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Abstract 

Rural electrification has long been the most important topic on the development 

agenda of many countries. The needs for power supplies to rural areas 

increased significantly in the past decades. Extending electricity grids to rural 

areas is of a very high initial cost and is not viable economically. Micro 

hydroelectric power plants provide a good economical solution, which is also 

environmentally very friendly. The current study concentrates on selecting and 

optimizing a suitable cross-flow micro-turbine to be used in micro hydroelectric 

power plants. Cross-flow turbines are in general of simple structure, low cost, 

easy to fabricate and of modest efficiency. The main purpose of the present 

work is to optimize the performance of a selected turbine by establishing the 

optimal turbine’s design parameters. A complete analysis of the internal flow, 

which is of turbulent, two-phase and three dimensional in nature, was 

undertaken by simulating it using various CFD simulation codes. This study 

reports on the flow simulation using ANSYS CFX with a two-phase flow model, 

water-air free surface model and shear stress transport (SST) turbulence 

model. Prediction velocity and pressure fields of inside the turbine are, 

subsequently, used to characterize the turbine performance for different 

geometric parameters including the number of runner blades, the angle of 

attack, the ratio of inner to outer diameter, the nozzle profile, the blade profile, 

the nozzle throat width, the nozzle to runner blades width and the runner blades 

width to outer runner diameter. The results revealed the highly complex nature 

of the flow and provided a very good insight to the flow structure and 

performance optimization parameters. 
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Chapter One 

 

Introduction 

 

 

1.1 General Introduction 

Micro hydroelectric power plants are a solution to power needs of rural and 

remote communities, which are not connected to the national electricity grid. In 

many countries, the needs for power supplies to rural areas increased 

significantly in the past decades. Extending electricity grids to rural areas faces 

very high costs. Micro hydroelectric power plants often provide an economically 

alternative to the grid electricity [1]. Therefore, a cross-flow turbine is proposed 

for micro hydroelectric power plants in this study due to its simple structure, low 

cost of investment and modest efficiency. A classical cross-flow turbine 

comprises of a cylindrical-shaped runner consisting of two parallel circular discs 

connected together at the perimeter with a series of curved horizontal blades. 

The nozzle, which has a rectangular cross-sectional area, directs the water to 

the full length of the runner at a specified angle of attack [2].  

The site characteristics, such as the available flow rate and head, are the 

determinant factors in the selection of a suitable turbine. Hence, a cross-flow 

turbine is common and often proposed for micro hydroelectric power plants due 

1 



Chapter One                                                                                                                                       Introduction 

 

 2  

  

to its modest efficiency at part-flow conditions which may be encountered during 

summer season in some sites [3, 4]. 

A cross-flow turbine is known to be of a wide operating flow range with a good 

efficiency through the whole flow range. This is possible because a cross-flow 

turbine is designed with two inlet guide-vanes. The standard division of the inlet 

guide-vanes flow area is 1:2. This means that the water, during lower flow 

periods, can be directed through either one-third or two-thirds of the runner, 

thereby sustaining relatively good turbine efficiency [5, 6].  

 

1.2 History of Hydro Power Technology  

Hydropower is a renewable, clean and eco-friendly source of power generation. 

Hydropower is power that is derived from moving water through a turbine; the 

turbine turns a generator, which produces electricity. Water has been utilized as 

an energy source for a long time. Water energy is probably the oldest 

renewable energy technique utilized by human beings for mechanical energy 

conversion as well as electricity generation [7]. Waterwheels were utilized 

extensively in the ancient times, but the use of hydropower got popularized only 

with the invention of the water turbines at the beginning of the 19th century [8].  

Originally, small scale hydro power plants were built beside waterfalls and near 

towns because there was not enough progress in electricity transmission means 

as the generated electricity cannot be sent over great distance. In the late 19th 

century, water energy was used to generate electricity on a large scale. The first 

hydroelectric power plant was installed at Niagara Falls in 1879 [9]. Some years 

later, many more hydroelectric power plants were installed. With the 
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development of technology, and the growth in energy consumption, the need of 

electricity generation was moved to large scale hydroelectric power plants. 

Such plants have been installed around the world near large rivers and dams. 

Large scale hydroelectric power plants require large dams such as the Hoover 

dam and Grand Coulee dam [10].  

Over the last few decades, due to environmental concerns and sharp increase 

in petroleum prices, it becomes necessary to utilize the available renewable 

energy sources. Currently, hydropower is the biggest contributor to electricity 

generation from renewable energy sources [11]. Large scale hydroelectric 

power plants are already installed. However, it remains to harness the small 

scale hydro power resources. Micro hydroelectric power plants are usually 

installed in places where streams or small rivers can be harnessed for electric 

power generation. All over the world, only a little portion of the available energy 

in streams and small rivers is utilized for electricity generation [12].  

 

1.3 Hydroelectric Power Plants Classification 

Hydroelectric power plants are commonly classified according to their capacity, 

and there is no uniform standard classification criterion for hydroelectric power 

plants. Different countries are adopting different criteria; mainly, because of 

different countries have different development policies. Some countries like 

Portugal, Ireland, Spain, Greece and Belgium, accept 10 MW as the upper limit 

for an installed capacity of small hydroelectric power plants. In Italy, the limit is 

fixed at 3 MW (plants with larger installed power should sell their electricity at 

lower prices) and in Sweden 1.5 MW. In France, the limit was established at 12 

MW and in the UK, 20 MW is generally accepted as the threshold for small 
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hydroelectric power plants [8]. The current study will concentrate mainly at 

micro hydro turbine, which is generally defined as an installed capacity of 100 

kW or less. 

Although different countries adopt different criteria, the classification of 

hydroelectric power plants, based on installed capacity, is shown in table 1.1. 

Table 1.1 Typical hydroelectric power classification by generating capacity [13]. 

        

   Type Capacity    

        

        

    Pico-hydropower < 500 W    

        

    Micro-hydropower 0.5 – 100 kW    

        

    Mini-hydropower 100 – 1000 kW    

        

    Small-hydropower 1 MW – 10 MW    

        

    Full scale (large) hydropower > 10MW    

        

 

Based on the available head the classification of hydropower plants is shown in 

the table 1.2. These head ranges are not strict but are simply means of 

classification hydroelectric power plants. 

Table 1.2 Typical hydroelectric power classification according to the head [14]. 

        

   Type Head range    

        

        

    High head plants Above 100 meters    

        

    Medium head plants 30 to 100 meters    

        

    Lowe head plants Less than 30 meters    

        

 



Chapter One                                                                                                                                       Introduction 

 

 5  

  

1.4 Environmental Impact 

Hydropower is a renewable, clean and eco-friendly benign source of power 

generation. Micro hydroelectric power plants do not generate pollutants during 

the operation, such as carbon dioxide, sulphur dioxide, nitrous oxides or any 

other type of air emissions and no solid or liquid waste’s production. However, 

they can have undesirable local environmental impacts, such as aquatic 

organisms’ injury and mortality from passage through turbines, visual impact 

due to buildings, penstocks and small weirs, and have little other impacts on the 

atmosphere, the noise pollution [15]. 

As table 1.3 shows a hydroelectric power plant does not generate any oxide, 

especially carbon dioxide, which is main gas responsible for global warming. 

Hydroelectric power plants use (not consume) the water to operate the turbines, 

the water returns back into the stream after passing through the turbines. Micro 

hydroelectric power plants may not require a small reservoir if not necessary in 

order to power the turbines. These micro hydroelectric power plants are 

commonly known as run-of-river, which have a minimal local environmental 

impact [16]. 

Table 1.3 Comparative emissions from a small hydropower plant of 1000 MW, 
working 4500 hours/years and other sources of production of electricity [17]. 
 
       

  
Petroleum 
(tons) 

Coal 
(tons) 

Natural 
(tons) 

Hydropower  
       

       

 Carbon dioxide 3000 3750 2250 0  
       

 Nitrogen oxide 3.7 0.6 2.2 0  
       

 Sulphur dioxide 4.5 4.5 0.02 0  
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Hydropower is the most common, reliable and cost effective source of 

renewable energy. Even with the recent expansion of the other types of the 

renewable energy sources such as solar, wind and biomass, hydropower is still 

the largest source of renewable energy in the electricity generation in the world, 

as shown in the table 1.4. As a result, it is obvious that from an environmental 

point of view, micro hydroelectric power plants are welcome in today's world as 

they generate clean energy. 

Table 1.4 Electricity generations from renewable energy [18]. 

        

   Method of power generation Proportion of renewable    
        

        

   Large hydro (>10 MW) 86 %    
        

   Small hydro (<10 MW) 8.3 %    
        

   Wind and Solar 0.6 %    
        

   Geothermal 1.6 %    
        

   Biomass 3.5 %    
        

 

1.5 Components of Micro Hydroelectric Power Plants 

The following information provides an overview of the two major components of 

a typical micro hydroelectric power plant the electro mechanical equipment and 

civil works. The main electro mechanical components are installed in the power 

house. The main civil works are illustrated by Fig.1.1, and comprise of a weir, 

which is used to divert a portion of water flow from the stream through an 

opening in the stream side called intake into an open canal. This is to channel 

the water from the weir to a settling basin, which is used to remove the silt from 

the water. A canal is used to direct the water to a forebay reservoir or tank. The 

major function for the forebay tank is to remove the last silt from the water 
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before the water enters the penstock. If the tank is at relatively large capacity, it 

can also be utilized as storage for water (In micro hydroelectric power plants the 

settling basin and forebay tank can be provided separately or combined) [19]. A 

closed pipe known as penstock directs the water from the forebay tank to a 

turbine at a lower level. Finally, the water via a tailrace flows back into the 

stream. The turbine extracts the water energy and converts it to mechanical 

energy to operate an electricity generator. Finally, and within the powerhouse, 

where the electricity generator is located, the generated electricity is transferred 

to a transformer which is then transmitted and distributed to the consumers. 

 
 

Fig. 1.1 Components of a micro-hydro scheme [20]. 
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1.6 Advantages and Limitations of Micro Hydroelectric Power Plants 

1.6.1 Advantages of Micro Hydroelectric Power Plants 

Micro hydroelectric power plants have many advantages as they are reliable, 

effective and a clean energy source. The main advantages of micro hydropower 

plants may be summarized as follows: 

1. A micro hydroelectric power plant has a long lifetime and it is a simple 

technology. It may require small hydraulic structures and a short 

construction period. It can be built by local staff and locally available 

materials. 

2. It requires little or no maintenance (breakdown relatively is rare), low 

operating costs (compared with other technologies) and no fuel cost 

involved; it uses (not consume) water. 

3. It is a renewable, clean and eco-friendly benign source of power generation. 

It does not emit pollutants as a result of electricity generation. 

4. It is a reliable renewable energy source. It has the ability to run 24 hours a 

day continuously and the ability to be started and stopped fairly quickly. It 

can meet power demand due to its flexible operation and predictable power 

generation. 

5. Micro hydroelectric power plant contributes to sustainable development in 

rural communities. The decentralization of micro hydroelectric power plant 

reduces the transmission losses and supports the national economy. 
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1.6.2 Limitations of Micro Hydroelectric Power Plants 

Micro hydroelectric power plants have a few limitations, which may be 

summarized as follows: 

1. A micro hydroelectric power plant is only suitable for a site which is well 

suited to utilize the power and water is also located close to consumers. 

Such a site is usually away from the central electricity distribution grid so a 

long transmission line is required.  Long transmission line causes losses of 

power and also substantially increases the capital expenditure. 

2. The maximum power generation by micro hydroelectric power plant is 

mainly dependent on the site, which in turn limits the level of expansion as 

the power demand increases. 

3. Seasonal variation of the flow in a stream can substantially limit the 

maximum power generation. It is sensitive to the climate as during the 

summer season the power generation declined due to the drop in the level 

of water in a stream. 

4. The environmental impact of micro hydroelectric power plants is minimal. 

Micro hydroelectric power plants “do not” generate pollutants during the 

operation, however, they can have undesirable local environmental impacts, 

such as aquatic organisms’ injury and mortality, visual impact due to 

buildings, penstocks and small weirs. Also the plants may have little other 

impacts on the atmosphere, including noise pollution. 
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1.7 Types of Turbines Used in Micro Hydroelectric Power Plants 

The turbine is the most important piece of equipment in a micro hydroelectric 

power plant. It is used to extract energy from the flowing water and convert it 

into mechanical work. The basic classification of the turbines is largely 

determined by their suitability for the available heads of water, as shown in the 

table 1.5. The site characteristics of a micro hydroelectric power plant location 

are critical factors in the selection of the suitable turbine. Therefore, a cross-flow 

turbine is commonly proposed for micro hydroelectric power plants due to its 

modest efficiency at part-flow conditions, which may be encountered during the 

summer season in some locations (The level of water fluctuates according to 

the amount of regional rainfall).  

The energy of the flowing water is extracted and converted into mechanical 

work in the turbine, by one of two fundamental mechanisms: one mechanism is 

an impulse principle, which extracts the kinetic energy of water in the form of jet 

which strikes the blades or buckets on the periphery of the runner and converts 

it into mechanical work. The second mechanism is a reaction principle, which 

extracts the potential energy and the kinetic energy of water in the form of 

pressure drop across the turbine and converts it into mechanical work [21]. 

Francis, Kaplan and Propeller turbines are the popular turbines that operate on 

a reaction principle. 
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Table 1.5 The classification of the turbine according to the mechanisms of the 
work [22]. 
 
    

Turbine Operation 
Principle 

High Head Medium Head Low Head 

    

    

Impulse Turbines 
Pelton Cross-Flow/Banki 

Cross-Flow/Banki Turgo Multi-Jet Pelton 
Multi-Jet Pelton Turgo 

    

Reaction Turbines 
 

Francis 
Propeller 

 Kaplan 
    

 

1.8 Propeller and Kaplan Turbines 

Propeller turbines are axial-flow reaction turbines, where the water is directed 

by the guide vanes, and flows axially through the propeller (runner blades). 

These are designed from complex curves to extract the potential energy and the 

kinetic energy of the flowing water in the form of pressure drop across their 

surface. The runner of a propeller turbine is completely immersed in water. 

Propeller turbines are generally arranged to cover a wide range of application, 

especially high flow discharges and low heads conditions [23]. Kaplan turbine is 

a unique design of propeller turbine. It is named in honour of the Austrian 

professor Viktor Kaplan. It is generally designed with movable runner blades 

and may or may not have movable guide vanes [24]. The cost and complexity of 

Kaplan turbine are high. In additional, the part-flow efficiency of fixed blade 

propeller turbines is very low [25], which makes them unusual in micro 

hydroelectric power plant.  
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Fig. 1.2 Kaplan turbine [26]. 
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1.9 Cross-Flow Turbine 

The cross-flow turbine was first invented by an Australian engineer A. G. M. 

Mitchell, who got a patent for it in 1903. The turbine was based on the theory of 

Poncelet, a French engineer (1788-1867) who improved the classical 

horizontal-axis water wheel. Later, Donat Banki published a series of papers on 

the turbine between 1912 and 1919 in Germany. Banki specified that, the angle 

of attack should be as small as possible and based on this angle, he calculated 

the blade inner and outer angles, and the blade curvature. Thus cross-flow 

turbines became called as Banki-Mitchell turbines or simply, Banki turbines [27]. 

In 1920s, the Ossberger company in Weissenburg, Bavaria, Germany, acquired 

manufacturing rights and began mass-producing the turbine. As a result, cross-

flow turbines became also called as Ossberger turbines [28]. Since then some 

development on a cross-flow turbine has been made in the world and have 

shown improved performances. 

The widespread use of the cross-flow turbine in micro hydroelectric power 

plants is largely due to its simple structure, low cost of investment and modest 

efficiency. A classic cross-flow turbine comprises of a cylindrical-shaped runner 

consisting of two parallel circular disks connected together at the perimeter with 

a series of curved horizontal blades, and a nozzle, whose cross-sectional area 

is rectangular, directs the water flow to the full length of the runner at a specified 

angle of attack. 

The cross-flow turbine is understood as a water turbine where the runner 

receives the water in a radial inward direction and discharges it in a 

substantially radial outward direction, the runner diameter is particularly 
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independent of the rate of flow, but the runner breadth can be dependent on the 

rate of flow. 

 
Fig. 1.3 Cross-flow turbine [29]. 

 

The advantages of partially loaded cross-flow turbine are shown 

diagrammatically in Fig. 1.4 along with the efficiency curve. A cross-flow turbine 

is known as a wide operating flow range with a good efficiency through the 

whole range. This is possible because a cross-flow turbine is designed with two 

inlet guide-vanes. The standard division of the inlet guide-vanes is 1:2. This 

means that the water, during lower flow periods, can be directed through either 

one-third or two-thirds of the runner, thereby sustaining relatively high turbine 

efficiency. 
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Fig. 1.4 Part-flow efficiency of a partitioned cross-flow turbine [30]. 
 

1.9.1 Principle of Operation of the Cross-Flow Turbine 

The principle of operation of cross-flow turbine is illustrated in Fig. 1.5. The 

cross-flow operates as a rectangular jet of water is directed by the nozzle to 

strike the blades on the circumference of the runner. The water passes through 

two stages in cross-flow turbine so energy is extracted from water by the blades 

of the runner in two stages. The water flows over the blade first from the outside 

of the runner to its inside. Some of the flow is entrained between the blades and 

is called the uncrossed flow. The remaining water crosses the inside runner, 
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thus the term cross flow and strikes additional blades on the inner side of the 

perimeter, and discharges at the outer perimeter of the runner. The cross-flow 

turbine consists of the following parts: 

1. Nozzle, which directs a rectangular jet of water to strike the blades on the 

rim of the runner at a small angle, almost converts the total flow energy into 

kinetic energy. 

2. Runner, which is a cylindrical-shaped runner consisting of two parallel 

circular disks connected together at the perimeter with a series of curved 

horizontal blades,  converts the energy of water into mechanical energy. 

Runners of large width have intermediate discs to support the blades. 

3. Shaft, which passes through the center of the cross-flow turbine runner, 

transfers the torque to the generator. 

4. Casing, which covers the runner and links the runner with the nozzle and 

draft tube, is usually fitted with an air valve when the turbine operates with a 

draft tube. 

5. Draft tube, which is a new development on the cross-flow turbine, increases 

the effective head across the runner by recovering some of the remaining 

kinetic energy before leading the water into the river. 

6. Guide vanes, which are movable vanes located just upstream of the runner 

inside the nozzle to control the flow of water to the runner, direct the flow 

into two passages, one on each side. The two passages cross-sectional 

areas decrease in the direction of flow to accelerate the flow. The standard 

division of the inlet guide-vanes is 1:2. This means that the water, during 

lower flow periods, can be directed through either one-third or two-thirds of 
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the runner, thereby sustaining relatively good turbine efficiency. A few 

cross-flow turbines are built without guide vane. 

7. Air valve, which controls the vacuum pressure inside the turbine casing to 

utilize the energy of the water optimally, when a draft tube is used. 

 
 

Fig. 1.5 Principle of operation of cross-flow. 
 

1.9.2 Advantages of the Cross-Flow Turbine 

The unique and inherent advantages of the cross-flow turbine may be summed 

up as follows: 

1. The design and construction of the cross-flow turbine is easy due to its 

simple structure; the nozzle and runner discs can be fabricated of steel 

plate and the blades can be cut from a steel pipe. 

2. The most valuable feature of the cross-flow turbine is the favorable shape of 

its efficiency curve, particularly with the use of divided guide vanes. This is 

particularly important for small run-of-river power plant. 
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3. It requires relatively limited maintenance (malfunctioning is rare), low 

operating costs (compared with other technologies) and no fuel cost; it uses 

(not consume) the water. 

4. The cross-flow turbine is less cost than any other turbine used for micro 

hydroelectric power plants. 

5. It has no effects on the environment. 

6. The environmental effect of the cross-flow turbine on stream ecology is 

positive by increasing dissolved oxygen. 

7. It is adaptable to draft tubes. 

8. It is free from cavitation. 

9. The cross-flow turbine installation requires simple civil works of low costs 

(initial low cost of investment). 

 

1.10 Outline of the Thesis Structure 

This thesis starts with an introduction to the thesis topic which followed by a 

comprehensive and critical review of the literature as detailed in Chapter 2. 

A theoretical analysis of the geometrical parameters and other fundamental fluid 

mechanics principles were undertaken and detailed in Chapter 3. 

Chapter 4 details the numerical techniques employed in the current study to 

develop the geometrical design and the necessary meshing process. 

The results of the numerical simulation are presented in Chapter 5. 

Chapter 6 presents the conclusions and recommendations for future studies. 
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1.11 Summary 

In selecting an appropriate turbine design for micro hydroelectric power plants, 

it was taken into consideration that such turbine will be used by people who on 

average have moderate or little technical knowledge. Therefore, extra care was 

taken in the current study to avoid very complicated design structure, 

problematical maintenance, and difficult manufacturing process. 
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Chapter Two 

 

Literature Review 

 

 

2.1 Introduction 

In this chapter, the previous studies on the cross-flow turbine are presented. 

These are reviewed in a historical and chronological order to expose the 

development and the progress in this field. Theoretical and experimental studies 

have been undertaken to study, develop the cross-flow turbine and investigate 

of its feasibility for micro hydroelectric power plants. The first basic step was 

emerged by an Australian engineer named A. G. M. Mitchell, who got a patent 

for the cross-flow turbine in 1903. The turbine was based on the theory of 

Poncelet, a French engineer (1788-1867) who improved the classical 

horizontal-axis water wheel. Later, the Hungarian Prof. Donat Banki published a 

series of papers on the turbine between 1912 and 1919 in Germany. Thus 

cross-flow turbines became called as Banki-Mitchell turbines or simply, Banki 

turbines. In 1920s, the Ossberger company in Weissenburg, Bavaria, Germany, 

acquired manufacturing rights and began mass-producing the turbine. As a 

result, cross-flow turbines became also called as Ossberger turbines [28]. Since 

then some developments on a cross-flow turbine were undertaken and resulted 

in improved and higher turbine performances. The general features of such 

turbine are shown in Fig. 2.1. 

21 
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The purpose of this chapter is to provide a comprehensive and critical review of 

the available literature in order to gain fundamental understanding of the cross-

flow turbine operation and theory. 

 Geometrical parameters of cross-flow turbine 
            

  
b

n  - Runner’s blades number 

  
2 1

d d  - Runner’s blades diameter ratio 

  
1

  - Angle of attack 

  
b

r  - Blades curvature  

    - Nozzle entry arc 

  
o

s  - Nozzle throat width 

  W W
N B  - Nozzle to runner blades width ratio 

  W 1
B d  - Runner blades width to outer diameter ratio 

 

 
 

Fig. 2.1 General features of cross-flow turbine. 
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2.2 Literature Review 

Mockmore and Merryfield [31] presented a translation of Donat Banki’s paper 

“Neue Wasser-turbine” and conducted an experimental investigation on a 

laboratory turbine constructed according to the specification of Banki to study 

the performance of the Banki water turbine. The experimental study involved 

designing and manufacturing models of cross-flow turbines with variety of 

runner width and outer diameter. The ratio of inner to outer diameter was 0.66 

and the angle of attack was 16o. The blade inlet was 30o while the blade outlet 

angle was 90o. The number of blades was 20. Two Banki turbine nozzle shapes 

were used.  

The results of the experiments indicated that the cross-flow turbine can be 

operated efficiently on a wide range of gate openings than most turbines. The 

maximum efficiency for all gate openings at constant head occurs at a 

practically constant speed, and finally, the effective width of the runner can be 

changed at various flow and electricity demands condition without changing the 

first stage angle of attack. The maximum efficiency recorded in this experiment 

was 68 %, which can be improved if efforts are concentrated on improving the 

performance of the turbine where estimated that 8 % of the total water never 

touched the runner. The detailed experimental set up and study of Mockmore 

and Merryfield make it one of the first and earliest comprehensive experimental 

studies on prototype cross-flow turbines. However, the analysis presented was 

rather basic and no suggestions were provided to reduce the losses of the 

estimated 8 % water losses that do not hit the runner.   
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Nakase et al [32] presented an experimental investigation to analyze the effect 

of nozzle shape on the cross-flow turbine performance. Three different types of 

nozzles were designed and manufactured to analyze their effects turbine 

performance. The runner outer diameter was 315 mm and the number of runner 

blades was 26. The angle of attack was 15o and the nozzle entry arc was 30o, 

60o, 90o and 120o. The blade inlet was 30o while the blade outlet angle was 90o 

and the ratio of inner to outer diameter was 0.68. The width of the runner and 

the nozzle was 315 mm and the discharge was 6.64 m3/min at a head of 1.54 m.  

This experiment resulted in an important conclusion that a cross-flow turbine 

cannot be treated completely as an impulse turbine. This was concluded as the 

flow has some pressure at the nozzle exit and the entire flow is not cross-flow 

where the water passes through two stages in a cross-flow turbine, is directed 

by the nozzle to strike the blades on the circumference of the runner. The water 

flows over the blade first from the outside of the runner to its inside. Some of the 

flow is entrained between the blades and is called the uncrossed flow. The 

remaining water crosses the inside runner, thus the term cross flow and strikes 

additional blades on the inner side of the perimeter, and discharges at the outer 

perimeter of the runner. A large portion of the flow is the cross flow which 

accelerated from the first stage to the second due to the flow contraction. They 

also concluded that decrease of pressure at nozzle exit is not always related to 

increase in maximum efficiency and finally, they concluded that the nozzle 

throat width ratio (
o 1

s r  ) changes slightly with the nozzle entry arc and 0.26 is 

the best value of nozzle throat width ratio (
o 1

s r  ), and the highest efficiency 

was obtained for 90o. Nakase et al study proved that the treatment of the cross-

flow turbine as an impulse turbine is incorrect. Although, their study was 
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predominantly experimental, no detailed theoretical analysis was presented to 

support this important conclusion. 

Makansi, J. [33] investigated the effect of flow variation and low-head, high-

flow situations on the performance of the cross-flow turbine. Makansi concluded 

that the cross-flow turbine has a flat efficiency over a wide range of operations. 

The cross-flow turbine improves flow utilization depending on the degrees of 

flow variation and continuously increases the power production at the site. The 

improved flow utilization is generally more important to a run-of-river site than to 

one with a dam. Makansi stated that, in low-head applications, the cost of the 

cross-flow turbine may be reduced from the use of plastics, since bending 

forces at low head applications are relatively small. Makansi also stated that, in 

high-flow, low-head situations, the cross-flow turbines require larger unit 

dimensions than other turbines, and because capacities are limited by the size 

of the runners, so multi-unit installations may be required to obtain performance 

equivalent to that of other turbines.  

Chappell, J. R. [34] demonstrated the potential for reducing the cost of micro 

hydroelectric power plants. In low head applications, the cross-flow turbine can 

be manufactured of plastics, since fluid forces at such heads are relatively 

small. The use of standard plastic pipes or sheets in the manufacture of the 

cross-flow turbines can be considered cost-effective. Chappell estimated the 

capital cost savings of about 50 % for micro-hydro power plants. Chappell did 

not provide any data regarding the durability of the plastic turbines as compared 

to that of the normal ones. Also, no analysis was provided on the stresses 

associated with the operation of the normal or plastic turbines.  
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The magnitude of these forces and stresses were determined by Van Dixhorn 

et al [35]. They conducted an experimental investigation to determine the 

magnitude of the fluid forces on the runner blades of the cross-flow turbine. The 

tangential and radial forces as well as the pitching moment were measured on a 

test runner blade. In addition, the pattern of blade loading was tested during a 

revolution over a non-dimensional speed range of 0.35 to 1.10 and a head of 1 

to 2.6 m. In these experiments, the runner outer diameter was 0.277 m, the 

number of runner blades was 22, the angle of attack was 15o, the nozzle entry 

arc was 90o, the ratio of inner to outer diameter was 0.66, and the width of the 

runner was 0.197 m. 

The sides of the runner in the model were made of Plexiglas to enable the 

researchers to visualize the flow and the attack angle effects at various speeds. 

They were able to observe the attack angle in the first stage and the validity of 

full passage assumption. Full passage assumption appeared reasonable only 

near the optimum speed, and separation off the suction and pressure sides of 

blades was seen at both low and high speeds. 

The results of Van Dixhorn et al experiments revealed that the maximum 

efficiency was between 65 and 70 % at a non-dimensional speed of 0.47, and it 

was found that the maximum blade forces occur when the blade is about 10 

degrees before the nozzle exit, where there is a spike in force. The centrifugal 

force and the pitching moment were found by spinning the runner in the air, and 

were found to agree well with the measured forces during the operation of the 

cross-flow turbine in the empty regions. However, there are healthy scepticisms 

regarding the validity of this analysis in the absence of the water forces. With 

varying the head, the blade loading pattern remains nearly constant but the 
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magnitudes changes at a given speed. At runaway speed, the fluid forces were 

not substantially higher than those at optimum speed. The tangential forces 

were found to be in good agreement with the results of a full passage control 

volume analysis, while the radial forces were slightly lower than predicted. 

Finally, Van Dixhorn et al provided charts for determining the blade forces on 

the runner of the cross-flow turbine. 

Hothersall, R. J. [36] discussed the advantages of cross-flow turbines in 

general and the cross-flow turbines with partitioned runners in particular. He 

concluded that cross-flow turbines have good part-load efficiencies and this is a 

desirable feature when a run-of-river micro hydroelectric power plant is 

subjected to considerable flow variations. Cross-flow turbines fitted with 

partitioned runners can handle this type of flow fluctuations effectively. 

Hothersall also concluded that the cost of the cross-flow turbine is lower than 

other turbines. Finally, a selection chart for water turbines less than 100 kW and 

some guidelines in the selection of a suitable turbine for a micro hydro 

application were presented. The chart and the guidelines can be used to avoid 

mismatching of the turbine with the site conditions.  

Khosrowpanah et al [28] discussed the historical development of the cross-

flow turbine both theoretically and experimentally and concluded that there are 

serious constraints with regard to the use of other turbines for small 

hydroelectric power plants. These constraints are particularly applicable to the 

developing countries in which the cross-flow turbine would be highly appropriate 

to small-scale hydroelectric power plants. It was clear from this study that the 

cross-flow turbine has attracted the attention in such countries because of its 

unique design as it can be fabricated and built in a simple factory capable of 
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welding and cutting sheet metal in remote areas. Khosrowpanah et al listed the 

unique and inherent advantages of the cross-flow turbine such as: 

1. The design and construction of the cross-flow turbine is simple, the nozzle 

and runner discs can be fabricated of steel plate and the blades can be cut 

from steel pipe of an appropriate diameter. 

2. The most important aspect of the turbine is the favorable shape of its 

efficiency curve, particularly with the use of divided guide vanes. This is 

particularly important for small run-of-river power plant. 

3. It requires relatively limited maintenance (malfunctioning is rare), low 

operating costs (compared with other technologies) and no fuel cost; it uses 

(not consume) the water. 

4. The capital cost of a cross-flow turbine is less than any other turbine used 

for micro hydroelectric plants. 

5. Positive effect on stream ecology by increasing dissolved oxygen (No 

measurements or qualification of such effect is reported in support of this 

conclusion). 

6. Adaptability to draft tubes. 

7. Freedom from cavitation. 

8. Low civil works costs. 

Although Khosrowpanah et al work contributed to our understanding of the 

cross-flow turbines, it lacked extensive theoretical analysis. This analysis is 

necessary to support the conclusion raised about blade’s angles and general 

shape. 
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Durgin and Fay [37] undertook an experimental investigation to investigate the 

internal hydrodynamics of the cross-flow turbine. The experimental study 

involved designing and constructing a special model of the cross-flow turbine 

with a Plexiglas casing and an open ended runner supported on a cantilever 

shaft. The open end runner allowed objects to be placed inside the rotating 

runner to alter the internal flow patterns so a cross flow could be collected by 

inserting a pipe with a slot inside the runner. The nozzle entry arc was varied 

from 35o to 80o. 

This experimental investigation revealed that a significant amount of flow is 

entrained between the runner blades and did not cross to the blades second 

stage. It was also revealed that the amount of uncross-flow varied directly with 

the runner speed from zero to the maximum, as expected. It was also shown 

that the amount of uncross-flow increased from zero to the maximum with 

changing the nozzle entry arc from 35o to 80o. The maximum efficiency of such 

turbines was in the range of 61 % and the second stage contributes was 

approximately 17 % of the generated power.  As a result of the observation of 

the uncross-flow in this study, they modified the equations of the theory of 

cross-flow turbines to account for the portion of uncross-flow in the runner 

introducing a different loss factor ( ), entrance nozzle loss coefficient (c), and 

the ratio of uncross-flow to total flow. It is interesting to note that Durgin and Fay 

Plexiglas model with the cantilever runner modified the real flow in the turbine. 

Indeed, their work ignored the fact that the elimination of the solid walls on the 

free side of the cantilever modified the flow as compared to that of pivoting side. 

This made the flow unsymmetrical and ignored the effect of the boundary layer 

interference and the pressure forces on the flow of the cantilever side. This 
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renders any study involving physical interference with the flow invalid, and make 

CFD analysis ideal for such studies. 

Fukutomi et al [38] presented a numerical method to analyze the effects of 

nozzle shape on the exit flow and the cross-flow turbine performance, the flow 

from a nozzle with arbitrary asymmetric curved surfaces is calculated 

numerically as a two dimensional flow by Schwarz-Christoffel method. The 

nozzle exit radius was 124 mm and the width of the nozzle was 100 mm. The 

parameters which prescribe the nozzle shape were as follows, the nozzle tip 

angle was 15o and the nozzle entry arc was 30o, 60o, 90o and 120o. 

The study revealed that the exit pressure had a larger value with an increase of 

the nozzle entry arc. Therefore, the nonuniformity of pressure distribution along 

the peripheral position at the nozzle exit increase with an increase of the nozzle 

entry arc. The study also revealed that the nozzle throat width was a significant 

parameter because an increase of flow angle results in a shock loss at the 

blade inlet. It is interesting to note that Fukutomi et al results show that the flow 

at the nozzle exit of a cross-flow turbine has a considerable value of pressure 

and the exit pressure increases with an increase of the nozzle throat width. 

In a general and highly descriptive but valid study, Thapar and Albertson [39] 

revealed that cross-flow turbines are free from cavitation but are subject to wear 

when the water contains excessive silt and sand particles are present in. 

Thapar and Albertson [39] also stated in general cross-flow turbines require less 

maintenance than other types of turbines as the runner is self-cleaning. And 

also the cross-flow turbine is a less complex structure and cost than any other 

turbine. 
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Smith, G. J. [40] discussed the technical design and the use of the cross-flow 

turbine in hydroelectric development projects in developing countries and, more 

specifically, development of hydroelectric power plants in a remote area. It was 

stressed that the cross-flow turbine is the appropriate turbine for the low head 

hydroelectric power plants because of its advantages. The most important of 

these advantages are its low cost, its low civil work cost, and its simplicity of 

design and construction so that the turbine can be manufactured locally, and 

finally, the using of the cross-flow turbines with the flexibility to operate 

efficiently over a wide range of flows in low head hydroelectric power plants 

would provide an economic benefit to the country by promoting the growth of 

local industry. No data were provided to support the view that the efficiency of 

such turbine remains high over a wide range of flow. Also, there was no 

explanation provided as to why the efficiency remains high over a wide range of 

flow. Smith seems to have re-stated some conclusions from previous research. 

Panasyuk et al [41] conducted an extensive investigation on the utilization of 

local energy resources as an alternative to centralized electrical supply for 

mountainous regions of the Central Asian part of Russia. Various options were 

considered such as water power, wind power, solar power and internal 

combustion engines. They compared the energy, operational and economic 

parameters of autonomous energy sources, and concluded that for territorially 

scattered and difficulty accessible economic objects with power consumption up 

to 30 – 50 kW, the use of micro hydroelectric power plants is the most 

prospective. During investigations, they created and tested experimental 

models of a micro hydroelectric power plant with a capacity of 1, 2, 10 and 30 

kW. The problems associated with creating automated systems for controlling 
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the processes of water intake, water distribution, and irrigation on the basis of 

using a micro hydroelectric power plant was examined. The typical design of a 

hydro power block of a micro hydroelectric power plant was also studied. Their 

study indicated that cross-flow turbines along with propeller turbines as the 

most appropriate for use under those conditions. However, their study lacked in 

depth analysis of the characteristics of such turbines under the prevailing local 

conditions. 

Kpordze, C. S. K. [42] prepared a new methodology for the selection of 

hydraulic turbines. A new methodology was introduced to guide hydropower 

planners, designers and developers logically and consistently through all 

phases of turbine selection during planning and feasibility studies for 

hydropower developments. Kpordze analyzed 174 turbines (the sample period 

considered was between 1965 and 1984) he proposes the following empirical 

equations and also a homograph for selection of cross-flow turbine runner 

speed and size when head, discharge, and power output are known. 

  
0.275

D 0.329 P H                                                                            … (2.1) 

  
0.191

D 1.730 Q N                                                                            … (2.2) 

  
0.222

0.5D 0.814 H Q


                                                                       … (2.3) 

  
1.032

0.5N 38.45 H D                                                                        … (2.4) 

  
0.331

3 2N 74.927 H Q                                                                      … (2.5) 

  
0.641

P H 341.218 Q N                                                                   … (2.6) 
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Where, D is turbine diameter in metres, P is turbine rated power output in kW, H 

is turbine rated head in m, Q is turbine rated flow in m3/s and N is turbine 

rotational speed in rpm. The study was rather comprehensive over a very long 

period and resulted in good empirical equations that based on solid 

experimental work/data. It produced good and excellent guide lines and data 

bank for micro-turbine design.  

Khosrowpanah et al [43] conducted an experimental investigation on cross-

flow turbine performance by varying the runner diameter, the number of the 

runner blades and the nozzle entry arc under both flow and head variations. A 

model was designed, constructed and tested at Colorado States University. 

Four runners were tested. The outer diameter was 15.24 cm for one of them 

and 30.48 cm for the rest. The blade inlet was 30o while the blade outlet angle 

was 90o. The width of the runner blades was 15.24 cm and the number of 

runner blades ranged from 10 to 20 blades. Three vertically admitting nozzles 

were tested. The nozzles had the same width as the blades but varying entry 

arcs of 58o, 78o and 90o. The model was without draft tube and open at the top.  

The results of this experiment showed that the unit discharge increases by 

increasing the ratio of the outer diameter to the runner width, increasing the 

nozzle entry arc from 58o to 90o or reducing the number of runner blades. With 

an increase in the nozzle entry arc from 58o to 90o the maximum efficiency 

increased. The maximum efficiency for the runner tested occurs at the same 

unit rotational speed for a constant nozzle throat width ratio, regardless of the 

diameter of runner, the nozzle entry arc, number of runner blades or the 

flow/head variations. The efficiency decreases about 20 % by reducing the ratio 

of outer diameter to runner width from 2.0 to 1.0 and the maximum efficiency 
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occurs at about 0.53 – 0.54 of the peripheral velocity of the runner to absolute 

velocity of the flow at the first stage. The number of runner blades strongly 

affects the efficiency and the optimum number was approximately 15 for the 

30.48 cm runner diameter with the outer diameter to the runner width ratio 2.0. 

The total pressure decreases, for each nozzle entry arc, with a decrease in the 

number of blades for a constant flow rate. The optimum value of the ratio of 

radial distance from outer to inter edge of the blade to blade spacing was 1.03 

for the nozzle entry arc of 90o and the ratio of inner to outer diameter 0.68. 

Khosrowpanah et al experiments were concluded on a realistic geometry 

prototype turbine. However, no attempt was made to relate the impact of the 

changes in the turbine parameter on the turbine flow fields and the dynamic 

forces in the rotor/blades. This is despite of the strong link between those 

fields/forces on the performance characteristics of the turbine. 

Tongco, A. F. [44] conducted an experimental investigation to investigate the 

effect of the number of runner blades to the field performance of the cross-flow 

turbine. The experimental study involved designing and constructing of the 

cross-flow turbine. The turbine was constructed so that runners of the same 

size, but with a different number of blades, can be interchanged. Four runners 

with identical 10, 15, 20 and 30 blades were tested with the outside diameter of 

runner was 15.24 cm. The blade inlet was 150o. The length of the runner was 

20.32 cm. The entry angle of the nozzle was 90o.  

The results of the experiments revealed that the 20-blade runner was the most 

efficient where the maximum efficiency was 50 %. A further increase of the 

number of blades did not increase turbine efficiency to a significant degree. The 

results also revealed that the effect of flow rate is highly insignificant on the 
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cross-flow turbine efficiency, and finally, the turbine’s low cost, the simplicity of 

its design and the ease by which available materials can be substituted for its 

construction make this water turbine ideal to provide electrical power to many 

rural communities.  

Ott and Chappel [45] conducted an experimental investigation to build and test 

an inexpensive new cross-flow turbine and to provide information to the U.S. 

Department of Energy on efficiency, operation, maintenance and cost of the 

project. The experimental study involved designing, manufacturing and 

installing a new cross-flow turbine with a flow control slide gate at a remote run-

of-river site in Northern California. The detailed dimensions for the cross-flow 

turbine were as follows; the inner and outer diameters of the runner were 62 

and 92 cm, respectively and the runner width was 112 cm. The number of the 

blades was 20 and the entry arc of the nozzle was 90o. The blade inlet was 30o 

while the blade outlet angle was 90o. The angle of attack was 16o. 

The results of the experiments showed that the cross-flow turbine with an 

adjustable gate can operate efficiently (maximum efficiency was between 70 

and 80 per cent) on a wide range of flow and head conditions experienced in 

typical run-of-river projects where the available flow varies rapidly. Ott and 

Chappel studies were merely a repeat of previous studies and did not include 

any new study features or conclusions. 

Aziz and Desai [46] conducted an experimental investigation to investigate the 

effect of certain parameters on the efficiency of the cross-flow turbine. The 

experimental study was conducted at Clemson Hydraulic Laboratory in 

Clemson University and involved designing and manufacturing models of cross-
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flow turbines with variety of number of runner blades, inner to outer diameter 

ratios and angles of attack. Three nozzles shape and twenty seven runners 

were investigated.  

The results of the experiments revealed that the cross-flow turbine efficiency 

increased with the increase in the number of runner blades from 15 to 25 which 

is contrast to Khosrowpanah et al [43] study which indicated that the maximum 

efficiency is when the runner is of 15 blades. Also the study revealed that the 

maximum efficiency of the turbine increased by increasing in the value of the 

inner to outer diameter ratio as well as the most efficient value of the inner to 

outer diameter ratio was 0.68 of the runners investigated due to the contribution 

of the second stage, and finally, these experiments indicated that an increase in 

the angle of water entry into the runner from 24o to 32o results in an increase in 

the predicted maximum efficiency in only 2 out of 18 tests. Therefore, the angle 

of water entry into the runner should be around 24o. 

Fukutomi et al [47] developed a method of numerical analysis for flow inside 

the runner of the cross-flow turbine. The internal flow inside the runner of the 

cross-flow turbine was analyzed as a two dimensional unsteady flow. They 

found that the flow is exceedingly nonuniform along the periphery in the runner 

of the cross-flow turbine, especially at the runner outlet. The nonuniformity is 

responsible for a decrease of the cross-flow turbine efficiency and finally, they 

found that the nonuniform flow increases with the diameter ratio.  

Fiuzat and Akerkar [48] conducted an experimental investigation to improve 

the efficiency by identifying the contribution of the two stages of power 

generation to the shaft power in a cross-flow turbine.  The experimental study 
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was conducted at Clemson Hydraulic Laboratory in Clemson University and 

involved designing and constructing a special model of the cross-flow turbine so 

a flow diverter could be mounted in the runner. The model (except the shaft) 

was built of acrylic material for ease of observing the flow path. Two nozzles 

were constructed. The nozzle entry arc was 90o and 120o, and the width of the 

nozzle and the runner was 15.24 cm. The runner outer diameter was 30.48 cm.  

The results of the experiments showed that the cross-flow turbine second stage 

has an important effect on the efficiency, where the second stage of the cross-

flow turbine contributes of at least 45 % of the total shaft power for the 90o 

nozzle entry arc and at least 41 % for the 120o nozzle. The results also showed 

that the overall efficiency of the cross-flow turbine, for a 90o nozzle entry arc, is 

higher because the cross flow is more, which result in higher efficiencies for 

both stages of the turbine.  

Olgun and Ulku [49] conducted an experimental investigation to test the 

performance of the cross-flow turbine by varying the number of the runner 

blades, the inner to outer diameter ratio and the gate openings of the nozzle 

under head variations. The experimental investigation involved designing and 

constructing an experimental rig of the cross-flow turbine. Two different nozzles 

and thirteen different runners were tested. The outer diameter for all runners 

was 170 mm and the width of the runner was 114 mm. The nozzles and the 

runner blades nearly had the same width. The blade inlet was 30o while the 

first-stage blade outlet angle was 90o and the diameter ratios were 0.75, 0.67, 

0.58 and 0.54. The numbers of runner blades were 20, 24, 28 and 32 blades 

and the angle of attack was 16o. The head ranged from 8 to 30 m. 
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The results of this experiment showed that the difference in efficiency for all of 

the runner configurations within the range of head from 8 to 30 m was about 4% 

and the maximum efficiency recorded in this experiment was about 73 %, which 

obtained by using a runner with 28 blades and an inner to outer diameter ratio 

of 0.67. Again those results contrast those of Khosrowpanah et al [23].   

Desai and Aziz [50] conducted an experimental investigation to investigate the 

effect of certain parameters on the efficiency of the cross-flow turbine. They 

tested the effect of flow rate, diameter ratio, flow-stream spreading, number of 

blades, runner aspect ratio and blade exit angle. The experimental study was 

conducted at Clemson Hydraulic Laboratory in Clemson University and involved 

designing and manufacturing models of cross-flow turbines with a total of 39 

runners and 11 nozzles were tested in 75 different combinations.  

The results of the experiments revealed that the maximum efficiency of the 

turbine increased with the decrease in the first-stage inlet angle of attack in the 

range of 22o – 32o, and also the efficiency increased by increasing the number 

of runner blades from 15 to 30. The results also revealed that the maximum 

efficiency of the turbine reduced slightly by increasing in the diameter ratio in 

the range of 0.6 – 0.75. The ratio 1.5 of the runner width to the nozzle width is 

better than one of either 1, 2 or 3, and the ratio 0.33 of the runner width to the 

outer diameter is better than 0.5. The efficiency increased by decreasing the 

first-stage blade exit angle, an angle of 55o is better than 90o, and finally, the 

effect of flow rate is highly insignificant on the cross-flow turbine maximum 

efficiency. 

Desai and Aziz [51] conducted an experimental investigation to investigate the 

effect of some geometric parameters on the efficiency of the cross-flow turbine. 
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The experimental study was conducted at Clemson Hydraulic Laboratory in 

Clemson University and involved designing and manufacturing models of cross-

flow turbines with three different numbers of runner blades, three different inner 

to outer diameter ratios and three different of the first-stage inlet angles of 

attack. The runners, blades and nozzles were built of acrylic material for ease of 

observing the flow path. 

The results of the experiments indicated that the geometric parameters have a 

significant effect on the overall performance of the cross-flow turbine and also 

indicated that the efficiency of the cross-flow turbine increased by increasing the 

number of runner blades from 15 to 25. The increase in the first-stage inlet 

angle of attack in the range of 24o – 32o did not improve the performance of the 

turbine and finally, 0.68 inner to outer diameter ratio produce a higher turbine 

efficiency within the range of 0.6 – 0.75. The efficient geometric parameters in 

the experiment were as follows; the first-stage inlet angle of attack was 24o, the 

inner to outer diameter ratio was 0.68 and the number of the blades was 25.  

Costa Pereira and Borges [52] conducted an experimental investigation to 

analyze the flow inside the nozzle of a cross-flow turbine. They measured the 

pressure distribution on the nozzle inside walls for two different configurations of 

the nozzles one installed with an inside guide vane while the other without it, 

both when the nozzle mounted alone and in the presence of a runner. In 

addition, the efficiency for the cross-flow turbine was measured in the tests 

carried out with a runner installed. The tests in the case of a runner installed 

covered a wide range of working conditions. The internal width of nozzles and 

the width of the runners were 210 and 215 respectively and the number of 

runner blades ranged from 10 to 25 blades. 
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This experiment gave an important conclusion that the head has no significant 

effect on the efficiency, and also the guide vane inside the nozzle improves the 

efficiency of cross-flow turbine. They also claimed that there are some changes 

in the pressure distribution in the case of a runner installed which varied 

significantly with the flow rate, and the influence of the number of blades was 

not clear on the pressure distribution, because most of the changes were small 

and dependent markedly on the position of the point considered. They also 

revealed that the influence of the runner on the pressure distribution is less on 

the lower wall of the nozzle than the upper wall. 

Fukutomi et al [53] conducted an experimental and theoretical study to 

determine the magnitude of the fluid forces on the runner blades of the cross-

flow turbine. In the experiment, the tangential and radial forces are measured 

on a test blade using strain gauges. In their theoretical study, the tangential and 

radial forces are calculated numerically using the two dimensional unsteady 

momentum equations. The dimensions of the test impulse cross-flow turbine 

were as follows; the entry arc of the nozzle was 90o and the width of the throat 

of the nozzle was 64 mm. The inner and outer diameters of the runner were 214 

and 315 mm, respectively and the runner width was 100 mm. The number of 

the blades was 26 with a circular profile whose thickness was 5.7 mm. The 

blade inlet was 30o while the blade outlet angle was 90o. The angle of attack 

was 15o. 

The results of the study revealed that the tangential and radial forces take 

maximum values near the nozzle tip where the blade escapes from the jet 

which is issuing from the nozzle. The fluid forces on the runner blades increase 

by decreasing the rotational speed of the runner, and finally, the results showed 
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that the values of radial forces are about 60 % of corresponding values of 

tangential forces.  

Joshi et al [54] presented an experimental investigation to analyze the effect of 

the number of the blades, the nozzle entry arc, and the head of water on the 

performance characteristics of a cross-flow turbine. The first-stage inlet angle of 

attack was 16o and the nozzle entry arc was 12o, 26o, 32o and 36o. The width of 

the nozzle was held constant at 25 mm less than that of the runner. The width 

of the runner was 325 mm, the runner outer diameter was 300 mm and the 

runner inner diameter was 198 mm. The number of runner blades ranged from 

8 to 30 blades. The head ranged from 2 to 9 m.  

This experimental investigation was shown that the cross-flow turbine is not a 

pure impulse turbine where a significant static pressure was measured at the 

nozzle exit and the static pressure at the nozzle exit increases with an increase 

in the head. The performance of the cross-flow turbine improves with an 

increase in nozzle entry arc, supply head and number of runner blades. The 

optimum number was approximately 20 for this experimental investigation. 

Reddy et al [55] conducted an experimental investigation to study the effect of 

using different sizes of draft tubes on the performance of a 5-kW cross-flow 

turbine. The experimental study was carried out in the fluid mechanics 

laboratory of IIT Delhi. A cross-flow turbine model with variety of draft tubes 

(203, 259, and 300 mm) and without draft tubes were investigated in head 

range 3 to 9 m. The outer diameter of the cross-flow turbine was 300 mm and 

the inner diameter was 198 mm. The width of the runner was 325 mm and the 
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number of runner blades was 24. The angle of attack was 16o and the nozzle 

entry arc was 36o. 

The results of the experiments indicated that the cross-flow turbine is not a pure 

impulse turbine because of the existence of static pressure at the nozzle exit 

and also indicated that the installation of the right draft tube size improves the 

performance of the cross-flow turbine at all heads, the improvement being only 

slight at higher heads (2-3 %) and considerable at lower heads (5-6 %), and 

finally, these experiments indicated that the maximum efficiency of the turbine 

decreases gradually with increasing head due to increased turbulence and 

losses due to the runner being partly flooded at higher heads. 

Kenyery and Alcala [56] carried out an experimental study to analyze the 

effect of installing a guide vane in the interior of the runner, to guide the water 

flow after crossing the first stage effectively, on the cross-flow turbine 

performance. The experimental study involved designing and manufacturing of 

a model of cross-flow turbine with two types of guide vanes inside the runner. 

The dimensions of the model were as follows; the number of runner blades was 

24 and the runner outer diameter was 294 mm while the runner inner diameter 

was 200 mm. The blade inlet was 30o while the blade outlet angle was 90o and 

the angle of attack was 20o.  

The results of the experiment indicated that the cross-flow turbine performance 

can be improved through the use of the proper internal guide vanes. The 

efficiency, which obtained by using internal guide vanes, was between 1.50 % 

and 6.0 % higher than the efficiency without using the internal guide vanes of 

the cross-flow turbine.  
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Olgun, H. [57] conducted an experimental investigation to analyze the effect of 

some geometric parameters of nozzle and runner on the cross-flow turbine 

efficiency by changing the diameter ratio of runner and gate opening of two 

different nozzles under different heads. Four different types of cross-flow turbine 

runners were designed and manufactured to analyze the effect of the diameter 

ratio on the cross-flow turbine efficiency. The runner outer diameter was 170 

mm and the number of runner blades was 28. The angle of attack was 16o. The 

blade inlet was 30o while the blade outlet angle was 90o and the diameter ratios 

were 0.75, 0.67, 0.58 and 0.54. The width of the runner and the nozzle was 114 

mm and the head ranged from 8 to 30 m.  

This experiment gave important conclusions that cross-flow turbines can be 

worked efficiently on a wider range of operating gate openings than most 

turbines, maximum efficiency almost can be obtained at a constant speed for all 

operating gate openings at a constant head, the increase of the head at 

constant gate openings changes the speeds for maximum efficiency, the cross-

flow turbine with a diameter ratio of 0.67 is more efficient than the cross-flow 

turbines with diameter ratios of 0.54, 0.58 and 0.75 and finally, he concluded 

that the cross-flow turbine is a distinct selection in the micro turbine field. 

Olgun, H. [58] conducted an experimental investigation to determine the effect 

of an interior guide tube on the cross-flow turbine efficiency at different positions 

of interior guide tubes and gate openings of a nozzle. Three different types of 

interior guide tubes were used to direct the flow inside the cross-flow turbine 

runner towards the second stage of the runner. The dimensions of the nozzle 

and runner were as follows; the nozzle throat width ratio (
r o 1

T 2s / d  ) was 
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0.249 and the width of the runner and the nozzle was 114 mm. The runner outer 

diameter was 170 mm and the number of runner blades was 24. The ratio of 

inner to outer diameter (
2 1

d d ) was 0.54 and the discharge (Q ) range was 

0.014 – 0.055 m3/s while the head (H ) was 4–30 m. The angle of attack was 16o. 

Olgun indicated that the interior guide tube did not improve the cross-flow 

turbine efficiency. The maximum efficiency which obtained by using an interior 

guide tube was about 5 % less than the maximum efficiency without interior 

guide tube due to a choking effect.  

Kaniecki, M. [59] presented a numerical method to analyze the internal flow in 

a classical impulse cross-flow turbine and a reaction cross-flow turbine. A two 

dimensional flow simulation of the turbine was performed to analyze the velocity 

and pressure in these turbines by adopting a computer program FLUENT 5.0TM. 

The AutoCADTM design program was applied to build the geometry of the flow 

system of both the turbines. The dimensions of both the model cross-flow 

turbines were as follows; the runner outer diameter was 300 mm, the inner 

diameter was 200 and the number of runner blades was 30. The blade 

thickness was 3.6 mm and the blade inlet was 150o while the blade outlet angle 

was 90o. The width of the impulse turbine runner was 150 mm while the width of 

the reaction turbine runner was 300 mm. 

The results showed that the CFD analysis is an useful tool to aid the design of 

cross-flow turbine, and the results of the reaction turbine showed that the proper 

design of the draft tube reduces some undesirable phenomena like back flows 

and separations. 
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Choi et al [60] presented a numerical method to analyze the effects of various 

turbine structures on the internal flow and performance of cross-flow turbine by 

adopting a commercial code ANSYS-CFX. The dimensions of the cross-flow 

turbine model were as follows; the runner outer diameter was 250 mm and the 

width of the runner and the nozzle was 150 mm.  On the top of chamber casing 

an air suction pipe was installed. Three different cross sectional area types of 

vertical nozzle shape without guide vane were used to simplify the internal 

passage of the cross-flow turbine model to confirm the effects of nozzle shape 

on the internal flow and performance of the cross-flow turbine. Five different 

types of blade angle were used by changing the inlet and outlet angles of the 

runner blade model. Moreover, three different numbers of runner blades 15, 26 

and 30 and three inlet blade angles 25o, 30o and 35o were used. 

They concluded that the using of the air suction pipe in runner passage reduces 

collision loss between the runner passage flow and shaft and eliminates loss by 

recirculation flow which results in improving the cross-flow turbine efficiency and 

finally, they concluded that nozzle shape has the largest effect on the internal 

flow and turbine performance. Relatively narrow nozzle passage gives high 

turbine efficiency. 

Choi et al [61] suggested a newly developed air suction method for the cross-

flow turbine. They presented a numerical method to analyze the effects of air 

layer located in the cross-flow turbine chamber on the internal flow and the 

performance of the cross-flow turbine by adopting a commercial code ANSYS-

CFX. The internal flow inside the runner of the cross-flow turbine was analyzed 

as a two dimensional unsteady-state two-phase flow. The dimensions of the 

cross-flow turbine model were as follows; the number of runner blades was 30. 
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The width of the runner and the nozzle was 500 mm and the blade inlet was 30o 

while the blade outlet angle was 87o. Two air suction valves were used, one 

installed at the top of chamber casing and the other on the casing side wall.  

They concluded that the using of the air suction pipe on the casing side wall of 

the runner has significant effects on the internal flow and the performance of 

cross-flow turbine and thus, the efficiency increased by the increase of the 

supplied air flow rate through the air suction pipes on the casing side wall. The 

efficiency increased is resulted from the effect of suppressing the hydraulic loss 

by recirculation flow and reducing the collision loss between the runner passage 

flow and shaft. 

Haurissa and Soenoko [62] conducted an experimental investigation to 

investigate the effect of an interior nozzle on the second stage performance for 

a cross-flow turbine by installing nozzle inside the runner to guide the water 

after crossing the first stage into the second stage effectively. The experimental 

study involved designing and manufacturing of a nozzle inside the cross-flow 

turbine runner. The dimensions of the model were as follows; the number of 

runner blades was 20 and the runner outer diameter was 200 mm while the 

runner inner diameter was 130 mm. The first stage nozzle angle was 32o and 

the second stage nozzle angle was 20o. 

They indicated that the installation of the nozzle inside the runner has significant 

effects on the performance and the efficiency of the cross-flow turbine. The 

maximum efficiency, which obtained by using a nozzle inside the runner with 

32o for the first stage inlet angle and 20o for the second stage inlet blade angle, 

was about 11 % higher than the maximum efficiency without using the interior 
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nozzle of the cross-flow turbine. The efficiency increased because of increasing 

the contribution of the second stage. 

De Andrade et al [63] presented a numerical method to analyze the internal 

flow in a cross-flow turbine. A three dimension-CFD steady state flow simulation 

of the turbine was performed to analyze the velocity and pressure in the cross-

flow turbine by adopting a commercial code ANSYS-CFX. The dimensions of 

the cross-flow turbine model were as follows; the runner outer diameter was 

295 mm, the inner diameter was 200 mm and the number of runner blades was 

24. The width of the runner blades was 150 mm and the blade inlet was 150o 

while the blade outlet angle was 90o. The angle of attack was 16o. 

The CFD simulation results showed that 68.5 % of the energy transfer happens 

in the first stage and 31.5 % of the energy transferred happens in the second 

stage, and also the results were able to recognize the shocks with the runner 

shaft and recirculation flow zone in the cross-flow turbine which result in 

decrease the efficiency of the turbine significantly. 

Son et al [64] presented a numerical method to examine the effect of various 

structures on the internal flow and the performance of the cross-flow turbine. 

They examined the inlet nozzle shape, diffuse angle and length of the draft 

tube. A two-dimensional CFD steady state flow simulation of the turbine was 

performed to examine the velocity and pressure in the cross-flow turbine by 

using ANSYS-CFX code. The dimensions of the cross-flow turbine model were 

as follows; the runner outer diameter was 280 mm, the number of runner blades 

was 23. The width of the runner blades and the nozzle was 135 mm and the 

blade inlet was 35o while the blade outlet angle was 100o. The CFD simulation 

results revealed that the circular nozzle upper wall provides better effect on the 
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cross-flow flow turbine performance than the straight nozzle upper wall. And the 

diffuse angle and length of the draft tube do not affect considerable on the 

performance of the cross-flow turbine because the recovery head of the diffuse 

angle and length of the draft tube is very small in comparison with net head at 

the turbine inlet. However, the internal flow characteristics of the cross-flow 

turbine are strongly influenced by the diffuse angle and length of the draft tube.   

Kokubu et al [65] presented a numerical method to analyze the flow inside a 

new type of cross-flow turbine which has an anti-recirculation block (ARB) in the 

interior of the runner and investigate the effect of this anti-recirculation block 

(ARB) on the flow characteristics and the performance of the cross-flow turbine 

performance. A CFD steady state flow simulation of the turbine was performed 

to examine the velocity and pressure in the cross-flow turbine by using ANSYS-

CFX code. Four different kinds of cross-flow turbine runners were adopted for 

CFD simulation analysis. The runner outer diameter was 250 mm and the 

number of runner blades was 30. The blade inlet was 30o while the blade outlet 

angle was 87o and the width of the nozzle and the runner was 17 mm for the 

models 1 and 2 and 100 mm for the models 3 and 4. An anti-recirculation block 

(ARB) was installed for the models 2 and 4. 

The CFD simulation results revealed that the using of the anti-recirculation 

block in runner passage reduces collision loss between the runner passage flow 

and shaft and eliminates loss by recirculation flow which results in improving the 

cross-flow turbine efficiency. The results also revealed that the widening of the 

width of the nozzle and the runner and increasing the flow rate reduces the 

friction loss and improve the performance of the cross-flow turbine. Finally, the 

most efficient model was the model 4 where the efficiency was 62.9 %.  
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2.3 Main Observations from Previous Work 

It is evident from the literature available that the impact of various geometrical 

parameters on the cross-flow turbine performance is not well understood.  The 

previous studies on the cross-flow turbine development may be summed up as 

in table 2.1, where attention has been focused on investigating the effects of the 

first three of the following geometrical parameters:  

i. the angle of attack, 

ii. the diameter ratio, 

iii. the number of blades, 

iv. the blade profile, 

v. the nozzle profile, 

vi. the nozzle entry arc, 

vii. the nozzle throat width, 

viii. the nozzle to runner blades width, and 

ix. the runner blades width to outer diameter.  

However, little attention was directed towards the complex flow structure 

associated within such turbines. Such flow characteristics (which is three 

dimensional in nature with complex hydrodynamic forces) can greatly affect the 

performance and the working life of such turbines. In addition this review has 

shown some conflicting results of the previous investigation reported by various 

researchers. The current study is undertaken with the purpose of optimizing the 

performance of the cross-flow turbine for micro hydroelectric power plants to 

resolve any previous conflicting views or conclusions. It aims at analyzing the 

impact of such parameters change on the flow characteristics and the 
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hydrodynamics forces within the turbine. It was interesting to note from the 

literature that despite the importance of the flow field and structure within the 

turbine, which can influence the turbine performance immensely, this was not 

investigated in the literature thoroughly and comprehensively. 
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Chapter Three 

 

Theoretical Analysis 

 

 

3.1 Introduction 

The cross-flow turbine is normally classified as an impulse turbine but this is not 

strictly correct because there is a slight static pressure at nozzle exit [32]. The 

cross-flow turbine comprises of a cylindrical-shaped runner consisting of two 

parallel circular disks connected together at the perimeter with a series of 

curved horizontal blades, and a nozzle, whose cross-sectional area is 

rectangular, directs the water flow to the full length of the runner at a specified 

angle of attack to strike the blades on the circumference of the runner. The 

water passes through two stages in cross-flow turbine so energy is extracted 

from water by the blades of the runner in two stages.  

 
3.2 Theory of the Cross-Flow Turbine 

The turbine is the most important piece of equipment in a micro hydroelectric 

power plant in which energy transfers take place from the water to the runner as 

a result of a change of momentum occurring when the water flows through the 

blades of the runner. 

The energy of the flowing water is extracted and converted into mechanical 

work in the hydraulic turbine using one of two fundamental mechanisms: one 

56 
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mechanism is an impulse principle, which extracts the kinetic energy of water in 

the form of jet which strikes the blades on the periphery of the runner and 

converts it into mechanical work. The extraction of energy (the change of 

momentum) happens because of changing in direction of the water where no 

change in pressure in the blade passages and no change in the magnitude of 

the relative velocity vector. The second mechanism is a reaction principle, 

which extracts the potential energy and the kinetic energy of water in the form of 

pressure drop across the turbine and converts it into mechanical work.  

The water in cross-flow turbine runner passes through two stages so energy is 

extracted from the water by the blades of the runner in two stages. The first 

stage may have reaction effect because water piles up during operation and the 

reaction effect becomes zero at a low flow. The second stage that the blade 

passages are not full of water operates at a constant pressure since the 

pressures are balanced through these blade passages.  

The fundamental design relationship for all turbo machinery is derived using the 

momentum law, which can be obtained by using control volume. Control volume 

approach refers to a region in a space, and is useful in the analysis of situation 

where flow occurs into and out of the space. The boundary of a control volume 

(c.v) is its control surface (c.s). 
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Fig. 3.1 Control volume: (a) system at time t; (b) at time t + δt system I begins to 

enter system II and system III leaves. 
 

Let M be the total amount of properties such as mass, energy, momentum.  be 

the amount of this property per unit mass through the fluid M/m. 

At time t t   the system comprises volume II and III while in time t occupies II. 

The increase in M 

 t t t

II III IIt t t

M M dV dV dV




   
         

   
                                            … (3.1) 

Where dV is the element volume of control volume, and  is the density  

Rearrangement after adding and subtracting 
I t t

dV


 
 

 
 and dividing by t  

II I IIt t t t t t

III It t t t

dV dV dV
M M

t t t

dV dV

t t

 

 

   
      

    
  

  

   
    

   


 

  

 

                                    … (3.2) 

The average time rate of increasing of M within the system at time t in the 

limits as t 0  becomes 

c.s

II

c.v

I

III

II

(b) Time (t t)(a) Time (t)
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dM

dt
                                                                                                            … (3.3) 

The amount of M in the control volume at time t  and t t  . The limit is 

 
c.v

dV
t





                                                                                        … (3.4) 

The rate of flow of M out the control volume in the limit may be written as 

 
III t t

t 0
out

dV

lim v dA
t



 

 
 

 
  




                                                                     … (3.5) 

where v is the velocity vector of flow 

The rate of the flow of M into the control volume 

 
I t t

t 0
in

dV

lim v dA
t



 

 
 

 
   




                                                                    … (3.6) 

Equations (3.5) and (3.6) can be written as  

 
c.s

v dA                                                                                         … (3.7) 

In general, equation (3.2) becomes 

 
c.v c.s

dM
dV v dA

dt t


    

                                                              … (3.8) 

It is necessary to restrict the flow to steady flow which means the state of the 

fluid at any given point is constant. 

For steady state 
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c.s

dM
v dA

dt
                                                                                  … (3.9) 

Conservation of momentum based on the control volume theorem let M mv  

then 
M mv

v
m m

     

 
 

c.s

d mv
v v dA

dt
                                                                                 … (3.10) 

Newton's second law states that the sum of external forces acting on a moving 

system is equal to the time rate of change of momentum of the system. 

  
d

F mv
dt

                                                                                 … (3.11) 

Now, we are going to write the system formulation of Newton's law in control 

volume formulation. 

 
out in

F mv mv                                                                          … (3.12) 

 
out in

F Qv Qv
g g

 
                                                                           … (3.13) 

   2 2 1 1
F Q v cos v cos

g


                                                         … (3.14) 

  2 2 1 1
F Q v cos v cos

g


                                                             … (3.15) 
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Fig. 3.2 Water path through the runner blades and the velocity diagrams. 
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The rate at which useful work is done by the runner can be calculated by the 

product of the force and the velocity. 

  o 2 2 1 1 1
P Q v cos v cos u

g


                                                        … (3.16) 

 
Fig. 3.3 Velocity diagrams. 

 

The equation (3.16) can be simplified by using the velocity triangles, Fig. 3.3. 

 
22 r 2 2 2

u v cos v cos                                                                    … (3.17) 

Since 
1 2

u u  

 
22 2 r 2 1

v cos v cos u                                                                    … (3.18) 

Neglecting the increase in velocity of water due to the difference in the elevation 

between points 1 and 2 (Fig. 3.2) which is small in most cases, 

 
2 1r r

v v                                                                                                   … (3.19) 

Where   is an empirical coefficient less than unity (about 0.98) [31]. From the 

velocity diagram Fig. 3.3, 

 
11 1 1 r 1

v cos u v cos                                                                      … (3.20) 

1


2


1


1r
v

2r
v
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v
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v
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u
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1r 1 1 1 1

v cos v cos u                                                                      … (3.21) 

 
 

1

1 1 1

r

1

v cos u
v

cos

 



                                                                       … (3.22) 

Substituting equations (3.18), (3.19), and (3.22) in the power equation (3.16). 

  
2o r 2 1 1 1 1

P Q v cos u v cos u
g


                                                   … (3.23) 

  
1o r 2 1 1 1 1

P Q v cos u v cos u
g


                                                  … (3.24) 

 1 1 1

o 2 1 1 1 1

1

v cos u
P Q cos u v cos u

g cos

   
          

                      … (3.25) 

   2

o 1 1 1 1

1

cos
P Q v cos u 1 u

g cos

 
    

 

                                          … (3.26) 

The power available from a river or falling water is a combination of volume flow 

rate of water and net elevation head. It is possible to produce a power with any 

combination of volume flow rate of water and head, low flow and high head, 

high flow and low head or any combination of both values. The input power is 

given by the formula 

 
i

P QH                                                                                          … (3.27) 

Consider the forces acting on the element as shown in Fig. 3.4, and apply 

Newton’s law. The head at the inlet can be derived as   

 Forces mass * acceleration                                                         … (3.28) 
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Fig. 3.4 Forces action on fluid on streamline 
 

  
dw

pdA p dp dA dw sin * a
g

                                                  … (3.29) 

where a is the acceleration 

 w gdAds                                                                                    … (3.30) 

 
dv dv

a v
dt ds

                                                                                  … (3.31) 

Thus  

 
dz dv

dpdA gdAds dAds * v
ds ds

                                                       … (3.32) 

 dpdA gdAdz dA * vdv 0                                                        … (3.33) 

 
dp

gdz vdv 0  


                                                                        … (3.34) 

Dividing by g gravitational acceleration 

(p dp)dA

pdA

v dv

v

dw


ds
z

Streamline
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dp vdv

dz 0
g

  


                                                                          … (3.35) 

 
2dp v

dz d 0
2g

 
   

  
                                                                      … (3.36) 

For incompressible fluid, specific weight is constant 

 

2p v
d dz d 0

2g

  
    

   
                                                                   … (3.37) 

Integration between any two points (1) and (0) 

 

2 2

1 0

p v p v
z z

2g 2g

   
       

    
                                                         … (3.38) 

Thus the total hydraulic head at the exit of the nozzle is H and c be taken as 

nozzle coefficient, which covers the loss of kinetic energy through the nozzle, 

then equation (3.38) can be written as follows, 

 

2

1

2

v
H

c 2g
                                                                                        … (3.39) 

Since the head at the nozzle exit is 
2

1

2

v

c 2g
 where c is a nozzle coefficient that 

accounts for the losses in the nozzle, the inlet power becomes, 

 
2

1

i 2

Qv
P QH

c 2g


                                                                              … (3.40) 

The efficiency of turbine can be calculated from the ratio of the output and input 

power, 
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  2

1 1 1 1

1

2

1

2

cos
Q v cos u 1 u

g cos

Qv

c 2g

 
    

  


                                          … (3.41) 

 2 1 2 1

1

1 1 1

u cos u
2c 1 cos

v cos v

  
       

  

                                             … (3.42) 

 
1 2
      (

1
 & 

2
 are corresponding angles of the same blade) 

  2 1 1

1

1 1

u u
2c 1 cos

v v

 
      

 

                                                       … (3.43) 

Differentiating  

 

1

1

d
0

u
d

v




 
 
 

                                                                                     … (3.44) 

The velocity coefficient at maximum theoretical power output becomes 

 1

1

1

u 1
cos

v 2
                                                                                    … (3.45) 

And for maximum the cross-flow turbine efficiency 

  2

max 1 1 1

1 1
2c 1 cos cos cos

2 2

 
       

 
                                  … (3.46) 

  2

max 1 1

1 1
2c 1 cos cos

2 2

 
     

 
                                               … (3.47) 

  2 2

max 1

1
2c 1 cos

4
                                                                  … (3.48) 

The maximum theoretical cross-flow turbine efficiency is 

  2 2

max 1

1
c 1 cos

2
                                                                    … (3.49) 
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Therefore maximum theoretical power output becomes 

  
max

2

2 1

o 1

1

u
P Qv 1

g v

 
   

 
                                                               … (3.50) 

The theoretical power developed for each stage could be started with the 

conservation of momentum based on the control volume theorem let M mv.r

then 
M mv.r

v.r
m m

       

 
 

 
c.s

d mv.r
v.r v dA

dt
                                                                 … (3.51) 

Angular moment is an extension of the consideration made for linear 

momentum.   

    
out in

r F r v m r v m                                                          … (3.52) 

This equation is three dimensions equation. In turbo machinery, it is convenient 

to use coordinates of rotating body. 

 
 

Fig. 3.5 Definition sketch for the cylindrical coordinate system. 
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It is clear that the tangential form is the important where, it is the torque 

producer 

    t t t
out in

r.F v .r m v .r m                                                            … (3.53) 

But 

 
t

T r.F                                                                                             … (3.54) 

the power developed becomes, 

 
o

u
P T.

r
                                                                                         … (3.55) 

The water passes through two stages in cross-flow turbine so energy is 

extracted from water by the blades of the runner in two stages. Therefore, the 

Euler energy equation for the cross-flow turbine can be written from the sum of 

the energy developed from each stage as follows, 

    ' '1 22 1

' '

o 1 t 2 1 2 tt t

FirstStage SecondStage

P Q u v u v u v u v
g

 
  

   
 
 
 

                                          … (3.56) 

The theoretical power developed for each stage  

 ' 'o 1_ 2 1 _ 2
P P P                                                                                 … (3.57) 

 ' '1 2

'

1 t 21_ 2 t
P Q u v u v

g


                                                                    … (3.58) 

  ' ' 21

'

1 2 t1 _ 2 t
P Q u v u v

g


                                                                    … (3.59) 

Since (
1 2

u u ) and ( ' '

1 2
u u ) with using the velocity diagrams (Fig. 3.2) and 

assuming the empirical coefficient   is equal one. 

 
1 1t 1 r 1

v u v cos                                                                              … (3.60) 

 
2 2t 1 r 1

v u v cos                                                                             … (3.61) 
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Assume 
1t 1

v u  [66] 

'
2

'

2t
v u                                                                                           … (3.62) 

'
1

'

1t
v u                                                                                            … (3.63) 

Further with 

 ' 2

2 1

1

d
u u

d

 
  
 

                                                                                   … (3.64) 

  '

2

2 2

1 11_ 2

1

d
P Qu 1 cos

g d

  
         

                                                 … (3.65) 

  '

2

2 2

1 11 _ 2

1

d
P Qu 1 cos

g d

  
        

                                                 … (3.66) 

The power ratio of the two stages, therefore, is  

 

 

 

'

'

2

2

1

1_ 2 1

2

1 _ 2 2

1

1

d
1 cos

P d

P d
1 cos

d

 
    

 
 

   
 

                                                             … (3.67) 

Assuming 
2 1

d d 2 3  and o

1
30   

 
'

'

1_ 2

1 _ 2

P
4.58

P
                                                                                     … (3.68) 

Which means that the theoretical power developed in the first stage is 4.58 

times that of the second stage. In terms of proportion of the total power 

 
'

'

1 _ 2

o1_ 2

P
P P

4.58
                                                                               … (3.69) 

 ' o1_ 2
P 0.82P                                                                                 … (3.70) 

 ' o1 _ 2
P 0.18P                                                                                 … (3.71) 
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3.3 Design Calculations of the Cross-Flow Turbine 

3.3.1 Blade Angles 

The inlet and outlet blade angles have a significant effect on the cross-flow 

turbine performance [67]. In the design, they have to be chosen so that the 

water transfers useful work efficiently to the runner in the first and second 

stages. The blade angle   is the angle between the relative velocity of water 
r

v

and the peripheral velocity of the runner u. The nozzle of the cross-flow turbine, 

whose cross-sectional area is rectangular, discharges the jet to the full width of 

the runner and enters the runner at a small angle of attack to the tangent of the 

periphery of the runner. The first stage entrance blade angle is related to the 

first stage angle of attack 
1

 , according to the inlet velocity triangle as shown in 

Fig. 3.6.  

 

Fig. 3.6 Inlet velocity diagram. 
 

  
11 1 1 r 1

v cos u v cos                                                                     … (3.72) 

Rearranging equation (3.45) we find that 

  1

1 1

v
u cos

2
                                                                                   … (3.73) 

1
u

1r
v1

v

1


1

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Substituting equation (3.73) into equation (3.72) we find that  

  
1

1

r 1 1

v
v cos cos

2
                                                                          … (3.74) 

Therefore, using equation (3.74) and the velocity diagram (Fig. 3.6) 

  
1 1

1

1

1

v sin
tan

v
cos

2


 



                                                                         … (3.75) 

  
1 1

tan 2tan                                                                                 … (3.76) 

Assuming no shock loss at entrance of the second stage and the deviation 

angle is nearly zero for the flow leaving the blades in the first stages; therefore, 

the inter stage angle of the blades is taken equal to 90o (the first stage exit 

blade angle '

1
  and the second stage inlet blade angle '

2
  are equal to 90o). On 

account of the small difference in elevation between the exit and entrance to the 

inner periphery, we assume that the water absolute velocity at exit to the blade 

of first stage, '

2
v , and the water absolute velocity at entrance to the blade of the 

second stage, '

1
v , are equal ( ' '

2 1
v v ). Assuming that the inner exit and entrance 

water absolute velocities are equal and because the inner periphery velocities 

of the runner at the exit and entrance to the inner periphery are equal ( ' '

2 1
u u ) 

and because ( ' '

2 1
   ) the inner velocities are congruent as shown in Fig. 3.2, 

accordingly ( ' '

1 2
   ). And also (

1 2
   ) since they are corresponding angles of 

the same blade [68].  
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3.3.2 The Diameter Ratio  

The thickness of the jet at the blade entrance 
1

s  and the thickness of the jet at 

the blade exit 
2

s  are related to the ratio of the inner to outer diameters (
2 1

d d ) 

or radius ratio (
2 1

r r ) as shown in Fig. 3.7. However, the thickness of the jet can 

be expressed in terms of the blade spacing. Therefore, if the thickness of the jet 

is measured at a right angle to the relative velocity, 

 
Fig. 3.7 Blade spacing. 

 

  
1 1 1

s t sin                                                                                      … (3.77) 

and 

  ' ' '

2 2 2
s t sin                                                                                     … (3.78) 

Where 
1

t  is the entrance blade spacing and '

2
t  is the inner exit blade spacing. 

However, ' 2

2 1

1

r
t t

r

 
  
 

 and ' o

2
90   so equation (3.78) becomes 

1
s

o
s

t

'

2
s

' o

2
90 

1


1r
v

2
r 1

r
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 ' 2

2 1

1

r
s t

r

 
  
 

                                                                                     … (3.79) 

From conservation law of mass, the volume flow rate at the entrance and exit of 

the blade must be equal. However, as long as the diameter ratio is small, 

blades’ passages will not be filled by the jet. As the diameter ratio increases the 

thickness of the jet at the blade exit 
2

s  decreases so the diameter ratio will be 

limited by 

 1

'
2

r'

2 1

r

v
s s

v

 
 
 
 

                                                                                   … (3.80) 

Increasing the ratio of the inner to outer diameters (
2 1

d d ) over a limit range is 

not advisable because the amount of the water, which strikes the blades on the 

circumference of the runner, could not flow through so small blades’ passages 

cross-section and reverse flow could result. On the other hand, decreasing the 

ratio of the inner to outer diameters under a limit range would not be efficient as 

separated jets would flow out of the wide blades’ passages at the inner 

periphery.  

In order to determine the ratio of the inner to outer diameters (
2 1

d d ) it is 

necessary to know the change in the relative velocity, which is affected by the 

centrifugal force, 

        '1 2

22 22 '

r 1 2r
v v u u                                                               … (3.81) 

Rearrangement equation (3.81) 

        ' 12

2 22 2'

2 1 rr
v u u v                                                               … (3.82) 
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Substituting equations (3.77) and (3.79) in equation (3.80) and rearrangement 

so 

 
' 12

1

r 1r

2

r
v v sin

r

 
  

 
                                                                           … (3.83) 

 ' 2

2 1

1

r
u u

r

 
  

 
                                                                                    … (3.84) 

Substituting equations (3.83) and (3.84) in equation (3.82) 

    
1 1

2 2

22
1 2

r 1 1 1 r

2 1

r r
v sin u u v

r r

      
            

      
                                     … (3.85) 

 1 1

2 22

r r1 2

1

1 2 1 1

v vr r
sin 1

u r r u

       
           

       
                                             … (3.86) 

 1 1

2 22 2

r r 22 1

1

1 1 1 2

v vr r
1 sin 0

r u u r

      
          

      
                                        … (3.87) 

 1 1

2 24 2 2

r r 22 2 2

1

1 1 1 1 1

v vr r r
sin 0

r r u r u

        
            

        
                                … (3.88) 

 
1 1

2 24 2

r r 22 2

1

1 1 1 1

v vr r
1 sin 0

r u r u

       
           
        

                                    … (3.89) 

 

1 1 1

2
2 2 2

r r r 2

12

1 1 1
2

1

v v v
1 1 4 sin

u u ur

r 2

        
                         

 
 

                     … (3.90) 

The diameter ratio 2

1

d

d

 
 
 

 can be calculated from rearrangement equation (3.90) 
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1 1 1

1

22
2 2 2

r r r 2

1

1 1 1
2

1

v v v
1 1 4 sin

u u ud

d 2

 
         
                         

 
 
  
 

                     … (3.91) 

 

1

22
2 2 2

2

1

1 1 1
2

1

1 1 1
1 1 4 sin

cos cos cosd

d 2

 
         
                           

 
 
  
 

     … (3.92) 

The angle of absolute velocity at the first stage blade exit '

2
  can be determined 

from equation (3.82). 

Substituting equations (3.84) in equation (3.82) 

      ' 12

2
2 22

2

1 1 rr

1

r
v u u v

r

 
   
 

                                                         … (3.93) 

   1

'
2

22
2

r2 2

1r

1 1

vr
v u 1

r u

   
      
     

                                                         … (3.94) 

  '
2

2 2
2

2 2

1r

1 1

r 1
v u 1

r cos

    
           

                                                    … (3.95) 

 
'
2

1
2 2 2

2

1r

1 1

r 1
v u 1

r cos

    
           

                                                      … (3.96) 

 
'
2r'

2 '

2

v
tan

u
                                                                                        … (3.97) 

Substituting equations (3.84) and equation (3.96) in equation (3.97) 
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1
2 2 2

2

1

1 1
'

2

2

1

1

r 1
u 1

r cos
tan

r
u

r

    
           

 
 
 

                                                 … (3.98) 

 

1
2 2 2

2

1 1
' 1

2

2

1

r 1
1

r cos
tan

r

r



    
           

 
 
 

                                                 … (3.99) 

3.3.3 Blade Radius of Curvature 

The blade radius of curvature can be determined from a circle whose center lies 

at the intersection of two lines, one perpendicular on the relative velocity of the 

entrance blade at first stage and the other perpendicular on the tangent to the 

inner periphery as shown in Fig. 3.8, 

 
Fig. 3.8 Blade radius of curvature 
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From the Fig. 3.8 and using the cosine rule we can obtain  

 2 2 2 2

2 b 1 b 1 b 1
r r r r 2r r cos                                                                … (3.100) 

When 
1
r  is the outer radius of the runner blade, 

2
r  is the inner radius of the 

runner blade and 
b

r  is the radius of the blade curvature. 

 2 2 2 2

2 b 1 b 1 b 1
r r r r 2r r cos                                                               … (3.101) 

 2 2

2 1 1 b 1
r r 2r r cos                                                                         … (3.102) 

 2 2

1 2 1 b 1
r r 2r r cos                                                                          … (3.103) 

 
2 2

1 2

b

1 b 1

r r
r

2r r cos





                                                                             … (3.104) 

 

3.3.4 The Dimension of the Runner 

The runner diameter can be determined from the following equation, 

 1

1

d N
u

60


                                                                                     … (3.105) 

Substituting equations (3.73) in equation (3.105), 

 1 1

1

v d N
cos

2 60


                                                                           … (3.106) 

 
 

1

1

c 2gH d N
cos

2 60


                                                                   … (3.107) 

 
 

1

2
1

1

30c 2gH cos
d

N





                                                                 … (3.108) 

 1

1

42.3c Hcos
d

N


                                                                     … (3.109) 
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The width of the cross-flow turbine runner can be determined by knowing the 

diameter of the runner and the head of the water as well as the volume flow 

rate, which is equal to the velocity of water through the nozzle times the nozzle 

area. Therefore,  

  
1

2
o W

Q s B c 2gH                                                                        … (3.110) 

Where Q  is the volume flow rate, 
o

s  the thickness of the jet in the nozzle, 

  
1

2
j 1 W

Q c d B c 2gH                                                                     … (3.111) 

 

 
11

2
j W

Q
d

c B c 2gH

                                                                        … (3.112) 

Substituting equations (3.108) in equation (3.112), 

 

 

 
1

2
1

1

2
j W

30c 2gH cosQ

Nc B c 2gH





                                            … (3.113) 

 
 w 2

j 1

NQ
B

30c c 2gH cos





                                                             … (3.114) 

j
c is an experimental coefficient which relates the thickness of the jet in the 

nozzle to the runner diameter. 
j

c value lies between 0.075 and 0.10 according 

to [31]. Therefore, substituting 
j

c into equation (3.114) and assuming c 0.98  

so the equation becomes 

 
1 1

NQ NQ
Q 0.074 to 0.055

Hcos Hcos


 
                                     … (3.115) 
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3.3.5 The Number of the Runner Blades 

The number of blades is one of the important considerations of the runner 

design. A large number of runner blades will increase losses and the cost of the 

turbine. On the other hand, a small number of runner blades will increase losses 

by flow separation on the back side of the blades. 

 1

b

1

2 r
n

t


                                                                                      … (3.116) 

Where 
b

n  is the number of blades and 
1

t  is the entrance blade spacing 

 1

1

1

s
t

sin



                                                                                    … (3.117) 

Substituting equations (3.117) in equation (3.116) and 
1 1

s kd  

b 1
n sin

k


                                                                                    … (3.118) 

 

3.4 Outline of the Theoretical Analysis 

The geometry of turbine was investigated in this chapter and the 

parameters/equations controlling the performance of the cross-flow turbine were 

identified. The parameters/equations are used in the modelling and 

performance improvement of the turbine reported in Chapters 3 and 4. 
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Chapter Four 

 

Numerical Modelling and Techniques in CFX 

 

 

4.1 Introduction 

In this chapter, the background theories of computational fluid dynamics (CFD) 

and the numerical tools used in flow simulation are introduced. Accordingly, 

understanding CFD complexity is very important in any flow simulation 

investigation. The flow field numerical simulation of cross-flow turbine was 

undertaken using various available computational fluid dynamics (CFD) 

simulation codes based on the Reynolds Averaged Navier Stokes equations 

(RANS) and Shear Stress Transport (SST) turbulence models. Most CFD 

codes, are powerful tools, utilize a finite volume to solve the governing 

equations of fluid motion numerically on a user defined computational grid and 

have been designed for use in a Computer Aided Engineering (CAE) 

environment. 

“Computational Fluid Dynamics (CFD) can be described as the use of 

computers to produce information about the ways in which fluids flow in given 

situations. CFD embraces a variety of technologies including mathematics, 

computer science, engineering and physics, and these disciplines have to be 

brought together to provide the means of modelling fluid flows. Such modelling 
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is used in many fields of science and engineering but, if it is to be useful, the 

results that the model yields must be a realistic simulation of a fluid in motion. At 

present, this depends entirely on the problem being simulated, the software 

being used and the skill of the user” [69]. 

The concept of computational fluid dynamics (CFD) is to predict the flow of the 

fluid and any related phenomena (separation, re-attachment, pulsation … etc.) 

scientifically to a given situation. To do that the CFD code utilizes the computer 

in the numerical calculation of the equations that govern the fluid flow. In order 

to achieve acceptable results, it is necessary for the CFD user to have an 

understanding of the main characteristics of fluid flow to be modelled as well as 

the equations that govern such flow. The differential equations that govern the 

flow must be transformed to a large number of algebraic equations. The solution 

can be achieved from intensive iteration of these equations by utilizing powerful 

computer hardware and software; hence, some of the hydrodynamics 

simulations can be obtained using these computer tools. 

Computational fluid dynamics (CFD) is a very powerful technique and covers a 

wide range of engineering applications. Its application and development have 

undergone considerable growth. In the discipline of flow hydrodynamics 

research this technique has become increasingly significant, and prominent for 

investigating the hydrodynamics of hydraulic turbomachines. This is mainly due 

to the tremendous technological advancements in the computer power. 

However, before start modelling any turbomachine, it is extremely important to 

select appropriate code that can accurately and quickly simulate the problem 

[70]. 
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A complete analysis of the internal flow, which is turbulent, two-phase and three 

dimensional in nature, was undertaken by simulating it using various CFD 

simulation codes. The procedures involved in the modelling fluid flows, 

comprise the following steps. First, the geometry of a cross-flow turbine was 

designed by the CATIA V5 computer aided design (CAD) program. This was 

then imported into CFD simulation code meshing tool for grid generation. The 

generated mesh was then imported into the pre-processor, for setting the 

suitable boundary conditions. Once the changes in pre-processor were saved, a 

new definition file (*.def) was created for later import into CFD code solver. That 

file was the starting point in each simulation, and the subsequent simulation 

results were processed in post-processor. 

 

4.2 CFD Simulation Codes 

Various computational fluid dynamics (CFD) simulation codes, which are 

available nowadays, have been designed for use in a computer aided 

engineering (CAE) environment. However, in turbomachine modelling, it is 

especially important at the start of the process more accurate CFD code is 

chosen which can accurately and quickly simulate the problem. In order to do 

this, it is necessary for the CFD user to have an understanding of the 

fundamental characteristics of fluid flow for a given situation, as well as the 

numerical tools used for flow simulation [71]. 

University of Hertfordshire has access to several CFD simulation codes, such 

as PHOENICS (it is the first commercial CFD software [72]), STAR-CCM+, 

ANSYS CFX and so on. Students, researchers and staff have taken advantage 

of available CFD simulation codes to prepare themselves and specialize in 
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simulating and coping with high levels of complexity in a wide range of 

engineering application through the use of these CFD simulation codes.  

PHOENICS, STAR-CCM+ and ANSYS CFX were selected in the current 

investigation to choose a suitable CFD simulation code. After consulting a 

number of experts, and attending several training courses held by companies 

such as CHAM (PHOENICS), CD-adapco (STAR-CCM+) and ANSYS. A 

number of code’s interesting features were investigated including the geometry 

modelling and geometry import capabilities; grid generation or meshing 

capabilities; the solver capabilities; post-processing capabilities; available 

information and user support. 

Available information and user support enable users to overcome some of the 

difficulties and understanding the CFD simulation code properly in a short 

period of time.  When users and especially new CFD simulation code users try 

to simulate a difficult case, it is helpful if there is easy access to CFD simulation 

code’s information and very active research and development team with good 

quality user support. However, the main critical factors to choose a CFD 

simulation code are its capabilities and high-performance to simulate a 

particular case. ANSYS CFX was chosen (as explained in section 4.7, 

hereafter) to simulate the entire internal flow for cross-flow turbine, which is 

turbulent, two-phase and three dimensional in nature. ANSYS CFX advanced 

solver technology is the key for accomplishing accurate and reliable solutions 

quickly and robustly [73]. ANSYS CFX also possesses ANSYS TurboGrid which 

is a powerful tool that lets users create high quality hexahedral meshes for 

turbomachinery [74]. Turbine designers and manufacturers use widely CFX in 

their simulations [75-77], which proves the reliability and accuracy of ANSYS 
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CFX.Typically, CFD simulation codes consist of three main structures, which 

are pre-processor, solver and post-processor. These three main structures 

influenced accurate and quick simulation of CFD simulation codes.   

 
4.3 Pre-Processor 

The pre-processing of the CFD simulation code is the first step in performing a 

CFD simulation analysis through which the user identifies the computational 

domain. It is used to input the problem and subsequently transform the input 

into a suitable form to be used by the solver. The accuracy of CFD simulation 

results strongly depends on the capability of the pre-processor tools to prepare 

and also be able to efficiently modify a high quality CFD model, overcoming all 

the difficulties that arise by the large model size and their complexity [78]. 

However, the accuracy and the model simulation time are influenced by the skill 

of the simulation user. The pre-processing includes 

 Defining the geometry of the region for computational domain [79], 

 Design and create the grid or Meshing, 

 Defining the physical models, and 

 Defining the boundary conditions. 

 
4.4 Solver 

The numerical solver of CFD simulation code is the second step in performing a 

CFD simulation analysis. The CFD solver is used to set the numerical factors, 

compute and monitor the solution as shown Fig. 4.1. In CFD simulation codes, 

the solver is often operated as a “black box” [80]. However, understanding the 

numerical tools and the pre-processing including geometry, mesh, physical 



Chapter Four                                                                                    Numerical Modelling & Techniques in CFX 

 

 86  

  

models and boundary conditions are required in order to produce the desired 

results from solving the discretised governing equations by utilizing powerful 

computer hardware and software. The results obtained in solver step are fed 

into the post-processor for examination. 

 

Fig. 4.1 Plot of residual proceeding with accumulated time step for simulation in 

CFX. 

4.5 Post-Processor 

The post-processing of the CFD simulation code, is the last step in performing a 

CFD simulation analysis, and performs flow field visualization and quantitative 

data analysis on CFD results. CFD simulation codes provide full-field data in 

their results files. Plotting (graphical result) is the quickest and the most efficient 

technique to display enormous quantities of the data. CFD simulation codes 

have the capability to represent and plot the flow variables on a point, a line and 

a plane or over a three dimensional region of interest. Most CFD post-processor 

includes many tools for analyzing CFD results [81]. 
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 Isosurfaces 

 Vector plots 

 Contour plots  

 Streamlines and pathlines 

 XY plotting 

 Animation creation 

The flowchart of the three processes detailed in sections 4.3 to 4.5 is depicted 

in Fig. 4.2. 
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START

Defining the geometry of the region for 

computational domain

Depending

on set

criteria

Pre-Processor

Solver

Post-Processor

Design and create the grid or Meshing

Defining the physical models

Defining the boundary conditions

Setting the numerical factors

Computing and monitoring the solution

Performing flow field visualisation and 

quantitative data analysis

END

No

Yes

 
 

Fig. 4.2 A Flowchart of the CFD analysis processes. 
 

* As detailed in Chapter 4 (The number and quality of the selected cells). 
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4.6 Geometry Modelling and Grid Generation 

4.6.1 Geometry Modelling 

The design created for the cross-flow turbine was based on the specifications 

provided by Mockmore and Merryfield [31], Aziz and Desai [46]  and Kaniecki 

[59]. However, some modifications were made in order to obtain optimum 

performance. The drafting and design capabilities of computer aided design 

software (CAD), CATIA V5, were utilized to create the geometry model of the 

turbine. CATIA V5, by Dassault Systemes, at its core is a full functioned 

geometry modelling tool that is widely used in the industry [82]. The turbine 

case was created in the simplest way so as to get a better mesh distribution as 

the quality of the mesh depends on the complexity of the geometry. This 

resulted in good mesh quality as shown in Fig. 4.3.  

The most important aspect of CATIA V5 is that it integrates efficiently with CFD 

simulation codes. This aspect allows file formats like IGES, STEP and STL for 

the complex geometry created in CATIA V5 to be smoothly imported into CFD 

simulation codes such as PHONIES, STAR CCM+, and ANSYS. Particularly, 

ANSYS CFX has the capability to import CAD data file directly without need to 

transfer it to another format, for example, in International Graphical Exchange 

Standard (IGES) format. This direct translation makes ensure an optimum 

geometry quality input. In addition, all information, such as part, property names 

and numbers, as well as assembly hierarchy, are also transferred exactly as 

built in the CAD system [77]. 

The quality of the imported geometry is one of the principal factors governing 

the time taken to extract the proper computational domain. The time and 
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accuracy of the simulation in any CFD simulation code depend on the quality of 

the mesh, which in turn depends on the computational domain. Modern CFD 

simulation codes, including ANSYS CFX have the capability to import existing 

computer aided design (CAD) geometry or create the three-dimensional 

geometry from scratch. ANSYS DesignModellerTM software provides powerful 

tools to create three-dimensional geometry (however, the software is not as 

advanced as CATIA V5) as well as to import and manipulate existing CAD 

geometry. ANSYS BladeModellerTM software is specialized for three-

dimensional design of rotating machinery components [83]. It is also able to 

import and manipulate existing blade CAD geometry.   

As the flow, in the cross-flow turbine, is of a complex and a three-dimensional 

nature, ANSYS BladeModellerTM software was utilized to design and optimize 

the runner. ANSYS BladeModellerTM software was selected because it, has the 

capability to modify individual parameters smoothly, is exclusively developed to 

design runner blades and configuration of the turbine runner. Finally, ANSYS 

DesignModellerTM software was utilized to extract the computational domain as 

shown in Fig. 4.4. 
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4.6.2  Mesh Generation 

Mesh generation is a discretization of a computational domain into numerous 

small control volumes. The governing equations are integrated over each 

control volume, such that the relevant quantity (mass, momentum, energy, etc.) 

is conserved in a discrete sense for each control volume [84]. All together, 

these small control volumes comprise the mesh [85]. Before constructing the 

mesh a computational domain for the simulation of the cross-flow turbine must 

be available. The computational domain includes the whole cross-flow turbine 

was made with a full scale model, from the inlet to the outlet, which composed 

of the casing, the nozzle and the runner as shown in Fig. 4.4. ANSYS CFX-

Mesh and TurboGrid mesh software are employed to generate an adapted 

mesh for the turbine components using structured & unstructured grid. 

ANSYS CFX-Mesh provides a mesh generator with high quality meshes for use 

in CFD simulations [86]. ANSYS CFX-Mesh imports computational domain 

definitions from DesignModellerTM or any similar tools supported by ANSYS e.g. 

CATIA V5. It has powerful tools with a number of features enable the user to 

manipulate and control the mesh resolution in the each portion of the 

computational domain, including bodies, faces and edges. These features are 

utilized to get better distribution of the mesh density, finer mesh in regions 

where the variations of the flow variables are larger and coarser anywhere else. 

Controlling the mesh resolution can be accomplished by controlling the size of 

the elements, inflation layers and virtual topology of the entire computational 

domain or different sections may be individually controlled. Generally, Variable 

gradients on smaller element's size are more accurately calculated. Therefore, 

finer mesh was required where the variations of the flow variables were large. 
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Inflation layers are significantly important, in order to get better mesh merge 

between different regions, and capture the boundary layer effects. Finally, 

ANSYS CFX-Mesh creates finer meshes at the edge of each face. Virtual 

topology was used to merge the faces where a finer mesh is unnecessary. 

ANSYS TurboGrid software offers designers and analysts of turbomachinery 

with mesh creation tailored for specific the blade geometries [74]. The runner 

blades’ computational domain was meshed in ANSYS TurboGrid using the ATM 

optimization mesh method which imports computational domain definitions from 

ANSYS BladeModellerTM software. ANSYS TurboGrid was selected for meshing 

because it is a highly hexahedral mesh generator, specifically developed for 

turbomachinery applications. As mentioned earlier, the time and accuracy of the 

simulation in any CFD simulation code depend on the mesh quality, which in 

turn depends on the number of the elements and the mesh aspect ratio. The 

fine mesh was employed in the numerical simulation to ensure an appropriate 

development of flow in the whole runner channels and to resolve/capture the 

entire internal flow especially flow separation when operating at different 

conditions. A fine and high quality hexahedral structured mesh was obtained for 

the runner blades’ computational domain by using the ATM optimization mesh 

method as shown in Fig. 4.5.  

Meshes for other components of the cross-flow turbine (casing and nozzle) 

were performed with ANSYS CFX-Mesh, utilizing tetrahedral cells with adding 

inflation layers at desired surfaces as shown in Fig. 4.6. The cross-flow turbine 

model was created using the computer aided design software, CATIA V5. The 

unstructured tetrahedral mesh generation is one of the most useful features 

available in ANSYS CFX-Mesh, which allows smoothly meshing of complex 
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geometries (it has great flexibility in fitting complicated domains [87]). In order to 

capture the velocity and pressure gradients near a wall. A very fine structured 

mesh was generated using the mesh inflation option available in CFX Mesh. By 

adopting various mesh control parameters it was possible to get the required 

mesh quality.  

As mentioned earlier, the time and accuracy of the simulation in any CFD 

simulation code depend on the mesh quality, which in turn depends on the 

number of the elements and the mesh aspect ratio. Therefore, it is essential 

before CFD simulation results are obtained, to optimize the number of the 

elements in the computational domain. The solution mesh dependency was 

tested by starting with a coarse mesh. The number of the elements was 

increased until the CFD simulation results were no longer significantly affected 

by any further. A minimum residual target of 10-4 was set as a convergence 

criterion. According to the mesh independency test, shown in Figs. 4.7 and 4.8, 

the total number of the elements in the entire cross-flow turbine computational 

domain was 1,713,426. The number of the elements in the runner 

computational domain was 986,370 and for the rest of the turbine were 

727,056.  
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4.6.2.1 Mesh Quality 

Mesh quality plays an important role in the accuracy of the CFD simulation 

results. A high quality mesh is required to resolve satisfactorily the fundamental 

flow physics implied within the computational domain. This can be 

accomplished by generating a mesh contains the highest number possible of 

the elements which have properties similar to the optimal element. The optimal 

element is an element with the best nodes’ distribution [88]. The numbers of the 

elements and the mesh aspect ratio as well as rapid changes in the mesh 

density are parameters that can affect mesh quality.  Therefore, it is essential to 

check the quality of the mesh in order to avoid any numerical problems further 

on and to achieve accurate results. A guideline for ANSYS CFX mesh quality is 

in mesh “quality metrics”, one represents the perfect quality and zero represents 

the worst quality. It is recommended to keep mesh quality higher than 0.1 [89]. 

The mesh quality of cross-flow turbine apart from the runner is shown in Fig. 

4.9. The horizontal axis represents the mesh quality and the vertical axis 

represents the quantity of elements. 
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A guideline for ANSYS TurboGrid mesh quality is in mesh limits. The mesh 

quality with mesh limits of the cross-flow turbine runner blade is shown in Fig. 

4.10.  

 
 

Fig. 4.10 (a) Mesh quality of the runner blade of the cross-flow turbine tested. 
 

 
 

Fig. 2.10 (b) Mesh quality of the runner blade of the cross-flow turbine tested. 
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4.7 Outline of the Modelling Techniques 

ANSYS CFX, advanced and high-performance modelling capabilities, was 

chosen among several CFD simulation codes (such as PHOENICS, STAR-

CCM+ and ANSYS CFX) to perform an accurate and quick simulation of cross-

flow water turbines. The main capabilities of ANSYS CFX simulation code are: 

 ANSYS CFX has the capability to import CAD data file directly without the 

need to transfer it to another format, for example, in International Graphical 

Exchange Standard (IGES) format. This direct translation ensures an 

optimum geometry quality input. 

 

 It has a very powerful tool “TurboGrid” to design and create high quality 

grid/mesh for turbomachinery “cross-flow turbine”. 

 

 It has an advanced and high-performance solver technology which provides 

an accurate and quick solution. 

 

In this chapter, the mesh generation and mesh quality were investigated. 

Structured & unstructured high quality meshes were generated for the 

computational domain of the cross-flow turbine. A fine and high quality 

hexahedral structured mesh was obtained for the runner blades’ computational 

domain and for other components’ computational domain a high quality 

tetrahedral unstructured mesh was obtained. The governing equations for fluid 

flow to predict the ways in which fluid flows in the cross-flow turbine were 

investigated. Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) 

and Reynolds Averaged Navier-Stokes Simulation (RANS) approaches to make 
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turbulence computationally tractable were discussed.  The flow field numerical 

simulation of cross-flow turbine was undertaken based on the Reynolds 

Averaged Navier Stokes equations (RANS).  

Finally, the ANSYS software was found to be a good fluid dynamics simulation 

code with complete high-performance tools for comprehensive turbomachinery 

optimization. 
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Chapter Five 

 

Results of Performance Improvement/Optimization and 

Discussion 

 

 

5.1 Introduction 

In this chapter, the details of establishing the optimal values for some geometric 

parameters of the main cross-flow turbine elements (runner and nozzle) are 

presented and discussed. A cross-flow turbine comprises of a nozzle and a 

cylindrical-shaped runner. The nozzle, which has a rectangular cross-sectional 

area, converts the flow energy into kinetic energy by directing the water to the 

full length of the runner at a specified angle of attack. The cylindrical-shaped 

runner consists of two parallel circular disks connected together at the perimeter 

with a series of curved horizontal blades. The runner converts the energy of 

water into mechanical energy. Both the nozzle and the runner were 

investigated, numerically, for the optimization of their geometrical parameters. 

These include the number of runner’s blades bn , the runner’s blades diameter 

ratio 
2 1

d d , the angle of attack 1 , the nozzle entry arc  , the blade profile, the 

nozzle profile, the throat width 
o

s , the ratio of the nozzle width to the blades 

width 
W W

N B and the ratio of the blades width to the runner outer diameter 

W 1
B d . They are plotted as velocity streamlines and pressure contours. 

110 
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Complete details of the nature of the complex flow structure were revealed, 

which is presented and fully discussed in sections 5.2.1 to 5.2.9 of this chapter. 

 

5.2 Performance Improvement and Optimization 

The main parameter which characterizes the performance of a cross-flow 

turbine is its efficiency, which is the percentage of the energy obtained from the 

blades of the runner to the available energy of water prior to its entry to the 

turbine. This fundamental process of energy conversion is described by the 

efficiency equation (5.1), defined as the ratio of the power delivered by the 

cross-flow turbine to the power of the water passing through the blades of the 

runner. The general expression for this efficiency   is given in equation (5.1) 

 
out

in

P

P
                                                                                             … (5.1) 

Where outP  is the power generated by the turbine. The power is calculated by 

simply multiplying the torque T by the rotational speed ω of the runner. inP  is the 

power supplied to the turbine, and it is equal to g Q H   , where   is the 

density of water, g is the acceleration of gravity, Q is the water flow rate to the 

turbine and H is the total head. 

The theory of cross-flow turbine, discussed fully in Chapter 3, indicates that the 

geometric parameters can strongly influence the performance characteristic of 

this type of turbine. The geometric parameters are the properties of the main 

cross-flow turbine two components (the runner and the nozzle). These include 

the number of blades bn , the diameter ratio 2 1d d , the runner outer diameter 1d , 

the diameter of the shaft sd , the thickness of the blades bt , the first stage inlet 
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angle 1 , the first stage exit angle '

2 , the curvature of the blades br , the angle of 

attack 
1 , the shape of the nozzle rear wall, the nozzle entry arc  , the throat 

width 
o

s  etc.,  

It was evident from the literature available on the cross-flow turbine 

development, reported in Chapter 2, that attention has been paid to investigate 

the effects of few of these geometric parameters such as the angle of attack, 

the diameter ratio and the number of blades on the cross-flow turbine 

performance. However, little or no attention was paid to the complex flow 

structure associated with the change of such parameters in these turbines. 

Such flow characteristics (which is three dimensional and of two phases with 

complex hydrodynamic forces) can greatly affect the performance and the 

working life of such turbines. The current study was undertaken with the 

purpose of optimizing the performance of the cross-flow turbine for micro 

hydroelectric power plants by varying all of the geometric parameters of the 

turbine. It is aimed at analyzing the impact of such parameter changes on the 

flow characteristics and the hydrodynamic forces within the turbine. These 

ultimately determine the power output, torque and the efficiency of turbine. It 

was interesting to note from the literature review, which is reported in Chapter 2, 

that despite the importance of the flow field and structure within the turbine this 

was not investigated thoroughly and comprehensively. 
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5.2.1 Optimization of the Runner’s Blades Number (
b

n ) 

The number of runner’s blades is one of the most important geometric 

parameters of cross-flow turbine as the energy is extracted from water by the 

blades. The principle was fully described in Chapter 3. Therefore, it is essential 

to improve and optimize the turbine operation by selecting the optimum number 

of runner’s blades. It must be noted that selecting too many runner’s blades for 

certain turbine tends to increase the friction losses, weight of the runner and the 

cost of the turbine. However, too few blades tend to increase the flow 

separation loss on the back side of the blades [90]. An experimental 

investigation on cross-flow turbine performance by varying the number of the 

runner’s blades was conducted by Khosrowpanah et al [43]. The results of this 

experiment showed that the number of the runner’s blades strongly affects the 

efficiency. An optimum blades number of 15 was identified in a series of 

experiments with runners of 10 to 20 blades. In 1996, Costa Pereira and Borges 

[52] conducted an experimental investigation of cross-flow turbine with the 

number of the runner’s blades ranged from 10 to 25 blades. Unusually, and 

surprisingly they concluded that the influence of the number of blades on the 

performance was unclear. Both Olgun and Ulku [49] and Desai and Aziz [50], 

also,  undertook experiments to study the effect of the number of the runner’s 

blades on the efficiency of the cross-flow turbine. Olgun and Ulku [49] 

concluded that a runner with 28 blades was more efficient than the runner with 

20, 24 and 32 blades. However, Desai and Aziz [50]  revealed that the 

efficiency of the cross-flow turbine increased by increasing the number of 

runner’s blades from 15 to 30. As it is clearly evident from the above review 

summary, the observations regarding the effect of the number of the runner’s 
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blades on the performance of the cross-flow turbine are very “unclear” and 

rather “contradictory”. According to few previous studies, an increase in the 

number of runner’s blades has a favorable impact on performance of the cross-

flow turbine, whereas in other studies it is not. Therefore, it was rather important 

to resolve this contradiction and determine the optimum number of runner’s 

blades necessary for the best performance of the cross-flow turbine. In order to 

achieve this goal in the current study, certain blades geometrical details were 

selected. These are listed in table 5.1. 

Table 5.1 Details of the runner’s blades number tested. 

  
Geometrical parameter Specification 

  

  
Number of blades 

b
n ?

15,20,25,30,35& 40


 

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.67  

  
Angle of attack 

o

1
16   

  
Inlet blade angle 

o

1
150.166   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
29.834   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 47.65mm  

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 
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The simulation results employing the parameters of table 5.1 are shown in Figs. 

5.1 to 5.7 and Figs. B.1 to B.2. The details of the internal flow of the turbine’s 

runners with various numbers of blades, which is turbulent and two phases are 

shown in Figs. 5.1 (a) to (f). These figures show the water superficial velocity 

streamlines in both the nozzle and the runner. They clearly show that in all 

cases water passes only through part of the runner. The impact of the number 

of blades on the flow exit angle is quite evident. Increasing the number of 

runner’s blades increases the exit angle of the water leaving the runner. As a 

result of a considerable obstruction to the flow at an increase runner’s blades 

number the entry velocity of the water to the runner increased as shown in Fig. 

5.1 (f). An increase in the number of runner’s blades also reduces the area 

available for the water leaving the runner. This also causes the increase in the 

flow velocity (activity) at the second stage of the runner. As it is anticipated, in 

all cases some separation of the main flow was detected particularly in the 

convergent part of the nozzle and close to the runner entry. However, this is not 

entirely clear from Figs. 5.1 (a) to (f) and warrant further clarification. 

The streamlines of the flow at the mid span of the turbine runner of various 

blade numbers are shown in Figs. 5.2 (a) to (f). These confirm the conclusion 

from the previous set of results that increasing the number of runner’s blades 

causes an increase in the velocity of the flowing water at the entry and exit to 

the runner. It is rather interesting to note the effect of the volute shape, 

particularly near the end of the nozzle, on the flow between the blades. It seems 

that flow creates an air bubble (pocket) region. The size of such bubble or 

pocket relates inversely to the number of blades in the runner. Inspecting Figs. 

B.2 (a) to (f) closely also reveals the flow tendency to separate along the line 
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close to where the nozzle meets the volute. This will be discussed further, 

hereafter, and suggests that such sharp line (edge) should be eliminated in 

future design in order to reduce losses and improve power output and 

efficiency.  

Water superficial velocity vectors at the mid span of the turbine of various 

runner’s blades are shown in Figs. 5.3 (a) to (f). Here, it is interesting to note 

that as the number of blades increases, water splatter from the inner side and 

outer side of the blades (runner center and rim) also increases. This splatter, 

which is in the form of very small water droplets of fine diameter, concentrates 

close to the runner rim. The water eventually loses momentum and descends to 

lower part of the turbine casing where they mix the rest of the water leaving the 

turbine. The water drops are of much lower velocity than mainstream water; 

hence, they appear as very small dots as clearly shown in Fig. 5.3 (f). A 

comparison of the water superficial velocity of Figs. 5.3 (a) to (f) shows clearly 

that such velocity vectors are rather uniform for a runner with 30 blades with 

minimum flow separation at the runner center and rim (Fig. 5.3 (d)). 

Accordingly, it is expected that such blades number results in high efficiency 

and power output as the flow separation regions are almost eradicated in this 

case. Such regions are clearly shown in Fig. 5.3 (a). They most certainly cause 

lower power output and lower efficiency as well as undesirable vibration and 

noise, which are associated with the operation of turbines with runners of a low 

number of the runner’s blades. As the number of the runner’s blades increased 

above 30 (as in Figs. 5.3 (e) and (f)) two distinctive phenomena can be seen. 

The first is the tendency of the water to impinge on the axle of the runner. The 

second is the regions of increasing activities at the runner entry of the upper 
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blades row and the runner outlet. Both of these phenomena are associated with 

unnecessary loss of water energy and reduce the power output/efficiency of the 

turbine. 

Figures B.1 (a) to (f) show the total pressure distribution in both the nozzle and 

runner. As almost a uniform high total pressure can be seen in the nozzle in all 

cases. Regions in the runner where the pressure is almost atmospheric indicate 

regions of no flow. Such regions are empty of water and these are indicated by 

atmospheric pressure. It is very clear that such region encapsulates two or 

more blades in runners of high blades number. This represents loss of 

interaction between the blades and the water which causes a reduction in 

power output/efficiency. In runners of low blades number (Figs. B.1 (a) and (b)), 

blades separation is such that it allows the water to leave the runner at high 

total pressure. This represents a loss of water potential energy or power output.  
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The effect of the number of runner’s blades on the efficiency of the cross-flow 

turbine is shown in Fig. 5.4. It is clear that an increase in the number of runner’s 

blades from 15 to 30 has a favorable effect on the efficiency of the cross-flow 

turbine. This can be explained, firstly, by the fact that the energy extracted from 

water by the blades increases with increasing the number of the runner’s blades 

[32], secondly non-cross flow increases with decreasing the number of runner’s 

blades as shown in Figs. 5.2 and 5.3, and thirdly, the size of the separation/ 

recirculation flow on the back of the runner’s blades increases with decreasing 

the number of the runner’s blades as shown in Fig. 5.3. A further increase in the 

number of the runner’s blades from 30 to 40 has an undesirable impact of 

reducing the efficiency. This can be explained, firstly, by the fact that the 

collision loss increases with increasing the number of the runner’s blades as 

shown in Figs. B.1 and B.2, secondly the increase in the weight of the runner, 

and thirdly, the runner’s blades causes a reduction in the flow area which in turn 

increases the flow velocity and causes a reverse flow at the runner’s blades 

exit. According to this, the most effective number of runner’s blades noticed was 

30 where the efficiency was 73.387 %. Therefore, the optimum number of 

runner’s blades can be considered to be 30, which is in agreement with Desai 

and Aziz [50] conclusion. Their results also showed that the efficiency of the 

cross-flow turbine increased by increasing the number of the runner’s blades 

from 15 to 30.  
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An enlarged view of the blades in a runner of 15 blades is shown in Fig. 5.5. It is 

clear that a vortex is stationed in part of the space in between two blades. Such 

vortex causes non-cross flow or flow reversal at the back of the blades as can 

be seen in both Figs. 5.5 and 5.6. However, the flow reversal and the 

recirculation zones tend to minimize when the blades number increase to 40. 

This effect is counter-balanced by the development of impingement regions at 

the blades tip in runners of high blades number as shown in Fig. 5.7. This tends 

to reduce the efficiency of turbines with runner of high blades number. It can be 

seen from Fig. 5.4 that at high blades number, the turbine efficiency is lower 

than the maximum. 

It is important to take into consideration the combined effects of the regions of 

non-cross flow (flow reversal), flow recirculation zones and the flow 

impingement in the enlarged views of Figs. 5.5 to 5.7 on the turbine overall 

performance.  
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5.2.2 Optimization of the Runner’s Blades Diameter Ratio (
2 1

d d ) 

The diameter ratio has a considerable impact on the flow characteristics and the 

hydrodynamic forces within the cross-flow turbine as it controls the length of the 

blades and this in turn controls the width of the passages between the blades. A 

narrow passage between the blades may cause a reverse flow. A wide passage 

between the blades, on the other hand, may cause a separation. Mockmore and 

Merryfield [31], who presented a translation of Donat Banki’s paper “Neue 

Wasser-turbine”, conducted an experimental investigation on a laboratory 

turbine. It was constructed with a diameter ratio of 0.66, according to the 

specifications of Banki. The impact of the diameter ratio on the efficiency of the 

cross-flow turbine was also experimentally investigated by Desai and Aziz [50]. 

They concluded that 0.68 inner to outer diameter ratio produce a higher turbine 

efficiency within the range of ratios of 0.6 – 0.75. Olgun [57] experimental 

investigation led to the conclusion that, the cross-flow turbine with a diameter 

ratio of 0.67 is more efficient than the cross-flow turbines with diameter ratios of 

0.54, 0.58 and 0.75. In order to provide a comprehensive understanding of the 

effect of the diameter ratio on performance of the cross-flow turbine ratios of 

0.56, 0.60, 0.65, 0.66, 0.67, 0.68 and 0.70 were selected for investigation in the 

present work. The geometrical parameters’ details of the tested cross-flow 

turbines are listed in table 5.2. It must be stressed that optimized parameter 

from the previous section is employed in the table and this is also done with the 

current parameter and the others to follow. 
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Table 5.2 Details of the diameter ratios tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 

2 1
d d ?

0.56,0.6,0.65,0.66,0.67,0.68&0.7


 

  
Angle of attack 

o

1
16   

  
Inlet blade angle 

o

1
150.166   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
29.834   

  
Blade thickness b

t 3.6mm  

  Blade radius of 
curvature 

br ?

59.34, 55.33, 49.93, 48.8, 47.65, 46.48 & 44 mm


 

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm            Note: Symbols as detailed in Fig. 3.2. 

 

Figures 5.8 (a) to (f) show the result of the simulation of the water volume 

fraction in both the nozzle and runner for various blades internal to external 

diameter ratio 
2 1

d d . The two-phase flow, which is well-defined by the interface 

between the air and water. Here, the water was represented by the water 

volume fraction contours by red color and the air by blue color. 

The runner’s blades diameter ratio 
2 1

d d  has a significant impact on the 

impingement of the flow leaving the upper row of blades on the runner shaft 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 135  

  

(axle). The impingement clearly increases by decreasing the diameter ratio. For 

a diameter ratio of 0.6, Fig. 5.8 (a) clearly shows a vacuum region created in 

between the blades facing the tip end of the nozzle. It is highly probable that 

such region is created by a combination of two factors. The first is an increase 

in the frictional forces on the water as it has to move over longer surfaces. The 

second is a reduction in the gravitational forces acting on the water as it is not in 

a free fall state (the position of this region is almost horizontal). The exit angle of 

the water with a low diameter ratio (depicted in Fig. 5.8 (a)) also shows 

evidence of impingement of the outer core of the water leaving the runner on 

the turbine casing. This causes a very low volume fraction of the water to move 

in the upward direction and parallel to the casing surface. Naturally, such 

impingement is associated with some degree of noise and possibly vibration. 

The total pressure distribution in the nozzle and runner depicted in Figs. B.3 (a) 

to (f) confirms some of the details of the flow revealed by Figs. 5.8 (a) to (f). It is 

not surprising that the pressure distribution of Figs. B.3 (c) and (d) are almost 

identical as the diameter ratio corresponds to 0.66 and 0.67, respectively. Both 

show almost a cross-flow stream which is of high total pressure extending from 

the inlet to the outlet of the runner this is followed by regions of relatively less 

total pressure crossing the runner from the inlet to the exit of the runner. A 

region of a total pressure which is almost identical to the atmospheric pressure 

which corresponds to intense recirculation in the blades facing the tip of the 

nozzle is also indicated in the same figures. This region is of a very interesting 

structure which is investigated further in the superficial velocity vectors of Figs. 

5.9 (a) to (f).  
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The complex nature of the flow in the runner and the nozzle is revealed in Figs. 

5.9 (a) to (f), which shows the water superficial velocity vectors in the runner 

and nozzle. It is important to note that although the general details of the water 

superficial velocity vectors are similar to those of Figs. 5.3 (a) to (f); the flow 

details are evidently different. Changing the diameter ratio can change the flow 

structure in the blades. Regions of intense flow activities are shown in various 

parts of the runner. It seems that the flow activities in the blades to differ with 

the diameter ratio. As an example, Fig. 5.9 (a) shows an interesting vortex 

structure in the blades facing the tip of the nozzle. When this is enlarged (Fig. 

5.12) a clear tri-contra rotating vortices can be clearly seen in between these 

blades. Naturally, energy lost in these vortices is taken from the water energy 

available at the entrance to the nozzle. This in turn explains the low efficiency 

associated with the runner’s blades of the diameter ratio of 0.6. The flow 

associated with Fig. 5.9 (d) display fewer vortices in the blades which in turn 

associated with less losses and higher turbine efficiency. Figure 5.9 (f) displays 

entirely different phenomena of small proportion of the water or droplets moving 

towards the outer rim in the direction of the incoming blades. This encounters 

the movement of the runner and exerts opposing forces. In order to overcome 

these forces, energy is absorbed from that available at the nozzle outlet which 

tends to reduce the power generated and the turbine efficiency. 

The water superficial velocity and pressure contours were plotted on the mid 

span plane to illustrate more clearly, the effect of a diameter ratio on the fluid 

flow through the passages of the runner blades as shown in Figs. 5.9 and B.4. 

These figures clearly show the effect of the diameter ratio on the internal flow 

characteristics and the hydrodynamic forces within the cross-flow turbine where 
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the runner blade profile is controlled by the diameter ratio. Here, it is interesting 

to note that as the diameter ratio reduces, the collision on the runner shaft 

increases and the separation on the flow in the convergent part of the nozzle 

and close to the runner entry decreases due to increase the blade radius 

curvature  which narrowing the passages between the runner blades. It is rather 

interesting to note that increases the diameter ratio has a strong effect on the 

length of the blades by decreasing the blade radius curvature which may 

decrease the energy extracted from the water due to decrease the length of the 

blades. Accordingly, it is expected that a runner blade profile with diameter ratio 

0.65 may result in high power output as the collision on the runner shaft is 

reduced significantly and the length and blade curvature increase which 

certainly cause higher efficiency.  

 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 138  

  

 

(b
) 

d
2
/d

1
 =

 0
.6

5
 

F
ig

. 
5

.8
 (

a
) 

a
n
d

 (
b
) 

W
a
te

r 
v
o
lu

m
e

 f
ra

c
ti
o
n
 c

o
n
to

u
rs

 a
t 
th

e
 m

id
 s

p
a

n
 o

f 
c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o

s
. 

 

(a
) 

d
2
/d

1
 =

 0
.6

0
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 139  

  

 

(d
) 

d
2
/d

1
 =

 0
.6

7
 

F
ig

. 
5

.8
 (

c
) 

a
n

d
 (

d
) 

W
a
te

r 
v
o
lu

m
e

 f
ra

c
ti
o
n
 c

o
n
to

u
rs

 a
t 
th

e
 m

id
 s

p
a

n
 o

f 
c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o

s
. 

 

(c
) 

d
2
/d

1
 =

 0
.6

6
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 140  

  

 

(f
) 

d
2
/d

1
 =

 0
.7

0
 

F
ig

. 
5

.8
 (

e
) 

a
n
d

 (
f)

 W
a

te
r 

v
o
lu

m
e

 f
ra

c
ti
o

n
 c

o
n

to
u

rs
 a

t 
th

e
 m

id
 s

p
a
n

 o
f 

c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o

s
. 

 

(e
) 

d
2
/d

1
 =

 0
.6

8
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 141  

  

 

(b
) 

d
2
/d

1
 =

 0
.6

5
 

F
ig

. 
5

.9
 (

a
) 

a
n
d

 (
b
) 

W
a
te

r 
s
u
p
e

rf
ic

ia
l 
v
e

lo
c
it
y
 v

e
c
to

rs
 a

t 
th

e
 m

id
 s

p
a
n

 o
f 

c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o

s
. 

 

(a
) 

d
2
/d

1
 =

 0
.6

0
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 142  

  

 

(d
) 

d
2
/d

1
 =

 0
.6

7
 

F
ig

. 
5

.9
 (

c
) 

a
n

d
 (

d
) 

W
a
te

r 
s
u
p
e

rf
ic

ia
l 
v
e

lo
c
it
y
 v

e
c
to

rs
 a

t 
th

e
 m

id
 s

p
a
n

 o
f 

c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o

s
. 

 

(c
) 

d
2
/d

1
 =

 0
.6

6
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 143  

  

 

(f
) 

d
2
/d

1
 =

 0
.7

0
 

F
ig

. 
5

.9
 (

e
) 

a
n
d

 (
f)

 W
a

te
r 

s
u
p

e
rf

ic
ia

l 
v
e

lo
c
it
y
 v

e
c
to

rs
 a

t 
th

e
 m

id
 s

p
a

n
 o

f 
c
ro

s
s
-f

lo
w

 t
u

rb
in

e
 o

f 
v
a

ri
o

u
s
 d

ia
m

e
te

r 
ra

ti
o
s
. 

 

(e
) 

d
2
/d

1
 =

 0
.6

8
 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 144  

  

The effect of the diameter ratio (inner-to-outer diameter 
2 1

d d ) on the efficiency 

of the cross-flow turbine is shown in Fig. 5.10. The results revealed that there 

was a minimal drop in the efficiency when the diameter ratio changed from 0.65 

to 0.68. Most of the previous studies employed a diameter ratio within this 

range. A further decrease in the diameter ratio under 0.65 tends to cause 

further reduction in the efficiency. This can be explained by the fact that the 

energy drop loss increases with decreasing the value of the diameter ratio as 

shown in Figs. 5.8, 5.9, B.3 and B.4, and also decreasing the diameter ratio 

under this range is inefficient because the amount of water striking the blades 

could not flow through narrow passages and reverse flow would result. At small 

diameter ratio (
2 1

d d = 0.56), the turbine efficiency was so low (66.021 %). 

Moreover, a diameter ratio which would be over this range would be inefficient 

since separated flow would flow out of the wide passages at the inner periphery 

[31]. At large diameter ratio (
2 1

d d = 0.70), the turbine efficiency was 72.831 %. 

According to this the most effective diameter ratio value was 0.65 where the 

efficiency was 73.88 %. Therefore, the optimum value of the diameter ratio can 

be considered to be 0.65. 
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An enlarged view of total pressure and flow structure for a diameter ratio of 0.60 

is shown in Figs. 5.11, 5.12 and 5.13. These pressure contours reveal some 

very interesting details on the flow structure. Figure 5.11 reveals clearly the 

impingement of the water onto the runner shaft (axle). This explains the drop in 

efficiency as some of the water energy is lost during this collision. Further 

decrease in the efficiency of turbine resulted from the generation of “Tri-Contra-

Rotating Vortices” in the passage between certain blades as shown in Fig. 5.12. 

Those vortices absorb a significant amount of the available energy which cause 

a drop in the generated power of the turbine. The power drop increased further 

by the flow reversal caused by the vortex which is generated close to the outlet 

of the passage of Fig. 5.12. Here, the flow direction encourages the entrainment 

of the water leaving the passage above and cause the reversed flow. This flow 

structure (impingement and vortices) disappear at higher diameter ratio. It can 

be seen from Fig. 5.10 that at 0.60 inner to outer diameter ratio, the turbine 

efficiency is low (70.258 %). 

The tri-contra-rotating vortices structure seems to convert to a single vortex due 

to frictional and pressure changes when the distance between the blades 

increases as shown in Fig. 5.5. 

Water of high velocity (as indicated by the velocity vectors’ colors) coming from 

the end of the nozzle moves close to the back surface as shown in Fig. 5.16. 

There it experiences friction with the blade surface and loses some of its 

momentum, as a result, and as it approaches the end of the blade surface, 

some of it entrained with water coming from the upper blades. The rest of the 

water experiences a change in the directional velocity and turns towards the 

surface of the next blade. This situation creates a vortex sandwiched between 
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the two blades and as shown in Fig. 5.16. At the end of the blade, some of the 

water leaves under the action of gravity. The rest of the water seems to unite 

with combined portions coming from the upper blades and the lower one. As a 

result, it moves in the direction of the resultant velocity. This phenomenon can 

also be confirmed in Figs. 5.17, 5.19 and 5.21.  

Fig. 5.14 shows the water superficial velocity as it impinges on the tip of the first 

couple of blades as it leaves the nozzle. Here, Fig. 5.14 shows clearly that a 

portion of the water impinging on the tips. As a result, water droplets, generated 

as a result of the collision with blade tips, travel in direction of reduced regional 

density. In such regions, because of the existence of the air, there is little 

resistance to the droplets’ movements, and hence they travel with velocity, 

which exceeds that of the water in the nozzle. At a diameter ratio of 0.66 and 

0.68 which are shown in Figs. 5.15 and 5.18 identical phenomena occur. 

However, it is evidently less intense, which explain why the efficiency is so low 

in case of a low diameter ratio of Fig. 5.10.  

Fig. 5.20 shows the water superficial velocity vectors at the diameter ratio of 

0.7. At this ratio and as indicated by Fig. 5.10, the turbine efficiency is rather 

low. This can be explained by the flow of water droplets opposing the 

movement of the runner. These droplets originated from the impingement of the 

nozzle water with the first blade. As these droplets move towards the center of 

the runner and close to the back surface of the same blade, they tend to lose 

momentum. Eventually, they are pushed in the upward direction by the 

centrifugal forces of the rotating runner. As they reverse direction, they create a 

vortex at “part” of the back surface of the first blade. The water stream 

containing the droplets leaving the vortex collides with the tip of the nozzle and 
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eventually bifurcates into two parts. One entrained by the main flow at the tip of 

the nozzle. The other moves in direction opposing the movement of the runner. 

As this continues, it collides with the tips and back of the incoming blades 

producing vortices as shown in Fig. 5.20. This complicated flow regime tends to 

reduce the efficiency of the turbine and, hence, the low efficiency value at  

2 1
d d = 0.7 observed in Fig. 5.10. 
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5.2.3 Optimization of the Angle of Attack (
1

 ) 

According to Banki’s paper “Neue Wasser-turbine” translated by Mockmore and 

Merryfield [31], the maximum efficiency equation (3.49) shows that in order to 

achieve the maximum efficiency, the angle of attack 
1

  should be kept as small 

as possible. 

  2 2

max 1

1
c 1 cos

2
                                      … (From Chap. 3, Eq. 3.49) 

The angle of attack 
1

  shown in Fig. 3.2, for a laboratory turbine constructed by 

Mockmore and Merryfield [31], was 16o according to the specifications of Banki. 

Most of the studies afterwards were conducted using this angle value. The 

angle of attack has a significant effect on the internal flow characteristics and 

the hydrodynamic forces within the cross-flow turbine. The flow angle at the 

runner inlet (nozzle exit) and the water passages between the runner blades are 

controlled by such angle. An experimental investigation to study the effect of the 

angle of attack on the cross-flow turbine efficiency was conducted by Aziz and 

Desai [46]. The results of these experiments indicated that an increase in the 

angle of water entry into the runner from 24o to 32o produces in an increase in 

the predicted maximum efficiency in only 2 out of 18 tests. Therefore, the angle 

of water entry into the runner should be around 24o. In 2008, Choi et al [60] 

presented a numerical method to analyze the effects of the angle of attack on 

the internal flow and performance of cross-flow turbine by adopting a 

commercial code ANSYS-CFX. They concluded that an inlet blade angle of 25o  

produces a higher turbine efficiency within the angles range of 25o – 35o tested. 

In order to determine the optimum angle of attack, the runner and nozzle of 
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cross-flow turbine were simulated in the present work by ANSYS CFX code with 

angles of attack of 15o, 16o, 20o, 24o and 32o. This wide angles range covers 

almost the entire range of the angle of attack in the previous studies. The 

geometrical parameters’ details of the tested cross-flow turbines are listed in 

table 5.3. Here, the optimize parameters of the runner’s blades number and the 

runner’s blades diameter ratio employed in the table/simulation. 

Table 5.3 Details of the angle of attacks tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

1

o

?

15,16,20,24& 32

 
 

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 

 

In order to view the effect of the angle of attack 
1

  on the internal flow of the 

cross-flow turbine, the water superficial velocity streamlines were plotted for 
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entire cross-flow turbine as shown in Figs. 5.22 (a) to (d). These figures clearly 

show that the cross-flow turbine operates as a rectangular jet of water which is 

directed by the nozzle to strike the blades on the circumference of the runner at 

a small angle of attack converting the flow energy into kinetic energy. The 

runner receives the water from the nozzle in a radial inward direction and 

discharges it in a substantially radial outward direction. The runner with a series 

of curved horizontal blades converts the energy of the incoming water into 

mechanical energy. 

A comparison of the water volume fraction contours of the flow at the mid span 

of the turbine runner of various angle of attacks is shown in Figs. 5.23 (a) to (d). 

Clearly, the nozzle and blades shape are influenced by changing the angle of 

attack, as the inlet blade angle increases by increasing the angle of attack. The 

impact of inlet blade angle on the flow exit angle is quite evident. 

It is interesting to note the flow regime in each of the water volume fraction 

results. At the low angle of attack, the shape of the blades changes, in 

particular, its length. This will increase the conversion of the water energy into a 

mechanical energy as the blades’ passages are longer and more curved. This 

in turn causes the water to move away from the runner axle which minimizes 

the impingement losses. It also causes the water to exit the blades/runner at a 

sharp angle. The above explains the high efficiency of the turbine at a low angle 

of attack. 

In Fig. 5.23 (e), the angle of attack increased to a maximum of 32o, the flow 

regime changes completely. In this case, both the shape and length of the 

runner’s blades change. The blades are evidently shorter and less curved. This 
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affects the energy transfer as the incoming water interaction with blades is 

reduced considerably. In this case, the water leaving the upper row of runner’s 

blades still possesses a significant amount of energy to cause it to impinge on 

the runner axle. This in turn increases losses and ultimately reduces the 

efficiency of the turbine as indicated by Fig. 5.31. An enlarged view of the 

region close to the nozzle outlet is shown in Figs. 5.26 to 5.27. The water 

volume fraction shows a region of intense activities close to the entry of upper 

tip of the blades. There some of the incoming water escapes from the clearance 

between the nozzle and the blade upper tips. This is caused by the low 

pressure in the regions closed to the runner inlet. A reverse flow generates a 

stream which impinges on the incoming blades. This stream seems to be 

growing bigger in case of higher angle of attack as shown in Fig. 5.27. 

Consequently, this will reduce the water energy conversion as it opposes the 

runner movement. Ultimately, this will reduce the efficiency of the turbine as 

evident in Fig. 5.31.  

The above phenomena, which associated with the high angle attack, can also 

be seen in Figs. 5.24 (d) and (e). The escape of a portion of the water from the 

high pressure region at the tip of the nozzle in the direction of low pressure can 

be clearly seen also in the enlarged sections of the above figures shown in Figs. 

5.28 to 5.29. This cannot be avoided as there must be a clearance between the 

runner and the nozzle which allow the former to rotate freely. The escape of the 

water contributes to the parasitic losses as it opposes the movement of the 

runner.  

Figure 5.30, shows the structure of the flow in the blades at the lower part of the 

runner at a higher nozzle angle of attack of 32o. The structure of the flow is 
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highly complex, which is associated with changing vortex structure in each 

blade passage. As indicated in this figure the lowest blade passage shows that 

the water acquires high velocity, which prevent it from forming large separation 

regions as in the passages above it. It is little wonder that the efficiency of the 

turbine at this specific large nozzle angle of attack (32o) is very low as indicated 

by Fig. 5.31.  

To visualize the fluid flow more clearly, vectors of water superficial velocity, 

contours of total pressure and streamlines of water superficial velocity were 

plotted on the mid span planes as shown in Figs. 5.24 to 5.25 and Figs. B.5 (a) 

to (d). These figures clearly show the interaction between the water leaving the 

nozzle and entering the runner such interaction decreases by increasing the 

angle of attack. This interaction also decreases as the blade radius increases 

and as described above. Inspecting Figs. B.5 (a) to (d) closely reveals the 

tendency of the water to separate along the nozzle rear wall with increasing the 

angle of attack.  
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The effect of the angle of attack 
1

  on the efficiency of the cross-flow turbine 

was calculated and depicted in Fig. 5.31. It is clear that decreasing the angle of 

attack 
1

  from 32o to 15o has a favorable effect on the efficiency of the cross-

flow turbine. This indicates agreement with the Banki’s theory as was explained 

in details earlier in this section. In summary, increasing the angle of attack 

means increasing the inlet blade angle 
1
  which in turn increases the blade 

curvature br . This leads to reduce the blade curve as a result of that the 

extracted energy from water by the blades decreases significantly. According to 

this, the most effective angle of attack noticed was 15o where the calculated 

efficiency was 75.339 %. Therefore, the optimum angle of attack can be 

considered to be 15o, which provides higher interaction between the water flow 

in the passages and the blades than the rest of the angles of attack 16o, 20o, 

24o and 32o. It can also be seen from Fig. 5.31 that at the high angle of attack 

32o, the turbine efficiency was considerably low (51.213 %). 
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5.2.4 Optimization of the Nozzle Entry Arc ( ) 

Nozzle entry arc   is the part of the cross-flow turbine runner circumference 

that facilitates the water flow steadily and smoothly into the runner. Various 

nozzle entry arc angles   are depicted in Figs. 5.32 – 5.35. The connection 

area between the main cross-flow turbine elements (the runner and the nozzle) 

is formed by multiplying the nozzle entry arc   by nozzle width 
W

N . The nozzle 

entry arc has a significant effect on the flow characteristics and the 

hydrodynamic forces within the cross-flow turbine as it controls the angle of 

attack and the number of the effective blades which can be struck by the water 

from the nozzle. A large nozzle entry arc may cause an uncertain angle of 

attack of the flow at the runner inlet. A small nozzle entry arc, on the other hand, 

reduces the number of the effective blades (blades which simultaneously in 

contact with incoming water) and this in turn reduces the energy extract from 

water by the blades. Therefore, it is essential to improve and optimize the 

performance of a cross-flow turbine by selecting the optimum nozzle entry arc. 

An experimental investigation to analyze the effect of nozzle shape on the 

cross-flow turbine performance by varying the nozzle entry arc was conducted 

by Nakase et al [32]. The results of this experiment revealed that a nozzle with 

entry arc 90o was more efficient than that of 30o, 60o and 120o. Durgin and Fay 

[37] undertook an experimental investigation to investigate the internal 

hydrodynamics of the cross-flow turbine with the nozzle entry arc ranged from 

35o to 80o. They concluded that the efficiency of the cross-flow turbine 

increased by increasing the nozzle entry arc from 35o to 63o and the efficiency 

decreased for a further increase in the nozzle entry arc. Fiuzat and Akerkar [48] 

experimental investigation led to the conclusion that, the overall efficiency of the 
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cross-flow turbine, for a 90o nozzle entry arc, is higher than 120o because the 

quantity of the cross flow is more. This results in higher efficiencies for both the 

upper and lower stages of the turbine. The impact of the nozzle entry arc on the 

efficiency of the cross-flow turbine was also experimentally investigated by 

Joshi et al [54]. The results of this experiment led to the conclusion that the 

efficiency of the cross-flow turbine increased by increasing the nozzle entry arc 

from 12o to 36o. 

It is evident from the literature available that the impact of nozzle entry arc on 

the performance of the cross-flow turbine is not yet very well established or 

understood. Therefore, it is important to find the optimum nozzle entry arc in 

order to optimize the performance of the cross-flow turbine. In the current study, 

the geometrical parameters and nozzle entry arcs’ details of the tested cross-

flow turbines are shown in table 5.4 and Figs. 5.32, 5.33, 5.34 and 5.35. Figures 

5.32 to 5.35 provide details of the nozzle entry arc angles which employed in 

the current investigation. They cover a higher angles range than those 

employed by the previous workers reported above. 
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Table 5.4 Details of the nozzle entry arc tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc 

o o o o

?

60 ,90 (a),90 (b) &120

 
 

  
Throat width o

s 60mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 
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Fig. 5.32 Schematic view of the test nozzle with entry arc angle ( o60  ). 
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Fig. 5.33 Schematic view of the test nozzle with entry arc angle of o90  (a). 
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Fig. 5.34 Schematic view of the test nozzle with entry arc angle of o90  (b). 
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Fig. 5.35 Schematic view of the test nozzle with entry arc angle ( o120  ). 
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The structure of the internal flow in the cross-flow turbine was obtained as a 

result of computations by ANSYS CFX simulation code. Details of the internal 

flow of the turbine, with various values of the nozzle entry arc angle and 

orientation, are shown in Figs. 5.36 to 5.37 and Figs. B.6 to B.7. These provide 

a comprehensive understanding of the structure of the turbulent, two-phase and 

three dimensional flow and the related phenomena (separation, re-attachment, 

impingement and vortex structure). These figures clearly show that the fluid flow 

in the cross-flow turbine is strongly influenced by the nozzle entry arc angle and 

orientation. Also, the splatter of the water droplets from bulk of the flow is clearly 

shown in Fig. 5.36 (a). Such droplets which have high velocity and momentum, 

at a low nozzle entry arc angle tend to separate from the main flow when 

leaving the runner. This is confirmed by the velocity vectors’ results of Fig. 5.37 

(a). The water superficial velocity streamlines, were plotted for entire cross-flow 

turbine as shown in Fig. 5.36 (a) to (d). These streamlines show the number of 

the effective blades which is stricken by the water from the nozzle and the 

complexity of the turbulent two-phase three dimensional flow in the runner. In 

order to view the effect of nozzle entry arc and visualize the fluid flow more 

clearly, contours of total pressure, vectors of water superficial velocity and 

contours of pressure were plotted on the mid span planes as shown in Fig. 5.37 

and Figs. B.6 to B.7. Figures B.6 and B.7 show the impingement of the flow 

leaving the upper raw of blades on the runner shaft (axle) which increase by 

increasing the nozzle entry arc. This represents parasitical losses, which reduce 

the power output from the turbine, reduces the efficiency, and increases the 

noise and vibration associated with the turbine operation. Figures B.6 (d) and 

B.7 (d) also demonstrate clearly the water impingement phenomena at large 
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nozzle entry arc (120o). The water superficial velocity vectors in Figs. 5.37 (a) to 

(d) show the passages between the effective blades. A large nozzle entry arc 

may cause an uncertain angle of attack and flow separation, on the other hand; 

small nozzle entry arc reduces the number of the effective blades. Figure 5.37 

(a) shows the number of the blades that in which water is moving through the 

runner (approximately 6 blades). This figure is changed significantly (to 

approximately 11 blades) in Fig. 5.37 (d). Those are not associated with re-

circling vortices as shown in Fig. 5.37 (a). This explains the higher efficiency of 

the arrangement of Fig. 5.37 (a) in a similar manner the number of blades 

interacting with the water in Fig. 5.37 (c) is equivalent to that of the nozzle entry 

arc arrangement of Fig. 5.37 (b). However, it is clearly shown that there is “dead 

area” in which the water is re-circulating, which tends to increase the losses. 

This in turn explains why the efficiency of turbine with the nozzle entry arc of 

90o (a) is higher than the efficiency of turbine with the nozzle entry arc of 90o (b). 

It is also clear from Fig. 5.37 (d) that larger nozzle entry arc angle should allow 

higher quantity of water to interact with a larger number of blades. However, this 

arrangement is associated with vortices, which companied with higher quantity 

of water impinging on the shaft (axle) of the runner. This explains the lower 

turbine efficiency resulted from the arrangement of nozzle entry arc (120o). In 

addition, the exit angle of the water leaving the runner in Fig. 5.37 (a) is much 

sharper than the rest of the arrangements (Figs. 5.37 (b) to (d)) and this tends 

to cause splatter of some of the water droplets as a result of the impingement of 

the water on the turbine boundary (cover). This is clearly visible in Fig. 5.37 (a) 

and was not observed in the result of the other nozzle entry arc arrangements 

(90o (a), 90o (b) and 120o).  
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Figure 5.38 clearly shows the summary of the effect of the nozzle entry arc   

on the efficiency of the cross-flow turbine. It is clear that an increase in the 

nozzle entry arc   from 60o to 90o has a favorable effect on the efficiency of the 

cross-flow turbine. This can be explained by the fact that the increase in the 

nozzle entry arc increases the number of the effective blades. The energy 

extracted from water by the blades increase with increasing the number of the 

runner blades [32]. At small nozzle entry arc ( o60  ), the turbine efficiency 

was low (73.524 %). A further increase in the nozzle entry arc from 90o to 120o 

has an undesirable impact of reducing the efficiency. This can be explained 

firstly by the fact that the impingement of the flow leaving the upper raw of 

blades on the runner shaft (axle) increases by increasing the nozzle entry arc 

as shown in Figs. 5.40 and 5.41, secondly the increase in the flow separation as 

shown in Fig. 5.39, and thirdly the increase in the nozzle entry arc causes an 

uncertain angle of attack to the water flow at the runner inlet. At large nozzle 

entry arc ( o120  ), the turbine efficiency was so low (68.148 %). Therefore, 

the 90o nozzle entry arc produces higher turbine efficiency within the range of 

60o – 120o. Aiming to increase the performance of the cross-flow turbine 

through improving the performance of the nozzle entry arc, the 90o nozzle entry 

arc was rearranged to match the nozzle entry arc of 90o (b) by Fukutomi et al 

[53]. The efficiency of the cross-flow turbine with the nozzle entry arc of 90o (b) 

was 72.257 %. The nozzle with entry arc of 90o (a) was more efficient than the 

nozzle with entry arc of 90o (b). The impingement of the flow leaving the upper 

raw of blades on the runner shaft (axle) increases by lowering the low end of 

the nozzle entry arc. According to this, the most effective nozzle entry arc 

noticed was of 90o (a) where the efficiency was 75.339 %. Therefore, the 
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optimum nozzle entry arc can be considered to be of 90o (a), which is in 

agreement with Nakase et al [32] conclusion. Their results showed that the 

highest efficiency was obtained with a nozzle entry arc 90o. 
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5.2.5 Optimization of the Runner Blade Profile 

As indicated previously, optimization of cross-flow turbine involves establishing 

the best geometrical parameters within the imposed hydrodynamic restrictions. 

These restrictions necessitate that the blades are of a cylindrical annulus with 

radial entrance/outlet as well as with double interaction between water and the 

runner blades. Hence, the blade is the most important part of cross-flow turbine 

as it is the part that extracts the energy from water. Therefore, this study 

investigates improvements in blade profile and how the changes in the blade 

profile would affect the performance of cross-flow turbine. Based upon Banki’s 

blade profile, four runner blade profiles were investigated including that of Banki 

[31]. The blades were designed and investigated by ANSYS CFX simulation 

code. The geometrical parameters and runner blades profiles’ details of the 

tested cross-flow turbines are shown in table 5.5 and Figs. 5.42, 5.43, 5.44 and 

5.45. Figure 5.42 shows Banki’s blade profile which is of uniform thickness as 

indicated. The first of the new three blades designed for use in the current 

investigation (blade profile (1)) has maximum thickness in the center and a 

minimum thickness at both ends as indicated in Fig. 5.43. The blades of 

variable thickness with maximum thickness skewed to the right and to the left, 

respectively, are shown in Figs. 5.44 and 5.45. The refined mesh used in each 

case is also shown in each respective figure. In addition, a three dimensional 

meshing system around the blade also show in the same figures.  
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Table 5.5 Details of the blades profiles tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm  

  
Blade profile 1, 2, 3 and 4   Note: Symbols as detailed in Fig. 3.2. 

 

Blade profile 

1    Banki’s symmetrical and uniform blade thickness. 

2    None – uniform maximum blade thickness in center. 

3    None – uniform blade thickness (skewed to right – trailing edge). 

4    None – uniform blade thickness (skewed to left – leading edge). 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 205  

  

 
Blade domain mesh 

 

                          
Blade thickness 

 

                          
Blade angle ( ) 

Fig. 5.42 The runner normal-blade profile (Banki’s). 
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Blade domain mesh 

 

                         
Blade thickness 

 

                         
Blade angle ( ) 

Fig. 5.43 The runner blade profile (1). 
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Blade domain mesh 

 

                          
Blade thickness 

 

                          
Blade angle ( ) 

Fig. 5.44 The runner blade profile (2). 
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Blade domain mesh 

 

                          
Blade thickness 

 

                          
Blade angle ( ) 

Fig. 5.45 The runner blade profile (3). 
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As it was, previously, undertaken in this study general views of the flow in the 

nozzle and the runner are shown in Figs. 5.46 (a) to (d). These figures confirm 

the general internal flow in its three dimensional state. They all show that water 

flows only through part of the runner facing the nozzle. The water volume 

fraction contours of the flow at the mid span of the turbine of various blade 

profiles are shown in Figs. 5.47 (a) to (d). These figures reveal the interface of 

the air and water two-phase flow. Figures 5.48 (a) to (d) show more details of 

the fluid flow, in term vectors of water superficial velocity. These figures show 

clearly that the runner with Banki’s blade profile shows less water impingement 

on the axle of the runner. It is expected, therefore, that turbine of runners fitted 

with Banki’s blade profile should be of high efficiency. This clearly contradicts 

the results reported in Fig. 5.49. The reasons for this contradiction will become 

apparent in Figs. 5.48 (a) to (d) and the enlarged sections of Figs. 5.48 (a) and 

5.48 (b) which are reported in Figs. 5.50 and 5.51. These show very interesting 

details of the internal flow in the runner in all cases. Some features of flow 

impingement on the blades’ upper edges and vortices generated in between 

some blades and these undoubtedly affect the performance of the turbine. 

Therefore, it was decided to study these features in more details by scaling-up 

the regions of intense activities in the runner’s blades. These are depicted in 

Figs. 5.50 and 5.51, respectively, and will be discussed hereafter. 

Contours of total pressure were plotted on the mid span plane as shown in Figs. 

B.8 (a) to (d). The pressure distribution in the runner clearly has a significant 

impact on the turbine performance. It is clear that there are regions of low 

pressure (almost atmospheric) inside the runner’s blades and these regions are 

almost empty of water. However, they contain enough water droplets to cause 
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vortices inside them and this reduces the developed energy. Although Fig. B.8 

(b) shows the larger regions than Fig. B.8 (a) of low pressure, but in this case, 

the fine ends of the blades allow the bulk of the water to enter the runner 

through the first half of the nozzle entry arc smoothly. This in turn causes a 

greater water energy conversion into mechanical energy and result in higher 

efficiency. 

Inspecting Figs. 5.48 (a) to (d) closely reveals that the impingement of the flow 

on the tip of the new blade profiles is less than the impingement of the flow on 

the tip of Banki’s blade profile. Accordingly, it is expected that the new blade 

profiles may result in improve the performance of the cross-flow turbine. 

Inspecting Figs. 5.50 and 5.51 confirms the above explanation. These figures 

show clearly that a runner fitted with Banki’s blade profile has indeed more 

water energy wasted through the impingement process at the leading edge of 

the lower row of the blades. Furthermore, they show high velocity (energy) 

water leaving the trailing edge of the lower row of the runner’s blades.  
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The summary of the result of computations shown in Fig. 5.49 reveals that the 

efficiency of the cross-flow turbine increased significantly by using the new 

runner blade profiles as compared with Banki’s blade profile. This is clearly 

because the new blade profiles provide better hydrodynamic flow and less 

collision loss than Banki’s blade profile. This is confirmed by the enlarged views 

of Figs. 5.50 and 5.51. However, there was a small change in the efficiency by 

using various new runner blade profiles. The turbine efficiency was higher in the 

case of the blade profile (1) than the blade profile (2) and (3). The cross-flow 

turbine efficiency with Banki’s blade profile was 75.389 % and the most effective 

blade profile was the blade profile (1) where the efficiency was 77.564 %. 

According to this, the optimum blade profile can be considered to be the blade 

profile (1).  
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5.2.6 Optimization of the Nozzle Profile 

This section deals with optimization of the nozzle taking into consideration the 

restrictions imposed. These include a rectangular cross-sectional area with a 

small angle of attack. According to the equation (3.49) and in order to achieve 

the maximum efficiency, the angle of attack should be kept as small as 

possible. The nozzle, which has a rectangular cross-sectional area, converts 

the flow energy into kinetic energy by directing the water to the full length of the 

blades at a specified angle of attack. It was evident from the literature available 

that various cross-flow turbine’s nozzle profiles, which may be fitted with or 

without guide vane, have been investigated by changing most of the geometric 

parameters of the nozzle. Therefore, it is essential to improve and optimize the 

turbine operation by selecting the best geometrical shape of the nozzle. The 

selection and designs created for the cross-flow turbine’s nozzle profiles were 

based on the specifications provided by Aziz and Desai [46] and Kitahora et al. 

[91]. However, some modifications were made on the original design of the 

above researchers in order to obtain optimum performance. In the current 

study, three nozzle profiles were designed by using CATIA V5 computer aided 

design (CAD) program and investigated by ANSYS CFX simulation code. The 

geometrical parameters and nozzle profiles’ details are shown in table 5.6 and 

Figs. 5.52, 5.53 and 5.54. The three tested nozzles include a curved profile 

which gradually reduces the area of the flow in order to keep the flow velocity as 

constant as possible and as shown in profile (1) of Fig. 5.52. The second nozzle 

(shown in Fig. 5.53) is of a straight rear wall. This was designed to eliminate the 

region of flow separation that is likely to take place in the nozzle of profile (1). 

The third tested nozzle show in Fig. 5.54 was selected so that it contains a 
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guide vane (profile (3)). All dimensions and angles of Figs. 5.52 to 5.54 are given 

in table 5.6.  

Table 5.6 Details of the nozzles profiles tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm  

  
Nozzle profile 1, 2, and 3      Note: Symbols as detailed in Fig. 3.2. 

 

Nozzle profile 

1    Nozzle profile (1). 

2    Nozzle profile (2) with eliminating the convergence at the nozzle rear wall. 

3    Nozzle profile (3) with a guide vane. 
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Fig. 5.52 Schematic view of the test nozzle profile (1). 
 

1

1d

2
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Fig. 5.53 Schematic view of the test nozzle profile (2). 
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Fig. 5.54 Schematic view of the test nozzle profile (3). 
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The capability to represent and plot the flow variable of the post-processing of 

ANSYS CFX simulation code was utilized to perform flow field visualization of 

the internal flow in the cross-flow turbine. The velocity and pressure 

distributions provide a comprehensive understanding of the effect of the nozzle 

profile on the internal flow and the complex flow structure associated with each 

nozzle profile. The water superficial velocity streamlines were plotted for entire 

cross-flow turbine with various nozzle profiles (with and without guide vane) as 

shown in Figs. 5.55 (a) to (c). These figures show the effect of the nozzle profile 

on the flow structure in the turbine. They clearly indicate that profile (1) is of 

almost uniform water velocity throughout the nozzle. As it may be expected, this 

indicates that there are no losses due to flow irregularities, in particular, at the 

entry to the runner. Hence, this profile should yield the best performance and 

efficiency. 

Water superficial velocity vectors at the mid span of the turbine of various 

nozzle profiles as shown in Figs. 5.57 (a) to (c) show the water distribution 

between the runner blade passages. The guide vane in the nozzle profile (3) 

causes good water distribution, on the other hand; the guide vane increases the 

impingement of the flow leaving the upper raw of blades on the runner shaft. 

The shape of the nozzle rear wall of the nozzle profile (1) provides better water 

distribution than nozzle profile (2).  

Figure B.10 (a) reveals the flow tendency to separate along the line close to 

where the nozzle meets the volute, and also Fig. B.10 (c) reveals the 

impingement of the flow in the nozzle on the guide vane. The separation and 

impingement of flow most certainly cause lower power output and lower 

efficiency as well as causing undesirable vibration and noise. 
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The effect of the nozzle profile on the efficiency of the cross-flow turbine is 

shown in Fig. 5.58. The results revealed that the turbine efficiency was higher in 

the case of the nozzle profiles without guide vane than the one with guide vane 

(the lowest turbine efficiency predicted was for the nozzle fitted with the guide 

vane 73.166 %). In such arrangement the losses associated with the water 

impingement on the front of the guide vane seems to be significant enough to 

cause some performance deterioration. In addition the presence of the guide 

vane in the nozzle caused the water to be directed towards the runner axle 

where it also loses some of its energy as clearly indicated by Fig. 5.67. The 

reason for this was the significant increase in the velocity of the water prior to its 

entry to the runner blades. Accordingly, the momentum increase of the water 

caused it to impinge on the runner axle and as shown in the enlarged portions 

of Figs. 5.65 to 5.67. As it was described, previously, in the case of the nozzle 

profile without a guide vane, the turbine efficiency with the nozzle profile (1) was 

higher than the turbine efficiency with the nozzle profile (2). For nozzle profile 

(2), the turbine efficiency is unsurprisingly lower (76.956 % as compared with 

77.564 %) with this profile and as indicated by Figs. 5.60 and 5.61 some of the 

incoming water seems to reverse direction as it enters the runner blades. 

Consequently, it opposes the incoming blades and this tends to decrease the 

available energy of the total water and represents parasitic losses. It is also 

clear from Figs. 5.62 to 5.64 that energy of the water leaving the second stage 

blades of the runner is of higher than normal velocity observed for profile (1). In 

profile (2) the shape of the nozzle is such that it resulted in a very un-even 

distribution of water in the first stage of the runner blades. The result is a large 

proportion of the water with high velocity entering the first stage few blade 
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passages where it leaves the runner from the second stage blades at high 

energy. The shape of the nozzle rear wall of the nozzle profile (1) provides 

better water distribution than nozzle profile (2). According to this, the most 

effective nozzle profile noticed was nozzle profile (1). 
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5.2.7 Optimization of the Nozzle Throat Width (
0

s ) 

The nozzle shape has a significant effect upon the performance of the cross-

flow turbine as it controls the water flow velocity and water distribution at the 

runner inlet. Accordingly, the nozzle throat width 
o

s  is one of the most important 

geometric parameters of the nozzle. It is defined as the throat width or the water 

jet thickness, and suggested in the literature to be of a value of 0.1 – 0.2 of the 

cross-flow turbine’s runner outer diameter (
o 1 1

s 0.1d 0.2d  ) [3]. Naturally, 

changing this parameter can strongly affect the distribution of the water along 

the nozzle entry arc   which in turn affects, the flow characteristics and the 

hydrodynamic forces within the runner as detailed hereafter in this section. 

Previously, an experimental investigation to analyze the effect of nozzle shape 

on the cross-flow turbine performance was conducted by Nakase et al [32]. 

They concluded that the nozzle throat width ratio o 1s r   changes slightly with 

the nozzle entry arc and o 1s r   and a value of 0.26 can produce a highest 

efficiency when the nozzle entry arc is 90o. As in the previous sections and in 

order to determine the optimum nozzle throat width, the cross-flow turbine was 

simulated in the current study by ANSYS CFX simulation code with nozzle 

throat width values of 0.1d1, 0.15d1 and 0.2d1 These cover the range of the 

nozzle throat width (
o 1 1

s 0.1d 0.2d  ). The geometrical parameters and nozzle 

throat widths’ details of the tested cross-flow turbines are listed in table 5.7 and 

shown in Figs. 5.68 to 5.70. It is clear from these figures that flow area within 

the nozzle changes significantly and this in turn changes the flow considerably 

and as discussed hereafter. 
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Table 5.7 Details of the nozzle throat width tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90   

  
Throat width 

o

1 1 1

s ?

0.2d ,0.15d & 0.1d


 

  
Width of the nozzle  W

N 150mm  

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 

 

 

 

 

 



Chapter Five                                                 Results of Performance Improvement/Optimization & Discussion 

 

 247  

  

 
 

Fig. 5.68 Schematic view of the test nozzle with throat width (0.2d1). 
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Fig. 5.69 Schematic view of the test nozzle with throat width (0.15d1). 
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Fig. 5.70 Schematic view of the test nozzle with throat width (0.1d1). 
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The simulation results are depicted in Figs. 5.71 – 5.74. These figures visualize 

the internal flow of the turbine and provide important flow structure and details, 

including the phenomena which are associated the flow separation and water-

blades collision. 

The streamlines of the flow, in three dimensions, as shown in Figs. 5.71 (a) to 

(c) clearly illustrate and confirm that in all cases the incoming water passes only 

through part of the runner. They also show regions (as in Figs. 5.71 (b) and (c)) 

of intense flow activity indicated by high water velocity. This warrant further 

consideration as will be detailed later. 

The water volume fraction contours shown in Figs. 5.72 (a) to (c) provide a clear 

and proper visualization of the two-phase flow, with a well-defined interface or 

shear layer between the air and water. In these figures, the area with blue color 

represents air and that with the red color represents water. It is important to 

notice that because of the change in the nozzle shape, the water flow rate of 

each of Figs. 5.72 (a) to (c) is changeable. This is clearly reflected in these 

figures by quantity of the water leaving the second stage of runner blades. It is 

because of that the efficiency of the nozzle with throat width of 
1

0.2d  is 

expected to be the highest.  

Water superficial velocity streamlines and vectors at the mid span of the turbine 

of various values of the nozzle throat width are shown in Figs. 5.73 and 5.74. 

These figures illustrate the effect of various values of the nozzle throat width on 

the performance of cross-flow turbine. The structure of the flow in the runner 

blades and the nozzle is of similar form to those described earlier, there are 

interesting areas of high water velocity at the nozzle tip and these were created 

by the sharp connecting line of the nozzle tip and the volute. The water does not 
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seem to fill the lower parts of the first stage runner blades (Fig. 5.73 (c)). This in 

turn should explain the lower efficiency of the turbine with nozzle throat width of 

1
0.1d  as clearly shown in the enlarged section of Fig. 5.76. The impact of the 

separation of the flow on the performance of the turbine can clearly be seen in 

Fig. 5.74 and the enlarged section of Fig. 5.74 (c) shown in Fig. 5.77. These 

separations cause an increase in the velocity of the flow which directs the 

majority of the water in to first couple of the blade passages and away from the 

rest of the blades as shown in Fig. 5.74 (c).   

Reduce the width of the nozzle throat with some geometric and hydrodynamic 

imposed restrictions reduces the distance between the nozzle rear wall and the 

runner and in its turn reduces the amount of water in the passages between the 

blades (filling and emptying) in lower part of the nozzle entry arc  , on the other 

hand, increase the width of the nozzle throat causes the uncertain angle of 

attack to the flow at the runner inlet as shown in Figs. 5.73 and 5.74. 
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The overall effect of the nozzle throat width on the efficiency of the cross-flow 

turbine is summarized in Fig. 5.75. It is clear that increasing the nozzle throat 

width from 1 1
0.1d to 0.2d  has a favorable effect on the efficiency of the cross-flow 

turbine. At small nozzle throat width ( o 1
s 0.1d ), the turbine efficiency was as 

low (71.717 %). Decrease the width of the nozzle throat with some geometric 

and hydrodynamic imposed restrictions decreases the distance between the 

nozzle rear wall and the runner. This in turn decreases the amount of water in 

the passages between the blades (filling and emptying) in the lower part of the 

nozzle entry arc  . Also decreasing the width of the nozzle strongly affects the 

volute shape, particularly in the convergent part of the nozzle and close to the 

runner entry. In that region most of the water from the nozzle directed to the 

upper part of nozzle entry arc and as a result of that the extracted energy from 

water by the blades decreases significantly. According to this, the most effective 

nozzle throat width noticed was 
1

0.2d  where the efficiency was 77.564 %. This 

result is in full agreement with Nakase et al results [32].  
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5.2.8 Optimization of the Nozzle to the Runner Blades Width ( W WN B ) 

As described earlier, the cross-flow turbine elements (runner and nozzle) 

geometry has a significant effect on the flow characteristics and the 

hydrodynamic forces within the cross-flow turbine. The nozzle, which has a 

rectangular cross-sectional area, converts the flow energy into kinetic energy by 

directing the water to the full length of the runner at a specific angle of attack. 

The nozzle width WN , shown diagrammatically in Figs. 5.78 (a) to (d), is one of 

the most important geometric parameters on the turbine as it limits and directs 

the water to full width of the blades. Usually the nozzle width WN  to runner 

blades width WB  ratio is 1.0. Mockmore and Merryfield [31] undertaken an 

experimental investigation on a laboratory turbine. The turbine was constructed 

with a nozzle to runner blades width ratio of approximately 1.0. The nozzle 

width was 304.8 mm (12-in). Both Nakase et al [32] and Desai and Aziz [50] 

conducted experiments to study the effect of various nozzle to runner blades 

width ratio W WN B . Contradictory observation regarding the effect of the nozzle 

to runner blades width ratio on the performance of the cross-flow turbine is 

evident from the above studies. Nakase et al [32] stated that, the efficiency of 

the cross-flow turbine increases in the case of a suitable nozzle throat width 
o

s  

with an increase of nozzle to runner width ratio of up to 1.0. While Desai and 

Aziz [50] stated that the nozzle to  runner blades width ratio of 2/3 was more 

efficient than the ratios 1.0, 1/2 and 1/3. It is clear that the conclusions of 

Nakase et al [32] and Desai and Aziz [50] are highly contradictory. Therefore, it 

was highly important to predict the optimum nozzle to runner blade width ratio 

W WN B  to optimize the performance of the cross-flow turbine. Hence, in the 
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current study, this ratio was chosen to be of values of 1/3, 1/2, 2/3 and 1.0. The 

additional geometrical parameters’ details of the tested cross-flow turbines are 

listed in table 5.8. 

Table 5.8 Details of the nozzle to runner blades width tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the nozzle  

W
N ?

150,100,75,50mm


 

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 

 

A flow field visualization of the internal flow in the cross-flow turbine was 

predicted to illustrate the impact of the nozzle to the runner blades width ratio    

W WN B  on the flow characteristics and the performance of the turbine. The 

water superficial velocity streamlines of the entire cross-flow turbine of various 

ratios of the nozzle to the runner blades width are shown in Figs. 5.78 (a) to (d) 
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additional front view is provided in the same figures to show the width of the 

nozzle in each case. These figures clearly show that the water flows over a part 

of the runner blades width when the nozzle to the runner blades width ratio is 

less than 1.0. The streamlines of the flow provide extra understanding of the 

internal flow in the cross-flow turbine at part-flow conditions. Such conditions 

are encountered during summer season in some sites which suffer from partial 

drought. Figures 5.78 (b) and (d) also show three dimensional streamlines of 

partially loaded cross-flow turbine with 1/3 and 2/3 standard division of inlet 

nozzle flow area (where the water was directed through either 1/3 as shown in 

Fig. 5.78 (d) or 2/3 of the nozzle width as shown in Fig. 5.78 (b)).  

In order to visualize the fluid flow characteristics and their effects on the 

performance of the turbine more clearly, contours of water volume fraction, 

vectors of water superficial velocity and contours of pressure were plotted on 

the mid span planes as shown in Figs. 5.79 to 5.80 and Fig. B.11. Figures 5.79 

(a) to (d) clearly show that the water fraction spread decreases with the 

decreasing of the ratio. This is clearly indicated by the core of the flow and the 

water-air interface region surrounding this core. Figures 5.79 (a) to (d) also 

show that a reduction in the ratio results in the main flow to move away from the 

axle of the runner and reduce the possibility of impingement on the runner axle. 

This expected to improve the efficiency by reducing the losses. However, as it 

will be seen, hereafter, it works in favor of decreasing the efficiency as the 

fraction of the water interacting with the second stage of the runner blades is 

reduced considerably. A region of intense water splatter due to negative 

pressure differential is developed at the tip of the first active blade receiving the 

water from the nozzle. The intensity of these activities seems to increase with 
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decreasing the ratio. This is confirmed by Figs. 5.80 (a) to (d). It is natural that 

these activities tend to reduce the power developed and ultimately the efficiency 

of the turbine. Also, they tend to encounter the effects of less or no 

impingement of the water on the runner axle observed in Figs. 5.79 (a) to (d). 

Figures 5.80 (a) to (d) show a considerable increase in the water splatter in the 

core of the runner with decreasing the ratio. This water quantity does not 

contribute to power developed and represents parasitical losses. All parts of 

Fig. 5.80 confirm the conclusions from Fig. 5.79 that the quantity (fraction) of 

water interacting with the second stage of the runner blades is considerably 

reduced with reducing the ratio. Figures B.11 (a) to (d) again show the high 

pressure contours regions of the mid-span reduce with the decreasing the ratio 

as a result of the tendency of the water to move along the blades’ width.  It must 

be noted from Figs. 5.79 (a) to (d) and Figs. B.11 (a) to (d) that as the nozzle to 

the runner blades width ratio decreases the flow tendency to spread through the 

free end passages between the blades and also the water tendency to splatter 

inside the core of the runner. For a nozzle to the runner blades width ratio less 

than 1.0 considerable changes in the flow patterns in the runner and particularly 

within the runner blade passages are seen to takes place. Accordingly, it is 

expected that a nozzle to runner blades width ratio of 1.0 may result in higher 

efficiency and power output as the splatter of water and flow spread along the 

blades’ width are almost eradicated in this case.  
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Figure 5.81 reveals the result of computations of the impact of the nozzle to the 

runner blades width ratio W WN B  on the efficiency of the cross-flow turbine. It is 

clear that an increase up to unity in the nozzle to the runner blades width ratio 

W WN B  has a favorable effect on the turbine efficiency as indicated above. This 

shows a full agreement with the Nakase et al [32] and can be explained by the 

fact that the nozzle outlet covers only part of the width of the runner blades 

when the nozzle to the runner blades width ratio is less than 1.0. This results in 

an asymmetrical distribution of the water in from the nozzle after striking the 

blade along the blade width. Therefore, the energy of the water loses due to the 

axial movement of water along the blades does not contribute to the second 

stage in extracting of the energy from water. It can be seen from Fig. 5.81 that 

at 1/3 nozzle to the runner blades width ratio, the efficiency was low (66.993 %). 

According to this, the most effective nozzle to the runner blades width ratio        

W WN B  noticed was 1.0 where the efficiency was 77.564 % which is in 

agreement with the nozzle to the runner blades width ratio constructed by 

Mockmore and Merryfield [31] which based upon Donat Banki’s paper “Neue 

Wasser-turbine”.  
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5.2.9 Optimization of the Runner Blades Width to Outer Diameter ( W 1
B / d ) 

The unique and inherent advantages of the cross-flow turbine, due to its 

suitable design for a wide range of operating condition including flow rate and 

head, has led to a considerable interest and widespread uses in micro 

hydroelectric power plants. The cross-flow turbine is understood as a water 

turbine where the runner receives the water in a radial inward direction and 

discharges it in a substantially radial outward direction, the runner outer 

diameter is particularly independent of the rate of flow, but the runner blade 

width can be dependent on the rate of flow. Changing the width of the runner 

blades will not have effects on the hydraulic characteristics of the cross-flow 

turbine [3]. However, the available site characteristics, such as the available 

flow rate and head, are the determinant factors in the selection of a suitable 

turbine design. Hence, longer runner blades width is suitable for the lower head 

site of higher flow rate. The impact of the runner blades width to runner outer 

diameter ratio W 1
B / d  was experimentally investigated by Khosrowpanah et al 

[43]. They tested two runners of outer diameters of 152.4 mm and 304.8 mm, 

both were of a width of 152.4 mm. These dimensions correspond to blades 

width to diameter ratio of 1.0 and 0.5. The results of this experiment showed 

that the efficiency increases by about 20 % when reducing the ratio of runner 

width to runner outer diameter from 1.0 to 0.5. In order to provide a 

comprehensive understanding of the effect of the runner blades width to 

diameter ratio W 1
B / d  on the performance of the cross-flow turbine, ratios of 1/3, 

1/2, 2/3 and 1 were selected for investigation in the current study. The 

geometrical parameters’ details of the tested turbines are listed in table 5.9. 
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Table 5.9 Details of the runner blades width to outer diameter tested. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade thickness b

t 3.6mm  

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90   

  
Throat width o

s 60mm  

  
Width of the blade  

W
B ?

300, 200,150,100 mm


 

  
Shaft (axle) diameter s

d 40mm     Note: Symbols as detailed in Fig. 3.2. 

 

As described earlier, ANSYS CFX simulation code was adopted to perform flow 

field visualization of the internal flow inside the turbine. Figures 5.82 – 5.84 and 

Figs. B.12 – B.13 illustrate the effect of the runner blades width to runner outer 

diameter ratio W 1
B / d  on the fluid flow characteristics and the performance of the 

turbine. Also, the water superficial velocity streamlines were plotted for entire 

turbine as shown in Figs. 5.82 (a) to (d). These figures clearly show the fluid 

flow in the turbine. To reveal and visualize the two-phase flow more clearly, 

contours of water volume fraction were plotted on the mid span plane as shown 
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in Figs. 5.83 (a) to (d). These demonstrate a well-defined interface between the 

air and water flow. In order to examine the water flow characteristics closely, 

vectors of water superficial velocity and contours of the pressure were plotted 

on the mid span planes as shown in Figs. 5.84, B.12 and B.13. These figures 

clearly show that the runner blades width to runner outer diameter ratio W 1
B / d  

does not, in general, effect on the fluid flow characteristics of the cross-flow 

turbine as the runner receives the water in a radial inward direction and 

discharges it in a essentially radial outward direction. 

The overall effect of the runner blades width to runner outer diameter ratio         

W 1
B / d  on the efficiency of the cross-flow turbine is shown in Fig. 5.85. The 

result of computations revealed that an increase in the runner blades width to 

runner outer diameter ratio from 1/3 to 1.0 has a minimal effect on the turbine 

efficiency. This revealed total agreement with Harvey et al [3]. They stated that 

changing the width of the runner blades will not affect the hydraulic 

characteristics of the cross-flow turbine where the runner receives the water in a 

radial inward direction and discharges it in an essentially radial outward 

direction. Therefore, the plant site characteristics, such as the available flow 

rate and head, are the determined factors in the selection of a suitable turbine 

design. Hence, the longer runner blades width is suitable for the lower head site 

of higher flow rate. According to this study, the runner blades width to runner 

outer diameter ratio W 1
B / d  1.0 was more effective than 1/3, 1/2 and 2/3 where 

the efficiency was 77.810 %. At low runner blades width to runner outer 

diameter ratio 1/3, the turbine efficiency was 77.037 %. Therefore, the optimum 

runner blades width to runner outer diameter ratio can be considered to be 1.0. 
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5.3 Outline of the Simulation Results 

In this chapter, the optimal values for the geometric parameters of the main 

cross-flow turbine elements, such as the runner and the nozzle were 

established. Many characteristics of the two major components were 

numerically and comprehensively investigated. These include the number of 

runner blades, the ratio of inner to outer diameter, blade profile, and width of the 

runner blade to outer runner diameter on the performance of the cross-flow 

turbine. The study reported in this chapter also covered the turbine nozzle 

improvement by investigating the effects of nozzle entry arc, nozzle throat 

width, nozzle width to blade width,  angle of attack and nozzle shape for two 

different configurations of the nozzles one installed with an inside guide vane 

while the other without it on the performance of the cross-flow turbine. The 

conclusions from the above unique and comprehensive study is reported in the 

next chapter. 
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Conclusions and Recommendations 

 

 

6.1 Main Conclusions 

This research started with an introduction to the importance and applications of 

the micro hydroelectric power plants in power generation in isolated and remote 

communities and the gained environmental benefits. This was followed by 

selecting an appropriate turbine design (cross-flow micro-turbine) out of several 

turbine types for such applications. Such turbine is not very complicated in 

design structure, maintenance, and manufacturing processes. As, such the 

selected turbine can be used by personnel who on average have moderate or 

little technical knowledge. A comprehensive and critical review of the literature 

on various aspects of the cross-flow micro-turbine was then undertaken. The 

review revealed many important geometrical parameters in the design of cross-

flow turbines that influence their performance. Consequently, these parameters 

were used in modelling the performance of the turbine with the view of 

optimizing their power output, design and efficiency. ANSYS CFX, advanced 

and high-performance modelling capabilities, was chosen among several CFD 

simulation codes (such as PHOENICS, STAR-CCM+ and ANSYS CFX) to 

perform a complete analysis of the internal flow of cross-flow turbine, which is of 

turbulent, two-phase and three dimensional nature.  

288 
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The optimum values for the geometric parameters of the runner and nozzle of 

the cross-flow turbine were calculated. The analysis and flow prediction 

performed by ANSYS CFX for the influence of such parameters revealed a 

fundamental hydrodynamics flow characteristics within the turbine as well as 

many phenomena associated with the structure of the flow. Such flow structure 

were not possible at all to be observed by conventional flow visualization 

methods. The specific concluding points of the present study can be 

summarized as follows: 

i. An increase in the number of runner blades from 15 to 30 has a favorable 

effect on the efficiency of the cross-flow turbine. This was attributed to the 

increase in the energy extracted from water by the blades, decrease of the 

non-cross flow and a reduction in the size of the separation/recirculation flow 

on the back of the blades. A further increase in the number of runner blades 

from 30 to 40 has an undesirable effect of reducing the turbine efficiency 

which was attributed to the increase in the collision loss and the weight of 

the runner. 

 
ii. There was a minimal effect of the blades diameter ratio within the range 0.65 

to 0.68 on the efficiency of the cross-flow turbine. A further change of the 

diameter ratio below this range had a negative effect on the efficiency. This 

was most likely caused by the increase in the impingement energy loss and 

the possibility of the increase of the blades’ passage back pressure. 

Moreover, increasing the value of the diameter ratio over this range tends to 

increase the separation on the wide blades’ passages.  
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iii. Decreasing the angle of attack 
1

  from 32 to 15 has a favorable effect on the 

efficiency of the cross-flow turbine. This is because of a reduction in the 

energy extracted from water, by the blades, with any increase in the value of 

1
 , which in turn increases the inlet blade angle 

1
  and blade curvature br . 

 
iv. An increase in the nozzle entry arc   from 60o to 90o has a favorable effect 

on the efficiency of the cross-flow turbine. This was attributed to the increase 

in the energy extracted from water by the blades. It is natural that any 

increase in the nozzle entry arc increases the interaction of the same 

amount of water with larger number blades. A further increase in the nozzle 

entry arc from 90o to 120o has an undesirable effect due to the increase in 

the impingement loss, flow separation and variation in the angle of attack. 

 
v. The orientation of the nozzle entry arc on the runner circumference has a 

significant effect on the flow characteristics and the hydrodynamic forces 

within the cross-flow turbine. Such is the influence of the arc orientation that 

it can create considerable water splatter which in turn increases losses and 

decreases turbine efficiency. 

 
vi. The efficiency of the cross-flow turbine increased significantly by using a 

three new runner blade profiles. This was attributed to the decrease in the 

collision loss. However, the turbine’s efficiency changed very slightly (less 

than 0.1 %) “among the three new runner blade profiles”.  

 
vii. A guide vane has an undesirable effect on the efficiency of the cross-flow 

turbine by splitting the water flow in the nozzle into two streams. This tends 

to increase friction losses and consume useful flow energy. Such energy 
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loss was shown to increase further by the impingement of the water on the 

guide vane.  

 
viii. The change in the profile of the nozzle rear wall due to change in nozzle 

entry arc angle and nozzle profile has significant effect on the performance 

of the cross-flow turbine. Such profile changes the distribution of the water 

entering the runner from the nozzle. 

 

ix. An increase in the nozzle throat width from 1 1
0.1d to 0.2d  has a favorable 

effect on the efficiency of the cross-flow turbine. The nozzle throat width 

controls the water flow condition at the runner inlet. Decreasing the width of 

the nozzle throat decreases the distance between the nozzle rear wall and 

the runner and this in turn decreases the amount of water in the passages 

between the blades in the lower part of the nozzle entry arc (which reduces 

the water energy extraction by blades). 

 

x. The ratio of the nozzle to the runner blades width W WN B  1.0 provides better 

performance than the ratios 1/3, 1/2 and 2/3. In case the ratio being less 

than one the nozzle width covers only part of the runner blades width. This 

leads to dispersion of water along the blade width, and, therefore, lead to 

energy loses due to the axial movement of water. The dispersed water does 

not contribute to the water energy conversion in of the runner, and more 

specifically, it negatively influences the second stage of energy extraction. 

 

xi. Changing the runner blades width to outer diameter ratio W 1
B / d  has a 

minimal effect on the flow characteristics and the hydrodynamic forces within 
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the cross-flow turbine. Hence, turbines with higher runner blades width are 

suitable for a site with higher flow rate. 

Table 6.1 Summarizing the optimum values of the investigated parameters. 

  
Geometrical parameter Specification 

  

  
Number of blades b

n 30  

  
External diameter 1

d 300mm  

  
Diameters ratio 2 1

d d 0.65  

  
Angle of attack 

o

1
15   

  
Inlet blade angle 

o

1
151.814   

  
Internal blade angle 

' ' o

1 2
90     

  
Outlet blade angle 

o

2
28.186   

  
Blade profile Blade profile (1)  

  
Nozzle profile Nozzle profile (1) 

  
Blade radius of curvature b

r 49.139mm  

  
Nozzle entry arc o90  with orientation of o o60 & 30  

  
Throat width o

s 60mm  

  Nozzle to runner blades 
width W W

N B 1  

  Runner blades width to 
outer diameter W 1

B d 1     Note: Symbols as detailed in Fig. 3.2. 

 

The above conclusions and the extensive understanding of the flow structure 

provided by the results of the current work could provide much useful and 

needed design modification to the current micro-turbine design used in micro 

hydroelectric power plants. In particular, those micro-turbines used in remote 

and isolated regions of available water resources which are also not connected 

to the electricity grid. 
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6.2 Recommendations for Future Work 

The optimization of the geometric parameters by using ANSYS CFX was 

proven to be a very effective technique in maximizing the performance of the 

cross-flow turbine. Based on this and in order to refine the results further, some 

recommendations for future work are listed below:  

 
i. Re-simulate the cross-flow turbine using direct numerical simulation (DNS) 

or even large eddy simulation (LES) approach. This approach was not 

followed in the current work due to the limited capacity of the current 

computers. Perhaps larger capacity computers could allow the use of the 

above techniques which in turn could reveal more details on the structure of 

the flow within the turbine. 

 
ii. A total number of 1,713,426 elements were used in the domain of the 

current work. This number can be increase with the improvement in the 

future computer capacity. It is natural that this will improve the prediction of 

the structure of the flow and could reveal better insight into complex flow 

structure of the cross-flow turbine. 

 
iii. Although grid refinement was used extensively in the current work, however, 

many regions of interest in both the nozzle and the runner were observed in 

the predicted results. Such regions of extreme interest can be further 

investigated by refining the grid to reveal further the complex flow structure 

and phenomena. 

 
iv. There was a slight drop in the turbine efficiency with increasing the number 

of the blades from 30 to 35. Hence, investigating the effect of the number of 
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the blades on the turbine efficiency in smaller steps within the range of 30 to 

35 is recommended. Such investigation can shed further light on the effects 

of this all important parameter (blade numbers) on the structure of the flow 

within the blades’ passages. 

 
v. The nozzle has a significant impact on the performance of the cross-flow 

turbine. Hence, re-design and simulation analysis of the optimum nozzle 

profile (nozzle profile 1) is highly recommended as well as investigating new 

designs of the nozzle rear wall, nozzle throat width and nozzle entry arc.   

 

vi. This study was theoretical in nature, it would be of great interest to produce 

a prototype turbine and use it in a set of experiments to confirm the 

conclusions above. 
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Appendix A 

 

Governing Equations 

 

 

A.1 Governing Equations 

The governing equations for fluid flow are solved numerically by ANSYS CFX to 

predict the ways in which fluid flows in a given situation. CFD simulation codes 

utilize the computer in the numerical calculations to the equations that govern 

the fluid flow [92]. Understanding of the equations that govern the fluid flow, the 

characteristics of fluid flow for a given situation, and so must be modelled is 

necessary in order to achieve acceptable results [93, 94]. Fundamental 

governing equations, to describe a fluid flow, are Navier Stokes equations for 

three-dimensional momentum and the continuity equation. The numerical 

discretization of the partial differential equations of these equations is solved by 

digital computers [95]. Numerical discretization can be performing by one of the 

three numerical discretization techniques: the finite volume method, the finite 

element method and the finite difference method [96]. The finite volume method 

is used in the numerical discretization of the partial differential equations by 

ANSYS CFX simulation code. 

The majority of flow, for useful engineering applications, is turbulent in nature. 

As in such applications fast transfer of mass, momentum and energy are 

A -1 
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desirable. Successfully simulating turbulent flow requires understanding a few 

basic characteristics of turbulent flow and modelling techniques in order to 

choose the best available turbulence models for a given situation. Turbulent 

flow is difficult to simulate since the turbulent flow is unsteady and three-

dimensionally random. Turbulent eddies in all possible orientations appear in 

turbulent flow with a range of scales. The largest eddies extract energy from the 

mean flow and transfer it to the smallest eddies where energy is taken out of the 

flow through viscosity [97, 98]. The largest eddies are responsible for most of 

the momentum transfer. On the other hand, the smallest eddies are responsible 

for most the energy dissipation and known as the Kolmogorov [99, 100]. 

Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds 

Averaged Navier-Stokes Simulation (RANS) are three approaches to make 

turbulence computationally tractable [101]. DNS is, the straight forward way, 

numerically solving the full Navier-Stokes equations directly, without any 

approximations applied in the calculation. It resolves the whole spectrum scales 

of motion in a flow down to the Kolmogorov scales [102]. However, it is too 

expensive. DNS requires a powerful computer and a lot of time; therefore, this 

method is not practical for engineering applications. LES resolves the large 

scale eddies directly while the small scale eddies are required to be modelled 

[103]. LES requires less powerful computer and time than DNS, but this method 

is still not practical for most engineering applications. RANS is widely used to 

describe the fluid flow for most engineering applications by solving the time-

averaged Navier-Stokes equation. All turbulent eddy scales are required to be 

modelled in RANS [104].  
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The governing equations for the fluid flow are the continuity (conservation of 

mass) and momentum also known as Navier-Stoke equations (conservation of 

momentum) equations. For fluid flow involving heat transfer, another set of 

governing equations is required (conservation of energy). 

Conservation of mass is a basic principle of engineering and science. It is a 

fundamental principle in nature. It states that, mass could neither be created nor 

destroyed. The mathematical statement of the conservation of mass is the 

continuity equation.  

Conservation of mass based on the control volume theorem, let M m , then 

M m
1

m m
    , substituting M m and 1    in equation (3.8). 

 
c.v c.s

dm
dV v dA

dt t


    

                                                                 … (A.1) 

from conservations law of mass 
dm

0
dt

 , 

for an infinitesimal control volume 

 
out inc.v

dV m m 0
t


  


                                                                   … (A.2) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1 Mass flow through the x faces of the infinitesimal control volume. 

 u dx
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 
 


 u dx

u
x 2

 
 


x

y

z

Control volume
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dz
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Consider an infinitesimal fixed control volume of fluid of sides dx , dy and dzas 

shown in Fig. A.1. The velocities in x, y and z directions are u, v and w 

respectively. The mass flows in the center of the infinitesimal fixed control 

volume of fluid in the x-direction is then u  and the corresponding mass flows 

in y- and z-direction is v  and w , so the mass flows through each face of the 

infinitesimal fixed control volume can be written in terms of the mass flows in 

the center of control volume by using Taylor series. 

  
   

22

2center of right face

u udx 1 dx
u u

x 2 2! x 2

     
      

   
                    … (A.3) 

The mass of the fluid entering the control volume, terms of second order and 

higher are neglected, is 

 

   

 

in

u vdx dy
m u dydz v dxdz

x 2 y 2

w dz
w dxdy

z 2

      
        

    

  
   

 



                      … (A.4) 

The mass of the fluid leaving the control volume is 

 

   

 

out

u vdx dy
m u dydz v dxdz

x 2 y 2

w dz
w dxdy

z 2

      
        

    

  
   

 



                      … (A.5) 

And the increase in the mass of the control volume equal to 

  dxdydz
t





                                                                                   … (A.6) 
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Substituting equations (A.4), (A.5) and (A.6) into equation (A.2) and simplifying 

where most terms disappear equation (A.2) becomes 

 

 
   

 

u v
dxdydz dxdydz dxdydz

t x y

w
dxdydz 0

z

   
  

  

 
 



                         … (A.7) 

The continuity equation and also known as the differential equation for mass 

conservation can be obtained by dividing the equation (A.7) by (dxdydz ), 

 
     u v w

0
t x y z

     
   

   
                                                     … (A.8) 

since i j k
x y z

  
   

  
, and the velocity vector v iu jv kw   , the equation 

(A.8) can be written in the vector form as  

  v 0
t


  


                                                                                … (A.9) 

Conservation of momentum equations are derived by applying Newton’s second 

law of fluid motion. Conservation of momentum based on the control volume 

theorem, let M mv  then 
M mv

v
m m

    , substituting M mv and v    in 

equation (3.8). 

 
 

c.v c.s

d mv
vdV vv dA

dt t


    

                                                    … (A.10) 

Newton's second law states that the sum of external forces acting on a moving 

system is equal to the time rate of change of momentum of the system. 
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  
d

F mv
dt

                                                                                … (A.11) 

Now, we are going to write the system formulation of Newton's law in control 

volume formulation. 

 
 

out inc.v

d mv
F vdV mv mv

dt t


    


                                        … (A.12) 

the element is so small that the volume integral simply reduces to a derivative 

term 

  
c.v

vdV v dxdydz
t t

 
  

                                                             … (A.13)     

The momentum flows occur on the faces of the infinitesimal fixed control 

volume of fluid, three inlets and three outlets. Figure A.1, shows only the x-

component to avoid cluttering up the drawing.  

 

   

 

in

uv vvdx dy
mv uv dydz vv dxdz

x 2 y 2

wv dz
wv dxdy

z 2

      
        

    

  
   

 



          … (A.14)   

 

   

 

out

uv vvdx dy
mv uv dydz vv dxdz

x 2 y 2

wv dz
wv dxdy

z 2

      
        

    

  
   

 



          … (A.15)  

Substituting equations (A.13), (A.14) and (A.15) into equation (A.12) and 

simplifying where most terms disappear, equation (A.12) becomes 

        F v uv vv wv dxdydz
t x y z

    
        

    
                … (A.16)    
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Split up the vector relation in brackets as 

 

       

 

v uv vv wv
t x y z

v v v v
v v u v w

t t x y z

   
      

   

      
                 

                 … (A.17) 

The terms on the right hand side contain the continuity equation, 

 . v 0
t


  


, which vanished. The term in parenthesis is the total 

acceleration  

 
v v v v dv

u v w
t x y z dt

   
   

   
                                                         … (A.18) 

Thus equation (A.16) can be reduced to 

 
dv

F dxdydz
dt

                                                                           … (A.19) 

Express the total force as the sum of body forces and surface forces  

 
body surface

dv
F F dxdydz

dt
                                                         … (A.20) 

The forces acting on the control volume are body forces and surface forces 

[105]. The body forces act on the mass within the control volume. The body 

forces are gravity, centrifugal, coriolis (a result of centripetal force on a fluid 

mass moving with a velocity radially outward in a rotating plane), magnetism 

and electric potential forces. The surface forces are hydrostatic pressure and 

viscous stresses (
ij
 ) which acting on the control surface sides arise from 

motion with velocity gradients [106]. 
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xx yx zx

i j xy yy zy

xz yz zz

p

p

p

     
 

       
      

                                                 … (A.21) 

Stresses subscript notation is shown in Fig. A.2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2 Stress components on the faces of an infinitesimal control volume. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.3 The surface force components in x direction of  
an infinitesimal control volume 
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 

yx

yx

dy
dxdz

y 2
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 
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 
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  

 
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  

 
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Only the x-directed stresses are shown in Fig. A.3 to avoid cluttering up the 

drawing. The stresses’ gradients (or differences) cause a net force on the 

infinitesimal fixed control surface. For example, the force on the left face            

(
xx
dydz ) is balanced by the force on the right face (

xx
dydz ) leaving the net 

force (  xx
x dxdydz  ) on the right face; therefore, in the x direction the net 

surface force is 

      x,surfaces xx yx zx
dF dxdydz

x y z

   
      

   
                          … (A.22) 

From the equation (A.22) the surface force in the x direction is proportional to 

the control volume. Since the surface force is pressure and viscous forces 

equation (A.22) can be written as 

      x

xx yx zx

dF p

dV x x y z

   
       

   
                                        … (A.23) 

Similarly, for the y and z directions, the net surface forces per unit volume on 

the control surface are 

      y

xy yy zy

dF p

dV y x y z

   
       

   
                                        … (A.24) 

      z

xz yz zz

dF p

dV z x y z

   
       

   
                                        … (A.25) 

Now, multiply equations (A.23), (A.24) and (A.25) by i, j and k respectively, and 

add to get the net vector surface force expression as follows, 

 
surface viscous

dF dF
p

dV dV

   
     

   
                                                          … (A.26) 
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Where the viscous force are 

 

yxxx zx

viscous

xy yy zy

yzxz zz

dF
i

dV x y z

j
x y z

k
x y z

   
    

     

   
   

   

  
   

   

                                                   … (A.27) 

equation (A.27) can be written in divergence form 

 i j

viscous

dF

dV

 
    

 
                                                                         … (A.28) 

 i j

surface

dF
p

dV

 
     

 
                                                                … (A.29) 

where the viscous stress tensor acting on the infinitesimal control volume is 

 

xx yx zx

i j xy yy zy

xz yz zz

   
 

     
    

                                                                        … (A.30) 

The surface force is the pressure-gradient vector plus the divergence of 

viscous-stress tensor. Substituting equations (A.20) and (A.29) into equation 

(A.19), to get the basic differential momentum equation for an infinitesimal 

element. 

 
ij

dv
p . f

dt
                                                                 … (A.31) 

Where f  is the body force per unit volume and ( dv dt ) is the acceleration 

vector of the flow, which is the total time derivative of the velocity vector. 
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dv du dv dw

i j k
dt dt dt dt

                                                                     … (A.32) 

Each velocity component u, v and w is a function of x, y, z and t variables, to get 

the time derivative of these velocity components we need to use the chain rule.  

 
 du x,y,z,t u u dx u dy u dz

dt t x dt y dt z dt

   
   
   

                                     … (A.33) 

since dx/dt = u, dy/dt = v and dz/dt = w  are the local velocity component, 

equation (A.33) can be written as 

 
du u u u u

u v w
dt t x y z

   
   
   

                                                          … (A.34) 

Similarly for dv/dt and dw/dt components. Summing du/dt, dv/dt and dv/dt into a 

vector to get the total acceleration. 

  
dv v v v v v

u v w v v
dt t x y z t

    
      
    

                                 … (A.35) 

Substituting equation (A.35) into equation (A.31)  

   ij

v
v. v p . f

t


        


                                                     … (A.36) 

Equation (A.36) is, so brief and compact, a vector equation. Therefore, writing 

out the components of the equation terms, it is required to illustrate the 

momentum equation.  

 
yxxx zx

x

u u u u p
u v w f

t x y z x x y z

       
          

        
             … (A.37) 
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 xy yy zy

y

v v v v p
u v w f

t x y z y x y z

       
          

        
             … (A.38) 

 
yzxz zz

z

w w w w p
u v w f

t x y z z x y z

       
          

        
          … (A.39) 

The above equations are the differential momentum equations, and they are the 

equations of motion [107]. However, these equations are not ready to use. The 

viscous stresses are required to be written in terms of velocity components. The 

velocity of fluid particles v  may translate, rotate or deform, in general, it will do 

all three and the velocity gradient results from distortion and rigid body rotation 

of the particles. A general formula for a sum of a symmetric strain tensor and 

asymmetric vorticity tensor parts is j ji i

j i j i

u uu u1 1

2 x x 2 x x

     
              

 [108]. The 

velocity gradient may be written in components form as  

 
xx xx

u 1 u u 1 u u

x 2 x x 2 x x

       
        

      
                                      … (A.40) 

 yx yx

v 1 v u 1 v u

x 2 x y 2 x y

       
         

       
                                    … (A.41) 

 zx zx

w 1 w u 1 w u

x 2 x z 2 x z

       
         

       
                                  … (A.42) 

Similarly,  

 xy xy

u 1 u v 1 u v

y 2 y x 2 y x

       
         

       
                                    … (A.43) 

 yy yy

v 1 v v 1 v v

y 2 y y 2 y y

       
         

       
                                    … (A.44) 
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 zy zy

w 1 w v 1 w v

y 2 y z 2 y z

       
         

       
                                  … (4.45) 

Also, 

 xz xz

u 1 u w 1 u w

z 2 z x 2 z x

       
         

       
                                  … (A.46) 

 yz yz

v 1 v w 1 v w

z 2 z y 2 z y

       
         

       
                                  … (A.47) 

 zz zz

w 1 w w 1 w w

z 2 z z 2 z z

       
         

       
                                … (A.48) 

We can see that xy yx xz zx yz zy
, ,      , and 

xx yy zz
0      . 

Where the symmetric strain (deformation) rate tensor is 

 

xx xy xz

i j yx yy yz

zx zy zz

u 1 u v 1 u w

x 2 y x 2 z x

1 v u v 1 v w

2 x y y 2 z y

1 w u 1 w v w

2 x z 2 y z z

       
     

       
             

                           
                   

...(A.49) 

The viscous stresses for a Newtonian fluid are proportional to the coefficient of 

viscosity and the element strain rates. The generalization of 

   d dt du dy       to three-dimensional viscous flow is 

 

xx yy zz

xy yx xz zx

yz zy

u v w
2 v 2 v, 2 v

x y z

u v w u
, ,

y x x z

v w

z y

  
                  

   
      

               
      

  
      

    

     … (A.50)  
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Substituting the above equations of (
ij
 ) into equations (A.37), (A.38) and 

(A.39) gives the differential momentum equation for a Newtonian fluid (the 

Navier-Stokes equations) for the compressible flow.  

 

x

u u u u p u
u v w 2 v

t x y z x x x

u v u w
f

y y x z z x

        
             

        

          
           
         

   … (A.51) 

 

y

v v v v p u v
u v w

t x y z y x y x

v v w
2 v f

y y z z y

           
            

           

        
            
        

  … (A.52) 

 

z

w w w w p u w
u v w

t x y z z x z x

v w w
2 v f

y z y z z

           
            

          

       
            
       

… (A.53) 

For incompressible flow ( .v 0  ) and hence (
ij ij

2   ), Substituting these into 

equations (A.51), (A.52) and (A.53) gives the differential momentum equation 

for a Newtonian fluid (the Navier-Stokes equations) for the incompressible flow.  

 
2 2 2

x2 2 2

u u u u p u u u
u v w f

t x y z x x y z

          
             

          
          … (A.54) 

 
2 2 2

y2 2 2

v v v v p v v v
u v w f

t x y z y x y z

          
             

          
          … (A.55) 

 
2 2 2

z2 2 2

w w w w p w w w
u v w f

t x y z z x y z

          
             

          
    … (A.56) 
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A.2 Reynolds Averaged Navier-Stokes Equations (RANS) 

Reynolds Averaged Navier-Stokes equations (RANS) are widely used to 

describe the fluid flow for most engineering applications.  RANS equations are 

produced by the flow variables decomposition in the Navier-Stokes equations 

into the mean (time-average) and fluctuating components. The decomposition 

of a velocity component u recording to Reynolds (1895) is a time-average 

motion and a turbulent fluctuation [105], as follows, 

 'u u u                                                                             … (A.57) 

where u is the instantaneous velocity, u  is the mean (time-average) velocity  

and u' is the fluctuating velocity, then the flow variables decomposition in the 

momentum equation (A.36) gives the Reynolds equation as follows, 

    ij t

v
v v p f

t


           


                                   … (A.58) 

where 
t
  is the Reynolds stress tensor (Turbulent stress tensor). It is 

symmetrical. The Reynolds stresses are produced by decomposing procedure 

and they are six unknown terms. These terms must be modeled to solve the 

RANS equation; therefore, a turbulence model is required.  

 

'2 ' ' ' '

' ' ' ' '2 ' '

t

' ' ' ' '2

u u v u w

v v v u v v w

w u w v w

 
 
     
 
 
 

                                                … (A.59) 
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A.2.1 Shear Stress Transport (SST) Model 

Shear stress transport (SST) model of Monter [109] is a hybrid two-equation 

model. SST model is a combination of the standard k-epsilon model and the 

original Wilcox’s k-omega model. It results from adding the transformation of the 

standard k-epsilon model times (
1

1 F ) to the original k-omega model times 
1

F  

with modifying the eddy viscosity to account for the transport of the principle 

turbulent shear stress. Hence, the SST model combines the advantages of the 

standard k-epsilon model away from walls and the original Wilcox’s k-omega 

model [110] for use near walls using a blending function. A blending function 1
F  

is equal to one near walls and equal to zero away from the walls. A blend 

function 1
F  activates the k-omega model near walls and the k-epsilon model for 

the rest of the flow.  The turbulent kinetic energy k and the turbulence frequency 

  for Wilcox’s k-omega and Transformed k-epsilon model are as follows; 

Wilcox’s k-omega model:  

 
 

  t

k

k1

k
vk k p B' k

t

    
              

   

                         … (A.60) 

 
 

  2t

1 k 1

1

v A p B
t k



     
              

   

                 … (A.61) 

Transformed k-epsilon model: 

 
 

  t

k

k2

k
vk k p B' k

t

    
              

   

                         … (A.62) 
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 
 

2t

2 k 2

2 2

v
t

1
2 k A p B

k
 

 
   



    
                    

   … (A.63) 

Now multiplied equations (A.60) and (A.61) by function 1
F , and equations (A.62) 

and (A.63) by ( 1
1 F ) and then adding the corresponding k- and  -equation to 

give the new model (
k

p  is the production rate of turbulence). 

 
 

  t

k

k3

k
vk k p B' k

t

    
              

   

                         … (A.64) 

 

 
 

  2t

1 3 k 3

3 2

v
t

2 1 F k A p B
k

 

 
    



    
            

    

     … (A.65) 

where 1
F  is a blending function and given by: 

 

4

1 2 2

k 2

k 500 4 k
F tanh min max , ,

B' y y CD y
 

                    

                    … (A.66) 

With 10

k

2

1
CD max 2 k ,1.0 10





 
     

  

,   is the kinematic viscosity and y 

is the distance to the nearest surface. The kinematic eddy viscosity, 
t t

    , 

is 

 
 

1

t

1 2

c k

max c , F
 


                                                                        … (A.67) 

where  is a constant measure of the strain rate. 
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ij ij

2                                                                                     … (A.68) 

and 2
F  is a blending function similar to 1

F .  

 

2

2 2

2 k 500
F tanh max ,

B' y y

              

                                                … (A.69) 

The new model coefficients are a linear combination of the corresponding 

coefficients of the k   and modified k    models,  1 1 2 1
F 1 F    .  And the 

constant are: '

11 k1 1
A 5 9, B 0.075, 0.85, 0.5,B 0.09,


        

1
c 0.31

2
A 0.44 , 

2
B 0.0828 , 

k2
1   and 

2
1 0.856


   [111]. 

 

A.3 Two-Phase Fluid Flow 

Two-phase fluid flow is a fluid flow situation in which two fluids are present. A 

complete analysis of the internal flow of the cross-flow turbine, which is of 

turbulent, two-phase and three dimensional in nature, was undertaken by 

simulating it using ANSYS CFX with a two-phase flow and free surface model. 

Free surface fluid flow is a multiphase fluid flow situation in which the phases 

are separated by a distinct interface (commonly air and water). Fundamental 

governing equations, to describe a fluid flow (two-phase flow), are Navier 

Stokes equations for three-dimensional momentum and the continuity equation. 

Two-phase fluid flow is expressed by considering each phase independently. 

Thus, the two-phase (air-water) is formulated in terms of two sets of mass and 

momentum conservation equations. Each set describes the fluid flow for one 

phase [112]. However, since each phase is not independent of the other phase, 
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interaction terms have to be introduced in the conservation equations to the two 

phases from the interfaces.   

The continuity equation taken from Liles [113] for multiphase fluid flow is shown 

in equation (A.70), 

  n n

n n n n
. v

t

 
    


                                                                 … (A.70) 

Where n  is the volume fraction, therefore, the sum of the volume fraction of 

the two-phase flow must be one, 

 
2

n
n 1

1


                                                                                     … (A.71) 

and n  is the rate of production of the nth phase mass at the interfaces and it 

must be zero, 

2

n
n 1

0


                                                                                      … (A.72) 

The momentum equation taken from Hiltunen [114] for multiphase fluid flow is 

shown in equation (A.73), 

       n n n n n n n n n n n t,n n
v v. v p . M f

t


                


     …(A.73) 

Where nM  is the interfacial force acting on a phase due to the presence of other 

phase.  
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