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Abstract 

 

This PhD work constitutes a series of inter-disciplinary studies that use biologically plausible 

computational techniques and experiments with human subjects in analyzing facial expressions.  

The performance of the computational models and human subjects in terms of accuracy and response 

time are analyzed. The computational models process images in three stages. This includes: Pre-

processing, dimensionality reduction and Classification. The pre-processing of face expression 

images includes feature extraction and dimensionality reduction. Gabor filters are used for feature 

extraction as they are closest biologically plausible computational method. Various dimensionality 

reduction methods: Principal Component Analysis (PCA), Curvilinear Component Analysis (CCA) 

and Fisher Linear Discriminant (FLD) are used followed by the classification by Support Vector 

Machines (SVM) and Linear Discriminant Analysis (LDA). 

Six basic prototypical facial expressions that are universally accepted are used for the analysis. They 

are: angry, happy, fear, sad, surprise and disgust. The performance of the computational models in 

classifying each expression category is compared with that of the human subjects. The Effect size and 

Encoding face enable the discrimination of the areas of the face specific for a particular expression. 

The Effect size in particular emphasizes the areas of the face that are involved during the production 

of an expression. This concept of using Effect size on faces has not been reported previously in the 

literature and has shown very interesting results. 

The detailed PCA analysis showed the significant PCA components specific for each of the six basic 

prototypical expressions. An important observation from this analysis was that with Gabor filtering 

followed by non linear CCA for dimensionality reduction, the dataset vector size may be reduced to a 

very small number, in most cases it was just 5 components. The hypothesis that the average 

response time (RT) for the human subjects in classifying the different expressions is analogous to the 

distance measure of the data points from the classification hyper-plane was verified. This means the 

harder a facial expression is to classify by human subjects, the closer to the classifying hyper-plane 

of the classifier it is. A bi-variate correlation analysis of the distance measure and the average RT 

suggested a significant anti-correlation. The signal detection theory (SDT) or the d-prime determined 

how well the model or the human subjects were in making the classification of an expressive face 

from a neutral one. On comparison, human subjects are better in classifying surprise, disgust, fear, 

and sad expressions. The RAW computational model is better able to distinguish angry and happy 

expressions. 

To summarize, there seems to some similarities between the computational models and human 

subjects in the classification process. 
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                                                             CHAPTER ONE 

Introduction 

 

1.1 Motivation 

 

Facial expressions are an important part of social communication. They give an opportunity to 

both convey and understand emotions.  The generation and recognition of facial expressions are 

two related, but distinct, aspects of this area of study.  However, in normal day-to-day social 

circumstances they are equally important. This thesis concentrates only on analyzing facial 

expressions. The process of learning to understand the facial expressions of other people starts 

very early. The ability to recognize a facial expression as genuine or fake helps in making 

judgements and in responding accordingly. Emotions are conveyed through body language and 

voice; however, the main component of emotion display is by facial expression. 

Darwin (1872) found that facial expression generation was universal and the same for all people 

across the globe. Later studies by Ekman and Friesen (1973) confirmed that there are six basic 

prototypical expressions namely, anger, happiness, fear, sadness, surprise and disgust. They also 

suggested that these expressions are universal across the various cultures in the world. A recent 

study that compared the expressions of blind and non-blind individuals suggests that the 

production of spontaneous facial expressions of emotions is innate (Matsumoto and Willingham, 

2009). This indicates that some genetic wiring may be responsible for the generation of facial 

expressions of emotions. Studies on facial expression generation and recognition have been 

conducted with different types of experiments and tasks. Recent work in this involves designing 

artificial but biologically plausible facial expression recognition systems (Lyons  et al., 1998; 

Shen, 2005; Dailey, 2002; Liu and Wang, 2006). 

With various facial expression recognition systems developed, a number of successful algorithms 

have been studied in the field of Computer Science. There has been an understanding that the 

theories, studies and results that have been obtained by psychologists may be successfully used 

to develop more efficient facial expression recognition systems (Pantic and Bartlett, 2007; Zheng 

et al., 2009; Fasel and Luettin, 2003). In developing better biologically plausible computational 

systems, a further step may, in turn, be taken towards understanding and analyzing facial 

expression processing by humans.   

The objective of this thesis is to study computational models for facial expression analysis using 

biologically plausible feature extraction techniques and dimensionality reduction methods. 
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Moreover, the results of this analysis are compared with those obtained from human subjects 

asked to perform a related task.  

Generally, a typical facial expression recognition system has a cascade of three stages: pre-

processing, dimensionality reduction and classification. Normally face images are of very high 

dimensions and may need efficient dimensionality reduction methods to provide good 

classification results. When the number of images increases, the need to use dimensionality 

reduction techniques also increases. In this thesis pre-processing techniques to extract features of 

the image and some dimensionality reduction methods have been discussed. The facial features 

such as: eyebrows, eyes, nose and chin play a prominent role in the recognition of facial 

expressions. Facial expressions are registered as changes in these features and their alignment 

(Ekman and Friesen, 1976; Ekman and Friesen, 1978; Hager, 2006). Chapter 3 discusses the 

computational techniques that pre-process images and extract the necessary features that enable 

efficient recognition. Once these features are extracted, they can be reduced in dimensionality 

and later categorized by a suitable classifier.  

Chapter 3 discusses the necessary background of the pre-processing method for feature 

extraction that has been utilized in this thesis namely, Gabor filters.  Earlier studies on simple 

cells in the visual cortex of the brain suggest their involvement with visual perception of static 

and moving images and also for pattern recognition (Hubel and Wiesel, 1995; Hubel and Wiesel, 

1968). It has been argued that the best biologically plausible computational model to describe the 

receptive field of the simple cells is Gabor filters (Daugman, 1985).   

A set of high dimensional face image can be projected to a lower dimension which may be its 

true dimension or the intrinsic dimension. This may enable the removal of redundancies and 

noise in the dataset. The intrinsic dimension is usually very low and defines the minimum 

dimensions that can be used to define the dataset without much information loss.   

The pre-processing with Gabor filtering for feature extraction is followed with dimensionality 

reduction methods: Principal Component Analysis (PCA), Curvilinear Component Analysis 

(CCA) and Fisher Linear Discriminant Analysis (FLD).  Classification methods such as Support 

Vector Machine (SVM) and Linear Discriminant Analysis (LDA) are also discussed in Chapter 

3. 

Different computational models that differ in the pre-processing techniques are investigated here. 

Chapter 4 and Chapter 5 discuss the experiments performed with two different datasets and 

critically evaluate the results. The hypothesis that non linear facial features (Jarudi and Sinha, 

2003) may be better extracted by non linear Gabor filters (Shen and Bai, 2006) is inquired.  Also, 

the view that non linear CCA could be more effective in reducing dimensionality than by the 

linear PCA technique is investigated.  

 A comparison of the performance in the classification of expressions by human subjects and 

computational models provide interesting similarities between the two, as described in Chapter 6. 
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1.2 Contribution 

 

This thesis contains a comparison of the performance of computational models with human 

subjects in classification of basic prototypical facial expressions. A biologically plausible pre-

processing system followed with dimensionality reduction techniques and classification 

constitutes the computational model. The major novel contributions are: 

• Face images are of very high dimension and dimensionality reduction methods such as 

Principal Component Analysis (PCA), Curvilinear Component Analysis (CCA) and 

Linear Discriminant Analysis (LDA) are used to reduce the dimensions. For CCA, the 

actual dimension to which the dataset is reduced is the intrinsic dimension. The facial 

features: the eyes, nose and eye brows are aligned at different angles and orientations. 

The pre-processing is performed by Gabor filters in extracting these features. Gabor 

filtering can be used in combination with PCA reducing the dataset to a mere 22 

components, whilst maintaining 95% of the variance in the original data.  A non linear 

dimensionality reduction method namely, CCA in combination with Gabor filtering can 

reduce the dimension of the dataset to as low as 5 components. The classification 

accuracies obtained from SVM and LDA following these pre-processing and 

dimensionality reduction methods were compared.   For some expressions the massively 

reduced dimensionality datum still gave good classification results. For example the 

expression surprise with Gabor pre-processing and a CCA projection gives 84.09%. 

 

• A detailed PCA analysis of facial expressions was performed. The results show that 

differing eigenfaces discriminate different expression. However some faces discriminate 

more than one expression and this may be related to the confusion in recognizing some 

expression by human subjects, but this is highly speculative.  

 

• Different regions of the face are associated with different expressions. Earlier research 

has also studied the facial muscles associated with an expression using the Facial Action 

Coding System (FACS).  This describes the changing facial features in the event of an 

expression (Ekman and Friesen, 1976; Hager, 2006).  Another approach to identifying 

areas of the face that are important in expression of emotion is to use an 'Effect size' 

analysis.  Surprisingly, I have not found any evidence that this has been done elsewhere. 

My results as described in Chapter 5 indicate the areas of the face that discriminate each 

of the six prototypical expressions from a neutral face. Some of the results were 

predictable and some were surprising.  

 

• A comparison between the performance of human participants and of computational 

models, in facial expression classification was performed and the results are discussed in 
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Chapter 6. There seems to be some similarities in the average response time and the 

classification accuracy between the computational models and humans. 

1.3 Terminology 

 

In the field of computer vision, the words facial expression and emotion are used 

interchangeably; however, this is not the case in Psychology. This is because human emotions 

are not just expressed by changes in the facial features; emotions can also be displayed by 

changes in voice, body language, and gaze direction. In computer models facial expression 

recognition takes into consideration only the visual information.  

Six different computational models have been tested. These models differ in the pre-processing 

techniques used. The terms used to describe them are: 

RAW – This computational model uses face images without any pre-processing. 

RAWPCA – This computational model uses face images without any features extracted but 

reduced in dimensionality by PCA. The number of principal components used is always 

precisioned to retain 95% of the variance of the original dataset.  

RAWCCA – This computational model uses face images without any feature extraction but 

reduced in dimensionality by CCA. For the most part the number of dimensions was that which 

was indicated by an estimate of intrinsic dimensionality, and discussed in Section 3.3.3 of 

Chapter 3. 

GAB – This computational model uses face images with features extracted by Gabor filters but 

do not use any dimensionality reduction methods.  

GABPCA – This computational model uses face images with features extracted by Gabor filters 

and dimensionality reduction by PCA. As before 95% of the variance is maintained.  

GABCCA – This computational model uses face images with feature extracted by Gabor filters 

and dimensionality reduction by CCA. As before normally intrinsic dimensionality is used as the 

indicator of the number of required dimensions. 
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1.4 Structure of the Thesis 

 

This chapter has discussed the factors that motivated this PhD work. The main contributions 

made by this thesis in the field of facial expression recognition are also discussed. Chapter 2 

presents background literature for the psychological, experimental work reported in the thesis. It 

also reviews computational models and databases existing to date.  

The computational models that are used for pre-processing and dimensionality reduction are 

discussed in detail in Chapter 3. It presents the background for the use of Gabor filters for pre-

processing, to enable feature extraction of a given face image. Face images are of very high 

dimensionality. A detailed discussion on dimensionality reduction methods namely, PCA, CCA 

and FLD follows.  It also presents an evaluation of the classification by SVM and LDA. This 

chapter also discusses the Effect size and the Encoding face.  This chapter also investigates the 

significance of PCA components for different expressions. 

All the computational models that have been discussed in Chapter 3 are analysed in Chapter 4 

with a small set of face images from the FERET dataset, with only two expressions, smiling and 

neutral. The six different computational models are tested and evaluated in their ability to 

classify the two facial expressions.   

In Chapter 5, these experiments are extended to all six prototypical expressions and to a larger 

set of face images from the BINGHAMTON BU-3DFE dataset. In addition to trying the six 

models with classification by SVM, classification accuracy is compared to FLD. The ‘Effect 

size’ for all expressions is implemented and it gives very interesting results that describe the 

areas of the face associated with different expressions.  A detailed analysis of the PCA 

demonstrates how the significant components can be used to morph the expressions. The 

classification accuracies with different expressions and the models is discussed and critically 

analysed with similar computational models in the literature.  

 A comparison of the performance of human subjects in facial expression classification with 

computational models is made and statistically analyzed in Chapter 6. For the human subjects, 

the data recorded were response time and classification accuracy. These results are compared 

with computational models and critically evaluated with reference to relevant literature. 

Interesting comparisons between different expressions and between computational models and 

human performance are reported. The conclusions from individual chapters are presented in 

Chapter 7. The main contributions of this thesis are also presented. A section on future work 

suggests some possible extensions of this work based on the findings and observations made.  

Some of the results and discussions of the methods are presented in Appendices at the end of this 

thesis. In Appendix A the steps to perform PCA is discussed along with the steps to reconstruct 

the original face images from the PCA components. The plots of the PCA components for each 
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expression are included in Appendix B.  The LDA along with PCA is used as a Euclidean 

distance classifier and the cross validation results are in Appendix C. The cross validation results 

of the SVM classifier are also presented in Appendix C.  Appendix D has the results of the Bi-

variate correlation analysis for the misclassifications by human subjects. 

Some of the work from this thesis has been published as Conference papers, Poster abstracts and 

a copy of these are included in Appendix E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER TWO 

Literature Review 

2.1 Introduction  

 

The human face is a portrait of various facial features with the potential to communicate 

nonverbally with others.  Over the years, the ability to recognize and respond to facial expression 

has been the focus of research in social psychology.  Much of that research has been conducted 

on various aspects of facial expression, such as establishing when infants learn to recognize 

facial expressions and investigating the role of the right hemisphere in facial expression 

recognition.  These are just a few of the questions that have been addressed. Although over the 

last two decades interesting research has been undertaken in answering some of them, it has been 

argued that little progress has been made (Hager, 2006). This chapter discusses some of the work 

in the psychology of facial expression, including neuropsychology, and in computational 

modelling of facial expression as a background to the new empirical work reported in this thesis.  

Since the focus of this thesis is on the recognition of facial expressions and not on face identity, 

psychological and computational models of face recognition will not be reviewed with the 

exception of the Bruce and Young (1986) face recognition model which does refer also to 

expression recognition. The review will include the universality of facial expressions and the 

importance of the facial expression recognition; the distinction between expression generation 

and recognition; the distinction between categorical and continuous perception of facial 

expressions and the debate between feature based and holistic based facial expression 

processing. The importance of facial expression recognition is exemplified with case studies of 

impairments and the relevant neuropsychological research is discussed.  Selective impairments 

of some facial expression recognition due to brain injuries and disease are also considered. 

Feature based expression classifier such as the Facial Action Coding System (FACS) and 

emotion based classifiers are described. A section on databases reviews important aspects of an 

ideal database and methodologies used; and the dataset that has been used in the current work is 

also mentioned.  

 

2.2 The psychology of facial expression  

 

Bell (1844) seems to have published the first objective and scientific study of facial expression.  

Besides presenting valuable diagrams of the muscles of the face, Bell pointed out that in all the 
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positive emotions the eyebrows, the eyelids, the nostrils and the angles of the mouth are raised, 

while in the negative passions the reverse is true. Jenness (1932) reviewed previous work on the 

study of facial expressions. Various researchers were by then performing experiments with 

various types of expressions. Some of the work included questions of innateness and started to 

investigate whether any particular facial expressions are easier to recognize compared to others. 

Studies that were undertaken involved classification of facial expressions in images. Langfeld 

(1918) found laughter was easy to detect followed by amazement, bodily pain, hate, fear, disgust, 

doubt and the least easily detected was angry. This study was followed by Aluport (1924) 

repeating the same experiment but with a larger number of human subjects and found laughter 

the easiest to detect followed by bodily pain, fear, distrust, amazement, anger, doubt, and disgust. 

However, Jenness (1932) used the same data but with a very large number of subjects in 

comparison to others and found amazement to be detected most easily followed by laughter, 

bodily pain, anger, distrust, disgust, fear and doubt. In his review, Jenness mentions that due to 

inconsistencies in the experiments performed, it seemed difficult to arrive at a consensus. 

However, he predicted that it was the beginnings in the field of facial expression recognition and 

pointed to the necessity for new and better techniques of research and for more thorough 

consideration of the questions and difficulties involved.   

Darwin (1872) argued that the emotional expressions are universal and the same for all people 

based on his theory of evolution. However, the theory that emotional expressions were universal 

was ignored and rejected by many at that time.  The idea that facial expressions are not valid 

indicators of emotion was widely accepted even though the evidence was contradictory (Bruner 

and Tagiuri, 1954).  In the mid fifties, Ekman started his study on facial expressions. He was to 

become a key figure in this field. He has researched extensively for over four decades in topics 

related or relevant to emotion and facial expressions.  The theory proposed by Darwin about the 

emotional expressions being universal that was rejected by other researchers was once again 

addressed by Ekman and Friesen (1971) who  suggested, based on evidence, that expressions are 

indeed universal. A very recent study by Matsumoto and Willingham (2009) compared the 

expressions of blind and non-blind individuals and their findings provide further evidence that 

the production of spontaneous facial expressions of emotion is not learned. They conclude that 

something genetically wired is responsible for the generation of facial expressions of emotions. 

Evidence by Ekman (1973) proving universality of facial expressions was given by their study 

spanning cultures across the globe that suggested constants across cultures in the emotional 

meanings of facial expressions. Ekman has since then proposed the existence of six basic 

prototypical facial expressions that are universal.  Expressions found to be universal in nature 

are: anger, disgust, happiness, sadness, surprise and fear. Findings about the expression of 

contempt are less clear, although preliminary evidence support it as being universal (Ekman, 

1986). Izard (1977)  reported that ‘interest’ and ‘shame’ facial expressions are also universal.  

Since then there have been many other studies around the world that validate the universality of 

some of these facial expressions  (Matsumoto, 2001). Also, the facial expression in response to 

the emotion felt are produced by all people all around the world and from all walks of life  
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(Matsumoto et al., 2007) although some reviews report evidence that is suggestive of some 

Asian subjects having difficulty in displaying some expressions such a disgust and fear (Pantic 

and Rothkrantz, 2000). 

Ekman and Oster (1979) learnt that in addition to the other expressions mentioned earlier, 

distress and disgust expressions are also present from birth. Social smiles may emerge in an 

infant, just 4 weeks old.  The face of 3-week-old infants can show ‘interest’ (Oster, 1978) . 

Anger and contempt may be seen by 6-months (Izard, 1978). Meaningful surprise and fear 

configurations are seen in the second year of life (Ekman and Oster, 1979).  The facial 

expressions are registered by changes in the forehead, eyebrows, eyelids, cheeks, nose, lips, and 

chin. Most often, in real life situations, there is a complex combination of facial expressions such 

as pleasant surprise (happy-surprise). 

Though many facial expressions are universal in nature, the way these are displayed depends 

upon culture and the upbringing.  People learn to manipulate expressions in a number of ways 

for example by amplifying (showing more than actually felt), reducing the intensity than actually 

felt, showing a combination of more than one expression, concealing the emotion, or show a 

neutral face or even simulating some expressions when nothing is felt (Matsumoto et al., 2007; 

Matsumoto, 2007).  There is also evidence that displaying expressions on the face can even 

affect the way you feel. This is called the facial feedback hypothesis.  Strack, Martin and Stepper 

(1988) performed experiments to show that generating facial movement that shows a smile can 

positively affect the way we feel.    

 

2.2.1 Facial expressions and its representation 

 

Facial Expressions are a display of one or more emotions of an individual across the face. It may 

indicate the psychological state of the individual to the observers.  Facial expressions can be 

thought of as mode of communicating the feeling or inner emotional state (Lisetti and Schiano, 

2000).  Humans can adopt a facial expression as a voluntary action. However, because 

expressions are closely reflective of emotion, they are more often involuntary in nature 

(Matsumoto et al., 2007).  Although we usually (not always) have control of our emotional 

expressions, when voluntarily expressing them, we may not be best at it.  Among other things, 

the timing (onset and offset) and the coordination of the various regions of the face (brows, eyes, 

mouth) are usually conspicuously “off” in posed expressions (Ekman and Friesen, 1975). 

Similarly, we frequently have difficulty in voluntarily inhibiting genuine expressions. Facial 

expressions are not just emotional responses but a form of social communication. Fridlund 

(1994) strongly disagrees with Ekman in his writings, arguing that expressions carry no inherent 

meaning but the two basically agree that facial expressions tend to forecast people’s future 
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actions. However, instead of describing expressions from the point of view of the expresser, as 

Ekman tends to do, Fridlund thinks more in terms of people who perceive the expressions. 

 

2.2.2 Facial Identity and Expression 

 

It is over 20 years since Bruce and Young  (1986) presented the most influential  model for face 

recognition. They proposed parallel pathways for recognizing facial identity and facial 

expressions and lip speech. A similar neuropsychological model is proposed by Haxby, Hoffman 

and Gobbini (2000). Figure 2.1 shows the functional model for face processing proposed by 

Bruce and Young.  Haxby, Hoffman and Gobbini presented a neural model of face perception 

that has ‘core’ and ‘extended’ systems. The core system differentiates mechanisms for coding 

changeable facial properties and mechanisms coding invariant facial properties. The extended 

system includes neural regions that are involved in semantics, language, emotion and attention, 

which support the recognition of different facial characteristics. The Bruce and Young model is 

compatible with the neuropsychological model proposed by Haxby, Hoffman and Gobbini.  

Most of the facial features such as the eyes and mouth in particular convey information about 

what the person is feeling and enables communication (Ellis, 1975).  The relationship between 

the various facial features is referred to as configural information. This is an important factor for 

facial identity and facial expression. Young, Hellawell and Hay (1987) performed experiments 

with composite faces (creating a new face by using different upper and lower half of face images 

of popular celebrities). They demonstrated that the importance of configural information in 

perceiving of facial identity and those configurations are only properly perceived with upright 

faces. Calder and Young (2000) studied the configural  information in the perception of facial 

expressions in similar way as Young, Hellawell and Hay studied facial identity by using 

composites of facial expressions.  The facial expression in an aligned composite face took time 

in comparison to identifying the expression in misaligned face. This explains the composite 

effect of facial expressions and parallels the composite effect with facial identity by Young, 

Hellawell and Hay. In addition, Calder and Young also had evidence that composite effects of 

identity and expressions operate independently of one another.  This supports the pathway 

explained by the Bruce and Young model.  

The model by Bruce and Young that is compatible with the model by Haxby, Hoffman and 

Gobbini suggests that the facial identity and facial expression recognition pathways separate very 

early on, immediately after structural and visual analysis of faces.  Some cases of prosopagnosia 

that have no impaired facial expression recognition but with difficulty in recognizing identity 

would support the independence of identity processing; however, these cannot necessarily  be 

thought of to happen solely ( or even at all)  at the visuoperceptual level. Other causes such as 

cognitive impairments, amnesia etc cannot be ignored for such impairments.   The Bruce and 
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Young model has been investigated recently by  Calder and Young (2005) and they agree that 

there is some separation between the coding of facial identity and expression; however, the 

dominant view of distinct pathways is not strongly supported as they question at what stage  the 

facial identity route actually bifurcates from the facial expression route. Although of interest, this 

question of the stage of separation does not, however, impact on this thesis since only facial 

expression recognition is under consideration here. 

 

 

 

 Figure 2.1: Bruce and Young's functional model for face processing 
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2.2.3 Facial Expression Recognition 

 

Recognizing and understanding the facial expressions of other people is very important. Humans 

(and other primates) are biologically prepared for expression recognition, especially for the 

recognition of anger or threat (Ohman, 1993). The capability of a person to recognize facial 

expressions changes over time. Human infants as young as 5-6 months can discriminate between 

facial expressions of fear, anger, and sadness and that angry faces may be particularly ‘attention-

grabbing’ for infants (Schwartz et al., 1985; Serrano et al., 1992).  Some findings suggest that 

negative expressions (such as anger and fear) have greater impact on the perceiver that the 

positive ones (such as happy).  For example, the so-called face-in-the crowd effect suggests that 

angry faces are detected faster than happy faces when they are presented alongside other faces 

(Fox et al., 2000; Hansen and Hansen, 1988).  Hansen and Hansen concluded that facial displays 

of threat (from angry faces) were detected automatically and faster and that the consequence of 

this would be to shift the attention of the person to it. This would presumably provide an 

evolutionary advantage.  Happy faces were detected after a serial and linear search. However, 

other studies have shown that happy expression recognition is faster and easiest to be recognized 

and suggest that it could be attributed to the higher prevalence of this expression in social 

circumstances  (Carvajal et al., 2004; Kirita and Endo, 1995). Recent studies by Shimamura, 

Ross and Bennett (2006) suggest that memory for happy expression is longer than other 

expressions that were tested (surprise, angry and fear). This was also true when faces were 

turned upside down.  

Facial expressions are an essential part of social cognition and convey information about the 

person’s internal emotional state (Calder, 2005). The importance of facial expression recognition 

can be illustrated with individuals who have difficulty in perceiving it. In patients with brain 

damage or disease, the emotion recognition can be impaired. Adolphs, Travel, Damasio and 

Damasio (1994) found that bilateral amygdale damage results in harder fear expression 

recognition.  Patients suffering from Alzheimer’s disease, have impaired facial emotion 

processing and selective impairment in labelling facial expression of sadness (Hargrave et al., 

2002).  Patients of Parkinson’s disease have shown to have selectively impaired recognition of 

facial expressions of disgust (Suzuki et al., 2006). Schizophrenia sufferers have been shown to 

exhibit difficulty in recognizing the emotion that corresponds to a given facial expression; 

specific deficits in recognizing happy faces have been documented  as has the evidence that these 

patients were more inclined to attribute any facial emotion as fearful or sad (Tsoi et al., 2008). 

Two major theories explain how facial expressions are perceived and processed: the categorical 

view and the continuous view. The categorical or the discrete category view refers to specific 

emotions such as anger, happiness, surprise, fear, disgust, and sadness.  Conversely, the 

dimensional theory or the continuous view suggests that the mental representation of emotional 
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space consists of continuous underlying dimensions in which similar emotions are clustered 

together while different ones are far apart (Chan, 2009). 

Etcoff and Magee (1992) were the first to study the categorical perception of facial expressions.  

They experimented with the six basic prototypical expressions proposed by Ekman and Friesen 

(1976) but used computer generated drawings of these expressions.  They found that faces within 

a category (such as two smiling faces from the happy category) were discriminated more poorly 

than faces in different categories (such as discriminating a happy face from fear face) that 

differed by an equal physical amount. They found that all expressions except surprise were 

categorically perceived. Thus they concluded that emotional face expressions are perceived 

categorically and posed a significant challenge to idea of continuous space of emotions. This 

means rather than being perceived as a linear progression, the continuum of expression is 

perceived as an abrupt discontinuity at the boundary between two categories, for example from 

happy to sad. They also suggested that people always seem to see faces exhibiting one or the 

other expression. This led to more research into this field and Calder, Young, Perrett, Etcoff and 

Rowland (1996) repeated these experiments with photographic-quality stimuli. The evidence 

from these experiments compliments the idea of categorical perception proposed by Etcoff and 

Magee.  However, they do not agree fully with the idea of the mandatory assignment of an 

emotion category to the face. They also propose that categorical perception effects are evident 

when the population cells of the neural systems become more tuned to various expressions. 

Other researchers however, do not agree with the theory of categorical perception for basic 

expressions and emotions. The idea of categorical perception for facial expression is challenged 

by results that show that similarity judgments of these expressions exhibit a graded, continuous 

structure (Dailey, 2002).  Russell  (1980) proposed the circumplex model for facial affect  and 

later proposed that facial expression behave as fuzzy sets (Russell and Bullock, 1986). This 

research followed with other studies support that facial expression perception is a continuous, 

multidimensional and that some expression categories are more similar to each other than others 

(Dailey, 2002; Katsikitis, 1997; Russell et al., 1989; Schiano et al., 2004).  When Young, 

Rowland, Calder, Etcoff, Seth and Perett (1997) experimented to find evidence supporting 

categorical or continuous facial expression perception, they found evidence supporting both.  To 

date in spite of years of research on facial expression recognition by humans and  automatic 

facial expression recognition systems, there has been no evidence that simultaneously explains 

all of these seemingly contradictory findings (Dailey, 2002). 

 

2.2.4 Facial features and expressions 

 

In the literature, facial features are described as either internal or external.  It is normally 

assumed that the internal features such as eyes, nose, mouth and eyebrows and the configural 

relationship between them are important when compared to external features such as hair and 



14 

 

jaw line which are too variable to be useful for practical purposes (Sinha et al., 2006).  Featural 

processing involves using the individual features for processing and configural processing 

involves the relationship of various internal features. The holistic feature processing involves the 

interdependency between featural and configural information. Configural processing is already 

known to be important for face recognition, however, further experiments have now found that 

configural information is also necessary for facial expressions (Calder et al., 2000). This does 

not mean that the individual features of facial expressions are not just encoded for identification 

but it implies that the configural relationship of the features plays an important role in the 

encoding of facial expression.  

Different facial areas of the face are involved with different expressions. Bassili (1979) 

suggested that facial expressions are locally processed by brain unlike face recognition which is 

processed holistically.  His investigation showed that the upper part of the face is important for 

some expressions and for other expressions, the lower part of the face is important. Zhang and 

Cottrell (2005) suggest that local features are good predictors in facial expression recognition 

and holistic processing is useful for facial identity recognition. An experiment by Kirkpatrick, 

Bell, Johnson,  Perkins and Sullivan  (1996) that had children detect facial expressions from the 

upper and lower half of the face suggested that the children concentrated on the features in the 

lower half of the face for expressions of happiness, sadness, surprise, and disgust.  The features 

on the upper half of the face such as the eyebrows were used for the faces expressing anger and 

fear. The results of this study are consistent with the idea that certain groups of facial features are 

associated with specific emotions. 

Expressions can be classified as macro expressions and micro expressions. Some expressions are 

so brief that they hardly last for a fraction of 2-3 seconds and they are called micro expressions.  

These micro expressions are usually revealing genuine emotions which the person tries to 

conceal and are not easily detected (Ekman, 2003). The macro expressions are the ones which 

last for a longer time than the micro expressions. However, even this does not last over 5-6 

seconds.   So, if this expression lasts on an individual’s face, it indicates that the feeling was that 

intense which would also be displayed not just with the face but by the change in the voice tone 

or by words.  Hence it is very hard to miss these emotions even if you are not looking at the 

persons face. The very long lasting facial expression however does indicate that they are not 

genuine and is faked or a mock expression (Ekman and Friesen, 1975).   

To summarize, different features of the face are involved with various expressions and 

expression recognition involves featural and configural processing. Purely holistic based 

processing does not seem  to be very useful for facial expression recognition (Schwaninger et al., 

2006). 
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2.3 Neuropsychology aspect of facial expression recognition 

 

The recent neurological model for face perception that was proposed by Haxby, Hoffman and 

Gobbinni (2000) is compatible with the psychological model offered by Bruce and Young 

(1987).  The core system of Haxby, Hoffman and Gobbinni’s model contains two functionally 

and neurologically different pathways for the visual analysis of faces: one identifies those facial 

properties that change (such as expression, lip speech and eye gaze) and it involves the inferior 

occipital gyri and superior temporal sulcus (STS) of the brain, whereas the other identifies 

constant facial property (such as identity) and involves the inferior occipital gyri and lateral 

fusiform gyrus. The model proposed by Haxby, Hoffman and Gobbini and the model proposed 

by Bruce and Young agree that there are different pathways for the visual analysis of facial 

identity and expression. However, they differ in terms of how the processing takes place i.e.  if 

there is a separate system to code the facial expressions perceived or if the processing takes place 

along with detection of other changing facial features.   

Reviewing the broad subject of Neuroscience is beyond the scope of this thesis and it also 

requires in depth knowledge of various anatomical structures in the brain and its physiology. 

However, case studies of people with various anatomical lesions due to surgery and brain injury 

or damage and how it can effect on the ability to detect facial expression is discussed in the 

following section. 

 

2.3.1 Human Brain injuries /Lesions and their effect  

 

The left and right halves of the brain are specialized for different tasks.  The right hemisphere of 

the brain controls the muscles of the left half of the body and vice versa. The left hemisphere of 

the brain performs tasks involving language and logic. The right half of the brain is involved 

with spatial abilities, face recognition, cognition, and visualization (Gisalason, 2007). Hence, any 

damage due to surgery or injury to the right hemisphere may result in impaired face and 

expression recognition.  Though in the recent decades a lot of research has been done to study 

the cognition and behavioural impact of these injuries, less research has been done in the field of 

impairments of facial expression recognition.  

Research with primates has shown that the temporal visual cortex is involved in processing facial 

expression. In addition, neuro-imaging studies of healthy normal people have shown areas of the 

brain involved in the processing of facial affect. Crocker and McDonald (2005) studied the 

effects of traumatic brain injury on facial expression recognition.  They conducted experiments 

based on which they suggest that there is some impairment associated with recognizing facial 

expressions after brain injury and it was more with expressions pertaining to negative emotions.   
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Crocker and McDonald showed that the subjects of their study with traumatic brain injury were 

relatively normal on face recognition but abnormally poor when recognizing expression. This 

supports the notion that there are two distinct pathways for emotion and identity. In addition, 

these patients had an inability in naming an expression. This also suggests that to some extent 

there could be separate cognitive processes within the emotion recognition system. All these 

studies support the models proposed by Bruce and Young and Haxby et al, which have been 

discussed earlier.  In a study by Buck and Duffy (1980), they learnt that people with right brain 

hemisphere damage showed more emotional deficit as compared to those with left brain 

hemisphere damage. Further studies by others have also shown that people with right hemisphere 

damage have difficulty in exhibiting emotion expression in comparison to a neutral one 

(Browndyke, 2002). 

There is evidence from experiments by Ley and Bryden (1979) that when normal subjects  were 

shown strong emotional expressions, the right hemisphere of the brain was highly active when 

compared to the left and also in comparison to neutral or weak expressions.  Similarly, when a 

person displays a genuine expression, the intensity of the expression on the left side of the face is 

more than on the right (Browndyke, 2002). This very well gels with fact that the movements in 

the left half of the body are controlled by the right hemisphere of the brain.  

The results of experiments by Adolphs, Damasio, Tranel and Damasio (1996) suggest that all 

patients with brain lesions or damage recognized happiness but there were significant 

impairments in recognizing negative emotional expressions when compared to control subjects. 

The patients with these impairments were significantly more likely to have damage to their right 

hemisphere of the brain, the visual and somatosensory cortical sectors in particular.  Patients 

with brain injury on the left hemisphere showed normal recognition. The suggestion by earlier 

researchers that only the right hemisphere is involved in emotion recognition conflicts with study 

by Sprengelmeyer, Rausch, Eysel and Przuntek (1998) who suggested that the left hemisphere is 

important.  He performed fMRI studies on people when they judged expression (anger, disgust 

and fear) and concluded that different neural structures were involved with each of these 

expressions. He also found that though the recognition of these expressions is based on different 

systems, they converge at the left frontal cortex which seems to conflict with earlier studies of 

right hemisphere involvement.  

With these conflicting results in mind,  Adolphs, Damasio, Tranel, Cooper and Damasio (2000) 

experimented with patients who had right or left brain hemisphere lesions and the task was 

emotion recognition. Though the results of these studies do not rule out the left hemisphere 

involvement in emotion recognition, it does show that there is very little association. It also 

shows that as Sprengelmeyer suggested, the frontal cortex is involved in emotion recognition; 

however, it may be making more meaning to the expression perceived (example- language) 

rather than in actually perceiving the expression on the face. A number of studies have covered 

this subject over the years, but no solution has yet been obtained that resolve this argument. 

Though the right hemisphere is still thought to be significantly involved in emotion recognition, 
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there is an ongoing debate on whether the right hemisphere is involved with all 

expressions/emotions and also, whether the right hemisphere is involved with negative emotions 

while left hemisphere is involved with positive emotions. 

So far the discussions in this section on neuropsychology have dealt with expressions in general. 

Recent research has shown that various parts of the brain are involved with different expressions.  

Fox, Lester, Russo, Bowles, Pichler and Dutton (2000) studied threat detection, which is 

normally necessary in challenging social circumstances.  The amygdala has believed to be 

engaged while processing specific expression such as fear; however, recently it has been found 

to have some role with perception of other negative emotions such as anger, sadness, disgust 

(Adolphs, 2002). Further evidence suggests the greater role of amygdala in recognizing signal of 

potential threat or danger.  

 

2.3.2 Can the psychological and neuropsychological bases of facial expression 

recognition be used to develop computational models 

 

Taking into account some of the studies in expression recognition, the next step would be in 

computational modelling of this system which will help us to understand the underlying 

mechanism involving expression recognition. 

The primary visual cortex is located in the posterior part in the occipital area of the brain.  It has 

been very widely studied with relevance for visual perception of static and moving images and 

also for pattern recognition.  The primary visual cortex is the part of the brain that receives visual 

input from the retina. The primary visual cortex is divided into six functionally different layers 

labelled V1 to V6. The V1 part of the visual cortex is the first site where strong orientation and 

direction selectivity are observed (Hubel and Wiesel, 1968).  Receptive fields of cells in the V1 

layer of the visual cortex belong to one of the two categories: simple or complex.  The Simple 

cells have smaller receptive fields that are elongated, with an excitatory central oval, and an 

inhibitory surrounding region. These cells are excited when the images for these receptive fields 

have a particular orientation and have low spontaneous activity.  Some parts of the receptive 

fields of the simple cell respond to the onset of stimulus while other parts respond to the offset. 

The receptive fields of the complex cell are larger than that for simple cells and excite the cell as 

a response to movement in a particular direction. They exhibit greater spontaneous activity. The  

receptive fields of the complex cells respond to both onset and offset of the stimulus (Hubel and 

Wiesel, 1995; Leloglu, 1994).   

 The features of the face which are at various orientations and angles such as the eyes, eye brows 

etc can be extracted by computational models which mimic the simple cells of this visual cortex 

(Daugman, 1985).  The receptive fields of simple cells can hence be well described by Gabor 
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filters (Marcelja, 1980; Daugman, 1980) which are limited by both space and frequency. There is 

evidence that simple cells found in pairs are tuned to same orientation and frequency with phase 

difference of approximately 90 degrees (Pollen and Ronner, 1981) and may represent the real 

and imaginary parts of a complex Gabor filter.  Hence, the nearest biologically plausible feature 

extraction method mimicking simple cells would be Gabor filters and is explained in detail in 

Section 3.2 of Chapter 3. My work uses Gabor filters for feature extraction for the computational 

models of facial expression recognition. 

 

2.4 Computational models of facial expression recognition 

 

This section discusses research over the last decade in developing computational models for 

facial expression recognition. Whilst there has been a considerable amount of research done on 

facial identity recognition, they have concentrated on issues dealing with the identification of 

face by name, categorization of face by gender, race and age (Buchala et al., 2004c; O'Toole et 

al., 1994; Calder et al., 2001). Some approaches in studying facial expressions such that it can 

aid in recognizing the facial identity, gender, age and race as in real life situations the facial 

expression  are unpredictable, multiple and always present (Lisetti and Schiano, 2000).  A 

considerable number of systems have been developed which deal with the issue of facial 

expression analysis. Padgett et al (Dailey, 2002; Dailey et al., 2000; Padgett et al., 1996; Padgett 

and Cottrell, 1998) were the first to develop computational models for facial expressions. Every 

model is different in the technical approaches used (Lisetti and Schiano, 2000).  Lyons et al 

(1998) used Gabor filters for facial feature extraction in experiments with facial expression. He 

suggested that Gabor representation shows a significant degree of psychological plausibility.   

Another computational model for expression and recognition was proposed by Calder et al; it 

used the idea of encoding the positions of various features of the face  with respect to the average 

face (Calder et al., 2001). Before performing PCA, the faces are said to be warped. On other 

words, the facial features in a given set of faces are morphed to the average face of the set to 

obtain the same standard positions for the features of all faces. PCA is performed to obtain a low 

dimensional representation of the face shape and texture. Their experiments have shown that 

PCA can code facial expressions and that PCA can code facial expressions in psychologically 

plausible form.  

Most facial expression processing systems use part based or feature based processing for 

expression recognition. The best example is the use of FACS.  

The Facial Action Coding System (or FACS in short) is a widely used method for describing the 

various internal facial feature behaviours. FACS allows psychologists to code expressions from 

static facial images.  Ekman and Friesen (1978) developed the FACS by studying which muscles 
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on the face undergo changes in a particular expression. The unit of measurement in FACS is 

Action Unit or AU. An example of what an AU constitutes can be seen in Table 2.1.  The 

contractions and relaxations of the muscles result in changes in the appearance of the face whilst 

displaying facial expression. The purpose of designing this system was to best discriminate one 

expression from another.  This has been used by skilled human coders to determine the category 

into which the facial display fits into.   

Encoding a facial expression in FACS produces a list of AU’s. Normally, every AU records 

changes with more than one muscle. An expression can be coded as a combination of more than 

one AU. A total of 44 facial action units have been defined.  Experienced human coders use 

FACS to manually code any facial expression and decompose it into its specific AU’s. This has 

been one of the highly used efficient methods for expression recognition. A few examples of AU 

are shown in Table 2.1.  

 

Table 2.1: Examples of Action Units (AU). The first column is the AU number, followed by the description for 

changes in the muscle, the third column describes the muscle involved and the final column shows an example for 

that AU.  

 

Action Unit (AU) Description Facial 

muscle  

Example image 

 

 

1 

 

Inner brow 

raiser 

 

Frontalis, pars 

medialis 

 

 
 

 

 

15 

 

Lip corner 

depressor 

 

 

 

Depressor 

anguli oris (or  

Triangularis) 

 

 

 

 

26 

 

Jaw drop 

 

Masseter, 

relaxed 

Temporalis 

and internal 

Pterygoid 
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FACS coding is performed by highly trained human coders and lately, some automatic 

computational modelling has been investigated by Cohn and Kanade (2000), Bartlett (2005) and 

Pantic (2006).  

A majority of studies done so far have been based on the categorization of Ekman’s prototypical 

expressions and the problems associated are: firstly, the six basic prototypical expressions are not 

defined with FACS or with any facial codes to be identified universally and are quite confusing. 

Secondly, two different expressions can have two or more features involved in a very similar 

manner such as smiling mouth and raised eyebrows for a pleasant surprise and happy expression  

(Pantic and Rothkrantz, 2000; Pantic and Bartlett, 2007).  One important thing about FACS is 

that it is not a model for facial expression processing and does not claim to define which of the 

combinations of AU’s represents any expression (Schwaninger et al., 2006).  

 

2.4.1 Facial expression recognition systems 

 

Over the last few years a number of computational models have been developed that perform 

facial expression classification. Ideally, any facial expression recognition system designed 

should be capable of tasks comparable with the human visual system. The human visual system 

is believed to perceive the face as a whole and not as a collection of facial features (Pantic and 

Rothkrantz, 2000) and is capable of filling information in order to aid identification, if any part 

of the face image is occluded or covered.  This is a very difficult task for any computational 

system to do.    

In general any facial expression classification system would have the three basic units: Face 

detection, feature extraction and facial expression recognition. 

 

2.4.1.1 Face detection 

 

Determining the exact location of a face within a large background is a very tricky job for a 

computational system. An ideal face detection system should be capable of detecting faces 

within a noisy background and in complex scenes. Most often, there are variations in pose and 

lighting conditions, diverse range of sizes of the face, colour, texture and also movements across 

the face due to facial expressions and head movements (Fasel and Luettin, 2003).  

The facial components such as the eyes, nose, eyebrows etc are the prominent features of the 

face. The face may be represented as a whole (holistic face representation) or as a set of these 

facial features (analytic face representation). It can also be represented as a combination of these 

and is called hybrid representation.  
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There has been much research in the field of face recognition over the last two decades (Susskind 

et al., 2007; Essa and Pentland, 1997; Bartlett et al., 1999; Fasel and Luettin, 2003) and the most 

commonly used face detector in automatic facial expression analysis is the one that is proposed 

by Viola and Jones (2004) which makes use of a cascade of filters, which are trained by Ada 

Boost.  

 

2.4.1.2 Feature extraction  

 

Once the face is detected, the next step is to extract the features that may be relevant for facial 

expression analysis. If the face is represented as a holistic face model then the template based 

feature extraction method may be used.  If the face is represented as an analytical face model, 

then feature based extraction methods may be adopted. The most efficient of all are the hybrid 

methods which uses the analytic and holistic method for face representations (Pantic and 

Rothkrantz, 2000).  The template based methods are also referred as appearance based feature 

extraction methods and feature based methods are also referred to as geometric feature 

extraction. 

A review on these methods by Pantic lists a number of methods that have been used with feature 

extraction. Some of the holistic or template or appearance based methods used are:  active 

appearance models (AAM) which makes use of PCA, labelled graph to fit on a face image by 

using elastic bunch graph technique and applying Gabor jets at these points and  also, gradient 

optical flow method which estimates motion of specific points on the face. Some of the feature 

based methods include: multiple feature detectors applied on specific features of the face, 

extracting brightness distribution data on the face and optical flow method for specific areas such 

as the facial features on the face. 

Gunduz et al describes feature extraction methods can be broadly classified into 4 categories 

(Gunduz and Krim, 2003):   

� Geometric feature based – These methods extract the shape and locations of facial 

features such as the mouth, eyes, brows, and nose. They are presented as a feature vector 

that represents the face geometry.  

 

� Template based – These methods match the facial components using an appropriate 

energy function. A simple example for template matching is that a test image represented 

as a two-dimensional array of intensity values is compared using a suitable metric such as 

the Euclidean distance  with a single template representing the whole face.  
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Edwards et al (1998) used Active Appearance Model (AAM) for representing the shape 

and gray level property of the image. The images were hand-labelled at points that 

represent the key positions of facial features. PCA is applied to shape and gray level data 

separately (Turk and Pentland, 1991). PCA is applied again to this vector of concatenated 

shape and gray level parameters resulting in components describing ‘appearance’.  In 

order to perform face recognition, the appearance parameter minimizes the error between 

the new face image and the synthesized AAM image. Hence, these methods are also 

called as appearance based models. The other methods include Independent component 

analysis (ICA) and Gabor filters are used to extract wavelet feature vector for the facial 

components (Hong et al., 1998). These are holistic and rely on the statistical technique 

and an unsupervised learning method. Linear discriminant analysis (LDA) (Belhumeur et 

al., 1997) is another type of appearance based technique except that it is a supervised 

learning method. 

 

� Colour segmentation based – Here, the skin colour is used to detect the face features. Any 

non skin colour on the face is viewed as a feature such as eyes, mouth, nostrils etc 

(Vezhnevets et al., 2004). 

Fasel (2003) suggests that there can be other approaches to feature extraction. They are 

deformation extraction and motion extraction, both can be implemented holistically or locally. 

Deformation based methods can be applied to both static images and captured frame of an image 

sequence.  They rely on neutral face images to extract facial features associated with an 

expression efficiently so that permanent wrinkles and creases are not picked up as changes in 

facial features.  In contrast, motion based methods directly focuses on the facial changes that 

occur due to facial expression.  

Deformation methods are: Image based or model based. Motion extraction methods that focus on 

facial features relevant to facial actions are: dense optical flow, feature point tracking and 

difference images. The following are some of the methods that have been discussed in literature 

so far.  

 

A. DEFORMATION METHODS: 

 

•  Image based deformation methods : 

 

Holistic - 

 

� Neural network based such as Multi layer perceptron, feed forward network (Dailey, 

2002) and back propagation algorithm (Lisetti and Schiano, 2000). 
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� Gabor Wavelets (Fellenz et al., 1999; Dailey, 2002). 

 

Local –  

 

� With windows placed across areas of interest such as the facial features,  PCA and 

neural networks are used (Padgett and Cottrell, 1996). 

 

� Local transient facial features such as wrinkles and creases which occur during an 

expression are measured by image density profiles or by determining the density of 

high gradient components over the areas of interest (Lien, 1998). 

 

• Model based deformation methods: 

 

Holistic –  

 

� Active appearance models (Lanitis et al., 1997; Edwards et al., 1998). 

 

� Labelled graphs use sparse distributed fiducial feature points with Gabor jets. Each 

Gabor jet is a filter response of a Gabor filter at that point on the face image (Hong et 

al., 1998; Lyons, 1999). These points are placed at specific areas of the face image in 

order to perform better feature extraction. 

 

Local -  

 

� Geometric face method uses the relationship between the features such as mouth, 

eyes and nose (Kobayashi and Hara, 1997). The entire face is represented by 30 

facial characteristic points (FCP) and in combination with neural networks, the 

measurements are made. 

 

� A two view point based method adopted by Pantic and Rothkrantz (2000) represent 

frontal and side view of face as facial points at the facial features.  Multiple feature 

detectors are applied to study the contours of the salient features such as eyebrows, 

eyes and mouth. 
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B.  MODEL METHODS 

 

• Dense optical flow methods : 

 

Holistic –  

 

� The methods used here analyze whole face motions with wavelets and multi 

resolution optical flow. Optical flow can define the relative changes in the brightness 

pattern of an image. The use of optical flow to track motion is much useful with 

facial expressions because facial features and skin naturally have a great deal of 

texture. Using PCA, a low-dimensional representation of the high dimensional dense 

flows for each frame can be used (Lien, 1998). 

 

Local –  

 

� The same techniques such as that used in holistic processing is adopted except that 

the areas of interest are restricted to specific regions of the face representing facial 

actions (Mase, 1991).  

 

• Motion models: 

Holistic –  

� Changes  in facial features  in particular lips are  tracked by creating force field 

around these areas by making use of the gradients found in images(Terzopoulos and 

Waters, 1993). Sophisticated 3D motion and muscle models for facial expression 

recognition have been used to track the changes (Essa and Pentland, 1997). 

 

Local –  

 

� These models allow local regions in space and time to accurately record non rigid 

facial motions and also motion associated with the edges of the mouth, nose, 

eyebrows and eyelids by a very small number of parameters (Black and Yacoob, 

1997; Yacoob and Davis, 1994).  

 

• Feature point tracking : 

 

Local – 

 

� Facial feature point is based on facial features in regions of brows, eyes, nose, and 

mouth. However, the forehead, cheek and chin regions also have important 
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expression information.  Feature points are placed on the face in areas of high 

contrast especially at locations of intransient facial features which are always present 

on the face but may be deformed due to facial expressions. Motion analyses are 

performed by measuring these displacements and are tracked. Other studies have 

used different component models for facial features such as lips, cheeks, eyes and 

eyebrows. They use feature point tracking to study the deformation of these facial 

features (Lien, 1998; Tian et al., 2005).  Similarly, a rectangular area enclosing the 

feature can also be tracked with the help of feature points (Rosenblum et al., 1996). 

 

• Difference images 

Holistic –  

� Differences of image intensities can be obtained by subtracting a given face image 

from a previously stored neutral face image of the same subject.  The results depend 

on the alignment of the faces in consideration (Fellenz et al., 1999; Donato et al., 

1999).  

Local – 

� Region based difference image models belong to local methods. 

 

However, most often extraction methods are one of the two categories: Holistic (appearance 

based) or feature based (geometric based).  

The feature based methods extract the information from the facial deformation of the features 

during the display of an expression. They emphasize on the contours of the eyebrows, lips, 

corners of the mouth, eyes or the geometrical relationship between the features represented as a 

set of fiducial points  on the face (Buenaposada et al., 2008).   

In comparison to reducing the image to a set of facial features which removes a lot of 

information as in feature based methods, holistic appearance based methods make use of the 

entire face as a whole. Over the years, though both methods have been used and the reviews do 

not support one over the other with mixed findings, the combination of both appearance based 

(holistic) and motion based (feature) may seem to be more powerful as some evidence support 

this (Bartlett et al., 1999). The use of appearance based model for feature extraction is found to 

be good with expression recognition (Littlewort et al., 2006). The recent trend is the use of 

hybrid systems which use both holistic and feature based (Schwaninger et al., 2006).   In a 

hybrid method, instead of using eigenfaces, PCA is applied only to specific facial areas that have 

facial features to obtain ‘eigenfeatures’.   These systems are capable of performing efficiently 

even in situations where there is severe changes in the appearance of a face due to occlusions 

(Swets and Weng, 1996).  Similar other methods use SVM’s which are trained to recognize 
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facial features. The combined configuration of these features can then be used by some high 

level classifier (Schwaninger et al., 2006). 

  

 

2.4.1.3 Facial expression classification  

 

The final step in facial expression analysis is classification which classifies or identifies the 

expression. The classification task always ends up as one of the basic emotions or a facial action. 

In other words, the classifiers of facial expression are message based or sign judgement based. In 

the message based systems determines the underlying affect, the outputs of which will be judged 

as an emotion such as ‘angry’ , ‘happy’ etc. The sign judgement systems are based on detection 

of facial action units.  For example, a brow furrow could be judged as ‘angry’ in a message based 

and as a movement of facial muscles with the sign judgement system. A higher level decision 

making process needs to be followed in the sign judgement systems to interpret these muscle 

movements. 

Irrespective of the classification category used, the classifiers can either follow a template based 

or a neural network based or a rule based classification method (Pantic and Rothkrantz, 2000). 

Template based methods include discriminant functions such as LDA, PCA and spatio-temporal 

energy templates. Rule based methods make use of expert system rules.  Back propagation 

learning methods are the most often used neural network based classification method. 

Another way of classifying these methods as reviewed by Fasel (2003) suggests that 

classification can be achieved by one of the two approaches: spatio-temporal approach or spatial 

approaches.  

Spatio-temporal approach: This approach emphasizes space and time. The image template refers 

to space and a sequence or few templates refer to time. The spatio-temporal approach includes 

Hidden Markov Models to model the dynamics of facial actions (Lien, 1998). A number of 

classifiers have been developed that use this approach.  Another class includes 2D motion field, 

where instead of a sequence just two templates are used whose Euclidean distance will provide 

the estimate for the expression (Essa and Pentland, 1997).  

Spatial approach: This involves the use of neural networks (Lisetti and Schiano, 2000; Padgett 

and Cottrell, 1996; Kobayashi and Hara, 1997).  Neural networks can be applied to face images 

with or without undergoing feature extraction and representation by methods such as PCA, ICA 

and Gabor filters (Fellenz et al., 1999; Dailey and Cottrell, 1999).  Use of dimensionality 

reduction methods such as PCA, ICA, and CCA can also be performed which reduces the 

complexity of the classification task in terms of time for classification and also computational 

complexity. These methods can be used either holistic or locally. A number of classifiers in the 

past have used this approach.  
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Another way of classification by Lisetti and Schiano (2000):  Image motion, Anatomical models, 

neural networks and hybrid systems.  The Image motion approach analyzes the motion and 

extract dynamic muscle action between successive images or in a sequence and is called as 

Optical flow (Mase, 1991). An array of arrows is used to indicate the direction and the 

magnitude at each image location.  Other methods use anatomical models of the face in order to 

interpret the expression (Essa and Pentland, 1997; Terzopoulos and Waters, 1993). The problem 

with this technique is that of producing the anatomical model, which is difficult considering the 

vast range of feature differences on the face across individuals.  Neural network methods could 

be supervised or unsupervised learning networks.  With face expression, they work with 2D 

images and receive pixel intensity of the image as the inputs.  Support Vector Machines (SVM) 

can also be used for classification.  This is a learning algorithm that separates two classes of data 

such that there is maximum separation between them. A number of studies with facial expression 

use SVM for classification (Vert, 2002; Cortes and Vapnik, 1995; Zheng et al., 2004b; Liejun et 

al., 2009). 

The ideal facial expression system should be capable of identifying an expression irrespective of 

age, gender, ethnicity, and also with varying degrees of intensity of the expression.  Also, the 

recent advances especially with recognition of facial expression in moving sequences suggest 

that the timing of these facial expressions is also a very important factor. Designing an ideal 

robust facial expression system that is capable of detecting all expressions in various lighting 

conditions, pose, gaze, even in the presence of facial hair, glasses, different hair style, and also 

capable to fill in the gaps in the areas of the faces that are obstructed or occluded that will match 

a good human expression expert is a very difficult task.  

This thesis does not discuss face recognition and concentrates solely on methodologies involving 

facial expressions. This thesis uses a holistic appearance based method namely; Gabor filters for 

feature extraction followed by dimensionality reduction methods such as PCA, CCA, LDA and 

classifiers namely SVM and FLD.   

 

2.5 Databases 

 

There are number of databases which are frequently used with experiments on facial expression 

classification.  Some earlier studies are intended to judge human performance and have used 

sketches (Etcoff and Magee, 1992; Jenness, 1932). All other works use either static images and 

more recently, moving image sequences of posing individuals. Each of these methods has their 

own benefits and drawbacks. It is impossible to make a one to one comparison with the results of 

different computational models of facial expression classification. The primary reason being, 

none of them use the same database. There are number of issues that have been raised by 
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researchers earlier in reference to databases. A number of researchers have discussed the factors 

that affect quality of the database that make comparisons from these experiment results difficult 

(Zheng et al., 2009; Lisetti and Schiano, 2000; Pantic and Bartlett, 2007; Fasel and Luettin, 

2003; Buenaposada et al., 2008; Pantic and Rothkrantz, 2000).  

They include:   

• The intensity of the expression on the face of the subject.  

• Are the images from spontaneous expression or posed for the camera by subjects? 

• Presence of noise - is the recording performed in a laboratory or in real life situations. 

• Is the expression on the face significant or is it the internal feeling- both need not be the 

same. 

• Is the subject aware of being recorded? 

• With image sequences, the timing of the facial expression is important. 

• Age of the person – preferably with not many permanent wrinkles which can contribute 

to variation in feature shape. 

• Presence of facial hair or glasses. 

• Ethnicity, Gender. 

• Does the database have all six basic prototypical expressions? 

• In real life situations, it cannot be guaranteed that the subject will not move.  

Currently, a number of databases exist. I have used two types of datasets – FERET (Philips et al., 

1998) and BINGHAMTON BU-3DFE (Yin et al., 2006).  

 

2.6 Discussion 

 

This chapter has discussed facial expression with respect to three different domains: 

psychological, neuropsychological and computational. The process of generating expressions is 

innate and evidence suggests universality of expressions across the globe. The ease with which 

facial expression are recognized by humans, the processes involved in the human brain, the 

importance of the ability to recognize, brain lesions and impairments associated with them have 

also been discussed. The process by which human beings perceive facial expressions and 

recognize them is complicated. Very early contribution in the field of recognition of facial 

expressions by humans has been discussed. The classification accuracy of facial expressions by 

humans is much higher in comparison to any computational models that have ever been 

developed so far. Most of the computational models work with static images which do not 

represent normal ecological environment and though recently work is being done on moving 
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video images, they are posed expression rather than spontaneous; none of these depict natural 

social circumstances that we normally deal within real life situations.  

In addition, humans do not make judgements with six basic expressions in mind; it is much more 

than that. Micro expressions, macro expressions, deception, are some other factors that are 

involved in addition to the complex expressions which are combinations of more than one 

expression. Judgements in social circumstances in real life situations take into consideration 

other factors such as body language, voice, tone and also the environment around us. Facial 

expression is only one component of emotional display.  Hence, an ideal computational system 

would be the one that takes into consideration each one of these small factors that have been 

mentioned.  

Having discussed about these factors, with information from existing literature, it is very difficult 

to compare the results of various computational models of facial expression recognition. In 

addition, comparing the results of human performance in experiments of facial expression 

classification and results from computational models of facial expression recognition is also a 

daunting task. The major factors for these difficulties are differences in stimuli and 

methodologies used in these experiments. Few other factors include differences in the ability of 

brain lesion patients or people with various brain diseases, and also, gender and age of the 

participants in neuropsychology based experiments. Also, possible effects of other disorders such 

as autism, anxiety and depression should not be ignored as they can also affect the ability to 

perceive and judge emotions or expression and also, in exhibiting them. This chapter discussed 

the simple cells of the visual cortex of the brain and the next chapter discusses the biologically 

plausible Gabor filters that mimic the simple cells.    

Facial expression recognition is a very interesting field of research and has brought together 

psychologists, psychiatrists, neurophysiologists and computer scientists. A better understanding 

between these fields would result in developing better, biologically plausible facial expression 

systems that are able to match the human classification performance.   
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CHAPTER THREE 

Computational Techniques 

 

3.1 Introduction 

 

Human beings appear to detect and process faces and face expression with minimal effort.  

However, to develop a computational model capable of doing this is a non trivial task.  The 

processes involved in developing such a computational model, and how best it may be developed 

to mimic a human like performance, will be explained in this chapter.  

 

Computational techniques that are used with images include pre-processing techniques for 

feature extraction, dimensionality reduction and classification algorithms. This chapter explains 

the feature extraction method used here, namely, Gabor filters. This is followed by a discussion 

of dimensionality reduction methods.  Face images are high dimensional in nature and though 

not many of face images are used in experiments, it presents a challenge in terms of 

mathematical complexity and the memory space required in storing them (Donoho, 2000). 

However, high dimensional data could have many variables which are redundant and therefore 

not necessary. There are a wide variety of dimensionality reduction methods which enable this 

problem to be circumvented. 

   

In the literature, various dimensionality reduction methods have been proposed such as:  

Principal Component Analysis (Smith, 2002; Jolliffe, 2002), Fisher Linear Discriminant 

Analysis and Curvilinear Component Analysis (Demartines and Hérault, 1997b), Independent 

Component Analysis (Comon, 1994), Self Organising Maps (Kohonen, 2001) are also widely 

used. The discussion of all these methods is beyond the scope of this thesis; however, some of 

these techniques are used here and are discussed in this chapter. This chapter also discusses the 

classifiers used : Support Vector Machines (Chang and Lin, 2001) and the Fisher Linear 

Discriminant (Fisher, 1936).   

 

3.2 Feature Extraction  

 

Feature extraction is a method of capturing relevant information from the image in order to 

perform the desired task, using the reduced representation, instead of the full sized image. From 

the neurophysiology point of view, human sensory processing involves data reduction (Barlow, 
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1989) as well as feature extraction in the perceived image (Daugman, 1985). The cues on the 

face help humans to recognize the person and also the expression on their face. In order to 

develop a model capable of detecting these facial expressions, the face in an image has to be 

detected, followed by the expression. For this features on the face may be extracted.  The facial 

features are the prominent components on the face, such as, the eyebrows, eyes, nose, mouth, 

and chin (Pantic and Rothkrantz, 2000). For any given face, these attributes have typically been 

placed into two groups: ‘internal’ attributes, comprising the eyes, nose and mouth, and ‘external’ 

attributes comprising the hair and jaw-line or chin (Jarudi and Sinha, 2003).  The facial 

expressions are registered by changes in these features and these facial features may be aligned 

at various angles or orientations. Face expression are analysed as either holistic, analytic or 

hybrid.  Holistic is representation as a whole. In analytic, the face is represented as a set of the 

above features and in hybrid, a combination of holistic and analytic techniques are used.  Once 

these features are extracted, they have to be reduced in dimensionality and categorized by a 

classifier.  

 

Computer-based recognition of facial expressions using features has a long history (Cao et al., 

2005), and various methods have been proposed. All the methods can be classified into two 

broad-based categories: (i) feature based approaches and (ii) holistic or probabilistic approaches.  

Most often, the feature-based methods utilize the Facial Action Coding System (FACS) designed 

by Ekman and Friesan (1978).  Combinations of various muscle movements over the face 

represent an action unit (AU).  In FACS, the emotions of the face are represented by values of 44 

action units (AUs), and their combinations may describe any facial expression.  Each expression 

is generated by the combination of several of these action units. More than 7,000 combinations 

of AUs have been observed. However, FACS itself is purely descriptive, uses no emotion and 

simply provides the necessary parameters to describe facial expressions and not the expression 

itself.  The probabilistic-based method does not give preference to facial features such as the 

eyes and mouth. Instead, the feature vector can be the random distribution of image intensities 

(pixel values) and these vectors may differ for each emotion.  The vectors are calculated per 

emotion and classification algorithms such as Neural Network (NN) and Hidden Markov Models 

or hybrid models  (HMM or NN) are applied (Teo et al., 2004). 

 

3.2.1 Gabor Filters 

 

Mathematically, Gabor filters are a function obtained by modulating a sinusoidal function with a 

Gaussian function.  A Gabor filter can be one or two dimensional (2D). A 2D Gabor filter is 

expressed as a Gaussian modulated sinusoid in the spatial domain and as a shifted Gaussian in 

the frequency domain.   The key parameters of a Gabor filter are orientation and frequency. It is 

used to enhance certain features that share orientation and/or frequency and thereby enables 

useful pre-processing required for facial expression, recognition and analysis. By using a suitable 



32 

 

Gabor filter at the required orientation, certain features can be given high importance and other 

features less importance.  

 

The Gabor filter is a Gaussian (with variances ��and ��  along the  
 and � - axes respectively) 

modulated by a complex sinusoid plane (along 
 and � - axes respectively) and is described by 

Equation 3.1.  The sinusoidal signal frequency is described as cycles/unit length and is described 

by Equation 3.2. The equation is complex in nature and has a real and imaginary part (Derpanis, 

2007; Drakos and Moore, 1999). The Gaussian function is described by Equation 3.3.   

 

 
 ��
, �
 = ��
, �
ℎ�
, �
        (3.1) 

 

The complex sinusoid is given by Equation 3.2. 

 

  ��
, �
 = �����������
       (3.2) 

where � and � are the centre frequencies in the 
 and � directions. 

 

The Gaussian envelope is given by Equation 3.3. 

 

 ℎ�
, �
 = 12"���� e�$�%& �'()*�+ �',-* . (3.3) 

 

 Hence, the full Gabor filter is given by the Equation 3.4. 

 

 ��
, �
 = 12"���� e�$�%& �'()*�+ �',-* .����������
 (3.4) 

 

Figure 3.1 shows the real and imaginary part of the 2D Gabor filter. 
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Figure 3.1:  Plot of Real and Imaginary part of 2D Gabor filter. The main difference between the two images here is 

that they are out of phase. 

 

A Gabor filter is therefore described by the following parameters: 

 

1. The  ��   and  �� of the Gaussian explain the shape of the base (circle or ellipse). 

2. The frequency (/) of the sinusoid plane.  

3. The orientation (0) of the applied sinusoid. 

 

As the Gabor filter is complex in nature, the image when filtered produces two parts: the 

imaginary part and the real part.  The magnitude image can be obtained from the imaginary and 

the real parts.  Here, only the magnitude of the filter is used for feature extraction. Figure 3.2 

show examples of various Gabor filters (magnitude) at different frequencies and orientations.  

 

There are two ways of performing Gabor filtering on face images:   

 

• Analytical methods:  These make use of specific points on the face, which are important 

feature points (fiducial points).  There are two methods for identifying or locating these 

feature points: The Elastic Graph based method and Non graph based methods.  

 

� With Elastic graph based analytic methods, the face is represented by a rectangular graph 

with local features extracted at deformable nodes using Gabor wavelets, referred to as 

Gabor jets. Wiskott extended this method to Elastic Bunch Graph Matching (EBGM), 

where graph nodes are located at a number of facial landmarks (Wiskott et al., 1999).  

 



34 

 

� Computationally, the Elastic graph method is complex, hence other simple methods of 

manually locating the feature points, or using colour, or edge information from the 

images, have been proposed and these are called Non-graph based methods (Shen, 2005). 

Escobar proposes to use Log-Polar images for Gabor feature extraction. The face image 

is Log-Polar transformed before it is convolved with Gabor wavelets. This technique is 

supposed to be more robust against the variance of scale and rotation. In this system, 

facial feature points are located manually and the coordinates are Log-Polar transformed 

as well (Escobar and Ruiz-del-Solar, 2002). The colour and edge information can also be 

used to extract facial features (Wu et al., 2002). 

 

Once the location process is completed, recognition can then be performed using Gabor jets 

extracted from those feature points (Shen and Bai, 2006). 

 

• Holistic methods:  These methods normally extract features from the whole face image. An 

augmented Gabor feature vector is thus created, which produces a very large representation 

for the image.  Once the feature vector is available, various methods have been proposed in 

the literature for using the feature vector and these will be further explained in the following 

section. 

 

A well designed Gabor filter bank can capture the features of an image. These include repeating 

patterns in the image, the details of a pattern and its edge. Experimental results in texture 

analysis and character analysis demonstrate these features in the capture of local information 

with the different frequencies and orientations in the image (Zheng et al., 2004a). 

 

According to Daugman, aspects of the visual cortex can be mimicked by Gabor filters. The 

various 2D receptive-field profiles encountered in populations of simple cells in the visual cortex 

are well described by an optimal family of 2D Gabor filters (Grigorescu et al., 2002; Jones and 

Palmer, 1987; Daugman, 1985; Kulikowski et al., 1982; Escobar and Ruiz-del-Solar, 2002)   

Jones and Palmer (1987) showed that the real part of the Gabor function fits very well with the 

receptive field weight functions for the simple cells in the cat striate cortex. Feature extraction 

using Gabor filters is considered effective for facial image representation (Jain and Farrokhnia, 

1991; Movellan, 2002). Studies by Pollen and Ronner (1981) have shown that pairs of adjacent 

cells in the visual cortex of the cat are in quadrature (separated in phase by 90
ο
). The two 

adjacent cells can be regarded as the real and imaginary parts of a complex function and treat it 

as a complex receptive field (Movellan, 2002).  
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 (a)                         (b)                            (c) 

 

Figure 3.2:  (a), (b), (c) are examples of Gabor filter with different frequencies and orientations. The top row shows 

their 3D plots and the bottom row, the intensity plots of their amplitude along the image plane. Normally filters at 

five different frequency scales and eight orientations are used over the image.  

 

Since the local frequency and orientation of the features of the face are unknown, in most face 

recognition applications 40 Gabor filters are used (Shen and Bai, 2006).  Five scales and eight 

orientations account for the forty filters normally used. Figure 3.3 shows all the 40 filters in 5 

rows and 8 columns. The filter in the top row is of the highest frequency scale and is of 

decreasing scale in the rows below. Each column has filters for a particular angle. 

 

 

 Figure 3.3: Gabor filters at five scales and eight orientations 
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The effect of applying the filters can be best seen in the image which has lines at various angles 

and orientations. Figure 3.4(a) shows an image with lines at various angles. Figure 3.4(b) and 

3.4(c) show the effect of applying a particular Gabor filter on Figure 3.4 (a). The highlighted 

lines in Figure 3.4 (b) and Figure 3.4 (c) shows the way the Gabor filter exaggerates lines at 

particular orientation similar to the results obtained earlier by others (Asirvatham, 2002) .  

 

 

 

(a) 

 

(b)      (c) 

Figure 3.4:  Gabor filtered images at various angles and orientations (a) Image with lines at various angles (b) 

Frequency, 1 = 12.5 and orientation, 2 = 135 degrees (c) Frequency, 1 = 25 and orientation, 2 = 0 degrees  

 

An image such as a face has features at various angles and orientations and various frequencies. 

A Gabor filter bank with filters at 5 different frequency scales and 8 different angular 

orientations is capable up of capturing all the features of the face.  Figure 3.5 is a sample image 

and the filters shown in Figure 3.3 are applied on the sample image. The resultant output from 

the filter bank is shown in Figure 3.6. 

 

 

 

 



 

 

In all the experiments performed

8 angular orientations. 

By using the holistic method

augmented Gabor feature vector

in size than the original data for the image. This is because

represented by a vector of size 40.

 

Figure 3.6: Magnitude part of the convol

(shown in Fig. 3.3). 

 

37 

 
 

Figure 3.5: Sample Image of size 34 × 34 

In all the experiments performed here, the magnitude image is used with 5 frequency scales and 

By using the holistic method, features from the whole face image can be extracted. An 

augmented Gabor feature vector, which is the resultant image from the filter 

in size than the original data for the image. This is because, as 40 filters are 

resented by a vector of size 40. So a 64 × 64  image is transformed to size

 

: Magnitude part of the convolution output of a sample image shown in Figure 

mage is used with 5 frequency scales and 

features from the whole face image can be extracted. An 

which is the resultant image from the filter bank, is far greater 

as 40 filters are used; every pixel is   

size 64 × 64 × 40 .  

 

Figure 3.5 and the Gabor kernels 
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Once the feature vector is obtained, it can be handled in various ways such as: 

 

� The final image can be of the sum of the magnitudes of the Gabor filter coefficients at 

each location in the filter bank output. 

 

� The pixel value in the final image would be the L2 max norm value of the feature vector 

obtained from the Gabor filter bank. This is simply the largest value from the Gabor filter 

bank output for every pixel of the original image (Grigorescu et al., 2002; Kruizinga and 

Petkov, 1999)  

 

� Some methods use the feature vector as a concatenated vector and then perform 

dimensionality reduction such as PCA or even ICA (Liu and Wechsler, 2003). 

 

� For the individual images (40 images) the energy content is obtained from the grey scale 

value.  The mean and the variance can be obtained for every image. Thus the mean and 

variance is obtained for the entire filter bank (40filters). The final vector is represented by 

80 bytes:  2 for each (mean and variance) Gabor filter output for every input image (Shen 

and Bai, 2004).  

 

� The final image from the filter bank can also be the average of the corresponding pixels 

of the individual Gabor filter bank outputs. 

 

� The final image from the filter bank could be the threshold output where the pixel value 

after performing the L2 max norm is compared with the threshold value and assigned 

magnitude 1 if greater than the threshold or 0 if less than the threshold (Kruizinga and 

Petkov, 1999). 
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 (a)  

 

                 
                           (b)      (c) 

 

 

                 
                     (d)       (e) 

 

Figure 3.7:(a) Original Image (b) Sum Image (c) Superposition output (L2 max norm) (d) Threshold Output (e) 

Average Output 

 

Figure 3.7 (c) shows the L2 max norm superposition output for the original image of Figure 3.7 

(a).  Similarly the outputs of the 40 filter banks can also be averaged or summed to give an 

output as in Figure 3.7 (b).  All images displayed here are from the magnitude part of the Gabor 

filter outputs. The computational model used in the experiments here makes use of the L2 max 

norm superposition output. The technique adopted to find the L2 max norm superposition output 

can be explained with Figure 3.8.  Each of the 40 filters produce an output of size 64 × 64, the 
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final output of the entire filter bank at a pixel �
, �
 is obtained by comparing the pixel value at 

the same co-ordinates for all 40 filters. The pixel value at �
, �
 is the largest at that point in all 

the 40 filter outputs. This is done for all the pixels of the entire image to get the L2 max norm 

superposition output for the filter bank. 

 

 

 

Figure 3.8: All 40 filter outputs used to find the L2 max norm superposition 

 

 

3.3 Dimensionality Reduction 

 

There are many techniques for dimensionality reduction such as, Principal Component Analysis 

or SVD decomposition (Smith, 2002; Jolliffe, 2002), Independent Component Analysis 

(Hyvärinen and Oja, 2000), Curvilinear Component Analysis (Demartines and Hérault, 1997b), 

Linear Discriminant Analysis (LDA), Fisher Linear Discriminant (Fisher, 2001), 

Multidimensional scaling, Projection pursuit, Discrete Fourier transform, Discrete Cosine 

transform (Jain, 1988), Wavelets, Partitioning in the time domain, Random Projections, 

Multidimensional scaling, Fast Map and its variants (Fodor, 2002; Gunopulos, 2001). The 

following methods are used here and are described in detail in this chapter: Principal Component 

Analysis (PCA), Curvilinear Component Analysis (CCA) and Linear Discriminant Analysis 

(LDA). Also, Fisher Linear Discriminant (FLD) which is an extension of LDA is described in its 

use for classification. 
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3.3.1 Principal Component Analysis 

 

Principal Component Analysis (PCA) transforms higher dimensional datasets into lower 

dimensional uncorrelated outputs by capturing linear correlations among the data, and preserving 

as much information as possible in the data.  PCA transforms data from the original coordinate 

system to the principal axes coordinate system such that the first principal axis passes through 

the maximum possible variance in the data.  The second principal axis passes through the next 

largest possible variance and this is orthogonal to the first axis.  This is repeated for the next 

largest possible variances and so on. All these axes are orthogonal to each other. On performing 

the PCA on the high dimensional data, Eigenvectors or principal components are obtained 

(Smith, 2002; Shlens, 2005). The required reduced dimensionality is obtained by retaining only 

the first few principal components.  

 

PCA projects a 6 − dimensional dataset 7 into a � − dimensional dataset 8, where � ≤ 6.  

Projecting the data from their original 6 − dimensional space onto the � − dimensional subspace 

spanned by these vectors then performs a dimensionality reduction that often retains most of the 

intrinsic information in the data (Smith, 2002; Jolliffe, 2002). The first principal component is 

taken to be along the direction with the maximum variance.  The second principal component is 

constrained to lie in the subspace perpendicular to the first.  Within that subspace, it points in the 

direction of the maximum variance.  Then, the third principal component is taken in the 

maximum variance direction in the subspace perpendicular to the first two, and so on.  

 

 

Figure 3.9:  The blue lines represent 2 consecutive principal components. Note that they are orthogonal (at right 

angles) to each other. 
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Figure 3.9 shows the first two principal components.  The steps involved in obtaining 

Principal components are detailed in Appendix A. 

If face images are used in the PCA, then the principal vector or Eigenvectors are called 

Eigenfaces. The Eigenfaces are face like and capture variations of the faces in the dataset (Turk 

and Pentland, 1991).  Figure 3.11 show the Eigenfaces for a dataset of 80 images which has 40 

neutral expression and 40 smiling faces of equal number of male and female subjects from the 

FERET dataset (Philips et al., 1998). Figure 3.10 shows examples of the images from the 

FERET dataset. 

 

 

 

Figure 3.10: Example faces from the FERET dataset. The top row shows neutral faces and bottom row shows 

smiling faces 

 

 

 

Figure 3.11: The first five Eigen faces for a set of FERET faces 
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Each image is of size 64 × 64 (4096 dimensions) and on performing PCA; it produces 79 

Eigenfaces and components.  Figure 3.11 shows the first 5 Eigenfaces in the order of importance. 

The total number of components to be retained for dimensionality reduction is based on the 

proportion of the variance of the first few components and the total variance of the complete 

dataset.  In this work on performing PCA, the number of components to be retained is selected so 

as to preserve at least 95% of the variance of the data set. For this dataset of 80 face images 

(neutral and smiling), the first 66 components retain 95% of the total variance of the dataset.  

Hence, the PCA projection reduces the original 4096 dimensions to 66 components.  This is still 

a large number and could be suggestive that the redundancy is not captured by a linear technique 

such as PCA and requires a non-linear technique such as CCA which is explained in the next 

section of this chapter. 

 

3.3.2 Curvilinear Component Analysis 

 

Curvilinear Component Analysis (CCA) is a non-linear projection method that attempts to 

preserve distance relationships in both input and output spaces. It is very similar to 

multidimensional scaling. CCA is a useful method for redundant and non linear data structure 

representation and can be used in dimensionality reduction.  CCA is useful with highly non-

linear data, where PCA or any other linear method fails to give suitable information (Demartines 

and Hérault, 1997a).    

 

The 6 − dimensional input 7 should be mapped onto the output � − dimensional space  8. The � − dimensional output vectors :�;< should reflect the topology of the inputs :
;<. In order to do 

this, Euclidean distances between the 
;’s are considered. Corresponding distances in the output 

space  �;’s is calculated such that the distance relationship between the data points is maintained. 

CCA puts more emphasis on maintaining the short distances than the longer ones.  Formally, this 

reasoning leads to the following error function:  

 

 = = 12 > >?�;,�@ − �;,�A B�CD?�;,�A BE
�F$

E
;F$                      ∀ H ≠ J (3.5) 

 

where �;,�@  and �;,�A  are the Euclidean distances between the points J and H in the input space 7 

and the projected output space  8  respectively and  K is the number of data points.  C;,�A  is the 

neighbourhood function, a monotonically decreasing function of distance.  In order to check that 

the relationship is maintained a plot of the distances in the input space and the output space  ��� − �

 plot is produced. For a well maintained topology, �� should be proportional to the 

value of �
 at least for small values of �
’s.   
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(a)                                    (b) 

 

(c) 

Figure 3.12: (a) 3D horse shoe dataset (b) The 2D CCA projection of the horse shoe dataset (c) ��� − �	
 plot of 

the projection showing that small distances are maintained, although it is not possible to maintain the larger 

distances. 

 

Figure 3.12 shows CCA projections for the 3D data taken initially. The ��� − �


 plot shown is 

good in the sense that the smaller distances are very well matched (Demartines and Hérault, 

1997a). 

For the dataset mentioned earlier as in PCA, with the CCA only 14 components are retained, the  ��� − �

 plot of this is shown in Figure 3.13. 
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Figure 3.13: The ��� − �	

 
plot for the dataset with 80 images of equal number of smiling/neutral, male/female 

faces and where 14 components were retained. 

 

3.3.3 Intrinsic Dimension  

 

One problem with CCA is deciding how many dimensions the projected space should occupy 

and one way of estimating this is to use Intrinsic Dimension of the data manifold. The Intrinsic 

Dimension (ID) can be defined as the minimum number of free variables required to define the 

data without any significant information loss. Due to the possibility of correlations among the 

data, both linear and nonlinear, a 6 − dimensional dataset may actually lie on a � − dimensional 

manifold �� ≤ 6
. The ID of such data is then said to be  �.  There are various methods of 

estimating the ID. These are based on the fractal dimension (Camastra and Vinciarelli, 2001) and 

there are three popular methods in estimating this. These are the Box Counting, Information 

Dimension and Correlation Dimension methods. The box counting method and the information 

dimension method are suitable when the dimensions are small but are not practical for use with 

large or high dimensional dataset with faces. With face images, the best intrinsic method to use is 

the Correlation Dimension. 

 

The Correlation Dimension method was developed by Grassberger and Procaccia (1983).  This 

method finds the closeness between the points at different scales, and then the dimension is 

calculated by measuring how the closeness of the neighbouring point is affected by the scales 

used. A measure of this closeness is called the Correlation Integral L�M
.  
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It can be calculated as follows: 

 

 L�M
 =  2�K − 1
 > > N  E
�F;�$

E
;F$        (3.6) 

 

Oℎ�P�  QN = 1 , J/ �;,� ≤ MN = 0 , J/ �;,� > MS 
 

 K is the number of data points,  M is the length variable and �;,� is the Euclidean distance 

between the JTU and jTU  data points of the dataset.  The total number of pair wise points closer to 

each other than length M is proportional to  MW (Grassberger and Proccacia, 1983).  

 

Assume       

  L�M
 = X MW (3.7) 

 

where � is the dimension of the data and X is a constant.  

  log L�M
 = log X + � M]�M (3.8) 

 

So,  

 log L�M
log M = log Xlog M + � 
(3.9) 

 

Take M → 0  then log�M
 →  ∞ 

 

So, the dimension � can be calculated as:  

 

 � =  log L�M
 log M ⁄        (3.10) 

 

The Correlation Dimension �a can be calculated by measuring the closeness property at all 

scales as follows: 

 

 �a =  limd→e
log L�M
log M          (3.11) 
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Figure 3.14(a) shows the well known horse shoe data set and the plot of log L�M
  versus L�M
 

which is the Correlation Dimension for the horse shoe data is shown in Figure 3.14(c) and Figure 

3.14(d) shows how the Correlation Dimension is estimated by considering the most linear part of 

the curve and measuring its slope. Though the 2D non linear projection of the  of the 3D horse 

shoe distribution looks perfect as shown in Figure 3.14(a), the ��� − �

 plot  of the projection 

will have smaller distances maintained and larger distances are not so well maintained and is 

shown in Figure  3.14(b) (Buchala et al., 2005). Different intervals on the curve shown in Figure 

3.14 (c) must be selected and the slope from the linear portions of this curve gives the correlation 

dimension.   
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                                                                   (a) 

 

 
       (b) 

  

 

(c)                                                                                                 (d) 

 

Figure 3.14: (a) A 2-dimensional nonlinear projection of 3-dimensional horseshoe distribution (b) The  ��� − �	
 
plot of the projection showing that small distances are maintained, although it is not possible to maintain the larger 

distances. (c) Correlation Dimension plot of the horse shoe data. (d) The Correlation Dimension is calculated as the 

slope of the most linear part of the curve. 
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3.3.4 Fisher Linear Discriminant Analysis 

 

Fisher Linear Discriminant Analysis (FLDA) has been successfully applied to face recognition, 

which is based on a linear projection from the image space to a low dimensional space by 

maximizing the between-class scatter and minimizing the within-class scatter. It is most often 

used for classification (Welling, 2005; Fisher, 2001).  The main idea of the FLD is that it finds 

projection to a line so that samples from different classes are well separated (Veksler, 2006).  

 

3.3.4.1 Linear Discriminant Analysis 

 

Linear Discriminant Analysis (LDA) is a special case of FLD in which both classes have the 

same variance.  It makes use of the class label for dimensionality rather than just the features of 

the data points.  Belhuemer was the first to use the LDA on faces and used it for dimensionality 

reduction (Belhumeur et al., 1997) and it can be used as a classifier.  

 

In other words, LDA moves images of the same face closer together, while moving images of 

different faces further apart. For a two class problem it is commonly known as Fisher Linear 

discriminant analysis after Fisher who used it in his taxonomy based experiments (Fisher, 1936). 

Eigenfaces attempt to maximise the scatter of the training images in face space, while 

Fisherfaces which are obtained by performing the linear discriminant analysis (LDA) attempt to 

maximise the between class scatter, while minimising the within class scatter.   

 

 

Figure 3.15: Figure shows the classes which are overlapping along the direction of X1.  However, they can be 

projected on to direction X2 where there will be no overlap at all. 
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In a dataset with two classes, the dimension most important for classification would be the one 

with maximum difference in the means of the two classes. In the example shown in Figure 3.15, 

the difference between the classes is higher in the direction X1, but with considerable amount of 

overlap. So, the best direction is X2 due to the lesser within class variance. The better class 

separability can be obtained by the within class variance.   

 

The between class scatter covariance matrix is given by: 

 

 �f = �g� − g$
�g� − g$
h         (3.12) 

The within class covariance matrix is given by: 

 �i = > > ?7j − gJB?7j − gJBk          K∈LX

LJ
J=1        (3.13) 

where  g$ and g� are the means of the datasets of the class 1 and class 2 respectively. L is the 

number of classes and Lm is the Xno class.  The eigenvector solution of  �p�$�f  gives the fisher 

face.   

 

3.3.4.2 Expression encoding power 

 

When PCA is performed, the first few components encode the maximum variance. However, as 

face data has multiple properties though the first few components encode maximum variance 

they may not be of interest and if the property of interest of the data is encoded by the last few 

components then this method would be disadvantageous. Hence, the selection of the components 

should be such that they are based on the importance of the property rather than the total 

variance. The LDA seems to be a perfect answer to this as an analysis can be performed on the 

separation matrix (Etemad and Chellappa, 1997) to obtain the discriminant power of the 

components in a similar way as we find the eigenvalues on the covariance matrix (Turk and 

Pentland, 1991).  

 

The discriminating power is defined as the ratio of projection of the between-class variance to 

the projection of the within-class variance.  The discriminant power of the dataset can be 

explained in terms of eigenvalues.  This is obtained by first summing up all the eigenvalues 

which are obtained for the separation matrices to get a measure of the total discriminating power. 

This result is divided into each individual eigenvalues to get its proportion of the total power. 

The larger the eigenvalue, the greater is the discriminating power. The eigenvalues can be 

expressed as relative percentages. If g$ is the mean of neutral face image dataset and g�  is the 

mean of the smiling face image dataset and with q; being the eigenvalue of the  Jth
 component of 
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the property, the discriminating power (e.g., expression, age, gender and so on) or the encoding 

expression power r;  is given by Equation 3.14. 

 

 r; = q;∑ q�t�   (3.14) 

 

where r; is a measure of the encoding power of the Jno  component of the property (e.g., 

Expression, Gender, Age and so on) and j is the number of non-zero eigenvalues.  

 

The LDA can be used to estimate the encoding power of the various face properties such as 

expression, gender, age, identity and race. Using the two classes namely, neutral and smiling, 

LDA successfully transforms it into a space which has very large between class variance and 

very small within class variance.   

 

 

Figure 3.16: Expression encoding power for the first 66 components of the FERET dataset as mentioned earlier with 

PCA.  The second component has the highest expression encoding power.  

 

By using the within class variance and the between class variance, the encoding  power for the 

expression property can be obtained by using  Equation (3.14) and can be viewed as in Figure 

3.16. Figure 3.16 shows the encoding power for the expression property of the face and it 
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suggests that some of these initial components are not significant for expression and some of 

them are significant (the larger the value the more significant).  

With high dimensional data, it is often not possible to perform LDA as there can be a problem 

with singular matrices and therefore PCA is normally used to pre-process the data and reduce its 

dimensionality. Also, if the number of dimensions is more than the number of data points the 

computational complexity with LDA is overcome by using PCA first (Belhumeur et al., 1997). 

With face images, this is often true and hence, PCA is used to reduce the data to 66 components 

from the original 4096 dimensions (64 × 64 image) and the LDA (with two classes for smiling 

and neutral) helps in finding the encoding power of the expression property.  

 

The steps involved in finding the Fisher face are as follows: 

 

1) For K samples {
$, … , 
E},L classes {7$, … , va}, the average g; 
for each class J is calculated along with the total 

average  g. 
 

2) The Scatter for each class J is calculated as: 
 Sx = > �xz − μx
�xz − μx
|

}~∈Χ�
 

 

3) The within class scatter  is calculated as: 

S� = > Sx
�

xF$  

 

4) The between class scatter is calculated as: 
 

S� = > ∣ Χx
�

xF$ ∣ �μx − μ
�μx − μ
| 
 

5) The linear transformation or LDA is given by a matrix V 
whose columns are the eigenvectors of S��$S�(called 
Fisherfaces). 

 

6) The Eigenvectors are solutions of the generalized 

Eigenvector problem:  

 S�V = DS�V  where V will have the Eigenvector which in this 
case is called the Fisherface and D will have the 
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eigenvalue and in this case with 2 classes will have only 

one non zero value. 

 

7) If S� is non-singular, then we can obtain a conventional 
eigenvector problem by writing: 

 S��$S�V = DV 
 

8) In practice, S� is often singular since the data are image 
vectors with large dimensionality while the size of the 

data set is much smaller. Hence we project original data to 

the PCA space S�� = P| × S� × P and S�� = P| × S� × P where P is 
the matrix of Eigenfaces obtained from the PCA and used for 

fisher face. 

 

9) Hence, the eigenvaues are obtained by solving: S���$ S�� V = DV 
 

A LDA projection of the dataset that was used with PCA and CCA gives the Fisher face shown 

in Figure 3.17.  

 
 

Figure 3.17:  The LDA reduced the dimensionality from 66 to one and the corresponding Fisher face is shown here.  

 

 

3.3.5 Effect Size 

 

Effect size is a way of expressing the difference between two groups. Here two groups:  Smiling 

and Neutral are used. Cohen (1988) defined � as the difference between the means, g$ −g�, 

divided by standard deviation,  �  of either group. 
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 � = g$ − g��        (3.15) 

 g$ and g�  are the means of two groups and  �   is the standard deviation of the whole population 

is calculated by Equation (3.16).  

 � = ���$� + ���
2        (3.16) 

 �$  and  ��  are the standard deviation of the two classes, Smiling and Neutral respectively and K 

is the total number of samples.  The ‘Encoding face’ is obtained by finding the Effect size of 

each pixel in an image.  In other words which pixels discriminate most between smiling and 

neutral faces can be seen and the result of this analysis is shown in Figure 3.18.   

 

 

 

 

(a)                                                                   (b) 

Figure 3.18:  (a) Colour image of the encoding face (b) The gray scale image of the encoding face.  The features 

picked up are clearly seen in colour image than in the gray scale image. 

3.4 Classification 

 

A number of classifiers can be used in the final stage for classification; however, Support Vector 

Machines have been used for all the classification of expressions. 
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3.4.1 Support Vector Machines  

 

The Support Vector Machine (SVM)  classifier is becoming very popular these days although the 

subject can be said to have started in the late seventies (Vapnik, 1979) and it has been used in 

pattern classification and regression (Cortes and Vapnik, 1995). They belong to a family of 

generalized linear classifiers.   

 

The basic idea of an SVM is to find the optimal separating hyper-plane, that has the maximal 

margin of separation between the classes, while having a minimum number of classification 

errors. This means the SVM classifier tries to find the plane which separates the two different 

classes such that it is equidistant from the members of either class which are nearest to the plane.  

 

SVM’s are used extensively for a lot of classification tasks such as: handwritten digit recognition 

(Cortes and Vapnik, 1995) or Object Recognition (Blanz et al., 1996).  SVM’s can be slow in 

test phase, although they have a good generalization performance. In total the SVM theory says 

that the best generalization performance can be achieved with the right balance between the 

accuracy attained on the training data and the ability to learn any training set without errors, for 

the given amount of training data. The SVM shows better classification accuracy than Neural 

Networks (NNs) if the data set is small. Also, the time taken for training and predicting the test 

data is much smaller for a SVM system than for a NN (Zheng et al., 2004b).  

 

Consider an input training set,   � = :�
$, �$
, �
�, ��
, … . �
E, �E
< of objects 
; ∈ 7 and their 

known classes �; ∈ :−1, +1< . The Output of the classifier is  / ∶ 7 ⟶ :−1, +1<  which predicts 

the class /�

 for any (new) object 
 ∈  7. This can be explained by the Figure 3.19. The two 

classes are separated by an optimum hyper-plane, illustrated in Figure 3.19, minimizing the 

distance between the closest +1 and -1 points, which are known as Support Vectors. Support 

Vectors are the data points that the margin is closest to. The right hand side of the separating 

hyper-plane represents the +1 class and the left hand side represents the -1 class (McCulloch, 

2005). 
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Figure 3.19:  SVM Classifier with optimal hyper-plane 

 

Maximizing the Margin ( � ) between the two classes would be the optimal hyper-plane. With a 

data point 
�  of class -1 and another data point 
$  of class +1, the hyper-plane between the two 

classes can be defined by the equation: 

 

  �. � + � = 0 (3.17) 

 

The decision function for the classifier is given by: 

 

  /�

 = �J�j��. � + �
 (3.18) 

If the two classes are linearly separable, then the following equation is always true: 

 

  �;��. � + �
 � 1       ∀J (3.19) 

 

For data point  
$  on the margin of class +1: 

  �. 
$ + � = +1 (3.20) 

 

 

Class -1 

Class +1 
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And for the data point 
�  on the margin of class -1: 

 

  �. 
� + � = −1 (3.21) 

 

Hence,  

  ��. 
$ + �
 − ��. 
� + �
 = ��
$ − 
�
 = 2 (3.22) 

 

For the separating hyper-plane, the normal vector is given by: 

 

  �� = ���� (3.23) 

The margin ��
 is half the projection of  �
$ − 
�
 on to the normal vector and is given by: 

  

2� = ��
$ − 
�
��� = 2��� 

  

(3.24) 

This implies  � = $���  and to maximize this term the following term has to be minimized  

  

min +12- ���� 
(3.25) 

subject to  

  �;��. �� + �
 � 1               ∀J (3.26) 

 

The SVM is trained to find the value of � that maximizes the following equation, so by applying 

the Lagrange multiplier to the Equation (3.25) and (3.26), we get:  

 

 ����
 = > �; − 12
E

;F$ > > �;��
E

�F$
E

;F$  �;��  ?
; ⋅ 
�B (3.27) 

 

under the constraints     0 ≤  �;  ≤ L   for J = 1 … . . . . K   and  ∑ �; �;E;  = 0.  L is the cost 

parameter and  � is the optimizing parameter for the training process.  
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In the example shown in Figure 3.20, the objects belong either to class GREEN or RED. The 

separating line defines a boundary on the right side of which all objects are GREEN and to the 

left of which all objects are RED. Any new object falling to the right is labelled, i.e., classified, 

as GREEN or classified as RED if it falls to the left of the separating line. 

 

 

 
                         

Figure 3.20:  A Linear Classifier 

 

Most classifications are not this simple, and a more complicated example is shown in Figure 

3.21.  In this example, it needs a non-linear separator rather than a straight line to separate the 

two classes. 

 

 
 

Figure 3.21: A non Linear Classifier 

 

A SVM rearranges the original objects (data points) according to a mathematical function 

(kernels) and transforms it into a feature space which allows the classification to be 

accomplished more easily, and is illustrated in Figure 3.22.  Mapping the input data points into a 

different co-ordinate space is called projecting into the feature space. 
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Figure 3.22: Transformation from input space to Feature space by the Support Vector Machine. The data points 

cannot be separated in the Input space by a linear separator. Hence on projecting onto a polar coordinate system 

(Feature space); the data points can be separated by the linear separator.  

 

Figure 3.22 shows the Feature space and the Input space. When the input data points are 

projected into the polar coordinate system, they can be easily separated by a straight line (linear 

separator) which is a circle (non-linear separator) in the original two dimensional input space. 

 

In general, kernels are used to map the datasets to a higher dimensional feature space which is 

normally linear in nature and normally there is no need to explore the actual feature space.  By 

using a Kernel all the computations can be done on the original data in the input space. In 

Equation 3.22 the N?
; , 
�B can be replaced for the dot product �
; ⋅ 
�
 and it is called the kernel 

function and most often; for classification purpose a Radial Basis function (RBF) is used. By 

using a RBF kernel,   the input space is projected into a very high dimensional space and can 

linearly separate any data in such a large feature space. There are two parameters when using 

RBF kernels:  L and � . Here, L is the cost parameter and � is the kernel parameter. It is not 

known beforehand which L and � are the best for one problem; consequently some kind of 

model selection (parameter search) must be done. The kernel maps the input data points into a 

higher dimensional feature space.   

 

There are number of kernels that can be used in Support Vector Machines models. These include 

linear, polynomial, Radial Basis Function (RBF) and sigmoid:  
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Here ¶, � and �  are Kernel parameters.   

 

The RBF is by far the most popular choice of kernel types used in Support Vector Machines. The 

best separating hyper-plane that can be constructed by the SVM can be defined by: 

 

 /�

 =  > �;  �;  N�
;, 

 + � = 0E
;F$  (3.28) 

 

 

3.4.2 SVM – Parameters, Over-fitting and Validation 

 

The goal is to identify the best value so that the classifier can accurately predict unknown data 

(i.e., testing data) (Chih-Wei Hsu, 2008). The parameter L, if it is too large, provides a high 

penalty for non-separable points and we may store many support vectors and over-fit. If it is too 

small, we may have under-fitting. 

   

 
  

Figure 3.23: An Over-fitting Classifier. The Yellow line represents over-fitting classifier and the blue line represents 

the SVM classifier with a few misclassifications. 

 

This literally means that the parameter L controls the trade-off between the misclassification 

errors on the training set and the margin between the two classes. Over-fitting means fitting too 

much of the training data and could result in too many errors (Vert, 2002) and an example for 

this is shown in Figure 3.23. 
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Classifiers can accurately predict training data whose class labels are indeed known. Therefore, 

the best way to achieve this is by separating the training data into two parts of which one is 

considered unknown in training the classifier. The classifier is trained by one half of the data set 

and then the prediction accuracy on the remaining set can be more precisely predicted (the other 

half of the training set not used for training). An improved version of this procedure is cross-

validation.  In ·-fold cross-validation, we first divide the training set into · subsets of equal size. 

Sequentially one subset is tested using the classifier trained on the remaining  · − 1 subsets. 

Thus, each instance of the whole training set is predicted once so the cross-validation accuracy is 

the percentage of data which are correctly classified. This cross-validation procedure can prevent 

the over-fitting problem. 

 

There are two forms of cross-validation:  

• The training set is divided into · subsets. One of them is used as the test set and the 

remaining · − 1 sets are used for training to get the values for L and �. This is repeated 

sequentially taking one subset as the test set while training the remaining subsets in order 

to get the best values  for L and �.  Finally, the model is trained with the best parameters 

and test set is predicted. This process is adopted for experiments explained in Chapter 4. 

 

• The entire dataset (training and test) is divided into ¸ subsets each of the same size as the 

test set.  The test set is predicted by training the remaining ¸ − 1 subsets by using the 

best values of for L and � obtained by performing a fivefold cross validation on the set 

used as the training set. Sequentially this procedure is repeated for all the ¸ subsets.   

Thus, each instance of the whole dataset is predicted once. This process is adopted for 

experiments explained in Chapter 5. 

 

3.4.3 Steps involved in training the Support Vector Machine 

 

The LIBSVM tool (Chang and Lin, 2001) can be used for SVM classification. The SVM can be 

trained in the following way: 

 

1. Transforming the data to a format required for using the 
SVM software package - LIBSVM 2.86 (Chang and Lin, 2001). 

 

2. Perform simple scaling on the data so that all the features 
or attributes are in the range [-1, +1]. 

 

3. Choose a kernel. Most often we use RBF,X�
, �
 = ��¥|���|*
   

Kernel. 



62 

 

 

4. Perform fivefold cross validation with the specified kernel 

to find the best values of the parameter L and  � where  L 
is the cost parameter. 

 

5. Use the best parameter value of  L and �  to train the whole 
training set. 

 

6. Finally Test. 

 

3.5 Discussion 

 

Chapter 3 explains feature extraction of face images with Gabor filters and the various types of 

Dimensionality reduction techniques used and for reducing the high dimensional data set of 

images with various face expressions.  Methods such as PCA, CCA, LDA and FLD; also, effect 

size and encoding power were also discussed.  The true dimension estimation or intrinsic 

dimension of data set reduced by dimensionality technique such as CCA is also discussed.  

Classification is purely done by Support Vector Machines and has been discussed in detail in this 

chapter. The training of SVM, over-fitting and validation were all investigated. 
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CHAPTER FOUR 

Recognizing Smiling and Neutral Expressions 

 

4.1 Introduction 

 

The previous chapter discussed many types of computational techniques used in face image 

processing and they included: feature extraction by Gabor filters, dimensionality reduction by 

PCA, CCA, LDA and FLD, and classification with SVM’s. In this chapter, I explain how all 

these computational methods have been used on a face expression image dataset (FERET) 

(Philips et al., 1998). Only two expressions: Smiling and Neutral are used in this experiment. 

This work shows that it is possible for a computational system to differentiate faces with a 

neutral expression from those with a smiling expression with high accuracy using these 

techniques.   

4.2 Dataset Description 

 

The FERET dataset is widely used, in many face recognition experiments as it provides a large 

appropriate data set (Rizvi et al., 1998). It consists of face images of over 1200 individuals with 

multiple face images for each individual. The images are of grey scale and vary in pose, lighting 

angle, changes in expression, with or without glasses and some with beard and/or moustaches. 

Each individual has a number of expressions and in some cases have been photographed after a 

considerable time gap.  The original images of the FERET dataset are of size 384 × 256 and 

included visible hair and clothing in some cases. The images used here were cropped to size 150 × 130 so that little or no hair is visible; further, histogram equalization was done to achieve 

uniformity, compensating for the various lighting conditions used for individual images.    

The neutral faces were clearly labelled in the dataset description sheet, but the smiling faces were 

not labelled as such. Therefore I presented a selection of faces to a group of 5 people and where 

they all agreed that a face was smiling; it was placed in the smiling class. 

A total of 120 faces were used for the experiment (30 male and 30 female) each with two classes, 

Neutral and Smiling expression (60 faces for each expression). Figure 4.1 shows an example set 

from the database and Table 4.1 explains the dataset used.  With all faces aligned, based on their 

eye location, a 128 × 128  image was cropped from the original raw image of size 150 × 130 

and further reduced to size 64 × 64 to reduce the computational complexity.  Though they have 

been processed to exclude the external features of the face, since they have not undergone feature 
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extraction or dimensionality reduction, they are called RAW faces.  Each individual is in both 

the smiling and neutral expression set. 

 

 

Figure 4.1: Example images from the FERET dataset used for the experiment. The top row shows Neutral Images 

and bottom row shows smiling faces. This dataset includes various race, gender and age; however they are not 

equally balanced. This is a balanced dataset in terms of Expression and gender.  

 

The training set was 80 faces (with 20 female, 20 male and equal numbers of them with Neutral 

and Smiling expression). Two test sets were created each with 20 faces. Test set A had easily 

discernible smiling faces and Test set B had smiling faces that were not so easily discernible to 

the experimenter.  In both test sets the number of each type of face is balanced. For example, 

there were 5 smiling male faces, 5 smiling female faces, 5 neutral female faces and 5 neutral 

male faces. 

Table 4.1 details the dataset used in this experiment. The Test set A and Test set B were different 

individuals; however, each person had a smiling and neutral expression. 

Table 4.1: Description of the dataset used from the FERET database: A total of 80 images for training, 20 images for 

Test set A and 20 for Test set B. 

 

Size of Total dataset: 

120 faces 

Female Male 

Neutral 30  ( Training set -20,    

        Test set A -5, 

        Test set B- 5) 

30  ( Training set -20,     

        Test set A -5, 

        Test set B- 5) 

Smile 30  ( Training set -20,    

        Test set A -5, 

        Test set B- 5) 

30  ( Training set -20,       

        Test set A -5, 

        Test set B- 5) 
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4.3 Experiment  

 

This experiment was carried out to compare SVM classification on these six models: 

• RAW : raw face images �64 × 64
  

• RAWPCA : raw faces reduced in dimensionality with PCA 

• RAWCCA : raw faces reduced in dimensionality by CCA 

• GAB : Gabor pre-processed images �64 × 64
 

• GABPCA : Gabor pre-processed images reduced by PCA 

• GABCCA : Gabor pre-processed images reduced by CCA  

 

4.3.1Gabor Filters 

 

A total of 40 Gabor filters were designed at five scales and eight frequencies to produce 40 

image outputs (magnitude) for each image of size  64 × 64 from the FERET dataset.  The filter 

bank uses the L2 max norm superposition principle to produce one image of size 64 × 64 from 

the 40 Gabor filter bank outputs of the same size. Using 40 filters covers all the frequencies and 

scales required to extract the important features of the face (Shen and Bai, 2006). In Section 

3.2.1 of Chapter 3 the exact process of how feature extraction was done using Gabor filters was 

explained in detail.  The Figures 3.8(a) and 3.8(c) in Chapter 3 showed an example FERET 

image from the dataset and the image after feature extraction using L2 max norm superposition 

principle respectively. The dataset of 120 images (each of size 64 × 64) used in this experiment 

produces a total of 120 × 64 × 64 × 40 final images. However, by using the L2 max norm 

superposition principle, the final output size from the Gabor filter bank is same as that of the 

input image set  �120 × 64 × 64 ).  
 

4.3.2 Principal Component Analysis 

 

For PCA reduction we use the first few principal components of the maximum 120 components, 

which account for 95% of the total variance of the data, and project the data onto these principal 

components.  This resulted in using 66 components of the raw dataset and 35 components in the 

Gabor pre-processed dataset. Figure 4.2 shows the first 5 Eigenfaces of the total dataset. 
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Figure 4.2: The first 5 Eigenfaces  (left to right) of the whole set of faces (male and female with equal number of 

smiling and neutral faces). 

 

Figure 4.3 shows a projection of the test and training data into the first two PCA components. 

The difficulty of the classification problem is obvious.   

 

 
 

Figure 4.3: The PCA projection of the 120 examples from the dataset on a 2D plane. The red ‘*’ and the blue ‘o’ 

represent the neutral and smiling data points respectively, after PCA projection of the training set.  The PCA 

projection shows a very difficult classification problem and the results are reflective of this. 
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An important feature of PCA is that one can reconstruct any of the original images by combining 

the Eigenfaces. The original face image can be reconstructed from the Eigenfaces by adding up 

all the Eigenfaces (features) in the right proportion. The reconstructed original image is equal to 

a sum of all Eigenfaces, with each Eigenface having a certain weight. This weight corresponds to 

what degree the specific feature (Eigenface) is present in the original image. Figure 4.4 shows 

the original image on the left and the reconstructed images on the right.   The reconstructed 

images use first 10, 25 and 66 (from left to right in the right column) Eigenfaces. The right most 

image of the reconstructed set uses 66 components and is much similar to the original face as 

compared to the left most reconstructed face which makes use of only 10 Eigenfaces. The steps 

involved in finding the PCA projection and the reconstruction of original images is detailed in 

Appendix A. 
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                            Original Image           Reconstructed Image 
     

                                           120    10  25  66 
 

 

 

 

Figure 4.4:  Figure showing original FERET face images on the left and the reconstructed images on the right. The 

reconstructed images use 10, 25 and 66 Eigenfaces (left to right) and the image on the extreme right is from just 66 

Eigenfaces and is almost similar to original image. The left most image in the reconstructed set is least similar to the 

original and uses just 10 Eigenfaces for the reconstruction. In order to maintain 95% of the variance, 66 components 

need to be retained. The more principal components used, the more perfect reconstruction achieved. 
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4.3.3 Curvilinear Component Analysis 

 

As described in Section 3.3.2 of Chapter 3, the problem with CCA is deciding how many 

dimensions the projected space should occupy, and one way of obtaining this is to use the 

Intrinsic Dimension of the data manifold.  Figure 4.5 shows the ��� − �

 plot of the CCA 

projection for the dataset and it shows that the smaller distances are well maintained and even at 

larger distances the scatter is low. The more dimensions used the better the graph with all 

distances almost on the dy = dx line. 

 

 
 

 

Figure 4.5: The ��� − �	
 plot of the CCA projection for the data set.  If there is a good matching between input 

and output spaces and the data is linear, then all the distances would be on the line��� = �	
 .  Here it shows that 

the data is non-linear in nature, however it has managed to do a very good projection as the original 4096 

dimensions have been reduced to just 11 components. 
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4.3.4 Intrinsic Dimension 

 

As described in Section 3.3.3 of Chapter 3, a plot of log C(l) against log (l) for the FERET 

dataset is shown in Figure 4.6. There are a number of non-linear and linear parts in the plot. 

Selecting the linear fit of the plot from the curve with the highest (maximum) slope, we obtain 

the Correlation Dimension.  From the Figure 4.6, the largest slope is at the linear part marked 

with X and Y to correspond to the horizontal and vertical part of the slope. 

When the Intrinsic Dimensionality technique is used, the CCA projected data is reduced to this 

Intrinsic Dimension. The Intrinsic Dimension of the CCA projection of raw faces was 14 and 

that of CCA projected Gabor pre- processed images was 11. These results are similar to what 

was obtained with experiments on Dimensionality Reduction for gender classification by 

Buchala et.al (2004b).  

 

 

 

Figure 4.6: Correlation Dimension plot of Gabor filtered raw face images with CCA. The largest slope is in the most 

linear part of the graph and indicates the Intrinsic Dimension of the dataset and is the ratio of Y over X. In this case 

the maximum slope is estimated at 11. 
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4.3.5 Fisher Linear Discriminant Analysis and Classification 

 

As described by Section 3.3.4 of Chapter 3, FLD can be used for classification purposes. The 

LDA projection of the dataset onto the fisher face was also shown in Figure 3.19 of Chapter 3. 

The LDA reduces the dataset to only one dimension. The two test sets namely, Test set A and 

Test set B were then classified by using the nearest neighbour in the test set in the projection 

space. The results are as in Table 4.2. The classification is best with only one misclassification 

with set A and five misclassifications with set B.  The results with FLD are encouraging; 

however, the need to perform PCA before FLD for classification increases the computational 

complexity of the problem with high dimensional face images.  

Table 4.2: Classification accuracy of raw faces using LDA 

 

%  Accuracy Test set A Test set B 

 LDA 19/20 (95%) 15/20 (75%) 

 

4.4 Classification using Support Vector Machines  

 

The dataset of 120 images included 80 images of the training set and 40 images of test set (Test 

set A- 20 images and Test set B – 20 images).  An SVM was used for classification for all six 

models. The classification was performed as described in Section 3.4.3 of Chapter 3.  

 

4.4.1 Classification Results 

 

The Classification results for both the test sets used is shown in Table 4.3.  The SVM 

classification results for both Test set A and Test set B show that the accuracy is good with raw 

faces and Gabor pre-processed images, but reduced with PCA.  The raw faces are of size 64 × 64 (4096 dimensions) whereas the Gabor pre-processed image reduced with CCA has 

mere 11 components. The classification obtained with raw faces reduced by PCA, and Gabor 

pre-processed images reduced by PCA, was not as good in comparison to the rest of them. 
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Table 4.3: SVM Classification accuracy of raw faces and Gabor pre-processed images with PCA and CCA 

dimensionality reduction techniques.   

 

SVM Results Test set A Test set B 

RAW 19/20 (95%) 16/20 (80%) 

RAWPCA66 18/20 (90%) 15/20 (75%) 

RAWCCA14 18/20 (90%) 16/20 (80%) 

GAB 19/20 (95%) 16/20 (80%) 

GABPCA35 14/20 (70%) 12/20 (60%) 

GABCCA11 19/20 (95%) 16/20 (80%) 

 

The reason could be that the PCA, being a linear dimensionality reduction technique, might not 

have done quite as well as CCA. With CCA there was good generalization, but the key point to 

be noted here is the number of components used for the classification. The CCA makes use of 

just 14 components with raw faces and just 11 components with the Gabor pre-processed images 

to get good classification results, whereas the PCA used many components with lesser accuracy. 

This suggests that the Gabor filters are highlighting salient information which can be encoded in 

a small number of dimensions using CCA. Some examples of misclassifications are shown in 

Figure 4.7.  The reason for these misclassifications is probably due to the relatively small size of 

training set. For example, the moustachioed face in the middle of the bottom row is misclassified 

as smiling. There are only four moustachioed faces (of two individuals) in the entire dataset. 

Although, a fivefold cross validation was done with the training set, no cross validation was done 

with both test sets. 
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Figure 4.7: Examples of the misclassified set of faces. The top row shows smiling faces wrongly classified as 

neutral.  The bottom row shows neutral faces wrongly classified as smiling. 

 

4.5 Discussion  

 

In this chapter, all the computational techniques explained in Chapter 3 were implemented and 

results discussed. It should be noted that this data set is very small and all results are indicators 

only. The results show that further investigation of the classification of expressions using these 

techniques was justified.  Identifying facial expressions is a challenging and interesting task. 

This experiment shows that identification from raw images can be performed very well. 

However, with a larger data set, it may be computationally intractable to use the raw images.  It 

is therefore important to reduce the dimensionality of the data.  

Performing classification using FLD was a trivial task and the result was very impressive.  It is 

interesting to see the Effect Size for each pixel in the image. In other words which pixels 

discriminate most between smiling and neutral faces and the result of this analysis was shown 

earlier in Figure 3.7 of Chapter 3. The Creasing of the cheeks is diagnostic of smiling faces; teeth 

may also be an important indicator, though to a lesser extent.  

 A linear method such as PCA does not appear to be sufficiently tuneable to identify features that 

are relevant for facial expression characterization. Although the result of classification with FLD 

is impressive, for large datasets with face images, PCA needs to be done prior to the LDA.  

However, on performing Gabor pre-processing on the images and following it with the CCA, 
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there was good generalization in spite of the massive reduction in dimensionality. The most 

remarkable finding from the results of this experiment was that the facial expression can be 

identified with just 11 components found by CCA. The next step is to repeat the experiments 

with a larger dataset and with all the other expressions and compare them.  
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CHAPTER FIVE 

Computational categorization of six prototypical human facial 

expressions 

 

5.1 Introduction 

 

Chapter 3 gave the necessary literature background for the computational methods that were 

used in dimensionality reduction and in feature extraction as a part of pre-processing of the 

FERET dataset; the experiments and results of which were discussed in Chapter 4. This chapter 

details the extension of the work explained in Chapter 4 with a larger dataset and with all six 

basic expressions (Ekman and Friesen, 1971).  The BINGHAMTON BU - 3DFE database (Yin 

et al., 2006) used here is a larger dataset with seven expressions namely: Happy, Angry, Fear, 

Sad, Surprise, Disgust and Neutral. All the experiments that were performed with the FERET 

dataset were repeated with this larger dataset and with all the expressions and the results are 

discussed in this chapter. The experiments were performed with a view to compare the human 

performance and the computational performance in facial expression classification. Hence, two 

sets of experiments were performed. One involved classification with computational models and 

the other involved human subjects. This chapter explains all the computational models that were 

tested. The human performance in classifying facial expressions is explained and discussed in 

detail in Chapter 6. 

5.2 Dataset Description 

 

The BINGHAMTON BU-3DFE dataset has 3D and 2D colour images of 100 subjects. Each 

subject, upon request, had performed the seven universal expressions: neutral, happiness, 

surprise, fear, sadness, disgust, and angry. The subject displayed the expression for a short period 

of time, during which four instant shots were taken, which captured four different degrees of the 

expression that ranged from low, middle, high and highest.  The 2D images with the strongest 

expression were used in these experiments.  It is a fairly large dataset consisting of 60% female 

and 40% male subjects, spanning a wide range of age groups and ethnic backgrounds including 

white, black, East Asian, Middle East Asian, Hispanic, Latino and others. The dataset used for 

the experiments is a balanced set in terms of gender, expression and includes all the ethnic 

groups mentioned above.  The images in the original dataset have been validated by the 

individual participants and also by experts from the psychology department of the Binghamton 

University. The images in the dataset are already processed by cropping to show only the face 
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area to exclude any hair or clothing and are of size  256 × 256.  To make images suitable for the 

experiments, these images had to be reduced to size  64 × 64  using an image editing tool 

named Irfanview (skiljan, 2009) and then cropped to size 63 × 63 in order to keep only the pure 

face region. The images were also converted into grey scale to help with the computational 

complexity.   

The experiments were performed on a total of 616 face images (308 female and 308 male face 

images) of 88 individuals with seven basic expressions: happiness, angry, sadness, surprise, fear, 

disgust and neutral. Apart from neutral all other expressions were selected with the highest 

degree of intensity for that expression.  The classification was done between neutral and one of 

the expressions at a time. For example: the model classified a test face image as neutral or happy 

if the classifier was trained for neutral and happy face image classification.  Considering one of 

the six basic expressions (say for example angry) along with neutral, the dataset of 176 images 

(88 images of angry and 88 images of neutral set)  was divided into 4 equal subsets of 44 images, 

balanced in terms of gender and expression. The SVM classifier was then trained with 3 subsets 

at a time and the left out set was used as the test set.   A total of 22 male and 22 female face 

images was used in each set and was balanced, i.e., a person pictured in the neutral set was also 

present in the angry expression set.  Hence at any time, the training set had 132 images.  The 

accuracy was obtained by calculating the average of the classification accuracy for all four 

subsets used as test sets (when three subsets were used for training, the left out set was used as 

test set).  Figure 5.1 shows examples of face images of four individuals. Each row corresponds to 

the expressions of one of the subjects. They are displayed from left to right in the order: neutral, 

happy, angry, fear, sad, surprise and disgust. 
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Figure 5.1: Examples face images from the BINGHAMTON BU-3DFE dataset. Each row is a subject showing 

various expression (left to right) neutral (NE), happy (HA), angry (AN), fear (FE), sad (SA), surprise (SU) and 

disgust (DI). 

 

5.3 Experiments 

 

A total of six experiments were performed with six computational models. Each experiment 

involved two expressions: one of them was neutral and the other was one of the six basic 

expressions. 

The six models that were tested are: 

• RAW: - Raw face images without any pre-processing or dimensionality reduction 

• RAWPCA: - Raw face images without any pre-processing but reduced in              

dimensionality with PCA. 

• RAWCCA: - Raw face images without any pre-processing but reduced in dimensionality 

with CCA. 

• GAB: - Gabor pre-processed face images with no dimensionality reduction. 

• GABPCA: - Gabor pre-processed face images reduced by PCA. 

• GABCCA: - Gabor pre-processed face images reduced by CCA. 
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5.3.1Gabor Filtering 

 

The pre-processing was done for feature extraction as with the FERET dataset and has been 

explained in Section 4.3 of Chapter 4. It used 40 filters at 5 scales and 8 directions and L2 max 

norm superposition principle to obtain the output from the filter bank. 

 

5.3.2 Principal Component Analysis 

 

Using PCA for the neutral and one of the expressions, in order to retain 95% of the total variance 

of that set, the number of components to which the PCA reduced the original data is detailed in 

the Table 5.1.  

Table 5.1: Comparison of number of components used with PCA for raw and Gabor pre-processed face images for 

all expressions. 

 

Number of components 

Reduced by PCA 

Raw face images Gabor pre-processed 

face images 

Angry 97 22 

Happy 100 23 

Fear 99 23 

Sad 96 22 

Surprise 103 23 

Disgust 101 23 

 

5.3.3 Curvilinear Component Analysis 

 

As discussed in Chapter 3 and Chapter 4, for CCA, the data was reduced to its Intrinsic 

Dimension. The Intrinsic Dimension of the raw faces images and Gabor pre-processed face 

images with neutral and one of the other basic expressions is detailed in Table 5.2. A wonderful 

reduction in dimensionality can be achieved using CCA. The best is just 5 components required 

for almost all of the Gabor pre-processed face images. 
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Table 5.2: Comparison of number of components used with CCA for raw and Gabor pre-processed face images for 

all expressions 

 

Number of components 

Reduced by CCA 

 

Raw face images 

Gabor pre-processed face 

images 

Angry 5 6 

Happy 6 5 

Fear 6 5 

Sad 7 5 

Surprise 6 5 

Disgust 5 5 

 

5.3.4 Fisher Linear Discriminant Analysis and Classification 

 

As discussed in Chapter 3, FLD is performed to classify two classes, for example: happy from 

neutral. Here, each of the six basic expressions was classified against neutral.  The Table 5.3 

shows the classification accuracy obtained with FLD based on the Euclidean distance measure, 

for all six expressions. Each test set was tested separately and an average taken.  

Table 5.3: FLD classification accuracy of raw faces 

 

% Accuracy 
LDA (Out Of/176)  

Angry 
 104/176 (59%)   

Happy 
 114/176 (65% ) 

Fear 
106/176 (60% )  

Sad 
 105/176 (60% ) 

Surprise 
 122/176 (69% ) 

Disgust 
 112/176 (64% ) 

Average 
63% 

 

The classification results have not been very encouraging. The best classification accuracy was 

with surprise and happy face images and the least classification accuracy was with sad, angry 

and fear face images; disgust being intermediate.  The table which details the classification 

accuracy of each of the individual subsets is in Appendix C. 
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Interestingly, the psychological data shows that humans perform best on surprise and happy face 

expressions and least well with sad, anger and fear and is discussed in Chapter 6. 

The projection of the dataset can be viewed as an image which is the Fisher face. Figure 5.2 

shows the fisher face with respect to six basic expressions used. Each unique fisher face is the 

template reflective of the expressions it is associated with.   
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  (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 5.2: Figure shows fisher faces a) angry b) happy c) fear d) sad e) surprise f) disgust 
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5.3.4.1 Encoding power 

 

With the PCA of two classes, the first components encode information common to both classes 

of faces, whilst the latter components encode information not so common between the two 

classes.  The FLD can be used to estimate the encoding power of the various face properties such 

as expression, gender, age, identity and race. The LDA of faces also provides us with a small set 

of features that carry the most relevant information for the purpose of classification based on a 

property. The features are obtained through eigenvector analysis of scatter matrices with the 

objective of maximizing between-class variations and minimizing within-class variations.  This 

was explained earlier in detail in Section 3.3.5 of Chapter 3. The experiments here were 

performed between two classes: one basic prototypical expression and the other neutral. One 

might suggest that all the early components could carry high expression information and by 

estimating the expression encoding power by FLD this can be decided. The expression encoding 

power of different components was estimated by Equation 3.14 and explained in Section 3.3.5 of 

Chapter 3. The expression encoding power of the components help to understand which of the 

components are important for each expression. It may be that some of the first few components 

are amongst the most significant when compared to the later ones or some of the initial ones may 

not be diagnostic for expression and may be important for other properties such as race, age, 

gender and identity (Buchala et al., 2004c; Calder et al., 2001; Belhumeur et al., 1997; 

Kulikowski et al., 1982). Every expression may have a different component as the most 

significant.  Table 5.4 shows the most significant and the next most significant components for a 

particular expression. Note that a component which is the most significant for an expression may 

also be important for other expressions too.  The plots of the discriminating power of the first 

components for all the expressions can be found in Appendix B and suggests that not all the first 

components are significant for expression encoding but the combination of first and second 

highest components are unique. 
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Table 5.4: Significant components for all expressions 

 

Expression First 

highest  

component 

Second 

highest 

component 

Magnitude 

of the 

highest 

component 

Angry 26 3 0.16 

Happy 7 6 0.35 

Fear 7 14 0.20 

Sad 26 14 0.10 

Surprise 3 2 0.80 

Disgust 26 13 0.18 

 

 

It can be seen that 26th component is significant for angry, sad and disgust expression, 7th for 

happy and fear and 3
rd

 for surprise. The plots also suggest that though all components important 

for expression are amongst the initial components, some of these components are not specifically 

diagnostic for the expression in question.  

In comparing the magnitudes of these components with respect to each expression, they have the 

encoding power in order (highest to lowest) for surprise, happy, fear, disgust, angry and sad. This 

means the magnitude of the encoding power for expression surprise is highest and for sad is the 

least as can be seen in the last column of Table 5.4. 

 

5.3.5 Effect Size 

 

The Section 3.3.5 of Chapter 3 detailed how the effect size emphasizes the difference between 

the two classes. Here, the encoding face was obtained by applying the effect size to the pixels of 

the face image. Two classes were considered at a time: one of the basic expressions alongside the 

neutral expression. The discriminating pixels for different expressions are different. This result 

supports the evidence of variations in the facial appearance and movements of the facial muscle 

in response to the expression and in particular, emphasizes those parts of the face corresponding 

to each of the basic expression (Yacoob and Davis, 1994).  The coloured images are shown on 

the right as they are clearer than their grey scales on the left. The research literature results are in 

the description given first followed by a comparison of these with the computational model.  
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Angry encoding face: Figure 5.3 shows the angry encoding face. The encoding face shows which 

pixels of the face discriminate most between the angry and neutral classes. Note the changes in 

the forehead, above and in between the eyebrows and changes in the lip and mouth area. 

Lowered eyebrows, which may be pulled together forming wrinkles in the skin of the forehead, 

tension in lips and mouth, all characterize the anger expression. Also, some people have their 

lowered eyelids tensed and the eyebrows pulled down and may have a glaring look. Others who 

have a closed mouth form of the angry expression will have a pushing up of the chin (Hager, 

2006; Ekman and Friesen, 1975).  All these areas described are indeed the parts of the angry 

encoding face that are highlighted showing that the computational model is emphasizing the 

same areas. 

 

    

Figure 5.3: Angry encoding face 

 

 

Happy encoding face:  Figure 5.4 shows the happy encoding face. Note the changes in the cheeks 

and the lips. A happy face is normally recognizable with the smile. There is also normally an 

oblique raising of the lip corners and a wrinkling and creasing of the cheeks. These are defined 

as the characteristics of the happy expression (Hager, 2006; Ekman and Friesen, 1975). In 

addition to these there is a narrowing of the eyelids, crowfeet wrinkling at the corners of the eye 

and a raising of the upper areas of the cheeks indicating actual happiness. It may well be that 

since the dataset that is used here are posed expressions and are not spontaneous expressions; 

these areas are not very well highlighted. 

 



85 

 

 

Figure 5.4: Happy encoding face 

 

Fear encoding face:  Figure 5.5 shows the fear encoding face. Note the changes in around the 

mouth, eyebrows, and eyelids. Normally, the fear expression shows raised upper eyelids, tensed 

lower eyelids, eyebrows pulled up, mouth open and jaw dropped. Sometimes, fear expressions 

are blended with surprise and may also cause a lateral pull on the corners of the lips causing it to 

stretch (Hager, 2006; Ekman and Friesen, 1975).  These details match very well with the pixels 

highlighted for the fear expression. 

 

 

Figure 5.5: Fear encoding face 

 

Sad encoding face: Figure 5.6 shows the sad encoding face. Note the changes in the space 

between the eyebrows, chin and the corners of the lips.   The normal characteristics of a sad face 

would show narrowing of the eyes and raised cheeks, eyebrows pulled together and raised in the 
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centre of the forehead forming wrinkles. There is also the pushing up of the chin. Sometimes, 

there may be a lateral lip stretching, with a downturn lip corners and/or may have no raising of 

the eyebrows. The research literature descriptions of the sad expression match the highlighted 

areas of the encoding face very well (Hager, 2006; Ekman and Friesen, 1975). 

 

 

Figure 5.6: Sad encoding face 

 

 

Surprise encoding face:  Figure 5.7 shows the surprise encoding face. Note the changes in the 

overall shape of the face around the sides, the lines in the forehead, and mouth. A genuine 

surprise expression is characterized by slight raised eyebrows; horizontal wrinkles on the 

forehead, mouth opened by the jaw drop and relaxed lips. There may be a slight smile as well. 

Too much exaggeration could cause great amount of jaw drop with a very tense mouth opening 

(Hager, 2006; Ekman and Friesen, 1975). These variations are seen to some extent on the 

encoding face; however, as these are not genuine expressions, there may be some exaggerations.  
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Figure 5.7: Surprise encoding face 

 

Disgust encoding face: Figure 5.8 shows the disgust encoding face. Note the changes in the 

lower eyes, space between the eyebrows, forehead, nose, area around the nose and the mouth.  A 

wrinkled nose with eyebrows pulled down and the upper lip drawn up, lower eyelid is tensed and 

the eye opening narrowed. In addition, the upper eyelids are normally relaxed and mouth would 

be open (Ekman and Friesen, 1975; Hager, 2006). These changes match with the changes 

highlighted in the disgust encoding face. 

 

 

Figure 5.8: Disgust encoding face 
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5.4 Morphing facial expressions using PCA 

 

Upon performing LDA on the PCA projected data, one can find the important components of the 

expression. It is also clear from the previous section that a very few components encode 

information relevant to the property-expression. It would be interesting to see if the facial 

expressions over the faces can be morphed by extracting those components that are significant 

for that particular expression. Earlier work by Calder et al (2001) suggest that PCA can code 

facial expressions.  In order to determine the information encoded in these significant 

components (for example - 26
th

 for angry with neutral), which are important for that specific 

expression, a series of reconstructed images were generated using the corresponding Eigenfaces. 

The original dataset was subjected to PCA and Eigenvectors (Eigenfaces for images) obtained 

were used for dimensionality reduction and used to project into the PCA space. The PCA 

projected data was used to obtain the scatter matrices (within and between classes) from which 

the encoding power of the components was found. A series of reconstructed images were 

obtained by altering the components in the following steps. The mean face is used for the 

reconstructions. Then additionally, the altered value of the 26
th

 component was used to 

reconstruct the faces along with the mean face.  This was done progressively by adding or 

subtracting greater quantities of Eigenface 26 to the mean face in order to capture the effects for 

the angry expression. It was found that the 26
th

 component is also the most significant 

component for sad and also, for the disgust expression. The 7
th

 component is the most significant 

for expression happy and also, fear. The 3
rd

 component is the most significant for surprise. The 

image reconstruction was performed with the first and second significant components by 

repeating the steps.  

Figure 5.9 shows these progressive changes over the prototype face. In Figure 5.9(a), the two 

classes used were angry and neutral; the middle face is the mean face.  To the right of the mean 

(prototype) face are the reconstructions obtained by using the mean and subtracting 2 S.D of the 

26
th

 component (the S.D was taken for the 26
th

 component of the entire dataset). Likewise, the 

reconstructions on the left were obtained by adding instead of subtracting.  The similar procedure 

was adopted for the reconstructions in Figure 5.9 (b) and (c) but, with 7
th

 and 3
rd 

component 

respectively.   

From the author’s perception, the images are ordered in the obvious ever increasing featural 

changes in the expression. The images on the right from the prototypical image in the centre of 

Figure 5.9 (a) show obvious featural changes for the disgust expression. Figure 5.9 (b) show 

increasing changes for the happy face expression in the right. Figure 5.9 (c) show increasing 

featural changes for the surprise expression on the right of the prototypical image which is in the 

centre.  
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a) Component 26 (First component for ANGER, SAD, DISGUST) 

 

 

b) Component 7 (First component for HAPPY, FEAR) 

 

 

c) Component 3 (First component for SURPRISE, Second component for ANGER) 

 

Figure 5.9: Reconstructed images using the altered components (a) 26
th

 component – This is the first highest 

component for angry expression. It is also the highest component for expression sad and disgust against the neutral 

class (b) 7
th

 component – It is the first highest component for happy and also for the expression fear (c) 3
rd

 

component - It is the first highest component for surprise and second highest for angry against neutral.   The middle 

faces are the prototype face. The other faces were reconstructed by using the average face (obtained from the entire 

dataset - all expressions and the neutral face images) and adding the altered values of the respective component. 

Altering was done progressively by adding quantities of - 2S.D (right of the prototype) and + 2 S.D (left of the 

prototype face) of the 26
th

, 7
th
, 3

rd 
to the prototype face. The reconstructions were obtained by altering 2 S.D, 4 S.D, 

6 S.D and 10 S.D. Hence, for all sequences, the images shown here on the extreme left correspond to the average 

face altered by + 10 S.D and on the extreme right by -10 S.D.  The images in between correspond to + 6 S.D, + 4 

S.D, + 2 S.D, Average face, -2 S. D, - 4 S.D and - 6 S.D.  

 

Figure 5.10 shows the reconstructions using the second significant component. Altering was 

done progressively by adding quantities of – 2 S.D and + 2 S.D of the 2
nd

, 6
th

, 14
th

 and 13
th

 

component to the prototype face.       
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a) Component 2 (Second component for SURPRISE) 

 

 

b) Component 6 (Second component for HAPPY) 

 

 

c) Component 14 (Second component for FEAR, SAD) 

 

 

d) Component 13 (Second component for DISGUST) 

 

Figure 5.10: (a) 2
nd

 component- second highest for surprise against neutral (b)  6
th

 component- second highest for 

happy against neutral (c) 14
th

 component- second highest for fear and sad against neutral (d) 13
th

 component- second 

highest for disgust against neutral. The middle faces are the prototype faces (the mean face). The other faces are 

reconstructed by using the significant component and adding the altered values of the S.D of the respective 

component.  Altering is done progressively by adding quantities of -2S.D and + 2 S.D of the 2
nd

, 6
th

, 14
th

 and 13
th
 

component’s mean to the prototype face and is shown in  5.10 (a), (b), (c) and (d) respectively.  Figure 5.10 (a) and 

(d) has images on the extreme left which is altered by + 10 S.D and on the extreme right by – 10 S.D; The images in 

between correspond to + 6 S.D, + 4 S.D, + 2 S.D, average face, – 2 S.D, – 4 S.D and –6 S.D. Figure 5.10 (b) and (c) 

has images on the extreme left which is altered by – 10 S.D and on the right by + 10 S.D.   The images in between 

correspond to – 6 S.D, – 4 S.D, – 2 S.D, average face, + 2 S.D, +4 S.D and +6 S.D. 

  

 

All images are arranged such that the expression becoming ever increasing prominent is on the 

extreme right with the prototype face in the middle. Hence, Figure 5.10 (a) and (d) has images on 

the extreme left which is altered by + 10 S.D and on the extreme right by – 10 S.D; The images 

in between correspond to + 6 S.D, + 4 S.D, + 2 S.D, average face, – 2 S.D, – 4 S.D and –6 S.D. 
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Figure 5.10 (b) and (c) has images on the extreme left which is altered by – 10 S.D and on the 

right by + 10 S.D.   The images in between correspond to – 6 S.D, – 4 S.D, – 2 S.D, average 

face, + 2 S.D, +4 S.D and +6 S.D. 

 

Expressions angry, sad and disgust all have component 26 as the first significant component. 

Zucker et al (2007) experimented with human subjects to perform a six-way forced choice 

classification and found that angry expressions are very often confused with disgust and 

sometimes with expression sad. Expression disgust is often confused with angry. Expression sad 

is often confused with angry. This could suggest that from the results obtained here, the 

expressions angry, sad and disgust are encoded by the same component (26th) and hence be some 

supporting evidence to these expressions being indeed confusing.   

Susskind et al (2007) performed multidimensional analysis of human performance in similarity 

judgements of facial expressions. They found that by ordering the emotion clusters, angry 

exemplars were ordered between sad and disgust, surprise was between happy and fear, with 

expression sad at a large distance away from happy.  These compliment the previous 

explanations for the confusion between expression angry, disgust and sad.  Dailey et al (2002) 

have presented a multidimensional scaling (MDS)  model of human response which reveals the 

dimensions of the emotions. The clusters for angry and disgust seemed to overlap, surprise was 

between happy and fear, and sad was close to angry and also positioned in between angry and 

fear. They suggest that humans find that fear expressions are difficult to classify and that they are 

often confused as surprise and never confused with happy (Calder et al., 2001).  Zucker et al 

(2007) also found fear expressions are confused with expression surprise.  However, here 

component 7 is the first significant component for expressions happy and fear.  

 

5.5 Comparison of dimensions used with PCA and CCA 

 

The dimensionality reduction achieved by PCA on raw face images and Gabor pre-processed 

images for all expressions was detailed in Table 5.1 and the estimated intrinsic dimensions to 

which the CCA was reduced for raw  and Gabor pre-processed face images was in Table 5.2. 

The important point to be noted here is that with PCA, the raw faces images for all expressions 

need at least 96 components in order to retain 95% of the total variance of the dataset. However, 

on performing Gabor filtering on the raw face images and then using PCA requires a mere 22 

components to retain 95% variance without much significant information loss. This could be 

because of PCA being a linear dimensionality reduction method and Gabor filtering is a non-

linear method highlighting expressive features of the face such as eyebrows or corners of the 

mouth which are involved while displaying any expression (Shen and Bai, 2006). The 
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explanation also holds good for results in Table 5.2 which indicate that the intrinsic dimensions 

estimated for the non-linear CCA (Demartines and Hérault, 1997b) does not make much 

difference with respect to raw and Gabor-preprocessed face image; as the facial features (Jarudi 

and Sinha, 2003) and Gabor filtering are both non-linear (Kruizinga and Petkov, 1999; Shen and 

Bai, 2006). 

5.6 Comparison of classification results: FLD with PCA 

 

Table 5.5 shows the results of classification by FLD in comparison to nearest neighbour 

classification of PCA projected raw face images and Figure 5.11 shows the plot for the same. 

When the training set is small, PCA can outperform FLD. When the number of samples is large 

and representative for each class, LDA outperforms PCA. With this dataset, the classification 

based on fisher faces yielded results that are just above average for all expressions.  The average 

classification accuracy of 60% for PCA and 63% for FLD was obtained.  It should also be noted 

that in order to obtain the FLD, the PCA is a prerequisite to overcome the problem with singular 

matrices and technically requires more processing.  

 

Table 5.5: Comparison of classification accuracy of FLD and PCA 

 

% Accuracy FLD PCA 

Angry  104/176 (59%)   112/176 (64%) 

Happy  114/176 (65% ) 112/176 (64%) 

Fear 106/176 (60% )  104/176 (59%) 

Sad  105/176 (60% ) 95/176 (54%) 

Surprise  122/176 (69% ) 102/176 (58%) 

Disgust  112/176 (64% ) 99/176 (56%) 

Average 63% 60% 
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Figure 5.11: Classification accuracy of PCA and FLD for all expressions 

 

Figure 5.11 charts the classification accuracy across various expressions for PCA and FLD on 

raw face images. As mentioned earlier in Chapter 3, PCA is commonly used for dimensionality 

reduction. It takes into consideration the greatest variance of the projected data; however, such 

projections may not be effective for classification since large and unwanted variations may be 

still be retained. On the other hand the LDA finds the projection such that there is a large 

between class scatter and little within class scatter.  The steps necessary to perform the LDA 

needs PCA as pre-requisite. This overcomes the problem of singular matrices which often occurs 

with small number of data points in comparison with the large dimensions of the raw face 

images. Here, the LDA based classification is compared with the PCA in a similar manner to 

others (Belhumeur et al., 1997; Kwak and Pedrycz, 2005 ).  

Belhuemer and Kriegman (1997) developed a face recognition algorithm which is insensitive to 

gross variation in lighting direction and facial expression using Harvard and Yale databases. 

Here, they made a comparison in the performance of FLD with PCA for recognizing faces of two 

classes: one with variation in lighting intensities and the other with variations in the expressions, 

eye wear and lighting. They also performed a comparison on the classification of face images 

with/without glasses. They showed a comparatively better performance with FLD in comparison 

to PCA, and based on this they suggested classifications of facial expressions could have similar 

results, where the set of training images is divided into classes based on the facial expressions.  

PCA can significantly reduce the dimensionality of the original features without loss of much 

information in the sense of representation, but it may lose important information for 

discrimination between different classes (Deng H. B., 2005)  and the accuracy may change with 

the size of the dataset. A frequently cited paper by Martinez and Kak (2001) used PCA and LDA 

for face recognition. By using varying sizes of dataset, they concluded that PCA might 

outperform LDA when the number of samples per class is small. They also report that several of 

their experiments have shown the superiority of PCA over LDA, while others show the 
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superiority of LDA over PCA indicating the classification accuracy depends on the classifier and 

the size of the dataset used.  

 

5.7 Classification with Support Vector Machines 

 

SVM based classification method has been described in detail in section 3.4 of Chapter 3 and 

again with reference to FERET face image classification in section 4.4 of Chapter 4. SVM 

classification was performed by using a 5 fold cross validation on each of the four subsets 

(described earlier in section 5.2) and the average accuracy is calculated.  The individual tables 

pertaining to each of the expressions and for all the models are in Appendix C.  All the raw faces 

and Gabor pre-processed face images have a dimension of size 3969  �63 × 63); whereas the 

PCA and CCA dimensionality reductions have lesser dimensions; the details of which are in 

Table 5.2 and 5.3.  

 

5.7.1 Comparison of classification accuracy – by Models  

 

Table 5.6 shows the accuracy obtained for each expression and also the average accuracy of each 

model across all the expressions; for example - the average accuracy for RAW models of all 

expressions is considered.  Figure 5.12 plots the average classification results detailed in Table 

5.6. 

Table 5.6: Average SVM classification accuracy for all models across all basic expressions 

 

% 

Accuracy Angry Happy Fear Sad Surprise Disgust 
 
Average 

RAW 84.09% 99.43% 83.52% 77.27% 94.89% 90.34% 

 

88.26% 

RAWPCA  70.45% 89% 82.39% 74.43% 89.20% 80% 

 

80.91% 

RAWCCA 63.64% 87.50% 73% 62.50% 93.75% 69.89% 

 

75.05% 

GAB 75.57% 89.77% 75.00% 70.45% 95.45% 73.30% 

 

79.92% 

GABPCA 72.16% 86.93% 79.55% 71.02% 90.34% 76.68% 

 

79.45% 

GABCCA 66.48% 61.36% 55% 58.52% 84.09% 60.80% 

 

64.38% 
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Figure 5.12:  Average classification percentages (last column of Table 5.6) for each of the six models: RAW, 

RAWPCA, RAWCCA, GAB, GABPCA, GABCCA for all expressions 

 

The average classification accuracy of the RAW model has an outstanding performance in 

comparison to the rest of them.  The RAW model performs best with the happy dataset (99.43%) 

and the least with expression sad (77.27%).  An average of 88.26% for the RAW model is the 

best in comparison with the other models; GABCCA being the worst (64.38%). The point here to 

be noted is that the RAW model did well as predicted due to the high dimensionality and no 

information loss, unlike other models that have undergone pre-processing (Gabor filtering) and 

dimensionality reduction (PCA or CCA).  In all cases, the PCA reduces the dimensionality to 

between 96 and 103 (least for sad and maximum for surprise) whilst the CCA has the most 

reduction to a mere 5 components (for both angry and disgust).  

Figure 5.13 charts the accuracy of classification for all models and for all expressions. The best 

classification accuracy of all the models across all the expressions is happy – RAW model 

(99.43%) and the worst of all is the fear – GABCCA model (55%) approximated to 5 

components.  

 

88.26%

80.91%

75.05%
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Figure 5.13: Classification accuracy of all models for all expressions 
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5.7.2 Comparison of classification

 

The results are analyzed for all the expressions

 

Angry expression:  Figure 5.14

model does very well with angry face images followed by G

respectively. On comparing,

GABCCA does better than RAWCCA

 

Figure 5.14: Classification accuracy of all models 
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lassification accuracy – by Expression  

The results are analyzed for all the expressions: 

14 charts the results of angry expression for all models.

model does very well with angry face images followed by GAB model at 84.09% and 75.57% 

, PCA and CCA, GABPCA does better than RAWPCA, 

RAWCCA. 

 

 

 

: Classification accuracy of all models for – angry expression (RAW and GAB are the best)

RAWPCA97 RAWCCA5 GAB GABPCA22 GABCCA6

70.45%

63.64%

75.57%

72.16%

Angry 

 

for all models. The RAW 

model at 84.09% and 75.57% 

does better than RAWPCA, and 

 

(RAW and GAB are the best) 

GABCCA6

66.48%



 

 

Happy expression:  Figure 5.1

model does very well with happy

respectively. It can be seen that 

processed images and CCA on raw dimensions is much better than CCA on Gabor pre

images. In addition, RAWCCA

GABPCA. 

 

 

Figure 5.15: Classification accuracy of all models for 
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15 charts the results of happy expression for all models. 

model does very well with happy face images followed by Gabor model at 99.43% and 89.77% 

be seen that PCA on raw images does better than PCA on Gabor pre

on raw dimensions is much better than CCA on Gabor pre

RAWCCA with just 6 components has managed to get better results than 

 

: Classification accuracy of all models for – happy expression (RAW and GAB are the best)

RAWPCA100 RAWCCA6 GAB GABPCA23 GABCCA5

89%
87.50%

89.77%

86.93%

Happy 

charts the results of happy expression for all models. The RAW 

face images followed by Gabor model at 99.43% and 89.77% 

PCA on raw images does better than PCA on Gabor pre-

on raw dimensions is much better than CCA on Gabor pre-processed 

with just 6 components has managed to get better results than 

 

(RAW and GAB are the best) 

GABCCA5

61.36%



 

 

Fear expression:  Figure 5.16

model does very well with fear face images followed by 

82.39% respectively. It can be seen that 

components seems to do better than 

addition, RAWCCA with just 6 components has managed t

with 5 components. 

 

 

Figure 5.16: Classification accuracy of all models for 
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6 charts the results of fear expression for all models. 

h fear face images followed by RAWPCA99 model at 83.52% and 

It can be seen that PCA on Gabor pre-processed images with 23 

nts seems to do better than CCA on Gabor pre-processed images 

with just 6 components has managed to get better results than G

 

: Classification accuracy of all models for – fear expression (RAW and RAWPCA are the best)

RAWPCA99 RAWCCA6 GAB GABPCA23 GABCCA5

82.39%

73%
75.00%

79.55%

Fear

charts the results of fear expression for all models. The RAW 

99 model at 83.52% and 

processed images with 23 

processed images with 5 components. In 

o get better results than GABCCA 

 

(RAW and RAWPCA are the best) 

GABCCA5

55%



 

Sad expression:  Figure 5.17 charts the results of sad expression for all models.

does quite well with sad face images 

74.43% respectively. It can be seen that 

components seems to do slightly better than classification with only Gabor pre

images without any dimensionality reduction. 

managed to get slightly better results than G

 

 

Figure 5.17: Classification accuracy of all models for 
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charts the results of sad expression for all models.

well with sad face images closely followed by RAWPCA96 

It can be seen that PCA on Gabor pre-processed images with

slightly better than classification with only Gabor pre

images without any dimensionality reduction. In addition, RAWCCA with just

better results than GABCCA with 5 components. 

 

 

sification accuracy of all models for – sad expression (RAW and RAW

RAWPCA96 RAWCCA7 GAB GABPCA22

74.43%

62.50%

70.45% 71.02%

Sad

charts the results of sad expression for all models. The RAW model 

 model at 77.27% and 

processed images with 22 

slightly better than classification with only Gabor pre-processed face 

with just 7 components has 

 

(RAW and RAWPCA are the best) 

GABCCA5

58.52%



 

Surprise expression:  Figure 5.1

Gabor pre-processed model with no dimensionality reduction method performs better than all of 

the rest of the models unlike other expressions where 

This is however closely followed by 

similar lines, PCA on Gabor pre

better than classification of raw face images with PCA at 103 components.  

model with just 6 components 

components. All models have remarkable results in comparison to other expressions. 

Figure 5.18: Classification accuracy of all models for 
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101 

expression:  Figure 5.18 charts the results of surprise expression for all models. The 

processed model with no dimensionality reduction method performs better than all of 

unlike other expressions where the RAW model has always done better

however closely followed by the RAW model (GAB - 95.45% and 

PCA on Gabor pre-processed images with 23 components seems to

of raw face images with PCA at 103 components.  

components has managed to get slightly better results than G

All models have remarkable results in comparison to other expressions. 

 

 

 

 

: Classification accuracy of all models for – surprise expression (GAB and RAW are the best)

RAWPCA103 RAWCCA6 GAB GABPCA23

89.20%

93.75%
95.45%

90.34%

Surprise

charts the results of surprise expression for all models. The 

processed model with no dimensionality reduction method performs better than all of 

model has always done better. 

95.45% and RAW - 94.89%).  On 

components seems to do slightly 

of raw face images with PCA at 103 components.  The RAWCCA 

managed to get slightly better results than GABCCA with 5 

All models have remarkable results in comparison to other expressions.  

 

(GAB and RAW are the best) 

GABCCA5

84.09%



 

Disgust expression:  Figure 5.1

RAW model with no dimensionality reduction method performs better than 

90.34%. This is closely followed by 

images with 23 components seems to 

at 76.68% and 73.30% respectively. 

slightly better results than GAB

 

Figure 5.19: Classification accuracy of all models for 
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expression:  Figure 5.19 charts the results of the disgust expression for all models. The

model with no dimensionality reduction method performs better than 

closely followed by RAWPCA101 model at 80%.  PCA on Gabor pre

images with 23 components seems to do slightly better than the Gabor pre-

at 76.68% and 73.30% respectively. RAWCCA with just 5 components 

ABCCA with 5 components.  

 

 

 

 

n accuracy of all models for – disgust expression (RAW and RAWPCA are the best)

RAWPCA101 RAWCCA5 GAB GABPCA23

69.89%

73.30%

76.68%

Disgust

disgust expression for all models. The 

model with no dimensionality reduction method performs better than all the models at 

PCA on Gabor pre-processed 

-processed face images 

components have managed to get 

 

(RAW and RAWPCA are the best) 

GABCCA5

60.80%



 

Table 5.7 and Figure 5.20 show the average classification results for 

across all the models.  

Table 5.7:  Classification accuracy for all expressions averaged across all models

 

Angry Happy

72.07% 

 

Figure 5.20: Classification accuracy 

 

The averaged results in Table 5.7 and the plots in Figure 5.20 show that surprise, happy and 

disgust expression recognition is easier than fear, angry and sad. 

 

 

 

Angry Happy

72.07%

85.67%

103 

Table 5.7 and Figure 5.20 show the average classification results for every expression averaged 

:  Classification accuracy for all expressions averaged across all models

Happy Fear Sad Surprise Disgust

85.67% 74.74% 69.03% 91.29% 75.17%

Figure 5.20: Classification accuracy of all expressions - averaged across all models

The averaged results in Table 5.7 and the plots in Figure 5.20 show that surprise, happy and 

disgust expression recognition is easier than fear, angry and sad.  

Happy Fear Sad Surprise Disgust

85.67%

74.74%

69.03%

91.29%

% Average accuracy

every expression averaged 

:  Classification accuracy for all expressions averaged across all models 

Disgust 

75.17% 

 

averaged across all models 

The averaged results in Table 5.7 and the plots in Figure 5.20 show that surprise, happy and 

Disgust

75.17%
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5.8 Discussion and analysis of the results - Model wise and Expression 

wise 

 

The recognition rates of this system seem to be really encouraging in comparison with other 

results by various researchers over the past few years. Unfortunately, these results cannot be 

directly compared because there have been large differences in the datasets used, the methods 

adopted for feature extraction, dimensionality reduction and also the type of classifier used. The 

lack of literature on all similar models that are used here makes the comparisons even more 

difficult. However, a sincere effort has been made to compare the systems which are nearest to 

these and analyzed.  

Automatic facial expression systems attempt direct interpretation of facial display of emotion 

and indirect interpretation using facial expression dictionaries.   Research based on classification 

of facial emotions is discussed here. 

A very recent work by Liejun et al (2009) studied facial expression classification using SVM by 

modifying various kernels. Their results look very impressive. However, on further investigation 

a number of important issues can be highlighted. They used the JAFFE dataset of 210 images of 

10 individuals each with 7 expressions (including neutral) and 3 images per expression.  The 

comparison is shown in Table 5.8. The average accuracy of their model which is similar to my 

RAWPCA model gave an accuracy of 94.8%.  The average accuracy of my RAWPCA model 

(for all expressions) is 80.91%.  Their training set uses 70 images from the 210 mentioned earlier 

and this implies that there are 30 test images for each expression. They used PCA for feature 

extraction to retain only 28 components.  The test set is 210 images and it included the images of 

the training set and thus would indeed increase the accuracy considerably. In comparison to that, 

I have used a unique set of 88 individuals with no repeating images for any expressions. The 

total training set used has 176 face images (for any expression alongside neutral at any time). 

This was divided into 4 subsets of 44 images each.  The training set used is 132 images and test 

set is 44 images. The classification was performed 4 times by considering the test set as one of 

the 4 subsets while using the rest as the training set.  Finally, the average was obtained. Hence, 

the test set can be thought of as a set of unique 176 images and is much larger than the dataset 

used by Liejun et al. In addition, the size of the images they have used is large �256 × 256
 and 

I have used a smaller size of �64 × 64) in order to compensate for the larger size of the number 

of samples (88 face images per expression) used.  The results of their experiments suggest that 

angry and disgust expression was the easiest to be identified, followed by surprise, happy, sad 

and finally, fear. My RAWPCA model finds surprise and happy to be the easiest, followed by 

fear, disgust and sad and found angry face image classification hard.   
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Table 5.8:  Comparison with Leijun's model  

 

Total 

number of 

images 

Individuals 

 

No. of 

expressions 

 

Size of 

Training 

Set 

Size of 

the Test 

Set 

 
Average 

Leijun’s 

model 
 

210 

(10 × 3 

images/ 

expression) 

10 

(all female) 

 

7 

 

 

 

70 

 

210 

 

94.8% 

Average 

RAWPCA 
Model 

 

 

616 

(88 × 7 

expressions) 

 

 

88 

(44 male, 44 

female) 

 

 

7 

(One 

expression at a 

time against 

neutral) 

 

176 

 

 

176 

 

80.91% 

 

Liu and Wang (2006) studied facial expression recognition based on a fusion of multiple Gabor 

feature extraction. Though this work aims to compare a NN based classification with a PCA 

based classification of the pre-processed face images by Gabor filters, the results of GABPCA 

are comparable to the work explained in this thesis.  They used the JAFFE dataset of 10 subjects; 

two images per expression and 7 expressions including the neutral. From a total of 219 face 

images, 140 are used for training and 79 are used for the test set. Thirteen channels are used to 

accommodate the 5 scales and 8 orientations. Each channel is a group of different Gabor filters 

that have the same scale or orientation at specific fiducial points. Liu and Wang perform Gabor 

filtering using all the channels and regard the maximum of all channel features as the vector. 

They perform a number of classifications including PCA and neural networks. There is thus 

some comparison with my GABPCA. My GABPCA performs best with surprise, followed by 

happy, fear, disgust, angry and sad.  Their model also recognizes surprise with good accuracy 

and the rest in the order sad, fear, disgust, angry and happy.  Their results are similar except for 

the happy and sad expression accuracy rates. 

Lyons et al (1999) report achieving 75-92% recognition accuracy using Gabor wavelets with 

Elastic bunch graph method for feature extraction followed by LDA + PCA + classification. 

Using RBF based neural networks of features selected by optical flow method results in 88% 

accuracy (Rosenblum et al., 1996).  Padgett and Cottrell's (1996) research on facial expression 

with PCA and NN has been able to achieve a classification accuracy of 86%.   Essa and Pentland 

(1997) obtained 98% accuracy with feature extraction using optical flow coupled by a physical 

muscle model that described the skin and texture to extract features followed by a  motion energy 

model for classification.  Lanitis et al (1997) obtained a 74% accuracy with a dataset of 690 

images ( 300 in test set and 390 in training set) that used appearance based feature extraction that 

followed with mahalanobis distance based classification. Using expert rules for classification of 

emotional displays where feature extraction was by multiple feature detection resulted in a 91% 



106 

 

success rate (Pantic and Rothkrantz, 2000; Pantic and Bartlett, 2007).  Dailey et al (2002) 

experimented on the POFA (Ekman and Friesen, 1976) dataset by performing Gabor filtering at 

specific grid points and using PCA for dimensionality reduction and followed it with LDA for 

classification and obtained an average of 90% accuracy. They found that fear was the expression 

that was most difficult to be recognized out of the basic expressions.  Though the methods 

employed are different from those I have used for feature extraction, the closest model is my 

RAWPCA model which also recognizes fear and sad expressions with the least recognition 

accuracy in comparison to other expressions.  The happy expression recognition was also the 

easiest of all.  

 

A research by Buciu et al (2003) on the JAFFE dataset (Lyons  et al., 1998)  using Gabor filters 

for feature extraction and SVM (linear kernel) for classification resulted in an accuracy of 

95.18%. These results are good in comparison to the 79.92% that I have obtained for the GAB 

model with SVM classification. However, the dataset used is small consisting of 213 images of 

10 individuals in 3-4 poses for one of the 7 different expressions. Also, the Gabor filters used are 

tuned for 3 frequencies and 4 orientations which result in a total of 12 filters. When the original 

image of size 80 × 60 is convolved with the filters, it results in a size  80 × 60 × 12 . They use 

down sampling of the Gabor filtered image to obtain a matrix of size 20 × 15 × 12 and thereby 

a feature vector of size 1 × 3600.  This is subjected to linear SVM classification. The 

computational complexity of the problem with larger dataset cannot be underestimated and 

would be an interesting to extend this to a larger dataset. They also report that the since the 

database is limited, the recognition rate is measured over identity using a leave-one-out strategy 

which makes maximal use of the available data for training. These results were averaged over the 

subjects and classes. They too report that fear is one of the most difficult expressions to be 

judged along with the expression sad. 

 

Black and Yacoob (1997) report 83-100% recognition rate with video sequences, extracting 

features by local motion modelling and classification by expert rules.  Wang and Yin (2007) used 

the Cohn Kanade dataset (Kanade et al., 2000) and MMI dataset (Pantic, 2005). They used a 

topographic analysis technique for feature extraction. The topographic context is used for facial 

expression classification. The facial topographic surface is obtained for various regions of the 

face and it is labelled to form a terrain map; the statistical details for all regions are put together 

for the entire face to obtain a topographic feature vector.  Classification is performed by LDA 

and SVM apart from other methods which are of lesser relevance. The LDA provided an average 

recognition rate of 82.68% and SVM resulted in 77.68%.  They also report that expressions 

surprise and happy were well detected by the LDA classifier.  Their results compliment Cohen’s 

system (Cohen  et al., 2003) though the database consisted of only video sequences and the 

recognition rate was best at 81.80%. 

Some researchers use classification of facial action using  Facial Action Coding Scheme (FACS) 

(Ekman and Friesen, 1976). Research based on these systems is discussed here. Littlewort et al 
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(2006) have suggested that machine learning when combined with appearance based feature 

extraction are highly robust for expression recognition. Many machine learning methods have 

been applied and aim to achieve a high accuracy with an automatic facial expression recognition 

system. They include Adaboost, SVM, and LDA.   

The datasets used by them are: 

• Cohn-Kanade (Kanade et al., 2000) which has 313 sequences of frames that has 

expressions changing from neutral to one of the six basic expression with maximum 

intensity. 

• Pictures of facial affect (POFA) (Ekman and Friesen, 1976) have 110 images from 14 

subjects. 

 

A combination of Gabor filtering for feature extraction, and best filter selection is done by 

Adaboost followed by SVM classification in seven-way forced choice (six expressions and 

neutral) resulted in the best accuracy. It is an automated FACS recognition system and hence, the 

results are facial action labels. The results were 93.3% and 97% correct on these two publicly 

available datasets.  

 

Bartlett et al (1999) obtained up to 96% using difference images and Gabor jets for feature 

extraction followed by nearest neighbour using ICA for classification. Fasel and Luettin (2003) 

reported a maximum expression recognition rate of 83% by difference image for feature 

extraction and ICA + Euclidean distance based classification.  Cohn et al (1997) used Hidden 

Markov Model for classification of features extracted using feature point tracking and achieved a 

86% recognition rate. Using expert rules for classification of facial actions using FACS where 

extraction of features is by multiple feature detection results in 89% recognition rates (Pantic and 

Rothkrantz, 2000; Pantic and Bartlett, 2007).  

 

Buenaposada et al (2008) used the Cohn-Kanade dataset (Kanade et al., 2000) with video 

sequences to classify facial expressions.  Only those sequences that have clearly identifiable 

prototypical expressions are used. This is possible with only 333 sequences. Each image begins 

with a neutral expression and ends with an expression that is labelled by FACS.  They make use 

of a tracker system for feature extraction and dimensionality reduction by LDA.  Here, a facial 

expression is represented as a set of samples that model a low dimensional manifold in the space 

of deformations generated by the tracker parameters. An image sequence is considered as a path 

in the space of deformations. Using the nearest neighbour technique, the probability of 

occurrence of an image is estimated.  A recursive Bayesian procedure is adopted to combine 

these probabilities and assign a target sequence to the facial expression with maximum 

probability. This resulted in an average recognition rate of 89.13%. 
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A brief summary of some of the current state of the art research in the field of facial expressions 

using static images is presented here: 

 

• Classification by Facial emotions where the output is one of the six expression classes 

(Zheng et al., 2009): 

 

� Cohen et al (2003) obtained an recognition rate of 66.53 % and 73.22% with the Cohn-

Kanade (Kanade et al., 2000) and Ekman-Hager datasets respectively. They used shape 

models and Gabor wavelets for feature extraction followed by a Linear Discriminant 

Classifier (LDC). 

 

� Fasel et al (2004) used gray-level intensities for feature extraction followed by neural 

networks for classification on the Cohn-Kanade dataset to obtain a classification accuracy 

of 38-68%. 

 

� Gunes and piccardi (2005a) used the FABO dataset (Gunes and Piccardi, 2005b) with 

shape features and optical flow for feature extraction followed by Bayesian network for 

classification that resulted in 80-100%. 

 

� Ioannou et al (2005) use a facial animation parameter technique for feature extraction 

followed by neurofuzzy network to obtain an accuracy of 78%.  

 

� Lee and Elgammal (2005) used the pixel intensities of the face region for feature 

extraction followed by decomposable models for classification on the Cohn-Kanade 

dataset with an accuracy of 61.85%. 

 

� Pantic and Rothkrantz  (2004a) used frontal and profile points for feature extraction 

followed by rule based and case based classification on the MMI dataset (Pantic, 2005) to 

obtain a classification accuracy of 83%. 

 

� Sebe et al (2004) used motion units for feature extraction and k-means nearest neighbour 

for classification on the Cohn-Kanade dataset and obtained a recognition rate of 93%. 

They too obtained 95% for their dataset but it should be noted that their dataset was much 

smaller than the Cohn-Kanade dataset. 

 

� Wang et al (2006) used 3D surface labels for feature extraction followed by LDA for 

classification on the Binghamton BU-3DFE dataset (Yin et al., 2006) to get an accuracy 

of 83.6%. 
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� Using Haar features extraction followed by Adaboost for classification by Whitehill and 

Omlin (2006) resulted in 92.35%.  

 

• Classification by Facial actions where the output is in terms of the Action Unit (Zheng et 

al., 2009): 

 

� Lucey et al (2007) performed feature extraction by active appearance model (AAM) 

followed by SVM based classification that resulted in 95% accuracy with the Cohn-

Kanade dataset.  

 

� Bartlett et al (2005) used Gabor wavelets for feature extraction and Adaboost and SVM 

for classification which resulted in 93.4% accuracy when Cohn-Kanade and Ekman-

Hager dataset was used together. 

 

� Pantic and Rothkrantz (2004) obtained an accuracy of 86% by extracting features using 

frontal and profile facial points and classifying by expert system rules.  

 

 

Most of these studies using different databases, different feature extraction methods and various 

classification methodologies seem to recognize happy and surprise with ease and also find fear 

and sad difficult. This may be because they involve subtle changes in appearance (Buenaposada 

et al., 2008). The various models that have been explained in this thesis (RAW, RAWPCA, 

RAWCCA, GAB, GABPCA, GABCCA) compliment these results though with different 

classification accuracies. Some studies have failed to use six basic prototypical expressions and 

some have not used a balanced set and all these issues have an impact on the classification 

results.  Although the database used most often is the one by Cohn-Kanade, the sequences that 

are used for training and testing are not the same and this means comparisons can be difficult. 

 

5.9 Conclusions 

 

All automatic facial expression systems focus on six basic prototypical expressions. This is based 

on the research by Ekman and Friesen (1971) and also by Izard (1977) who proposed that there 

are emotion specific facial expressions and compliments the work of Darwin.  In our everyday 

life, however, occurrences of such prototypic expressions on their own are relatively rare.  

Instead, emotions are often communicated by subtle changes in the facial features such as 

creasing of the cheeks, wrinkles in the forehead or dropping of the jaw, just to name a few and 

may also be a combination of more than one emotion such as angry - sad or a happy- surprise 
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(pleasant surprise). To design a system that is really capable of detecting these expressions and 

classifying them is not a trivial task.  

Other important factors in designing a good computational model are robust and precise 

detection of the facial features, independent of gender, identity, race, shape of the face, texture, 

colour, presence of facial and scalp hair (Tian et al., 2005). Expressions are a very important 

aspect of communication and there have not been any systems developed that use the facial 

emotion to convey meaning (Schwaninger et al., 2006). The system should be capable of 

identifying any micro expressions which are very rapid and are missed very easily (Lisetti and 

Schiano, 2000).  Spontaneous or posed expressions, still and video images are some of the 

factors that affect the recognition of facial expressions.   Mostly, the images are expected to be in 

frontal view however, in reality or in spontaneous expressions there could be a lot of rigid head 

motions.  The system should be robust despite changes in hair-style, changes in lighting 

conditions, and other distractions such as glasses or facial hair.  A human visual system easily 

fills in gaps in the areas that are occluded. Hence, the ideal system should also be capable of 

doing this.  Eye openings and contrast between iris and sclera differ among various individuals 

of different ethnic background, which could result in difficulty to track eye movements or even 

facial features (Tian et al., 2005). 

Recent advances towards the emotion recognition include voice or audio based recognition 

systems (Zheng et al., 2009).  Though a number of facial expressions occur during a 

conversation rather than on its own, none of the approaches so far have dealt with it (Fasel and 

Luettin, 2003). Though none of the methods enabled a one-to-one comparison to the results of 

my computational models, an honest attempt has been made to critically evaluate these results 

with current research in the field. 
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             CHAPTER SIX 

Facial expression recognition by humans  

 

6.1 Introduction 

 

Despite an enormous amount of input from various researchers in recent years in the area of 

automatic recognition of facial expression, no consensual results have emerged from these 

studies. There have been studies investigating generation of facial expressions and tasks relevant 

to recognition of facial expression and studies in these domains have spanned over a century. 

The oldest articles date back to 1844 even before Darwin (1872); Bell (1844) studied facial 

expressions and reported differences between the positive and negative emotions in terms of the 

muscle movements on the face. A very recent study by Matsumoto and Willingham (2009) 

compared the expressions of blind and non-blind individuals and their findings provide sufficient 

evidence that the production of spontaneous facial expressions of emotion is not learned. They 

conclude that something genetically wired is responsible for the facial expressions of emotions. 

This suggests that recognition of facial expressions is a trivial task for humans.  This chapter 

concentrates only on tasks involving recognition of facial expression by humans. There have 

been a limited number of studies comparing the performance of human subjects with 

computational models for facial expression recognition. This chapter reports an experiment that 

involved human participants performing tasks of expression recognition and compares the 

performance with the computational models that have been described in Chapter 5. 

 

6.2 Background research 

 

Earlier research in similar areas has included human performance in facial expression similarity 

studies (Susskind et al., 2007),  classification accuracy (Stathopoulou and Tsihrintzis, 2007; 

Ekman and Friesen, 1976; Zucker et al., 2007; Jinghai et al., 2006) and studies to find the  

minimum presentation time for accurate identification of facial expressions, danger and threat 

detection (Milders et al., 2008; Ohman et al., 2001).  Some studies have concentrated on all 

basic expressions; whereas others have concentrated only some of the expressions such as anger 

and fear. 

According to Ohman, Lundqvist and Esteves (2001), danger and threat are processed faster due 

to the evolutionary benefit. This would suggest that the response time is shorter for fear and 
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anger expression recognition than for other expressions (Hansen and Hansen, 1988).  However, 

Kirita and Endo (1995) have shown that the response time for happy faces was shorter than sad 

faces.  Carvajal, Vidriales, Rubio, and Martin (2004) found happy expression identification were 

easiest in comparison to angry and neutral expression and were detected faster. They concluded 

that the facial expression of happiness is the easiest one to identify, and that it could be attributed 

to the higher prevalence of this expression in social circumstances. Milders, Sahraie and Logan 

(2008) suggest an advantage in processing happy expressions and support earlier studies 

suggesting a bias towards facial expressions of positive valence. 

Wagner, MacDonald and Manstead (1986) examined whether participants can accurately 

distinguish spontaneous facial expressions for the seven affective states (six emotional and one 

neutral). Happy, angry, and disgust expressions were recognized at above-chance rates, whereas 

surprised expressions were recognized at rates that were significantly worse than chance. Other 

studies that involved classification accuracy tasks have resulted in different accuracies and they 

are not consistent.  Stathopoulou and Tsihrintzis (2007) found sad expressions were hardest to 

recognize, followed by angry, disappointment, disgust, scream and smiling ; whereas surprise 

was  easiest.  Jinghai, Zilu and Youwei (2006) found that humans found classifying happy and 

surprise expression recognition easy. They found anger, disgust and sadness more difficult to 

classify and expression fear being the hardest of all. Zucker, Radig and Wimmer (2007) found 

happy and surprise relatively easy to recognize, followed by anger, disgust, sadness and fear was 

the hardest. 

Some comparisons between human and computational performance in various facial expression 

recognition tasks have been conducted by Dailey, Cottrell, Padgett, and Adolphs (2002), 

Susskind, Littlewort, Bartlett, Movellan, and Anderson (2007), Jinghai, Zilu, and Youwei 

(2006), Calder, Butron, Miller, Young and Akamatsu (2001) and by Milders, Sahraie, and Logan 

(2008). The results of the empirical work reported in this thesis are compared with these studies 

in the later sections of this chapter. 

Here, the classification performance of the computational models that has been described in 

Chapter 5 is compared with the human performance in the classification of facial expression. 

Two types of relevant analysis were performed: 

• Bi-Variate Correlation analysis 

• Signal Detection Theory (SDT) 

 

For the purposes of comparison, the response time (RT) for human subjects in judging the facial 

expression of a given face was considered to be analogous with the distance measure from the 

hyper-plane for the computational models for that face. It can be reasonably argued that both are 

indicators of how ‘easily’ the classification was made. The analyses therefore focus on 
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examining the relationship between the average RT of the humans in responding to the stimuli 

and the distance measure from the hyper-plane for the computational models.  

The natures of the analyses are described below:  

• Bi-Variate Correlation – finds the strength of the relationship between two variables. The 

value of the correlation coefficient varies between +1 and -1. When the value of the 

correlation coefficient is close to ± 1, it means a perfect degree of association between the 

two variables. If the value is around 0, the relationship between the two variables is 

considered to be very weak. There are three types of correlation in use in statistics:  Pearson 

correlation, Kendall rank correlation and Spearman correlation. Here, only Pearson 

correlation is used as both types of data are interval and a linear relationship is sought, i.e. is 

it the case that the faster the response times of humans the greater the distance from the 

hyper-plane? If so, a significant negative correlation would be expected. The strength of any 

such relationship would be taken to indicate that one set of data is mirroring the other. The 

value of the correlation between the two measures decides the strength of the relationship.  In 

this case the two variables in question are, average RT and the distance measure. In addition 

to the strength of the relationship described by the correlation coefficient, another parameter 

for analysis is the significance of the relationship. This indicates how unlikely it is that the 

correlation coefficient is the result of chance factors such as noise in the data and is 

expressed as a probability value.  The results are considered to be significant at the level of 

0.05 or less.  

 

The larger the correlation coefficient, the stronger is the relationship and the smaller the p-

value i.e. the more significant the relationship. 

 

• Signal Detection Theory (SDT) -  Signal detection involves the perception of some 

information from the environment (the signal) and a decision process for categorizing that 

information as either being or not being the target signal (Abdi, 2007). It is suited to data 

where speed and accuracy may be traded off against one another i.e. where error data is 

informative. The presence of a face image with prototypical expression or the presence of a 

neutral face image and the response to that can be best described by the following four 

possibilities:  

  

� “Hit” (correct acceptance) = the signal is present, and it is detected.  

� “False Alarm” (incorrect acceptance) = the signal is absent, but it is detected.  

� “Miss” (incorrect rejection) = the signal is present, but it is not detected.  

� “Correct Rejection” = the signal is absent, and it is not detected.  
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In this case the presence of a face image with basic expression is taken as signal present. A 

parameter d' (d - prime) is used to describe the strength of this signal. This is the difference 

between the means of two distributions (distance measure from the hyper-plane of the SVM 

for the computational model and the average RT for the human subjects) which are often 

thought to be Gaussian and corresponds to the effect of the signal. It is best described by the 

Equation 6.1. 

 

                                                �′ = |¾�¿
 − ¾�CÀ
|                                  (6.1) 

 

 

where ¾�¿
 and ¾�CÀ
 are the ¾-scores of the instances of Hits and False Alarms.   

 

Considering only the entries that account for Hit (H) and False Alarm (FA) from the 

computational models and the human subjects, the d' is calculated. The frequencies of these 

four responses are dependent on one another. For example when the signal is present, the 

proportion of hits and the proportion of misses add up to one (because when the signal is 

present the subject can say either Yes or No). Similarly, in the event of signal being present, 

the proportion of FA and the proportion of Correct Rejection will add up to one. 

 

The larger the d' value, the better is the performance.  A d' value of zero means that the 

ability to distinguish between the two trials (presence of signal or not) is least and a value 

close to 4.6 indicates a nearly perfect ability to distinguish between two tasks (Oliva et al., 

2005). 

 

6. 3 Method 

 

6.3.1. Participants 

 

Thirty one healthy individuals took part in the study. All the individuals were within the age 

group of 18 to 59 years of age and ranged across various ethnic backgrounds and included 18 

males and 13 females.  The participants were from various professions and participated on 

request. This experiment was undertaken adhering to the ethics guidelines in the university and 

approved by the ethics committee.  
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6.3.2. Design 

 

A single variable was manipulated – expression. There were seven levels of this variable, angry, 

happy, fear, sad, surprise, disgust and neutral. The dependent variables were time taken to 

identify the expression and errors made in identification.  Due to the time consuming and 

somewhat onerous nature of the task, not all participants agreed to take part in all sessions so a 

repeated measures design, although desirable, was not achievable. 

 

6.3.3. Materials 

 

A total of 644 unique face images from the BINGHAMTON BU-3DFE database (Yin et al., 

2006) was used for this study.  The dataset is the same that had been used with the computational 

models described in detail in Section 5.2 of Chapter 5.  A total of 588 of the face image dataset 

were used for testing and the remaining 56 images were used in the practice session. The test set 

has 7 expressions and is balanced in terms of gender (294 male and 294 female). There are 84 

face images for every expression in the test set and 8 face images for every expression in the 

practice session. The test set was balanced in terms of expression and gender- angry and neutral. 

The images in the dataset are already processed by cropping to show only the face area to 

exclude any hair or clothing and are of size 256 × 256 .  No further processing or image 

reductions are done on the original images and hence are of good quality for perception. 

 

6.3.4. Procedure 

 

Every session included classification of one prototypical expression from neutral. Twenty 

sessions were conducted for every expression classification against neutral. As there are six 

expressions, there were 120 sessions. In each session a total of 168 images were shown to the 

participant. It consists of 84 neutral images and 84 images belonging to one of the six basic 

expressions. These 168 images were shown to the subjects as a set of six blocks with 28 images 

in each block. They were equally balanced in terms of gender and expressions (14 neutral images 

and 14 face images that belonged to one of the six basic expressions in each block). A preview 

block was used as the practice session to enable the participants to get used to the procedure. The 

preview block in each session (for each expression) had 16 images of 8 neutral and 8 images of 

one of the basic expressions and they were randomly shown to the subject. Of the 31 

participants, some kindly agreed to attend six sessions corresponding to the six expressions. 

Others attended at least one of the sessions. No individual participated in more than one session 

for the same expression.  
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A tool called TESTBED (Taylor, 2003) was used to document the responses of the participants. 

This is a response test generator program which records the response time (RT) and the 

classification of a face image by individual subjects. 

In every session, the face images were randomly shown on the computer screen from one block 

at a time and the participants responded by pressing the mouse button. Participants were given 

the practice session with the preview block to identify the expression on the face image. The 

images were displayed in a random order and a new image appeared on the screen when the 

response to the previous image was recorded. The participant was asked to click the left (for 

neutral face image) or the right mouse (for the basic expression in that session) button as soon as 

he/she identifies the expression of the face displayed. The click on the left mouse button in 

response to the neutral face was a correct guess and vice-versa. The TESTBED recorded the 

response time and also the correctness of the judgment. The participants were allowed to take an 

interval period between evaluations of every block. Some of the participants kindly agreed to 

take part in all sessions, and some have just taken part in one session; in other words, some have 

judged all six expressions and some have judged only one expression but all blocks in it. None of 

the participants had seen any of the images prior to the experiment.  The data obtained from all 

the participants was stored in a single file and imported to a statistical package for further 

analysis.   

 

6.3.5 Results 

 

The results of human performance in the classification of static facial expression images can be 

compared in terms of response time (RT) and the classification accuracy for each expression.  

Table 6.1 shows the average RT for classification by the participants for every expression that is 

properly classified. Table 6.2 shows the average classification accuracy for each expression 

obtained from all participants.   
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Table 6.1:  Average Response time (RT) for each correctly identified expression 

 

Expression Average RT in seconds  

(S.D  in brackets) 

Angry 1.09  (0.1925) 

Happy 0.85  (0.1187) 

 

Fear 0.99  (0.1636) 

 

Sad 1.04  (0.1849) 

 

Surprise 0.74   (0.1078) 

 

Disgust 0.85  (0.1190) 

 

 

The cut-off for RT to remove the outliers was calculated as 3*SD + actual average RT. We 

assume the smaller the RT for a correct judgment means the easier the classification task was for 

the subject. For the analysis, the RT for the entries with wrong guesses was removed from the 

result. It seems that the expression surprise is recognized faster by humans, followed by happy, 

disgust, fear, sad and the expression angry was the hardest.  A one way ANOVA has been 

performed to confirm that the differences are significant (F (5, 1007) =133.113, p<0.01).  The 

Post Hoc Scheffe comparisons showed RT was not significantly different for expressions angry 

and sad RT (p=0.121), for expressions happy and disgust (p=1.000) and for expressions fear and 

sad (p=0.123). However, it showed very good significant differences for other expression 

comparison with p<0.001.  

The results of the task of classifying facial expression in digital images by human subjects are 

shown in Table 6.2.  When all the face images were shown to all the participants, the accuracy 

obtained by the twenty participants was averaged for individual expression was taken.   
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Table 6.2: Results of human performance in classification of facial expressions 

 

Expressions Human Performance 

(% Accuracy) 
 

Angry 82.9% (139/168) 

Happy 94.6% (159/168) 

Fear 87.9% (148/168) 

Sad 82.9% (139/168) 

Surprise 97.7%  (164/168) 

Disgust 92.8% (156/168) 

Average 89.8%  (151/168) 

 

The results in the Table 6.2 show that the expressions surprise, happy and disgust were 

recognized with a very good accuracy.  Recognizing the expression fear was a bit difficult, with 

sad and angry being equally hard.  The average accuracy for all expressions was 89.8%.  The 

average accuracy for every image obtained by the twenty participants was obtained. Then, the 

average accuracy for all 168 face images was obtained.  A one way ANOVA confirms that the 

differences are significant. 

The results in Table 6.1 and Table 6.2 when compared, suggests that the expression surprise 

seems to be recognized fastest of all other expressions and also with the best classification 

accuracy. Angry expression recognition was the slowest and was not recognized easily. 

6.4 Analysis 

 

The response time and the classification accuracy recorded by the TESTBED are analyzed. 

 

6.4.1 Response Time 

 

Hansen and Hansen (1988) found that an angry face could be detected faster than an happy face 

in the crowd and hence concluded that facial expressions that are threatening are processed better 

than the others.  Later further research (Ohman et al., 2001; Fox et al., 2000) suggested that 

angry faces were indeed processed faster.  Contradictory results were obtained when these 

experiments were repeated by  Hampton, Purcell, Bersine, Hansen and Hansen (1989) and Byrne 
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and Eysenck (1995) and recently by Carvajal, Vidriales, Rubio, and Martin (2004) who found 

that happy expressions were easiest for identification in comparison to angry and neutral 

expression and  were detected faster. They concluded that the facial expression of happiness is 

the easiest one to identify, and that it could be attributed to the higher prevalence of this 

expression in social circumstances. In this study, happy expressions were indeed faster to be 

recognized than angry expression as can be seen from the data in Table 6.1. Kirita and Endo 

(1995) also have shown that the response time for happy faces was smaller than the sad faces.  A 

study suggests that people in positive moods are faster in recognition of happy faces as compared 

to people who not (Leppänen and Hietanen, 2003). If this is to be believed then recognition rates 

and accuracy could well be affected by the moods of the participants. They also suggest that in 

general positive expressions such as happiness is recognized faster than negative expressions 

such as disgust or sad and my results complement these findings to some extent. A very recent 

study by Bannerman, Milders, Gelder and Sahraie (2009) supports earlier studies of Ohman et al 

and suggests expressions such as fear or threat are detected faster using neuropsychological 

evidences based on eye movements.  A study by Yang, Zald and blake (2007) also provides 

evidence that fearful expressions are recorded faster by the brain than others  and happy 

expressions are slower to be recognized than even neutral expressions. They suggest that happy 

expressions signal safety to the brain and hence require no attention. It also suggests that faster 

recognition of fear expressions could have emerged from the evolutionary survival mechanism 

and could signal threats in the environment. As one can see, none of the evidence converges on 

support for any one expression being recognized faster. This could depend on number of factors 

such as the methods of experiments, database used, the number of male and female face images 

in the database, the number of males and females in the participants and the debate, and research, 

goes on. This is an issue constantly discussed in all facial expression recognition tasks which 

makes comparisons harder and also results in the inconsistencies (Schwaninger et al., 2006; 

Lisetti and Schiano, 2000; Fasel and Luettin, 2003). 

 

6.4.2 Accuracy 

 

A study by Wagner, MacDonald and Manstead (1986) examined whether spontaneous facial 

expressions participants can distinguish accurately the seven affective states (six emotional and 

one neutral). Happy, angry, and disgusted expressions were recognized at above-chance rates, 

whereas surprised expressions were recognized at rates that were significantly worse than 

chance. However, in the current study case surprise and happy were identified with better 

accuracy than other expressions. In their case, they also noted that female subjects were found to 

be significantly better in displaying facial expression than male.  However, although they found 

that neither gender was found to be better at perceiving facial expressions, female subjects were 

better at accurately perceiving expressions on the female face than on the male face.  The found 
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that female face images displayed neutral and surprised expressions much more accurately than 

male face images.  Men were found to be good with angry facial expression recognition. Goos 

and Silverman (2002) found that men were good in posing angry expressions and these would be 

perceived much more accurately compared to the angry expressions posed by females. Also, they 

suggest that the angry expression posed by females is not perceived by females any more than 

males as was previously thought.  In another study (Williams et al., 2008) showed that happy 

faces were detected significantly better than other expressions.  

The experiments with Wagner et al used 6 subjects to display facial expression which was 

recorded when they responded to emotionally loaded photographic slides. Their expressive face 

in response to the slides was videotaped and shown to a total of 53 participants (15 male and 38 

female) to judge the expressions.  There is a large bias towards female participants and could be 

the basis for such conclusive evidence.  In this thesis, an equally balanced set of face images in 

terms of gender and expressions was used i.e., 22 unique female face images and 22 unique male 

face images.  However, the number of female and male participants was not same, with 18 male 

and 13 female subjects.  Based on the other findings of Wagner et al that were mentioned earlier, 

these discrepancies could be a factor in obtaining different accuracies for individual expressions. 

Wagner et al found happiness as the easiest followed by disgust and anger and found fear to be 

one of the difficult ones.  

The results of a study by Wimmer, Zucker and Radig (2007) found happy expressions were 

detected with best accuracy  followed by surprise, anger, disgust, sad and the hardest was fear 

with an average of 64%. They used Cohn-Kanade dataset and the stimuli were video sequences. 

The POFA dataset by Ekman and Friesen (1976) results in an average accuracy of 90% with 

happy expression detected best followed closely by surprise and disgust, sadness, anger and the 

fear was detected with the least accuracy.  Bassili (1979) suggests that for a trained person or a 

face expert, classification accuracy for the six basic facial expressions is 87%.  However, he also 

points to the fact that this accuracy could depend on a number of factors such as the face being 

familiar, being an expert in recognizing expressions, the intensity of the emotion on the face, the 

face image as such or even the ethnicity of the participant and the ethnicity of person whose 

expressions are being categorized (Altarriba et al., 2003). Stathopoulou (2006) created a 

database in order to help researchers develop better automatic facial expression classifiers. They 

also measured the human performance in classifying facial expression. The expressions included 

were: surprise, smile, scream, sad, disgust, disappointment and angry. They found that surprise 

was more correctly recognized, followed by smile, scream, disgust, disappointment, angry and 

sad.  A study by Wang, Hoosain, Lee, Meng, Fu and Yang (2006e) that involved only Chinese 

participants and performed a forced choice labelling technique. This study resulted in the 

following conclusions - consistent results with earlier studies that show that fear and disgust are 

difficult to recognize, whilst happiness was easiest followed by surprise (Susskind et al., 2007).  

Calder, Burton, Miller, Young and Akamatsu (2001) obtained an average classification accuracy 

of 82%.  The best to worst recognized expressions were: happy, surprise, disgust, fear, sad and 
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angry. The evidence from various studies does not seem to converge and merit further 

investigations relevant to all issues. Here again, just as with the experiments with automatic 

facial expression recognition, the evidence does not converge on a single conclusion. Studies 

with human subjects have also failed due to reasons such as cultural differences, race and social 

differences which seems to affect the way and ability to recognize facial expressions (Altarriba et 

al., 2003). 

6.5 Comparison of human performance with computational models in 

expression recognition 

 

The human performance in the classification of facial expressions was compared with that of the 

computational models described in this thesis by two types of analysis. The results of these are 

discussed below. While comparing the results of the computational models with the human 

participants, only the responses to 84 face images (for every expression) that are common for 

both experiments were used. Hence to maintain uniformity, although with computational models 

used 88 face images with each expression; only results corresponding to the same face images 

used with human subjects and computational models were taken for analysis. 

 

6.5.1 Results of the Bi-Variate correlation analysis 

 

The result of the Bi-Variate correlation analysis for all expressions is shown in Table 6.3. 
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Table 6.3: Results of Bi-Variate correlation between average RT of human subjects and the distance measure of the 

hyper-plane for the SVM classifier used with all computational models for correct responses. The numbers in red 

font indicate significant levels and their corresponding correlation values.  

 

 

Significance Value : S ,      Correlation Value: r 

 

The correlation analysis was performed only on data for correct responses.  As expected there 

seems to be a negative correlation value for average RT versus distance measure for the entries 

where the models got the classifications correct.  This indicates that the images that needed 

longer time for the participants to classify had a larger average RT and that these images were 

closer to the classifying hyper-plane of the computational model and had a smaller distance 

measure. 

 

As can be seen, the right half of the Table 6.3 has more numbers in red font indicating significant 

correlations. The right hand side of the table has entries for the models with Gabor filters. It 

suggests that more number of Gabor based computational models have significant correlations 

with human subjects in comparison to the number of RAW models (without any feature 

extraction by Gabor filters) with significant correlations. For expression sad, none of the models 

showed significant values. However, the expression surprise seems to be good even with all 

models except with RAWPCA.  So, does this mean surprise expressions are perceived in a 

different way than others? A study by Lee and Elgammal (2005) shows that a 3D plot of six 

 

Expressio

n 

RAW RAWPCA RAWCCA GAB GABPCA GABCCA 

S r S r S r S r S r S r 

Angry 0.024 

N=141 

-0.191 0.645 

N=119 

+0.043 0.126 

N=108 

-0.148 0.016 

N=128 

-0.212 0.065 

N=120 

-0.169 0.597 

N=110 

-0.051 

Happy 0.090 

N=167 

-0.132 0.069 

N=149 

-0.149 0.259 

N=146 

-0.094 0.043 

N=151 

-0.165 0.537 

N=146 

-0.052 0.786 

N=103 

0.027 

Fear 0.018 

N=140 

-0.199 0.287 

N=138 

-0.091 0.242 

N=122 

-0.107 0.250 

N=124 

-0.104 0.016 

N=132 

-0.209 0.306 

N=92 

-0.108 

Surprise 0.005 

N=159 

-0.224 0.598 

N=149 

+0.044 0.004 

N=157 

-0.232 0.000 

N=160 

-0.281 0.032 

N=151 

-0.174 0.012 

N=140 

-0.211 

Sad 0.086 

N=129 

-0.152 0.067 

N=126 

-0.164 0.746 

N=104 

-0.032 0.455 

N=118 

-0.069 0.347 

N=119 

-0.087 0.418 

N=98 

-0.083 

Disgust 0.080 

N=152 

-0.143 0.946 

N=134 

0.006 0.683 

N=116 

-0.038 0.047 

N=125 

-0.178 0.890 

N=128 

-0.012 0.053 

N=102 

-0.192 
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basic expression vectors has the surprise expression far away from the other expressions which 

could be due to very distinguishable visual motions on the face posing surprise. Also, angry, 

fear, sad and disgust expressions are located closer to one another compared to the other 

expressions, and distinguished visually with more subtle motions.  As can be recalled from the 

results of computational models developed, only expression surprise had best classification 

accuracy with GABOR model as shown in Figure 5.18 of Chapter 5.  For all the other 

expressions, the RAW model gave excellent results.  

 

The association between the two described variables is said to be perfect when the correlation 

value is very close to -1 (negative sign for the negative correlation). Here, the GAB model for 

the expression surprise has the largest correlation value of - 0.281 when compared to all other 

models and it has a significance value of 0.000. 

 

Similarly the misclassifications can be used for correlation analysis and though is not an 

important analysis; interested readers are directed to the Table 1 in Appendix D.  

 

Table 6.4 details the expressions and the computational models that have the best association 

between the RT and distance measure. 

 

Table 6.4:  Levels of association for various models and expressions for response time (RT) and distance measure 

 

Expression Model Significance Level 

(S) 

Correlation Value  

(c) 

Angry GAB 0.016 -0.212 

Happy GAB 0.043 -0.165 

Fear GABPCA 0.016 -0.209 

Surprise GAB 0.000 -0.281 

Sad None - - 

Disgust GAB 0.047 -0.178 

  

 

As can be seen the model from the results in Table 6.4, the computational models based on 

GABOR filters had a significance values between the two variables (response time and distance 

measure) for all expressions, except for sad. With the expression sad none of the models suggests 

any association between the response time RT and the distance measure.     
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 6.5.2 Results of the SDT Analysis 

 

The result of the Signal Detection theory for all expressions is shown in Table 6.5. 

 

Table 6.5:  Signal Detection Theory results (d' ) for all expressions 

 

 

 

 

 

 

 

 

Note: The red font shows the highest value (absolute value) of d-prime for that expression and the numbers in blue font shows the 

second highest 

 

In Table 6.5, numbers in red are the largest d' for that expression and the numbers in blue are the 

second largest. As discussed earlier, the values closer to zero indicate the ability to distinguish 

between the presences of a signal or not is least and a larger value of d' indicates perfect ability. 

It is interesting to note from Table 6.5 that the highest and the second highest d' are either the 

RAW models or the human subjects. The highest absolute value of d' for each expression and the 

model is shown in Table 6.6.   

 

Table 6.6: Highest absolute values of d' for all expressions 

 

Expression Model d' value 

Angry RAW 2.03 

Happy RAW 0.99 

Fear Human Subjects 0.76 

Surprise Human Subjects 3.98 

Sad Human Subjects 0.66 

Disgust Human Subjects 0.86 

 

 

Expression 

Computational Models  

Human Subjects 

 RAW RAWPCA RAWCCA GAB GABPCA GABCCA 

Angry 2.03 1.14 0.78 1.47 1.17 0.84 1.91 

Happy 0.99 0.77 0.74 0.8 0.74 0.23 0.89 

Fear 0.67 0.64 0.45 0.48 0.57 0.095 0.76 

Surprise 3.23 2.53 3.02 3.36 2.55 1.96 3.98 

Sad 0.54 0.5 0.24 0.4 0.42 0.17 0.66 

Disgust 0.81 0.6 0.38 0.49 0.52 0.21 0.86 
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The d' (d-prime) determines how well the model or the human subjects are able to select the 

correct stimuli while avoiding the incorrect ones, i.e. the ability to distinguish the expressive face 

from that of a neutral face.  The values from Table 6.6 suggest that human subjects find it easy to 

distinguish surprise, fear, sad and disgust expressions from neutral expression in comparison to 

the other models.  The RAW computational model seem to be the better of all the models in 

distinguishing angry and happy face images from the neutral face images.  The highest value of 

d' (d-prime) is for the expression surprise and the least value is for expression sad. From the 

values of d' expression surprise seems to be easily distinguished from neutral compared to 

sadness or fear  as found by others (Torro-Alves et al., 2009).   

6.6 Discussion 

 

The comparisons of the human performance with that of the computational models led to 

interesting results.  The models can be compared in terms of the overall performance for all 

expressions or for individual expressions. When human subjects performed the same type of 

classification as that of the models, the classification seemed to be exactly similar to that of the 

models. In terms of accuracy, the expressions surprise, happy and disgust were easier for 

classification while fear, angry and sad were harder.  The average response time (RT) for the 

human subjects in classifying the different expressions is analogous to the distance measure of 

the data points from the classification hyper-plane.  This indicates that the harder an expression 

on the face is to classify by human subjects, the closer it is to the classifying hyper-plane of the 

classifier. This result was obtained by performing a bi-variate correlation analysis between the 

average RT for human subjects and the distance measure of the face images from the hyper-

plane of the classifier of the computational models. Here, a linear negative correlation was 

obtained for those entries which had this relationship with a significance level below or equal to 

0.05. The significant p-values are shown in Table 6.4. 

The other findings were that the surprise expression behaves differently to the other expressions 

from bi-variate analysis results. Here, irrespective of whether the images are pre-processed by 

Gabor filters or are RAW images, there seems to be a similarity in the ease/difficulty with which 

humans and models classify facial expressions. 

For all expressions except sad, the results of the bi-variate analysis in Table 6.3 showed that the 

correlation between average RT of humans and the distance measure of the hyper-plane of the 

classifier for the computational models was significant mostly for models with Gabor filters. Out 

of the 11 models that are significantly correlated, 7 models are GABOR based and the remaining 

4 are models. This suggests more similarities between computational models that use Gabor 

filtering for pre-processing and human subjects in terms of difficulty or ease of recognizing a 

facial expression. 
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The average classification accuracy of each of the six computational models described in this 

thesis is now compared with the accuracy obtained for human subjects across all expressions.  

Table 6.7 shows this result for comparison. 

 

Table 6.7:  Comparing performance – Six computational models versus human subjects 

 

Expression Average Accuracy (%) 

 

RAW 

 

88.26% 

 

RAWPCA 

 

80.91% 

 

RAWCCA 

 

75.05% 

 

GAB 

 

79.92% 

 

GABPCA 

 

79.45% 

 

GABCCA 

 

64.38% 

 

Human Subjects 

 

89.8% 

 

The results in the table suggest that human subjects are better in facial expression recognition 

than any of the six computational models. The accuracy obtained by the RAW model is very 

close to the accuracy of human subjects.  The accuracy obtained from other computational 

models such as RAWPCA, GAB and GABPCA have intermediate results. All classification 

accuracies are above chance.  

The main point to be noted here is the dimensionality reduction methods used in the thesis such 

as the PCA and CCA in combination with Gabor pre-processing can reduce the original image 

dimensions to just a few components in comparison to the RAW models.  This saves a lot of 

computational time and also memory space when handling larger databases. Although the raw 

images have managed to do better in classification accuracy this should be obvious as there has 

been no dimensionality reduction which could result in information loss. However, when the 

number of images increases dimensionality reduction will be a necessity and hence methods such 

as CCA with Gabor pre-processing may become more useful. 
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6.7 Conclusions 

 

In this chapter, the experiment involving human subjects is explained and compares human 

performance with the performances of various computational models.  

Susskind, Littlewort, Bartlett, Movellan, and Anderson (2007) compared human performance 

with computational models based on similarity and dissimilarity judgments.  Most often, the 

average human accuracy is compared with the computational model. They realized that this 

could flaw the performance level as there is a variation within subgroups of human subjects in 

specific expressions. They also found that fear was poorly recognized by both humans and 

computer models. Since an average is taken collectively over the entire human subject group, it 

could masks the variations in individuals with different ethnic background, intellectual levels, 

age, gender, context and situation, familiarity, socio economic status, personality, attention, 

motivation, personal ability and emotional intelligence within the group of human subjects 

(Elfenbein et al., 2002). 

In another comparison test that compares the performance of human subjects with a 

computational classifier, Wimmer et al suggests that humans are not as good as some 

computational models (Wimmer et al., 2007). They think that the poor performance by humans 

could be due to the database used. They used the Cohn-Kanade dataset and consider its posed 

expressions are the reason for this.  Posing the happy expression is easier, but people are not sure 

how to pose expressions of fear, angry or disgust. They also conclude that lack of social 

circumstance or environment is a disadvantage as they think people’s expressions change in 

response to the social communication and that is lacking in posed expressions. Hence, they think 

human subjects are not accurate in facial expression recognition.  

Likewise, Dailey, Cottrell, Padgett and Adolphs (2002), found that the relative level of difficulty 

for the six prototypical expressions for their models was highly correlated to human 

performance. They found humans are good in classifying happy faces as are the models which 

complement my work. They suggest that the smile on the face aids faster detection, and the 

model finds it easy to detect smiles because of visual features for the happy expression that are 

obvious. They found that fear is one the most difficult expression for both humans and their 

computational model which is similar to the results of my work. However, as they use forced 

choice classification method, they also perceived that humans quite often confuse it with surprise 

and so does their neural network based computational model. They suggest that expression fear 

is often found to be difficult for classification because the perceptual similarity to other 

expressions and inherently difficulty to classify from other five expressions (Katsikitis, 1997; 

Ekman and Friesen, 1976). 

Happiness and surprise were best detected by both humans and computers when Jinghai, Zilu 

and Youwei (2006)  experimented with both.  Complementing my work, they also found anger, 
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disgust, fear and sad were more difficult to classify. However, they also found that accuracy by 

humans was higher than computers.  

On comparing the performance of human subjects with that of the computational models, there 

seems to be a lot of similarity. Surprise, happy and disgust were easier for classification, fear; 

angry and sad were harder for both humans and computational models.  When the models were 

compared in terms of the classification performance, RAW performed the best for all models 

except for surprise. As there is no dimensionality reduction or information loss, it is not a 

surprising for the RAW model to perform very well.  The other models, RAWPCA, GABPCA 

and GAB model perform equally well and that the RAWPCA uses just 97 components in 

comparison to the GABPCA, which uses a mere 22 components and manage to get reasonably 

good classification.  The performance of RAWCCA and   GABCCA are quite similar to one 

another and both do not do as well as the rest of the models, although they are way above chance 

results.  However, RAWCCA uses 5 and GABCCA uses only 6 components. 

From a direct comparison of the classification results, the GAB model seems to perform 

exceptionally well with expression surprise than with other expressions. Overall performance of 

surprise expression classification with all models has been extremely good.  Although the 

GABCCA model uses just 5 components, the accuracy result is as high as 84.09%. This 

expression seems to be different from others in that it can be easily detected by any of the models 

and with very good accuracy. 

From the bi-variate correlation analysis, the surprise expression seemed to have significance 

levels with almost all models. However, sad expression did not have significance levels for any 

of the computational models.  There was a significant anti-correlation between the average RT of 

the human subjects and the distance measure of the classifier indicating that the images that 

needed longer time for the participants to classify had a larger average RT and that these images 

were closer to the classifying hyper-plane of the computational models and had a smaller 

distance measure. 

Also in general, the results of the bi-variate correlation analysis suggests more number of GAB 

based models have significant correlation values when compared to the RAW models. This could 

mean that when models used images which are pre-processed by Gabor filters, they have a more 

similarities with human subjects in terms of difficulty or ease of recognizing a facial expression.  

The results from the SDT analysis show that humans are very good with classifications of 

surprise, disgust, fear and sad expression classification.  The RAW model performs very well 

with surprise and angry.  

Table 6.8 shows the order or rank of the scores obtained for different models. This table 

summarizes the rank of each model with respect to expression in the classification accuracy.   
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Table 6.8:  Comparing Models – Rank or Order of the models in classification  

 

         

         Models 

 

 

Expression 

 

Human 

Subjects 

 

RAW 

 

RAWPCA 

 

RAWCCA 

 

GAB 

 

GABPCA 

 

GABCCA 

Angry 5 4 6 5 3 5 2 

Happy 2 1 2 2 2 2 3 

Fear 4 5 3 3 4 3 6 

Surprise 1 2 1 1 1 1 1 

Sad 5 6 5 6 6 6 5 

Disgust 3 3 4 4 5 4 4 

 

In this thesis, although all datasets were balanced in terms of gender and all subjects’ 

performance was very well recorded; in order to make a gender based comparison, it is 

impossible to model a female or a male computational system. Hence, no such comparisons can 

be made to study the effect of gender in the classification task.  

 

A critical comparison with other similar studies does not provide complementary results in every 

aspect.  A number of factors which have already been discussed make this evaluation more 

difficult.  Recent work studied non frontal views for expression recognition (Hu et al., 2008) 

which has not been explored before.  Their experiment showed that non-frontal view is better 

than the frontal view for a computer to recognize facial expressions where the facial features 

points are manually marked. The best performance was at 45° for all expressions, except sad for 

which 60° gives the best accuracy.  

 

In real life situations face to face communication is expected as non frontal view communication 

is considered to be impolite. Most of the datasets use more frontal face images in comparison to 

the number of non frontal face images. This however, could result in human perception bias 

which suggests that humans seem to be more sensitive to changes in the features of frontal face 

images than non frontal face views. This is a new area of research that is being explored.  

 

Though ongoing research has concentrated on cognition and perception by humans, how humans 

recognize facial expressions is still not clear. With more and more biologically plausible 

computational techniques being developed, analyzing them in comparison to human performance 

can bring us a step closer to this understanding. Healthy humans are indeed still the sole winners 

when it comes to facial expression detection, they can fill in the gaps with obscured areas of the 

face and still detect the expression in a way that is difficult for any computational system. 
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Humans are quite robust and precise in detecting facial features, and can detect the expressions 

in spite of changes in identity and gender, race, shape of the face, texture, colour, with or without 

glasses or with variations in facial and scalp hair (Tian et al., 2005).  Computational systems on 

the other hand are still far less robust and do not have the capabilities to fill in the gaps or areas 

of the face if they are obscured and makes recognition harder. The systems intended to do 

accurate expressions recognition should take these factors into consideration.  
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CHAPTER SEVEN 

Conclusions and Future Work 

 

7.1 Introduction 

 

This chapter summarizes the major findings and contribution of the work presented and also 

discusses future work. The thesis presented is inter-disciplinary and hence, facial expression 

recognition is discussed from social psychology and computational perspective. It has been a 

challenging experience to bring together the research and studies in these two different domains. 

7.2 Summary 

 

In Chapter 2, the psychological and computational aspect with relevance to facial expression 

recognition was discussed.  The literature review in Chapter 2 discussed the universality of six 

prototypical facial expressions and suggested that expressions are innate.  Psychological studies 

relevant to facial expression generation and the process of recognition were also discussed. 

Earlier studies have shown the existence of six universally accepted prototypical expressions: 

anger, happiness, fear, sadness, surprise and disgust. However, culture and regional variations do 

affect the process of exhibiting expressions. Emotional expressions can be controlled by the 

expresser, as they are voluntary in nature, but often we are not so good doing this (Ekman, 

1973).  The well known psychological model by Bruce and Young (1986) that explains separate 

pathways for facial identity and facial expression recognition was discussed in Chapter 2. This 

model was also compared with the neuropsychological model by Haxby et al (2000). Conflicting 

evidence from research work demonstrates both categorical and continuous perception of facial 

expressions by humans. Holistic processing and feature based processing involved in facial 

expression recognition has also been outlined. The neuropsychological perspective, the effect of 

brain injuries and trauma, lesions or disease on the recognition of facial expressions recognition 

has been reviewed.  Sometimes, the effect is on the entire range of expression recognition or only 

on specific expressions depending on the area of lesions or injury or the disease. Different areas 

of the brain that are involved with processing of some expressions and the diseases that cause 

impairment of specific expressions have been studied (Adolphs et al., 2000).  

The second half of the Chapter 2 was devoted to computational models of facial expression 

recognition. Methods for feature extraction commonly used and classification were studied.  

Issues relevant to producing an ideal automatic facial expression recognition system were also 
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discussed.  Factors relevant to producing an ideal database are also mentioned.  However, the 

reader is directed to the area of neuropsychology that processes images in general and how the 

psychology and neuropsychology can be better understood by developing biologically plausible 

models for feature extraction.   This chapter concluded with a discussion of the requirements of 

an automatic facial expression recognizing computational model that ideally matches human 

performance in recognizing facial expressions. 

In Chapter 3, the computational methodologies used in this thesis were described in detail. A 

biologically plausible technique for feature extraction, in the form of Gabor filters, which are 

thought to mimic the simple cells of the pre-processing technique, was used for feature 

extraction. As face images are often of higher dimensionality, dimensionality reduction methods: 

PCA, CCA and LDA were also presented in Chapter 3. These methods may remove 

redundancies in the dataset by using the correlations within the data. When using a PCA 

projection the number of dimensions to which the original dataset is reduced is such that it 

retains 95% of the total variance of the dataset. However, with CCA the true dimensionality of 

the data called as Intrinsic Dimension which may be much lesser than the original dimension 

needs to be estimated.  Finally, classification using an SVM was also studied.  

Using an effect size analysis it is possible to identify those pixels in a face image that show a 

high discrimination between any two expressions. The method for performing this was discussed 

in this Chapter. This compliments research that describes the regions of the face that is 

associated with different expressions. An analysis of these methods with actual datasets was 

discussed in Chapter 4 and Chapter 5. 

Chapter 4 uses a small dataset with only two facial expressions, neutral and happiness.  The 

methods described in Chapter 3 were applied to this dataset.  The results were interesting and are 

summarized below. 

� The best models were: RAW, GAB and GABCCA11. These gave error rates of only one 

from 20 in Test Set A and 4 from 20 in Test Set B. 

� GABCCA11 did remarkably well as it used only 11 components.  

� The PCA based models did not perform well. 

� The LDA based classifier did not perform well. 

These results encouraged extending these experiments to larger dataset and with all six 

universally accepted prototypical expressions.    

In Chapter 5 the BINGHAMTON dataset was introduced. This is a larger dataset and includes all 

six prototypical expressions. The first experiment performed was an Effect Size analysis to 

identify those pixels that most clearly discriminate between two expressions. Here, the analysis 

was performed on one of the basic prototypical expressions and the neutral one.   The next 

experiment involved identifying those principal components that encoded particular expressions. 

It was found that some components were significant for more than one expression.   Using these 
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components it was possible to morph a face from a neutral expression to an extreme prototypical 

expression.  The third experiment reported here was an extensive analysis of representation and 

classification of these six expressions. The techniques described in Chapter 3 were applied to all 

six expressions and all six models.  The major findings were as follows: 

� The easiest expression to recognize was surprise and the hardest were sad and angry. 

� The RAW model performed best. 

� The RAWPCA was the best model with reduced dimensionality.  

� The RAWCCA model did not do quite as well but only used 5 components.  

� With the exception of surprise, the Gabor based models did not do so well. 

This chapter is concluded by a discussion in the current research in this field and makes a critical 

evaluation of the performance in classifying facial expression. 

The final experiment in the thesis takes the BINGHAMTON dataset and a set of human subjects 

who undertook a forced choice expression recognition task.  

In Chapter 6, a study with human subjects in classification of facial expressions is reported. The 

application TESTBED enabled recording the response time and the classification accuracy.  This 

was used to compare the performance of various computational models with that of human 

subjects. A bi-variate correlation analysis and signal detection theory was used to analyze and 

compare the results from computational model and human subjects. This section concluded with 

a critical evaluation of existing and current studies on performance of human subjects in facial 

expression recognition.  The major findings were as follows:  

� The human subjects found the expression surprise the easiest to identify and the angry 

expression classification the hardest. 

  

� The human accuracy was similar to the best of the computational models. 

 

� The Bi-variate analysis indicated that the Gabor based models showed greatest similarity 

to human performance.  

 

� There was a negative correlation between the average RT of human subjects and the 

distance measure for the computational models. This suggests that the harder the image 

classification is for humans, the closer it is to the classification boundary. 

 

� The �Â analysis did not provide any consensus; however, the SDT analysis suggested that 

human subjects distinguished surprise, disgust, fear, and sad from neutral expressed 

better than the other models. The RAW models seem to distinguish angry and happy 

faces from neutral expression better than other models. 
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7.3 Contribution 

 

The contributions in the field of facial expression recognition made by this thesis are the 

following: 

  

• The thesis confirms that the surprise and happy expressions are the easiest to identify for 

both humans and computational models. When human subjects performed the same type 

of classification as done by the models, the performance across the different expressions 

seemed to be similar to that of the models. Surprise, happy and disgust were easier for 

classification, fear, angry and sad were harder.  

 

• The bi-variate correlation analysis suggests that Gabor based computational models may 

be more similar to human subjects in facial expression classification. More number of 

GAB based models showed significant levels in comparison to RAW models and 

suggests correlation with human subjects in terms of difficulty or ease of recognizing a 

facial expression.   

 

• For expression surprise, the almost all RAW and Gabor based models showed significant 

correlations.  

 

 

•  The PCA and CCA can reduce the original dataset to a very small dimension and still 

produce effective classification. The RAW model performed the best for all expressions 

except for surprise.  It can also be noted that the RAWPCA, GABPCA and GAB model 

perform equally well and that the RAWPCA uses 97 components in comparison to the 

GABPCA, which uses a mere 22 components. The performance of RAWCCA and   

GABCCA are quite similar to one another and both do not do as well as the rest of the 

models, although they are way above chance results. The main point to be noted is that 

the classification results are obtained with just few components - RAWCCA uses 5 and 

GABCCA uses only 6. 

 

• The GABCCA model did not perform well on the BINGHAMTON dataset but performed 

well with the FERET dataset and hence it is very hard to make general conclusions. 

 

• The pixel based Effect size analysis showed for the first time those areas of the face that 

actually discriminate a particular expression from a neutral face.  This analysis may 

enable us to better understand the human facial features involved and the generation of 

the expressions. 
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• The PCA analysis showed that different principal components encoded the various 

expressions. Some components encoded more than one expression and perhaps, it could 

be suggestive of the confusions in classification of these expressions by human subjects. 

 

• Using PCA components it was shown that a neutral face can be morphed to an extreme 

prototypical expression.    

 

• The facial features are non linear (Jarudi and Sinha, 2003) and a non linear CCA method  

reduced the dimensions of the face images better  than a linear technique such as PCA 

(Buchala et al., 2005; Buchala et al., 2004a). In addition a non linear Gabor filtering 

method  (Kruizinga and Petkov, 1999; Shen and Bai, 2006) combined with non linear 

CCA has also managed to get a very small number for the ID. 

 

• On comparing the classification accuracy for every expression across all models, 

surprise, happy and disgust expression recognition seemed to be easier than fear, angry 

and sad.  

 

• The GAB model performs well with expression surprise than with other expressions. 

Overall performance of surprise expression classification with all models has been 

extremely good.  By using just 6 components with GABCCA model, the accuracy result 

is as high as 84.09%. This expression seems to be different from others in that it can be 

easily detected by any of the models, by very good accuracy. 

 

• The hypothesis that the average response time (RT) for the human subjects in classifying 

the different expressions is analogous to the distance measure of the data points from the 

classification hyper-plane was verified. This means the harder an expression on the face 

is to classify by human subjects, it is closer to the classifying hyper-plane of the 

classifier.  This is obtained by using bi-variate correlation analysis. Here, a linear 

negative correlation was obtained for those entries which had this relationship had a 

significance level below 0.05. 

 

• The signal detection theory (SDT) or the d-prime determined how well the model or the 

human subjects are in making the classification of an expressive face from a neutral one. 

On comparison, human subjects are better in classifying surprise, disgust, fear, and sad 

expressions. The RAW computational model provides better able to distinguish angry 

and happy expressions.  
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7.4 Future Work 

 

7.4.1 Morphing of facial expressions using PCA 

 

In Chapter 5, PCA and LDA has been used together to find the component capable of coding 

specific expressions. By finding the encoding powers of the components, the 26
th

 component has 

found to code angry, sad and disgust expressions.  Likewise, the 7
th

 component is significant for 

happy and fear expressions and 3
rd

 component is significant for surprise.  By reconstructing face 

images using different proportions of these components, facial expression morphing was 

achieved. This could well be used to study changes in facial expressions such as micro 

expressions, lie detection and threat detection in humans.  

 

7.4.2 Psychological plausibility of computational models 

 

Calder et al  (2001) have shown that their system based on PCA has a lot of similarity to human 

performance in a forced-choice experiment and later Dailey et al (2002) have shown that their 

model based on Gabor filtering and PCA was more biologically plausible computational model 

and  not only shows similarity to human forced choice performance but also supports both 

categorical and multidimensional theories of facial expression recognition and perception.  These 

types of experiments could be extended to other dimensionality reduction methods such as 

Independent Component Analysis, ISOMAP, and may be even in combination with classifiers 

such as SVM, Linear Discriminant Analysis and compare them with human subject’s 

performance on the facial expression related experiments.  

 

7.4.3 Gabor filtering methods 

 

This thesis involved experiments that have used Gabor filtering for pre-processing.  The Gabor 

filters were applied across the entire face and later, L2 max norm superposition method was used 

to produce the output of the filter bank. Though this has been commonly used, it would be 

interesting to see the results by averaging the output of all the filters and follow it up with any 

dimensionality reduction methods such as PCA or CCA.  A holistic approach has been followed 

here; however, an expert on facial expression recognition could select fiducial points that would 



137 

 

enable better recognition. The Gabor filters could be applied only at these points and it would be 

interesting to see the performance of this pre-processed data set. 

 

7.4.4 Gender based expression dataset 

 

The studies with human subject in tasks related to facial expressions have revealed some 

interesting results.  Wagner, MacDonald and Manstead (1986) have found that female subjects 

are better in displaying facial expression than male. They found that female face images 

displayed neutral and surprised expressions much more accurately than male face images.  Goos 

and Silverman (2002) found that men pose angry expression better than females. Could this 

influence the results of the experiments with human subjects? Does that mean that all datasets 

researchers use need to be a balanced set as used in this thesis for all experiments with human 

subjects.  The effects of an unbalanced set may not change the performance of a computational 

model as it is difficult to model a gender based computational system. Whilst performing all the 

experiments a balanced set (in terms of gender) has been used and the analysis can be repeated to 

obtain gender based classification results for human subjects. 

 

7.4.5 Effects of Age on facial expression recognition 

 

There have been experiments conducted to study the effect of age in the recognition of facial 

expression.  Studies by Suzuki, Hoshino, Shigemasu, Kawamura (2007) have showed that age 

affects the perception of facial expressions and emotions as such. In particular, they found that 

there is age-related decline in sadness recognition and age-related improvement in disgust 

recognition. Vasiliki and Louise (2008 ) report age related impairments in recognition of 

negative expressions in particular. This could be an affect of socio-environmental factors and 

hence, the age of the participants in human subject experiments could influence the average 

performance accuracy. 

 

7.4.6 Dynamic Expression database 

 

The experiments in this thesis used static grey scale images and hence, it would be interesting to 

repeat the experiments with a dynamic dataset. This dataset should include image sequences of 

the individuals in the dataset who change the facial expression from neutral to one of the basic 

prototypical expression. The performance of the human subjects can be then be compared to the 
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classification accuracy of the computational models.  As recent research has suggested (Zheng et 

al., 2009; Fasel and Luettin, 2003), the expression recognition could include voice or audio 

based recognition. Experiments using datasets that portray an actual social environment such as 

facial expression that occur during a conversation rather than on its own could be interesting. 

 

7.4.7 Other expressions 

 

It would be interesting to include other expressions such as deceit and contempt. 

The suggestion for future work in this chapter can be extended in various dimensions and can 

lead to further PhD work in its own right. 
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Appendix A 

 

A.1   Steps involved in obtaining the Principal components by PCA 

 

1. Consider a dataset which has N number of examples, each 

with D dimension.  

 

2. It has a D × N matrix. The D dimensions form the number of 
rows and N examples from the number of columns of the 

matrix X. 

 

3. Find the mean of each column (of the corresponding 

examples). 

 

 

4. Subtract the mean from the every column to form a matrix 
which has zero mean. 

 

5. 7 Ã = :
; − ¸< where ¸ =
$

E
 ∑ 
;

E
;F$  is the mean. 

  

6. Calculate the covariance matrix which is given by L@ =
$

E
 7 Ã 7Äh   

where k denotes transpose. 

 

7. Calculate the eigenvectors and eigenvalues of the 

covariance matrix. The diagonal elements of this symmetric 

covariance matrix are the variances of the ith variable 

which varies from 1 to N.  

 

8. Then, once eigenvectors are found from the covariance 

matrix, the next step is to order them by eigenvalue, 

highest to lowest. By retaining only the first p 

eigenvectors which attain 95% variance of the input, 

dimensionality reduction is achieved. Note that there can 

be no more than N Eigenvectors. The Important point here is 

that this method enables finding the eigenvectors even for 

large matrices. 
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The steps involved in finding the PCA projection and then reconstruction is as follows: 

• For a dataset of face images 7= {
$, 
�, … , 
E} with N samples 

and D dimensions, the mean face ¸ is found. 

 

• The average face is subtracted from each image: 
ÅÃ= 
; −  ¸ and 

7Ä = :
Æ$, … . , 
ÆE<. 

 

• Calculate the covariance matrix which is given by L@ =
$

E
 7 Ã 7Äh   

where k denotes transpose. As 7Ä has a large dimension (N*D 

× N*D), finding the eigenvectors is difficult. However, it 

is easy to find the eigenvectors of the 7Äh7Ä of dimension N 

× N as N<<D. 

 

 

• If we take �;  as the eigenvector of 7Äh7Ä and q; as the 

eigenvalue, then �7Äh7Ä
�; =  q;�;. 

 

• Therefore, by multiplying 7Ä on the left hand side of 

equation above,  7Ä�7Äh7Ä�;
 =  7Ä�q;�;
 and hence  �7Ä7Äh
 =  q;�7Ä�;
 

which implies that 7Ä�; is the eigenvector solution of the 

matrix 7Äh7Ä with the same q; as the eigenvalue.  

 

• Thus, 7Ä�$ = �$, 7Ä�� = ��, … … . . , 7Ä�t = �t are the eigenfaces.  Here 

n=N-1 considers only the first non zero eigenvalues. 

 

• The PCA projection would be then to produce �m = �m
h7Äh (where 

�h is of size k × D ) of size  k × N. Hence the 

reconstruction would be obtained by Çm =  �m�m  or Ç; = ∑ �;�;
m
;F$ .   
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Appendix B 

 

Table B.1: Significant components for all expressions 

 

Expression First highest  

component 

Second highest 

component 

Angry 26 3 

Happy 7 6 

Fear 7 14 

Sad 26 14 

Surprise 3 2 

Disgust 26 13 

 

 

 

 

Figure B.1: Angry encoding power - 26
th

 component has the highest anger encoding power and 3
rd

 component has 

the second highest encoding power 
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Figure B.2: Happy encoding power - 7
th

 component has the highest happy encoding power and 6
th 

component has 

the second highest encoding power 

 

Figure B.3: Fear encoding power - 7
th

 component has the highest fear encoding power and 14
th

 component has the 

second highest encoding power 
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Figure B.4: Sad encoding power - 26
th

 component has the highest sad encoding power and 14
th

 component has the 

second highest encoding power 

 

 

Figure B.5: Surprise encoding power – 3
rd

 component has the highest surprise encoding power and 2
rd

 component 

has the second highest encoding power 
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Figure B.6: Disgust encoding power - 26
th

 component has the highest disgust encoding power and 13
th

 component 

has the second highest encoding power 
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      Appendix C 

 

Table C.1: Classification Accuracy of the PCA + LDA processed data by measuring Euclidean 

distance 

 

% ACCURACY TEST 

SET 4 
TEST 

SET 3 
TEST 

SET 2 
TEST 

SET 1 
AVERAGE 

ANGRY 61.364 65.909 56.818 52.273 
59.091 

HAPPY 56.818 54.545 63.636 84.091 
64.7725 

FEAR 
54.545 56.818 63.636 65.909 60.227 

SAD 
59.091 52.273 59.091 68.182 59.65925 

SURPRISE 
63.636 75 79.545 59.091 69.318 

DISGUST 
65.909 59.091 68.182 61.364 63.6365 

 

Table C.2:  Classification Accuracy of LDA + PCA processed data with the SVM classifier 

 

% 

ACCURACY 

 

TEST SET 4 TEST SET 3 TEST SET 2 TEST SET 1 AVERAGE 

ANGRY 72.73% 

(32/44) 

84.0909% 

(37/44) 

79.5455% 

(35/44) 

 

88.6364% 

(39/44) 

81.25% 

(143/176) 

HAPPY 100%   

(44/44) 

100% 

(44/44) 

90.9091% 

(40/44) 

100% 

(44/44) 

97.7272% 

(172/176) 

FEAR 84.0909% 

(37/44) 

81.8182% 

(36/44) 

84.0909% 

(37/44) 

86.3636% 

(38/44) 

84.0909% 

(148/176) 

SAD 84.0909% 

(37/44) 

79.5455% 

(35/44) 

72.7273% 

(32/44) 

84.0909% 

(37/44) 

80.1136% 

(141/176) 

SURPRISE 90.9091% 

(40/44) 

95.4545% 

(42/44) 

95.4545% 

(42/44) 

100% 

(44/44) 

95.4545% 

(168/176) 

DISGUST 90.9091% 

(40/44) 

88.6364% 

(39/44) 

84.0909% 

(37/44) 

90.9091% 

(40/44) 

88.6363% 

(156/176) 
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Table C.3:  Cross validation results for angry expression by the SVM classifier 

 

Angry TEST 

SET 4  

TEST  

SET 3 

  

TEST 

SET2  

TEST 

SET 1   

Average  

 

RAW 79.54% 93.18% 79.54% 84.09% 84.09% 

(148/176) (35/44) (41/44) (35/44) (37/44) 

RAWPCA97 68.18% 77.27% 70.45% 65.91% 

70.45% (30/44) (34/44) (31/44) (29/44) 

RAWCCA5 68.18% 59.09% 63.64% 63.64% 

63.64% (30/44) (26/44) (28/44) (28/44) 

GAB 68.18% 79.55% 72.73% 81.82% 75.57% 

(133/176) (30/44) (35/44) (32/44) (36/44) 

GABPCA22 61.36% 79.55% 75% 72.73% 

72.16% (27/44) (35/44) (33/44) (32/44) 

GABCCA6 63.64% 70.45% 68.18% 63.64% 

66.48% (28/44) (31/44) (30/44) (28/44) 

 

Table C.4:  Cross validation results for happy expression by the SVM classifier 

 

HAPPY TEST 

SET 4 

TEST 

SET 3  

TEST 

SET2  

TEST 

SET 1 

Average  

 

RAW 100% 100% 97.73% 

(43/44) 

100% 99.43% 

(175/176) 

RAWPCA100 88.6364% 

(39/44) 

86.36% 

(38/44) 

93.18% 

(41/44) 

88.64% 

(39/44) 
89% 

 

RAWCCA6 93.18% 

(41/44) 

79.55% 

(35/44) 

84.09% 

(37/44) 

93.18% 

(41/44) 87.50% 

GAB 90.91% 

(40/44) 

90.91% 

(40/44) 

86.36% 

(38/44) 

90.91% 

(40/44) 
89.77% 

(158/176) 

GABPCA23 95.45% 

(42/44) 

81.82% 

(36/44) 

81.82% 

(36/44) 

88.64% 

(39/44) 86.93% 

GABCCA5 68.18% 

(30/44) 

61.36% 

(27/44) 

59.09% 

(26/44) 

56.82% 

(25/44) 61.36% 
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Table C.5:  Cross validation results for fear expression by the SVM classifier 

 

FEAR TEST 

SET 4  

TEST 

SET 3  

 

TEST  

SET2 

 

TEST  

SET 1 

Average 

RAW 86.36% 86.36% 79.54% 81.82% 

83.52% (38/44) (38/44) (35/44) (36/44) 

RAWPCA99 77.27% 93.18% 79.55% 79.55% 

82.39% (34/44) (41/44) (35/44) (35/44) 

RAWCCA6 75% 75% 72.73% 70.45% 

73% (33/44) (33/44) (32/44) (31/44) 

GAB 72.73% 63.64% 84.09% 79.55% 

75.00% (32/44) (28/44) (37/44) (35/44) 

GABPCA23 77.27% 75% 84.09% 81.82% 

79.55% (34/44) (33/44) (37/44) (36/44) 

GABCCA5 50% 54.55% 63.64% 52.27% 

55% (22/44) (24/44) (28/44) (23/44) 

 

Table C.6:  Cross validation results for sad expression by the SVM classifier 

 

SAD TEST  

SET 4  

  

TEST 

SET 3 

TEST 

SET2  

TEST  

SET 1  

Average 

RAW 84.09% 79.55% 75% 70.45% 

77.27% (37/44) (35/44) (33/44) (31/44) 

RAWPCA96 68.18% 79.55% 79.55% 70.45% 

74.43% (30/44) (35/44) (35/44) (31/44) 

RAWCCA7 63.64% 56.82% 65.91% 63.64% 

62.50% (28/44) (25/44) (29/44) (28/44) 

GAB 68.18% 68.18% 75% 70.45% 

70.45% (30/44) (30/44) (33/44) (31/44) 

GABPCA22 68.18% 77.27% 70.45% 68.18% 

71.02% (30/44) (34/44) (31/44) (30/44) 

GABCCA5 54.55% 56.82% 61.36% 61.36% 

58.52% (24/44) (25/44) (27/44) (27/44) 
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Table C.7:  Cross validation results for surprise expression by the SVM classifier 

 

SURPRISE TEST  

SET 4 

TEST 

SET 3  

TEST  

SET2  

TEST 

SET 1  

Average 

RAW 93.18% 95.45% 95.45% 95.45% 

94.89% (41/44) (42/44) (42/44) (42/44) 

RAWPCA103 93.18% 84.09% 93.18% 86.36% 

89.20% (41/44) (37/44) (41/44) (38/44) 

RAWCCA6 95.45% 95.45% 97.73% 86.36% 

93.75% (42/44) (42/44) (43/44) (38/44) 

GAB 95.45% 97.73% 95.45% 93.18% 

95.45% (42/44) (43/44) (42/44) (41/44) 

GABPCA23 88.64% 93.18% 93.18% 86.36% 

90.34% (39/44) (41/44) (41/44) (38/44) 

GABCCA5 81.82% 84.09% 86.36% 84.09% 

84.09% (36/44) (37/44) (38/44) (37/44) 

 

Table C.8:  Cross validation results for disgust expression by the SVM classifier 

 

DISGUST TEST 

SET 4 

TEST 

SET 3  

TEST 

SET2  

TEST 

SET 1 

Average 

RAW 90.91% 90.91% 90.91% 88.64% 

90.34%  (40/44) (40/44) (40/44) (39/44) 

RAWPCA101 75% 81.82% 81.82% 81.82% 

80%  (33/44) (36/44) (36/44) (36/44) 

RAWCCA5 70.46% 68.18% 75% 65.91% 

69.89%  (31/44) (30/44) (33/44) (29/44) 

GAB 72.73% 70.45% 68.18% 81.82% 

73.30%  (32/44) (31/44) (30/44) (36/44) 

GABPCA23 72.73% 72.73% 81.82% 79.46% 

76.68%  (32/44) (32/44) (36/44) (35/44) 

GABCCA5 56.82% 59.09% 61.36% 65.91% 

60.80%  (25/44) (26/44) (27/44) (29/44) 
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Appendix D 

 

Table D.3: Results of Bi-Variate correlation between average RT of human subjects and the 

distance measure of the hyper-plane for the SVM classifier used with all computational models 

for incorrect responses. The numbers in red font indicate significant levels and their 

corresponding correlation values. 

 

Missclass

-fications 

Raw RAWPCA RAWCCA GAB GABPCA GABCCA 

S C S C S C S C S C S C 

Angry 0.943 

N=27 

-0.015 0.642 

N=49 

-0.068 0.183 

N=60 

-0.174 0.391 

N=40 

0.139 0.414 

N=48 

0.121 0.422 

N=58 

0.108 

Happy -NA- -NA- 0.696 

N=19 

-0.096 0.927 

N=22 

-0.021 

 

0.685 

N=17 

-0.106 0.635 

N=22 

-0.107 0.378 

N=65 

-0.111 

Fear 0.566 

N=28 

0.113 0.914 

N=30 

0.021 0.942 

N=46 

-0.011 0.143 

N=44 

0.224 0.031 

N=36 

0.360 0.959 

N=76 

0.006 

Surprise    0.412 

N=9 

0.313 0.178 

N=19 

0.323 0.777 

N=11 

-0.097 0.630 

N=8 

-0.203 0.928 

N=17 

-0.024 

 

0.540 

N=28 

0.121 

Sad 0.174 

N=39 

-0.222 0.100 

N=42 

0.257 0.278 

N=64 

0.138 0.567 

N=50 

+0.083 0.314 

N=49 

0.147 0.595 

N=70 

0.065 

Disgust 0.953 

N=16 

0.016 0.366 

N=34 

0.160 0.478 

N=52 

-0.101 0.436 

N=43 

-0.122 0.911 

N=40 

-0.018 0.896 

N=66 

-0.016 
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Conference Proceedings and Poster Abstracts 
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