus WMMSE curve for the CL 

architecture with a fixed value of 𝑘 =  10, while varying the number of antennas (𝑀) from 

10 to 150 and the number of APs (𝑁) from 50 to 400. The study investigates the impact of 

changing 𝑀 and 𝑁 on the performance of the DNN algorithm in the CL-mMIMO system. 

The analysis starts with the consideration of equation (3.2), which states that the 

dimensionality of ‘𝐠’ does not affect the input vector of the DNN when the number of UEs (𝑘) 

is increased. This results in no change in the 𝛥𝐴𝑈𝐶. However, when 𝑀 and 𝑁 are increased, 

the dimensionality of ‘𝐠’ becomes a factor affecting the input vector of the DNN. In particular, 

the term 𝐠𝑘 ∈ ℂ𝑀𝑁×1,  and its dimension changes as 𝑀 and 𝑁 are varied. 

The results from Figure 4-8 confirm the impact of M and N on the DNN's input vector, 

leading to changes and increases in the ΔAUC for the CL-mMIMO system. As 𝑀 and 𝑁 are 

increased, the 𝛥𝐴𝑈𝐶 gradually increases, indicating improved system optimality. For 

instance, when 𝑁 =  200 and 𝑀 =  150, the 𝛥𝐴𝑈𝐶 increases to approximately 0.03, 

showing a positive effect on system performance. Similarly, when 𝑁 =  400 and 𝑀 =  200, 

the ΔAUC further increases to approximately 0.08, reinforcing the improvement trend. 

Notably, even when 𝑁 =  400 and 𝑀 =  0, the ΔAUC remains relatively high at 

approximately 0.05, signifying the benefits of employing the CL architecture. 

 

Figure 4-8. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CL architecture with 𝑘 =  10, 𝑀 =

 [10, 20, 30, … , 𝑎𝑛𝑑 150], and 𝑁 =  [50, 60, 70, … , 𝑎𝑛𝑑 400]. 

These findings provide valuable insights into the design and optimization of CL-mMIMO 

systems. Increasing the number of antennas and APs enhances the system's performance, 

especially when considering multi-cell scenarios with a larger number of APs. The increase in 

𝛥𝐴𝑈𝐶 suggests that the DNN algorithm can effectively adapt to the changing input 

dimensionality and optimize the PC more efficiently as 𝑀 and 𝑁 increase.  

Figure 4-9 presents the crucial results of the 𝛥𝐴𝑈𝐶 of the DNN minus WMMSE curve for 

the CF architecture in a CF-mMIMO system. The study keeps the number of UEs constant at 
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𝑘 =  10 and varies the numbers of antennas (𝑀) from 10 to 150 and the APs (𝑁) from 50 to 

400. 

Similar to the analysis in the previous figure (Figure 4-8) for the CL architecture, it can be 

noted that the ‘𝐠’ term in equation (3.2) continues to influence the input vector of the DNN 

algorithm. Consequently, the ΔAUC gradually changes and increases as 𝑀 and 𝑁 are increased 

in the CF-mMIMO system. The results from Figure 4-9 further reinforce the positive impact of 

increasing 𝑀 and 𝑁 on system performance in CF-mMIMO. As M and 𝑁 increase, the ΔAUC 

improves, indicating better system optimality. For instance, when 𝑁 =  200 and 𝑀 =  150, 

the 𝛥𝐴𝑈𝐶 increases to approximately 0.003, and when 𝑁 =  400 and 𝑀 =  200, the 

𝛥𝐴𝑈𝐶 further increases to approximately 0.008. Even in the scenario where 𝑁 =  400 and 

𝑀 =  0, the 𝛥𝐴𝑈𝐶 remains relatively high at approximately 0.005, reaffirming the 

advantages of employing CF-mMIMO architectures. The findings from Figure 4-9 are 

consistent with the previous observations in Figure 4-8, which demonstrated the benefits of 

increasing 𝑀 and 𝑁 in the CL-mMIMO system. The similarity in results between the CF and CL 

architectures suggests that the DNN algorithm can effectively adapt to the input 

dimensionality changes in both CL/CF-mMIMO systems. This adaptability is essential for 

efficient PC, especially in complex scenarios with numerous antennas and APs. 

 

Figure 4-9. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CF architecture with 𝑘 =  10, 𝑀 =

 [10, 20, 30, … , 𝑎𝑛𝑑 150], and 𝑁 =  [50, 60, 70, … , 𝑎𝑛𝑑 400]. 

Figure 4-10, along with Figure 4-11, presents significant findings regarding the ΔAUC of 

the DNN minus WMMSE curve for both the CL and CF architectures. In these experiments, 

the study considers a range of UEs from 5 to 20, a fixed value of 𝑀 = 20, and 𝑁 varying from 

50 to 400, based on a substantial number of 100,000 samples. The analysis commences by 

exploring the impact of the number of UEs (k) and the number of APs (𝑁) on the DNN 

algorithm. According to equation (3.2), the ‘𝐠’ term does not affect the input vector of the 

DNN when the number of UEs is varied, resulting in no significant change in the ΔAUC. 

However, for the number of APs (𝑁), the ‘𝐠’ term does influence the input vector of the DNN, 
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leading to an increase in the 𝛥𝐴𝑈𝐶. The results from Figure 4-10 specifically focus on the CL 

architecture, where the number of UEs is varied while M is fixed at 20. As observed, the 𝛥𝐴𝑈𝐶 

remains relatively constant as the number of UEs changes. This behaviour aligns with the 

understanding that ‘𝐠’ does not impact the input vector of the DNN algorithm when k is 

altered. On the other hand, the number of APs (N) has a noticeable effect on the ΔAUC, 

causing an increase as N increases. The results from these experiments are crucial as they 

offer insights into the behaviour of the DNN algorithm in PC for both the CL and CF 

architectures. The consistent 𝛥𝐴𝑈𝐶 for varying numbers of UEs indicates that the DNN can 

handle different UE configurations effectively without significant changes in system 

performance. This adaptability is vital for practical applications where the number of active 

UEs may vary dynamically. On the other hand, the observed increase in 𝛥𝐴𝑈𝐶 as 𝑁 increases 

demonstrates the benefits of employing a CF architecture with more APs in both CL and CF 

setups. The CF architecture allows for better PC, leading to improved system performance 

and overall optimality.  

 

Figure 4-10. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CL architecture with 𝑘 =  [5 −  20], 𝑀 =

 20, and 𝑁 =  [50, 60, 70, … , 400] based on 100,000 samples. 
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Figure 4-11. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CF architecture with 𝑘 =  [5 −  20], 𝑀 =

 20, and 𝑁 =  [50, 60, 70, … , 400] based on 100,000 samples. 

 

Figure 4-12 presents crucial findings regarding the comparison of the 𝛥𝐴𝑈𝐶 results 

between the DNN and WMMSE curves for a CL-mMIMO system. The study considers a range 

of UEs from 5 to 20, a fixed value of 𝑀 =  20, and 𝑁 varying from 50 to 400, based on both 

50,000 and 100,000 samples. 

The analysis focuses on understanding how the number of samples in the simulation 

affects the performance of the DNN algorithm. Specifically, it is compared the results for two 

scenarios: Figure 4-12 (a) with 50,000 samples and Figure 4-12 (b) with 100,000 samples. 

Additionally, the experiment investigates how the number of UEs impacts the DNN's 

performance across both sample sizes. The results from Figure 4-12 (a) show that with 50,000 

samples, the DNN architecture demonstrates lower performance compared to the WMMSE 

curve. However, Figure 4-12 (b) illustrates that as the number of samples in the simulation 

increases to 100,000, the DNN algorithm exhibits better performance, outperforming the 

WMMSE curve.  

In the context of the CF architecture, as depicted in Figure 4-13 (a) and (b), similar trends 

are observed. The performance of the DNN also improves when the number of samples 

increases from 50,000 to 100,000. Hence, in both CL and CF architectures, increasing the 

number of samples enhances the DNN's performance. Furthermore, the study evaluates the 

impact of the number of UEs on the DNN's performance. The results demonstrate that while 

the number of UEs ranges from 5 to 20 in both cases, it has no significant impact on the 

results. This finding indicates that the DNN algorithm can effectively handle different numbers 

of UEs without compromising its performance. These results are critical as they highlight the 

importance of an adequate number of samples in the simulation to achieve reliable and 
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accurate results. The improved performance of the DNN with increased samples suggests that 

a larger dataset allows the DNN to learn and adapt more effectively, leading to better PC 

solutions. 

 

(a) 

 

(b) 

Figure 4-12. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CL architecture with 𝑘 =  [5 −  20], 𝑀 =

 20, 𝑎𝑛𝑑 𝑁 =  [50, 60, 70, … , 400]. (a Results with 50,000 samples, (b) Results with 100,000 samples. 
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                                                                                              (a) 

 

(b) 

Figure 4-13. Results of 𝛥𝐴𝑈𝐶 of DNN minus WMMSE curve of CF architecture with 𝑘 =  [5 −  20], 𝑀 =

 20, and 𝑁 =  [50, 60, 70, … , 400]. (a) Results with 50,000 samples, (b) Results with 100,000 samples. 

 

The evaluation results for case 'b' provide evidence of the effectiveness of TL from a CF 

to a CL-mMIMO system, thus reinforcing the applicability of TL with DNNs in PC for mMIMO 

systems. Furthermore, the execution time of the software implementations of WMMSE and 

the evaluated DNN architecture is compared using MATLAB version R2021a on a system with 

an Intel(R) Core (TM) i7-4790T CPU @ 2.70 GHz and 32.0 GB RAM.  



 

 
CHAPTER 4 – PC IN CL/CF-MMIMO SYSTEMS USING TRANSFER LEARNING WITH DEEP NEURAL NETWORKS 

AND EFFECTS OF THE NUMBER OF BSs, APs, AND THE NUMBER OF USERS IN THESE SYSTEMS WITH ML 

METHODOLOGY 

118 
 

The execution time of the software implementations of WMMSE and the DNN regression 

algorithms was compared using MATLAB version R2021a on a system equipped with an 11th 

Gen Intel(R) Core(TM) i9-11900H processor operating at 2.50 GHz and 32.0 GB of RAM. 

4.6 Conclusion 

The power control (PC) problem in massive multiple-input-multiple-output (mMIMO) systems 

is crucial for optimizing network performance. Traditional heuristic algorithms, such as the 

weighted mean square error (WMMSE) algorithm, have been widely used for PC optimization. 

However, these algorithms often require substantial computational resources to achieve 

efficient power allocation. This chapter explores the application of machine learning (ML)-

based algorithms, specifically transfer learning with deep neural networks (TLDNN), to 

address this challenge and provide near-optimal solutions with lower computational 

complexity. The focus is on maximizing the sum spectral efficiency (SE) in PC for cellular/cell-

free (CL/CF)-mMIMO systems. 

Researchers have investigated various heuristic methods, including WMMSE, successive 

convex approximation, and max-min algorithms, to tackle the PC task in mMIMO systems. 

However, these methods often suffer from high computational complexity and convergence 

issues. To overcome these challenges, artificial intelligence (AI) and ML-based approaches for 

PC have been explored. Previous studies have utilized genetic algorithms, deep neural 

networks, deep reinforcement learning, k-means algorithm, Gaussian mixture models, and k-

nearest neighbours algorithm for ML-based PC. However, the potential of transfer learning 

(TL) in the PC task for mMIMO systems has not been extensively investigated, especially in 

the context of CF-mMIMO systems. This chapter aims to fill this research gap by exploring the 

effectiveness of TL in PC and leveraging pre-trained DNN models for PC in CL/CF-mMIMO 

systems. 

CF-mMIMO systems differ from mMIMO systems in terms of channel hardening and 

favourable propagation conditions. As the number of APs increases, the deterministic nature 

of CF-mMIMO systems becomes questionable, and randomness becomes a significant factor, 

especially when single-antenna APs are employed. The accuracy of the proposed model 

improves when the underlying system exhibits reduced randomness. This observation 

suggests that the performance of the proposed approach benefits from reduced randomness 

in CF-mMIMO systems. 

To address the PC problem in mMIMO systems, the SE of the downlink is formulated, and 

the objective of maximizing the sum SE is established. The WMMSE algorithm, based on 

equations (2.7) - (2.9) for CF-mMIMO systems and equations (2.16) - (2.18) for CL-mMIMO 

systems, is used to estimate the allocated power based on the channel gain vector. However, 

the computational complexity of these equations is high, making them unsuitable for real-

time applications. To overcome this challenge, ML-based regression models are employed to 



 

 
CHAPTER 4 – PC IN CL/CF-MMIMO SYSTEMS USING TRANSFER LEARNING WITH DEEP NEURAL NETWORKS 

AND EFFECTS OF THE NUMBER OF BSs, APs, AND THE NUMBER OF USERS IN THESE SYSTEMS WITH ML 

METHODOLOGY 

119 
 

approximate the allocated power using the function f. The TL methodology is then employed 

to transfer knowledge from one network to another, leveraging pre-trained DNN models for 

PC in both CL/CF-mMIMO systems. 

This chapter provides evidence of the effectiveness of TL in PC, demonstrating its 

applicability even between different types of mMIMO systems. The trainable parameters of 

the DNN models converge to values closer to the optimal ones when pre-trained, leading to 

improved PC performance. TL from a CL to a CF-mMIMO system and from a CF to a CL-

mMIMO system both yield improvements in PC performance compared to DNN-based PC 

models without TL. 

The evaluation results illustrate the advantages of TL-based PC approaches. In all cases, 

TL demonstrates superior performance compared to non- TL-based approaches, achieving 

lower sum SE fluctuations and higher SE per UE. TL from a CL to a CF-mMIMO system and 

from a CF to a CL-mMIMO system both exhibit notable improvements, with the latter 

achieving the highest performance among the scenarios. These findings validate the 

effectiveness of TL in PC for CF-mMIMO systems and reinforce its potential for improving PC 

performance in mMIMO networks. 

Moreover, the evaluation results demonstrate that the TLDNN approach outperforms the 

DNN-based PC method and achieves approximately twice the speed of the WMMSE-based PC 

approach. Efficient power allocation at APs or BSs can mitigate inter-tier and intra-tier 

interference, leading to improved network efficiency. Therefore, optimizing PC is crucial in 

mMIMO systems. 

Furthermore, the execution time comparison between the WMMSE method and the 

evaluated DNN architecture reveals that the DNN-based PC method outperforms the 

WMMSE method in terms of execution time. The DNN-based approach achieves comparable 

PC performance to the WMMSE method while significantly reducing execution time. This 

highlights the value of ML-based PC methods, particularly when considering the TLDNN 

approach. Notably, TL does not introduce additional execution time overhead, as the 

structure of the DNN model remains unchanged. 

The findings of this chapter contribute to the advancement of PC methodologies by 

examining the effects of BSs, APs, and the number of users on PC performance in CL/CF-

mMIMO systems. By employing ML methodologies, a comprehensive analysis is conducted to 

understand the impact of these factors on PC performance. The investigation considers varying 

network configurations, enabling insights into the optimization of PC strategies and improving 

overall network efficiency. 

The proposed evaluation approach utilizes deep neural network (DNN)-based techniques 

to address the PC problem. The comparative analysis and performance evaluation of different 

setups, including CL and CF architectures, provide valuable insights into the strengths and 

weaknesses of DNN-based methods for PC optimization. The evaluation focuses on the sum 
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spectral efficiency (SE) and the cumulative distribution function (CDF) related to each user 

equipment (UE), enabling a comprehensive assessment of the proposed approach's 

effectiveness. 

The experimental setup used for the evaluation of the DNN-based PC method is carefully 

designed to reflect real-world scenarios. The datasets, network configurations, and evaluation 

metrics employed ensure a rigorous evaluation of the proposed approach's performance. The 

simulations consider a range of UEs, APs/BSs, and antenna configurations, capturing the 

impact of these parameters on the PC performance. 

The experimental results obtained from the evaluation shed light on the performance of 

the DNN-based PC method. The analysis of the results demonstrates that the number of UEs 

does not significantly impact the dimensionality of the DNN's input vector, resulting in no 

significant change in the area under the curve (AUC). On the other hand, increasing the number 

of APs/BSs and antennas influences the dimensionality of the DNN's input vector, leading to 

changes and increases in the AUC. The comparative analysis between the DNN method and 

the conventional WMMSE method highlights the effectiveness of the proposed evaluation 

approach for PC optimization. 

Figure 4-8 demonstrates the relationship between M, N, and the ΔAUC in the CL-mMIMO 

system, highlighting the beneficial impact of increasing the number of antennas and access 

points on system optimality. These findings contribute to the understanding of how the DNN 

algorithm can be effectively utilized in PC for CL-mMIMO systems and offer valuable guidance 

for practical implementations.  

Figure 4-9 highlights the significant impact of the numbers of M and APs on the ΔAUC in 

the CF-mMIMO system. By keeping the number of UEs constant and varying M and N, the 

research confirms that CF-mMIMO architectures with increased M and N achieve higher 

system optimality. The DNN algorithm's adaptability to changes in input dimensionality 

further supports its practicality in PC for both CL/CF-mMIMO systems. These results 

contribute valuable insights into designing and optimizing CF-mMIMO systems, offering 

potential advancements in future wireless communication technologies.  

Figure 4-10 and Figure 4-11 contribute essential findings to the understanding of the DNN 

algorithm's behavior in PC for both the CL and CF architectures. The adaptability of the DNN 

to varying numbers of UEs and the benefits of increasing the number of APs highlight the 

potential of CF-mMIMO systems for future wireless communication networks. 

Figure 4-12 provides essential insights into the impact of the number of samples and the 

number of UEs on the DNN's performance in PC for CL-mMIMO systems. The results highlight 

the importance of having a sufficient number of samples in the simulation to obtain reliable 

and accurate performance evaluations. Additionally, the DNN's adaptability to varying 

numbers of UEs further supports its practicality in handling real-world mMIMO scenarios with 

dynamic UE configurations.  
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Figure 4-13 reinforces the importance of data quantity in training ML-based PC algorithms 

for CL/CF- MIMO systems. With an adequate number of samples (100,000), the DNN algorithm 

demonstrates superior performance, outperforming the traditional WMMSE curve. Moreover, 

the DNN's adaptability to varying UE configurations further validates its practicality in handling 

real-world scenarios. These findings provide valuable insights into designing efficient and 

robust PC solutions for future wireless communication networks. Future research could delve 

deeper into the optimal sample size and explore potential trade-offs between data quantity 

and computational complexity to strike a balance between performance and efficiency in DNN-

based PC methodologies. 

In conclusion, this chapter provides valuable insights into PC evaluation in CL/CF-mMIMO 

systems. The utilization of ML techniques, specifically deep neural networks, offers significant 

potential for enhancing PC performance while reducing computational complexity. The 

findings contribute to a deeper understanding of PC optimization and its implications for the 

design and optimization of mMIMO systems. The results underscore the importance of 

considering factors such as the number of APs/BSs, antennas, and network configurations in 

achieving optimal PC performance. This research sets the stage for further advancements in 

PC methodologies and the development of effective PC solutions tailored to specific network 

configurations and user requirements. 
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Chapter 5. 

 

5 Heterogeneous Graph Neural Network (HGNN), Adaptive 

Neuro-Fuzzy Inference System (ANFIS), and Reinforcement Learning 

(RL) – HARP method for power control in cell-free mmWave massive 

MIMO wireless communication system 

 

5.1 Introduction 

Spectral efficiency (SE) is a crucial performance metric in wireless communication systems, 

especially in cell-free (CF) mmWave massive MIMO environments. Power control (PC) is a 

promising technique to improve SE. However, optimizing a series of optimization problems, 

such as the weighted minimum mean squared error (WMMSE), fractional programming (FP), 

water-filling and max-min fairness methods, poses challenges for existing optimization 

techniques. 

The prevalence of access points (APs) over user equipment (UE) leads to the nearly 

equivalent performance of linear precoding, namely conjugate beamforming (CBF) and zero-

forcing precoding (ZFP), as that of dirty-paper coding [16] within CF-mMIMO. It has been 

extensively confirmed that ZFP surpasses CBF in terms of spectral efficiency, with significantly 

higher rates [27]. However, in ZFP, all APs are mandated to transmit their local channel state 

information (CSI) to a central processing unit (CPU) through a fronthaul network. 

Subsequently, they must wait until the CPU returns the precoded data, introducing a notable 

delay. This procedure notably amplifies channel aging in fast-fading scenarios. This challenge 

is expected to become even more complex in 6G, wherein factors such as high mobility (e.g., 

high-speed trains and unmanned aerial vehicles) and high frequencies (like mmWave and 

terahertz signals) [151] exacerbate wireless channel fading. Therefore, the canonical ZFP 

within CF-mMIMO faces two primary predicaments: (1) performance decline due to channel 

aging, and (2) ineffective utilization of time resources because of the "Stop-and-Wait" 

mechanism. To the best knowledge of this thesis, this method has not been used in CF 

mmWave-mMIMO system before and this is the first time it has been applied on this system. 

In the context of CF-mMIMO system, the superiority concerning spectral efficiency is 

attributed to zero-forcing precoding (ZFP). However, the drawback of channel aging, brought 

about by fronthaul and processing delays, is suffered. Within this chapter, the introduction is 

made of a robust scheme named delay-tolerant zero-forcing precoding (DT-ZFP) [152]. This 

scheme makes use of deep learning-aided channel prediction to mitigate the impact of 

outdated channel state information (CSI). For this multi-user scenario, a predictor comprising 

a series of user-specific predictive modules is specially devised. With the utilization of the 
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prediction horizon's degree of freedom, both the conveyance of CSI and precoded data 

through a fronthaul network and the transmission of user data and pilots over an air interface 

can be concurrently executed. Consequently, not only is channel aging effectively countered 

by delay tolerant zero forcing precoding (DT-ZFP), but also the ineffectual "stop-and-wait" 

mechanism of the canonical ZFP in CF-mMIMO is evaded. It is to be noted that the application 

of this is carried out on CF mmWave-mMIMO rather than CF-mMIMO. 

Also, it is considered hybrid approaches that combine elements of DT-ZFP and 

beamforming. This could involve using DT-ZFP for interference mitigation and beamforming 

for directing energy towards specific users. 

Furthermore, in this chapter, it is proposed a novel PC method for maximizing SE inspired 

by heterogeneous graph neural network, ANFIS, and reinforcement learning assisted power 

control (HARP-PC), which represents a cutting-edge approach to optimize spectral efficiency 

(SE) in CF mmWave-mMIMO systems. By synergizing the capabilities of heterogeneous graph 

neural network (HGNN), adaptive neuro-fuzzy inference system (ANFIS), and reinforcement 

learning (RL), HARP-PC addresses the challenges of complex network topologies and dynamic 

CF environments. HGNN facilitates the construction of a heterogeneous graph 

representation, enabling a comprehensive understanding of interactions between APs and 

user equipment (UEs) in the network. The integration of ANFIS offers interpretable power 

control (PC) decisions by employing fuzzy logic rules to handle uncertainties in channel 

conditions. Furthermore, RL enables adaptive fine-tuning of PC strategies, optimizing 

performance over time based on continuous learning and feedback from the CF mmWave-

mMIMO system. 

In HARP-PC, an attention mechanism is implemented to emphasize critical information 

from interfering and communication paths, while adaptive node embedding ensures 

scalability to varying numbers of APs and UEs. The combination of these techniques enables 

effective exploitation of network topology, interpretable PC decisions, and adaptability to 

changing CF conditions. By conducting comprehensive simulations, HARP-PC's performance 

is thoroughly evaluated, showcasing its capacity to handle complex network scenarios, 

uncertainties, and adaptability. This novel approach offers significant advantages over 

traditional PC techniques and holds great promise in maximizing SE in CF mmWave-mMIMO 

systems. 

The remainder of this chapter is organized as follows. Section 5.2 introduces the system 

model and problem formulation for PC in the CF mmWave-mMIMO system. In Section 5.3, 

the AI methods for the PC problem in the CF mmWave-mMIMO system are proposed. The 

experimental setup, including the dataset used and evaluation metrics employed, is described 

in Section 5.4. Section 5.5 presents the experimental results, analyzing and comparing the 

performance of the proposed methods with baseline algorithms. Finally, Section 5.6 

concludes the chapter by summarizing the findings and discussing the implications. 



CHAPTER 5 – HETEROGENEOUS GRAPH NEURAL NETWORK (HGNN), ADAPTIVE NEURO-FUZZY INTERFERENCE 
SYSTEM (ANFIS), ANDREINFORCEMENT LEARNING (RL) – HARP METHOD FOR PC IN CF MMWAVE MASSIVE 

MIMO WIRELESS COMMUNICATION SYSTEM 

124 
 

5.2 System model and problem formulation 

5.2.1 System model 

In this section, it is a downlink data transmission of a CF mmWave-mMIMO system where 𝑁 

APs are distributed in the given area and simultaneously serve 𝐾 UE devices randomly. The 

APs and UEs make use of an identical time-frequency resource, following the TDD mode of 

operation. The APs, distributed randomly, establish connectivity through a backhaul network 

to a CPU, where data decoding takes place. To facilitate efficient communication and 

coordination, the CF system incorporates a total of 𝑍 fronthaul links. This connectivity plays a 

crucial role in enabling effective resource allocation and PC strategies. The communication 

protocol consists of three distinct phases: uplink training, downlink data transmission, and 

uplink data transmission. In the uplink training phase, the UEs transmit pilot sequences to the 

APs, enabling each AP to estimate the channels. In the second phase, the APs employ the 

channel estimates for pre-coding and subsequently transmit the data symbols. Lastly, in the 

third phase, the UEs transmit uplink data symbols to the APs. It is assumed that wireless 

channels connecting APs and users are depicted as block-fading models. This entails that the 

channels exhibit stability over intervals called coherence intervals. The duration of these 

coherence intervals is represented by the parameter 𝑇, indicating the number of samples 

within which the channel's state remains relatively unchanged before undergoing a transition. 

Within the CF system, each AP is equipped with a set of 𝑀 antennas, thereby enabling the 

utilization of spatial multiplexing and beamforming techniques.  

In addition, it is assumed that each UE employs a straightforward 0-1 beamforming 

configuration. Specifically, denoting the multiplexing order as 𝑃 indicating the number of 

parallel streams sent to a designated receiver—the beamformer used at the 𝑘-th UE receiver, 

with dimensions (𝐾 ×  𝑃), is represented by 𝐋𝑘. This 𝐋𝑘 beamformer is defined as 𝐋𝑘 =

𝐈𝑃 ⊗  𝟏𝐾/𝑃 , where 𝟏𝐾/𝑃  stands for an all-1 vector with a length of 𝐾/𝑃. In other words, it is 

posited that the receive antennas of the UE are divided into 𝑃 separate groups, each 

containing 𝐾/𝑃 elements. The data received by antennas within each group is simply 

combined through summation. Notably, the task of the APs is to leverage the uplink channel 

estimates and exploit the TDD channel reciprocity, thereby ensuring that the summed 

samples are roughly aligned in phase. Similarly, in the context of uplink transmission, the 

antennas within each group send identical signals with matching phases. To evaluate the ML 

methodologies for PC, one scenario was considered: which is based on the network presented 

in [130]. Table 6-1 is shown the parameters of the proposed system model. 
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Table 5-1. Parameters of the proposed system model. 

Parameters Value 

Coverage volume 120 m × 120 m × 10 m  
N, number of APs 400 

M, number of antennas per AP [152] 100 

K, number of UEs 10 
𝜎2, Noise power -74 dBm 
Carrier frequency 28 GHz 
𝑃𝑝, Pilot power 20 dBm 

Bandwidth 200 MHz 
𝑃, maximum power constraint 23 dBm 
𝜏𝑝, Length of pilot in symbols 6 

𝜏𝑐, length of coherence time in symbols  [21] 200 

 

The network is trained using a dataset consisting of NT = 320,000 samples, each 

representing an independent realization of the positions of the UEs. The large-scale fading is 

modelled as a combination of path loss and shadowing, following the approach described in 

[130]. In cases where, there is a reuse of some pilot sequences, leading to the consideration 

of pilot contamination in the simulations. 

5.2.2 Problem formulation 

The spectral efficiency of the downlink is formulated using equation (2.5) for CF mmWave-

mMIMO system. Then, the objective of maximizing the sum SE for PC is formulated applying 

equation (2.6) for CF mmWave-mMIMO system. The PC problem in the CF mmWave-mMIMO 

system is addressed using WMMSE, FP, water-filling, and max-min fairness baseline methods, 

where the allocated power  𝑝𝑛,𝑘  is estimated based on the predicted channel �̌�𝑛,𝑘
𝑢 [𝑡 + 1], 

which is expressed utilizing equation (5.3) for CF mmWave-mMIMO system.  

5.3 Proposed methods 

5.3.1 Proposed hybrid precoder and beamforming approaches 

5.3.1.1 Hybrid precoder 

Utilizing the potential of deep learning-based channel prediction, a delay-tolerant 

transmission scheme is introduced for the downlink of CF mmWave-mMIMO. This section 

outlines the principle of delay-tolerant zero forcing precoding (DT-ZFP) through its 

communication process and introduces a multi-user predictor constructed with user-specific 

deep learning predictive modules. Similar to previous studies such as [153] and [27], it is 

assumed that perfect knowledge of 𝛽𝑛,𝑘 and error-free, capacity-infinite fronthaul network 

conditions are in place. This assumption allows a focused exploration of fronthaul delay, 

devoid of the influence of practical constraints [154]. The analysis solely concerns the uplink 

training and downlink data transmission stages, with the uplink transmission aspect 
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disregarded. In a CF mmWave-mMIMO system, the following model captures the essential 

components and processes. 

A. Uplink training: 

Communication occurs in radio frames. During the uplink training phase of frame 𝑡, UEs 

transmit orthogonal pilot sequences to the APs. The orthogonality of pilot sequences ensures 

minimal interference and pilot contamination. It is assumed 𝚽𝑘𝚽𝑘
𝐻 = 𝐈𝑃 where 𝚽𝑘 ∈ ℂ𝑃×𝜏𝑝   

the matrix comprises rows that encapsulate the pilot sequences transmitted by the 𝑘-th UE.  

APs estimate channel conditions based on received pilot signals where 𝐘𝑛,𝑘
𝑢 [𝑡]  ∈  ℂ𝑁×𝜏𝑝  

dimensional matrix. 

 

𝐘𝑛,𝑘
𝑢 [𝑡] = ∑ √𝑝𝑘𝐒𝑛,𝑘

𝑢 [𝑡] 𝚽𝑘[𝑡] + 𝐧𝑛,𝑘[𝑡]𝐾
𝑘=1                         (5.1) 

 

where 𝑝𝑘 denotes the power constraint, 𝐒𝑛,𝑘
𝑢 [𝑡] = 𝐇𝑛,𝑘[𝑡]𝐋𝑘[𝑡] is the instantaneous 

channel gain between AP 𝑛 and UE 𝑘 during the uplink training at frame 𝑡 and 𝐇𝑛,𝑘 ∈  ℂ𝑁×𝐾 

denotes the channel matrix between AP 𝑛 and UE 𝑘, and additive white Gaussian noise 

(AWGN) has zero mean and variance 𝜎𝑛,𝑘
2 , e.g., 𝐧𝑛,𝑘 ∈ 𝐶𝑁(0, 𝜎𝑛,𝑘

2 ).  

Deep learning-based channel prediction techniques are employed to estimate channel 

conditions in advance. Prediction models are trained using historical channel measurements 

to anticipate future channel states. The 𝑛𝑡ℎ AP is calculated utilizing linear minimum mean-

square error (MMSE) estimating of 𝐒𝑛,𝑘
𝑢 [𝑡], ∀𝑘 as [27]:  

 

�̂�𝑛,𝑘
𝑢 [𝑡] = (

√𝑝𝑢𝛽𝑛,𝑘

𝑝𝑢𝛽𝑛,𝑘+𝜎𝑛,𝑘
2 ) 𝚽𝑛,𝑘

𝐻 [𝑡]𝐘𝑛,𝑘
𝑢 [𝑡]                                (5.2) 

 

where �̃�𝑛,𝑘
𝑢 = 𝐒𝑛,𝑘

𝑢 − �̂�𝑛,𝑘
𝑢  denotes the channel estimation error, �̃�𝑛,𝑘

𝑢 ∈ 𝐶𝑁(0, 𝛽𝑛,𝑘 −

𝛼𝑛,𝑘), 𝛽𝑛,𝑘 and 𝛼𝑛,𝑘 are equal to 
𝑝𝑘𝛽𝑛,𝑘

2

𝑝𝑘𝛽𝑛,𝑘+𝜎𝑛,𝑘
2  which are the variance for 𝐒𝑛,𝑘

𝑢  and �̂�𝑛,𝑘
𝑢 , 

respectively. 

 

In contrast to ZFP, which transmits the estimated CSI directly to the CPU, DT-ZFP performs 

channel prediction prior to CSI delivery. In DT-ZFP, every AP provides its individual local CSI, 

such as {�̂�𝑛1,𝑘
𝑢 [𝑡], �̂�𝑛2,𝑘

𝑢 [𝑡], … , �̂�𝑁,𝑘
𝑢 [𝑡] } for AP 𝑛 to a local predictor, yielding predictive 

outcomes: 

 

�̌�𝑛,𝑘
𝑢 [𝑡 + 1] = 𝑓𝑛,𝑘(�̂�𝑛,𝑘

𝑢 [𝑡]), ∀𝑘                      (5.3) 

 

where 𝑓𝑛,𝑘(. ) Shows symbolizes the input-output function of the multi-user channel 

predictor operational at AP 𝑛. Further elaboration on this predictor will be provided in the 

subsequent sub-section. 

Then each AP send its predicted CSI, i.e., 
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 �̌�𝑛,𝑘
𝑢 [𝑡 + 1] = [�̌�𝑛1,𝑘

𝑢 [𝑡 + 1], … , �̌�𝑁,𝑘
𝑢 [𝑡 + 1]]

𝑇
∈ ℂ𝑁×1         (5.4) 

 

From AP 𝑛, the global CSI prediction is transmitted to the CPU via the fronthaul network. 

As a result, the CPU receives the comprehensive CSI prediction. 

 

�̌�𝑡+1 = [�̌�1[𝑡 + 1], … , �̌�𝑁[𝑡 + 1] ∈ ℂ𝑁×𝐾                                    (5.5) 

 

Suppose the downlink transmission spans 𝑂 symbol periods. The symbol vector during 

period 𝑜, where 𝑜 ranges from 1 to 𝑂, is denoted as follows: 

 

𝐒𝐲𝑡+1
𝑜 = [𝑠𝑦1

𝑜[𝑡 + 1], … , 𝑠𝑦𝐾
𝑜[𝑡 + 1]]𝑇   (5.6) 

 

Where 𝑠𝑦𝐾
𝑜[𝑡 + 1] represents the information symbol designated for user 𝑘 during the 

𝑜𝑡ℎ symbol period of frame 𝑡 + 1. It adheres to the condition 𝔼[|𝑠𝑦𝑘|2] = 1. The CPU 

precodes 𝐒𝐲𝑡+1
𝑜  to get 

 

𝐱 𝑡+1
𝑜 = [𝑥1

𝑜[𝑡 + 1], … , 𝑥𝐾
𝑜[𝑡 + 1]]𝑇                                   (5.7) 

 

 

From  

𝐱 𝑡+1
𝑜 = �̌�𝑡+1

𝐻 (�̌�𝑡+1�̌�𝑡+1
𝐻 )−1𝚿𝑡+1𝐒𝐲𝑡+1

𝑜                                    (5.8) 

 

Where 𝑥𝑘
𝑜[𝑡 + 1] represents the symbol that has undergone precoding and is slated for 

transmission by AP 𝑛 during the 𝑜𝑡ℎ symbol period of frame 𝑡 + 1. The matrix 𝚿 ∈ ℂ𝐾×𝐾 is 

characterized by a diagonal arrangement and encompasses power control coefficients. In 

other words, 

 

𝚿𝑡+1 = 𝑑𝑖𝑎𝑔{𝜓1[𝑡 + 1], 𝜓2[𝑡 + 1], … , 𝜓𝐾[𝑡 + 1] }                           (5.9) 

 

  

The CPU allocates the precoded symbols to the respective APs, specifically to 

 

{𝑥𝑛
1[𝑡 + 1], … , 𝑥𝑁

𝑂[𝑡 + 1]}                                          (5.10) 

 

For AP 𝑛, via the fronthaul network, 𝑥𝑛
𝑜[𝑡 + 1], 𝑜 = 1, … , 𝑂 is transmitted. AP 𝑛 acquires these 

symbols from the CPU, with 𝑜 ranging from 1 to 𝑂, and subsequently stores them within its 

buffer. Importantly, these precoded symbols are slated for transmission during the 

subsequent frame marked as 𝑡 +  1, every AP sends out the buffered precoded symbols 𝑥𝑛
𝑜[𝑡] 

where 𝑜 varies from 1 to 𝑂, obtained from the preceding frame 𝑡 −  1. 

The arrival of precoded symbols from the CPU following the delivery of CSI necessitates 

the APs in ZFP to engage in a stop-and-wait process. Due to the presence of feedback and 

processing delays, a time gap emerges between the culmination of receiving pilot sequences 



CHAPTER 5 – HETEROGENEOUS GRAPH NEURAL NETWORK (HGNN), ADAPTIVE NEURO-FUZZY INTERFERENCE 
SYSTEM (ANFIS), ANDREINFORCEMENT LEARNING (RL) – HARP METHOD FOR PC IN CF MMWAVE MASSIVE 

MIMO WIRELESS COMMUNICATION SYSTEM 

128 
 

during uplink training and the commencement of transmitting the precoded symbols during 

downlink transmission. The intricacies of modelling this temporal interval can be referenced 

from [155]. Conversely, DT-ZFP is capable of initiating downlink transmission immediately 

upon the completion of uplink training, as the symbols for the current frame 𝑥𝑛
𝑜[𝑡] where 𝑜 

varies from 1 to 𝑂, are already held in buffer from the prior frame (𝑡 −  1). As a result of the 

predictive horizon's unique flexibility, the downlink transmission aspect of DT-ZFP can be 

executed in parallel with other processes—specifically, CSI estimation and delivery, as well as 

symbol precoding and distribution. This parallelization effectively circumvents the inefficient 

stop-and-wait mechanism found in ZFP, thereby optimizing the utilization of temporal 

resources. 

B. Downlink data transmission: 

Downlink data transmission follows the uplink training phase. Based on predicted 

channel conditions, a delay-tolerant transmission scheme such as DT-ZFP is employed (𝐱 𝑡+1
𝑜 ). 

Precoded data is delivered to UEs based on predicted channel states, improving robustness 

to interference and propagation challenges. The transmitted signal from AP 𝑛 to UE 𝑘 is 

shown as follows: 

𝐬𝑛
𝐶𝐹[𝑡] = ∑ √𝑝𝑘

𝐾
𝑘=1 𝐱 𝑡+1

𝑜 𝐱𝐝𝑘
𝐷𝐿[𝑡]   (5.11) 

Where 𝐱𝐝𝑘
𝐷𝐿[𝑡] is the data symbol intended for the 𝑘-th UE. The 𝑘-th UE receives the 

following (𝐾 × 1)-dimensional vector: 

 

𝐲𝑘
𝐶𝐹[𝑡] = ∑ 𝐇𝑛,𝑘[𝑡]𝑁

𝑛=1 𝐬𝑛
𝐶𝐹[𝑡] + 𝐧𝑛,𝑘[𝑡]   (5.12) 

 

C. Uplink data transmission 

The final stage of the communication protocol corresponds to uplink data transmission. 

It is represented by 𝐱𝐝𝑘
𝑈𝐿[𝑡] the data vector with 𝑃 dimensions that the 𝑘-th UE intends to 

transmit during the 𝑡-th sample time. The resultant signal received at the 𝑛-th AP is 

formulated as: 

𝐲𝑛[𝑡] = ∑ √�̃�𝑘𝐇𝑛,𝑘[𝑡]𝐾
𝑘=1 𝐋𝑘[t] 𝐱𝐝𝑘

𝑈𝐿[𝑡]+ 𝐰𝑛[𝑡]  (5.13) 

 

where �̃�𝑘 =
𝑃𝑡,𝑘

𝑈𝐿

𝑡𝑟(𝐋𝑘
𝐻𝐋𝑘)

, 𝑃𝑡,𝑘
𝑈𝐿denotes the uplink transmitted power by the k-th UE. Then each 

APs forms the statistic below: 

�̃�𝑛,𝑘[𝑡] = 𝐱 𝑡+1
𝑜 𝐲𝑛[𝑡],      ∀𝑘    (5.14) 

 

After that, every AP sends to the CPU the achieved vector �̃�𝑛,𝑘[𝑡] through the backhaul 

link. 
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5.3.2 Proposed heterogeneous graph neural network, ANFIS, and reinforcement learning      

- inspired PC (HARP) approaches in CF mmWave-mMIMO system 

The heterogeneous graph learning ANFIS, and reinforcement learning assisted power control 

(HARP), is introduced to leverage the structural information of the CF mmWave-mMIMO 

system for solving the complex problem formulated in (2.5). The objective is to efficiently 

distribute transmit power for both access points (APs) and user equipments (UEs) to maximize 

the spectral efficiency (SE) of the CF mmWave-mMIMO system. The goal is to learn a scalable 

and transferable HARP method that can effectively handle the distribution of transmit power 

among APs and UEs, considering the varying numbers of APs and UEs in the system. 

6.3.1.1 Definition and characteristics of heterogeneous graphs 

A heterogeneous graph, denoted as 𝐺 =  (𝒱, ℰ), comprises a set of nodes 𝒱 and a set of 

edges ℰ. This type of graph is characterized by a node type mapping function 𝜙: 𝒱 → 𝒬   and 

an edge type mapping function 𝜓: ℰ → 𝒫, where 𝒬 and 𝒫 represent the sets of predefined 

node types and link types, respectively, with |𝒬| + |𝒫| > 2 [156]. Specifically, 𝒬 is defined as 

{𝑄1, 𝑄2, …}, and 𝒫 is defined as {𝒫1, 𝒫2, ...}, where 𝑄𝑖 and 𝒫𝑗 correspond to the 𝑖-th node type 

and 𝑗-th link type. Each node 𝝊𝑖 ∈  ℝ𝐹𝜐×1 is associated with 𝐹𝜐-dimensional features, and each 

edge 𝒆𝑖,𝑗 ∈  ℝ𝐹𝑒×1 points from node 𝝊𝑗 to 𝝊𝑖 and has 𝐹𝑒-dimensional features. The mapping 

functions 𝜙 and 𝜓 categorize each node into a specific node type 𝜙(𝝊) ∈ 𝒬 and each edge 

into a particular relation 𝜓(𝒆) ∈ 𝒫. The neighbourhood of a node 𝝊𝑖, denoted as 𝒩𝑖, consists 

of nodes {𝝊𝑗 ∈ 𝒱|𝒆𝑖,𝑗 ∈ ℰ}. In a heterogeneous graph, two nodes can be connected via 

different semantic paths, such as an access point (AP) and a user equipment (UE) connected 

via both AP-UE and UE-AP links. To address this, it is introduced the concept of a meta-path, 

represented as Φ, which defines a composite relation 𝒫 = 𝒫1 ◦ 𝒫2 ◦ … ◦ 𝒫𝑛 from node type 

𝑄1 to node type 𝑄𝑛+1 where ◦ denotes the composition operator on relations. With a given 

meta-path Φ, the specific neighbors 𝒩𝑖
Φ of node 𝝊𝑖 can be obtained, representing the set of 

nodes connected to 𝝊𝑖 through the meta-path Φ [157]. 

5.3.1.2 Heterogeneous graph for CF mmWave-mMIMO systems 

In the context of CF mmWave-mMIMO system, figure 5-1 visually demonstrates the 

straightforward modelling of this system as a heterogeneous graph. The graph encompasses 

two distinct node types: access points (APs) and user equipments (UEs), each associated with 

two meta-paths. For instance, considering 𝐴𝑃𝑁, all UEs are connected to it through the meta-

path Φ1
𝐼 , while the other APs are linked to it via the meta-path Φ2

𝐼 . Notably, the Self-

Interference (SI) caused by 𝐴𝑃𝑁 itself is classified into Φ2
𝐼   by incorporating a self-loop. 

Similarly, the meta-paths Φ1
𝐼𝐼 and Φ2

𝐼𝐼  associated with 𝑈𝐸𝐾  correspond to 𝐴𝑃 − 𝑈𝐸 and 

𝑈𝐸 − 𝑈𝐸, respectively.  

In the heterogeneous graph representation of CF mmWave-mMIMO system, the node 

feature vectors of 𝐴𝑃𝑁 and 𝑈𝐸𝐾 are defined as follows: 
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    𝝊𝑛 ∈ ℝ(𝑁𝑀+3)×1 = [𝜔𝑛1
𝑇 … 𝜔𝑛𝑀

𝑇 , 𝑃𝑛, 𝜉𝑛
𝑆𝐼 , 𝜉𝑛

𝐼𝐴𝐼]𝑇                            (5.15)                                                     

𝝊𝑘 ∈ ℝ(𝐾�̅� +3)×1 = [𝜔𝑘1
𝑇 … 𝜔𝑘�̅� 

𝑇 , 𝑃𝑘, 𝜉𝑘
𝑆𝐼 , 𝜉𝑘

𝐼𝐷𝐼]𝑇                            (5.16) 

 

where the UEs and APs rely on the mutually orthogonal subcarrier sets [156] which are 

defined as ℳ = {1, … , 𝑚, … , ℳ} with |ℳ| = 𝑀 for UL transmission and ℳ̅ =

{1, … , �̅�, … , ℳ̅} with |ℳ̅| = �̅� for DL transmission. In order to reduce the complexity of the 

model and make it more manageable, it is made a simplifying assumption regarding the 

attributes of edges in the heterogeneous graph. Specifically, it is assumed that the attribute 

of each edge, denoted as 𝑒𝑖,𝑗 = 𝑘𝑖,𝑗 , ∀𝑖,𝑗∈ 𝒱. represents the Euclidean distance between any 

two nodes 𝒾 and 𝒿 in the graph, for all 𝒾 and 𝒿 belonging to the set of nodes 𝒱. When 

considering a self-loop, which represents an edge connecting a node to itself (i.e., 𝒾 = 𝒿), it is 

set the edge feature value to zero, denoted as 𝑒𝑖,𝑗 =  0. This way, the graph accounts for the 

distances between different nodes while eliminating self-loops in the representation. By 

adopting this simplification, the model becomes more efficient and easier to work with, as it 

avoids the need for complex edge attributes and focuses solely on the Euclidean distances 

between connected nodes in the graph. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. Proposed model of a heterogeneous graph in CF mmWave-mMIMO system. 

Regarding the edge construction, one edge is created between two nodes if they share the 

same AP or the same UE, including the existence of self-loops. The edge types are defined as 

follows: 

1) If two nodes share the same AP, the edge is of type AP. 

2) If two nodes share the same UE, the edge is of type UE. 

UE

1 

UE

2 

… 

UE

K 

AP

1 

AP

2 

… 

AP

N 

UE: Φ1
𝐼𝐼: 𝐴𝑃 − 𝑈𝐸  

Φ2
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𝐼 : 𝑈𝐸 − 𝐴𝑃 

      Φ2
𝐼 : 𝐴𝑃 − 𝐴𝑃 
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Hence, the edge construction is summarized by the following statements: 

For AP nodes 𝐴𝑃𝑁 and 𝐴𝑃𝑁0
, and UE nodes 𝑈𝐸𝐾 and 𝑈𝐸𝐾0

: 

1) ℯ =  (𝐴𝑃𝑁, 𝐴𝑃𝑁0
) ∈  ℰ 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒(ℯ) =  𝐴𝑃, 

2) ℯ =  (𝑈𝐸𝐾, 𝑈𝐸𝐾0
) ∈  ℰ 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒(ℯ) =  𝑈𝐸. 

This construction ensures that the graph can effectively capture the relationships between 

APs and UEs based on their shared attributes. 

In the heterogeneous graph representation of the CF mmWave-mMIMO system, the set 

of neighbours for each node 𝒾 ∈  𝒱 (where 𝒱 is the set of nodes) is defined based on the 

edges connecting the nodes. Specifically, the set of neighbors of a node 𝒾 includes all other 

nodes 𝒿 in the graph that are directly connected to node 𝒾 through an edge. Let's define the 

set of neighbours 𝒩(𝒾) for a given node 𝒾 in the graph as follows: 

𝒩(𝒾) =  {𝒿 ∈  𝒱 ∶  (𝒾, 𝒿) ∈  ℰ},  (5.17) 

where ℰ is the set of directed edges in the graph. This definition means that for each node 𝒾, 

𝒩(𝒾) comprises all other nodes 𝒿 in 𝒱 for which there exists a directed edge (𝒾, 𝒿)in ℰ 

connecting node 𝒾 to node 𝒿. 

In the context of the CF mmWave-mMIMO system, the set of neighbours 𝒩(𝒾)for a 

particular node 𝒾 represents the nodes that share either the same AP or the same UE with 

node 𝒾, as defined by the edge construction based on the type (ℯ) ∈  {𝐴𝑃, 𝑈𝐸}. For example, 

if node 𝒾 is an AP and has a direct edge to node 𝒿, then 𝒿 is considered one of the neighbours 

of node 𝒾 if 𝒿 is also an AP or shares the same UE with node 𝒾. Similarly, if node 𝒾 is a UE and 

has a direct edge to node 𝒿, then 𝒿 is one of the neighbors of node 𝒾 if 𝒿 is also a UE or shares 

the same AP with node 𝒾. The set of neighbours 𝒩(𝒾)helps the heterogeneous graph neural 

network (HGNN) to perform local computations and message passing efficiently, as it focuses 

on interactions between each node and its immediate neighbors in the graph during the 

learning and optimization processes. 

Then, in the heterogeneous graph representation of the CF mmWave-mMIMO system, it 

is defined the set of neighbours of type UE and type AP for a given node 𝒾 ∈  𝒱 as follows: 

Set of Neighbours of Type 𝑈𝐸 (𝑁𝑈𝐸𝑈𝐸(𝒾)): 𝑁𝑈𝐸(𝒾) includes all other nodes 𝒿 in 𝒱 for 

which there exists a directed edge (𝒾, 𝒿) in ℰ connecting node 𝒾 to node 𝒿, and the edge type 

is of type UE. In other words, 𝑁𝑈𝐸  (𝒾) consists of nodes that share the same UE with node 𝒾. 

Mathematically, it is represented 𝑁𝑈𝐸  (𝒾) as: 

𝑁𝑈𝐸(𝒾) =  { 𝒿 ∈   𝒱 ∶  (𝒾, 𝒿) ∈  ℰ 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒(𝒾, 𝒿) =  𝑈𝐸}  (5.18) 

Set of neighbours of type 𝐴𝑃 (𝑁𝐴𝑃 (𝒾)): 𝑁𝐴𝑃 (𝒾) includes all other nodes 𝒿 in 𝒱 for which 

there exists a directed edge (𝒾, 𝒿) in ℰ connecting node 𝒾 to node 𝒿, and the edge type is of 

type AP. In other words, 𝑁𝐴𝑃 (𝒾) consists of nodes that share the same AP with node 𝒾. 

Mathematically, it is represented 𝑁𝐴𝑃 (𝒾)  as: 

𝑁𝐴𝑃 (𝒾)  =  {𝒿 ∈ 𝒱 ∶  (𝒾, 𝒿) ∈  ℰ 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒(𝒾, 𝒿) =  𝐴𝑃}  (5.19) 
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By defining these sets of neighbours, the heterogeneous graph neural network (HGNN) 

can distinguish between different relationships between nodes based on the type of edges 

they share. This information is crucial for the HGNN to apply different operations and 

computations on each type of edge, enabling it to effectively learn and optimize PC decisions 

in the complex CF mmWave-mMIMO system. The sets 𝑁𝑈𝐸(𝒾)and 𝑁𝐴𝑃 (𝒾) provide valuable 

contextual information about the neighboring nodes connected to each node 𝒾, facilitating 

the learning and message passing processes in the HGNN. 

A. Data pre-processing 

In the HARP model in CF mmWave-mMIMO system, data pre-processing is a crucial step to 

prepare the graph data for effective learning. Inspired by [158] it is applied a log2 

transformation to the input and output features to handle their wide-ranging magnitudes and 

facilitate the GNN's ability to extract relevant information. The data pre-processing steps with 

log transformation are as follows: 

1. Log transformation: 

For the input features such as DL and UL equivalent subchannel gains 

(𝜔𝑛1, … , 𝜔𝑛𝑀, 𝑎𝑛𝑑 𝜔𝑘1, … , 𝜔𝑘𝑀), it is performed a log2 transformation. This transformation 

compresses the values, ensuring that the features are within the same order of magnitude. 

For instance, if the DL equivalent subchannel gains range from 10−15 𝑡𝑜 10−5 , applying log2 

transformation results in values between -50 and -16. Similarly, the output features, such as 

PC decisions or SE metrics, can also undergo the log2 transformation. 

 

2. Scaling and standardization:  

After the log transformation, it is further pre-processed the features by applying scaling and 

standardization. It is applied Min-Max scaling to bring the log-transformed features within a 

specified range or to give them a mean of 0 and a standard deviation of 1, respectively. This 

step ensures that the features have consistent scales and distributions, making the learning 

process more efficient. 

 

3. Handling uncertainties: 

CF mmWave-mMIMO system often involve uncertain channel conditions due to fading effects 

and interference. To address this, it is incorporated uncertainty handling techniques during 

data pre-processing. One approach is to introduce fuzzification to represent uncertain or 

imprecise values. For example, it is defined fuzzy sets for DL and UL channel gains, such as 

"low," "medium," and "high," based on certain thresholds or expert knowledge. The log-

transformed and fuzzified channel gains can then be used as the input features for the HARP 

model. 

By applying log transformation and other data pre-processing techniques, the HARP 

model can effectively handle the complexities and uncertainties of CF mmWave-mMIMO 

system systems, enabling it to learn and optimize PC decisions in an adaptive and efficient 

manner. The log-transformed and pre-processed data facilitate the HGNN's ability to extract 

meaningful patterns from the CF-mMIMO environment and achieve enhanced SE and overall 

network performance. 



CHAPTER 5 – HETEROGENEOUS GRAPH NEURAL NETWORK (HGNN), ADAPTIVE NEURO-FUZZY INTERFERENCE 
SYSTEM (ANFIS), ANDREINFORCEMENT LEARNING (RL) – HARP METHOD FOR PC IN CF MMWAVE MASSIVE 

MIMO WIRELESS COMMUNICATION SYSTEM 

133 
 

B.  The structure of the neural network 

Here is the structure for the GNN component: 

1. Input layer:          

The input layer receives the node feature tensors for APs (𝝊𝑛 ) and UEs (𝝊𝑘 ). The node feature 

tensors contain essential information such as DL and UL equivalent subchannel gains 

(𝜔𝑛1, … , 𝜔𝑛𝑀, 𝑎𝑛𝑑 𝜔𝑘1, … , 𝜔𝑘𝑀), path losses (𝑃𝑛, 𝑃𝑘), Self-interference (SI) values (𝜉𝑛
𝑆𝐼, 𝜉𝑘

𝑆𝐼), 

and Inter-AP Interference (IAI) values (𝜉𝑛
𝐼𝐴𝐼, 𝜉𝑘

𝐼𝐴𝐼). 

2. Node embedding and linear layers: 

Each node 𝒾 ∈  𝒱 is associated with a tensor 𝒽𝒾 called node feature. The initial node features 

are set to the input node feature tensors: 𝒽𝒾(0) = 𝝊𝑛  for AP nodes and 𝒽𝒾(0) = 𝝊𝑘  for UE 

nodes. 

The GNN applies linear layers (ℓ1, ℓ2) to each node's feature tensor to perform linear 

transformations: 

𝒽𝒾(𝓉) = ℓ1(𝒽𝒾(𝓉 − 1)) + 𝒷1, for AP nodes  (5.20) 

𝒽𝒾(𝓉) = ℓ2(𝒽𝒾(𝓉 − 1)) + 𝒷2, for UE nodes  (5.21) 

where ℓ1 and ℓ2 are linear transformation functions with trainable weight matrices 𝓌1 and 

𝓌1, and biases 𝒷1 and 𝒷2. 

3. Graph convolutional layers: 

The GNN performs graph convolutional layers to update the node features iteratively. It 

applies local computations on each node and its neighbours connected by edges. The graph 

convolutional layer updates the node feature 𝒽𝒾(𝓉) at time step 𝓉 based on the features of 

its neighbours 𝒩(𝒾) and the node itself 𝒽𝒾(𝓉 − 1). The update rule for the graph 

convolutional layer can be defined as follows: 

𝒽𝒾(𝓉)  =  𝑁𝑜𝑟𝑚 (𝑅𝑒𝐿𝑈 (ℒ•(𝒽𝒾(𝓉 − 1)) +  ∑𝒿 ∈ 𝒩(𝒾)𝛼•(𝒾, 𝒿) ∗  ℒ• (𝒽𝒿(𝓉 − 1))))  (5.22) 

where 𝒽𝒾(𝓉) is the node feature tensor of node 𝒾 at time step 𝓉, ℒ•(𝒽𝒾(𝓉 − 1) is the linear 

transformation of the node feature tensor 𝒽𝒾(𝓉 − 1) for node 𝒾, where • ∈  {𝐴𝑃, 𝑈𝐸}. Norm 

is the layer normalization function, 𝑅𝑒𝐿𝑈 is the rectified linear unit activation function, 

𝛼•(𝒾, 𝒿) is the attention coefficient between source node 𝒾 and destination node 𝒿, computed 

using the attention mechanism and 𝒩(𝒾) is the set of neighbours of node 𝒾. 

4. Multi-head attention mechanism: 

The GNN utilizes multi-head attention mechanism to allow each node to focus on a subset of 

its neighbours that are of interest instead of equally considering all neighbours. The attention 

mechanism computes attention coefficients 𝛼•(𝒾, 𝒿) between source node 𝒾 and destination 

node 𝒿 based on the features of the nodes involved. The attention coefficients are used to 
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weight the contribution of neighbouring features in updating the node feature and uses 

scaled dot-product attention for efficient computation and is defined as: 

(𝛼_ •  (𝒾, 𝒿)   = exp ( 𝒬_ •  (𝒽_𝒾 (𝓉 − 1)  ) ∗ (𝒦_ •  (𝒽_𝒿 (𝓉 − 1)))/ √𝒹))/ 𝛴𝒿^′ ∈

𝒩(𝒾)  exp ( 𝒬_ •  (𝒽_𝒾 (𝓉 − 1)) ∗ (𝒦_ •  (ℎ𝒿^′ (𝓉 − 1)))/ √𝒹)  (5.23) 

where 𝒬•(𝒽𝒾(𝓉 − 1)) and 𝒦• (𝒽𝒿(𝓉 − 1))  are queries and keys, obtained through linear 

transformations of the node feature tensors 𝒽𝒾(𝓉 − 1)  and 𝒽𝒿(𝓉 − 1) respectively, where 

• ∈  {𝐴𝑃, 𝑈𝐸} and 𝒹 is the dimension of each attention head. 

5. Intermediate hidden layers: 

In each iteration 𝓉, intermediate hidden layers (or hidden features) are computed. These 

hidden layers capture abstract representations of the node features and their relationships in 

the graph. The computation of intermediate hidden layers can be represented as: 

𝒽𝒾(𝓉)   =  𝐹•(𝓉)(𝒽𝒾(𝓉 − 1)), for 𝓉 =  1, … , 𝒯 − 1  (5.24) 

where 𝐹•(𝓉)(𝒽𝒾(𝓉 − 1)) is the function representing the computation of intermediate 

hidden layer at time step 𝓉, where • ∈  {𝐴𝑃, 𝑈𝐸} and 𝒯  is the total number of iterations. 

6. Output layer: 

The final hidden features 𝒽𝒾(𝒯) after 𝒯 iterations are used as the output of the GNN 

component. The hidden features capture relevant information from the graph for further 

processing in subsequent components of the model. The output layer can be represented as: 

𝒽𝒾(𝒯)  =  ℒ𝑜𝑢𝑡(𝒽𝒾(𝒯 − 1))  (5.25) 

Where ℒ𝑜𝑢𝑡 is the linear transformation function with trainable weight matrix 𝒲𝑜𝑢𝑡 and bias 

𝒷𝑜𝑢𝑡. The final hidden features 𝒽𝒾(𝒯)  for all nodes 𝒾 ∈  𝒱  serve as the output of the GNN 

component, providing meaningful representations of the node features and their 

relationships within the heterogeneous graph. These hidden features are then used as inputs 

to the subsequent components of the model, such as the ANFIS and RL, for PC optimization 

in CF mmWave-mMIMO system. 

 

5.3.1.3 Adaptive neuro-fuzzy inference system (ANFIS) component 

A. Node feature processing: 

 In the HARP model for CF mmWave-mMIMO systems, the ANFIS component processes the 

node features acquired from the HGNN to optimize PC decisions. The node features, 

comprising 𝝊𝑛 ∈ ℝ(𝑁𝑀+3)×1 for AP nodes and 𝝊𝑘 ∈ ℝ(𝐾�̅� +3)×1 for UE nodes, encompass 

crucial details about UL and DL equivalent subchannel gains, as well as other relevant 

attributes associated with the nodes. By accepting these node feature vectors as inputs, the 

ANFIS combines fuzzy logic and neural network techniques to capture uncertainties and 

linguistic aspects of the wireless channel conditions. This processing involves utilizing a set of 

fuzzy if-then rules, where linguistic variables and membership functions are carefully defined 
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to handle the inherent uncertainty and imprecision in the wireless channel. Through adaptive 

learning mechanisms, the ANFIS fine-tunes the parameters of the fuzzy inference system, 

enabling it to generate precise and optimal PC decisions for the CF mmWave-mMIMO system. 

B. Fuzzy logic rules: 

Within the ANFIS component, meticulous fuzzy logic rules are established to capture the 

intricate relationships between the node features and PC decisions in the CF mmWave-

mMIMO system. These fuzzy rules are crafted based on expert knowledge and domain 

expertise to effectively model the nonlinear and uncertain behaviours of the wireless channel. 

Each fuzzy rule comprises an antecedent (if-part) that outlines the conditions based on the 

node feature values and a consequent (then-part) that specifies the corresponding PC 

decision.  

For instance, a fuzzy rule could be formulated as follows: "If the DL equivalent subchannel 

gains between AP 𝑛 and the UE 𝐾 nodes are high, and the UL equivalent subchannel gains 

between UE 𝑘 and the AP 𝑁 nodes are low, then the transmit power of AP 𝑛 should be 

increased, while the transmit power of UE 𝑘 should be decreased." The linguistic variables, 

such as "high" and "low," are represented by appropriate membership functions that map the 

input node features to fuzzy sets. By performing fuzzy inference, the ANFIS computes the 

aggregated PC decisions based on these fuzzy rules, leading to the generation of optimized 

PC strategies for each AP and UE node in the CF mmWave-mMIMO system. The adaptability 

and interpretability of fuzzy logic make it a well-suited approach for handling uncertain and 

dynamic channel conditions, contributing to effective PC optimization in complex CF-mMIMO 

scenarios. Here are some fuzzy logic rules that are used within the ANFIS component for PC 

problem in CF mmWave-mMIMO systems. Let consider  𝐷𝐿𝐺𝑎𝑖𝑛𝑛
= 𝐷𝐿 equivalent 

subchannel gains between AP 𝑛 and the UE 𝐾 nodes,  𝑈𝐿𝐺𝑎𝑖𝑛𝑘
 =  𝑈𝐿 equivalent subchannel 

gains between UE 𝑘 and the AP 𝑁 nodes,  𝑆𝐼𝑅𝐴𝑃𝑛
is the signal-to-interference ratio at AP 𝑛, 

 𝑆𝐼𝑅𝑈𝐸𝑘
 is the signal-to-interference ratio at UE 𝑘,  𝑝𝐴𝑃𝑛

 is the transmit power of AP 𝑛,  𝑝𝑈𝐸𝑘
 

is the transmit power of UE 𝑘. 

Rule 1: If  𝐷𝐿𝐺𝑎𝑖𝑛𝑛
 is "high" and  𝑈𝐿𝐺𝑎𝑖𝑛𝑘

 is "low," then: 

 𝑝𝐴𝑃𝑛𝑛𝑒𝑤
 =  𝑝𝐴𝑃𝑛

+ 𝛥𝑃, where 𝛥𝑃 is a positive value to increase the transmit power of AP 𝑛, 

 𝑝𝑈𝐸𝑘𝑛𝑒𝑤
=   𝑝𝑈𝐸𝑘

−  𝛥𝑃, where 𝛥𝑃 is a positive value to decrease the transmit power of UE 

𝑘. 

Rule 2: If  𝐷𝐿𝐺𝑎𝑖𝑛𝑛
 is "low" and  𝑈𝐿𝐺𝑎𝑖𝑛𝑘

 is "high," then: 

 𝑝𝐴𝑃𝑛𝑛𝑒𝑤
=   𝑝𝐴𝑃𝑛

−  𝛥𝑃, where 𝛥𝑃 is a positive value to decrease the transmit power of AP 

𝑛,  𝑝𝑈𝐸𝑘𝑛𝑒𝑤
=   𝑝𝑈𝐸𝑘

+  𝛥𝑃, where 𝛥𝑃 is a positive value to increase the transmit power of UE 

𝑘. 

Rule 3: If  𝐷𝐿𝐺𝑎𝑖𝑛𝑛
 is "moderate" and  𝑈𝐿𝐺𝑎𝑖𝑛𝑘

 is "moderate," then: 
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 𝑝𝐴𝑃𝑛𝑛𝑒𝑤
=   𝑝𝐴𝑃𝑛

 (maintain the transmit power of AP 𝑛),  𝑝𝑈𝐸𝑘𝑛𝑒𝑤
=   𝑝𝑈𝐸𝑘

 (maintain the 

transmit power of UE 𝑘). 

Rule 4: If  𝑆𝐼𝑅𝐴𝑃𝑛
is "low" and  𝑆𝐼𝑅𝑈𝐸𝑘

 is "high," then: 

 𝑝𝐴𝑃𝑛𝑛𝑒𝑤
=   𝑝𝐴𝑃𝑛

  +  𝛥𝑃, where 𝛥𝑃 is a positive value to increase the transmit power of AP 

𝑛,  𝑝𝑈𝐸𝑘𝑛𝑒𝑤
=   𝑝𝑈𝐸𝑘

−  𝛥𝑃, where 𝛥𝑃 is a positive value to decrease the transmit power of 

UE 𝑘. 

Rule 5: If  𝑆𝐼𝑅𝐴𝑃𝑛
is "high" and  𝑆𝐼𝑅𝑈𝐸𝑘

 is "low," then: 

 𝑝𝐴𝑃𝑛𝑛𝑒𝑤
=   𝑝𝐴𝑃𝑛

 −  𝛥𝑃, where 𝛥𝑃 is a positive value to decrease the transmit power of AP 

𝑛,  𝑝𝑈𝐸𝑘𝑛𝑒𝑤
=   𝑝𝑈𝐸𝑘

+  𝛥𝑃, where 𝛥𝑃 is a positive value to increase the transmit power of 

UE 𝑘. 

These fuzzy logic rules use linguistic variables such as "high," "low," and "moderate" to 

describe the channel conditions and help guide the PC decisions for each AP and UE node in 

the CF mmWave-mMIMO system. The ANFIS component is utilized these rules to perform 

fuzzy inference and generate optimal PC strategies for the system. 

5.3.1.4 Reinforcement learning (RL) inspired power control (PC) 

After the node feature processing and defining fuzzy logic rules in the CF mmWave-mMIMO 

system, the reinforcement learning (RL) component comes into play to further optimize PC 

decisions. Here's how reinforcement learning is applied after the node feature processing and 

fuzzy logic rules: 

After obtaining PC decisions from the ANFIS component, the RL component is introduced 

to fine-tune these decisions adaptively. The RL agent is integrated into the CF mmWave-

mMIMO system and interacts with the environment, which is represented by the dynamic 

and heterogeneous nature of the CF mmWave-mMIMO system. The environment responds 

to the actions taken by the RL agent, providing feedback in the form of rewards or penalties 

based on the effectiveness of the PC decisions. 

The RL agent's objective is to maximize the SE of the CF mmWave-mMIMO system over 

time. To achieve this, the agent continuously explores different PC actions (exploration) while 

also exploiting the learned knowledge to make better decisions (exploitation). The RL agent 

learns from its interactions with the environment and updates its PC policies based on the 

received rewards or penalties. Through iterative learning and optimization, the RL agent 

refines its decision-making process and adapts its PC strategies to the changing conditions of 

the CF mmWave-mMIMO system. 

The combination of HGNN, ANFIS, and RL enables the CF mmWave-mMIMO system to 

optimize PC decisions in real-time. The RL agent's adaptive learning mechanism allows it to 

respond to dynamic changes in the network, ensuring efficient PC and maximizing SE. This 

approach provides a comprehensive and versatile solution to PC optimization in complex and 

heterogeneous CF mmWave-mMIMO systems. 
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A. State space (S): 

Let 𝑠(𝑛, 𝑘) represent the state of AP 𝑛 and UE 𝑘 in the CF mmWave-mMIMO system. The 

state includes information about the DL and UL equivalent subchannel gains, as well as other 

relevant parameters for each AP-UE pair. Mathematically, the state space 𝑆 can be defined 

as: 

𝑆 =  {𝑠(𝑛, 𝑘) | 𝑛 ∈  {1, … , 𝑀}, 𝑘 ∈  {1, … , 𝐾}}                              (5.26) 

B. Action space (𝑨): 

The action space represents the available PC actions for each AP and UE node. Each action 

corresponds to a change in the transmit power level. For simplicity, it is defined the action 

space A as a discrete set of possible PC levels as follows: 

𝐴 =  {𝑎 | 𝑎 ∈  𝑅, 𝑎_min ≤  𝑎 ≤  𝑎_𝑚𝑎𝑥}                             (5.27) 

where 𝑎𝑚𝑖𝑛d 𝑎𝑚𝑎𝑥e the minimum and maximum transmit power levels, respectively. 

C. Q-value function (𝑸): 

The Q-value function 𝑄(𝑠, 𝑎) estimates the expected cumulative reward for taking action a in 

state 𝑠 and following the optimal policy thereafter. It is the core function that the RL agent 

learns and updates during training. The Q-value function can be represented as: 

𝑄(𝑠(𝑛, 𝑘), 𝑎) =  𝐸 [𝑅(𝑠(𝑛, 𝑘), 𝑎) +  𝛾 ∗ max 𝑄(𝑠′(𝑛, 𝑘), 𝑎′)]                        (5.28) 

where 𝑅(𝑠(𝑛, 𝑘), 𝑎) is the immediate reward received for taking action a in state 𝑠(𝑛, 𝑘), 𝛾 

is the discount factor that balances immediate and future rewards, 𝑠′(𝑛, 𝑘) is the next state 

after taking action a, and 𝑎′ is the next action chosen based on the optimal policy. 

D. Policy (𝝅): 

The policy 𝜋(𝑠) determines the action to take in each state 𝑠. It is a mapping from states to 

actions and represents the RL agent's strategy for making PC decisions. The policy can be 

represented as a function 𝜋(𝑠(𝑛, 𝑘)) that selects an action based on the current state 𝑠(𝑛, 𝑘). 

E. Temporal difference learning (TD-learning): 

The RL agent uses temporal difference (TD) learning methods to update the Q-values and 

improve the policy. One common TD-learning method is Q-learning, where the Q-values are 

updated iteratively using the following update rule: 

𝑄(𝑠(𝑛, 𝑘), 𝑎) ←  𝑄(𝑠(𝑛, 𝑘), 𝑎) +  𝛼 ∗  [𝑅(𝑠(𝑛, 𝑘), 𝑎) +  𝛾 ∗ max 𝑄(𝑠′(𝑛, 𝑘), 𝑎′) −

 𝑄(𝑠(𝑛, 𝑘), 𝑎)]                         (5.29) 

where 𝛼 is the learning rate that determines the step size of the updates. 

F. Exploration-exploitation trade-off: 

During training, the RL agent balances exploration and exploitation. It explores the 

environment by taking random actions to discover new states and learn more about the CF 

mmWave-mMIMO system. At the same time, it exploits its learned knowledge by selecting 
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actions based on the current policy to maximize expected rewards. The RL step in the HARP 

algorithm involves the RL agent interacting with the CF mmWave-mMIMO system, learning 

from feedback, and continuously improving its PC policies to optimize SE over time. 

Overall, the HARP model offers a comprehensive and effective approach to PC in CF 

mmWave-mMIMO systems. By integrating heterogeneous graph neural networks, adaptive 

neuro-fuzzy inference systems, and reinforcement learning, the model addresses the 

complexities of CF mmWave-mMIMO systems, achieves SE goals, and outperforms traditional 

PC techniques. The completed algorithm for the HARP in CF mmWave-mMIMO systems is 

shown as algorithm 5-1 as follows: 

Algorithm 5-1. HARP Algorithm for PC in CF mmWave-mMIMO systems 

Step 1: Heterogeneous graph neural network (HGNN) 

1.1: Construct the Heterogeneous Graph (𝐺) for CF mmWave-mMIMO system with nodes representing APs and 

UEs, and edges capturing relationships. 

1.2: Initialize node features for each AP node (𝝊𝑛 ) and each UE node (𝝊𝑘 ) using DL and UL equivalent 

subchannel gains, as well as other relevant parameters. 

1.3: Perform adaptive node embedding on the graph G using attention mechanisms to update node features 

over 𝑇 iterations. 

Step 2: Adaptive neuro-fuzzy inference system (ANFIS) 

2.1: Process the updated node features (𝝊𝑛 , 𝝊𝑘 ) obtained from HGNN through ANFIS component. 

2.2: Define fuzzy logic rules that capture uncertainties and linguistic aspects of channel conditions for PC 

decisions in CF mmWave-mMIMO systems. 

2.3: Apply fuzzy inference based on the fuzzy logic rules to generate optimal PC decisions for each AP and UE 

node. 

Step 3: Reinforcement learning (RL) inspired PC 

3.1: Treat the CF mmWave-mMIMO system as an environment for the RL agent to interact with. 

3.2: Define the state space 𝑆 and action space 𝐴 to represent the AP-UE states and available PC actions. 

3.3: Initialize Q-value function 𝑄(𝑠, 𝑎) randomly for each state-action pair. 

3.4: Set the RL agent's policy 𝜋(𝑠)to explore and exploit the environment. 

3.5: Train the RL agent using temporal difference (TD) learning methods like Q-learning: 

      3.5.1: Choose an action a based on the current policy 𝜋(𝑠(𝑛, 𝑘)). 

      3.5.2: Observe the immediate reward 𝑅(𝑠(𝑛, 𝑘), 𝑎) from the environment. 

      3.5.3: Transition to the next state 𝑠′(𝑛, 𝑘) based on the selected action 𝑎. 

      3.5.4: Update the Q-value for the current state-action pair using the TD-learning update rule. 

      3.5.5: Update the RL agent's policy 𝜋(𝑠(𝑛, 𝑘)) based on the Q-values using an exploration-exploitation trade-

off. 

      3.5.6: Repeat steps 3.5.1 to 3.5.5 for multiple episodes to learn and optimize the PC strategies. 

Step 4: PC Decision 

4.1: Combine the PC decisions obtained from ANFIS with the RL-learned PC policies. 

4.2: Make the final PC decision for each AP and UE node based on the combined outputs. 

4.3: Update the transmit power levels of the APs and UEs accordingly. 

Step 5: Performance Evaluation 

5.1: Evaluate the SE of the CF mmWave-mMIMO system with the optimized PC decisions. 

5.2: Repeat steps 1 to 4 with different simulation scenarios to validate the effectiveness and robustness of the 

HARP algorithm. 
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5.4 Experimental setup 

5.4.1 Experimental setup of HGNN 

5.4.1.1 Parameter selection 

The GNN model is designed with learning Rate: A hyperparameter that controls the step size 

during gradient descent optimization. It is adopted Adam optimization learning rate 0.001 

[159] and a total of 6 hidden layers (iterations), denoted by 𝒯 = 6. Each hidden layer performs 

graph convolutional operations to iteratively update the node features. The node feature 

tensor sizes for the GNN are carefully selected to ensure effective information propagation 

and feature extraction. The input layer consists of nodes with two values per node, 

representing different features. The hidden layers have tensor sizes (dimensions) 

corresponding to (16, 32, 64, 32, 16). This configuration allows for the transformation of the 

input features into higher-dimensional abstract representations, enabling the GNN to capture 

complex relationships and patterns in the CF mmWave-mMIMO graph. 

To enhance the GNN's ability to focus on specific neighbours of each node, a multi-head 

attention mechanism is incorporated. The GNN utilizes 3 attention heads (𝒞 =  3) to allow 

each node to selectively attend to subsets of its neighbors, avoiding the need to equally 

consider all neighbors. Each attention head has a dimension of 𝒹 =  8, meaning that the 

attention mechanism operates on 8-dimensional feature tensors for improved 

expressiveness. The attention coefficients 𝛼•(𝒾, 𝒿) are calculated based on the features of the 

source and destination nodes, and they determine the contribution of neighbouring features 

in updating each node's feature at each iteration. 

The training dataset consists of two CF mmWave-mMIMO scenarios (urban). The scenario 

is as follows: (𝑁, 𝐾, 𝑚𝑜𝑟) =  (100, 100, 𝑢𝑟𝑏𝑎𝑛) 𝑎𝑛𝑑 (𝑁, 𝐾, 𝑚𝑜𝑟) =  (400, 100, 𝑢𝑟𝑏𝑎𝑛). 

Each scenario contains 160,000 samples, leading to a total of 320,000 training samples. To 

train the GNN effectively, the mean absolute error (MAE) of the per-user signal-to-noise ratio 

(SNR) is used as the loss function. This loss function guides the GNN to make accurate 

predictions of the SNR for each user in the CF mmWave-mMIMO system.  
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5.4.2 Experimental setup of ANFIS 

5.4.2.1 Parameter selection 

In the experimental setup of the adaptive neuro-fuzzy inference system (ANFIS) for PC in CF 

mmWave-mMIMO systems, several parameters are carefully selected to facilitate the training 

process and enhance the model's performance. The number of fuzzy sets for each input 

variable is chosen, typically ranging between 2 and 5 for each variable, resulting in a total of 

9 fuzzy rules in the rule base considering two input variables related to DL and UL equivalent 

subchannel gains. Gaussian membership functions are employed for both DL and UL 

subchannel gains to represent the linguistic aspects of channel conditions. During the training 

process, a suitable learning rate of 0.001 is employed, controlling the step size during 

parameter updates. To ensure effective learning and convergence, the ANFIS model iterates 

over the entire training dataset for 10,000 epochs. Moreover, a significant amount of training 

data consisting of 320,000 samples is provided, enabling ANFIS to learn the complex 

relationships in the CF mmWave-mMIMO system effectively. Furthermore, the DL and UL 

subchannel gains undergo essential data pre-processing steps, including log transformation 

and normalization, to bring them within the same order of magnitude and facilitate the 

learning process. Table 5-2 shows the parameters and numerical values for ANFIS in HGNN-

ANFIS model for CF mmWave-mMIMO systems. 

Table 5-2. Parameters and numerical values for ANFIS in HGNN-ANFIS model for CF mmWave-mMIMO 

systems. 

Parameter Value 

Number of samples 320,000 
CF mmWave-mMIMO scenario 2 (urban) 
Number of Inputs D+3 
Number of outputs 1 
Number of Fuzzy Rules 5 
Number of MFs per input 3 
Training algorithm Hybrid gradient descent 

(Backpropagation) 
Learning rate 0.001 
Maximum epochs 10,000 
Mean absolute error (MAE) Loss function 
Validation dataset size 10% of training Data 

 

It is noted that "D+3" refers to the number of inputs for the ANFIS model. "D" represents 

the number of features or attributes in the node feature vectors obtained from the HGNN, 

and "+3" indicates the additional attributes included for the ANFIS processing. Let's say the 

node feature vectors obtained from the HGNN have "D" features. When passing these feature 

vectors to the ANFIS, it is also included three additional attributes, making the total number 

of inputs "D+3". These additional attributes can be specific parameters or measurements 

relevant to the PC decision-making process in the CF mmWave-mMIMO system. 
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6.4.3 Experimental setup of RL 

6.4.3.1 Parameter selection 

In the experimental setup of RL for the HGNN-ANFIS model in the CF mmWave-mMIMO 

system, the following parameters and numerical values are selected and are shown in Table 

5-3 as well: 

1. Learning rate (𝛼): The learning rate is a hyperparameter that controls the step size during 

gradient descent optimization. In the RL component, an Adam optimization algorithm is 

adopted with a learning rate of 0.001. 

2. Discount factor (𝛾): The discount factor 𝛾 is used in the RL algorithm to balance the 

importance of immediate rewards versus future rewards. In the setup, 𝛾 is set to 0.9, 

indicating that the agent values immediate rewards and future rewards with a moderate 

balance. 

3. Exploration rate (𝜀): The exploration rate 𝜀 determines the probability of the RL agent 

taking random actions instead of exploiting its learned policy. It encourages the agent to 

explore new actions and learn more about the environment. In this setup, 𝜀 starts at 1.0 

and decays linearly over time to a minimum value of 0.1. 

4. Number of episodes: The RL agent is trained through multiple episodes, with each 

episode consisting of interactions with the environment and updates to the policy. In this 

setup, the agent is trained over 10,000 episodes. 

5. Replay buffer size: The replay buffer is used in the RL algorithm to store and sample 

experiences for training. It helps in breaking the temporal correlation between 

experiences and stabilizes the learning process. In this setup, the replay buffer size is set 

to 10,000. 

6. Batch size: During each training iteration, a batch of experiences is sampled from the 

replay buffer for updating the RL agent's policy. The batch size is set to 100 in this setup. 

7. Target network update frequency: The target network is a separate copy of the RL agent's 

policy network, used to calculate target Q-values for training stability. The target network 

is updated every 10 training steps to slowly track the policy network. 

These parameter selections and numerical values are crucial in fine-tuning the RL 

component of the HGNN-ANFIS model for achieving optimal PC decisions in the CF mmWave-

mMIMO system. The choices made here are based on balancing exploration and exploitation, 

managing the trade-off between immediate and future rewards, and ensuring stable and 

efficient learning of PC strategies. 
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Table 5-3. Experimental setup of RL in the HGNN-ANFIS model for CF mmWave-mMIMO systems. 

Parameter Value 

Learning rate (𝛼) 0.001 
Discount factor (𝛾) 0.9 
Exploration rate (𝜀) Start: 1.0, Decay: Linear, Min: 0.1 
Number of episodes 10,000 
Replay buffer size 10,000 
Batch size 100 
Target network update frequency Every 10 training steps 

 

The execution time of the software implementations of WMMSE and the proposed 

algorithms was compared using MATLAB version R2021a on a system equipped with an 11th 

Gen Intel(R) Core (TM) i9-11900H processor operating at 2.50 GHz and 32.0 GB of RAM. 

5.5 Experimental results 

5.5.1 Experimental results of HARP method 

Figure 5-1 provides a comprehensive comparison between various AI methods and the 

conventional WMMSE algorithm in the CF mmWave-mMIMO system. With 20,000 iterations 

and a network configuration featuring 100 APs (N), each equipped with 100 antennas (M) and 

serving 10 UEs (K), this figure delves into the performance aspects. Subfigure (a) showcases 

the cumulative distribution function (CDF) of spectral efficiency (SE) per user equipment (UE) 

in bit/s/Hz, offering valuable insights into algorithmic performance. Subfigure (b) zooms in on 

this SE distribution, allowing for a closer examination of the discrepancies between AI 

methods and the WMMSE algorithm. 

 

                   (a)                                                                                            (b)                                                           

Figure 5-2. Comparison of different AI methods with WMMSE algorithm in CF mmWave-mMIMO systems,  

iteration = 20,000, N = 100, M = 100, K = 100, (a) the CDF of SE per UE (bit/s/Hz), (b) zoom view. 
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Figure 5-3 extends the evaluation to a different network configuration, featuring 400 APs 

(N), each with 100 antennas (M), and serving 10 UEs (K). Consisting of 20,000 iterations, this 

figure captures the adaptability of AI-driven power control under varying network 

parameters. Subfigure (a) presents the CDF of SE per UE, providing a broader view of AI 

methods' performance in this larger-scale deployment. Subfigure (b) offers a detailed analysis 

of the SE distribution. 

 

(a)                                                                                            (b)                                                           

Figure 5-3. Comparison of different AI methods with WMMSE algorithm in CF mmWave-mMIMO systems, 

iteration = 20,000, N = 400, M = 100, K = 100, (a) the CDF of SE per UE (bit/s/Hz), (b) zoom view. 

Figure 5-4 combines the insights from Figure 5-1 and Figure 5-2 by presenting both 

subfigures in a zoomed-in view. This direct comparison highlights the differences in 

algorithmic performance between the two network configurations. Particularly in Figure 5-2 

with N = 400, better results are observed, with AI methods closely approximating the WMMSE 

algorithm. Among the AI approaches, HARP-PC approximated WMMSE the best, 

outperforming HGNN, ANFIS, HGNN-ANFIS, and RL. HGNN-ANFIS also exhibited better 

approximations than ANFIS and HGNN. RL, on the other hand, lagged behind considerably. 

In conclusion, these figures underscore the effectiveness of AI-driven power control in CF 

mmWave-mMIMO systems, with HARP-PC demonstrating remarkable potential in 

approximating WMMSE. The choice of network parameters significantly influences 

algorithmic performance, with larger-scale deployments yielding better results. HARP-PC's 

ability to adapt and closely approximate the WMMSE algorithm showcases its promise in 

optimizing spectral efficiency within complex CF mmWave-mMIMO environments. 
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(a)                                                                               (b)                                                           

Figure 5-4. Comparison of different AI methods with WMMSE algorithm in CF mmWave-mMIMO systems, (a) 

Figure 5-2 and (b) Figure 5-3 in zoom view. 

 

The study evaluates the performance of four proposed methods, namely HGNN, the 

ANFIS, RL and HARP method, for PC within a CF mmWave-mMIMO wireless communication 

system. The results are elucidated through Figure 6-5, illustrating the performance of these 

methods across various scenarios with different numbers of antennas and average sum 

spectral efficiency (SE). Notably, the HARP method exhibits the most promising outcomes, 

achieving an average sum SE exceeding 50 bit/s/Hz. Following closely is the HGNN-ANFIS 

approach, which demonstrates an upward trend in average sum SE, peaking at nearly 40 

bit/s/Hz as the number of antennas increases. ANFIS and HGNN methods also display an 

increase in average sum SE as the antenna count rises, converging to a similar SE value below 

40 bit/s/Hz. In comparison, the RL method showcases an average sum SE that elevates by 

about 22 bit/s/Hz with an increase in antenna numbers. These findings suggest that the HARP 

method stands out with the highest average sum SE, followed by HGNN-ANFIS, while ANFIS, 

HGNN, and RL methods offer competitive performance in terms of average sum SE as the 

number of antennas varies. 
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Figure 5-5. Performance of our proposed methods with different number of antennas and average sum SE. 

Table 5-4 presents a comparative evaluation of different methods applied in CF 

mmWave-mMIMO systems. The metrics of mean absolute error (MAE), mean squared error 

(MSE), and root mean squared error (RMSE) are utilized to measure the performance of the 

proposed methods. Among the methods, HARP demonstrates the best performance with the 

lowest values across all metrics (MAE: 0.011, MSE: 0.001, RMSE: 0.024), signifying best 

performance. HGNN-ANFIS follows suit with relatively small errors (MAE: 0.020, MSE: 0.006, 

RMSE: 0.035). ANFIS exhibits higher errors (MAE: 0.085, MSE: 0.025, RMSE: 0.099), while 

HGNN and RL show higher errors still (HGNN: MAE: 0.093, MSE: 0.049, RMSE: 0.132; RL: MAE: 

0.106, MSE: 0.084, RMSE: 0.141). In essence, HARP and HGNN-ANFIS outperform the others, 

indicating their potential suitability for higher performance in CF mmWave-mMIMO systems. 

Table 5-4. Evaluation performance results of different methods for CF mmWave-mMIMO systems. 

Method MAE MSE RMSE 

HARP 
HGNN-ANFIS 
ANFIS 

0.011 
0.020 
0.085 

0.001 
0.006 
0.025 

0.024 
0.035 
0.099 

HGNN 
RL 

0.093 
0.106 

0.049 
0.084 

0.132 
0.141 

 

Table 5-5 presents the area under the curve (AUC) values for different PC methods in the 

context of CF mmWave-mMIMO systems. The AUC metric serves as a comprehensive 

measure of the methods' overall performance. Notably, HARP emerges with the highest AUC 

value among the proposed methods, reaching 1.3258e+04. This result underscores HARP's 

exceptional effectiveness in optimizing PC, making it a standout performer. HGNN-ANFIS 

follows with an AUC of 2.2381e+04, demonstrating its commendable performance in 

enhancing PC within the system. Similarly, ANFIS and HGNN methods exhibit competitive 

outcomes, with AUC values of 2.4005e+04 and 2.4978e+04, respectively. Finally, the LR 

method displays the last AUC in the table, registering at 2.5631e+04, which implies its 
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potential efficacy in PC optimization. To sum up, HARP indeed stands out with the highest 

AUC among the proposed methods, underscoring its exceptional capability in optimizing PC 

within CF mmWave-mMIMO systems. 

Table 5-5. AUC for each PC method in CF mmWave-mMIMO system. 

PC Method AUC 

WMMSE 1.1326e+04 

HARP 1.3258e+04 

HGNN-ANFIS 2.2381e+04 

ANFIS 2.4005e+04 

HGNN 2.4978e+04 

LR 2.5631e+04 

 

Table 5-6 provides a comparative analysis of the execution time for various PC methods 

within the context of CF mmWave-mMIMO systems. The execution times are reported using 

a CPU configuration consisting of an 11th Gen Intel(R) Core (TM) i9-11900H processor 

operating at 2.50 GHz and 32.0 GB of RAM. Among the listed methods, HARP exhibits the 

shortest execution time, totalling 4,214.356 seconds. This indicates that HARP is exceptionally 

efficient in solving the PC problem within the specified system. Following closely is the HGNN-

ANFIS method, which records an execution time of 6,498.110 seconds, showcasing its 

commendable speed in addressing the PC challenge. ANFIS and HGNN methods demonstrate 

slightly longer execution times, measuring 7,981.466 seconds and 9,218.834 seconds, 

respectively. The LR method takes the longest execution time among the evaluated methods, 

with a recorded time of 10,457.589 seconds. In summary, the execution time comparison 

reveals HARP's superiority in terms of efficiency, making it the fastest method in solving the 

PC problem. The results offer valuable insights into the computational performance of these 

methods within CF mmWave-mMIMO systems, aiding in method selection based on 

execution time considerations. 

Table 5-6. Comparison of the execution time for the PC problem, execution Time (CPU: 11th Gen Intel(R) Core 
(TM) i9-11900H processor operating at 2.50 GHz and 32.0 GB of RAM) 

PC method Execution Time 

WMMSE 11,001.345sec 
HARP 4,214.356sec 

HGNN-ANFIS 6,498.110sec 

ANFIS 7,981.466sec 
HGNN 9.218.834sec 
LR 10,457.589sec 

 

Figure 5-6 presents a comprehensive performance evaluation of the proposed HARP 

method in comparison with several traditional methods within the context of CF mmWave-

mMIMO systems. This evaluation is represented through two subfigures: (a) a comparison 

between the HARP method and FP, WMMSE, Max-min fairness, and Water-filling methods, 

and (b) a zoomed-in view for closer examination. The results showcased in this figure shed 
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light on the remarkable performance achieved by the proposed HARP method and its 

effective approximation of traditional methods, all while maintaining low computational 

complexity. 

In subfigure (a), the HARP method is juxtaposed against the traditional methods of FP, 

WMMSE, Max-min fairness, and Water-filling, providing a holistic view of their comparative 

performance. Notably, the HARP method stands out as a high-performing solution that closely 

approximates the outcomes of traditional methods. This is a significant achievement, as the 

HARP method offers the dual advantage of delivering impressive results while operating with 

lower computational complexity. As the zoomed-in view in subfigure (b) reveals, the HARP 

method demonstrates its ability to maintain a high level of performance across varying 

scenarios, effectively bridging the gap between theoretical superiority and practical 

feasibility. 

Throughout the evaluation, the HARP method emerges as a versatile and powerful 

solution that competes favorably with a range of traditional methods. The comparative 

analysis underscores the HARP method's exceptional capacity to address the intricacies of CF 

mmWave-mMIMO systems while keeping computational complexity in check. Furthermore, 

the comparison against baseline traditional methods provides valuable insights. Water-filling, 

for instance, emerges as a standout performer in this specific scenario, followed by WMMSE 

and max-min fairness. Importantly, the HARP method does not fall behind and manages to 

offer competitive performance while mitigating complexities associated with other methods. 

In conclusion, Figure 5-6 encapsulates the essence of the research's contributions by 

highlighting the promising performance of the proposed HARP method. The figure elucidates 

how the HARP method offers a balanced approach, combining effective approximation of 

traditional methods with low computational complexity. This assessment further validates 

the viability and potential superiority of the HARP method in optimizing CF mmWave-mMIMO 

systems, serving as a steppingstone toward the realization of enhanced wireless 

communication performance in dynamic environments. 
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(a)                                                                                            (b)                                                           

Figure 5-6. Performance evaluation of the proposed HARP method with some traditional methods for CF-

mmWave-mMIMO system. (a) Proposed HARP method compares with FP, WMMSE, Max-min fairness, Water-

filling methods for CF-mmWave-mMIMO system, (b) zoom view. 

5.6 Conclusion 

In this chapter, the optimization of spectral efficiency (SE) in cell-free (CF) mmWave massive 

MIMO wireless communication systems have been diligently examined. With a focus on 

power control (PC) strategies, various advanced methods have been introduced and 

evaluated for their effectiveness in enhancing SE. The unique challenges posed by CF 

environments, characterized by abundant access points (APs) and intricate network 

dynamics, prompted the exploration of novel approaches to maximize SE.  

An initial challenge lies in the optimization of PC, a key determinant of SE. Traditional 

optimization techniques struggled with the intricacies of optimization problems such as the 

weighted minimum mean squared error (WMMSE), fractional programming (FP), water-

filling, and max-min fairness methods and they have high computational complexity. To 

surmount these challenges, a novel power control (PC) method, HARP-PC, was devised by 

combining heterogeneous graph neural network (HGNN), adaptive neuro-fuzzy inference 

system (ANFIS), and reinforcement learning (RL). HARP-PC addresses the complexities of 

dynamic CF mmWave-mMIMO systems by integrating HGNN's network topology 

understanding, ANFIS's fuzzy logic-based interpretability, and RL's adaptability. This 

innovative approach maximizes SE by optimizing PC strategies to adapt to varying network 

scenarios and uncertainties. Furthermore, the study introduces a novel scheme called delay-

tolerant zero-forcing precoding (DT-ZFP). This innovative approach harnesses the power of 

deep learning-aided channel prediction to mitigate the impact of outdated channel state 

information (CSI). By doing so, DT-ZFP offers a solution to the limitations faced by traditional 

methods. One of the key strengths of DT-ZFP lies in its ability to parallelize the transmission 

of CSI and precoded data. This parallelization, coupled with continuous data transmission, 

effectively mitigates the challenge of channel aging. Consequently, DT-ZFP not only 

overcomes this significant hurdle but also enhances SE within CF mmWave-mMIMO systems. 
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The research findings were substantiated through comprehensive evaluations of the 

proposed methods. Notably, HARP demonstrated the highest performance across various 

metrics, such as mean absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE), reaffirming its efficiency in PC optimization. The area under the curve 

(AUC) analysis further emphasized HARP's excellence, showcasing the highest AUC value 

among the methods, underscoring its potential for optimizing PC within CF mmWave-mMIMO 

systems. Moreover, HARP showcased its superior computational efficiency, achieving the 

shortest execution time compared to other evaluated methods, as confirmed by Table 5-6. 

In summary, this research has made significant strides in optimizing SE through 

innovative PC strategies tailored to the complexities of CF mmWave-mMIMO wireless 

communication systems. The introduction of the DT-ZFP scheme and the development of the 

HARP-PC method highlight the capacity to address challenges associated with channel aging, 

inefficient time resource utilization, and dynamic CF environments. The promising results and 

comprehensive evaluations presented in this study underscore the potential of these novel 

methods to shape the future of wireless communication systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 6 – CONCLUSION AND FUTURE WORK 

150 
 

Chapter 6. 

6 Conclusion and future work 

The power control (PC) problem in cellular and cell-free massive multiple-input-multiple-

output (CL/CF-mMIMO) systems was addressed in this PhD thesis using machine learning (ML) 

algorithms. It was proposed, used and investigated different ML approaches including 

supervised and unsupervised learning, reinforcement learning, deep learning and so on, were 

explored to tackle the PC challenge in CL/CF-mMIMO systems, and their performance was 

evaluated compared to traditional methods.  

• Technical Analysis 

Chapter 3: Fusion scheme and evaluation of ML algorithms for PC in CL/CF-mMIMO systems 

Chapter 3 of this PhD thesis delves into the fusion scheme and evaluation of ML algorithms 

for the PC problem in CL/CF-mMIMO systems. The primary objective of this chapter is to 

explore ML-based approaches to optimize PC performance and compare their effectiveness 

against traditional methods. 

The contribution of this research lies in the creation of a distinctive dataset by merging 

and extending two existing datasets. This dataset covers a wide range of scenarios, 

characteristics, and variables, making it a valuable resource for research in CL/CF-mMIMO 

systems. The dataset is employed to address the sum SE maximization problem, and the 

widely recognized WMMSE method is used as the baseline approach. 

In this chapter, several ML methods are proposed for CL/CF-mMIMO system, tailored 

explicitly to address the PC problem in CL/CF-mMIMO systems. Among them are the 

innovative proposed Fuzzy/DQN method, proposed DNN/GA method, proposed support 

vector machine (SVM) method, proposed SVM/RBF method, proposed decision tree (DT) 

method, proposed K-nearest neighbor (KNN) method, proposed linear regression (LR) 

method, and the novel proposed fusion scheme. The fusion scheme expertly combines 

multiple ML methods, such as system model 1 (DNN, DNN/GA, DQN, fuzzy/DQN, and SVM 

algorithms) and system model 2 (DNN, SVM-RBF, DQL, LR, KNN, and DT algorithms), which 

are thoroughly evaluated to maximize the sum spectral efficiency (SE), offering a viable 

alternative to computationally intensive heuristic algorithms. 

Through comprehensive performance evaluations, the research demonstrates that ML-

based approaches, particularly DNNs, approximate the performance of traditional methods, 

such as the WMMSE algorithm, with higher efficiency. This finding aligns with this thesis's aim 

to investigate the influence of ML methodologies on PC in complex and dynamic CL/CF-

mMIMO systems. 

The evaluation results reveal that ML algorithms can achieve more efficient and effective 

PC with lower computational complexity. This indicates that ML-based solutions have the 

potential to outperform traditional methods in optimizing PC performance, thus supporting 
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this thesis's objectives of developing low-complexity algorithms for PC in CL/CF-mMIMO 

systems. 

Chapter 4: Transfer learning with DNNs for PC in CL/CF-mMIMO systems 

Chapter 4 of this thesis proposes on the application of transfer learning (TL) with DNNs for PC 

in CL/CF-mMIMO systems. TL is a technique that leverages pre-trained models to enhance ML 

performance. The primary objective of this chapter is to investigate the potential of TL in 

improving PC performance and its effectiveness in adapting to different systems. 

The research examines TL's transferability across two datasets, dataset A and B, which 

have shared common features. The training of model A (MA) based on dataset A and the 

development of three TL scenarios (S1, S2, and S3) allow for a detailed evaluation of TL's 

impact on PC performance. The comparison of the DNN method and three DNN architecture 

setups (DNN1, DNN2, and DNN3) with the WMMSE method further elucidates the 

effectiveness of TL in approximating WMMSE-based PC. 

The evaluation results demonstrate the potential of TL in improving PC performance in 

terms of sum SE and cumulative distribution function (CDF) compared to scenarios without 

retraining using pre-existing models. TL provides a powerful means to adapt pre-trained 

models to different network conditions, addressing the challenge of optimizing PC in dynamic 

and evolving CL/CF-mMIMO systems. 

Additionally, the analysis of the impact of system parameters on the DNN method 

provides insights into its adaptability to varying network configurations. The finding that an 

increase in the number of user equipment (UEs) does not affect the dimensionality of the 

input vector, while an increase in the number of base stations (BSs), access points (APs), or 

antennas influences the input vector's dimensionality, is valuable for future system design 

and optimization. 

The findings from Chapter 4 directly support this thesis's objective of exploring innovative 

techniques, like TL, to enhance PC performance in complex and evolving CL/CF-mMIMO 

systems. 

Chapter 4: Effects of system parameters on PC in CL/CF-mMIMO systems 

Chapter 4 also, addresses the effects of system parameters, specifically the number of 

BSs, APs, and users, on PC performance in CL/CF-mMIMO systems using ML methodology. To 

conduct a comprehensive analysis, datasets capturing various scenarios and configurations of 

mMIMO systems were curated, ensuring a rigorous evaluation of the proposed approach's 

performance. 

The results reveal that the dimensionality of the DNN's input vector is influenced by the 

increasing number of BSs/APs, leading to changes and increases in the area under the 

cumulative distribution function (ΔAUC). This observation emphasizes the importance of 

considering the number of APs/BSs in achieving optimal PC performance in CL/CF-mMIMO 

systems. 
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In contrast, the number of users has minimal impact on PC performance. This insight is 

significant for network planners and designers, as it suggests that the number of UEs does not 

significantly affect the DNN algorithm's input vector, simplifying the PC optimization process 

in dynamic UE configurations. 

Furthermore, the comparison between the DNN-based PC method and the traditional 

WMMSE method demonstrates the superiority of the DNN algorithm in terms of both 

performance and execution time. This finding reinforces the potential of ML-based 

approaches, especially DNNs, in efficiently addressing the PC challenge in CL/CF-mMIMO 

systems. 

The research findings from Chapter 5 directly support this thesis's objective of evaluating 

the impact of system parameters on PC in CL/CF-mMIMO systems. The analysis provides 

valuable insights into system scalability and efficiency, guiding future network design and 

optimization efforts. 

 

Chapter 5: Heterogeneous Graph Neural Network (HGNN), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), and Reinforcement Learning (RL) – HARP method for power control in cell-

free mmWave massive MIMO wireless communication system 

In this chapter, the optimization of spectral efficiency (SE) in cell-free (CF) mmWave massive 

MIMO wireless communication systems have been thoroughly examined. With a focus on 

power control (PC) strategies, various advanced methods were introduced and evaluated for 

their effectiveness in enhancing SE.  

An initial challenge lay in the optimization of PC, a key determinant of SE. Traditional 

optimization techniques struggled with the intricacies of optimization problems such as the 

weighted minimum mean squared error (WMMSE), fractional programming (FP), water-

filling, and max-min fairness methods due to their high computational complexity. To 

surmount these challenges, a novel power control (PC) method, HARP-PC, was devised by 

combining heterogeneous graph neural network (HGNN), adaptive neuro-fuzzy inference 

system (ANFIS), and reinforcement learning (RL). HARP-PC addressed the complexities of 

dynamic CF mmWave-mMIMO systems by integrating HGNN's network topology 

understanding, ANFIS's fuzzy logic-based interpretability, and RL's adaptability. This 

innovative approach maximized SE by tailoring PC strategies to adapt to varying network 

scenarios and uncertainties. 

Additionally, a ground-breaking scheme named delay-tolerant zero-forcing precoding 

(DT-ZFP) was introduced. This innovation harnessed deep learning-aided channel prediction 

to alleviate the impact of outdated channel state information (CSI). By parallelizing CSI and 

precoded data transmission, DT-ZFP deftly overcame channel aging, significantly enhancing 

SE in CF mmWave-mMIMO systems. 

The research findings were substantiated through comprehensive evaluations of the 

proposed methods. Notably, HARP demonstrated the highest performance across various 



 
 

CHAPTER 6 – CONCLUSION AND FUTURE WORK 

153 
 

metrics, including mean absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE), reaffirming its efficiency in PC optimization. AUC analysis further 

emphasized HARP's excellence, showcasing the highest AUC value among the methods, 

underscoring its potential for optimizing PC within CF mmWave-mMIMO systems. Moreover, 

HARP exhibited unmatched computational efficiency, achieving the shortest execution time 

compared to other evaluated methods, as confirmed by Table 5-6. 

In summary, significant strides have been made in optimizing SE through innovative PC 

strategies tailored to the complexities of CF mmWave-mMIMO wireless communication 

systems. The introduction of DT-ZFP and the development of HARP-PC highlight the capacity 

to address challenges associated with channel aging, inefficient time resource utilization, and 

dynamic CF environments. The promising results and comprehensive evaluations presented 

in this study underscore the potential of these novel methods to shape the future of wireless 

communication systems. 

• Summary of findings and link to aims and objectives 

The technical analysis conducted in this PhD thesis has successfully addressed the aims 

and objectives of the project described in Section 1.6. The creation of a unique and 

comprehensive dataset, along with its utilization in addressing the sum SE maximization 

problem using the WMMSE method, supports the objective of investigating PC in CL/CF-

mMIMO systems. 

The proposed and evaluation of ML algorithms, especially DNNs, in Chapter 3 

demonstrates their potential to achieve efficient and effective PC with lower computational 

complexity compared to traditional methods. This finding aligns with the project's objective 

of developing low-complexity algorithms for PC optimization in CL/CF-mMIMO systems. 

Chapter 4 explores innovative technique like transfer learning with DNNs to enhance PC 

performance. The positive evaluation results highlight the potential of TL in improving PC 

performance in dynamic and evolving CL/CF-mMIMO systems, directly addressing the 

project's aim to explore advanced methods for power control. 

Furthermore, Chapter 4's analysis of the effects of system parameters on PC performance 

provides valuable insights into system scalability and efficiency, guiding future network design 

and optimization efforts. The research findings reaffirm the potential of ML-based 

approaches, particularly DNNs, to efficiently address the PC challenge in CL/CF-mMIMO 

systems. 

Additionally, Chapter 5 introduces novel methods, including HARP-PC and DT-ZFP, 

offering innovative solutions to complex challenges in CF mmWave-mMIMO systems, thereby 

further advancing the project's goals of optimizing PC strategies and enhancing SE in next-

generation wireless networks. 
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• Future work 

Future work can build upon the findings of this research to further advance the field of PC in 

CL/CF-mMIMO systems with ML methodologies. Novel ML algorithms tailored specifically for 

PC in mMIMO systems can be developed, exploring advanced deep learning architectures 

such as recurrent neural networks (RNNs) and transformers. Additionally, considering other 

performance metrics such as energy efficiency, fairness, and interference management will 

provide a more comprehensive evaluation of PC algorithms. 

The robustness of ML-based PC algorithms to different network conditions and 

uncertainties should be investigated. Analyzing the performance of ML models under varying 

channel conditions, noise levels, and system parameters will ensure the reliability and 

adaptability of the proposed algorithms in real-world scenarios. As CL/CF-mMIMO systems 

move towards large-scale deployment, addressing scalability challenges of ML-based PC 

algorithms becomes crucial. Efficient approaches that can handle massive networks with a 

large number of APs/BSs and UEs should be proposed. 

To validate the effectiveness of the proposed ML-based PC algorithms, real-world 

implementations and field trials are necessary. Collaboration with industry partners can help 

deploy and validate the ML models in practical mMIMO systems, considering hardware 

limitations, real-time constraints, and interoperability with existing network infrastructure. 

In conclusion, the technical analysis presented in this PhD thesis effectively responds to 

the open challenges of the PC optimization task by providing innovative and low-complexity 

ML-based solutions for efficient PC in CL/CF-mMIMO systems. The research findings 

contribute to the advancement of PC methodologies, offering valuable guidance for the 

design and optimization of mMIMO systems in future wireless communication systems. The 

use of ML techniques, specifically DNNs, showcases potential advancements in PC 

performance while reducing computational complexity, providing a steppingstone for further 

research and practical implementations in the field of wireless communication technologies. 
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Simulation results of baseline ML based PC algorithms 

In this section, the simulation results of two replicated papers, [8] and [160], are adopted for 

the purpose of direct comparison. Specifically, the third setup from [8] is replicated, and the 

results are compared side-by-side. Figure A-1 (a) illustrates the outcome achieved with a small 

dataset containing 1000 samples, utilizing a neural network (NN) with an input layer of 40 

neurons, followed by hidden layers with 256, 128, 64 neurons, and 5 neurons in each layer, 

and 6 output neurons. The simulation is performed for 100 iterations. Figure A-1 (b) shows 

the results obtained with 1000 iterations, providing insights into the performance 

improvement with increased iterations. Additionally, Figure A-1 (c) presents the results 

reported in Table III of the [8] paper, where a significantly larger dataset consisting of 330,000 

samples is used, and the NN is trained for 5000 iterations. The comparison of these side-by-

side results offers valuable insights into the impact of dataset size and training iterations on 

the deep learning-based PC performance in mMIMO systems. The figures demonstrate the 

effectiveness of the NN model and its ability to approximate the performance of traditional 

methods with relatively small datasets and iterations, while achieving even better results with 

larger datasets and more iterations. These findings contribute to the understanding and 

evaluation of deep learning-based PC techniques, demonstrating their potential to optimize 

mMIMO systems in practical applications. 
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(a)                                                                                 (b) 

 

(c) 

Figure A-1. Side-by-side comparison. (a) CDF of the DL SEs with MR and M-MMSE precoding by using the NN of 

Table III with 1000 samples a) with 100 iterations, b) with 1000 iterations and (c) CDF of the DL SEs with MR 

and MMMSE precoding by using the NN of Table III with 330000 samples and 5000 iterations. 

 

Figure A-2 and Figure 3 present the results of the replication of the full dataset from the 

paper referenced as [88]. In Figure A-2, the outcomes are demonstrated for various scenarios. 

In Figure A-2 (a), the results are obtained for M = 10, with 5000 iterations, and the elapsed 

time for the simulation is approximately 98409.393895 seconds, which corresponds to 

around 24 hours of computation. Figure A-2 (b) showcases the results for the same setup, but 

specifically focusing on Table II of the referenced paper. Similarly, Figure A-2 (c) provides the 

results for the same setup, this time focusing on Table IV of the paper. To gain a more detailed 

view of the outcomes from Table IV, a zoomed-in view is displayed in Figure A-2 (d). Finally, 

Figure A-2 (e) presents the results for the entire dataset, covering both Table II and Table IV. 

The results displayed in these figures allow for a comprehensive analysis and validation of the 

outcomes presented in the referenced paper [88]. The extensive elapsed time for the 

simulations, approximately 24 hours, highlights the complexity and computational intensity 

of the experiments conducted. The successful replication of the results further supports the 

credibility and reliability of the referenced paper's findings. Overall, these figures contribute 
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to the understanding and evaluation of the proposed methods and provide valuable insights 

into the performance of the full dataset replication in the context of the paper [88]. 

        

(a)         (b) 

         
(c)       (d) 

 
(e) 

Figure A-2. Results of the replication of full dataset regarding this paper [8]. (a) M = 10, 5000 iterations and 

elapsed time = 98409.393895 about 24 hours. (b)  M = 10, 5000 iterations and elapsed time = 98409.393895 

about 24 hours only table II. (c) M = 10, 5000 iterations and elapsed time = 98409.393895 about 24 hours only 

table IV. (d) M = 10, 5000 iterations and elapsed time = 98409.393895 about 24 hours only table IV zoom in 

view. © M = 10, 5000 iterations and elapsed time = 98409.393895 seconds about 24 hours both tables.  
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(a)         (b) 

 
           © 
Figure A-3. Final replication results. (a) Paper result according to table II. (b) Paper result according to table IV. 

(c) M = 100, 5000 iterations and elapsed time = 118511.682423 seconds about 2 days both tables. 

 

The results of the replication of the paper [160] are presented in Figures A-4, A-5, and A-

6. In Figure A-4 (a), it is showcased the replication of the paper's results, and in Figure A-4 (b), 

it is displayed the original results from the paper for comparison. Figure A-5 (a) illustrates the 

replication of the paper's results with specific parameters, including 25 setups, 1000 

realizations, 400 APs per setup, 1 antenna per AP, 100 UEs in the network, and an elapsed 

time of 71743.148143 seconds. For a comprehensive comparison, Figure A-5 (b) presents the 

corresponding results reported in the paper. Similarly, in Figure A-6 (a), it is demonstrated the 

replication of the paper's results with the same parameters as in Figure 5 (a), resulting in an 

elapsed time of 6861.864666 seconds. Figure A-6 (b) provides the original results from the 

paper for direct comparison. The replication of these results allows for a thorough evaluation 

and validation of the findings presented in the referenced paper [160]. 

The comparison between the replicated results and the original results from the paper 

[160] reveals the accuracy and reliability of the replication process. The close agreement 

between the replicated and original results across Figures A-4, A-5, and A-6 indicates that the 
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experimental setup and methodology have been faithfully reproduced. The consistency in 

outcomes strengthens the credibility and robustness of the proposed scalable CF-mMIMO 

systems. Moreover, the replication effort provides valuable insights into the reproducibility 

of the paper's results and serves as a benchmark for future research in the field. The extensive 

elapsed times for the simulations, as displayed in Figures A-5 (a) and A-6 (a), emphasize the 

computational complexity of the proposed scalable systems and highlight the need for 

efficient algorithms and hardware implementations. Overall, the successful replication of the 

paper's results confirms the validity of the proposed scalable CF-mMIMO systems and 

supports their potential applications in real-world scenarios. The replication effort 

contributes to the advancement of research in this area and facilitates further investigations 

and improvements in scalable mMIMO systems for future wireless communication networks. 

         

(a)                                                                             (b) 
Figure A-4.  Results according to the paper [160]. (a) Replication of the paper and (b) result of the paper. 

       

(a)                                                                                      (b) 

Figure A-5. Results according to the paper [160]. (a) Replication of the paper with number of setups = 25, 

number of realizations = 1000, number of APs per setup = 400, number of antennas per AP = 1, Number of UEs 

in the network = 100, and elapsed time = 71743.148143 seconds and (b) result of the paper. 
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(a) (b) 

Figure A-6. Results according to the paper [160]. (a) Replication of the paper with number of setups = 25, 
number of realizations = 1000, Number of APs per setup = 400, number of antennas per AP = 1, number of UEs 

in the network = 100, and elapsed time = 6861.864666 seconds and (b) result of the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

BIBLIOGRAPHY 

161 
 

 

Bibliography 
 
[1] M. Afshin, "Application of least squares support vector machines in medium-term load 

forecasting," Canada: Ryerson University (Canada), p. 46, 2007. 
[2] F. Meng, P. Chen, and L. Wu, "Power allocation in multi-user cellular networks with deep Q 

learning approach," in ICC 2019-2019 IEEE International Conference on Communications (ICC), 
2019: IEEE, pp. 1-6.  

[3] Ö. T. Demir, E. Björnson, and L. Sanguinetti, "Foundations of user-centric cell-free massive 
MIMO," Foundations and Trends® in Signal Processing, vol. 14, no. 3-4, pp. 162-472, 2021. 

[4] S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, "Millimeter-wave massive MIMO 
communication for future wireless systems: A survey," IEEE Communications Surveys & 
Tutorials, vol. 20, no. 2, pp. 836-869, 2017. 

[5] S. Chen, J. Zhang, J. Zhang, E. Björnson, and B. Ai, "A survey on user-centric cell-free massive 
MIMO systems," arXiv preprint arXiv:2104.13667, 2021. 

[6] P. He, S. Zhang, L. Zhao, and X. Shen, "Multichannel power allocation for maximizing energy 
efficiency in wireless networks," IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 
5895-5908, 2018. 

[7] P. He, L. Zhao, S. Zhou, and Z. Niu, "Water-filling: A geometric approach and its application to 
solve generalized radio resource allocation problems," IEEE transactions on Wireless 
Communications, vol. 12, no. 7, pp. 3637-3647, 2013. 

[8] L. Sanguinetti, A. Zappone, and M. Debbah, "Deep learning power allocation in massive 
MIMO," in 2018 52nd Asilomar conference on signals, systems, and computers, 2018: IEEE, pp. 
1257-1261.  

[9] C. Windpassinger, R. F. Fischer, and J. B. Huber, "Lattice-reduction-aided broadcast 
precoding," IEEE Transactions on Communications, vol. 52, no. 12, pp. 2057-2060, 2004. 

[10] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, "Cell-free massive MIMO: A new next-
generation paradigm," IEEE Access, vol. 7, pp. 99878-99888, 2019. 

[11] G. Interdonato, Cell-Free Massive MIMO: Scalability, Signal Processing and Power Control. 
Linköping University Electronic Press, 2020. 

[12] E. Björnson, J. Hoydis, and L. Sanguinetti, "Massive MIMO networks: Spectral, energy, and 
hardware efficiency," Foundations and Trends in Signal Processing, vol. 11, no. 3-4, pp. 154-
655, 2017. 

[13] T. L. Marzetta, Fundamentals of massive MIMO. Cambridge University Press, 2016. 
[14] S. Gunnarsson, J. Flordelis, L. Van der Perre, and F. Tufvesson, "Channel hardening in massive 

MIMO: Model parameters and experimental assessment," IEEE Open Journal of the 
Communications Society, vol. 1, pp. 501-512, 2020. 

[15] T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station 
antennas," IEEE transactions on wireless communications, vol. 9, no. 11, pp. 3590-3600, 2010. 

[16] M. Costa, "Writing on dirty paper (corresp.)," IEEE transactions on information theory, vol. 29, 
no. 3, pp. 439-441, 1983. 

[17] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, "A vector-perturbation technique for near-
capacity multiantenna multiuser communication-Part II: Perturbation," IEEE Transactions on 
Communications, vol. 53, no. 3, pp. 537-544, 2005. 

[18] R. R. Müller, L. Cottatellucci, and M. Vehkaperä, "Blind pilot decontamination," IEEE Journal 
of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 773-786, 2014. 

[19] H. Huh, S.-H. Moon, Y.-T. Kim, I. Lee, and G. Caire, "Multi-cell MIMO downlink with cell 
cooperation and fair scheduling: A large-system limit analysis," IEEE Transactions on 
Information Theory, vol. 57, no. 12, pp. 7771-7786, 2011. 



 
 

BIBLIOGRAPHY 

162 
 

[20] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in 
large-scale multiple-antenna systems," IEEE Journal on selected areas in communications, vol. 
31, no. 2, pp. 264-273, 2013. 

[21] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, "Cell-free massive MIMO 
versus small cells," IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1834-
1850, 2017. 

[22] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Prospective multiple 
antenna technologies for beyond 5G," IEEE Journal on Selected Areas in Communications, vol. 
38, no. 8, pp. 1637-1660, 2020. 

[23] A. Forenza, S. Perlman, F. Saibi, M. Di Dio, R. Van Der Laan, and G. Caire, "Achieving large 
multiplexing gain in distributed antenna systems via cooperation with pcell technology," in 
2015 49th Asilomar Conference on Signals, Systems and Computers, 2015: IEEE, pp. 286-293.  

[24] Z. H. Shaik, E. Björnson, and E. G. Larsson, "Cell-free massive MIMO with radio stripes and 
sequential uplink processing," in 2020 IEEE International Conference on Communications 
Workshops (ICC Workshops), 2020: IEEE, pp. 1-6.  

[25] Z.-Q. Luo and S. Zhang, "Dynamic spectrum management: Complexity and duality," IEEE 
journal of selected topics in signal processing, vol. 2, no. 1, pp. 57-73, 2008. 

[26] E. Björnson and E. Jorswieck, Optimal resource allocation in coordinated multi-cell systems. 
Now Publishers Inc, 2013. 

[27] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, "Precoding and power 
optimization in cell-free massive MIMO systems," IEEE Transactions on Wireless 
Communications, vol. 16, no. 7, pp. 4445-4459, 2017. 

[28] M. Bashar, K. Cumanan, A. G. Burr, M. Debbah, and H. Q. Ngo, "On the uplink max–min SINR 
of cell-free massive MIMO systems," IEEE Transactions on Wireless Communications, vol. 18, 
no. 4, pp. 2021-2036, 2019. 

[29] T. H. Nguyen, T. K. Nguyen, and H. D. Han, "Optimal power control and load balancing for 
uplink cell-free multi-user massive MIMO," IEEE access, vol. 6, pp. 14462-14473, 2018. 

[30] L. D. Nguyen, T. Q. Duong, H. Q. Ngo, and K. Tourki, "Energy efficiency in cell-free massive 
MIMO with zero-forcing precoding design," IEEE Communications Letters, vol. 21, no. 8, pp. 
1871-1874, 2017. 

[31] H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, "On the total energy 
efficiency of cell-free massive MIMO," IEEE Transactions on Green Communications and 
Networking, vol. 2, no. 1, pp. 25-39, 2017. 

[32] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, "Learning to optimize: Training 
deep neural networks for interference management," IEEE Transactions on Signal Processing, 
vol. 66, no. 20, pp. 5438-5453, 2018. 

[33] G. Yu, Q. Chen, and R. Yin, "Dual-threshold sleep mode control scheme for small cells," IET 
communications, vol. 8, no. 11, pp. 2008-2016, 2014. 

[34] M. Simsek, M. Bennis, and I. Güvenç, "Learning based frequency-and time-domain inter-cell 
interference coordination in HetNets," IEEE Transactions on Vehicular Technology, vol. 64, no. 
10, pp. 4589-4602, 2014. 

[35] A. Asheralieva and Y. Miyanaga, "An autonomous learning-based algorithm for joint channel 
and power level selection by D2D pairs in heterogeneous cellular networks," IEEE transactions 
on communications, vol. 64, no. 9, pp. 3996-4012, 2016. 

[36] W. Lee, M. Kim, and D.-H. Cho, "Deep power control: Transmit power control scheme based 
on convolutional neural network," IEEE Communications Letters, vol. 22, no. 6, pp. 1276-1279, 
2018. 

[37] K. I. Ahmed, H. Tabassum, and E. Hossain, "Deep learning for radio resource allocation in multi-
cell networks," IEEE Network, vol. 33, no. 6, pp. 188-195, 2019. 

[38] J.-B. Wang et al., "A machine learning framework for resource allocation assisted by cloud 
computing," IEEE Network, vol. 32, no. 2, pp. 144-151, 2018. 



 
 

BIBLIOGRAPHY 

163 
 

[39] T. Van Chien, T. N. Canh, E. Björnson, and E. G. Larsson, "Power control in cellular massive 
MIMO with varying user activity: A deep learning solution," IEEE Transactions on Wireless 
Communications, vol. 19, no. 9, pp. 5732-5748, 2020. 

[40] Y. Zhao, I. G. Niemegeers, and S. H. De Groot, "Power allocation in cell-free massive MIMO: A 
deep learning method," IEEE Access, vol. 8, pp. 87185-87200, 2020. 

[41] G. Qian, Z. Li, C. He, X. Li, and X. Ding, "Power allocation schemes based on deep learning for 
distributed antenna systems," IEEE Access, vol. 8, pp. 31245-31253, 2020. 

[42] J. Chen, S. Luo, L. Zhang, C. Zhang, and B. Cao, "iPAS: A deep Monte Carlo Tree Search-based 
intelligent pilot-power allocation scheme for massive MIMO system," Digital Communications 
and Networks, 2020. 

[43] Y. Zhao, I. G. Niemegeers, and S. M. H. De Groot, "Dynamic power allocation for cell-free 
massive MIMO: Deep reinforcement learning methods," IEEE Access, vol. 9, pp. 102953-
102965, 2021. 

[44] H. Zhang, H. Zhang, K. Long, and G. K. Karagiannidis, "Deep learning based radio resource 
management in NOMA networks: User association, subchannel and power allocation," IEEE 
Transactions on Network Science and Engineering, vol. 7, no. 4, pp. 2406-2415, 2020. 

[45] X. Mu, X. Zhao, and H. Liang, "Power Allocation Based on Reinforcement Learning for MIMO 
System With Energy Harvesting," IEEE Transactions on Vehicular Technology, vol. 69, no. 7, 
pp. 7622-7633, 2020. 

[46] N. Rajapaksha, K. Manosha, N. Rajatheva, and M. Latva-aho, "Deep Learning-based Power 
Control for Cell-Free Massive MIMO Networks," arXiv preprint arXiv:2102.10366, 2021. 

[47] T. Sanguanpuak, S. Guruacharya, N. Rajatheva, M. Bennis, and M. Latva-Aho, "Multi-operator 
spectrum sharing for small cell networks: A matching game perspective," IEEE Transactions on 
Wireless Communications, vol. 16, no. 6, pp. 3761-3774, 2017. 

[48] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, "A survey of self organisation in future cellular 
networks," IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 336-361, 2012. 

[49] M. Chen, W. Saad, and C. Yin, "Echo state networks for self-organizing resource allocation in 
LTE-U with uplink–downlink decoupling," IEEE Transactions on Wireless Communications, vol. 
16, no. 1, pp. 3-16, 2016. 

[50] Y. Saleem, K.-L. A. Yau, H. Mohamad, N. Ramli, M. H. Rehmani, and Q. Ni, "Clustering and 
reinforcement-learning-based routing for cognitive radio networks," IEEE Wireless 
Communications, vol. 24, no. 4, pp. 146-151, 2017. 

[51] C. Fan, B. Li, C. Zhao, W. Guo, and Y.-C. Liang, "Learning-based spectrum sharing and spatial 
reuse in mm-wave ultradense networks," IEEE Transactions on Vehicular Technology, vol. 67, 
no. 6, pp. 4954-4968, 2017. 

[52] F. Tang et al., "On removing routing protocol from future wireless networks: A real-time deep 
learning approach for intelligent traffic control," IEEE Wireless Communications, vol. 25, no. 1, 
pp. 154-160, 2017. 

[53] G. Cao, Z. Lu, X. Wen, T. Lei, and Z. Hu, "AIF: An artificial intelligence framework for smart 
wireless network management," IEEE Communications Letters, vol. 22, no. 2, pp. 400-403, 
2017. 

[54] Z. Xu, Y. Wang, J. Tang, J. Wang, and M. C. Gursoy, "A deep reinforcement learning based 
framework for power-efficient resource allocation in cloud RANs," in 2017 IEEE International 
Conference on Communications (ICC), 2017: IEEE, pp. 1-6.  

[55] Z. Li, C. Wang, and C.-J. Jiang, "User association for load balancing in vehicular networks: An 
online reinforcement learning approach," IEEE Transactions on Intelligent Transportation 
Systems, vol. 18, no. 8, pp. 2217-2228, 2017. 

[56] S. Liu, Y. Wu, L. Li, X. Liu, and W. Xu, "A two-stage energy-efficient approach for joint power 
control and channel allocation in D2D communication," IEEE Access, vol. 7, pp. 16940-16951, 
2019. 



 
 

BIBLIOGRAPHY 

164 
 

[57] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. Leung, "Power control based on deep 
reinforcement learning for spectrum sharing," IEEE Transactions on Wireless Communications, 
vol. 19, no. 6, pp. 4209-4219, 2020. 

[58] M. Chen, W. Saad, and C. Yin, "Virtual reality over wireless networks: Quality-of-service model 
and learning-based resource management," IEEE Transactions on Communications, vol. 66, 
no. 11, pp. 5621-5635, 2018. 

[59] P. Naronglerdrit, I. Mporas, and A. Sheikh-Akbari, "COVID-19 detection from chest X-rays using 
transfer learning with deep convolutional neural networks," in Data Science for COVID-19: 
Elsevier, 2021, pp. 255-273. 

[60] W. Alves, I. Correa, N. González-Prelcic, and A. Klautau, "Deep Transfer Learning for Site-
Specific Channel Estimation in Low-Resolution mmWave MIMO," IEEE Wireless 
Communications Letters, 2021. 

[61] J. Zeng et al., "Downlink CSI Feedback Algorithm with Deep Transfer Learning for FDD Massive 
MIMO Systems," IEEE Transactions on Cognitive Communications and Networking, 2021. 

[62] Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, H. Sari, and F. Adachi, "Transfer learning for semi-
supervised automatic modulation classification in ZF-MIMO systems," IEEE Journal on 
Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 231-239, 2020. 

[63] S. Chakraborty, Ö. T. Demir, E. Björnson, and P. Giselsson, "Efficient Downlink Power 
Allocation Algorithms for Cell-Free Massive MIMO Systems," IEEE Open Journal of the 
Communications Society, vol. 2, pp. 168-186, 2020. 

[64] A. Adhikary, A. Ashikhmin, and T. L. Marzetta, "Uplink interference reduction in large-scale 
antenna systems," IEEE Transactions on Communications, vol. 65, no. 5, pp. 2194-2206, 2017. 

[65] K. Shen and W. Yu, "Fractional programming for communication systems—Part I: Power 
control and beamforming," IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-
2630, 2018. 

[66] E. Chen and M. Tao, "ADMM-based fast algorithm for multi-group multicast beamforming in 
large-scale wireless systems," IEEE Transactions on Communications, vol. 65, no. 6, pp. 2685-
2698, 2017. 

[67] K. Huang and N. D. Sidiropoulos, "Consensus-ADMM for general quadratically constrained 
quadratic programming," IEEE Transactions on Signal Processing, vol. 64, no. 20, pp. 5297-
5310, 2016. 

[68] R. S. Sutton and A. G. Barto, "Reinforcement learning: an introduction MIT Press," Cambridge, 
MA, vol. 22447, 1998. 

[69] Z.-b. Shi, Y. Li, and T. Yu, "Short-term load forecasting based on LS-SVM optimized by bacterial 
colony chemotaxis algorithm," in 2009 International Conference on Information and 
Multimedia Technology, 2009: IEEE, pp. 306-309.  

[70] C.-L. Huang and C.-J. Wang, "A GA-based feature selection and parameters optimizationfor 
support vector machines," Expert Systems with applications, vol. 31, no. 2, pp. 231-240, 2006. 

[71] I. Aydin, M. Karakose, and E. Akin, "A multi-objective artificial immune algorithm for 
parameter optimization in support vector machine," Applied soft computing, vol. 11, no. 1, 
pp. 120-129, 2011. 

[72] D. He, C. Liu, T. Q. Quek, and H. Wang, "Transmit antenna selection in MIMO wiretap channels: 
A machine learning approach," IEEE Wireless Communications Letters, vol. 7, no. 4, pp. 634-
637, 2018. 

[73] J. Joung, "Machine learning-based antenna selection in wireless communications," IEEE 
Communications Letters, vol. 20, no. 11, pp. 2241-2244, 2016. 

[74] H. Zhang, A. C. Berg, M. Maire, and J. Malik, "SVM-KNN: Discriminative nearest neighbor 
classification for visual category recognition," in 2006 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR'06), 2006, vol. 2: IEEE, pp. 2126-2136.  

[75] L. Wang, J. Tang, and Q. Liao, "A study on radar target detection based on deep neural 
networks," IEEE Sensors Letters, vol. 3, no. 3, pp. 1-4, 2019. 



 
 

BIBLIOGRAPHY 

165 
 

[76] T. O’shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE 
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, 2017. 

[77] F. Liang, C. Shen, W. Yu, and F. Wu, "Towards optimal power control via ensembling deep 
neural networks," IEEE Transactions on Communications, vol. 68, no. 3, pp. 1760-1776, 2019. 

[78] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal 
approximators," Neural networks, vol. 2, no. 5, pp. 359-366, 1989. 

[79] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos, "Learning to optimize: Training 
deep neural networks for wireless resource management," in 2017 IEEE 18th International 
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2017: IEEE, 
pp. 1-6.  

[80] H. Ye, G. Y. Li, and B.-H. Juang, "Power of deep learning for channel estimation and signal 
detection in OFDM systems," IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 114-117, 
2017. 

[81] T. J. O’Shea, J. Corgan, and T. C. Clancy, "Convolutional radio modulation recognition 
networks," in International conference on engineering applications of neural networks, 2016: 
Springer, pp. 213-226.  

[82] X. Wang, L. Gao, S. Mao, and S. Pandey, "CSI-based fingerprinting for indoor localization: A 
deep learning approach," IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 763-
776, 2016. 

[83] M. Kim, W. Lee, and D.-H. Cho, "A novel PAPR reduction scheme for OFDM system based on 
deep learning," IEEE Communications Letters, vol. 22, no. 3, pp. 510-513, 2017. 

[84] S. Dörner, S. Cammerer, J. Hoydis, and S. Ten Brink, "Deep learning based communication over 
the air," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 132-143, 2017. 

[85] G. Hinton, N. Srivastava, and K. Swersky, "Lecture 6a overview of mini–batch gradient 
descent," Coursera Lecture slides https://class. coursera. org/neuralnets-2012-
001/lecture,[Online, 2012. 

[86] Y. Pan, Y. Yang, and W. Li, "A deep learning trained by genetic algorithm to improve the 
efficiency of path planning for data collection with multi-UAV," IEEE Access, vol. 9, pp. 7994-
8005, 2021. 

[87] K. I. Ahmed and E. Hossain, "A deep Q-learning method for downlink power allocation in multi-
cell networks," arXiv preprint arXiv:1904.13032, 2019. 

[88] H. S. Jang, H. Lee, and T. Q. Quek, "Deep learning-based power control for non-orthogonal 
random access," IEEE Communications Letters, vol. 23, no. 11, pp. 2004-2007, 2019. 

[89] A. Galindo-Serrano, L. Giupponi, and G. Auer, "Distributed learning in multiuser OFDMA 
femtocell networks," in 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011: 
IEEE, pp. 1-6.  

[90] S. Sivanandam and S. Deepa, "Genetic algorithms," in Introduction to genetic algorithms: 
Springer, 2008, pp. 15-37. 

[91] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, "An iteratively weighted MMSE approach to 
distributed sum-utility maximization for a MIMO interfering broadcast channel," IEEE 
Transactions on Signal Processing, vol. 59, no. 9, pp. 4331-4340, 2011. 

[92] D. Bartolomé and A. I. Pérez-Neira, "Spatial scheduling in multiuser wireless systems: From 
power allocation to admission control," IEEE transactions on wireless communications, vol. 5, 
no. 8, pp. 2082-2091, 2006. 

[93] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 
2004. 

[94] D. P. Palomar and J. R. Fonollosa, "Practical algorithms for a family of waterfilling solutions," 
IEEE transactions on Signal Processing, vol. 53, no. 2, pp. 686-695, 2005. 

[95] M. Schubert and H. Boche, "Solution of the multiuser downlink beamforming problem with 
individual SINR constraints," IEEE Transactions on Vehicular Technology, vol. 53, no. 1, pp. 18-
28, 2004. 

https://class/


 
 

BIBLIOGRAPHY 

166 
 

[96] I. Koutsopoulos, T. Ren, and L. Tassiulas, "The impact of space division multiplexing on 
resource allocation: a unified approach," in IEEE INFOCOM 2003. Twenty-second Annual Joint 
Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), 
2003, vol. 1: IEEE, pp. 533-543.  

[97] C. W. Tan, M. Chiang, and R. Srikant, "Fast algorithms and performance bounds for sum rate 
maximization in wireless networks," IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp. 
706-719, 2012. 

[98] S. Stanczak, M. Wiczanowski, and H. Boche, Fundamentals of resource allocation in wireless 
networks: theory and algorithms. Springer Science & Business Media, 2009. 

[99] M. Chiang, P. Hande, and T. Lan, Power control in wireless cellular networks. Now Publishers 
Inc, 2008. 

[100] Y. Cheng et al., "An efficient transmission strategy for the multicarrier multiuser MIMO 
downlink," IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 628-642, 2013. 

[101] W.-C. Chung, L.-C. Wang, and C.-J. Chang, "A low-complexity beamforming-based scheduling 
to downlink OFDMA/SDMA systems with multimedia traffic," Wireless Networks, vol. 17, no. 
3, pp. 611-620, 2011. 

[102] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, "Convex approximation techniques 
for joint multiuser downlink beamforming and admission control," IEEE Transactions on 
Wireless Communications, vol. 7, no. 7, pp. 2682-2693, 2008. 

[103] K. Huang and V. K. Lau, "Stability and delay of zero-forcing SDMA with limited feedback," IEEE 
transactions on information theory, vol. 58, no. 10, pp. 6499-6514, 2012. 

[104] X. Zhang, E. A. Jorswieck, B. Ottersten, and A. Paulraj, "User selection schemes in multiple 
antenna broadcast channels with guaranteed performance," in 2007 IEEE 8th Workshop on 
Signal Processing Advances in Wireless Communications, 2007: IEEE, pp. 1-5.  

[105] G. Dartmann, X. Gong, and G. Ascheid, "Application of graph theory to the multicell beam 
scheduling problem," IEEE transactions on vehicular technology, vol. 62, no. 4, pp. 1435-1449, 
2013. 

[106] N. Jindal, "MIMO broadcast channels with finite-rate feedback," IEEE Transactions on 
information theory, vol. 52, no. 11, pp. 5045-5060, 2006. 

[107] J. Lee and N. Jindal, "High SNR analysis for MIMO broadcast channels: Dirty paper coding 
versus linear precoding," IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4787-
4792, 2007. 

[108] M. Vu and A. Paulraj, "MIMO wireless linear precoding," IEEE Signal Processing Magazine, vol. 
24, no. 5, pp. 86-105, 2007. 

[109] H. Huh, A. M. Tulino, and G. Caire, "Network MIMO with linear zero-forcing beamforming: 
Large system analysis, impact of channel estimation, and reduced-complexity scheduling," 
IEEE Transactions on Information Theory, vol. 58, no. 5, pp. 2911-2934, 2011. 

[110] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. W. Heath, "Networked MIMO with clustered 
linear precoding," IEEE transactions on wireless communications, vol. 8, no. 4, pp. 1910-1921, 
2009. 

[111] E. A. Jorswieck, E. G. Larsson, and D. Danev, "Complete characterization of the Pareto 
boundary for the MISO interference channel," IEEE Transactions on Signal Processing, vol. 56, 
no. 10, pp. 5292-5296, 2008. 

[112] S.-H. Park, H. Park, H. Kong, and I. Lee, "New beamforming techniques based on virtual SINR 
maximization for coordinated multi-cell transmission," IEEE Transactions on Wireless 
Communications, vol. 11, no. 3, pp. 1034-1044, 2012. 

[113] Q. Wang, W. Wang, S. Jin, H. Zhu, and N. T. Zhang, "Quality-optimized joint source selection 
and power control for wireless multimedia D2D communication using Stackelberg game," IEEE 
Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3755-3769, 2014. 



 
 

BIBLIOGRAPHY 

167 
 

[114] N. Lee, X. Lin, J. G. Andrews, and R. W. Heath, "Power control for D2D underlaid cellular 
networks: Modeling, algorithms, and analysis," IEEE Journal on Selected Areas in 
Communications, vol. 33, no. 1, pp. 1-13, 2014. 

[115] Y. Jiang, Q. Liu, F. Zheng, X. Gao, and X. You, "Energy-efficient joint resource allocation and 
power control for D2D communications," IEEE Transactions on Vehicular Technology, vol. 65, 
no. 8, pp. 6119-6127, 2015. 

[116] G. Fodor and N. Reider, "A distributed power control scheme for cellular network assisted D2D 
communications," in 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, 
2011: IEEE, pp. 1-6.  

[117] J. M. B. da Silva and G. Fodor, "A binary power control scheme for D2D communications," IEEE 
Wireless Communications Letters, vol. 4, no. 6, pp. 669-672, 2015. 

[118] S. Xiao, X. Zhou, D. Feng, Y. Yuan-Wu, G. Y. Li, and W. Guo, "Energy-efficient mobile association 
in heterogeneous networks with device-to-device communications," IEEE Transactions on 
Wireless Communications, vol. 15, no. 8, pp. 5260-5271, 2016. 

[119] H. Xu, N. Huang, Z. Yang, J. Shi, B. Wu, and M. Chen, "Pilot allocation and power control in D2D 
underlay massive MIMO systems," IEEE Communications Letters, vol. 21, no. 1, pp. 112-115, 
2016. 

[120] Z. Chen and Q. Liang, "Power allocation in 5G wireless communication," IEEE Access, vol. 7, 
pp. 60785-60792, 2019. 

[121] S. Ali, A. Ahmad, R. Iqbal, S. Saleem, and T. Umer, "Joint RRH-association, sub-channel 
assignment and power allocation in multi-tier 5G C-RANs," IEEE Access, vol. 6, pp. 34393-
34402, 2018. 

[122] M. Simsek, M. Bennis, and A. Czylwik, "Dynamic inter-cell interference coordination in 
HetNets: A reinforcement learning approach," in 2012 IEEE Global Communications 
Conference (GLOBECOM), 2012: IEEE, pp. 5446-5450.  

[123] A. Galindo-Serrano and L. Giupponi, "Distributed Q-learning for aggregated interference 
control in cognitive radio networks," IEEE Transactions on Vehicular Technology, vol. 59, no. 
4, pp. 1823-1834, 2010. 

[124] M. Bennis, S. M. Perlaza, P. Blasco, Z. Han, and H. V. Poor, "Self-organization in small cell 
networks: A reinforcement learning approach," IEEE transactions on wireless communications, 
vol. 12, no. 7, pp. 3202-3212, 2013. 

[125] L. Xu and A. Nallanathan, "Energy-efficient chance-constrained resource allocation for 
multicast cognitive OFDM network," IEEE Journal on Selected Areas in Communications, vol. 
34, no. 5, pp. 1298-1306, 2016. 

[126] M. Lin, J. Ouyang, and W.-P. Zhu, "Joint beamforming and power control for device-to-device 
communications underlaying cellular networks," IEEE Journal on Selected Areas in 
Communications, vol. 34, no. 1, pp. 138-150, 2015. 

[127] M. Bashar et al., "Exploiting deep learning in limited-fronthaul cell-free massive MIMO 
uplink," IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1678-1697, 2020. 

[128] V. Mnih et al., "Human-level control through deep reinforcement learning," nature, vol. 518, 
no. 7540, pp. 529-533, 2015. 

[129] E. Björnson, J. Hoydis, and L. Sanguinetti, "Massive MIMO networks: Spectral, energy, and 
hardware efficiency," Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154-
655, 2017. 

[130] Ö. T. Demir and E. Björnson, "Joint power control and LSFD for wireless-powered cell-free 
massive MIMO," IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1756-1769, 
2020. 

[131] Z. Xiao, B. Gao, S. Liu, and L. Xiao, "Learning based power control for mmWave massive MIMO 
against jamming," in 2018 IEEE Global Communications Conference (GLOBECOM), 2018: IEEE, 
pp. 1-6.  



 
 

BIBLIOGRAPHY 

168 
 

[132] B. Matthiesen, A. Zappone, K.-L. Besser, E. A. Jorswieck, and M. Debbah, "A globally optimal 
energy-efficient power control framework and its efficient implementation in wireless 
interference networks," IEEE Transactions on Signal Processing, vol. 68, pp. 3887-3902, 2020. 

[133] K. Wang, W. Zhou, and S. Mao, "On joint BBU/RRH resource allocation in heterogeneous 
cloud-RANs," IEEE Internet of Things Journal, vol. 4, no. 3, pp. 749-759, 2017. 

[134] A. Mokdad, P. Azmi, N. Mokari, M. Moltafet, and M. Ghaffari-Miab, "Cross-layer energy 
efficient resource allocation in PD-NOMA based H-CRANs: Implementation via GPU," IEEE 
Transactions on Mobile Computing, vol. 18, no. 6, pp. 1246-1259, 2018. 

[135] C. He, Y. Hu, Y. Chen, and B. Zeng, "Joint power allocation and channel assignment for NOMA 
with deep reinforcement learning," IEEE Journal on Selected Areas in Communications, vol. 37, 
no. 10, pp. 2200-2210, 2019. 

[136] C. He, Y. Zhou, G. Qian, X. Li, and D. Feng, "Energy efficient power allocation based on machine 
learning generated clusters for distributed antenna systems," IEEE Access, vol. 7, pp. 59575-
59584, 2019. 

[137] Y. Liu, C. He, X. Li, C. Zhang, and C. Tian, "Power allocation schemes based on machine learning 
for distributed antenna systems," IEEE Access, vol. 7, pp. 20577-20584, 2019. 

[138] H. Yang et al., "Intelligent reflecting surface assisted anti-jamming communications: A fast 
reinforcement learning approach," IEEE Transactions on Wireless Communications, vol. 20, 
no. 3, pp. 1963-1974, 2020. 

[139] E. U. T. R. Access, "Radio frequency (RF) system scenarios. document 3GPP TR 36.942, V. 1.2. 
0, 3rd Generation Partnership Project, Jul. 2007," ed: February, 2020. 

[140] Y. S. Nasir and D. Guo, "Multi-agent deep reinforcement learning for dynamic power allocation 
in wireless networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 
2239-2250, 2019. 

[141] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning. nature 521 (7553), 436-444," Google 
Scholar Google Scholar Cross Ref Cross Ref, 2015. 

[142] M. Bowling and M. Veloso, "Rational and convergent learning in stochastic games," in 
International joint conference on artificial intelligence, 2001, vol. 17, no. 1: Citeseer, pp. 1021-
1026.  

[143] J. Tan, Y.-C. Liang, L. Zhang, and G. Feng, "Deep reinforcement learning for joint channel 
selection and power control in D2D networks," IEEE Transactions on Wireless 
Communications, vol. 20, no. 2, pp. 1363-1378, 2020. 

[144] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's 
SMO algorithm for SVM classifier design," Neural computation, vol. 13, no. 3, pp. 637-649, 
2001. 

[145] D. W. Aha, D. Kibler, and M. K. Albert, "Instance-based learning algorithms," Machine learning, 
vol. 6, no. 1, pp. 37-66, 1991. 

[146] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning (no. 4). Springer, 
2006. 

[147] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees. 
Routledge, 2017. 

[148] E. Del Re, G. Gorni, L. Ronga, and R. Suffritti, "A power allocation strategy using game theory 
in cognitive radio networks," in 2009 International Conference on Game Theory for Networks, 
2009: IEEE, pp. 117-123.  

[149] Y. Sun, Y. Wang, J. Jiao, S. Wu, and Q. Zhang, "Deep learning-based long-term power allocation 
scheme for NOMA downlink system in S-IoT," IEEE Access, vol. 7, pp. 86288-86296, 2019. 

[150] M. Labana and W. A. Hamouda, "Unsupervised Deep Learning Approach for Near Optimal 
Power Allocation in CRAN," IEEE Transactions on Vehicular Technology, 2021. 

[151] W. Jiang and H. D. Schotten, "Initial access for millimeter-wave and terahertz communications 
with hybrid beamforming," in ICC 2022-IEEE International Conference on Communications, 
2022: IEEE, pp. 3960-3965.  



 
 

BIBLIOGRAPHY 

169 
 

[152] W. Jiang and H. D. Schotten, "Deep Learning-Aided Delay-Tolerant Zero-Forcing Precoding in 
Cell-Free Massive MIMO," in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 
2022: IEEE, pp. 1-5.  

[153] W. Jiang and H. D. Schotten, "Cell-free massive MIMO-OFDM transmission over frequency-
selective fading channels," IEEE Communications Letters, vol. 25, no. 8, pp. 2718-2722, 2021. 

[154] H. Masoumi and M. J. Emadi, "Performance analysis of cell-free massive MIMO system with 
limited fronthaul capacity and hardware impairments," IEEE Transactions on Wireless 
Communications, vol. 19, no. 2, pp. 1038-1053, 2019. 

[155] W. Jiang and H. D. Schotten, "Impact of channel aging on zero-forcing precoding in cell-free 
massive MIMO systems," IEEE Communications Letters, vol. 25, no. 9, pp. 3114-3118, 2021. 

[156] B. Li, L.-L. Yang, R. G. Maunder, S. Sun, and P. Xiao, "Heterogeneous graph neural network for 
power allocation in multicarrier-division duplex cell-free massive MIMO systems," IEEE 
Transactions on Wireless Communications, 2023. 

[157] X. Wang et al., "Heterogeneous graph attention network," in The world wide web conference, 
2019, pp. 2022-2032.  

[158] L. Salaün and H. Yang, "Deep learning based power control for cell-free massive MIMO with 
MRT," in 2021 IEEE global communications conference (GLOBECOM), 2021: IEEE, pp. 01-07.  

[159] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint 
arXiv:1412.6980, 2014. 

[160] E. Björnson and L. Sanguinetti, "Scalable cell-free massive MIMO systems," IEEE Transactions 
on Communications, vol. 68, no. 7, pp. 4247-4261, 2020. 

 


