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Abstract 

This thesis is concerned with one important question in artificial neural 

networks, that is, how biologically inspired connectivity of a network affects its 

associative memory performance. 

 

In recent years, research on the mammalian cerebral cortex, which has the main 

responsibility for the associative memory function in the brains, suggests that 

the connectivity of this cortical network is far from fully connected, which is 

commonly assumed in traditional associative memory models.  It is found to 

be a sparse network with interesting connectivity characteristics such as the 

“small world network” characteristics, represented by short Mean Path Length, 

high Clustering Coefficient, and high Global and Local Efficiency.  Most of 

the networks in this thesis are therefore sparsely connected. 

 

There is, however, no conclusive evidence of how these different connectivity 

characteristics affect the associative memory performance of a network.  This 

thesis addresses this question using networks with different types of 

connectivity, which are inspired from biological evidences. 

 

The findings of this programme are unexpected and important.  Results show 

that the performance of a non-spiking associative memory model is found to be 

predicted by its linear correlation with the Clustering Coefficient of the network, 

regardless of the detailed connectivity patterns.  This is particularly important 

because the Clustering Coefficient is a static measure of one aspect of 

connectivity, whilst the associative memory performance reflects the result of a 

complex dynamic process. 
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On the other hand, this research reveals that improvements in the performance 

of a network do not necessarily directly rely on an increase in the network’s 

wiring cost.  Therefore it is possible to construct networks with high 

associative memory performance but relatively low wiring cost.  Particularly, 

Gaussian distributed connectivity in a network is found to achieve the best 

performance with the lowest wiring cost, in all examined connectivity models. 

 

Our results from this programme also suggest that a modular network with an 

appropriate configuration of Gaussian distributed connectivity, both internal to 

each module and across modules, can perform nearly as well as the Gaussian 

distributed non-modular network. 

 

Finally, a comparison between non-spiking and spiking associative memory 

models suggests that in terms of associative memory performance, the 

implication of connectivity seems to transcend the details of the actual neural 

models, that is, whether they are spiking or non-spiking neurons. 
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Chapter 1  introduction 

Chapter 1 

Introduction 

1.1 Motivation 

This thesis is concerned with one important question in artificial neural 

networks: how biologically inspired connectivity of a network affects its 

associative memory performance.  Neural network models of associative 

memory consist of a set of interconnected units, with a highly abstract process 

of neuronal dynamics.  Using simple training and update rules, as well as 

proper connectivity, a computational associative memory model is able to 

successfully simulate the memorising process of a set of patterns, and recall of 

the corresponding memory from a damaged pattern. 

 

Early associative memory models, in the literature, commonly have full 

connectivity, that is, each unit connects to all other units in the network.  On 

the other hand recent studies (Braitenberg and Schüz, 1998, Mountcastle, 1997, 

Latora and Marchiori, 2003, Watts and Strogatz, 1998, Sporns et al., 2004) in 

the mammalian cerebral cortex suggest that the connectivity of cortical 

networks is far from fully connected.  Instead, the cerebral cortex, which has 

the main responsibility for the associative memory function (Braitenberg and 

Schüz, 1998), is a sparse network with interesting connectivity characteristics.  

In fact, the recent introduction of graph theory measures to the study of cortical 

functional connectivity (Latora and Marchiori, 2003, Watts and Strogatz, 1998, 

Sporns et al., 2004) has revealed some of these characteristics such as the 

so-called “small world” phenomenon, and a reasonably high level of Global 

and Local Efficiency.  

 

There is, however, no conclusive evidence of how these connectivity 

characteristics affect the associative memory performance of a network.  Early 
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studies in this topic (Davey et al., 2006, Calcraft et al., 2006b, Morrelli et al., 

2004, Bohland and Minai, 2001) suggest that the locally connected network 

does not perform well in terms of associative memory, whilst the uniform 

random network gives the best performance.  But this is rarely the final 

answer to our question.  Between these two extreme cases, a wide range of 

networks can be produced by varying the different connecting strategies, which 

have much better associative memory performance than the locally connected 

network, and significantly less cost than the uniform random network if 

constructed realistically.  The cerebral cortical network is considered to be one 

example of these networks.  The correlation between the connectivity 

characteristics of these networks and their associative memory performance is 

mostly unknown and becomes the main interest of this programme of research. 

 

1.2 Contributions 

The major contribution of this programme is to the understanding of the 

characteristic effects of biologically inspired connectivity in an associative 

memory model, which includes: 

 The performance of a non-spiking associative memory model is found to 

be predicted by its linear correlation with the Clustering Coefficient of the 

network, regardless of the detailed connectivity patterns.  This is 

particularly important because the Clustering Coefficient is a static 

measure of one aspect of connectivity, whilst the performance reflects the 

result of a complex dynamic process. 

 This programme reveals that improvements of the associative memory 

performance of a network do not directly rely on an increase in the 

network’s wiring cost.  Therefore it is possible to construct networks with 

high associative memory performance but relatively low wiring cost. 

 Gaussian distributed connectivity in a network is found to achieve the 

highest performance with the lowest wiring cost, in all examined 

connectivity models. 

 - 2 - 



Chapter 1  introduction 

 Results from this programme suggest that a modular network with an 

appropriate configuration of Gaussian distributed connectivity both internal 

to each module and across modules, can perform nearly as well as the 

Gaussian distributed non-modular network. 

 The comparison between non-spiking and spiking associative memory 

models suggests that in terms of associative memory performance, the 

implication of connectivity seems to transcend the details of the actual 

neural models, that is, whether they are spiking or non-spiking neurons. 

This programme has also contributed to the knowledge in several other topics 

during its progress, these include: 

 A new update rule is proposed which improves the performance of the 

associative memory model with perceptron style learning.  This update 

rule can also significantly reduce the number of cyclic attractors that 

appear in synchronous neural dynamics, and therefore increase 

convergence speed in a parallel associative memory model. 

 An experimental investigation of a high capacity associative memory 

model with bipolar/binary, biased patterns is conducted and its result fills a 

missing gap in theoretical predictions. 

 

1.3 Structure of the Thesis 

Following this introduction, Chapter 2 discusses some related biological 

background to this research. To be specific, Section 2.1 and 2.2 focus on the 

literature review on neuronal physiology, whilst Section 2.3 and 2.4 review the 

general connectivity and modularity of real mammalian cortex. 

 

Chapter 3 details previous studies on the canonical associative memory models, 

highlighting the processing of the general model, the training and classification 

of the models, and some related studies in this area. 

 

Chapter 4 reviews a particular associative memory model, which is employed 
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in this study.  The measures of associative memory performance will also be 

discussed in this chapter.  This chapter, together with the early background 

chapters, form the modelling foundation of the study. 

 

Chapter 5 summarises the preliminary studies on fully connected Gardner type 

associative memory models.  Section 5.1 proposes a new update function 

which improves the associative memory performance.  Section 5.2 

investigates the performance of models with bipolar and binary, biased patterns.   

 

Chapter 6 discusses the implementation of the models.  The changes of 

development environment and simulators are highlighted in Section 6.1.  A 

special effort is devoted to the model parallelization, which is concluded in 

Section 6.2. 

 

Chapter 7 starts another important review, on connectivity measures in graph 

theory.  These measures are applied in the following chapters.  In Section 7.2, 

five different types of connectivity are proposed, which are inspired by the 

biological background in Section 2.3 and 2.4.  The effects of the connectivity 

in these models, on performance, will be examined in the following chapters. 

 

The main research on the connectivity effects on the performance of associative 

memory models is divided into three chapters.  Chapter 8 documents the study 

on non-spiking models with Non-modular connectivity, including the 

Watts-Strogatz small world network, and the Gaussian distributed network.  

Chapter 9 details the research on non-spiking model with modular connectivity, 

including the Fully Connected Modular network, the Gaussian-Uniform 

Modular network and the Gaussian-Gaussian Modular network.  The main 

findings from the non-spiking models are summarised at the end of Chapter 9.  

Chapter 10 continues the research on a more biologically realistic, spiking 

associative memory model with Integrate-and-Fire neurons and synaptic delays.  

 - 4 - 



Chapter 1  introduction 

A comparison between the non-spiking and spiking models is given at the end 

of this chapter. 

 

Each chapter’s conclusions are summarised and drawn together in Chapter 11, 

as the overall conclusion of the study.  In addition, a number of further 

research directions are suggested which would further extend the contributions 

of research reported here. 

 

A guide to the thesis (Chapter 2 to Chapter 10) is provided in Figure 1.1.  The 

dependency of each section is denoted by a dashed line.  Key relationships 

between sections are highlighted by solid lines with arrows.   

 

The Appendices include publications related to this programme.  Other 

detailed materials, for example the source code of simulators, can be found on 

this website: http://homepages.feis.herts.ac.uk/~cw5at. 
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Chapter 2 

Biological Background 

The mammalian cerebral cortex implements complex functions such as 

memory, perception and consciousness and is one of the most complicated 

biological systems, yet the details of how this system functions have not been 

absolutely revealed.  This chapter reviews some of the existing knowledge, 

including details of the fundamental unit of the cortex, the neuron, the 

information transmission between neurons, as well as some selected features of 

the mammalian cerebral cortex.  This review is essential to my modelling 

work on associative memory models as it provides the biological foundation of 

the study. 

 

2.1 Neurons and Synapses 

The main neurons of the cerebral cortex are the pyramidal cells (Figure 2.1), 

comprising about 85% of the total cortical neuron population (Braitenberg and 

Schüz, 1998).  A pyramidal cell, like other types of neurons, integrates 

incoming information through its apical and basal dendrites, processes the 

information further using its cell body, also called soma, and transmits its 

output to target neurons through the axon (Figure 2.2).  Connections between 

dendrites and axons form special junctions, the synapses, which support 

communication from presynaptic neurons to postsynaptic neurons. 
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Figure 2.1  A Golgi stained pyramidal cell. The picture shows the soma, basal dendrites, 

some of the apical dendrite and the initial axonal segment.  

Taken from http://en.wikipedia.org/wiki/Image:GolgiStainedPyramidalCell.jpg, under GNU 

Free Documentation License. 

 

 
Figure 2.2  Simplified diagram showing the structure of a pyramidal cell. The neuron is 

divided into dendrites, cell body (soma) and axon. 

Taken from http://www.p-i-a.com/Magazine/Issue3/neuronsk.gif 

 

2.2 Brief Summary of Neuronal Physiology 

Each neuron is bounded by a plasma membrane, which preserves the difference 

of ionic concentrations between the inside and outside of the cell. The 

membrane contains a wide variety of ion channels which allow ions, mainly 

sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl -), to move into 

and out of the cell.  The flow of ions across the cell membrane is controlled by 

opening and closing of the ion channels in response to voltage changes and to 

both internal and external chemical signals. 
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The ion concentration gradient across the membrane results in a potential 

difference (voltage) between the interior of the neuron and the surrounding bath.  

In the rest state, the resting membrane potential of the neuron, is usually 

between -90 and -60 millivolts (mV) relative to the potential of the surrounding 

medium, which is by convention defined as 0 mV.  At all times, ions flow into 

and out of the cell due to both voltage and concentration gradients.  The flow 

of ionic currents through open channels can make the membrane potential more 

negative, which is also called hyperpolarisation, or less negative and even 

positive, which is called depolarization of the neuron. 

 

When a neuron is depolarized sufficiently to raise the membrane potential 

above a threshold, an action potential, also named spike, is generated, 

depolarising the neuron to potentials between 10 and 50 mV.  Spikes are 

greatly important because they can be regenerated actively along axon 

processes and travel rapidly over large distances without attenuation.  The 

spikes fired by presynaptic neurons are considered the most critical input signal 

received by the dendrites of the postsynaptic neurons. 

 

After the firing of a spike the neuron enters a refractory period during which 

another spike can not be generated regardless of the stimulus.  The refractory 

period is usually between one and three milliseconds (mS) long, after which the 

neuron is ready to respond to the next stimulus. 

 

The spikes travel along the axon towards synapses, where they trigger opening 

of calcium channels and release of neurotransmitters.  The neurotransmitter 

molecules bind to receptors at the postsynaptic side of the synapse, causing ion 

channels to open, which usually results in a postsynaptic current (PSC).  The 

magnitude of postsynaptic current caused by presynaptic spikes, also called the 

synaptic efficacy, is an important concept when modelling neural networks and 
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usually represented as the weight of a connection between two units in the 

neural network.  The postsynaptic current causes a graded potential change in 

the postsynaptic neuron, called the postsynaptic potential (PSP).  Depending 

on the type of ions involved, the PSP can be either excitatory (EPSP), 

depolarizing the postsynaptic neuron, or inhibitory (IPSP), which 

hyperpolarizes the neuron.  All PSPs are summed up by the postsynaptic 

neuron. When excitation dominates and the axon hillock and initial axonal 

segment of the postsynaptic neuron are sufficiently depolarized, this can result 

in the firing of a spike which is then transmitted further along the axon. 

 

2.3 Connectivity of the Mammalian Cerebral Cortex 

This section reviews the knowledge gained from the research on mammalian 

cerebral cortex(Braitenberg and Schüz, 1998).  A huge number of different 

neurons and synapses make up the mammalian cerebral cortex.  There are 

about 1010-1011 neurons and as many as 104 synapses per neuron in the human 

cerebral cortex.  The cerebral cortex is distinguished from other parts of the 

brain such as the cerebellum or thalamus not only by its structure that 

comprises six different layers but also by the characteristics of its major neuron 

type, the excitatory pyramidal cell, which takes up to 85% of the cortical neural 

population (in human cerebral cortex).  Most of the pyramidal cells have a 

single main axon stem perpendicular to the cortical surface, leading vertically 

downwards from the gray matter (which is mainly occupied by cell bodies, 

unmyelinated axons and dendrites) into the white matter (composed of 

myelinated axons from pyramidal cells and afferent neurons), and further 

projecting to another region of the cortex or to a different part of the brain, or to 

both.  Between two pyramidal cells, excitatory synapses are established, 

which appear between unmyelinated sections of presynaptic axons and small 

membranous protrusions, called spines (Figure 2.3), on postsynaptic dendrites 

of target neurons, with a distance of approximate 5 μm between two synapses.  

A synapse can be strengthened or weakened during the interaction between the 
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presynaptic and postsynaptic neurons.  Since most of the synapses in the 

cerebral cortex constitute pyramidal-to-pyramidal connections (up to 75% of 

the population of cerebral cortical synapses), the modifiability of these 

synapses is likely to be the key to cortical learning and memory.  Pyramidal 

cells also receive inhibition mainly on their cell bodies.  Anatomical results 

show that each pyramidal cell gets inputs from, and projects to, thousands of 

other neurons, mostly within the cerebral cortex, but makes only one to two 

synaptic connections with any one of them.  This remarkable convergence and 

divergence of excitatory pyramidal cells, as well as the highly recurrent nature 

of the cortical network, indicate that the mammalian cerebral cortex is not a 

simple serial processing system.  In fact, many researchers (Braitenberg and 

Schüz, 1998) have suggested that Associative Memory models (which are 

commonly highly recurrent rather than serial) might be an plausible description 

of the function of the cerebral cortex. 

 

 

Figure 2.3  Spines on a dendrite. Taken from 

http://upload.wikimedia.org/wikipedia/commons/b/b1/Dendritic_spines.jpg 

 

The cerebral cortex also contains a class of non-pyramidal cells such as the 

stellate cells.  Unlike the long, straight main axon of pyramidal cells, the 

axons of these neurons have dense ramifications within an area near the cell 
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body (usually no more than a hundred m), making only short range 

connections with other neurons.  No clear main axon stem can be found, and 

the axonal collaterals hardly leave the grey matter.  Their dendrites are usually 

spineless and extend in all directions from the cell body, resulting in a star-like 

(stellate) appearance.  Synapses from this class of neurons inhibit the activities 

of postsynaptic neurons and therefore prevent the cortical network from 

over-excitation.  Non-pyramidal cells receive both excitatory and inhibitory 

inputs onto their spineless dendrites and cell bodies. 

 

It is believed that these two classes of neurons play significantly different roles 

in cortical information processing due to the different ramifications of their 

connections.  Pyramidal cells have both short range connections 

(approximately 1-2 mm along the axonal collaterals) within a small region 

nearby, as well as long range connections (up to 40 mm via the main axonal 

stem) passing through the white matter.  On the other hand the non-pyramidal 

cells have only short range connections.  Thus the local networks formed by 

short range connections from pyramidal cells and non-pyramidal cells seem to 

be in charge of handling information within local regions (by both exciting and 

inhibiting the local network), while individual local regions communicate with 

each other via the excitatory long range connections of pyramidal cells.  Note 

that there is no clear division of short range and long range connections since 

they are both biologically identical and only differ in terms of distance from the 

cell body. 

 

The probability of a connection between two neurons highly depends on the 

distance between the neurons.  Figure 2.4 shows the frequency distribution of 

distance for short range connections with cell separation no more than 0.5mm.  

The probability of any connection exists between two neurons falls off in a 

Gaussian like manner (Hellwig, 2000). The frequency distribution of long 

range cortico-cortical connections is showed in Figure 2.5, which also has a 
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Gaussian like manner. 

 

 
Figure 2.4  The probability of a connection between any pair of neurons in layer 3 of the rat 

visual cortex against cell separation. Taken from (Hellwig, 2000).  

 

 
Figure 2.5  The frequency distribution of long range cortico-cortical connections.  Taken 

from  (Braitenberg and Schüz, 1998). 

 

The characteristics of cerebral cortex are consistent with a classic idea of 

cortical function, the cell assembly, proposed by Donald Hebb (Hebb, 1949).  

According to Hebb’s theory, a cell assembly is a collection of neurons that have 

become functionally linked through repeated mutual excitation and are 

therefore capable of responding as a unit, which provides the neural basis for 

perception, learning, and other mental activities.  These neurons can be 
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scattered over the cortex, but should have stronger connections to each other 

than to other neurons.  Thus in order to form cell assemblies, a network has to 

contain a large number of neurons of the same kind (pyramidal cells), which 

are connected via excitatory synapses (pyramidal-to-pyramidal connections), 

and which exhibit modifiable synaptic efficacies (plasticity of synapses 

between pyramidal cells).  Another requirement is the existence of 

connections between distant regions in the cortex (long range connections 

across the white matter) as these are necessary to learn correlations between 

different modalities. 

 

2.4 Layers, Columns and Modularity of the Mammalian Cerebral Cortex 

The cerebral cortex is a folded sheet that is roughly 2.4 mm thick (human 

cortex), with six main horizontal layers (and several sub-layers) arranged in 

parallel to its surface (Figure 2.6).  Each layer has its own characteristic 

distribution of neuron types and connections, as well as characteristic 

connectivity features.  For example, the thalamic input is mainly relayed to 

layer Ⅳ, which consists of large pyramidal and stellate cells, and the cortical 

output to distant parts of the brain comes mainly from pyramidal neurons in 

layer Ⅴ.  The existence of these layers is the result of continuous neural 

development and migration of “progenitor” neurons (Kandel et al., 2000).  

Although the characteristic arrangement of horizontal layers is an important 

feature of the cerebral cortex, due to the lack of morphological detail and the 

high degree of abstraction of our models it is not investigated in this thesis. 
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Figure 2.6  The six horizontal layers of cortical grey matter.  Three different staining 

methods are used to illustrate neuronal morphologies and the distributions of cell bodies and 

fibres. Taken from (Braitenberg and Schüz, 1998). 

 

In some parts of the cerebral cortex, such as the somatosensory cortex, it can be 

observed that the neurons are arranged into a large number of vertical columns, 

which extend from the white matter through the six layers to the cortical 

surface (Figure 2.7).  An example of the columnar structure of the cortex is 

given by the orientation columns in the primary visual cortex. Each orientation 

column contains neurons that share the same orientation selectivity and 

preferentially respond to lines and edges that are tilted by the same angle from 

the vertical (Hubel and Wiesel, 1962).  These findings inspired Mountcastle’s 

hypothesis of columnar structure of cerebral cortex, further dividing the cortex 

into minicolumns and macrocolumns (Mountcastle, 1978, Mountcastle, 1997).  

A minicolumn is defined as a vertically oriented cord of cells, formed by 

migration of neurons from the germinal epithelium of the neural tube along the 

radial glial cells to their final location in the cortex.  A macrocolumn, 

commonly referred to as cortical column, or cortical module, is formed by 

many minicolumns bound together by short-range horizontal connections.  A 

minicolumn is estimated to be a group of approximately 100 neurons, with a 

diameter of about 50 µm.  A macrocolumn is thought to be formed by about 

100 minicolumns. 
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For nearly half a century the columnar hypothesis has been controversial 

(Horton and Adams, 2005).  The major debate is not about the existence of 

columns (some of the columnar structures can clearly be seen even by naive 

observers), but about their functional relevance.  Since columns have not been 

found in every part of the cerebral cortex, the question has been raised whether 

minicolumns or macrocolumns rather than individual neurons can be the basic 

functional units of the cerebral cortex. 

 
Figure 2.7  Columnar structure of the somatosensory cortex, visualised using Nissl stain. 

Taken from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569491&rendertype=figure&id=fi

g4. 

 

Both the laminar arrangement of the cerebral cortex and its vertical division 

into columns contribute to the modular structure of the cortex.  One might 

therefore hypothesise that the cerebral cortex can be represented by a 

computational model comprised of a number of interconnected modules 

(Johansson and Lansner, 2004). The goal of this thesis is to investigate how 

general features of network structure and connectivity such as modularization 

affect the computational performance of neural network models. 

 

2.5 Conclusions 
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This chapter has reviewed the biological background of the project, including 

the basic processes underlying neuronal communication and the structure, 

connectivity and some characteristic features of the mammalian cortex.  

However, despite the details that are given in this chapter, the goal of this thesis 

is not to study the detailed biological aspects of the system.  The aim of the 

work that is described in the following chapters is to identify how selected 

biologically plausible features of neural networks affect their performance in 

associative memory tasks, and to provide a bridge between simplified artificial 

neural network models and biologically realistic systems. 



Chapter 3  Canonical Associative Memory Models 

Chapter 3 

Canonical Associative Memory Models 

Computational Models have been widely used to investigate aspects of cortical 

functions. These models vary from purely statistical simulations (Hopfield, 

1982, Abbott, 1990) to analogue models simulating ion exchanges between 

cellular membranes (Hodgkin and Huxley, 1990).  The Associative Memory 

(AM) function that appears in the cerebral cortex has been canonically 

modelled by statistical models such as the Hopfield Net (Hopfield, 1982). Such 

models usually had great mathematical tractability but generally lack biological 

plausibility.  This situation has changed since a number of researches started 

investigating models with more biologically plausible features and associated 

them with realistic data (Calcraft et al., 2007, Kwok et al., 2007, Knoblauch 

and Palm, 2001, Shanahan, 2008).  Even so canonical models and their 

theories are still fundamental to new associative memory research.  This 

chapter aims to provide adequate background information of the canonical 

associative memory theories and some extensions so that the reader can be 

familiar with the research background and the inspirations of my study. 

 

3.1 A Simplified Associative Memory Model 

To help understand the modelling of associative memory, this section discusses 

how the neural dynamics is modelled using a network of discrete, two-state 

units.  This introduction includes simple dynamic examples as well as the 

underlying mathematics. 

 

3.1.1 Modelling Neuron Update 

Neurons in the cortex exchange information through neural dynamics as 

described in Section 2.2.  Thus the simplification and modelling of this 

process is the first step of modelling the associative memory function.  A 
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sound neural dynamics model simulates the following features: 

 The representation of neural states 

 The information processing of a synaptic connection from presynaptic 

neuron to postsynaptic neuron 

 The summation and effect of Post Synaptic Potentials (PSP) in the 

postsynaptic neuron 

 

Some assumptions are required for the modelling.  According to Section 2.2, 

the most important criteria of information exchange in neural dynamics is the 

existence of spikes.  An assumption can be made, that during a short period of 

time, or a dynamic cycle from t0 to t0 + Δt, each neuron in the network attempts 

to raise its potential above the firing threshold individually.  Thus the result of 

these attempts can be represented by two states.  The “on” or “firing” state 

indicates the threshold is reached and spikes are sent to corresponding neurons.  

On the other hand the “off” or “non-firing” state indicates the “silence” or 

inaction of the neuron.  This is of course, a very simplified model.  A few 

biological properties such as dendritic and axonal delays, and different firing 

rates, although considered in this thesis, could also be investigated in other 

variations of the model.  The state of unit i at time t is denoted by Si(t), which 

can be represented as either binary {1,0}, with 1 representing ‘on’ and 0 

representing ‘off’, or bipolar {1,-1}, that is 1 means ‘on’ and -1 means ‘off’.  

The vector {S0(t), S1(t), S2(t),… ,Si(t)}, named the network state, produces a 

snapshot of activity of the entire network.  Given a network with N units, there 

are 2N possible network states, each of which is called a pattern. 

 

The effect of spikes on the postsynaptic neuron depends on the efficacy of the 

synapses.  The synaptic efficacy, or the weight of a connection from unit j to 

unit i, is denoted as Jij.  Thus Jij of all units in the network forms a weight 

matrix 
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Note that are self-connections of unit i and are usually set to 0.   iij

 

The summation of all postsynaptic potentials to a unit i is calculated as the sum 

of the product of the unit state and the weight, over all connections.  This 

summation  

  (3.1.1) i ij
j

h J  jS

is called the local field or net input of unit i.  The sign of h indicates the 

summed effect to the unit, where positive means excitation and negative means 

inhibition. 

 

In the canonical Hopfield net as well as many other associative memory models, 

the new state of the postsynaptic neuron is determined by a threshold function.  

If h reaches a threshold θ, the unit turns to the “on” state; if h is below the 

threshold, the unit turns to the “off” state; if h is exactly the same as the 

threshold, the new state is kept the same as previous one: 

  
1, if 

1 1 ( ) or 0 ( ), if 

( ),  if 
i

i

h

S t bipolar binary h

S t h







   
 

 (3.1.2) 

where 1 indicates the “on” state and -1/0 indicates the “off” state.  This 

process is referred to as updating the network.  The dynamics of the network 

refers to the repeated application of the network update function.  The update 

threshold θ is usually set to 0 for simplification.  However different update 

functions will give a different dynamic performance.  An alternative update 

rule will be proposed in Chapter 5. 

 

3.1.2 Network Dynamics and Attractors 

The main purpose of an associative memory network is to memorise a set of 
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predefined training patterns 1 2 3, , ,...ξ ξ ξ .  If a training pattern is successfully 

memorised, it can be recalled via the network dynamics from other correlated 

patterns such as its noisy version.  In other words, for each memory in the 

network, there are a number of other patterns associated with it.   

 

The weight matrix of an AM model needs to be trained before it performs the 

dynamics.  This is generally referred as the training of the associative memory 

model and will be discussed in Section 3.2.  Here two predefined weight 

matrices for a 4 unit, bipolar Hopfield network are given as examples to show 

how the dynamics is performed (Amit, 1989): 

 

 , 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 
       
    

J 2

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 
     
 
  

J  

 Note that 1J  is asymmetric and  is symmetric.  2



J

 

For a 4 unit, bipolar network there are 16 network states 

,…, .  In order to identify corresponding network states in 

the investigation of network dynamics later, we can represent the 16 network 

states using hexadecimal numbers from 

 1, 1, 1, 1    1,1,1,1

 0 1, 1, 1, 1      to .  1,1,1,1F 

 

To update all units in the network, an update order is required.  Different 

update orders lead to different dynamic results.  There are three possibilities: 

 Synchronous updates, in which all units are updated at the same time 
(parallel dynamics) 

 Asynchronous fixed order updates, in which the units are updated in a 
fixed order, for example, 0,1,2,3,0,1,2,3… 

 Asynchronous random order updates, in which the units are updated 

randomly, for example, 0,3,1,2,1,2,0,0,3,2… 
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a. Dynamics in an Asymmetric Network 

Figure 3.1 shows the entire state space and the state transitions for asymmetric 

matrix  under synchronous dynamics.  Different states in the space have 

different dynamic properties.  The unstable states are states which turn to 

other states during updates.  For example,  indicates that 9 is an 

unstable state and will be updated to 3 through synchronous dynamics.  In 

Figure 3.1, two limit cycles, one with 2 states,

1J

9  3

87  , and one with 4 

states, 2 5 , attract all other states.  These cycles of states are the 

cyclic attractors. 

2D A   

 

Figure 3.1  State space and transitions for  (asymmetric) and synchronous updates.  

The numbers inside the circles indicate the states and arrows shows the update directions.  For 

example the network can be updated from 

1J

1,1 { 1, 1,1}     to 7 { 1,1,1,1}   but not from 7 

to 1.  The state space is divided by two cyclic attractors, a 2-cycle attractor 7  and a 

4-cycle attractor

8

2 5A D A    . 
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Figure 3.2  State space and transitions for  (asymmetric) and asynchronous fixed order 

updates.  Notations are the same as Figure 3.1.  Note that here all unstable states are attracted 

by a 2-cycle attractor . 

1J

5A 

 

Figure 3.2 is the state space and transition diagram for  under asynchronous 

fixed order dynamics.  In this dynamics all unstable states are attracted by 

only one cyclic attractor .  This is different from the dynamics in Figure 

3.1 which has 2 cyclic attractors.  For asynchronous random updates, the 

transitions of states are nondeterministic therefore no transition diagram can be 

drawn.  

1J

5A 

 

b. Dynamics in a Symmetric Network 

Figures 3.3 and 3.4 show the state transitions of symmetric network  under 

synchronous and asynchronous fixed order updates.  For the synchronous 

updates (Figure 3.3), three 2-cycle attractors 

2J

8 1, 7, 2E D   are formed.  

States like 4 and B are called stable states or fixed point attractors since they 

are always updated to themselves.  If a training pattern is a fixed point 

attractor under network dynamics then it is successfully memorised by the 

network and is called a fundamental memory.  However not all fixed point 

attractors are training patterns.  The states which are fixed point attractors but 

not training patterns are called spurious attractors. 
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Figure 3.3  State space and transitions for  (symmetric) and synchronous updates.  

Notations are the same as Figure 3.1.  Three 2-cycle attractors are formed in the network.  

There are also 2 fixed point attractors, 4 and B. 

2J

 
Figure 3.4  State space and transitions for  (symmetric) and asynchronous fixed order 

updates.  Notations are the same as Figure 3.1.  The state space is divided by the two 

separate domains of the two fixed point attractors, 4 and B.  Note that they are the same fixed 

point attractors that appear in Figure 3.3. 

2J

 

For the symmetric matrix and asynchronous fixed order updates (Figure 3.4), 

no cyclic attractor appears during the dynamics.  However, states 4 and B act 

as fixed point attractors as they did under the synchronous dynamics and each 

attracts half of the states in the space.  No state transition diagram can be 

drawn for the asynchronous random order updates, though it can be proved that 

the network will be updated to one of the two fixed point attractors eventually 

(Section 3.1.3). 

 

 - 24 - 



Chapter 3  Canonical Associative Memory Models 

3.1.3 Energy Function: Mathematics behind the Network Dynamics 

The canonical associative memory models are, in fact, related to the Ising 

model in physics where an energy function is used to analyse the network 

behaviour (Hopfield, 1982).  The energy of a network state S is defined as 

  
 ,

1

2 ij i j
i j

E S J S S    (3.1.3) 

For a network with N bipolar units and an arbitrary weight matrix J, in each 

 

Call this unit and assume that its state is changed from to , while all 

other i  The energy change in this step is 

 j

step of the asynchronous dynamics only one unit is allowed to change its state. 

k

s remain fixed. 

kS kS

S

, ,
k kj j k jk

j j k j j k

E S J S S J S
 

     (3.1.4) 

 

ccording to (3.1.1) and (3.1.2) unit will only change sign if 

j

etric matrix and asynchronous dynam

A k

,
k k k kj j

j j k

negative.  Thus for a symm

S h S J S  is negative.  If J is symmetric then 2E S J S   is 

energy of the network decreases monotonically.  As there are only 2N states in 

the space, the network is guaranteed to be stable in a state which has a (local or 

global) minimum of energy eventually.  By definition this stable state is a 

fixed point attractor.  Figure 3.5 illustrates this phenomenon. 

,
k kj

j j k

ics, the 

 

Figure 3.5  Energy changes of network states.  During the dynamics the network arches 

ch 

 is important to note that there is no guarantee of monotonically decreasing 

 se

a state whi has a (local/global) minimum of energy from high energy states.  Those 

minimums are guaranteed to be fixed point attractors if the weight matrix is symmetric and the 

dynamics are asynchronous. 

 

It
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energy function and fixed point attractors for an asymmetric matrix since 

,
k jk j

j j k

S J S

 may be positive under this condition.  Therefore cyclic attractors 

mmetric matrix, for example Figure 3.1 and 

3.2.  Cyclic attractors also appear in synchronous dynamics.  Interestingly, it 

can be proven that all cyclic attractors that appear in a symmetric network with 

synchronous dynamics are all 2-cycle attractors (Gorodnichy and Reznik, 

1997).   

 

may appear in networks with an asy

.1.4 Classification of Network States 

ied by their dynamical properties as 

nstable states, which will be updated to other states. 

 In particular, all 

stable during dynamics.  A symmetric 

.2 The Training and Classification of Associative Memory Models 

ow to 

ng a norma

3

In summary, network states can be classif

follows: 

 U

 Cyclic attractors, infinite cycles with several states. 

cyclic attractors that appear in a symmetric matrix under synchronous 

dynamics are 2-cycle attractors. 

 Fixed point attractors, which are 

matrix with asynchronous updates guarantees each network state will be 

updated to a fixed point state eventually. 

 

 

3

One major question in canonical associative memory theories is h

determine the weight matrix J because it is critical to the dynamic performance.  

This is usually referred as the training of associative memory models.  

According to update rule(3.1.2), a network state, or pattern, is a fixed point 

attractor if i ih S  is nonnegative for all units i.  For the purpose of an 

associative m ory, a suitable J is required so that most, if not all of the 

training patterns  1 2 3, , ,...ξ ξ ξ  are fixed point attractors.  This requirement can 

be formulated usi lised stability parameter. The normalised stability 

em
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parameter of each unit i in a pattern  , i
 , is defined as 

i i

i

h
i J

 
 

  ,  

where 
1/2

 
 
 

2

1

N

iji
j

J j


  normalises the measure 

 and is th  unit i in patterne state ofi
  . 

To successfully memorise pattern  , all i
 s should be no let ss than 0, for each 

ifferent training rules are asso  with different distributions of 

unit i. 

 

D ciated   values 

and can be used in the classification of AM models.  For all different training 

algorithms, there are only three universality classes (Abbot and Kepler, 1989).  

Models in each class have the same theoretical capacity C (maximum number 

of patterns which can be memorised by the network) as well as similar 

performance when the loading  (number of training patterns P divided by 

number of units N) is near sat tion (that is maxura    where max

C  is the 

maximum loading the model can achieve).  This is critical to th rch of 

AM models since it allows the investigation of performance of the simplest 

model in each class instead of the complex ones, if researchers are only 

interested in the situation near saturation. 

 

N

e resea

.2.1 The Hopfield Class 

 have a Gaussian distribution of 

3

Models in the first class all   values with 

centre at 1/   (Figure 3.6).  Since some   values may be negative, 

models in t  can not guarantee all training atterns until be memorised, 

which becomes a serious drawback to these models in real applications. 

 

his class p
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Figure 3.6  Distribution of normalised stability parameters for a fully connected Hopfield 

network with 100 units and 30 unbiased training patterns.  The loading   is 0.3 and 

therefore the distribution should be centred at 1 0.3 1.83  .  Note that since not all 

stability parameters are nonnegative some training patterns are not memorised. 

 

The most famous and popular model in this class is the Hopfield Net proposed 

by Hopfield (Hopfield, 1982).  The canonical Hopfield model is a fully 

connected network trained by a one-shot Hebbian algorithms where 

ij i jJ  



   . 

This learning rule gives the model a quite low theoretical maximum capacity of 

0.14N.  Interestingly, theory showed that the capacity of the Hopfield class 

models could reach as high as 1.14N giving a narrower   distribution, 

although no construction of such a model was given (Abbot and Kepler, 1989). 

 

3.2.2 The Pseudo-Inverse Class 

The second class, named as the pseudo-inverse class, because the weight 

matrices in these models are generated according to Pseudo-Inverse rule 

(Personnaz et al., 1986): 

1= J , 

where is the matrix whose columns are the p , and 1 is its pseudo-inverse, with 
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the property that .  Since1    1 1( ) ( )            J , all training 

patterns in the pseudo-inverse class will be projected to themselves by the weight 

matrix and become fixed point attractors. 

 

For networks with such matrices, all the   values have the same value only 

when the loading is near saturation, denoted by , where 0

1 0 


 .  According 

to the formula, will be 0 when 0 is 1, therefore for this class of 

networks max 1  .  Figure 3.7 gives an example of the  distribution of a 

pseudo-inverse network.   
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Figure 3.7    distribution for a fully connected pseudo-inverse class network with 100 

units and 30 unbiased training patterns.  Note that the loading 0.3   is stil far from 

saturation and therefore not all  are the same.  However all  ’s are nonnegative so all 

training patterns are memorised. 

 

3.2.3 The Gardner Class 

The third class, known as the Gardner class attributed to Gardner’s seminal 

contributions to this area (Gardner, 1988), has a clipped Gaussian distribution of 

 values where all the values are greater than zero.  Therefore the minimum of 

the   values, denoted by , is also greater than zero and chosen to control the 
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model’s performance.  The larger   is, the better the performance.  However, 

the maximum value of , max , is related to the loading of the network, .  

Inversely, the maximum loading of the network, max , also has relationship with 

.  The relationship between   and max is given by the following formula: 

2 /2

1

e (x

max

2)max d
1

2
x x










  

 




Figure 3.8 shows this relationship.  The maximum loading of the Gardner class 

can be calculated as 2, when max is 0.  In fact, Gardner (Gardner, 1988) has 

proved that a network with N units should be able to store 2N uncorrelated 

patterns.  This capacity increases when storing correlated patterns. 
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Figure 3.8  The relationship between max and loading .  Note that loading reaches its 

maximum 2 when . 
max 0 

 

Various models in the Gardner class have been proposed.  In this thesis we 

adapted one particular model which uses a perceptron style of learning and has 

a maximum capacity of 2N (Diederich and Opper, 1987).  In later chapters, 

this learning rule may be referred as the Gardner type associative memory 

model, perceptron style associative memory model, or simplified as the 
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Gardner model if there is not confusion.  The detailed training of this model is 

given as follows: 

Denoting T as the learning threshold 

Begin with a zero weight matrix 

Repeat until all units are correct 

Set the state of the network to one of the p  

For each unit, i, in turn: 

Calculate its local field  p
ih

If ( ) then change the weight on connections  p p
i ih T 

into unit i according to: 

 '
p p

i j
ij iji j j j

N

 
     

End For 

End 

This training rule gives an asymmetric matrix.  However a symmetric matrix 

can be produced by modifying the learning rule as follow: 

'
p p

i j
ij ijj j

N

 
   ' '

p p
i j

ji ij ijj j j
N

 
   . 

Figure 3.9 shows the  distribution for an example of this model. 
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Figure 3.9    distribution for a fully connected Gardner type network with 100 units and 

30 unbiased training patterns.   (as the minimum of all  ) is larger than 0 so all training 

patterns are memorised by this network. 
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Several benefits can be gained when using the Gardner class models.  First of 

all, these algorithms can achieve a significantly higher capacity, compared to the 

other two classes, which is one of the most important requirements in both 

theoretical and empirical studies.  Secondly, the positive value of guarantees 

that all training patterns are memorized by the network, unlike those of the 

Hopfield class.  The detailed properties of the Gardner type model will be 

discussed in Chapter 4. 



 

3.3 Related Studies 

Many theoretical and experimental research results have been published in this 

field.  Storkey et.al. (Storkey and Valabregue, 1999, Storkey, 1997) 

investigated the basins of attraction of the Hopfield network and proposed a 

new learning rule which had a higher maximum theoretical capacity compared 

with the canonical model.  A few researches (Davey et al., 2004b, Abbot and 

Kepler, 1989, Kepler and Abbot, 1988, Kanter and Sompolinsky, 1987) were 

interested in the estimate and measure of the domains of attraction.  Some 

studies focused on the performance of AM models with specific constraints.  

For instance, Amit, et.al. (Amit et al., 1989) studied a sign-constraint AM 

model and found that such a model can still perform as an associative memory 

successfully but the capacity is exactly half of the one without sign-constraint.  

Other researches (Parisi, 1986, Davey and Adams, 2004) investigated how the 

network performs with or without a weight symmetric matrix constraint.  

Their results indicated that, although the guarantee of always relaxing to point 

attractor could not be given in asymmetric network, the network could still 

maintain a significantly high performance without such a symmetric constraint.  

Some researches (Hinton and Anderson, 1989) were interested in the hardware 

implementation of large scale associative memory models, for example, 

Hopfield models on parallel multiprocessors.  A summary of my research on 

the canonical Gardner model is present in Chapter 5. 
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In recent years research in the field of associative memory have switched from 

theoretical studies to experimental work.  These new studies included 

software simulations of biological plausible models, and the hardware 

implementation of very large scale associative memory networks.  The sparse 

connectivity of associative memory models has attracted strong interests for its 

biological plausibility as well as implemental convenience.  Results (Meilijson 

and Ruppin, 1996, Stiefvater et al., 1993, Vogel and Boos, 1997, Wang, 1997) 

showed that the performance of a sparse associative memory model was hugely 

dependent on the number of connections, as well as the connection strategies.  

These results inspired the interests of introducing several types of connectivity 

which have been discovered in the cerebral cortex, for example small world 

network and modular network to associative memory models (Watts and 

Strogatz, 1998, Bohland and Minai, 2001, Calcraft et al., 2006b, Latora and 

Marchiori, 2003, Davey et al., 2006, Nikitin and Popov, 1999, Levy et al., 1999, 

Alfonso et al., 1999, Viana and Martinez, 1995).  Graph theory and statistical 

measure of network connectivity have also been introduced into the research 

(Calcraft et al., 2007).   My research results on network connectivity and the 

effects on canonical associative memory performance can be found in Chapter 

8 and 9. 

 

The research into associative memory has also been extended to more 

complicated models such as spiking neuron networks.  These studies, such as 

(Knoblauch and Palm, 2001, Amit and Treves, 1989, Anishchenko et al., 2006) 

investigated how the biological realistic parameters such as firing rate and 

delays affect the network’s memory retrieval performance and the 

synchronization of network activity.  Some more biologically plausible 

connectivity, such as the small world network, have also been investigated with 

spiking associative memory models (Anishchenko et al., 2006).  My research 

in this area will be discussed in Chapter 10. 
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3.4 Conclusion 

This chapter reviews how an associative memory model can be built from units 

simulating a neural dynamic process.  According to their training rules, 

associative memory models can be classified into three universality classes, the 

Hopfield class, the Pseudo-Inverse class, and the Gardner class.  Models 

within each class have identical theoretical maximum capacity as well as 

similar behaviour when their network loading is near saturation.  Some related 

research was also reviewed, from the theoretical studies of canonical models, to 

experimental investigations of biological plausible models and large scale 

implementations.  The theory of associative memory and previous research 

results are the foundation of modelling in my programme of research. 
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Chapter 4 

Gardner Type Associative Memory Model  

and Measures of Performance 

In this programme one Gardner type associative memory model (Diederich and 

Opper, 1987) was employed as the fundamental model of my research for 

several reasons.  As mentioned in Chapter 3, it has the highest theoretical 

capacity among the three universal classes of associative memory models (up 

to 2N for a fully connected network with uncorrelated patterns), while also 

guaranteeing all training patterns are memorised.  Thus this model is 

interesting to engineers since more memories can be stored and recalled in a 

fixed size network.  Secondly, the canonical Gardner model has also attracted 

great interest from theoretical researchers so that the theoretical properties were 

well studied, giving good potential for the investigations of its variations.  

Furthermore, this model has been adapted in several experimental researches 

by the neural network group of the University of Hertfordshire over a number 

of years.  The results of these previous studies can be therefore used as 

comparison of my research results.   

 

This chapter gives a guide of the known properties of the investigated model, as 

well as the performance measures used in later experiments. 

 

4.1 Gardner Type Training Model 

The original Gardner type model is a fully connected network with bipolar 

training patterns and perceptron style learning algorithm, and the updates of 

units follow a simple threshold function with zero as update threshold.  Here 

is the detailed learning and dynamic processes: 
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Model 0  Original Gardner Type Associative Memory Model 
Pattern: bipolar 
Connectivity: fully connected network 
Training: 
Denoting T as the learning threshold 

Begin with a zero weight matrix 

Repeat until all units are correct 

Set the state of the network to one of the p  

For each unit, i, in turn: 

Calculate its local field p
ih  

If ( p p
i ih T  ) then change the weight on connections  

into unit i according to: 

 '
p p

i j
ij iji j j j

N

 
     

End For 

End 

Dynamics:  

 
1, if 

1 1, if 

( ),  otherwise
i

i

h

S t h

S t





   



 

Where 0   

 

The weight matrix in Model 0 is not symmetric, however a symmetric matrix 

can be obtained using the modified rule described in Section 3.2.3.  Breaking 

the symmetry of the matrix brings the network more complex dynamics and 

cyclic attractors，as described in Section 3.1.  Surprisingly, although the 

symmetric matrix only has half the degrees of freedom compared to the 

asymmetric matrix, theoretically they both have the same storage capacity, that 

is 2N for fully connected network with uncorrelated patterns (Nardulli and 

Pasquariello, 1991).  For bipolar pattern representation, the model’s capacity 

increases when the network is trained with correlated patterns (Gardner, 1988). 

 

The training algorithm of the Gardner type associative memory model aims to 
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drive the aligned local field, i ih  , of memories over a positive training 

threshold T.  By increasing T, the minimum of normalised stability parameters, 

, as defined in Section 3.2.3, increases as  max2 1

T

T
 


, where is the 

optimal value of  (Abbott, 1990).  Theoretical study by Krauth (Krauth and 

Mezard, 1987) showed that 

max



  is greatly associated with the minimum size of 

the attractor basins (within which all patterns are attracted to the memory).  

Specifically, if no more than 
2

N   bits of fundamental memory are changed, 

it can be guaranteed that the network will converge on the memory.  Thus 

increasing T gives the network better attractor performance.  However this 

improvement is not linear.  Experiment (Davey et al., 2004b) shows that there 

is significant improvement of network performance when increasing T from 1 

to 10, but very little improvement when increasing T from 10 to 100, for a 

network with thousands of units.  So a training threshold of 10 is considered 

as a suitable value for my later models in order to achieve the best 

performance.   

 

4.2 Measures of Associative Memory Performance 

In terms of the performance of associative memory models, two criteria are 

considered: first, the experimental capacity of a network, and second, the 

content-addressability, or the attractions of fundamental memories.  These two 

criteria are in fact contradicted with each other.  The network capacity 

increases as max  decreases (Section 3.2.3), on the other hand decreasing  

leads to a decrease of the minimum size of attraction basins.  Hence for 

experimental studies, a compromise has to be made in order to achieve both a 

suitable capacity and memory attractions. 

max

 

This section describes two different experimental measures of associative 

memory performance used in my later studies.  The first measure, R, referring 
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to the mean radius of attractions, is widely used as an empirical measure of 

content-addressability of associative memory models.  The second measure, 

Effective Capacity, or EC, is another empirical measure which searches for the 

highest capacity a network can achieve, with reasonable high capability of 

memory recalling. 

 

4.2.1 Mean Radius of Basins of Attractions, R 

As discussed in Chapter 3, most, if not all unstable patterns in the state space of 

an AM network will converge to cyclic or fixed point attractors during 

dynamics, although differences occur depending on the symmetrical property 

of the weight matrix and the type of dynamics.  The Gardner model 

guarantees that all training patterns to be fixed point attractors (in other words, 

fundamental memories).  However there is no guarantee that all fixed point 

attractors are fundamental memories.  Specifically, a fixed point can be one of 

the following cases: 

a. fundamental memories 

b. for bipolar network, the inverse patterns of fundamental memories.  This 

is because the stability parameter of the inverse pattern 

      i ij j ij i j ij i
j i j i j i

J J J j   
  

          , 

where is the stability of the corresponding fundamental memory.  

Therefore the stability parameter of all units in the inverse pattern is non 

negative and the pattern is stable. 

0ij i j
j i

J  




c. other stable states, for example, mixtures of fundamental memories (Amit, 

1989) 

Attractors in b and c are called spurious states.  Class b spurious states can be 

eliminated in a binary network.  The number of class c states can be reduced 

by introducing stochastic dynamics (Amit, 1989) to the network, however class 

c attractors may not be absolutely eliminated.  The existence of spurious states 

is harmful to the network performance because unstable patterns may be 
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attracted to these unwanted fixed point attractors instead of fundamental 

memories, in other words, the attraction of fundamental memories may be 

reduced by the attractions of spurious states. 

 

The attraction performance of a memory is commonly defined in terms of the 

minimum Hamming radius 

     inf :p pR B  ξ q ξ q pasin ξ , 

where  pBasin ξ  is the set of states which attract to pξ .  R is commonly 

normalized with respect to the size of the network so that it lies between 0 and 

1.  For a very small network, it is possible to search through the whole 

network and calculate R exactly, however since the number of network states 

increases exponentially ( states for an N-unit network), only an empirical 

method is possible to give an estimate of R for large scale associative memory 

models. 

2N

 

Giving a sample of states which have a fixed distance r to a fundamental 

memory, pξ , if all of them relax to pξ , it is concluded that  pR ξ  is at least as 

big as r.  Obviously the quality of this estimate increases with the increase of 

sample size.  The relationship was investigated in (Hunt and Davey, 2000).  

In later experiments the sample size is fixed as 50 patterns. 

 

The actual calculation used in my experiments slightly adapts the R calculation 

from Kanter (Kanter and Sompolinsky, 1987).  The process is as follows: For 

each of the sample states a fixed fraction of the state is chosen to be 

identical with the corresponding part of one of the fundamental memories, 

0m

pξ , 

whilst the rest of the state is random.  Initially a low value of should be 

selected and incrementally increased until all sample states relax to 

0m

pξ .  An 
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average of  is then taken over different sets of stored patterns to estimate R 0m

 01R m   

As indicated by Kanter (Kanter and Sompolinsky, 1987), for an associative 

memory network of finite size, each initial pattern in the sample may overlap 

one of the other fundamental memories more closely than pξ .  Thus the 

measure of R should be modified as 

 0

1

1

1

m
R

m





, 

where  is the overlap with the closest of the other fundamental memories.  

The double average is taken over different initial points and different 

memories. 

1m

 

The measure of R requires all training patterns to be stable as fundamental 

memories.  This requirement is guaranteed in the Gardner model if the 

training is successful.  A network with perfect attractor performance has R = 1, 

indicating that any pattern will relax to a fundamental memory which is the 

most nearest to the pattern among all fundamental memories (Figure 4.1). 

 
Figure 4.1  Calculation of R. In this figure p1, p2, p3 and p4 are fundamental memories. The 

closest memory in the training set to p1 is p2, at a distance of 2r. Optimal performance occurs 

when all patterns within the hypersphere centred on p1 and radius r, are attracted to p1.  If all 

memories stored in a network exhibit this performance, its normalised average basin of attraction, 

R, is 1. 

Generally speaking R decreases as the loading of network increases, although 

the actual value of R is affected by factors such as the size of samples (Figure 

4.2).  For a very low loading (less than 0.2), R tends to be 1 as all samples fall 
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into correct attraction basins.  On the other side, for very high loadings (over 

0.8) the attraction of memories is so weak that R is near 0.  The decrease of R 

as loading increases is not linear, thus it is difficult to compare the attraction 

performance by measuring R when the loading is too low or too high.  For this 

reason, the loading of the network should be adjusted so that the values of R 

can fall into the central range (0.2 ~ 0.8).  This restriction can be avoided by 

using Effective Capacity with a specific criteria configuration (Section 4.2.2). 

 

 
Figure 4.2  The normalised basin of attraction size for a Gardner network with 100 units and 

unbiased patterns.  Results are averages over 10 networks at intervals of 0.01 in loading. 

 

4.2.2 Effective Capacity, EC 

The normalised average basin of attraction gives an insight of the attractor 

performance of a network.  However it gives very little information about the 

network’s capacity.  Empirically any associative memory model should satisfy 

the requirements of both capacity and attraction ability.  The Effective 

Capacity, EC, addresses this problem (Calcraft, 2005, Calcraft et al., 2006b). 

 

The Effective Capacity of a network is a measure of the maximum number of 

patterns that can be stored in the network with reasonable pattern 

correction/association still taking place.  Here is the process of EC 
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measurement: 

 

Process of Effective Capacity Measure 

Initialise the number of patterns, P, to 0 

Repeat  

Increment P  

Create a training set of P random patterns  

Train the network  

For each pattern in the training set  

Degrade the pattern randomly by adding 60% of noise  

With this noisy pattern as start state, allow the network to 

converge 

Calculate the overlap of the final network state with the original 

pattern  

End For  

Calculate the mean pattern overlap over all final states  

Until the mean pattern overlap is less than 95%  

 

The Effective Capacity of a network is directly proportional to network size 

(Figure 4.3).  To increase the search speed for large scale networks, a binary 

search of P can be used.  The choices of noise criteria (60% random noise) 

and overlap criteria (95% overlap with original memory) can be chosen 

specifically to suit different empirical requirements.  Different choices of 

criteria give different value of EC but the measure is robust for comparison 

purposes.   
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Figure 4.3  The Effective Capacity for fully connected Gardner type networks with 

different sizes.  The number of units in the network increases by an interval of 100.  EC 

increases linearly as the network size increases. 

 

Special criteria configurations can be made to associate with other theoretical 

or empirical performance measures.  For example, an EC measure with noise 

criteria of 0% (original memories) and overlap criteria of 100% (as the patterns 

relax to themselves) is an experimental search for the network’s theoretical 

capacity.  Moreover, the EC measures with varied noise criteria (indicating the 

corresponding size of basin of attraction) and fixed overlap criteria of 100% 

can be employed to determine the suitable loading for the measure of R. 

 

4.3 Conclusion 

This chapter reviewed the details of Gardner type associative memory model 

and two empirical measures of associative memory performance which will be 

employed in later chapters.  Although the mean radius of attractions has been 

widely introduced in the studies of associative memory, its limitation restricts 

the application in this programme.  On the other hand the Effective Capacity 

is more robust to different network size and experimental requirements, which 

may benefit the studies in later chapters.
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Chapter 5 

Researches on Fully Connected  

Gardner Type Models 

This chapter summarises my preliminary studies on the Gardner type model 

with full connectivity.  Although the theory of the Gardner type model has 

already been well established, there are still gaps between theoretical 

predictions.  By filling these gaps, my early research helped me to understand 

the experimental properties of this model.  It was also helpful to me in 

searching for suitable model configurations for my later studies on large scale 

associative memories with biologically-inspired connectivity. 

 

Two questions will be addressed in this chapter.  Although there are many 

proposed models for the training of associative memory, most of them adapt a 

very simple threshold function as update rule (as shown in Chapter 3).  Of 

course a simple update function gives the network great mathematical 

tractability.  However it is still interesting to find out if any other update rule 

can give a better experimental performance.  Section 5.1 proposes a new 

update function which improves the model’s associative memory performance.  

This result was also presented at the sixth international conference on Recent 

Advances in Soft Computing (RASC2006) (Chen et al., 2006). 

 

The canonical Gardner type model is a fully connected network with bipolar 

pattern representation.  For unbiased training patterns (patterns in which the 

probability of +1 occurring is 0.5) the maximum theoretical capacity of such a 

network is 2N, whilst for biased training patterns the capacity increases.  The 

states of a network can also be represented as binary rather than bipolar states, 

which is considered to be more biologically plausible.  Surprisingly no 
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literature was found regarding the experimental performance of a binary 

Gardner network with biased training sets.  Section 5.2 summarises my result 

of this missing gap.  It was presented at the conference of UKCI2007 (Chen et 

al., 2007). 

 

5.1 A New Update Function for the Gardner Type Model 

A simple update function 

   

  
1, if 0

1
1, if 0i

h
S t

h


   

 (5.1.a) 

is often used in theoretical and empirical associative memory models.  One 

huge benefit gained from this simplicity is the great mathematical tractability.  

On the other hand previous research (Schultz, 1995) has showed that by 

employing a new update function network performance could be improved.  

Specifically for the Gardner model, all aligned local fields p p (for each unit 

that the update threshold can be varied up to a value of T, without destabilizing 

the training patterns. 

 

i ih  

i in training pattern p) are driven over the training threshold T, which means 

.1.1 The New Update Function and Analysis of Dynamics 

 

5

A new update function is proposed here to investigate the effect of varied 

thresholds.  The function is a modification of the canonical model by 

introducing a small “stable zone” 

 
1, if 

1 1, if 

( ),  if 
i

i

h

S t h

S t h




 


    
   

 (5.1.b) 

where 0 T  . 
 

 If   is 0 the new update rule is the same as the canonical rule.  If   

b

is not 0 

the network dynamics will be changed.  Here we analyse the sta ility and 

attraction of network states under the new update function with non-zero  .  
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For any pattern with all aligned local fields p p
i ih  , this pattern remains 

stable under the new update rule.  These include all fundamental memories 

and some strong spurious attractors.  For other spurious attractors, the aligned 

local fields can be separated into two terms 

p p
i ih   and 0  p p

i ih  

The first term is the same under both the canonical and the new update rules, 

whilst the second term is affected by the new rule but still guarantees that 

p
ih   

 

, making corresponding units falling into the stable zone and 

unchangeable.  Therefore all stable patterns under the canonical update rule 

remain stable under the new rule.  For the patterns which have aligned local 

fields , the patterns are unstable under canonical rule but become 

new spurious attractors under the new rule.  In conclusion, the new update 

function guarantees that all stable sates (fundamental memories and spurious 

attractors) under canonical rule remain stable.  However, it also introduces 

new spurious attractors.  As 

0p p
i ih  

  increases, more and more network states 

become spurious attractors since the probability that aligned local fields fall 

into stable zone increases.  The increasing number of spurious attractors will 

significantly damage the attraction basins of fundamental memories, 

particularly in high value of  . 

 

However, the new update rule may improve the associative memory 

performance with low but nonzero   because the existence of a stable zone 

could prevent the instability of network states caused by minor errors during 

dynamics.  Suppose a pattern is converging towards a fundamental memory 

and the first 0 to k - 1 (k < N) units have already been corrected.  Now we 

investigate the update of the kth unit.  In order to make k kS  , the following 

formula should be satisfied under the canonical update rule (5.1.a): 
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1 1

0 1

0
k N

k kj j k kj j
j j k

J J   
 

  

   . 

The first term at the right hand side indicates the part of the aligned local fields 

contributed by the correct bits (thus should be non-negative) and the second 

term (including the sign) indicates the aligned local fields contributed by the 

wrong bits (non-positive).  Thus we can define the terms Signal and Noise as 

follows: 

 
1

0 1

 and 
k

k kj j k kj j
j j

Signal J Noise J
1N

k

  


 

  



  (5.1.c) 

To correct unit k, the canonical rule (5.1.a) requires 

Signal Noise  

If Noise dominates the aligned local field of k over Signal, k will update 

incorrectly and the new state will contribute to the Noise term in later updating 

sequence of network dynamics.  On the other hand, under the new update rule 

(5.1.b) the correctness of k will only be challenged if 

Noise Signal   . 

If k is originally incorrect it requires 

Signal Noise    

to correct the unit state.  However, during dynamics the Signal term is 

expected to increase as more and more units are being corrected.  So unit k 

will be corrected eventually under low  .  This is in fact similar to a partial 

reordering of the unit update sequence by their instability, as the most unstable 

units will be updated whilst the less unstable ones will be made stable 

temporally until others have been corrected.  The network performance may 

thus improve as a result. 

 

5.1.2 Performance Measures and Experiment Results 

To investigate the effect of the new update rule, experiments were conducted on 

a 1000 unit, fully connected bipolar network with asynchronous dynamics.  

The canonical asymmetric Gardner training rule was employed, and the 

training sets were generated randomly without bias.  As described in Section 
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4.1, the learning threshold, T, was set to 10, therefore the update threshold   

of the dynamics, could be varied within a reasonable range from 0 to 11 (the 

model performance at  is expected to be 0 as all training patterns are 

destabilised).  Specifically 

11T 

0   indicates the canonical update rule.  Two 

sets of experiments were performed, each set using a different performance 

measure.  The first set of experiments measured the normalised mean radius 

of the basins of attraction, R.  The Effective Capacity of the network was 

measured in the second set of experiments.  Each set of experiments was 

repeated 20 times and average values are reported here. 

 

a. Performance Measured by R 

The mean radius of the basins of attraction, R, was measured in 5 experiments, 

with different numbers of training patterns ranging from 100 to 500, giving a 

corresponding loading of 0.1 to 0.5.  In each experiment the update threshold 

  was varied from 0 to 11.  Figure 5.1 contains the results. 
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Figure 5.1  Normalised mean radius of the basins of attraction for different values of the 

update threshold.  Experiments run on a 1000 unit, fully connected bipolar network.  The 

number of training patterns in each experiment varies from 100 to 500 (denoted by 100P to 

500P in legend). 
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As expected, R increases when the network loading decreases.  Perfect 

performance is achieved with a low loading (100 to 200 patterns) when   is 

set to 0.  The performance of R under high   is very low, as predicted in 

Section 5.1.1.  However, the results show that the relationship between R and 

  is far from a simple linear one.  In all the experiments, as   increases, R 

tends to first increase (or to stay the same if it has already achieved perfect 

performance) then reduce to zero fairly quickly.  In those experiments which 

do not start with perfect performance, the best R value is achieved with a 

non-zero value of   between 1 and 3.  Thus another prediction in Section 

5.1.1 is also confirmed, that is, the existence of a stable zone under low   can 

provide better associative memory performance. 

 

b. Performance Measured by Effective Capacity 

The performance according to Effective Capacity was measured in 3 

experiments, by increasing the noise criteria from 40% to 80%, whilst keeping 

the overlap criteria at 95% throughout.  The update threshold   was again 

varied from 0 to 11.  Results (Figure 5.2) indicate that the performance of EC 

drops down to 0 with a high setting of   (8 with 40% noise, 7 with 60% noise 

and 5 with 80% noise) less than 10.  This is because the attractions of 

fundamental memories have been significantly damaged by spurious attractors 

and are unable to correct the noisy pattern.  On the other hand an 

improvement with a non-zero update threshold is also found in some of these 

experiments, with better performance for update threshold values between 1 

and 4 for the 40% noise version.  The improvement in the low noise 

percentage experiment is greater than the ones with a higher noise percentage.  

No improvement is seen in the series of experiments with 80% noise. 
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Figure 5.2  Effective Capacity for different values of the update threshold.  Experiments 

run on a 1000 unit, fully connected bipolar network.  The overlap criteria is set to 95%. All 

training patterns are generated randomly without pattern bias. 

 

5.2 Gardner Type Model with Binary/Bipolar, Biased Training Set 

The canonical Gardner type model (Model 0) is a bipolar network with 

unbiased training patterns.  The bipolar pattern representation was originally 

adapted from Ising model in physics where the energy function could be used 

to analyse the network dynamics (see Chapter 3 for more details).  However, 

the symmetry of bipolar patterns brings inconvenience to the network such as 

spurious attractors of inverse memories shown in Chapter 4.  These spurious 

attractors are eliminated with binary pattern representation as the symmetry of 

bipolar patterns is broken.  The binary representation also gives more 

biological plausibility to the model as its does not assume negative neural 

activity. 

 

This section investigates the difference between bipolar and binary 

representations in fully connected Gardner networks trained by patterns with 

varied biases.  We define the bias of a pattern as the probability that any given 

bit is +1.  Theoretically the capacity of bipolar Gardner model with unbiased 

training set (patterns with bias of 0.5) is 2N, where N is the number of units.  

In the bipolar network, varying the bias of the training set from 0.5 increases 
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the correlation of training patterns and therefore increases the network capacity 

(Gardner, 1988).  However, no literature was found regarding the 

experimental performance of binary Gardner networks with biased training sets.  

Our work here gives the first experimental results on this topic. 

 

5.2.1 The Bipolar / Binary Gardner Type Model 

A modified Gardner type model is proposed here to fit both the bipolar and 

binary representations.  For the bipolar representation, the model is the same 

with canonical model (Model 0, p.36s).  For the binary representation, Model 

1 was adopted.  Learning takes place on all incoming connections in the 

bipolar network, whilst in the binary network it only takes place on active 

connections, which are on afferent connections from units in the +1 state.  

However, a previous study (Davey et al., 2004a) showed that there is no 

significant difference between networks with these two representations in 

associative memory performance when trained with unbiased patterns, although 

the binary network takes significantly longer to train.  The situation may be 

different when combining biased patterns with the bipolar or binary 

representations. 
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Model 1  Binary Gardner Type Model with Biased Patterns 
Pattern: binary training patterns with varied biases 
Connectivity: fully connected network 
Training: 
Begin with a zero weight matrix 

Repeat until all units are correct 

Set the state of the network to one of the p  

For each unit, i, in turn: 

Calculate its local field p
ih  

If ( p
i = 1 and h ) or (p

i T p
i = 0 and h T ) p

i  

then change the weight on connections into unit i according to: 

,
p
j

ij iji j w w
N


    , When ( p

i = 1 and h p
i T )   

,
p
j

ij iji j w w
N


    , When ( p

i = 0 and h T ) p
i  

 

Dynamics:  

 
1, if 0

1 0, if 0

( ),  if 0
i

i

h

S t h

S t h


  
 

 

 

5.2.2 Experiments and the Results 

The experiments were carried out on a neural network with 500 and 1000 fully 

connected units (in previous experiments we found that the network size effects 

were insignificant providing the number of units was over 300).  Again a 

training threshold T = 10 was employed in the experiments.  This network was 

trained with either bipolar or binary patterns, whose biases were varied from 

0.1 to 0.9, and the Effective Capacity was measured as associative memory 

performance.  Each experiment was repeated 5 times and the average value 

together with the 95% confidence interval are reported. 

 

Figures 5.3 and 5.4 give the main results of the experiments.  As mentioned in 

Section 5.2.1 the bipolar and binary networks were found to perform the same 
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as each other when trained with unbiased patterns.  This result is confirmed 

here by the identical performance when the bias of the training set is 0.5. 

 

The performance of the bipolar and binary networks is significantly different 

when trained with biased patterns.  With the bipolar representation, the 

performance is symmetrical about bias 0.5.  That is, for example, the EC at 

pattern bias 0.9 is identical to the one at pattern bias 0.1.  This is of course a 

simple consequence of the symmetry of +1/-1.  The result also indicates that 

the network performance is improved as the patterns become correlated.  This 

is in line with Gardner’s theoretical prediction (Gardner, 1988). 

 

The results for the binary network are surprising.  The first point to be made is 

that for most of the biases, the binary network performs better than or at least as 

well as the bipolar network.  Only at the extreme of very low bias is the binary 

network significantly worse than the bipolar network.  This is presumably due 

to the low proportion of units which are on.  However, a detailed analysis of 

the binary network with training set bias of 0.1 finds that about 15% of the 

connections make no contribution to the network (the weights of these 

connections are zero), suggesting that the removal of these useless connections 

will improve the network’s efficiency.  This is important as the non-full 

connectivity is one of the main characteristics of realistic cortex. 

 

In the binary network, the performance falls when the bias is raised to 0.9.  A 

detailed investigation indicates that it is caused by the significantly high 

attraction of the all 1 state, which is also found in the biased situation of a 

sign-constrained, bipolar network (Wong and Campbell, 1992). 
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Figure 5.3  Effective Capacity results for a 500 unit, fully connected network with bipolar 

and binary representations.  Biases of the patterns (as in the proportion of units which are on) 

are varied from 0.1 to 0.9.  The results are averaged over 5 runs and intervals with 95% 

confidence are also given.  The performance of the bipolar and binary network is identical 

hen trained with unbiased patterns (bias = 0.5).  With biased patterns, the binary 

epresentation performs better than the bipolar one, except for patterns of very low bias.  
w
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Figure 5.4  Effective Capacity results for a 1000 unit, fully connected network with bipolar 

and binary representations.  Other settings are the same as Fig. 1.  Results are similar to the 

500 unit network. 

 

5.3 Conclusion 

In this chapter two research questions regarding to the fully connected Gardner 

model were addressed.  Firstly, a new update function was proposed to 

investigate the effect of varied update threshold.  Experimental results 

confirmed the prediction that under low but non-zero update threshold the 
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associative memory performance of the network did improve when employing 

the new update rule.  Secondly, experiment results were reported for the 

bipolar / binary Gardner model with varied pattern biases.  It was confirmed 

that both bipolar and binary Gardner models perform the same with unbiased 

training patterns.  If trained with biased patterns, the performance of bipolar 

network improved, as predicted by the theory.  Interestingly, only in the 

extreme situation where the bias of the training set is very low, does the binary 

representation perform worse that the bipolar one. 

 

These results do bring some thoughts in my later research in the large scale, 

sparse associative memory models with biologically inspired connectivity.  

The introduction of a stable zone gives a partial reordering to the unit update 

sequence by their instability and improves the network performance.  It may 

also help to reduce the number of cyclic attractors as some of these attractors 

may become individual fixed point attractors or unstable patterns.  This 

prediction will be examined in the next chapter with the modelling and 

parallelizing of an associative memory network.  Different performances were 

found for the bipolar / binary networks with biased training sets.  However 

models with both representations have the same performance when trained by 

unbiased patterns.  This result is important when we compare the performance 

of non-spiking associative memory model (Chapter 8, 9, with unbiased bipolar 

patterns) with the one of spiking associative memory model (Chapter 10, with 

unbiased binary patterns). 
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Chapter 6 

Implementation of Large Scale  

Associative Memory Models 

Computational modelling is the basic research methodology of my studies.  

Specifically, simulations were implemented and executed on individual / 

parallel microcomputers whilst results were collected for statistical analysis.  

There are several reasons for this choice of methodology.  Firstly, as the 

theoretical foundation of Associative Memory has been well developed, and 

most of these theories were examined by computational models, it is 

convenient to implement and investigate my own models using simulations.  

Secondly, modelling artificial neural networks using computers has great 

benefits in terms of time and cost saving, when compared with the empirical 

investigations of real biological neuronal networks.  It also provides high 

quality results since the experiments are repeatable and tractable.  On the 

other hand it does have some drawbacks.  For example most of the models are 

highly abstract and usually mathematical rather than biological.  Therefore it 

maybe difficult to relate a particular modelling result to natural phenomenon.  

A possible approach to solve this problem is to introduce features inspired by 

biological systems into computational models, which is one of the main 

approaches employed in my research. 

 

6.1 The Change of Development Environment and Simulators 

Instead of using available simulators in the area, new simulators were 

developed during the research so that they could fit the specific investigation.  

The development environment has been changed during the three years of 

research, so did the simulators. In the first year, simulators were developed and 

executed on an individual microcomputer under Microsoft Windows.  For the 
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early simulators, an interactive menu was provided so that the user can reset 

parameters during the simulation (Figure 6.1).  However, as more and more 

parameters were introduced to the model, as well as the introduction of parallel 

computation environment (firstly based on Parallel Virtual Machine and later 

CONDOR), the menu mechanism became too complicated to be handled.  A 

series of simulators based on console commands and batch file inputs (Figure 

6.2) were developed and replaced the ones with menus. 

 

 
Figure 6.1  A very early version of simulator with interacting menus. 
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Figure 6.2  A simulator with console command line. 

 

Most of the early simulators developed in the project do not have a graphical 

interface because the research focused on batch experiments of large scale 

neural networks.  However as more and more connectivity models were 

examined in the model, a graphical simulator was developed so that the exact 

connectivity pattern could be viewed and examined.  For the spiking 

associative memory model investigated in Chapter 10, the changes of 

membrane potential and current density of each unit were also displayed so that 

the user could have a better understanding of how the model worked (Figure 

6.3). 
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Figure 6.3  A simulator with graphical interface. 

 

6.2 Parallelization of Large Scale Associative Memories 

Simulators with small number of units can be executed on an individual 

microcomputer.  However, the computational power requirement increases 

dramatically by the order of O(N2) (for fully connected network with N units).  

To solve this problem, some efforts were devoted to the parallelization of large 

scale associative memory models. 

 

6.2.1 Background 

Parallel computation has been used in the simulation of the neural networks for 

nearly a decade (Johansson and Lansner, 2001, Palm and Bonhoeffer, 1984, 

Hwang and Kung, 1989, Distante et al., 1991, Eun et al., 1991, Strey, 1993).  

However, most of the early research on the parallelization of neural networks 

was focused on the implementation in hardware such as VLSI chips (Hwang 

and Kung, 1989, Distante et al., 1991).  Little, if any, of this research was 

interested in the implementation of associative memory in a general network 
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environment, such as the Internet or a LAN (Local Area Network) using 

microcomputers, due to the computational and communicational limits of early 

microcomputer networks.  However, since the microcomputer became more 

and more powerful and cheaper, it is believed that the problem of 

computational power may be solved.  Much new research investigated the 

possibility of implementing parallel systems on the Internet and LAN and 

achieved some successes (Litzkow et al., 1988, Geist, 1994).  Therefore it 

seemed a good time to study the parallel implementation of associative memory 

models on a common network environment, which may benefit the research by 

both allowing an increase in the size of networks and the speed of experiments. 

 

The parallelization of artificial neural networks can differ considerably when 

using different strategies.  A very high proportion of these models were 

designed for generic purpose (Hwang and Kung, 1989, Distante et al., 1991), 

that is, no particular architecture or network is preferred on the system.  Some 

other systems are designed to solve particular problems, for example, a parallel 

feed-forward network for image recognition.  Two main factors are normally 

considered when implementing parallelization: The problem itself, and the 

available facilities. 

 

In terms of the literature, most of the research on parallelization of artificial 

neural networks was targeted at a particular type of network such as the 

feed-forward network.  Some research has been done on the parallelization of 

recurrent networks like the associative memory model, although the 

investigated models usually have full connectivity such as in the Hopfield net 

(Eun et al., 1991).  Little literature was found on the parallelization of sparse 

associative memory models with specific structures under a generic 

environment (microcomputer and LAN).  Due to the lack of literature, two 

basic parallel strategies were considered in the project, including the 

parallelization of neural network and the parallelization of experiments. 
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6.2.2 Parallelization of Neural Network 

My research firstly investigated the possibility of parallelizing the neural 

network and computations across several microcomputers via a LAN.  To 

minimise the communications between computers, only modular networks with 

sparse inter-modular connections were implemented in such an environment.  

The connectivity properties of modular networks will be discussed in Chapter 7 

and here I give the reason for using the modular structure.  First of all, the 

modular structure is biologically plausible as it can be converted to columns, 

which are thought to be the basic structure of the real mammalian cortex.  

Secondly, the modular associative memory has a high connectivity within a 

module, which is implemented on a single processor, and sparse connectivity 

between different modules.  This structure seemed to fit the requirement of 

parallelization under the LAN environment. 

 

Four microcomputers were used to implement this model, connected via a 

100Mbps router.  The simulation was developed under a generic parallel 

environment called Parallel Virtual Machine (Geist, 1994).  One or more 

modules were modelled on a single processor.  Each processor handled the 

computation of its own part of the neural network, requesting and responding to 

the necessary data with an exchange program during the whole computation 

period. 

 

6.2.3 Experiments of Dynamics in Parallel Associative Memory Models 

The dynamics of the parallel associative memory model is different from the 

one in the nonparallel model.  Nonparallel model usually uses asynchronous 

update as it provides simpler dynamics (Chapter 3).  On the other hand, due to 

the synchronous nature of parallel computation, a synchronous update was 

preferred in the parallel simulator.  Some experiments were studied to reveal 

the difference between these two dynamics.  
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It was predicted that the new update function proposed in Chapter 5 could help 

to reduce the number of cyclic attractors significantly in the synchronous 

dynamics of parallel associative memory models.  This predication is 

confirmed by the following experiment.  A fully connected bipolar network 

with 500 units was trained with 200 unbiased patterns.  A fundamental 

memory was selected and degraded with a percentage of noise, then allowed to 

update for a maximum of 100 epochs.  This update procedure was repeated 20 

times and the mean number of update epochs is reported here.  This 

experiment was implemented for different values of update thresholds from 0 to 

3, in both asynchronous and synchronous dynamics.  As the percentage of 

noise in the patterns increases, the mean epochs increase, as it becomes more 

and more difficult to converge from the noisy patterns.  The new update 

function improves the associative memory performance (Chapter 5), as well as 

causing the network to converge more quickly.  Since asynchronous update 

gives simpler dynamics than synchronous dynamics, the improvement of 

update epochs is insignificant (Figure 6.4).  For the synchronous dynamics, 

the converging time is hugely shortened (Figure 6.5) by the new update rule.  

As predicted, the synchronous dynamics brings more cyclic attractors so that 

the convergence time increases dramatically, comparing with the asynchronous 

cases, when using the canonical update rule.  Such cyclic attractors were no 

longer stable so that the convergence time was reduced to similar level of 

asynchronous update. 
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Figure 6.4  Mean epochs of convergence time for the new update function with varied 

threshold and asynchronous dynamics.  The introduction of the new update threshold function 

and non-zero threshold shortens the convergence time of the network.  Due to the simple 

dynamics of the asynchronous update, this improvement is not as significant as the one with 

synchronous dynamics (Figure 6.5). 
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Figure 6.5  Mean epochs of convergence time for new update function with varied 

threshold and synchronous dynamics.  The improvement of the new update function is 

significant as the cyclic attractors are removed. 

 

The most critical problem for the parallel model was the bottleneck of data 

transfer and network communication.  During the dynamic phase, the modules 

require huge amounts of communication with each other.  In other’s research 
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(Johansson and Lansner, 2004, Johansson and Lansner), the LAN environment 

was found to be the bottleneck of performance due to the limited bandwidth 

when implementing the fully connected network.  A preliminary study was 

conducted to investigate the parallel performance of modular connectivity with 

sparse inter-modular connections and the new update threshold function in the 

LAN environment.  Improvement of performance was found in the study 

which was adequate for realistic experiments.  The result suggests that a high 

speed network may be required in order to overcome this bottleneck, however 

due to the limit of available facilities and time the study of parallelizing neural 

network was stopped. 

 

6.2.4 Parallelization of Experiments 

There is an easier way to speed up the whole experimental process.  A series 

of experiments can be treated as several separate experiments with different 

settings and executed in parallel on different workstations.  The main problem 

that needed to be solved was how to distribute the executable code and gather 

results after their execution.  The CONDOR system (Litzkow et al., 1988) was 

used for the experiment’s distribution and result gathering. A new version of the 

simulator was developed to fit its requirements.  In the recent implementation, 

multiple experiments can be executed on a network which has more than 200 

microcomputers, which was found to make the speed of experiments at least 10 

times faster than that of the nonparallel version (as the system is shared with 

other researchers). 

 

There is one major drawback to use this method.  Unlike a parallelized neural 

network, the distributed experiment requires a whole neural network to be 

executed on a single machine.  The restriction limits the possible size of the 

investigated neural network.  However, for network size up to thousands of 

units, this restriction is not significant. 
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Considering the advantages and disadvantages of both parallel strategies, 

CONDOR system and the parallelization of experiments were employed in my 

later research. 

 

6.3 Conclusion 

This chapter discusses the implementation details of large scale associative 

memory model.  To improve the performance, two parallelization methods 

were investigated, including the parallelization of neural network and the 

parallelization of experiments.  The parallelization of experiments was 

employed in my research. 
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Chapter 7 Connectivity Measures and Biologically Inspired Connectivity 

The complexity of the cerebral cortex often amazes neuroscience researchers.  

Containing more than 1011 neurons and a thousand times more connections, 

means that a systematic analysis of such a network is considered to be 

extremely difficult.  Thus early studies in the connectivity of the cerebral 

cortex mainly focused on specific domains with limited size such as the visual 

cortex or the barrel area in the somatosensory cortex.  In recent years, 

impressive progress has been achieved by introducing connectivity measures 

from graph theory.  The cerebral cortex was found to be not a completely 

random network, but a network with characteristics which were thought to 

improve its efficiency, such as short path length and high clustering. 

 

The major goal in my research is to use available connectivity measures from 

graph theory to investigate how connectivity which is inspired by 

characteristics from the cerebral cortex affects the associative memory 

performance of a network.  This chapter provides a background review of 

these measures, the connectivity characteristics of the cerebral cortex, as well 

as a description of several biologically inspired networks which were 

investigated in my research. 

 

7.1 Connectivity Measures in Graph Theory 

Systems with complex interconnections between components, such as the 

cerebral cortex, relationships in a population, and the World Wide Web, can be 

described mathematically using graph theory.  To help the reader understand 

the definitions and notations used in following chapters, some related 

background is reviewed here. 

 

7.1.1 Node, Connection, Path and Distance in Graph Theory 
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Graphs are a set of nodes and connections.  The number of nodes in a graph is 

denoted by N, whilst the number of connections per node is denoted by k, 

referred to as the degree of the node.  Graphs may be directed (all connections 

have directions) or undirected.  Connections between nodes can be weighted 

to indicate their efficiency or cost.  The connection matrix  is a  

matrix where  if there exists a connection from j to i, and  if there 

is no connection from j to i.  A path is an ordered sequence of distinct 

connections and nodes, linking a source node j to a target node i.  No 

connection or node is visited twice in a given path.  The length of a path from 

j to i, or distance, , is equal to the number of distinct connections in the 

shortest path from j to i.  All paths of a network form the  distance 

matrix 

 ijc

ijc 

n n

n n

1ijc 

d

0

ij

 ijd  where the entries  correspond to the distance between node j 

and i.  If no path exists,  is undefined and usually assigned with an 

arbitrary large value in any implementation.  Figure 7.1 gives examples of 

distance and connectivity in undirected and directed graphs.  For 

simplification undirected graphs are used in later sections unless mentioned 

otherwise.  The difference between undirected and directed graphs will be 

discussed in Section 7.1.5. 

ijd

ijd

 
Figure 7.1  Undirected graphs (left) and directed graph (right).  Nodes are represented by 

circles and connections are indicated by edges, the arrows in the directed graph show the 

directions of the connections.  The distances between nodes in each graph may be different.  

Take the distance from node 0 to 4,  as an example.  In the undirected graph, 

 (the path is indicated by red nodes and edges).  However, in the directed graph, 

the shortest path from 0 to 4 is 0 5  (shown as the blue path), making 

.  The connection matrices of undirected and directed graphs are also different as 

 and c  in the example. 

40d

 
40 1undirectedd 

40 4directedd 

40 1undirectedc 

3 2 4 

40 0directed 
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7.1.2 Mean Path Length 

The distance between two nodes in a graph can be extended to give a measure 

of overall path efficiency in the graph.  Hence we define the Mean Path 

Length over all paths of a graph G, as: 

   
1

1 ij
i j G

L G d
N N  


  , 

which is a connectivity measure that provides an estimate of node traversal 

edge is double counted, as 

ability in a graph.  To make it compatible for both directed and undirected 

graphs, an assumption should be made that in an undirected graph that each 

ij jid d .  This assumption is made in all later 

measures.  Note that for a disconnected graph,  L G  is undefined (Figure 

7.2). 

 
Figure 7.2  Mean P  Length of connected and disconnected gr s.  Since they are 

rap

a b 

ath aph

undirected g hs, the distances between two nodes should be double counted, as ij jid d . For 

the connected graph aG ,  01 02 03 12 13 23( ) 2 /12aL G d d d d d d       , w eans 

 ( ) 1 2 2 1 1 1 /aL G      0

hich m

6 4 / 3   For disconnected graph bG , since  jd is undefined 

for each  1, 2,3j , ( )aL G  is problematic and commonly assigned with a rbitrary high 

value. 

 

n a

The Mean Path Length was originally used to define the “small world” 

phenomenon found in social science (Milgram, 1967).  This refers to the idea 

that, if a person is one step away from each person they know and two steps 

away from each person who is known by one of the people they know, then 

everyone is an average of six steps away from each person in a region like 

Manhattan.  Hence everyone is fairly closely related to everyone else giving a 

“small world”.   
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Networks which are fully connected have the shortest and unique Mean Path 

 

ks with different connectivity.  Each network has 30 units a

f 

.1.3 Clustering Coefficient 

attribute of a network structure is the degree of 

 

Length of 1.  On the other hand the Mean Path Length of sparse networks is 

different for different types of connectivity.  For a sparse network whose 

connections are all locally connected, that is, connected to the nearest nodes 

(usually referred as the lattice, Figure 7.3, left), the Mean Path Length is very 

long since nodes are only connected to their local regions.  Random networks 

(Figure 7.3, middle) usually have short path length.  Between these two 

extreme classes, there are a wide range of sparse networks which have 

connections to both local regions and distant nodes (Figure 7.3, right).  The 

Mean Path Length of these networks is similar to that of random networks, but 

significantly shorter than that of lattices.  These intermediate networks exhibit 

the “small world” phenomenon and have attracted the interest in recent 

neuroscience research. 

 

nd Figure 7.3  Sparse networ

the number o afferent (incoming) connections per unit is, k = 4.  Left: locally connected 

network (lattice), has high value of Mean Path Length.  Middle: random network, has short 

Mean Path Length.  Right: small world network, has significantly lower Mean Path Length 

compared to the lattice. 

 

7

Another important connectivity 

clustering.  High clustered networks are considered to have a great ability for 

information assembling as nodes in the clusters share information strongly. 

This attribute is defined by the Clustering Coefficient in (Watts and Strogatz, 

1998) and the definition is given as follows.  Firstly define neighbours of a 
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node in an undirected graph as its directly-connected nodes.  Then define iG  

as the subgraph of the neighbours of node i (excluding i itself).  C , the local 

Clustering Coefficient of node i, is defined as 

i

#  of edges in 

maximum possible # of edges iiC 
n 

i

i

G

G
 

which denotes the fraction of all possible edges of  which exist.  The iG

Clustering Coefficient of graph G ,  C G , is then defined as the average of C  

over all nodes of G  

i

  1
i

i G

C G C
N 

   

Figure 7.4 gives an example of the calculation of Clustering Coefficient. 

 
Figure 7. Example of Clustering Coefficient calculation.   an undirected graph and 

 th

G0 G1 G2 G3 

4  G is

G0 to G3 are e neighbour subgraphs for each of its nodes.  Solid edges indicate existing 

connections in G and dashed edges show possible but not existing connections.  Thus 

0 1/ 3C  , 1 2 1C C   and 3 0C  .  Consequently   1 7
1 1 / 4

3 12
C G

     
 

. 

 

ifferent network connectivity results in different Clustering Coefficient.  For D

a fully connected network the Clustering Coefficient is 1 as all nodes are 

directly connected to each other.  Locally connected sparse networks have a 

high Clustering Coefficient whilst random networks usually have low ones.  
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Interestingly, there are a wide range of networks which have both as short a 

path length as the random network does, and a high Clustering Coefficient 

similar to the locally connected network both in theoretical models and realistic 

networks.  Some examples of these networks and their connectivity 

characteristics were investigated by Watts and Storgatz (Watts and Strogatz, 

1998).  Such networks were referred to as the “small world network” in their 

paper, to distinguish from the locally connected network and the random 

network. 

 

7.1.4 Network Efficiency 

rized the Mean Path Length and the Clustering 

he average efficiency of a graph G with N nodes, 

Watts and Strogatz characte

Coefficient as two different measures.  More recently Latora and Marchiori 

(Latora and Marchiori, 2003) have unified them to one single measure, the 

efficiency of a network, as well as its subnetworks. 

 

 E GT , is defined as 

   
1 1

E G 
1 i j G ijN N d   . 

Note that in an undirected graph this definition assumes ij jid d .  In particular, 

the efficiency of a fully connected network, which contai  1N N   edges, 

is named as  idealE G .  For a fully connected network, 

ns all 

 idealE G  like the 

Mean Path L  E G won’t be divergent for a disconnected graph because 

1 .  Un

ength, 

1

ijd  
is defined as 0 for any disconnected pair of i, j (Figure 7.5).  
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a b 
 

Figure 7.5  The efficiency of connected and disconnected graph.  The graphs are the same 

as the ones in Figure 7.2.  For the connected graph , aG

01 02 03 12 13 23

1 1 1 1 1 1 1 1
( ) 2 /12 1 1 1 1 / 6

2 2 6aE G
d d d d d d

                   
  

5
;  

for the disconnected graph , for each bG  1,2,3j , 
0 0

1 1
0

j jd d
  , therefore 

( ) 2 (0 0 0 1 1 1) 0.5bE G        /12  . 

 

he connectivity characteristics defined by Mean Path Length and Clustering T
Coefficient can be redefined as the efficiency of the whole network, and the 
neighbour subnetworks.  Thus two new terms, the Global Efficiency and the 

Local Efficiency are introduced. The Global Efficiency of a graph G,  E G , is 

defined as  

global

   
 global ideal

E G
E G

E G
 . 

This is the fraction of the efficiency G compared with the most efficient case 

 
 fact E can be calculated for any subgraph of G.  Therefore the local 

idealG .   

In

properties of G can be characterized by the Local Efficiency,  E G ,  local

   
 

1 i
local ideal

i G i

E G
E G

N E G

   

where  is the neighbour subgraph of i and is the ideal case of 

which contains all possible connections. 

he characteristics of networks discovered in the study of Watts and Strogatz 

iG ideal
iG  iG  

 

T

(Watts and Strogatz, 1998), in terms of Mean Path Length and Clustering 

Coefficient, can now be generalised and defined by the global and local level of 
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network efficiency.  A locally connected network has low Global Efficiency 

but high Local Efficiency, whilst a uniformly random network has high Global 

Efficiency but low Local Efficiency.  It was found that networks with low path 

length and high Clustering Coefficient were commonly correlated to both high 

global and Local Efficiency, although this correlation was not absolute (Latora 

and Marchiori, 2003). 

 

It is interesting to compare the Clustering Coefficient and Local Efficiency.  

The distance between two nodes is 1 if and only if there is direct connection 

between them.  Therefore the Clustering Coefficient can also be defined as 

  , 1

1 1

1iC
jkj k G d jkM M d


 

    

where jk kd d j  for undirected graph, and M is the number of nodes in 

average of 

neighbour subgraph i .  On the other hand the Local Efficiency is the G

    , 1 , 1

1 1

1
jk jk

i
j k G d j k G djk jk

E G
M M d d     

 
     

  1

, 

since .  Therefore the Clustering Coefficient considers only the 

efficiency contribution from the most efficient, direct connections, whilst Local 

ncy gives 

hood Concept in Neural Network 

lthough the adjacency concept is well defined in graph theory, the 

d graphs can be 

  1ideal
iE G 

Efficie an estimate of the efficiency contribution from all existing 

paths in the subgraph. 

 

7.1.5 The Neighbour

A

neighbourhood relationship defined above for undirecte

ambiguous when employing it in artificial neural networks, in which 

connections are commonly associated with direction.  A “neighbour” of a 

neuron can be identified as an “afferent neighbour”, which is a presynaptic 

neuron for incoming connection, or an “efferent neighbour”, a postsynaptic 

neuron for outgoing connection, or defined as “both”, which means both 
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afferent and efferent neighbours are included in the subgraph.  Different 

definitions lead to different graphs and different results for Clustering 

Coefficient and Local Efficiency.  Therefore in Chapter 8 and 9, the Clustering 

Coefficient and Local Efficiency of the networks will be measured in three 

different variants, corresponding to the three neighbourhood concepts. 

 

7.1.6 Measuring Results for the Real Cortex 

In recent years the connectivity measures have been employed in the studies of 

 Marchiori, 2003, Shefi et al., 

Data 
Path 

Length 

Clustering 

Coefficient 

Global 

Efficiency 

Local 

Efficiency

cortical structures (Sporns et al., 2004, Latora and

2002, Watts and Strogatz, 1998).  These results showed that the anatomical 

area network of the cerebral cortex was not a lattice or a random network, but a 

network with nearly as low a path length as the random network, whilst still 

maintaining a high Clustering Coefficient (Sporns et al., 2004, Watts and 

Strogatz, 1998) (Figure 7.6).  In terms of network efficiency, it is a network 

with both high global and Local Efficiency (Latora and Marchiori, 2003).  

Table 7.1 shows the summary results of these studies. 

 

Table 7.1 

Macaque visual cortex 0.53 - - 1.73 

Macaque  cortex  whole 2.38 0.46 0.52 0.70 

Cat cortex 1.81 0.55 0.69 0.83 

The con functional area conn  of the rtex.  re 

taken from (Wa tz, 1998, Sporns et al., 2004 a and M 2003)

nectivity measures of the ectivity real co Data a

tts and Stroga , Lator archiori,  . 
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Figure 7.6  The connectivity characteristics of anatomical areas in the real cortex compared 

with lattice and random networks.  A lattice has both high path length and Clustering 

Coefficient.  On the other hand the random networks have both low path length and clustering 

efficient.  The real cortex has similar path length as the random network, whilst still 

maintaining a high Clustering Coefficient.  Figure taken from (Sporns et al., 2004). 
 

7.2 Biologically Inspired Connectivity 

One major goal of my research is to explore how biologically inspired 

connectivity affects associative memory performance.  This section proposes 

some networks with connectivity which is inspired by the connectivity 

characteristics of the real cortex.  For simplification, all units in the network 

are arranged in a one dimensional ring, as shown in Figure 7.7.  The detail 

information and performance of these networks will be examined in Chapter 8 

and 9. 

 

 
Figure 7.7  The arrangement of the network.  All units are arranged on a one dimensional 

ring with a constant number of afferent connections per unit. 
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7.2.1 Watts-Strogatz Small World Network 

In their paper (Watts and Strogatz, 1998), Watts and Strogatz proposed a 

method to construct networks which exhibit the small world phenomenon.  

The construction starts from a locally connected network within which each 

unit is connected to k (k << N, where N is the number of units in the network) 

nearest units.  A Watts-Strogatz small world network can then be produced 

from this network by randomly rewiring a proportion of connections for each 

unit.  The fraction of rewiring proportion is called the rewiring rate, notated 

by .  The network is locally connected if r 0r  .  As  increases, the Mean 

Path Length of the network becomes shorter as more and more cross network 

connections are established.  On the other hand the network is still highly 

clustered.  Thus the network starts showing the small world network effect.  

The rewiring process ends up with a random network since 

r

1r   means every 

connection is randomly rewired.  Figure 7.8 illustrates this progress.  A more 

detailed discussion of this model as well as its associative memory model 

performance will be given in Section 8.1. 
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Single Unit View Network View 

Rewiring Rate = 0 

Rewiring Rate = 0.5 

Rewiring Rate = 1 

Figure 7.8  The rewiring progress of W-S small world network.  Network contains 30 

units and 4 afferent connections for each unit.  Initially all units are locally connected, as the 

rewiring rate = 0.  Then a proportion of connections of each unit are randomly rewired 

(rewiring rate = 0.5).  As the rewiring rate increases, the network becomes a random network 

(rewiring rate = 1). 

 

7.2.2 Gaussian Distributed Network 

In the mammalian cortex the probability of any two neurons in the same area 

being connected falls off in a Gaussian like manner (Section 2.3, also Figure 

7.9).  This was the main inspiration for the Gaussian Distributed Network.  

In this model, all units were still arranged on a one dimensional ring as in the 
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W-S network.  However, the connections were constructed according to a 

Gaussian distribution of connection distance between connected units.  The 

connection distance is defined as the steps taken between two nodes when 

travelling on the ring (note that the distance (path length) defined in 7.1.1 is the 

number of steps when travelling through an existing path).  The standard 

deviation of the Gaussian distribution, σ, was varied to get different 

distributions of connections.  Since different degrees of network connectivity 

were involved in the experiments, σ was chosen proportional to k so that 

experiments could be always started from a tight distribution so that σ was 

always started at 0.4k.  Any smaller σ does not allow enough space for a 

Gaussian distributing connectivity.  By increasing σ, the network changed 

from a strongly locally connected network to an almost randomly-connected 

network, followed by a smooth increase of wiring cost.  Figure 7.10 shows 

examples of this network as well as the distribution of distance frequency.  

Performance results of this model can be found in Section 8.2. 

 

 
Figure 7.9  The probability of a connection between any pair of neurons in layer 3 of the rat 

visual cortex against cell separation. Taken from (Hellwig, 2000).  

 

 - 78 - 



Chapter 7  Connectivity Measures and Biologically Inspired Connectivity 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

distance

f
r
e
q
u
e
n
c
y

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

distance

f
re
q
ue
n
cy

4k    

4 1k 6    

 
Figure 7.10 Gaussian distributed networks and the connection distance distribution of 

connections.  Results are averaged over 100 samples.  All networks have 30 units and the 

number of afferent connections per unit, k, is 4.    is chosen proportional to k.  The 

frequency of distances of connections forms a Gaussian-like distribution.  As   increase 

this distribution becomes more and more uniformly random. 

 

7.2.3 Fully Connected Modular Network 

One important feature of structural neural network is modularity, commonly 

referred to as the hypothesis of cortical column proposed by Mountcastle 

(Mountcastle, 1997).  To investigate how the modularity of a network affected 

the associative memory performance, several modular connectivity networks 

were defined in my research.  The first modular network investigated in my 

research was named the Fully Connected Modular network.  The network 
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initially contained m internally fully connected subnetworks, defined as 

modules.  At the beginning there was no interconnection between the modules 

and each of them can be treated as m individual fully connected associative 

memories.  The subnetworks were then connected by rewiring the 

intramodular connections to random connections anywhere in the whole 

network, using the same rewiring strategy as the one of the W-S small world 

network.  A fraction p denoted the proportion of rewired connections.  Figure 

7.11 gives an example of networks with this connectivity.  The performance of 

this connectivity will be investigated in Section 9.1. 

p = 0 p = 0.5 
 

Figure 7.11 The construction of a fully connected modular network.  Each network has 30 

units and 4 afferent connections per unit.  The network is initialized as 6 discrete modules 

with fully connected internal networks (left, with rewiring rate p = 0).  To connect these 

modules, internal connections are then rewired randomly across the whole network (right, with 

rewiring rate p = 0.5).  Note that the regularity of the network is maintained during the 

rewiring (each node always has 4 afferent connections). 
 

7.2.4 Gaussian-Uniform Modular Network 

The model described here is named Gaussian-Uniform modular network which 

is defined by two levels of connectivity.  The internal network of each module 

has a Gaussian distributed connectivity, whose standard deviation, internal , is 

again proportional to the number of internal connections per unit, kinternal.  

Each unit in the network also has a number of external connections (defined by 

kexternal) which only connect to units in other modules.  The connectivity of the 
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external network is uniformly random.  Although kinternal and kexternal vary in 

different configurations, the total number of connections per unit, k = kinternal + 

kexternal, is maintained the same so that the performances of different networks 

are comparable.  Section 9.2 reports the results of experiments on this 

connectivity. 

 

7.2.5 Gaussian-Gaussian Modular Network 
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external

The above two modular networks assume that external (inter-modular) 

connections are randomly distributed.  However a more biologically plausible 

choice is to connect modules following a Gaussian distributed manner.  The 

model is named the Gaussian-Gaussian Modular network since the internal 

connectivity of a network is Gaussian distributed, as the one in the 

Gaussian-Uniform Modular network, whilst the construction of external 

connections also follows a Gaussian distribution with a standard deviation 

  proportional to kexternal.  As external increases, the external connectivity 

becomes more uniformly random and the network can be simplified to a 

Gaussian-Uniform Modular network.  More details about the characteristics of 

this connectivity can be found in Section 9.3. 

 

7.3 Conclusion 

This chapter reviews some connectivity measures in graph theory such as the 

Mean Path Length, Clustering Coefficient and network efficiency.  The 

introduction of these measures to real cortical networks revealed some 

connectivity characteristics of the cerebral cortex, for example short path length, 

high Clustering Coefficient and high global and Local Efficiency.  These 

characteristics inspire several associative memory networks connectivity 

models as shown in Section 7.2.  In the following chapters, experimental 

results will show how the difference in the connectivity affects the associative 

memory performance of a network.
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Chapter 8 

Non-Modular Associative Memories  

and the Performance 

The main interest of my research is to investigate how different biologically 

inspired connectivity, as shown in Chapter 7, affects the associative memory 

performance.  It will be explored in the following three chapters.  This 

chapter firstly summarises the results of networks with Non-modular 

connectivity including the Watts-Strogatz small world network and the 

Gaussian distributed network.  In the next chapter, three modular networks 

will be investigated.  In Chapter 10 the connectivity issue will be investigated 

in a spiking associative memory model with integrate-and-fire neurons and a 

weight matrix trained by Gardner class algorithm. 

 

8.1 Specifications of the Model 

All networks investigated in this chapter and Chapter 9 adapt Model 0 (p.36) 

with a sparse connection matrix  ijc

k

, as defined in Section 7.1.1.  The 

connectivity of the networks was measured using Mean Path Length, 

Clustering Coefficient, as well as global and Local Efficiency.  The 

associative memory performance was measured by Effective Capacity, with 

noise criteria of 60% and overlap criteria of 95%.  All training patterns were 

unbiased, bipolar.  To achieve more consistent and comparable results, all 

networks consist of 5000 units and the number of afferent connections for each 

unit varied from 100 to 500.  In the following discussion major results were 

gained from experiments on a network with 250 afferent connections per unit, 

that is, .  The results of 250k  100  and 500k   networks will be 

used as comparison.  Each experiment was repeated 20 times and the mean 

values were reported.  As in previous experiments, a learning threshold of 10 
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was chosen.  Although the new update rule with non-zero threshold was found 

to improve the network performance, the canonical update rule with 0 threshold 

and asynchronous dynamics was selected for the comparison of early 

performance results in the fully connected model (Section 5.2).  Model 2 

summarise these specifications.  
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Model 2  Model for sparse connectivity experiments 
Num of units (N): 5000 
Num of afferent connections per unit (k): 100, 250, 500 
Pattern: bipolar, unbiased patterns 

Connectivity:  defined by  ijc , where  

1ijc   if the connection from j to i exists; 

  0ijc   if the connection from j to i does not exist 

Training: 
Denoting T = 10 as the learning threshold 

Begin with a zero weight matrix 

Repeat until all units are correct 

Set the state of the network to one of the 
p  

For each unit, i, in turn: 

Calculate its local field j ij jh c jp p
i i

j

   

If ( ) then change the weight on connections  Th p
i

p
i 

into unit i according to: 

 '
p p

i j
ij iji j j j

k

 
     

End For 

End 

 

Dynamics:  

 
1, if 0

1 1, if 0

( ),  otherwise
i

i

h

S t h

S t


   



 

 
Connectivity measures: 
mean path length, Clustering Coefficient, global efficiency, local efficiency 
 
Associative memory performance measure: 
Effective Capacity with 60% noise and 95% overlap 

 

The capacity of a sparsely connected network is proportional to k given the 

condition that  (Calcraft, 2005), although the performance of the 

network is also affected by the connectivity scheme as well as pattern 

k N
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correlation.  Figure 8.1 gives the Effective Capacity results for a sparsely 

connected network with uniform randomly distributed connections and 

incremental k. 
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Figure 8.1  The change of Effective Capacity when increasing the number of connections 

per unit, k.  All networks in this experiment have 500 units which are randomly connected.  

As k (k << N) increases, the Effective Capacity of the network increases almost linearly. 

 

8.2 The Performance of the Watts-Strogatz Small World Network 

The W-S small world network is initialised from a locally connected lattice and 

through continuously random rewiring to a network with uniform random 

distributed connectivity (Section 7.2.1).  The proportion of rewired 

connections is specified by the rewiring rate, , which changes from 0 to 1 

incrementally with a step of 0.1.  The investigation reported here can be 

divided into three steps.  The first step investigates how the increase of  

changes the result of each connectivity measure.  The second step studies the 

associative memory performance changes by measuring Effective Capacity for 

varying .  Finally an attempt will be made to find the correlation between 

connectivity and the associative memory performance of the network by 

associating the results from the previous two steps.  This is also the main 

approach of all later investigations, although the studied variables may change 

due to the difference in connectivity models. 

r

r

r
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8.2.1 The Connectivity of Watts-Strogatz Small World Network 

In total 8 different connectivity measures were performed to each network.  

The global connectivity property was measured by Mean Path Length and 

Global Efficiency.  The local clustering property was measured by the 

Clustering Coefficient and Local Efficiency.  As discussed in Section 7.1.5, 

three different neighbour subgraphs could be generated.  Therefore the 

Clustering Coefficient and Local Efficiency were measured in three different 

types, noted by the suffix aff / eff / both which indicates the type of subgraphs 

generated in the measure. 

 

a. Results for Mean Path Length and Global Efficiency 

Figures 8.2a and 8.2b show the results of Mean Path Length and Global 

Efficiency of the W-S small world network.  Since the network is initialised 

from a lattice, a high value of Mean Path Length can be predicted for .  

This is confirmed in Figure 8.2a.  Interestingly, by rewiring only a very small 

proportion of the connections (less than 10% as 

0r 

0.1r  ), the Mean Path 

Length has already decreased to similar value as the random network has, that 

is approximately 2 steps between each pair of nodes.  This value becomes 

saturated for further rewiring. 

 

The Global Efficiency of a network can be in fact associated to its Mean Path 

Length since it is the mean of a sum within which  is replaced by 

(Section 7.1).  Thus in the W-S small world network a low Global 

Efficiency can be predicted for 

ijd

1/ ijd

0r  .  The value then increases and rapidly 

reaches saturation.  The prediction is confirmed in Figure 8.2b. 
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Figure 8.2a The Mean Path Length of W-S small world network.  The network initially 

exhibits a very high value of path length for the lattice ( 0r  ).  However, the value 

ecreases rapidly even if only a small proportion of connections are rewired and becomes 

aturated for further rewiring (  to 

d

s

 
0.1r  1r  ). 
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Figure 8.2b The Global Efficiency of W-S small world network.  For the lattice ( ) 

the network has significantly low efficiency.  The value reaches saturation rapidly ( ). 

0r 
0.1r

 

b. Results for Clustering Coefficient and Local Efficiency 

Both the Clustering Coefficient and Local Efficiency were measured in three 

forms, both, aff and eff, defined by the type of neighbour subgraph.  In 

previous studies (Latora and Marchiori, 2003, Watts and Strogatz, 1998) the 

lattice ( ) was found to have a high Clustering Coefficient and a high Local 0r 
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Efficiency whilst the uniform random network ( 1r  ) had very low values of 

these two measures.  This is confirmed by all of the results (Figure 8.2c to 

8.2e). 

 

Figures 8.2c to 8.2e also report the results of three different Clustering 

Coefficient measures.  All of them show similar curves.  Particularly the 

result of Clustering Coefficient (aff) is identical to the one of Clustering 

Coefficient (eff), whilst the Clustering Coefficient (both) values in low rewiring 

rates are slightly lower than the ones in other two measures.  Unlike the Mean 

Path Length and Global Efficiency which saturate as soon as , the 

Clustering Coefficient decreases continuously, although the rate of decrease is 

less at high degrees of rewiring. 
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Figure 8.2c The Clustering Coefficient (both) of W-S small world network.  A lattice 

) has a high value and a uniform random network 10r   ( r  ) has a very low value.  A  

 increases, the Clustering Coefficient decreases by a progressively decreasing amoun

( s

t. r
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Figure 8.2d The Clustering Coefficient (aff) of W-S small world network.  The result is 

similar to the one of Clustering Coefficient (both) (Figure 8.2c) although at low rewiring rates 

the values here are slightly higher. 
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Figure 8.2e The Clustering Coefficient (eff) of W-S small world network.  The result is 

identical to the one for Clustering Coefficient (aff) (Figure 8.2d). 

 

According to the analysis in Section 7.1.4 the Clustering Coefficient is a 

simplified version of Local Efficiency which only considers the efficiency 

contribution of direct paths of distance 1.  Therefore the changes of Local 

Efficiency can be predicted to perform similarly to the one for Clustering 

Coefficient in spite of the fact that the values should be higher as the efficiency 

of indirect paths is considered.  The experimental results (Figure 8.2f to 8.2h) 
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confirm this prediction.  Like the Clustering Coefficient, the three different 

Local Efficiency measures have similar curves from high value to low value as 

 increases.  The Local Efficiency (both) is slightly lower than the other two 

measures which perform identically. 
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Figure 8.2f The Local Efficiency (both) of W-S small world network.  It decreases as the 

rewiring rate  increases.  A lattice (r 0r  ) has high value and a uniform random network 

( ) has low Local Efficiency. 1r 
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Figure 8.2g The Local Efficiency (aff) of W-S small world network.  The curve is similar 

to the one in Figure 8.2f. 
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Figure 8.2h The Local Efficiency (eff) of W-S small world network.  The curve is identical 

to the one in Figure 8.2g. 

 

It is interesting to compare the results of Clustering Coefficient with the one for 

Local Efficiency.  We take the results of Clustering Coefficient (both) and 

Local Efficiency (both) for example.  For the lattice ( 0r  ) the difference 

between these two measures is small, indicating that most of the nodes in the 

neighbour subgraphs are directly connected.  As the rewiring rate increases, 

the difference becomes more and more significant.  For the uniform random 

network ( ), most of the nodes in the subgraphs are not directly connected, 

as the Clustering Coefficient decreases near 0.  However, such a network can 

still maintain more than half of the efficiency via indirect paths in the 

subgraphs.  Figure 8.2i compares these two results graphically. 

1r 
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Figure 8.2i The comparison of Local Efficiency and Clustering Coefficient.  Both 

measures decrease as rewiring increases.  The difference is small for 0r   as most of the 

nodes in the subgraphs are directly connected.  As more and more connections are rewired, 

Clustering Coefficient decreases to near 0, indicating that few of the nodes are directly 

connected.  However, the network still maintains a Local Efficiency of about 0.5, which is 

mainly contributed by indirect paths. 

 

8.2.2 The Effective Capacity of W-S Small World Network 

Figure 8.3 summarises the result for Effective Capacity for the W-S small 

world network.  The Effective Capacity performance improves as the rewiring 

rate increases.  The best performance is achieved with a rewiring rate of 1, 

however the difference is insignificant with rewiring rate higher than 0.5.  

With low wiring rate the performance difference is significant, which is 

improved from about 60 to more than 100 by increasing the rewiring rate from 

0 to 0.5.  Note that for a network with 0.5 rewiring rate approximately half of 

the connections are still locally connected, therefore the network is inexpensive 

in terms of wiring cost, comparing with the uniform random network ( ). 1r 
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Figure 8.3  The Effective Capacity of W-S small world network.  It increases as the 

rewiring rate  increases.  However, the improvement is more significant in networks with 

low rewiring rate (0 ~ 0.5) and becomes insignificant in network with rewiring rate higher than 

0.5. 

r

 

8.2.3 Correlation between Connectivity and Associative Memory 

Performance 

To investigate the correlation between network connectivity and associative 

memory performance, the Effective Capacity results are plotted against each of 

the connectivity measures.  As some of the connectivity measures are highly 

related, for example Mean Path Length and Global Efficiency, or Clustering 

Coefficient (aff / eff), their results will be summarised in one figure. 

 

Figure 8.4 plots the Effective Capacity against Global Efficiency for the W-S 

small world network to investigate their correlation.  Generally high Effective 

Capacity is associated with high Global Efficiency.  However, the Global 

Efficiency saturates at 0.55 whilst the corresponding Effective Capacity varies 

from less then 90 to approximately 110.  Therefore the associative memory 

performance cannot be accurately predicted by its global connectivity property. 
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Figure 8.4  The Effective Capacity against Global Efficiency of W-S small world network.  

In these experiments N = 5000 and k = 250.  As a wide range of Effective Capacity values is 

associated with similar Global Efficiency, the associative memory performance cannot be 

accurately predicted by its global connectivity property. 

 

Figure 8.5 plots the Effective Capacity against Clustering Coefficient and Local 

Efficiency for the W-S small world network.  As the result of Clustering 

Coefficient (aff) being identical to Clustering Coefficient (eff), they are unified 

as Clustering Coefficient (aff/eff).  The results of Local Efficiency (aff/eff) 

were also unified.  All four curves show that the performance of associative 

memory improves as the Clustering Coefficient / Local Efficiency decreases. 

 

Interestingly both Clustering Coefficient (both) and Local Efficiency (both) 

show a linear correlation to the Effective Capacity performance.  Therefore 

one assumption can be made that for the W-S small world network, the 

Effective Capacity (which indicates the associative memory performance) has a 

linear correlation with its Clustering Coefficient or Local Efficiency.  This 

assumption is significantly important as the result of complex neural dynamics 

in the network is predicted by one simple statistical connectivity measure.  In 

later sections, this prediction will be examined and extended to networks with 

different connectivity. 
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Figure 8.5  The Effective Capacity against local clustering and Local Efficiency for the 

W-S small world network.  The Effective Capacity increases as the Clustering Coefficient and 

Local Efficiency decreases.  Interestingly a linear correlation can be found between Effective 

Capacity and Clustering Coefficient (both).  The Effective Capacity and Local Efficiency 

(both) also show a linear correlation. 

 

8.3 The Performance of Gaussian Distributed Network 

The Gaussian distributed network has a Gaussian distribution of connection 

distance with standard deviation   (Section 7.2.2).  Experiments were 

conduced by increasing   from 0.4k (100 for k = 250) to 10k (2500 for k = 

250).  During the changes the network becomes less localised and the 

associative memory performance will improve.   

 

As with Section 8.2, we firstly investigate the connectivity properties of the 

Gaussian distributed network, followed by a study of its Effective Capacity 

performance.  Finally these two studies will be combined in a study of 

correlation.  One important prediction which will be examined here is whether 

the Effective Capacity also has a linear correlation with Clustering Coefficient 

and/or Local Efficiency.  And if so, can the linear correlations that appear in 

W-S small world network and Gaussian distributed network be unified?  

These questions will be addressed in Section 8.3.3. 
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8.3.1 The Connectivity of the Gaussian Distributed Network 

a. Results forMean Path Length and Global Efficiency 

Figures 8.6a and 8.6b summarise the results of Mean Path Length and Global 

Efficiency of the Gaussian distributed network.  As the connections in this 

network are not strictly localised initially as the ones of W-S small world 

networks, the Mean Path Length for low   (2.63 steps for 0.4k  ) is 

significantly lower than that in W-S small world network with low rewiring rate 

(10.5 steps for ).  Both Mean Path Length and Global Efficiency 

saturate when the standard deviation reaches 4k.  Note that the network with 

0r 

0.4k   is still not fully randomly connected (Figure 8.6c). 
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Figure 8.6a The Mean Path Length of a Gaussian distributed network with network size N = 

5000, k = 250.  The Mean Path Length decreases as standard deviation   increases.  The 

value saturates when   reaches 4k. 
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Figure 8.6b The Global Efficiency of Gaussian distributed network.  The network has the 

same size as that in Figure 8.6a.  The Global Efficiency increases as standard deviation   

ncreases.  The value saturates when i

 

  reaches 4k. 
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Figure 8.6c The connection distance distribution for a Gaussian distributed network with 

5000 units and k = 250， with standard deviation 4 1000k   .  Note that most of the 

connections still have short connection distances. 

 

b. Results for Clustering Coefficient and Local Efficiency 

Figures 8.6d and 8.6e summarise the results of Clustering Coefficient and Local 

Efficiency.  All measures decrease as   increases.  Similar to the results of 

the W-S small world network, the measure results for afferent subgraphs and 

efferent subgraphs are identical.  Interestingly the Clustering Coefficient (both) 
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tends to highly overlap with the Clustering Coefficient (aff/eff), particularly for 

high standard deviation above 2k, whilst the Local Efficiency (both) does not 

overlap with its other two variations.  All measures saturate at 4 1000k   , 

which is also the saturation point of Mean Path Length and Global Efficiency 

(Figure 8.6a and 8.6b).  This is surprising as in the W-S small world network 

the Mean Path Length and Global Efficiency saturate much quicker than the 

Clustering Coefficient and Local Efficiency (Section 8.2). 
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Figure 8.6d The Clustering Coefficient for a Gaussian distributed network.  The values 

quickly decrease and saturate at 4 1000k   .  The results of three variations are highly 

overlapped. 
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Figure 8.6e The Local Efficiency for a Gaussian distributed network.  The values quickly 

decrease and saturate at 4 1000k   . 
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8.3.2 The Effective Capacity of the Gaussian Distributed Network 

Figure 8.7 summarises the results of the Effective Capacity of the Gaussian 

distributed network.  Similar to the Effective Capacity performance of W-S 

small world network, the performance here also improves as the network 

becomes less localised by increasing the standard deviation,  .  Interestingly 

the performance saturates at the point where 4 1000k   , which is also the 

saturation point for all connectivity measures of the Gaussian distributed 

network. 
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Figure 8.7  The Effective Capacity for a Gaussian distributed network.  The value quickly 

increases as the standard deviation,  , increases.  Interestingly it saturates at 

4 1000k    which is the saturation point of all connectivity measures in the Gaussian 

distributed network. 

 

8.3.3 Correlation between Connectivity and Associative Memory 

Performance 

Figure 8.8 summarises the correlation between Effective Capacity and Global 

Efficiency in the Gaussian distributed network, together with a comparison of 

the one in W-S small world network.  Although in both networks the Effective 

Capacity increases as the Global Efficiency increases, the correlation in each 

type of network is different.  The Gaussian distributed network achieves 

similar Effective Capacity as the one in W-S small world network with much 

lower Global Efficiency.  These results indicate that the global connectivity 
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property of a network (measured by Mean Path Length and Global Efficiency) 

is highly affected by its detailed connectivity pattern.  However, it has little 

correlation with associative memory performance. 
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Figure 8.8  The comparison of Effective Capacity – Global Efficiency correlations between 

Gaussian distributed network and W-S small world network.  The two different curves 

indicate that the Global Efficiency has little correlation with the Effective Capacity 

performance. 

 

The correlations between Effective Capacity and Clustering Coefficient / Local 

Efficiency are shown in Figure 8.9.  It extends the assumption in Section 8.2.3 

that the Effective Capacity also has a linear correlation with its Clustering 

Coefficient or Local Efficiency in the Gaussian distributed network.  Although 

Effective Capacity saturates at extremely low Clustering Coefficient and Local 

Efficiency (with respect to the uniform random network). 

 

To compare these linear correlations with the ones in the W-S small world 

network, the curves of Effective Capacity – Clustering Coefficient (both) and 

Effective Capacity – Local Efficiency (both) are plotted for the two different 

types of network, as shown in Figure 8.10.  Although the W-S small world 

network and Gaussian distributed network follow very different construction 

strategies, the linear correlation between Effective capacity and Clustering 

Coefficient and Local Efficiency seems to be maintained, regardless the 
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detailed pattern of connectivity.  This is significantly different from the 

Effective Capacity – Mean Path Length (Global Efficiency) correlation (Figure 

8.8). 
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Figure 8.9  The linear correlations between Effective Capacity – Clustering Coefficient and 

Local Efficiency correlations in the Gaussian distributed networks. 
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Figure 8.10 The Effective Capacity is linearly correlated to the Clustering Coefficient and 

Local Efficiency in the W-S small world network and Gaussian distributed network, regardless 

the detail pattern of connectivity and construction strategy. 

 

8.4 Experimental Results with Different Degrees of Connectivity 

Two more series of experiments were implemented to investigate the above 

linear correlations on networks with different afferent degrees (that is, networks 
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with different numbers of k).  The first series of experiments had 5000 units 

and 500 afferent connections per unit (N = 5000 and k = 500), whilst the second 

series had 5000 units and 100 connections per unit (N = 5000 and k = 100).   
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Figure 8.11 Effective Capacity against Clustering Coefficient and Local Efficiency in W-S 

small world network and Gaussian distributed network with N = 5000 and k = 500.  Both 

Clustering Coefficient and Local Efficiency appear to have a unique linear correlation with the 

ffective Capacity. E
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Figure 8.12 Effective Capacity against Clustering Coefficient and Local Efficiency in W-S 

small world network and Gaussian distributed network with N = 5000 and k = 100.  Unlike the 

one in k = 250 network, here the Effective Capacity - Local Efficiency correlation divides into 

two different curves.  On the other hand Effective Capacity and Clustering Coefficient still 

maintain a unique linear correlation. 

 

In the k = 500 network both Clustering Coefficient and Local Efficiency exhibit 

a unique linear correlation with the Effective Capacity (Figure 8.11) over the 
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two different types of connectivity.  On the other hand, in the k = 100 network 

the correlation of Effective Capacity and Local Efficiency differs for the two 

types of connectivity, whilst the Effective Capacity – Clustering Coefficient 

correlation for the two types of connectivity remains approximately unique and 

linear. 

 

8.5 Experimental Results with Biased, Bipolar/Binary Training Set 

The preliminary study on the associative memory performance of biased 

training set (Section 5.2) showed that both bipolar and binary models had the 

same performance when trained with unbiased patterns (that is, bias = 0.5).  

Thus the results presented earlier in this chapter can be considered as the results 

of both bipolar and binary models and are suitable for the comparison with 

results of the spiking model in Chapter 10, which uses binary training rule. 

 

However, Section 5.2 also indicated that when trained with biased patterns, the 

performance of bipolar and binary models were different.  Although this thesis 

mainly focuses on the performance of networks with unbiased training patterns, 

it is still important to investigate the Effective Capacity – Local Efficiency 

correlation for networks trained with biased patterns, so that the robustness of 

the linear correlation can be examined. 

 

Figures 8.13a and 8.13b summarise the results for W-S Small World networks 

and Gaussian Distributed networks with varied memory biases, trained by 

binary and bipolar training rules.  The linear correlation between Effective 

Capacity and Clustering Coefficient is mainly maintained in these results until 

saturation, although the binary networks trained with low bias patterns, have 

inferior performance than the bipolar networks. 
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Figure 8.13a Effective Capacity against Clustering Coefficient W-S small world networks 

with N = 5000 and k = 100.  Networks were trained with either bipolar or binary patterns with 

two different biases (0.1 and 0.3).  The linear correlation is mainly maintained.  Note that for 

the 0.1 bias binary network the performance is poor due to the fact that most of the connections 

have weights of 0 (Section 5.2). 
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Figure 8.13b Effective Capacity against Clustering Coefficient Gaussian Distributed network 

with N = 5000 and k = 100.  Networks were trained with either bipolar or binary patterns with 

two different biases (0.1 and 0.3).  The linear correlation is mainly maintained.  Note that for 

the 0.1 bias binary network the performance is poor due to the fact that most of the connections 

have weights of 0 (Section 5.2). 
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8.6 The Wiring Cost of Non-Modular Connectivity 

In terms of real neuronal networks, there is another factor which needs to be 

considered.  In those networks long range connections are thought to consume 

more energy and material to construct and maintain so that their wiring costs 

are expensive.  In the one dimensional ring network investigated in this 

research, it is difficult to define the actual costs of each connection, although by 

simply assuming that long distance connections have higher wiring costs, a 

rough measure of mean distance over all connections in the network can be 

employed to provide some insight into this problem. 

 

Results in networks with low degree of connectivity (N = 5000 and k = 100, 

Figure 8.14a) show that although in general the increases in mean connection 

distance increases the Effective Capacity performance of the network, different 

wiring strategies can lead to greatly different results.   The Gaussian 

distributed network is able to achieve high Effective Capacity with significantly 

lower wiring cost than the W-S small world network.  This indicates that the 

uniform rewiring strategy employed in the W-S small world network is 

inefficient, since a huge amount of distal connections do not make a real 

contribution to the associative memory performance.  Such differences reduce 

as the degree of network connectivity increases (N = 5000 and k = 250, Figure 

8.14b, and N = 5000 and k = 500, Figure 8.14c).  The performance of W-S 

small world network and Gaussian distributed network become more similar, 

although the Gaussian distributed network still performs better.  These results 

confirm the results from (Calcraft et al., 2007, Calcraft et al., 2006a), in which 

networks with Gaussian distributed connectivity also has the best performance 

in investigated connectivity.  The Gaussian distributed connectivity and other 

similar connectivity were also found to be the favourite in the optimisation of 

associative memory networks using genetic algorithms (Adams et al., 2008).  
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Figure 8.14a Effective Capacity against mean wiring cost in W-S small world network and 

Gaussian distributed network with N = 5000 and k = 100.  With little increase of wiring cost 

(from distance of approximate 100 to less than 200), the Effective Capacity of the Gaussian 

distributed network increases dramatically and reaches saturation at a very early stage.  On the 

other hand, the W-S small world network has a much slower increase of Effective Capacity 

hen the mean position distance increases. w
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Figure 8.14b Effective Capacity against mean wiring cost in W-S small world network and 

Gaussian distributed network with N = 5000 and k = 250.  The increase of Effective Capacity 

in Gaussian distributed network is faster than the one in W-S small world network.  Although 

the increase is not as significant as the one in k = 100 network. 
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Figure 8.14c Effective Capacity against mean wiring cost in W-S small world network and 

Gaussian distributed network with N = 5000 and k = 500.  The increment of Effective 

Capacity in Gaussian distributed network further slows down comparing to the ones in k = 100 

and k = 250 networks. 

 

8.7 Conclusion 

This chapter investigated the correlation between associative memory 

performance and the connectivity measures of two non-modular networks, the 

Watts-Strogatz small world network and the Gaussian distributed network.  

Although the characteristics of short Mean Path Length and high Global 

Efficiency were commonly considered as a benefit to the information exchange 

in the cortex (Watts and Strogatz, 1998, Latora and Marchiori, 2003, Sporns et 

al., 2004), in our experiments, these two measures showed little correlation to 

the network’s associative memory performance.  On the other hand, the local 

clustering (measured by Clustering Coefficient and Local Efficiency) here 

showed a strong linear correlation to the associative memory performance.  

For networks with low afferent degree, only the Clustering Coefficient (both) 

was linearly correlated to the Effective Capacity, whilst for networks with high 

afferent degree, the Local Efficiency also had a linear correlation with the 

Effective Capacity. 

 

In terms of wiring cost and associative memory performance of a network, the 
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Gaussian distributed network was found to have a significantly higher Effective 

Capacity than the W-S small world network, with a low wiring cost.  This 

result was supported by the recent evidences from cortical connectivity 

research (Section 2.3). 
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Chapter 9 

Modular Associative Memories 

 and the Performance 

This chapter investigates the correlation between associative memory 

performance and different types of modular connectivity.  One of the most 

important concepts of modularity in neuronal networks is the “cortical column” 

(Mountcastle, 1997), the columnar structures that appear in the mammalian 

cerebral cortex such as barrels in the somatosensory cortex (the biological 

background of cortical modularity can be found in Section 2.4).  The proposal 

of cortical modularity has attracted much research interest from theoretical 

studies to technical implementations (Alfonso et al., 1999, Levy et al., 1999, 

Favorov and Kelly, 1994, Nikitin and Popov, 1999, Strong, 1990, Markram, 

2006).  In terms of network connectivity properties, a modular network was 

usually designed to have high clustering within each module, as well as sparse 

but widely distributed inter-modular connectivity.  Therefore the modular 

network is expected to be a “small world network”. 

 

Three different types of modular connectivity are investigated here, as 

described in Section 7.2.3 to 7.2.5.  The Fully Connected Modular network 

(Section 9.1) is initialized from several discrete modules. A proportion of 

internal connections are then rewired randomly across the whole network to 

produce inter-modular connections.  The Gaussian-Uniform Modular network 

(Section 9.2) has a Gaussian distributed internal connectivity and uniform 

distribution of inter-modular connections, whilst the Gaussian-Gaussian 

Modular network (Section 9.3) has both Gaussian distributed internal and 

external connectivity.  Beside the investigations of network connectivity and 

Effective Capacity performance, Section 9.4 studies the wiring cost of the 
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modular networks by comparing them with the non-modular networks in 

Chapter 8.  Section 9.5 concludes the research in both Chapters 8 and 9. 

 

9.1 The Performance of Fully Connected Modular Network 

The simplest modular network can be constructed by firstly assuming that each 

module is internally fully connected and then rewiring a proportion of 

connections randomly through the whole network.  As this model assumes 

that each initial module is fully connected, the number of modules, m, is then 

defined by N / k.  Therefore for the networks investigated here (N = 5000 and 

k = 100), m = 50.  To avoid self connections which are harmful to the 

associative memory performance, the actual afferent degree of a unit, .  

Prior experiments showed that the reduction of k did not affect the network 

performance significantly, compared with k = 100 networks.    Note that the 

fully connected modules will then be rewired inter-modularly and become 

sparsely connected internally.  To achieve different degrees of modularity, the 

rewiring rate of the modular network increases from 0 (as m discrete modules) 

to 1 (as a uniform random network) in steps of 0.1. 

99k 

 

9.1.1 The Connectivity of the Fully Connected Modular Network 

In a Fully Connected Modular network for a rewiring rate of 0, the Mean Path 

Length measure is problematic as each module is disconnected with other 

modules.  On the other hand in Global Efficiency the efficiency of a 

disconnected path is defined as 0 so that it is always valid for the Fully 

Connected Modular connectivity.  Therefore we only show the results of 

Global Efficiency for the network.  The initial network shows very poor 

Global Efficiency as no communication between modules could be established, 

even though the units in each module are fully connected.  As with the W-S 

small world network, the Global Efficiency in the Fully Connected Modular 

network saturates at very early stages of rewiring. 

 - 110 - 



Chapter 9  Modular Associative Memories and the Performance 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rewiring Rate

G
lo
b
al
 E
ff
ic
ie
n
cy

 

Figure 9.1a The Global Efficiency of the Fully Connected Modular network with N = 5000 

and k = 99.  At a rewiring rate of 0 the network exhibits very low Global Efficiency as no 

inter-modular connection is presented.  However by rewiring small proportion of connections 

over the whole network, the Global Efficiency increases dramatically and saturates. 

 

The results of Clustering Coefficient and Local Efficiency of the Fully 

Connected Modular network are summarised in Figures 9.1b and 9.1c.  For 

each of the measures, three variations (both/aff/eff) were applied.  Since the 

results of aff measures were found to be identical to the results of 

corresponding eff measures, they are plotted as one curve in the figures, 

labelled as aff/eff.  Both Clustering Coefficient and Local Efficiency start with 

a perfect value of 1, since every neighbour of a unit is within the same module 

and therefore directly connects to each others.  As the rewiring rate increases, 

both Clustering Coefficient and Local Efficiency decreases.  Unlike the result 

of Mean Path Length and Global Efficiency which saturate at low rewiring rate 

(Figure 9.1a), the Clustering Coefficient and Local Efficiency saturate at high 

rewiring rate (approximate 0.9). 
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Figure 9.1b The Clustering Coefficient (both, aff/eff) of the Fully Connected Modular 

network with N = 5000 and k = 99.  At a rewiring rate of 0 the network has perfect Clustering 

Coefficient as all neighbours of any unit are within the same module and therefore directly 

connected to each others.  The Clustering Coefficient decreases as rewiring rate increases.  

Result saturates at rewiring rate of approximate 0.9. 
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Figure 9.1c The Local Efficiency (both, aff/eff) of the Fully Connected Modular network 

with N = 5000 and k = 99.  At a rewiring rate of 0 the network has perfect Local Efficiency 

due to the full connectivity within each module.  As the rewiring rate increases the Local 

Efficiency decreases. 

 

9.1.2 The Effective Capacity of the Fully Connected Modular Network 

The Effective Capacity of the Fully Connected Modular network increases as 

the rewiring rate increases (Figure 9.2, label: Fully Connected Modular).  
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Although for a rewiring rate of 0 the network is divided into  

disconnected modules, the network performed as well as a fully connected 

network with 100 units.  The performance improves as more connections are 

rewired, and saturates at rewiring rate of about 0.8, similar to the saturation 

point of Clustering Coefficient and Local Efficiency. 

50m 

 

It is interesting to compare these results with the ones of W-S small world 

networks because they follow the same rewiring strategy but with different 

initial connectivity patterns.  As no inter-modular connection is present in the 

Fully Connected Modular network with rewiring rate of 0, the performance is 

slightly worse than the one in W-S small world network (Figure 9.2, label: W-S 

small world).  However, the difference becomes insignificant once 40% of the 

connections have been rewired.  Both networks have identical Effective 

Capacity performance at high rewiring rate as the connectivity becomes more 

uniformly random. 
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Figure 9.2  The Effective Capacity of the Fully Connected Modular network, comparing 

with the W-S small world network.  Each network has N = 5000 and k = 99.  The Effective 

Capacity of the Fully Connected Modular network is lower than the one of the W-S small world 

network at a rewiring rate of 0.  However the performance difference between the two types of 

connectivity becomes insignificant for rewiring rate above 0.4.  
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9.1.3 Correlation between Connectivity and Associative Memory 

Performance 

In previous experiments with the W-S small world network and Gaussian 

distributed network the measure of Clustering Coefficient (both) has a linear 

correlation with the Effective Capacity for all three degrees of connectivity, 

regardless the detailed connectivity patterns.  The Local Efficiency (both) also 

showed a linear correlation with Effective Capacity in low degree of 

connectivity but not in networks with high afferent degree.  In this section, 

these two correlations will be examined for the Fully Connected Modular 

networks. 

 

For the k = 99 networks, the relationship of Clustering Coefficient (both) to 

Effective Capacity for the Fully Connected Modular connectivity is linear and 

greatly overlaps with the ones of W-S small world connectivity and Gaussian 

distributed connectivity (Figure 9.3).  On the other hand, the Local Efficiency 

does not have the same correlation with Effective Capacity as previous 

examined connectivity (Figure 9.4).   
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Figure 9.3  The Effective Capacity – Clustering Coefficient (both) correlation on the Fully 

Connected Modular network comparing with the W-S small world network and the Gaussian 

distributed network.  Each network has N = 5000 and k = 100/99.  The correlation is highly 

similar and linear for the three different types of connectivity. 
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Figure 9.4  The Effective Capacity – Local Efficiency (both) correlation on the Fully 

Connected Modular network comparing with the W-S small world network and the Gaussian 

distributed network.  Each network has N = 5000 and k = 100/99.  The correlations are 

significantly different for the three different types of connectivity. 

 
For higher degree of connectivity (k = 250), both Clustering Coefficient and 
Local Efficiency are linearly correlated to Effective Capacity. The linear 
correlations are significantly similar over the three different types of 
connectivity (Figure 9.5, Figure 9.6). 
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Figure 9.5  The Effective Capacity – Clustering Coefficient (both) correlation on the Fully 

Connected Modular network comparing with the W-S small world network and the Gaussian 

istributed network.  Each network has N = 5000 and k = 250/249.  The correlation is highly 

imilar and linear for the three different types of connectivity. 
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Figure 9.6  The Effective Capacity – Local Efficiency (both) correlation on the Fully 

Connected Modular network comparing with the W-S small world network and the Gaussian 

distributed network.  Each network has N = 5000 and k = 250/249.  The correlation is 

approximately similar and linear for the three different types of connectivity. 

 

9.2 The Performance of the Gaussian–Uniform Modular Network 

The full connectivity of modules assumed in the Fully Connected Modular 

network is slightly lacking biological plausibility.  A more realistic approach 

is to assume that within a module, the internal connections are organised with a 

Gaussian distribution (thus the internal network should be sufficiently sparse), 

whilst the inter-modular connections are arranged uniformly or follow a 

Gaussian distribution themselves.  This section investigates the performance 

of the Gaussian-Uniform Modular (that is, Gaussian distribution within a 

module and uniform random distribution between modules) connectivity, the 

Gaussian-Gaussian Modular connectivity will be investigated in the next 

section. 

 

To compare with other connectivity, the networks investigated here also have 

5000 binary units, 10 modules, and 100 afferent connections for each unit (that 

is, N = 5000, m = 10, and k = 100).  Three different proportions of internal - 

external connections (50 - 50, 70 - 30, 90 - 10) were employed but the total 

number of connections per unit was maintained.  For each series of 
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experiment, the standard deviation of the Gaussian distribution of the 

connections in the internal network was varied proportional to the number of 

internal connections, kinternal, from 0.4kinternal, to 10kinternal, so that the internal 

network would be initially highly local. 

 

9.2.1 The Connectivity of the Gaussian-Uniform Modular Network 

The connectivity results in the previous models (the W-S small world, the 

Gaussian distributed and the Fully Connected Modular networks) indicate that 

some of the connectivity measures are highly correlated or even identical to 

others, for example the Mean Path Length – Global Efficiency, Clustering 

Coefficient (both/aff/eff) and Local Efficiency (both/aff/eff).  Similar situations 

were found in the Gaussian-Uniform Modular connectivity, and therefore some 

of these results will be skipped.  

 

Figure 9.7a summarises the Global Efficiency of networks with the 

Gaussian-Uniform Modular connectivity.  For the 50 – 50 networks, the 

Global Efficiency is approximately 0.5 as 50% of the total connections 

(inter-modular connections) are uniformly distributed across the whole network.  

By increasing the number of internal connections (and correspondingly 

decreasing the number of external connections), the Global Efficiency 

decreases.  For all three series of networks, no significant change of Global 

Efficiency can be found, although the standard deviation of internal network 

varies from 0.4kinternal, to 10kinternal, although the Global Efficiency is slightly 

lower for low standard deviation. 
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Figure 9.7a The Global Efficiency of the Gaussian-Uniform Modular networks with varied 

proportion of internal-external connections and different internal standard deviation.  Each 

network has N = 5000 and k = 100.  The number of internal connections, kinternal, is varied as 

0, 70, and 90.  No significant changes can be found through the increases of standard 

eviation of internal network (from 0.4kinternal, to 10kinternal). 

5

d

 

The results for Clustering Coefficient (both) are showed in Figure 9.7b.  Not 

surprisingly higher numbers of internal connections leads to a high Clustering 

Coefficient, since each unit is connected to more units within its own module.  

As the standard deviation of the internal network increases, the Clustering 

Coefficient decreases rapidly and saturates at about 4kinternal.    The results for 

the Clustering Coefficient (aff/eff) show similar performance. 

 

The change of Local Efficiency measure (Figure 9.7C) is slightly different to 

the one of Clustering Coefficient.  For connectivity with high numbers of 

internal connections (90 – 10) the Local Efficiency decreases significantly 

initially and saturates.  On the other hand the Local Efficiency of 70 – 30 and 

50 – 50 networks does change significantly for low standard deviations of 

internal network. 
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Figure 9.7b The Clustering Coefficient (both) of the Gaussian-Uniform Modular networks 

with varied proportion of internal-external connections and different internal standard deviation.  

Each network has N = 5000 and k = 100.  The number of internal connections, kinternal, is 

aried as 50, 70, and 90.  As the standard deviation of the internal network increases, the 

lustering Coefficient decreases rapidly and saturates at about 4kinternal. 
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Figure 9.7c The Local Efficiency (both) of the Gaussian-Uniform Modular networks with 

varied proportions of internal-external connections and different internal standard deviation.  

Each network has N = 5000 and k = 100.  The number of internal connections, kinternal, is 

varied as 50, 70, and 90.  Although for the 90 – 10 network the Local Efficiency decreases 

apidly and saturates as standard deviation increases, the Local Efficiency of 70 – 30 and 50 – 

0 networks does changes significantly for low standard deviation. 

r
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9.2.2 The Effective Capacity of the Gaussian-Uniform Modular Network 

Figure 9.8 summarises the Effective Capacity performance of the 
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Gaussian-Uniform Modular network.  All three series increase rapidly as the 

standard deviation of internal network increases and reach saturation.  For 

networks with less inter-modular connections (90 - 10) the Effective Capacity 

saturates at a value slightly lower than the ones with more inter-modular 

connections, however the difference becomes insignificant as the number of 

inter-modular connections increases.  Interestingly for networks with 70% of 

connections within the module, the Effective Capacity has already been able to 

saturate at a value similar to the one in networks with uniform random 

connectivity. 
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Figure 9.8  The Effective Capacity of the Gaussian-Uniform Modular networks with varied 

proportions of internal-external connections and different internal standard deviation.  Each 

network has N = 5000 and k = 100.  The number of internal connections, kinternal, is varied as 

50, 70, and 90.  The Effective Capacity of all three series increases rapidly and saturates, 

lthough the saturated value is slightly lower for the 90 – 10 networks, which is due to the lack 

f inter-modular connections. 
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9.2.3 Correlation between Connectivity and Associative Memory 

Performance 

This section investigates the correlation between network connectivity and 

associative memory performance of the Gaussian-Uniform Modular network.  

As there is insignificant change of Global Efficiency (Figure 9.7a) by varying 

the standard deviation of internal network, and no unique correlation found in 

previous three different types of connectivity, the Global Efficiency – Effective 
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Capacity correlation is omitted here. 
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Figure 9.9  The Effective Capacity – Clustering Coefficient correlation of the 

Gaussian-Uniform Modular networks with N = 5000 and k = 100.  The results are highly 

linear and overlap with the predicted curve from W-S small world network, although the 

Effective Capacity tends to saturate at low Clustering Coefficient (corresponding to high 

tandard deviation of internal network). s

 

One important correlation needing to be examined here is the linear correlation 

between Clustering Coefficient and Effective Capacity.  As shown in Figure 

9.9, the Effective Capacity – Clustering Coefficient (both) curve is highly linear 

and overlaps with the predicted line of the W-S small world network, although 

for each series saturation is reached.  Another correlation examined here is 

between Effective Capacity and Local Efficiency.  As showed in Figure 9.10, 

no clear correlation can be found.  For similar value of Local Efficiency, the 

Gaussian-Uniform Modular network can achieve higher or at least similar 

ffective Capacity than the W-S small world network. E
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Figure 9.10 The Effective Capacity – Local Efficiency correlation of the Gaussian-Uniform 

Modular networks with N = 5000 and k = 100.  No clear correlation can be found.  For 

similar value of Local Efficiency, the Gaussian-Uniform Modular network can achieve higher 

r at least similar Effective Capacity performance than the W-S small world network. o

 

Figures 9.11a and 9.11b summarise the results for similar experiments with 

higher degree of connectivity where each unit has 250 afferent connections.  

Both Clustering Coefficient and Local Efficiency have linear correlation with 

the Effective Capacity performance of the network. 
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Figure 9.11a The Effective Capacity – Clustering Coefficient correlation of the 

Gaussian-Uniform Modular networks with k = 250.  The correlation is linear and overlaps 

ith the one of the W-S small world network (as well as other types of examined connectivity). w

 

 - 122 - 



Chapter 9  Modular Associative Memories and the Performance 

0

20

40

60

80

100

120

00.20.40.60.81

Local Efficiency (both)

Ef
fe
ct
iv
e
 C
ap

ac
it
y

150 - 100 200 - 50 225 - 25 W-S small world

 
Figure 9.11b The Effective Capacity – Local Efficiency correlation of Gaussian-Uniform 

Modular networks with k = 250.  Unlike the one of k = 100 networks, the correlation here is 

linear and overlaps with the one of the W-S small world network (as well as other types of 

xamined connectivity). e

 

9.3 The Performance of the Gaussian–Gaussian Modular Network 

In the Gaussian-Uniform Modular network the inter-modular connections are 

arranged in a uniform random manner.  This section investigates a 

connectivity one step further.  The Gaussian-Gaussian Modular network has a 

Gaussian distributed connectivity of internal connections, whilst the 

inter-modular connections are also arranged in a Gaussian distribution.  

Therefore the total wiring cost of the network is expected to be reduced 

compared to the one in networks with a uniform distribution of external 

connections. 

 

Each network with Gaussian-Gaussian Modular connectivity has 5000 bipolar 

units.  As with the Gaussian-Uniform Modular network, the total number of 

afferent connections, k, was fixed as 100, whilst the number of internal 

connections, kinternal varied from 50 to 90, correspondingly the number of 

external connections, kexternal varied from 50 to 10.  Both the internal network 

and external network had a Gaussian distribution defined individually by their 
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standard deviations, internal and external , which were changed in a manner 

proportional to kinternal and kexternal.  For simplification, only important results 

are summarised here. 

 

Each series of experiments were labelled as follows: 

internal external externalk k   , 

here internal  varies from 0.4kinternal to 8kinternal. 

For example for the experiments labelled 50-50-0.4, each unit in the network 

has 50 internal connections and 50 external connections, whist the external 

connections has a Gaussian distribution with standard deviation of 

. 0.4 50 20 

 

The  correlation  between  Global  Efficiency  and  Effective  Capacity  of  this 

connectivity  is summarised in Figure 9.12.  As normal the correlation is 

highly irregular. 
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igure 9.12 The Effective Capacity – Global Efficiency correlation of Gaussian-Gaussian 

odular networks.  No regular correlation can be found. 

Figures 9.13a, b and c indicate the correlation between Clustering Coefficient 

and the Effective Capacity of the network.  In general, the Effective Capacity 

performance can be improved by increasing the internal standard deviation 
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(correspondingly the Clustering Coefficient decreases).  The effect of varying 

(internal/external) standard deviation is more significant if the network has a 

large number of (internal/external) connections.  For connectivity with low 

numbers of external connections (Figure 9.13c), the Effective Capacity 

performance for high internal standard deviation (and therefore low Clustering 

Coefficient) saturates due to the lack of external connections, however the 

network is still able to achieve similar Effective Capacity performance as the 

W-S small world network does.  For most of the series, the performance of the 

network is linear and greatly overlaps with the one of W-S small world 

network. 
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Figure 9.13a The Effective Capacity – Clustering Coefficient correlation of the 

Gaussian-Gaussian Modular networks with 50 internal connections and 50 external connections 

of each unit.  Linear correlation can be found in the figure. 
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Figure 9.13b The Effective Capacity – Clustering Coefficient correlation of the 

Gaussian-Gaussian Modular networks with 70 internal connections and 30 external connections 

of each unit.  Linear correlation can be found in the figure. 
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Figure 9.13c The Effective Capacity – Clustering Coefficient correlation of the 

Gaussian-Gaussian Modular networks with 90 internal connections and 10 external connections 

of each unit.  Linear correlation can be found in the figure although the Effective Capacity 

performance saturates at high internal standard deviation (low Clustering Coefficient). 

 

9.4 Wiring Cost of the Modular Networks 

The wiring cost of the modular networks can be roughly estimated by 
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measuring the mean distance of connections.  Comparing to the non-modular 

networks in Chapter 8, the Fully Connected Modular network (Figure 9.14a) 

has the lowest Effective Capacity with low wiring cost as the lack of 

inter-modular connections makes the network inefficient in pattern association. 
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Figure 9.14a The Effective Capacity against mean wiring cost of the Fully Connected 

Modular network.  Comparing to the W-S small world network and Gaussian distributed 

network, the Fully Connected Modular network has the lowest Effective Capacity with low 

wiring cost due to the lack of inter-modular connections. 

 

With similar wiring cost, the Gaussian-Gaussian Modular network (Figure 

9.14b,c,d and e) has varied Effective Capacity performance between the ones of 

Gaussian distributed network and W-S small world network, depending on 

different proportion of the internal-external connections, as well as the standard 

deviation.  In general, a high proportion of external connections increases the 

mean distance of connections. The problem is more critical in networks with 

high external standard deviation.  Although these networks have the highest 

Effective Capacity because they are more uniformly random, the wiring cost 

can be greatly reduced without significantly damaging the Effective Capacity 

performance in networks with higher proportion of internal connections, and a 

reasonable large internal and external standard deviation.  For example, the 

network with highest wiring cost (mean wiring cost: 330, kinternal = 
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50, 8internal internalk  , kexternal = 50, 8external externalk  , Figure 9.14e, fourth blue 

rhombus) has Effective Capacity of 44, whist the one with less than half of the 

cost (mean distance: wiring cost, kinternal = 90, 1internal internalk  , kexternal = 

10, 8external externalk  , Figure 9.14e, second green triangle) has an Effective 

Capacity of approximate 39. 

 

In general, the results of our experiments suggested that the best modular 

network was the one with large proportion of internal connections, whilst the 

inter-modular connections of the network were distributed in a Gaussian 

manner.  Such a network would have similar Effective Capacity performance 

as that of the Gaussian distributed network. 
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Figure 9.14b The Effective Capacity against mean wiring cost of the Gaussian-Gaussian 

Modular network with external standard deviation of 0.4kexternal.  Result is compared with the 

ones of the W-S small world network and the Gaussian distributed network. 
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Figure 9.14c The Effective Capacity against mean wiring cost of the Gaussian-Gaussian 

odular network with external standard deviation of 1kexternal.  Result is compared with the 

nes of the W-S small world network and the Gaussian distributed network. 
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Figure 9.14d The Effective Capacity against mean wiring cost of the Gaussian-Gaussian 

Modular network with external standard devia ion of 4kexternal.  Result is compared with the 

ones of the W-S small world network and the G ussian distributed network. 
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Figure 9.14e The Effective Capacity against mean wiring cost of the Gaussian-Gaussian 

Modular network with external standard deviation of 8kexternal.  Result is compared with the 

ones of the W-S small world network and the Gaussian distributed network. 

 

9.5 Conclusion 

Following the investigation of non-modular connectivity in Chapter 8, this 

chapter investigates the performance of three different types of modular 

connectivity including the Fully Connected Modular network, 

Gaussian-Uniform Modular network and Gaussian-Gaussian Modular network.  

The results in these two chapters conclude that the Effective Capacity of a 

network can be mostly predicted by its linear correlation with the Clustering 

Coefficient of the network, regardless the detailed connectivity pattern or 

wiring scheme.  This finding is very important as the Clustering Coefficient 

of a network can be easily measured with little computational power, whilst the 

Effective Capacity measure requires a huge amount of complicated neural 

network dynamics. 

 

In terms of wiring cost, the Gaussian distributed network has the most 

economical connectivity among the five investigated connectivity, whilst the 

Fully Connected Modular connectivity is least economical.  However, the 
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Gaussian-Gaussian Modular network can perform at a similar level as the 

Gaussian distributed network if a high external standard deviation is given.  

The cost of modular network can be significantly reduced without great 

damage of Effective Capacity performance in networks with a high proportion 

of internal connections and a reasonably high value of both internal and 

external standard deviations. 
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Chapter 10 

Spiking Associative Memory Model 

 with Sparse Connectivity 

Traditionally associative memory has been studied with models comprising 

simple threshold units, as the ones investigated in previous chapters.  

Although these studies have provided important results for the understanding of 

correlations between connectivity and associative memory, many biological 

features are ignored or highly simplified.  This chapter investigates the 

connectivity effect in a more biological realistic model, a spiking associative 

memory network with Integrate-and-Fire neurons.  The experimental results 

reveal more complicated correlations between associative memory dynamics 

and network connectivity, which can not be observed in the non-spiking 

associative memory models.  

 

10.1 Different Types of Neuron Models 

Although the simple two-state threshold unit (as used in previous chapters) is 

widely adapted in the research of artificial neural networks, it is not the only 

choice for neural simulations.  Based on different levels of simplification, here 

three major classes of neuron models are reviewed. 

 

The most simplified neuron model is the two-state threshold model.  This 

model was widely used in most of the early research on neural networks since 

its high level of simplification provided great computational speed and 

mathematical tractability.  One major drawback of this model is the 

oversimplification of network activity, and the neglect of many biological 

features such as action potential firing and realistic morphology of axons and 

dendrites.  Thus recent studies with this neuron model focus on the 
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introduction of biologically inspired features and their effects.  It is also 

widely used in the development of Very-Large-Scale Integration (VLSI) neural 

networks due to the high level simplification and fast computational speed. 

 

A more biological realistic neuron model is the Integrate-and-Fire (IF) model.  

In this model physical analogues of membrane potential and spikes are used to 

replace the abstractions employed in the two-state threshold model.  The 

behaviour of a neuron over time is described by the equation: 

   m
m

dV
I t C

dt
  

where is the membrane potential, is the capacitance and mV mC I  is the input 

current to the neuron.  When a positive input current is applied to the neuron, 

ore detailed biologically realistic neuron models are usually based on the 

o investigate the effect of connectivity on a more biologically plausible 

the membrane potential increases with time until it reaches a constant firing 

threshold at which point the neuron emits a spike and its membrane potential is 

set to the resting potential for a short period (more details on the IF model can 

be found in Section 10.3).  There are many variations of IF models.  For 

example, a leak of membrane potential can be introduced which reflects the 

flow of ions through voltage-independent channels.  Also synaptic delays of 

spikes can be employed for the investigation of temporal neural dynamics. 

 

M

famous Hodgkin–Huxley model (Hodgkin and Huxley, 1990).  Compared to 

the IF model, the Hodgkin-Huxley model is able to provide more detailed 

simulation of ionic currents in neurons, as well as more realistic axonal and 

dendritic morphologies, which are often based on microscopy data.  However 

due to the high level of detail, this model is more popular for simulations of 

single neurons, and rarely used for research on large scale associative memory 

models. 

 

T
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associative memory model with a scale similar to the one in earlier experiments 

(5000 units), the Integrate-and-Fire unit was chosen as the new neuron model 

for my experiment. 

 

10.2 The Connectivity Effects on Sparse Spiking Recurrent Network 

ral 

asuda et.al (Masuda and Aihara, 2004) studied the global and local synchrony 

nishchenko and colleagues (Anishchenko et al., 2006) investigated the effect 

Most of the early literature about connectivity effects in recurrent neu

networks involve models with two-state threshold units (Kim, 2004, Arenzon 

and Lemke, 1994, Johansson et al., 2006, Davey et al., 2004b, Calcraft et al., 

2007).  However, there are more and more recent studies on connectivity 

effects (particularly, in the W-S small-world network) on different performance 

aspects of spiking neural networks (Anishchenko et al., Roxin et al., 2004, 

Kwok et al., 2007, Masuda and Aihara, 2004, Shanahan, 2008). 

 

M

of coupled neurons in a W-S small world network with leaky Integrate-and-Fire 

neurons.  Their study found that with a low rewiring rate (the same definition 

as the one defined in Section 7.2.1) the units exhibited highly precise local 

synchrony but were globally asynchronous.  By increasing the rewiring rate, 

rough global synchrony replaced the precise local synchrony.  Interestingly, 

for both types of synchrony, there were rapid changes for low rewiring rate, and 

slow changes for high rewiring rate. 

 

A

of connectivity on a W-S small world spiking neural network with IF neurons 

by introducing two different performance measures.  Memory retrieval 

measures the associative memory performance of the network and the 

bumpiness measures the neural synchrony.  The memory retrieval was found 

to improve as the network became more random, whilst the bumpiness 

decreased. 
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There was not, however, any literature on the correlation between connectivity 

0.3 Details of the Model 

uron model which includes synaptic integration, 

measures and the performance of spiking neural networks, although Mean Path 

length and Clustering Coefficient are commonly employed as indicators of 

“small world” characteristics.  As most of the available literatures focused on 

W-S small world networks, no literature was found to address the performance 

effects of connectivity with different wiring strategies. 

 

1

A leaky integrate-and-fire ne

conduction delays and external current inputs were used in the spiking 

associative memory network.  The membrane potential (in Volts), V, of each 

neuron in the network is set to a resting membrane potential of 0 if no 

stimulation is presented.  The neuron can be stimulated and change its 

potential by either receiving spikes from other connected neurons, or by 

receiving externally applied current.  If the membrane potential of a neuron 

reaches a fixed firing threshold, firingT , the neuron emits a spike and the 

potential is set to the resting state ) for a certain period (the refractory 

period).  During this period the neuron cannot fire another spike even if it 

receives very strong stimulation.   

 

(0mV

 spike that arrives at a synapse triggers a current; the density of this current A

(in Amperes per Farad),  ijI t , is given by  

    
exp 1

spike ij spike ij

ij
s s

t t delay    t t delay
I t

 

 
    
   
   

, 

where i refers to the postsynaptic neuron and j to the presynaptic neuron.  

2s ms   is the synaptic time constant.  spiket is the time when the spike is 

y neuron j, and emitted b spike ijt delay defines the time when the spike arrives 

at neuron j.  Two delay  given in the model.  The fixed delay 

mode gives each connection a fixed 1ms delay.  In the second mode, the delay 

modes were
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of spikes in a connection is defined by 

 ijdelay 3
ijd ms  

where  is the connection distance which is defined as the steps between 

 real neuronal systems the membrane potential of a neuron is often about 

 

  ijd

anneuron i d j across the one dimensional ring (defined in Section 7.2.2).  The 

formula is a rough mapping from a one dimensional ring structure to a realistic 

three dimensional system.  For a network with 5000 units, ijd varies from 1 to 

2500, and therefore 1 14ms delay ms  . 

 

ij

In

-70mV at resting stage, and rapidly reaches about 30mV when a spike is emitted. 

The height of a spike is therefore set to 100mV in the model, whilst firingT  is 

set to 20mV.  The refractory period is set to a reasonable value of 3ms del 

et al., 2000).   

 

(Kan

he change of membrane potential is defined by T

ij ij ij external
i j Gm

dV V 
   C I J I

dt   

 
 

 . 

In this equation, 
m

V


 

 
 

 is the leak current density, while 50m ms 

t density wh

i j G 

 is the 

membrane time constant.  is the external curren ich will be externalI  

rnal cdiscussed later.  The inte urrent is summed by ij ij ijC I J  where 

tion does not exist.  J  is the corresponding element in the weight 

matrix. 

 

1ijC 

connec

indicates the existence of a connection from j to if the 

he weight matrix can be either arbitrarily assigned or trained by a variety 

i, and 0ijC 

ij

T J  

of training rules.  As one focus of this study is the difference between 
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associative memory model with non-spiking and spiking neurons, a binary 

Gardner type training (Model 1) with uncorrelated training sets was employed.  

As discussed in Section 5.2, both bipolar and binary networks with non-spiking 

units have identical associative memory performance when trained by 

uncorrelated patterns, therefore experimental results from previous chapters 

may be used as a comparison to the results from the spiking associative 

memory model. 

 

 

he network requires an initial stimulation by external currents in order to T

trigger the first spikes.  A simple current injection which arises from a 

mapping of a static binary pattern to a set of current densities is employed.  

Given a initial binary pattern ξ , unit i receives a external current if 1i  , 

otherwise the unit receives no ternal current.  Each external current has a 

density of 3A/F and is continually applied to the unit for the first 50ms of 

simulation.  This mechanism guarantees that the first spiking pattern triggered 

in the network is identical to pattern 

ex

ξ .  After the first trigger (about 7~8ms 

from the start of simulation), both i ternal currents caused by spikes and 

external currents have an effect on the network dynamics.  The dynamics 

continues after the removal of external currents as the internal currents caused 

by spike chains become the driving power. 

 

n

0.4 Effective Capacity with Memory Retrieval as Criteria 

rformance of 

1

Effective Capacity is used to measure the associative memory pe

the network.  The measure of memory retrieval was adapted from 

(Anishchenko et al., 2006) as the overlap criteria in the spiking network.  For 

p training patterns, the memory retrieval , M, is defined by 

 

   
 1

1

1

p
chance

chance

O t O t
M

p O t

 




 
  

  
 . 
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 O t is the overlap of the network activity and pattern  at time t, 

    

 2 2

i iiO t




 i ii i

r t

r t






     

, 

here is the number of spikes emitted by unit i during a time window w  ir t  

 ,wt t t .  

the external curren

 chanceO t  

t

is the chance level of overlap with other patterns when 

s are injected to the network based on pattern   

    1

1chanceO t O t
p  


  .  

The memory retrieval has a value range between 1 to -1, in which high value 

dicates better performance.   

 non-spiking associative memory models by 

placing the count of spikes 

 

in

 

In fact M can also be used for

 ir tre  with the unit state .  For  iS t

uncorrelated patterns, the relationship between M and mean overlap overlap  

in non-spiking network is 

 0.5
nonspiking

overlap 
2 0.5

1 0.5
M overlap  


. 

As the overlap criteria for Effective Capacity in non-spiking associative 

memory model is 0.95, the memory retrieval criteria in the spiking model is set 

y on the Performance of Memory Retrieval  

tudy was conducted to investigate how the memory retrieval changes during 

tions.  

to 0.9 in our experiment. 

  

10.5 Preliminary Stud

A s

the evolution of network activity under different network loading condi

The experiment was performed for a spiking associative memory model with N 

= 5000, k = 100 and W-S small world connectivity with 0.3 rewiring probability.  
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The weight matrix was trained with uncorrelated binary patterns with varied 

loadings from 0.1 to 0.5 (that is 10 patterns to 50 patterns in correspondence).  

Memory retrieval was measured within a time window 10wt ms .  The initial 

pattern ξ  

e

was chosen as one of the fundamental me ries with 60% noise, 

the sam  degree of noise applied in the measure of  Capacity in 

mo

 Effective

non-spiking model.  Figure 10.1 summaries the results.  All initial memory 

retrieval values are approximately 0.4, due to the fact that the overlap between 

selected memory and initial noisy pattern, 0.7overlap  .  For low loading 

(0.1 and 0.3), the memory retrieval increases rapidly and reaches a saturation 

(about 0.99 for 0.1 loading and 0.95 for 0 er which the value 

varies insignificantly.  For higher loading (0.5), the memory retrieval first 

increases due to the injection of external currents, but drops rapidly after the 

removal of external currents.  The network is unstable for the first 1000ms, 

with varying memory retrieval value near 0. 
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Figure 10.1 Memory retrieval for spiking associative memory models (5000N, 100k, W-S 

small world network with rewiring rate of 0.3) with varied loadings from 0.1 to 0.5.  

Simulations were executed for 1000ms, whilst the memory retrieval was measured in a time 

0mwindow of 1 s for every 0.1ms.  External currents of 60% noisy pattern were presented to 

the network for the first 50ms.  For low loading, the network memory retrieval increases 

rapidly and saturates.  For high loading, memory retrieval drops to about 0 but is significantly 

unstable. 
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Figure 10.2 Overlap for the same experiments in Figure 10.1.  Result confirms the 

predicted correlation between memory retrieval and pattern statistic overlap in Section 10.4.  

Note that for 0.1 loading the network achieves perfect convergence (as overlap of 1). 

also be 

vestigated using a two-state representation where the unit state is defined as 1 

erfect 

verlap with the fundamental memory, a fixed duration is needed to measure of 

ctivity 

etworks with three different types of connectivity were investigated, 

Gaussian modular network and a 

 

The overlap of network activity and fundamental memories can 

in

if it fires during the time window and 0 otherwise.  Such an activity state for 

the whole network is a binary pattern and its overlap with fundamental 

memories can be measured in a canonical way.  Figure 10.2 reports the results 

from the same experiments in Figure 10.1.  The results confirm the predicted 

correlation between memory retrieval and mean overlap in Section 10.4. 

 

As the memory retrieval varies even though the network achieves p

o

the Effective Capacity.  This duration was set to 500ms for the experiments 

discussed in the following sections. 

 

10.6 Results for Different Conne

N

including the W-S small world network, a 

Fully Connected Modular network.  Each network has 5000 units and 100 
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afferent connections per unit and trained by non-spiking Gardner type model 

with uncorrelated binary training patterns.  For each type of connectivity, two 

delay models were employed, one with a constant 1ms delay for each 

connection, and another one with a delay equal to the cube root of distance 

between two connected units.  The model parameters are summarised in Table 

10.1. 

 

 

Table 10.1  
Parameter Settings in the Spiking Associative Memory Model 

 
1. Network Parameters 

Training pattern: uncorrelated binary patterns 
 

 
2. 

ntial: 0mV 
Firing threshold: 20mV 

 

N: 5000  k: 100   

Training threshold: 10

Neuron Parameters 
Resting membrane pote

Spike potential: 100mV
Refractory period: 3ms 

50msm  , s 2ms   

External current density: 3A/F for the first 50ms of simulation 
  

3. Simulation and Analysis Parameters 

aximum simulation time: 500ms 
Noise criteria: 0.6 Memory retrieval criteria: 0.9 
M
Time window: 10ms  
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Figure 10.3a Effective Capacity of spiking associative memory models with W-S small 

world connectivity.  Two delay modes, fixed 1ms delay and cube root delay, were investigated.  

The results are compared with the one of non-spiking model.  The spiking model performs 

better than the non-spiking model for high rewiring rates, particularly with fixed delays. 

 

The Effective Capacity of the W-S small world spiking model is reported in 

Figure 10.3a, also compared with the one of the non-spiking models.  In both 

the fixed and the cube root delay model the Effective Capacity increases as the 

rewiring rate increases.  For low rewiring rates the Effective Capacity of the 

spiking model is less than the one of non-spiking model.  However, the 

spiking model performs better than the non-spiking model for high rewiring 

rates, particular with fixed delays.  These interesting results could perhaps be 

explained by relating them to the new update rule proposed in Section 5.1.  

The study in Section 5.1 indicates that by preventing accidental changes of unit 

states (raising the update threshold), the fully connected associative memory 

model performs better than the one uses traditional update rule (zero threshold).  

In the dynamics of spiking model, a unit fires only if its membrane potential 

reaches the firing threshold (20mV).  Therefore the effect from any small 

accidental input change will be largely counteracted by the effects of earlier 

spikes.  This mechanism is similar to the one provided by the new update rule 

in Section 5.1.  In fact, by introducing non-zero update thresholds, the sparse, 

non-spiking model can achieve similar Effective Capacity performance to the 
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spiking models (Figure 10.3b and c).  Interestingly, these results also indicate 

that for the local networks (low rewiring rates), raising the update threshold has 

a negative effect on associative memory performance. 
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Figure 10.3b Effective Capacity of non-spiking associative memory models with W-S small 

world connectivity and varied update thresholds.  The increase in update threshold has 

different effects on networks with different connectivity.  For local networks, the effect is 

negative, worsening the Effective Capacity performance.  For networks with higher rewiring 

rate, the effect becomes positive, improving the performance. 
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Figure 10.3c Effective Capacity of non-spiking associative memory models with W-S small 

world connectivity and varied update thresholds, comparing with the results of spiking small 

world models.  By choosing different update thresholds for different network connectivity, the 

performance of the spiking model can be roughly approximated by the non-spiking model.   

 

Figure 10.4 summarises the results for the models with Gaussian distributed 

connectivity.  The result shows that the spiking network performs significantly 

better than the non-spiking network for standard deviations above 2k = 200.  

Since the maximum distance between units in the model is 2500, this is a 

surprising result.  Both performances of the fixed delay and cube root delay 

networks have similar intersection with the one of non-spiking model 

(approximate 1.5k).  This is not the case in the W-S small world connectivity 

(Figure 10.3, the fixed delay curve intersects with the non-spiking curve at 

rewiring rate of 0.3, whilst the cube root delay curve intersects at rewiring rate 

of 0.7).  This difference suggests that the performance of spiking associative 

memory models may be sensitive to detailed connectivity patterns, unlike the 

non-spiking model. 
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Figure 10.4 Effective Capacity of spiking associative memory models with Gaussian 

distributed connectivity.  Two delay modes, a fixed 1ms delay and a cube root delay, were 

investigated.  The results are compared with the ones for the non-spiking model.  Although 

performing slightly worse in for low standard deviations, the spiking model performs 

significantly better for standard deviations above 2k, in a similar range to the non-spiking 

model.  
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Figure 10.5 Effective Capacity of spiking associative memory models with Fully Connected 

Modular connectivity.  Two delay modes, a fixed 1ms delay and a cube root delay, were 

investigated.  The results are compared with the one of non-spiking model.  The performance 

is similar to the ones for the W-S small world network. 

 

The performance of spiking associative memory models with Fully Connected 

Modular connectivity (Figure 10.5) is similar to the one of W-S small world 
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networks.  However, for low rewiring rates the spiking network has a lower 

Effective Capacity.  Unlike the non-spiking model where the Effective 

Capacity saturates for high rewiring rates, the two spiking models have a 

continually increasing Effective Capacity.  The two curves for the spiking 

models also have different intersections with the one for the non-spiking model, 

as the W-S small world connectivity does. 

 

10.7 Correlations in the Spiking Models 

In the non-spiking model, the Effective Capacity shows a linear correlation 

with Clustering Coefficient regardless of the detailed connectivity pattern 

(Figure 10.6).  For networks with high rewiring rates or high standard 

deviations, in other words, networks that become more uniformly random, the 

Effective Capacity of the non-spiking model tends to saturate, as there is only 

an insignificant changes in the Clustering Coefficient. 
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Figure 10.6 Correlation between Effective Capacity and Clustering Coefficient in 

non-spiking associative memory models with different connectivity.  A linear correlation can 

be found across all three different connectivity.  Note that the Effective Capacity tends to 

saturate in networks with a very low Clustering Coefficient. 

 

This is not always the case for spiking associative memory models.  For the 

models with a fixed 1ms delay (Figure 10.7), the linear correlation between 

Effective Capacity and Clustering Coefficient is almost maintained.  However, 
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there is no significant saturation found in the fixed delay spiking models.  

Instead, the increasing rate of Effective Capacity is higher for more uniformly 

random networks, compared to the ones in locally connected networks. 
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Figure 10.7 Relation between Effective Capacity and clustering coefficient in fixed 1ms 

delay spiking associative memory models with different connectivity.  The relation is 

approximately linear.  However no saturation of Effective Capacity can be found for low 

Clustering Coefficients. 
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Figure 10.8 Relation between Effective Capacity and Clustering Coefficient in cube root 

delay spiking associative memory models with different connectivity.  Although the W-S 

small world network and the Fully Connected Modular network have similar correlation, the 

Gaussian distributed network has a different one.  All of these are nonlinear, as the Effective 

Capacity increases more rapidly for low Clustering Coefficients. 
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The relation becomes even more complicated for distance-dependent delays in 

the spiking network.  For the cube root delay employed in the experiments, 

the unique correlation between the Clustering Coefficient and the Effective 

Capacity disappears.  The performances of the W-S small world network and 

the Fully Connected Modular network are similar due to the same rewiring 

strategy.  On the other hand the performances of the Gaussian distributed 

network are different from the others.  In general, the Effective Capacity 

increases much faster for low Clustering Coefficients, compared to the one for 

fixed delay spiking models and non-spiking models.  This suggests that the 

detailed connectivity pattern may have a significant effect on the temporal 

dynamics if the synaptic delay of each connection depends on their wiring 

distances.  Since the distance-depended synaptic delay is considered as more 

biologically plausible than the fixed delay, one may expect that more complex 

relation between associative memory performance and connectivity will be 

found in more realistic neural network simulations or real cortical networks. 

 

10.8 Conclusion 

In conclusion, the spiking model investigated can achieve similar associative 

memory performances as the non-spiking model. However, there are some 

detailed differences.  Therefore the connectivity characteristics seem to 

transcend the detail of the actual neural models in determining associative 

memory performance.  The linear correlation between the Clustering 

Coefficient and the Effective Capacity is not absolutely valid for the spiking 

model, particularly for distance-dependent synaptic delays.  More specifically, 

the associative memory performance of the spiking model is limited for local 

networks, but improved for networks with wider distribution of connections. 
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Chapter 11  

Conclusion 

“desservir” ― "To clear the table." (Old French) 
 

This thesis has made some novel contributions on how characteristics of 

biologically inspired connectivity affect the performance of associative 

memory models, as well as suggestions on how the connectivity of a network 

can be configured, so that it can achieve high associative memory performance 

with low wiring costs.  The main results in each chapter will be brought 

together and summarised here.  It also discusses the directions of future study 

which could potentially extend this programme. 

 

11.1 Main Novel Contributions 

The main novel contributions of this programme of research include: 

 The Effective Capacity performance of a non-spiking associative memory 

model is found to be predicted by its linear correlation with the Clustering 

Coefficient of the network, regardless of the detailed connectivity patterns.  

This is particularly important because the Clustering Coefficient is a static 

measure of one aspect of connectivity, whilst the Effective Capacity 

reflects the result of a complex dynamic process. 

 This programme reveals that improvements in the Effective Capacity 

performance of a network do not directly rely on an increase in the 

network’s wiring cost.  Therefore it is possible to construct networks with 

high associative memory performance but relatively low wiring cost. 

 Gaussian distributed connectivity in a network is found to achieve the 

highest Effective Capacity with the lowest wiring cost, in all examined 

connectivity models. 

 Results from this programme suggest that a modular network with an 

 - 149 - 



Chapter 11  Conclusion 

appropriate configuration of Gaussian distributed connectivity both internal 

to each module and across modules, can perform nearly as well as the 

Gaussian distributed non-modular network. 

 The comparison between non-spiking and spiking associative memory 

models suggests that in terms of associative memory performance, the 

implication of connectivity seems to transcend the details of the actual 

neural models (spiking and non-spiking). 

 

11.2 Summary 

This research has attempted to reveal the correlations between connectivity 

characteristics and associative memory performance in networks with 

biologically inspired connectivity.  Based on the results, it has also attempted 

to provide suggestions of how a network could be configured to provide good 

associative memory performance with low wiring cost. 

 

To achieve these objectives, Chapter 2 started with a review on the related 

biological background.  It firstly summarised the general neuronal physiology, 

in particular, how the membrane potential of a neuron is changed by the arrival 

of spikes.  This summary led to the review of canonical associative memory 

theories in Chapter 3, and more specifically, the review of Gardner type 

associative memory models and performance measures in Chapter 4.  Another 

review given in Chapter 2 was on the general connectivity and modularity of 

the mammalian cortex.  Interestingly, the mammalian cortical network was 

found to be a sparse network with short range and long range connections 

distributed in a Gaussian like manner.  The concept of “cortical column” is 

one of the most important concepts in cortical modularity.  These background 

reviews of cortical connectivity and modularity inspired the connectivity 

models proposed in Chapter 7. 

 

The theories of the canonical associative memory models which based on but 
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simplified the processes in real neuronal physiology were then reviewed in 

Chapter 3.  Examples were given to show the functionality of associative 

memory and the difference in synchronous and asynchronous dynamics.  The 

most important conclusion in this review was that although there are a number 

of associative memory models, they could all be classified by three universality 

classes, named the Hopfield class, the Pseudo-Inverse class, and the Gardner 

class, depending on their distributions of normalised stability parameters.  

Some related studies were also reviewed. 

 

Chapter 4 reviewed one particular Gardner type model which was employed in 

the research of this programme.  It also detailed two measures of associative 

memory performance, including the Mean Radius of the basins of Attraction, 

and Effective Capacity.  The model and measures were applied to studies in 

later chapters. 

 

Chapter 5 detailed two preliminary experimental studies which have also 

contributed to knowledge besides the main contributions listed in Section 11.1.  

A new update function was proposed which provided better associative 

memory performance compared to the generic model.  This chapter also 

compared the performance of associative memory models with bipolar/binary 

representation and patterns with varied bias.  Results indicated that for an 

unbiased pattern set, the bipolar model performs the same as the binary model, 

whilst for biased pattern set, their performances were different.  The model 

with a high biased, binary pattern set performed better than the bipolar case, 

while the model with a low biased, binary pattern set has poor performance. 

 

Chapter 6 discussed the implementations in the programme.  It described how 

the development environment was changed during these three years, and how 

the simulators improved to suit the research requirements.  Special effort was 

devoted to the parallelization of the model.  Although the new update rule 

 - 151 - 



Chapter 11  Conclusion 

proposed in Chapter 5 increased the speed of a parallel associative memory 

network, the parallelization of experiments by the CONDOR task distribution 

system was chosen to speed up the major experiments on connectivity effects. 

 

Chapter 7 reviewed another important topic, the connectivity measures in graph 

theory.  The introduction of connectivity measures to the research of cortical 

functional network found that the mammalian cortex is a “small world 

network”, a network with a short Mean Path Length and considerably high 

Clustering Coefficient.  The Global and Local Efficiencies of the network 

were also found to be relatively high, compared to the locally connected 

network and a random network.  Based on the knowledge from Chapter 2, five 

different types of biologically inspired connectivity were proposed, including 

the Watts-Storagz small world network, the Gaussian distributed network, the 

Fully Connected Modular network, the Gaussian-Uniform Modular network 

and the Gaussian-Gaussian Modular network. 

 

Chapters 8 to 10 investigated the connectivity effect on associative memory 

models.  Chapter 8 detailed the studies on non-spiking associative memory 

models with non-modular connectivity.  Results of these studies revealed a 

significantly linear correlation between the model’s Effective Capacity 

performance and the Clustering Coefficient of its network, regardless of the 

detailed connectivity patterns.  The importance of this finding should 

highlight here because the Clustering Coefficient is a static measure of one 

aspect of connectivity, whilst the Effective Capacity reflects the result of a 

complex dynamic process.  On the other hand, the Effective Capacity 

performance could be improved dramatically without significantly increasing 

the network’s wiring cost.  With low wiring cost, the Gaussian distributed 

network had the highest and almost saturated Effective Capacity performance. 

 

Chapter 9 detailed the studies on non-spiking models with modular connectivity.  
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The linear correlation between Clustering Coefficient and Effective Capacity 

was also true for the modular connectivity, although the modularity of network 

might limit the associative memory performance.  However, modular network 

with high proportion of internal connections can achieve similar performance 

as the Gaussian distributed network, given a proper configuration of internal 

and external connectivity, in a Gaussian manner. 

 

In summary of Chapter 8 and 9, the best network over all examined 

connectivity models is the Gaussian distributed non-modular network, whist the 

Gaussian-Gaussian Modular network with an appropriate configuration can 

have similar performance. 

 

Chapter 10 studied the connectivity effect on spiking associative memory 

model with Integrate-and-Fire neurons.  Surprisingly, the spiking model is 

found to have similar level of Effective Capacity performance as the 

non-spiking model.  Thus the connectivity issue seems to transcend the issue 

of actual neuron model, in determining the associative memory performance.  

This finding suggests that results gained from the non-spiking models may also 

be useful in more biologically plausible models. 

 

The reason why the Clustering Coefficient and the Effective Capacity have a 

linear correlation is worth further investigation.  One possible answer comes 

from the research on the connectivity characteristic of “loopiness” (Zhang and 

Chen, 2008) (Figure 11.1).  This research theoretically indicated that any loop 

(particularly first-order loop) that appears in a network’s connectivity generates 

noise which disturbs the result of associative memory convergence.  As shown 

in their study, a decrease in Clustering Coefficient implies a decrease in the 

network’s first-order loopiness, and consequently the associative memory 

performance of the network improves. 
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Figure 11.1 Left: The first-order loopiness coefficient, L1, means the probability of 

connectivity between k and i when j is connected to i and k is connected to j. Middle: the 

second-order loopiness coefficient L2. Right: the third-order loopiness coefficient L3.  The 

definition of first-order loopiness is in fact the same as the triangular definition of Clustering 

Coefficient.  Taken from (Zhang and Chen, 2008). 

 

11.3 Directions of Future Research 

The results of this programme suggest several new directions for future 

research, which may help to understand the function of associative memory in 

real cortex.  This section discusses some of the directions. 

 

11.3.1 Future Research on Non-Spiking Models 

Although the theories of non-spiking associative memory models have been 

well developed, several topics in this area remain open and are interesting for 

investigations. 

 

One interesting direction of future research is to study how models perform 

with correlated patterns, under different connectivity and pattern 

representations.  In Section 5.2 it was found that the bipolar and binary 

models had the same performance with unbiased patterns, whilst the 

performances were different with biased patterns.  Recent study has found that 

different pattern correlation might affect the performance of a sparse 

associative memory network (Calcraft et al., 2008a, Calcraft et al., 2008b).  

The research on this topic may reveal the dependency between cortical 

connectivity and the patterns of external stimulations. 
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Another direction is to further investigate the linear correlation between 

Effective Capacity and Clustering Coefficient.  One important result found in 

this programme is that the Effective Capacity, one of the complicated results of 

neural dynamics, can be mostly predicted by its linear correlation to the 

Clustering Coefficient of the network, a very simple statistical connectivity 

measure.  Although the novel finding is interesting and important, this thesis 

does not address the questions why the correlation exists, or whether it exists in 

other classes of associative memory models.   

 

This topic can be studied by an extensive examination of new models and 

connectivity.  In a recent paper (Huelse, 2008) Huelse introduced the 

Sierpi´nski carpet method for the configuration of artificial neural network 

connectivity.  Using this method, and combining with anatomical area 

connectivity from (Hilgetag, 2000), a connectivity with highly biological 

plausibility can be created.  At the global level, networks generated by this 

method have the same area connectivity as the real data; whilst at local level, 

the networks have Gaussian distributed connections as well as modularity and 

possibly “scale free” (Eguiluz et al., 2005) characteristic.  A collaborating 

research between Huelse and us on the connectivity characteristics and 

associative memory performance of this connectivity is currently ongoing. 

 

Of course the correlation can also be studied mathematically, basing on 

knowledge in the dynamic system and graph theory.  However, one drawback 

of this approach is that the highly abstract mathematical model may not well 

represent the biological nature of real cortical networks. 

 

11.3.2 Future Research on More Biologically Specific Models 

Although the study on spiking associative memory model with 

Integrate-and-Fire units in this programme is shown to have similar Effective 
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Capacity performance as the non-spiking model, some detailed differences 

have found between these two models.  A systematic analysis on these 

differences is needed so that the results from abstract models can be used to 

explain real cortical phenomenon.  Therefore it is important to have an 

extensive investigation on the spiking model and other models with more 

biologically realistic features, such as the Hodgkin–Huxley model, and to 

compare their results with the results from the abstract associative memory 

model. 

 

Some biologically realistic features are particularly interesting in the future 

research.  The first interesting feature is the realistic morphology of cortical 

connectivity.  In this thesis the units in a network are arranged as a one 

dimensional ring.  The simplification of network morphology is suitable for 

the investigated models, but obviously lacks biological plausibility.  In recent 

years the research on the morphology of mammalian cortex has made 

impressive progresses as more data is published (Hagmann et al., 2007, Sporns 

et al., 2004, Felleman and Van Essen, 1991, Peters and Sethares, 1997, Young, 

1993).  The introduction of this data, which is gained from real cortical 

networks, may help us to construct more biologically realistic associative 

memory models. 

 

Another interesting feature in future studies will be to investigate the more 

biologically plausible learning rules.  In this thesis the weights of connections 

were trained by Gardner type learning rule.  Although this learning rule is 

suitable for abstract models, models with more biological details may require 

different learning rules.  A possible direction is to replace the current learning 

rule in the spiking model with Spiking-time-dependent plasticity (STDP). 

 

It is also interesting to investigate how the connectivity of a network affects 

other functional performances.  This thesis specifically investigated the 
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Effective Capacity performance of the spiking model using memory retrieval, 

within which the patterns were encoded by their firing frequency.  However, I 

did not address the performance of other cortical functions, for example, the 

synchrony of neurons, which depends on the correlation encoding ability of the 

network.  Other research (Anishchenko et al., 2006) has showed that the 

connectivity characteristics may also be a critical factor in the performances of 

these functions. 

 

11.4 Publications and Conferences 

During the three years of this programme, I have attended several international 

conferences and published the results of my research.  A full list of the details 

could be found in Appendix A. 

 

The first paper, titled: Update Thresholds and High Capacity Associative 

Memories, was presented at the 6th International Conference on Recent 

Advances in Soft Computing (RASC 2006).  This paper reported the results of 

the new update function proposed in Section 5.1. 

 

The second paper, titled: High Capacity Associative Memory with Bipolar and 

Binary, Biased Patterns, was presented at the conference of UKCI2007.  It 

addressed the difference between bipolar and binary representations on 

associative memory models with biased patterns.  Related results of this paper 

were summarised in Section 5.2. 

 

I have published several papers on the connectivity characteristics and the 

associative memory performance in non-spiking models.  These included:  

 The Connectivity and Performance of Small-World and Modular 

Associative Memory Models, at the 10th Neural Computation and 

Psychology Workshop (NCPW07).  Also a poster at The 11th International 

Conference on Cognitive and Neural Systems (ICCNS07). 
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 Using Graph-Theoretic Measures to Predict the Performance of Associative 

Memory Models, at 16th European Symposium on Artificial Neural 

Networks (ESANN08). 

 

 Connectivity Graphs and the Performance of Sparse Associative Memory 

Models, at the 2008 IEEE World Congress on Computational Intelligence 

(WCCI'2008).   

The results of these papers were summarised in Chapter 8 and 9. 

 

 The results on the connectivity characteristics and performance on spiking 

associative memory models summarised on Chapter 10, were submitted to 

2009 International Conference on Adaptive and Natural Computing 

Algorithms (ICANNGA09), in title: Connection Strategies in Associative 

Memory Models with Spiking and Non-Spiking Neurons. 
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Abstract: It has been found that the performance of an associative memory model trained with the 
perceptron learning rule can be improved by increasing the learning threshold.  When the learning 
threshold increases, the range of possible values of the update threshold becomes wider and the 
network may perform differently with different choices of this parameter.  This paper investigates the 
effect of varying the update threshold.  The result indicates that a non-zero choice of update threshold 
may improve the performance of the network. 
  
Keywords: associative memory, Hopfield network, perceptron, dynamics, update threshold 
 

1. Introduction 
One important type of Artificial Neural Network (ANN) is the Associative Memory (AM) model.  
This model is used to investigate how neural networks can be used to perform as “content-addressable 
memory”, where the memorized patterns can be recalled from part of their uncompleted contents. 
 
It has been found that in the AM model trained with perceptron learning, the performance of the 
network can be improved by increasing the learning threshold used in the learning algorithm [1, 4].  
On the other hand, the effects of varying the update threshold have not been investigated yet.  This 
paper reports an investigation into this issue. 
 
Our main result indicates that a non-zero update threshold may improve the performance of the 
network. 
 

2. Background 
An AM model usually includes two processes, the training process and the network dynamics.  Given 

a network of N units and a set of N-ary, bipolar (+1/-1) training patterns, }{ pξ , [ ]p
N

pppp ξξξξξ ,...,,, 210= ， 

the model learns patterns by modifying the N by N weight matrix denoted by W.  After training, a 
specific pattern of unit states is first presented to the network.  The network state is then modified 
according to an update rule that defines the network dynamics. 
 



The most well-known and fundamental AM model is the Hopfield network with a one-shot Hebbian 
learning rule [6], whose training process can be described as follows: 

Denoting the weight of the connection from unit j to unit i in W by , for each pattern from  and 

each unit, update the weights according to: 
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In the dynamics of this model, the changes of unit states are determined by the unit's net input, or local 

field, given by , where is the current state of unit j.  The new state of a unit after 

update is given by: 
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ϕ  is defined as the update threshold and is normally set to 0. 
 
The update of unit states can be either synchronous or asynchronous.  During the dynamics the 

network may evolve to a fixed point.  If a pattern in }{ pξ  is one of the fixed points of the network 

then this pattern is successfully stored and is considered a fundamental memory. 
 
Although widely studied [1, 4, 9], the standard Hopfield network has a critical drawback which 
restricts its application.  It has been proved that this kind of model has quite a low storage capacity, 
which is approximately 0.14N, given an N unit, fully connected network.  On the other hand, another 
kind of AM model, classified as the “Gardner Class” by Abbott [1] due to the original contribution of 
Gardner [5], has a significantly higher storage capacity of 2N.  The model examined in this paper, 
using the perceptron learning rule, belongs to this class. 
 
Unlike the one-shot Hebbian rule used in the standard Hopfield network, the model examined in this 

paper uses an iterative learning algorithm based on the aligned local field of a unit, given by , and 

a non-negative parameter, the learning threshold, denoted by T.  The whole process of training can 
be described as: 

p
i

p
ih ξ

 
Begin with a zero weight matrix 

Repeat until all aligned local fields are not less than T 



 Set the state of the network to one of the  pξ

 For each unit, i, in turn 

  Calculate aligned local field  p
i

p
ih ξ

  If this is less than T then change the weight on connections into unit 

i according to: 
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The original network dynamics as described earlier in (2), is still used in the examined model.  After 
convergence, since all local fields of units of training patterns are driven to the correct side of +/- T as 
appropriate, it is guaranteed that all training patterns are stable and become fundamental memories of 
the network. 
 
The result of a previous study [4] indicates that the performance of these networks can be improved by 
increasing the learning threshold from 0 to 10.   On the other hand, there is little or no improvement 
in performance when increasing it from 10 to 100.  Thus in the experiments here the learning 
threshold, T, is always set to 10. 
 
With perceptron training, all the aligned local fields of every unit of every pattern in the training set 

will be at least as big as the learning threshold, T.   That is .   This means that the 

update threshold can be varied up to a value of T, without destabilizing the training patterns.   Thus 
the effects of varying the update threshold become interesting to us, which is the motivation for the 
experiments undertaken here. 

Thi ii ≥∀ μμξμ,

 

3. Performance Measures 
Two measures are applied to evaluate the performance of the network: the normalised mean radius of 

the basins of attraction and the Effective Capacity. 
 
The pattern correction ability of the network is measured by R, the normalised mean radius of the 
basins of attraction, as a measure of attractor performance in these networks [7].  Details of the 
algorithm used can be found in [4].  A value of R = 1 implies perfect performance and a value of R = 
0 implies no pattern correction. 
 
The second metric that we use to measure the performance is the Effective Capacity of the network, 
EC [2].  The Effective Capacity of a network is a measure of the maximum number of patterns that 
can be stored in the network with reasonable pattern correction still taking place.  We take a fairly 
arbitrary definition of reasonable as correcting the addition of 60% noise to within an overlap of 95% 
with the original fundamental memory.  In the experiments in this paper, we also varied the 
percentage of noise added to the fundamental memories.  For large fully connected networks the EC 



value is about 0.1 of the conventional capacity of the network. 
 
More details about these two measures can be found in [3]. 
 

4. Experiments and Results 
All experiments were conducted on a 1000 unit, fully connected network without self-connections.  
Training sets were generated randomly without bias.  As described in the previous section, the 
learning threshold, T, was set to 10, therefore the update threshold of the dynamics (see equation 
(2)),ϕ , could be varied within a reasonable range from 0 to 11.  Two sets of experiments were 
performed, each set using a different performance measure.  The first set of experiments measured 
the normalised mean radius of the basins of attraction.  The Effective Capacity of the network was 
measured in the second set of experiments.  Each set of experiments was repeated 20 times and 
average values are reported here. 
 
4.1 Performance Measured by the normalised mean radius of the basins of attraction 
The performance of R was measured in 5 experiments, with different numbers of training patterns 
ranging from 100 to 500.  In each experiment the update threshold ϕ was varied from 0 to 11.  R 
values were measured and Figure 1 contains the results. 
 

 

Figure 1: Normalised mean radius of the basins of attraction for different update 
threshold.  Experiments run on a 1000 unit, fully connected network without 
self-connections.  The number of training patterns in each experiment varies 
from 100 to 500 (denoted by 100P to 500P in legend). 
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As expected, R increases when the number of training patterns (network loading) decreases.  Perfect 
performance is achieved with a low loading (100 to 200 patterns) when ϕ is set to 0.  Since the 
learning threshold is 10, it is likely that all aligned local fields of the training patterns are above 10 but 



not too far from 10.  Hence we expect performance to be poor when ϕ is set to 11.  The results show 
that this is in fact the case. 
 
The most interesting finding in these experiments is how R changes in each experiment, when ϕ 
increases from 0 to 11.  The result shows that the relationship between R and ϕ is far from a simple 
linear one.  In all the experiments, as ϕ increases, R tends to first increase (or to stay the same if it 
has already achieved perfect performance) then reduce to zero fairly quickly.  In those experiments 
which do not start with perfect performance, the best R value is achieved with a non-zero value of ϕ 
between 1 and 3.  A possible explanation of the results is given in the discussion below. 
 
4.2 Performance Measured by the Effective Capacity 
The performance according to Effective Capacity, EC, was measured in 3 experiments, by increasing 
the noise percentage from 40% to 80%, whilst keeping the overlap criterion at 95% throughout.  The 
update threshold, ϕ, was again varied from 0 to 11.  Results (Figure 2) indicate that the performance 
of EC drops down to 0 with a high setting of ϕ (8 with 40% noise, 7 with 60% noise and 5 with 80% 
noise).  Again an improvement with a non-zero update threshold is also found in some of these 
experiments, with better performance for update threshold values between 1 and 4 for the 40% noise 
version.  The improvement in the low noise percentage experiment is greater than the ones with a 
higher noise percentage.  No improvement is seen in the series of experiments with 80% noise. 
 

 

Figure 2: Effective Capacity for different update threshold.  Experiments run on 
a 1000 unit, fully connected network without self-connections.  The overlap 
criterion is set to 95%. All training patterns are generated randomly without 
pattern bias. 
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 Discussion and Conclusion 
d in the high capacity Associative Memory model examined 

5.
The effect of varying the update threshol
in this paper can be summarized as follows.  We found that in some circumstances using a non-zero 
update threshold does improve network performance.  For example, in a network with a learning 
threshold of 10, using an update threshold of a small number such as 2, instead of zero will normally 



improve performance, especially with a high loading. 
 
It is possible to give an intuitive explanation of the results above.  In the convergence process during 

urthermore, it is known that neurons are organized into modules in the mammalian cortex [8].  It 

ences 
L.F., Learning in neural network memories. Network: Computational Neural Systems, 

[2]. ing the Performance of Associative Memories, in Computer Science Technical 

[3]. h Capacity, Small World Associative Memory Models. To 

[4]. s, R.G., High capacity recurrent associative memories. 

[5].  neural network models. Journal of Physics A, 1988. 21: p. 

[6]. J., Neural networks and physical systems with emergent collective computational abilities. 

[7]. ssociative Recall of Memory Without Errors. Physical Review A, 

[8]. olumnar organization of the neocortex. Brain, 1997. 120(4): p. 701-722. 
 

 

recall, a pattern will relax to one of the fixed points of the network, as described in Section 2.  Some 
of these fixed points, described as fundamental memories, are the training patterns.  However, not all 
the fixed points belong to this type.  Fixed points which are not fundamental memories are called 
parasites, and they may disrupt the performance of the network.  Increasing the update threshold 
gradually increases the number of fixed points in the network until every pattern is a fixed point.  
This is probably the case when the update threshold bigger is than 10 as in the earlier experiments.  
However, a small increase of the update threshold, from 0 to 2 for instance, increases the probability 
that the network relaxes to a fundamental memory.  Therefore, the network performance is initially 
improved but then drops as the update threshold is increased. 
 
F
will therefore be interesting to investigate the interaction between groups of units with each group 
having a different update threshold. 
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The mammalian cerebral cortex handling associative memory has a sparse connectivity.  
In this paper we investigate the effects of network connectivity on the associative 
memory performance.  Two specific models are studied including the Watt-Strogatz 
small-world network and the modular network.  The global and local efficiency of the 
connectivity as well as the Effective Capacity of associative memory performance are 
reported.  The results are surprising.  The best EC performance is achieved at the middle 
of rewiring in both networks.  No significant relationship is found between the global 
efficiency and EC, whilst there is a possibly inverse correlation between the local 
efficiency and EC. 

1.   Introduction 

The canonical Hopfield Net [1] are usually fully connected.  The full 
connectivity, although provides strong supports for mathematical analyses of the 
associative memory theory, is now highly debated due to the lack of biological 
plausibility.  In a complex nervous system like the mammalian cerebral cortex, 
each neuron is connected to approximately several thousands of other neurons, 
whilst the total number of neurons can be up to 109 (mouse cortex) or 1011 
(human cortex) [2].  This fraction indicates that the network of the mammalian 
cerebral cortex, the system handling the function of associative memory, is 
sparsely connected.   

There are two general methodologies to investigate the connectivity of such 
a complex network.  Some recent research investigates aspects of high level 
connectivity in the mammalian cortex using measures from graph theory  [3-5]. 
Results from these investigations show that at this level the network of the 
mammalian cortex is not a random network.  On the other hand, using a bottom-
up methodology, some research focuses on the connectivity between neurons.  
Some modular structures, such as the “minicolumn” and “column”, were 
proposed as the possible building blocks of the cortex [6]. 

 



 

In any very large, physically realised neural network the position of the 
neurons (or their artificial counterparts) and the nature of their interconnections 
will be critical to the functionality of the system. However, in such systems 
there are severe physical constraints which restrict the possible configurations. 
For example, heat must be dissipated, resources must be globally distributed and 
sufficient space must be available for all the desired connecting fibre [7].  In this 
paper we try to find out the relationship between the connectivity of a network 
and its associative memory performance. 

2.   Measures of the Network Connectivity 

2.1.   Path Length, Clustering Coefficient, and the Small-world Network 

Watts and Strogatz [5] investigated a series of real world networks and 
discovered that these networks were neither completely regular nor completely 
random.  Graph theoretical measures were used to qualify the properties 
associated with their connectivity.  In particular, two measures, the mean Path 
Length (L), and the Clustering Coefficient (C), were introduced.   

The Path Length is the minimum number of arc traversals to get for one 
node to another.  An average over all pairs of vertices is used to produce L(G) 
for a graph G.  Denoting the length of the shortest path for each pair of vertices 
as dij, the Path Length of a graph G with N vertices is 
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It is notable that for a disconnected graph, L(G) is problematic since dij of any 
pair of disconnected vertices is undefined. 

The Clustering Coefficient C(G) of a directed graph G is defined as follows.  
Firstly, define Ci, the local clustering coefficient of node i, as 
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i

i

−
==

ii
i kk

C
, 

where Gi is the subgraph of neighbours of i (excluding i itself), and k is the 
number of neighbours of vertex i.  Ci denotes the fraction of every possible 
edges of Gi which actually exist.  The Clustering Coefficient of a graph G, C(G), 
is then defined as the average of Ci over all vertices i of G: 

∑
∈

=
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It is found [5] that a lattice (locally connected network, see figure 1) has 
both high mean Path Length and high Clustering Coefficient.  On the other hand, 
a random network has both low mean Path Length and low Clustering 
Coefficient.  Between these two extreme cases there are a large number of 
networks which have a low mean Path Length as the lattice (the so-called small-
world effect), as well as a high Clustering Coefficient.  This characteristic (low 
L, high C) turns out to be a common feature in real networks.  Examples of such 
networks are real neural networks (the cat’s cerebral cortex, the neural network 
of C.elegans), social networks and the World Wide Web[4, 5, 8]. 

Watts and Strogatz [5] also proposed a model to construct such network, 
which they call the small-world network.  In their model all vertices are first 
arranged as a one dimensional ring and are connected to their k nearest 
neighbours.  This network will have both a high L and C.  By randomly rewiring 
a proportion of the connections, the Path Length of the network drops 
significantly, whilst the Clustering Coefficient remains at a high level.  This is 
the small-world network.  If this process continues until all connections are 
randomly rewired, the network will become a random network with both low L 
and C.  Figure 1 shows the construction of the small world network. 
 
 
 

 
 
 
 
 
Figure. 1 The W-S model [5].  Left: A lattice or locally connected network.  Middle: A small-world 
network with rewiring p = 0.1.  Right: A random network (p = 1).  In all three cases the number of 
afferent connections is, k = 4.  Diagrams generated with the Pajek package [9].  The left network has 
both high L and C, whilst the right network has both low L and C.  The middle one has low L but 
high C. (L: mean Path Length; C: Clustering Coefficient) 

2.2.   Global and Local Efficiency of the Network 

Watts and Strogatz [5] characterize the Path Length and the Clustering 
Coefficient as two different measures.  They in fact can be unified, as shown by 
Latora and Marchiori [10], to one single measure, the efficiency of a network, as 
well as its subnetworks. 

For a directed graph G (connected or disconnected), the average efficiency 
E(G) is defined by the following formula: 
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In particular, the efficiency of a fully connected network, which contains all 
N(N-1) edges, is named as E(Gideal).  For a topological, directed graph, E(Gideal) 
= 1.  Unlike the mean Path Length, E(G) won’t be divergent for a disconnected 
graph because 1/dij is defined as 0 for any disconnected pair of i,j. 

To formalize the Path Length and the Clustering Coefficient to a single 
measure, two new terms, the global efficiency and the local efficiency are 
introduced.  The global efficiency of a graph G, Eglob, is defined as 

)(G
)G(

idealglob E
EE =

 
In fact E can be calculated for any subgraph of G. Therefore the local 

properties of G can be characterized by the local efficiency, Eloc, 

)(G
)G(/1 ideal

i

i
loc E

ENE =
 

iG is defined as the subgraph of all the neighbours of vertex i.  As before  
is the ideal case of which contains all possible edges.  The small-world 
network is now characterized as a set of networks with both high global and 
local efficiency. 

ideal
iG

iG

3.   The Connectivity of the Real Mammalian Cortex 

Braitenberg and Schüz [2] investigated the connectivity of the mammalian 
cerebral cortex and suggested a system with two levels of connectivity.  At a 
high level connectivity, the network is constructed mainly from area-to-area 
excitatory connections between pyramidal cells.  At the low level connectivity, 
the network within an area is constructed from short range excitatory and 
inhibitory connections of both pyramidal and non-pyramidal cells. 

Much research [4, 8, 11] indicates that the area-to-area connectivity has a 
low Path Length but high Clustering Coefficient (high global and local 
efficiency), just like a small-world network does.  On the level of individual 
neurons, the connectivity is so complex that only some general statistics and 
hypotheses can be produced [2].  One important hypothesis [6] suggests that the 
basic functional unit of the mammalian cortex is the “minicolumn”, a columnar 
structure constructed from several hundreds of neurons.  Although this 
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hypothesis is still debatable [12], it suggests that the network of an associative 
memory model could be constructed as a set of connected modules. 

The existing of two levels of connectivity in the mammalian cerebral cortex 
lead us to investigate the associative memory performance of two different types 
of networks, the Watt-Strogatz (W-S) small-world network and a modular 
network, as described in detail later. 

4.   The High Capacity Associative Memory Model 

4.1.   Dynamics 

The units in the network are simple bipolar threshold devices, summing their 
inputs and firing according to the threshold.  The net input, or local field, of a 
unit, is defined by , where ∑

≠

=
ij

jiji Swh ( )1±S is the current state and is the 

weight on the connection from unit j to unit i.  The update rule of network 
dynamics is slightly different from the one used in the canonical model 

ijw
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where  is the new state of , and iS ′ iS θ is the update threshold of the dynamics. 

In the traditional model θ is usually set to 0 for simplicity.  However, 
previous experiments indicate that the network performance can be improved 
using a slightly higher value of θ such as 1 or 2 [13].  The non-zero update 
threshold also reduces non-convergence of the network by ignoring small 
changes in the inputs.   

Unit states may be updated synchronously or asynchronously.  The 
asynchronous update as well as a symmetric weight matrix guarantees the 
network will evolve to a fixed point.   However, we found that without these 
restrictions, the network could still achieve fairly similar convergence properties.  
The synchronous update is suitable for parallel computation, although increases 
the chance of non-convergence.  Therefore an update threshold of 1 and 
synchronous update were used in our experiments. 

If a trained pattern is one of the fixed points of the network then it is 
successfully stored and is called a fundamental memory. 

μξ



 

4.2.   Learning 

A one-shot Hebbian training is commonly used as the standard learning rule of 
the Hopfield Net.  Although simple to implement and also statistically tractable, 
this learning rule has several drawbacks.  The one-shot Hebbian rule does not 
guarantee that all trained patterns are actually learnt (which means they may not 
be fundamental memories).  Furthermore it is widely known that such network 
has quite a low theoretical maximum capacity (0.14N for a fully connected 
network with N units[14]).  The performance of an associative memory can be 
improved using other classes of learning rules [14].  In our experiments, we 
adopted and modified Gardner’s perceptron learning rule [15] which guarantees 
all trained patterns with be memorized, as well as given a significantly higher 
theoretical maximum capacity of up to 2N for unbiased patterns.  The detailed 
training process is given as follows: 
 
Denoting T as the learning threshold 
Begin with a zero weight matrix 
Repeat until all units are correct 

Set the state of the network to one of the  pξ
For each unit, i, in turn: 

Calculate its local field  p
ih

If ( ) then change the weight on connections  Th p
i

p
i <ξ

into unit i according to: 

 N
Cwwji

p
j

p
i

ijijij

ξξ
+=′≠∀

 
 where{ }ijC  is the connection matrix 

End For 
End 

4.3.   Performance Measures 

It is important to investigate not only the capacity of the associative memory 
model but also the ability of fundamental memories to act as attractors in the 
state space of the network dynamics. 

To measure this we use the Effective Capacity of the network, EC [16, 17]. 
The Effective Capacity of a network is a measure of the maximum number of 
patterns that can be stored in the network with reasonable pattern correction still 
taking place. We take a fairly arbitrary definition of reasonable as correcting the 
addition of 60% noise to within an overlap of 95% with the original fundamental 
memory. Varying these figures gives differing values for EC but the values with 
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these settings are robust for comparison purposes (see [17] for the effect on 
Effective Capacity of varying the degree of applied noise, and the required 
degree of pattern completion). For large fully-connected networks the EC value 
is about 0.1 of the maximum theoretical capacity of the network, but for 
networks with sparse, structured connectivity EC is dependent upon the actual 
connection matrix C. 

The Effective Capacity of a network is defined as follows: 
 

Initialise the number of patterns, P, to 0  

Repeat  

Increment P  

Create a training set of P random patterns  

Train the network  

For each pattern in the training set  

Degrade the pattern randomly by adding 60% of noise  

With this noisy pattern as start state, allow the 
network to converge 

Calculate the overlap of the final network state with 
the original pattern  

End For  

Calculate the mean pattern overlap over all final states  

Until the mean pattern overlap is less than 95%  

The Effective Capacity is P-1  

4.4.   Examined Connectivity 

We examined two different types of network, the W-S small-world network [5] 
and a modular network. 

4.4.1.   The W-S Small-world Network 

We constructed the small-world network according to Watt’s and Strogatz’s 
method[5] (See 2.1. for details).  All N units are arranged as a one dimensional 
ring and are locally connected with k (0 < k < N) nearest neighbors.  After that, 
for each unit, a proportion of connections are rewired, giving a rewiring rate of p.  
The rewiring rate p is increased from 0 (which defines a local lattice) to 1 
(which defines a random network) by an increment of 0.1.  Different N and k 
were examined, here we present results of two series, one with N = 600, k = 199, 
and another one with N = 2000, k = 199 (the value 199 was chosen due to the 
fact that it is the number of connections per unit in a 200 units, fully connected 
module.  See 4.4.2.). 



 

4.4.2.   The Modular Network 

A large scale associative memory network can also be constructed from discrete 
networks, the modules.  In our implementation, each module is a fully connected 
network.  To construct a whole network from these modules, a proportion 
(defined by q) of intra-modular incoming connections of each unit were rewired 
as inter-modular connections from units in other modules. See Figure 2 for more 
details. 
 

 

  

 

  

 
 
 
 
 
 
 
 
 
 
Figure. 2 The modular network.  Left: The initial structure of two discrete modules, each of them is a 
fully connected network.  Right: The modules are connected by rewiring an incoming connection of 
a unit is rewired as inter-modular connection from a unit in another module (the red one).  The 
rewiring will take place in selected connections of all units. 
 

In our experiments, the number of units in a module was always set to 200, 
therefore the number of connections per unit, k, is 199.  We examined two 
modular networks with different number of modules.  One has 3 modules (N = 
600) and the other has 10 modules (N = 2000).  The rewiring proportion q was 
increased from 0 (as discrete modules) to 1 by an increment of 0.1. 

5.   The Results 

All experiments were repeated 10 times and the results are averaged. The 95% 
confidence intervals are given.  Here we report the results of global and local 
efficiency, as well as the Effective Capacity performance of the networks. 

5.1.   The W-S Small-world Network 

Figures 3 and 4 give the main results for the W-S networks (Figure 3: N = 600; 
Figure 4: N = 2000).  For both networks, the global efficiency of the networks 
increases abruptly.  However, it becomes stable as p changes from 0.1 to 1, 
which suggests that the global efficiency may have little relationship with the 
performance of associative memory models.  On the other hand the local 
efficiency of the network decreases rapidly at the start and then changes slowly.   
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It is noticeable that the Effective Capacity of the network increases quickly 
at beginning and saturates later.  The saturation of EC first happens on a small-
world network and remains when the network becomes more and more random.  
This phenomenon suggests that a small-world network is a better choice than the 
random network because it can achieve the same associative memory 
performance with less cost of wiring. 

Another thing worth to mention on these figures is the possibly inverse 
correlation between EC and the local efficiency.  Both of these measures seem to 
change rapidly at beginning and saturate at a similar rewiring rate later.  More 
investigations on their relationship are ongoing. 
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Figure. 3 Results for the W-S network (N = 600, k = 199).  Left: Normalized Global and local 
efficiency of the network.  Right: Effective Capacity of the network.  
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Figure. 4 Results for the W-S network (N = 2000, k = 199).  Left: Normalized Global and local 
efficiency of the network.  Right: Effective Capacity of the network.   

5.2.   The Modular Network 

Figures 5 and 6 report the results for the modular networks (Figure 5: N = 600, 3 
modules; Figure 6: N = 2000, 10 modules).  The most significant difference 
between the W-S network and the modular network is the results prior to 
rewiring.  The EC prior to rewiring for the modular network is a lot lower than 
the one of W-S network.  This is due to the fact that the modules were 



 

disconnected and act as a 200 units, fully connected associative memory 
individually.  Note that a set of fully connected networks will always have a 
local efficiency of 1, whilst the W-S network starts from approximate 0.9.  The 
EC of the modular network rapidly increases and achieves similar result as the 
one of W-S network at a low q (about 0.3).  Similar properties of the W-S 
network, such as the early saturation of EC and efficiency on non-complete 
random networks, and the possibly inverse correlation of EC and local efficiency, 
were also found on the modular network.   
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Figure. 5 Results for the Modular network (N = 600, k = 199, 3 modules).  Left: Normalized Global 
and local efficiency of the network.  Right: Effective Capacity of the network.  
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Figure. 6 Results for the Modular network (N = 2000, k = 199, 10 modules).  Left: Normalized 
Global and local efficiency of the network.  Right: Effective Capacity of the network.   

6.   Conclusion and Discussion 

In this paper we investigated how the connectivity of sparse associative memory 
models affects network performance.  Two different types of network were 
examined, including the Watt-Strogatz small-world network and a modular 
network.  Global and local efficiency were used to characterize the network 
connectivity and Effective Capacity was used to measure the performance of 
associative memory. 
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Our main result suggests that rewiring in both models improve the 
performance of associative memory.  The best performance is achieved at about 
p (or q) = 0.5.  The global efficiency saturates quickly in all experiments (p or q 
= 0.1) whilst the local efficiency decreases to roughly the point where is the 
maximum EC.  It is interesting that the EC of a modular network with only 
intra-modular connections is very poor.  However, the performance can be 
highly improved by introducing inter-modular connections.  In fact, the EC 
performance of both networks is similar for all rewiring rates higher than 0.3. 

On the results there seems to be a roughly inverse correlation between the 
values of local efficiency and EC.  However, this relationship is still far from 
clear and currently under further investigation. 

This paper focuses on the topological properties of the network connectivity.  
However, it is also important to investigate the connectivity of different 
networks with distance.  Details about these investigations can be found in our 
recent papers [16, 18]. 
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Abstract 

The high capacity associative memory model 
is interesting due to its significantly higher 
capacity when compared with the standard 
Hopfield model.  These networks can use 
either bipolar or binary patterns, which may 
also be biased. This paper investigates the 
performance of a high capacity associative 
memory model trained with biased patterns, 
using either bipolar or binary representations.  
Our results indicate that the binary network 
performs less well under low bias, but better 
in other situations, compared with the bipolar 
network.   

1 Introduction 

The functionality of associative memory which 
emerges in the mammalian cortex can be simulated 
using a single layer, recurrent neural network 
(Hopfield, 1982).   In these models a training set of 
patterns is leant, so that the trained network will have 
these patterns as some of the fixed points of its 
dynamics.  The capacity of the network is the 
maximum number of random patterns that it can 
learn as fixed points. 

The canonical version of these models, named the 
Hopfield net, which uses a bipolar pattern 
representation (+1/-1) and one shot Hebbian learning, 
is known to have a low capacity and particularly poor 
performance when the training patterns are 
correlated.  Given a network with N units, the 
theoretical maximum capacity of the canonical 
Hopfield model is approximately 0.14N (for non-
correlated patterns).  Another critical drawback of 
this type of associative memory model is that there is 
no guarantee that the training patterns are 
memorized. 

Gardner (1988) introduced another associative 
memory model which used a perceptron type 
learning algorithm.  This model provides a 
significantly higher maximum capacity, which is up 
to 2N for uncorrelated patterns, and actually 
increases with bias in the training set (Gardner, 
1988), whilst still guaranteeing that all training 
patterns are memorized. 

The investigation of high capacity associative 
memory models trained with biased patterns (patterns 
in which the probability of +1 occurring is not 0.5), 
using either bipolar or binary (1/0) representations is 
interesting for three reasons.  Firstly, when compared 
with the bipolar representation, the binary 
representation is more biologically plausible as it 
does not assume negative neural activity.  Secondly, 
activity in the mammalian brain is known to be 
sparsely coded (Braitenberg & Schüz, 1998).  Finally, 
although the theoretical capacity of the network with 
biased, bipolar patterns is already known (Gardner, 
1988), the capacity and performance of networks 
trained with binary, biased patterns are still unknown.  
It is surprising that no one, up to now, has 
investigated this topic experimentally.  This paper 
gives the first experimental results on this topic.  
Results indicate that the binary network performs less 
well when the training set have low bias, but better in 
other situations, when compared with the bipolar 
network.  

2 Details of Model Investigated 

2.1 Bipolar and Binary Representations 

The Hopfield model usually uses a bipolar 
representation.  However it is also possible to 
construct a binary network.  In the standard Hopfield 
model, these two representations can be shown to be 
functionally equivalent (Amit, 1989), though the 



choice of representation can affect the speed and 
efficacy of the learning algorithm.  For example, 
using a binary representation together with Hebbian 
learning, the network can have only half of the 
capacity of the same size of network with a bipolar 
representation (Hopfield, 1982).   

The simple perceptron learning rule is quite 
different when the patterns to be learnt are binary as 
opposed to bipolar. With binary patterns, learning 
only takes place on active connections, that is on 
afferent connections from units in the +1 state. In the 
bipolar case learning takes place on all incoming 
connections.  However, a previous study (Davey et al. 
2004) showed that there is no significant difference 
between networks with these two representations in 
performance when trained with unbiased patterns, 
although the binary network takes significantly 
longer to train. 

The situation may be different when combining 
biased patterns with the bipolar or binary 
representations.  The capacity of bipolar network 
with highly bias training patterns is known to tend 
towards infinity (Gardner, 1988).  However, the 
capacity of an analogous using a binary 
representation is still in question. 

2.2 Bias of the Patterns 

Investigations into associative memory models 
usually assume unbiased training patterns.  Formally 
the bias of a training set is the probability that any 
given bit is +1.  That is,

! 

prob(" = +1) = bias, given 

! 

" as the state of a unit in a training pattern.  The 
restriction of unbiased patterns is useful for 
mathematical simplicity, but is often neither 
biological plausible nor practical.  First of all, 
evidence from neuroscience (Abeles, 1982; 
Braitenberg & Schüz, 1998) indicates that the mean 
firing rate of the cortex is significant less that 50%, 
suggesting pattern activity with low bias.  Secondly, 
in empirical areas such as image recognition, the 
patterns tend to be biased.   

In the experiments reported here the training 
patterns are given a bias ranging from 0.1 to 0.9. 

2.3 High Capacity Associative Memory 
Model 

A description of the high capacity associative 
memory model is now given.  The model uses two 
processes: training and network dynamics.   

To train a network of perceptrons to act as an 
associative memory, the input and output layers 
consist of the same set of neurons. The weights can 
then be trained using any perceptron training 
procedure, so that the network autoassociates. See 
Figure 1. 

 
Figure 1.  An abstract model of perceptron training. 
The red arrow represents the weights in an 
autoassociator of perceptrons.  The blue arrow 
represents the recurrence of dynamics.  The network 
will change states until a fixed point is reached. 
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model learns patterns by modifying the N by N 
weight matrix denoted by W.  After training, a 
specific pattern of unit states is first presented to the 
network.  The network state is then modified 
according to an update rule that defines the network 
dynamics, until ending up with a stable state. 

Denoting the weight of the connection from unit j 
to unit i in W by
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parameter, the learning threshold, denoted by T.  The 
whole process of training can be described as: 
 
Begin with a zero weight matrix 
Repeat until all units are correct 
Set the state of the network to one of 
the 
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For each unit, i, in turn: 
Calculate its local field 
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    Note that there are significant differences in 
training between a bipolar representation and binary 
representation. In the formula  
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" j
p is off means 
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" j
p

= #1 in a bipolar network, but 
0=

p

j
! in a binary network.  This indicates that the 
training of a binary network only takes place on the 
afferent (incoming) connections from the units with 
+1 state, whilst the training of a bipolar network 
takes place on all afferent connections.  Therefore the 
training of a binary network is expected to be a lot 
longer than the one of a bipolar network. 

In the dynamics of this model, the changes of unit 
states are given by: 
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        where " S i  is the new state of Si

. 
The update of unit states can be either 

synchronous or asynchronous.  In our experiments 
we use asynchronous random update.  In the 
traditional Hopfield network, the asynchronous 
update as well as the symmetric weight matrix 
guarantee that the network state can be released to a 
fix point (Hopfield, 1982).  However, the model in 
our experiments has no symmetric weight matrix. 
Nevertheless, the network almost always converges 
to a fixed point.  If a pattern is in one of the fixed 
points of the network then this pattern is successfully 
stored and is considered a fundamental memory. 

3 Experiments and Results 

3.1 The Measure of Effective Capacity 

To measure performance, we are interested in not 
only the actual capacity of the network, but also the 
network’s ability to correct noisy patterns.  Therefore 
the Effective Capacity (EC) (Calcraft, 2005; Calcraft, 
2006) of the network is used in this paper.  Effective 
Capacity is a measure of the number of patterns 
which a network can restore under a specific set of 
conditions. The network is first trained on a set of 
random patterns. Once training is complete, the 
patterns are each randomly degraded with 60% noise, 
before presenting them to the network. After 
convergence, a calculation is made of the degree of 

overlap between the output of the network, and the 
original learned pattern. This is repeated for each 
pattern in the set, and a mean overlap for the whole 
pattern set is calculated. The Effective Capacity of 
the network is the highest pattern loading at which 
this mean overlap is 95% or greater. 

The Effective Capacity of a particular network is 
determined as follows: 
 
Initialise the number of patterns, P, 
to 0 
Repeat 
Increment P 
Create a training set of P random 
patterns 
Train the network 
For each pattern in the training set 

Degrade the pattern randomly by 
adding 60% of noise 
With this noisy pattern as start 
state, allow the network to 
converge 
Calculate the overlap of the final 
network state with the original 
pattern 

End For 
Calculate the mean pattern overlap 
over all final states 

Until the mean pattern overlap is less 
than 95% 
The Effective Capacity is P-1 

3.2 Results 

The experiments were implemented in a neural 
network with 500 and 1000 fully connected units (in 
previous experiments we found that the network size 
effects were insignificant providing the number of 
units was over 300).  In previous studies it was found 
that a learning threshold of 10 gave a good 
performance of the network (Davey, et al, 2004).  
Thus for simplicity the learning threshold of the 
model is restricted to 10.  This network was then 
trained with either bipolar or binary patterns, whose 
biases were varied from 0.1 to 0.9, and the EC values 
were measured.  Each experiment was repeated 5 
times and the average value together with the 95% 
confidence interval are reported. 

Figures 2 and 3 give the main results of the 
experiments.  In a previous study it was shown that 
the bipolar and binary networks perform the same 
when trained with unbiased patterns (Davey, et al, 
2004).  This result is confirmed here by the identical 
performance when the bias of the training set is 0.5. 
The performance of the bipolar and binary networks 
is significantly different when trained with biased 
patterns.  With the bipolar representation, the 
performance is symmetrical about bias 0.5.  That is,  
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Figure 2.  Effective Capacity results for a 500 unit, fully connected network with bipolar and binary representations.  Biases 
of the patterns (as in the proportion of units which are on) are varied from 0.1 to 0.9.  The results are averaged over 5 runs 
and intervals with 95% confidence are also given.  The performance of the bipolar and binary network is identical when 
trained with unbiased patterns (ie bias = 0.5).  With biased patterns, the binary representation performs better than the bipolar 
one, except for patterns of very low bias.  The fall of performance of the binary network  
 

!

"!

#!!

#"!

$!!

$"!

%!!

!&# !&$ !&% !&' !&" !&( !&) !&* !&+

pattern bias

,-

./01234 ./5346

 
Figure 3.  Effective Capacity results for a 1000 unit, fully connected network with bipolar and binary representations.  
Other settings are the same as Fig. 1.  Results are similar to the 500 unit network. 

 
 



for example, the EC at pattern bias 0.9 is identical 
to the one at pattern bias 0.1.  This is of course a 
simple consequence of the symmetry of +1/-1.  The 
result also indicates that the network performance is 
improved as the patterns become correlated.  This is 
in line with Gardner’s theoretical prediction 
(Gardner, 1988). 

The results for the binary network are surprising.  
The first point to be made is that for most of the 
biases, the binary network performs better than or 
at least as well as the bipolar network.  Only at the 
extreme of very low bias is the binary network 
significantly worse than the bipolar network.  This 
is presumably due to the low proportion of units 
which are on.  However, a detailed analysis of the 
binary network with training set bias of 0.1 finds 
that about 15% of the connections have no 
contribution to the network (the weights of these 
connections are zero), suggesting that the removal 
of these useless connections will improve the 
network’s efficiency.  
In the binary network, the performance falls when 
the bias is raised to 0.9.  A detailed investigation 
indicates that it is caused by the significantly high 
attraction of the all 1 state, which is also found in 
the biased situation of a sign-constrained, bipolar 
network (Wong, 1992). 

4 Conclusion 

This paper extends Gardner’s original model which 
used bipolar representation to a model with either 
bipolar or binary representation, and provides 
experimental results of their performances.  The 
major finding of this paper is that although the 
performance of the binary representation is poor in 
the standard Hopfield network, it usually performs 
significantly better than the bipolar representation 
in a high capacity associative memory model 
trained with biased patterns.  Only in the extreme 
situation where the bias of the training set is very 
low, does the binary representation performs worse 
that the bipolar one.  These results are interesting 
since the binary and correlated patterns are more 
biological plausible than the bipolar, unbiased 
patterns which used in the traditional model. 
    Of course the real mammalian cortex is not a 
simple fully connected, binary network.  In fact, 
researches on the connectivity of the mammalian 
cortex found that it is a so sparse network with 
special connecting strategies (Braitenberg and 
Schüz, 1998; sporns, et al, 2004).  For example, the 
human’s cerebral cortex has approximate 1011 
neurons and 1014 connections, which means that 
each neuron is connected with only thousands of 
other neurons.  So it is also interesting to 
investigate other aspects of the associative memory 
such as the connectivity effects (Davey, et al, 2006). 
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Abstract—This paper investigates the relationship between 
network connectivity and associative memory performance 
using high capacity associative memory models with different 
types of sparse networks.  We found that the clustering of the 
network, measured by Clustering Coefficient and Local 
Efficiency, have a strong linear correlation to the performance 
of associative memory. This result is important since a purely 
static measure of network connectivity appears to determine an 
important dynamic property of the network. 

I. INTRODUCTION 
HERE are many problems to be overcome before 
artificial neural networks can be built that resemble the 

mammalian cortex. Not the least of these problems is finding 
a way to connect the neurons so that the network functions 
well, and is physically realizable. In particular natural cortical 
systems are very sparsely connected — in the mouse cortex 
only approximately 1 in 100 million of all possible 
connections are actually made. Yet at the level of an 
individual neuron connectivity is very high with roughly 
10000 incoming and outgoing connections being made. Of 
course the connectivity in such systems is not random. In fact 
the connectivity of the system will attempt to meet two 
competing objectives. Firstly the amount of fiber used overall 
will be minimized; connecting fiber is in several senses 
expensive: it creates heat that must be dissipated, it needs 
constant resource replenishment and it needs physical space. 
Secondly information must be spread widely in the cortex for 
its integration and for global computation to take place; and 
this would appear to entail much distal connectivity. 
 In recent years scientists have successfully introduced 
measures from graph theory into the investigation [1-5].    
Most of them report the cortex to be a so-called “small world” 
network, which has a short path length similar to a random 
network, and a high clustering property similar to a locally 
connected network [2].  Some further research investigates 
the effects of network connectivity as associative memory 
performance, suggesting that the connectivity of a network 
indeed affects the performance significantly [6, 7].  However, 
a conclusive relationship still has not been revealed. 

In previous experiments we discovered that one of the 
connectivity measures, the Local Efficiency of a network, has 
a strong correlation with the associative memory performance 
[6].  This finding inspired us to investigate the connectivity 
effects of sparse associative memory models by comparing 
the relationships between the performance of a network and 
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different connectivity measures in different network types, 
including networks with more biological plausibility such as 
a Gaussian network, and networks with modular structure. 

II. MEASURES OF THE NETWORK CONNECTIVITY 

A.  Path Length and Clustering Coefficient 
Watts and Strogatz [2] investigated a series of real world 

networks and discovered that these networks were neither 
completely regular nor completely random. Graph theoretical 
measures were used to qualify the properties associated with 
their connectivity. In particular, two measures, the mean Path 
Length (L), and the Clustering Coefficient (C), were 
introduced.   

The Path Length is the minimum number of arc traversals 
to get for one node to another. An average over all pairs of 
vertices is used to produce L(G) for a graph G.  Denoting the 
length of the shortest path for each pair of vertices as dij, the 
Path Length of a graph G with N vertices is 

∑
∈≠−

=
Gji

ijd
NN

GL
)1(

1)(  

It is notable that for a disconnected graph, L(G) is 
problematic since dij for any pair of disconnected vertices is 
undefined. 

The Clustering Coefficient C(G) of a graph G is defined as 
follows.  Firstly, define Ci, the local clustering coefficient of 
node i, as 
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where Gi is the subgraph of neighbours of i (excluding i itself), 
and k is the number of neighbours of vertex i.  Ci denotes the 
fraction of every possible edges of Gi which actually exist.  
The Clustering Coefficient of G, C(G), is then defined as the 
average of Ci over all vertices i of G: 
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Figure 1 gives a simple example of the calculation of Path 
Length and Clustering Coefficient. 
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Figure 1. Example of Path Length, Clustering Coefficient of a directed 
graph. A,B,C,D: nodes; Solid line: existing connections.  Arrows: 
directions of the connections.  Graph a: The whole graph. Graph b: 
Subgraph of path from A to D.  The red path (A-C-D) takes 2 steps and 

is therefore the shortest one (A-B-C-D takes 3 steps), so dAD = 2.  The 
mean Path Length of this graph is (dAB + dAC + dAD + dBC + dBD + dCD+ 
dBA + dCA + dDA + dCB + dDB + dDC) / 12 = 18 / 12 = 3/2.  Graph c: For the 
Clustering Coefficient, we measure the subgraph of A’s neighbours (B 
& C), There are two possible edges (B-to-C and C-to-B) but only one 
exists, so CA is 1/2.  Dashed line: connections from A. Consequently, 

C(G) = (CA + CB + CC + CD) / 4 = 3/8. 
 

It is found [2] that a locally connected network has both 
high mean Path Length and high Clustering Coefficient. On 
the other hand, a random network has both low mean Path 
Length and low Clustering Coefficient.  Between these two 
extreme cases there are a large number of networks which 
have a low mean Path Length like the locally connected 
network (the so-called small-world effect), as well as a high 
Clustering Coefficient.  This characteristic turns out to be a 
common feature in real networks.  Examples of such 
networks are real neural networks (the cat’s cerebral cortex, 
the neural network of C.elegans), social networks and the 
World Wide Web[2, 5, 8].   

B. Global and Local Efficiency 
Watts and Strogatz [2] characterize the Path Length and the 

Clustering Coefficient as two different measures.  They in 
fact can be unified, as shown by Latora and Marchiori [4], to 
one single measure, the efficiency of a network, as well as its 
subnetworks. 

For a directed graph G (connected or disconnected), the 
average efficiency E(G) is defined by the following formula: 

∑
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In particular, the efficiency of a fully connected network, 
which contains all N(N-1) edges, is named as E(Gideal).  For a 
topological, directed graph, E(Gideal) = 1.  Unlike the mean 
Path Length, E(G) will not be divergent for a disconnected 
graph because 1/dij is defined as 0 for any disconnected pair 
i,j. 

To formalize the Path Length and the Clustering 
Coefficient to a single measure, two new terms, the global 
efficiency and the local efficiency are introduced.  The global 
efficiency of a graph G, Eglob, is defined as 

)(G
)G(

idealglob E
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In fact E can be calculated for any subgraph of G. 
Therefore the local properties of G can be characterized by 
the local efficiency, Eloc, which is the average efficiency of 
each node’s neighbor subgraphs, 

∑
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iG is defined as the subgraph of all the neighbours of vertex i.  
As before ideal

iG  is the ideal case of iG which contains all 
possible edges.  The small-world network is now 
characterized as a set of networks with both high global and 
local efficiency. Figure 2 is an example of calculating the 
Global and Local Efficiency. 
 
 
 
 
 
 
Figure 2. Example of Global and Local Efficiency of a directed graph. 
A,B,C,D: nodes; Solid line: exist connections. Graph a: The whole 
graph. Graph b: Subgraph of path from A to D.  The red path (A-C-D) 
takes 2 steps which is the shortest one (A-B-C-D takes 3 steps), so 
dAD = 2.  The Global Efficiency of this graph is (1/dAB + 1/dAC + 1/dAD + 

1/dBC + 1/dBD + 1/dCD +1/dBA + 1/dCA + 1/dDA+ 1/dCB + 1/dDB + 1/dDC) / 12 = 
7/9.  Graph c: For the Local Efficiency, we measure the subgraph of 
A’s neighbours (B & C), so E(GC) =(1/dBC + 1/dCB) / 2 = 1/2.  Dashed 
line: connections from A.  Consequently, Eloc = (E(GA) + E(GB) + E(GC) 
+ E(GD)) / 4 = 3/8.  Note: For a large sparse network the Clustering 
Coefficient and the Local Efficiency are usually not the same, see [4] 

for details. 

III. THE CONNECTIVITY OF THE REAL MAMMALIAN CORTEX  

Braitenberg and Schüz [9] investigated the connectivity of 
the mammalian cerebral cortex and suggested a system with 
two levels of connectivity.  At a high level, the network is 
constructed mainly from area-to-area excitatory connections 
between pyramidal cells.  At low level, the network within an 
area is constructed from short range excitatory and inhibitory 
connections of both pyramidal and non-pyramidal cells. 

Much research [5, 8, 10] indicates that the area-to-area 
connectivity has a low Path Length but high Clustering 
Coefficient (high global and local efficiency), just like a 
small-world network does.  On the level of individual neurons, 
the connectivity is so complex that only some general 
statistics and hypotheses can be produced [9].  One important 
hypothesis [11] suggests that the basic functional unit of the 
mammalian cortex is the “minicolumn”, a columnar structure 
constructed from several hundreds of neurons.  Although this 
hypothesis is still debatable [12], it suggests that the network 
of an associative memory model could be constructed as a set 
of connected modules. 
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IV. THE HIGH CAPACITY ASSOCIATIVE MEMORY MODEL 

A. Dynamics 
The units in the network are simple bipolar threshold devices, 
summing their inputs and firing according to the threshold.  
The net input, or local field, of a unit, is defined 
by ∑

≠

=
ij

jiji Swh , where ( )1±S is the current state and ijw is 

the weight on the connection from unit j to unit i.  The update 
rule of network dynamics is slightly different from the one 
used in the canonical model 
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where iS′  is the new state of iS , and θ is the update 
threshold of the dynamics.  

Unit states may be updated synchronously or 
asynchronously.  The asynchronous update as well as a 
symmetric weight matrix guarantees the network will evolve 
to a fixed point.   However, we found that without these 
restrictions, the network could still achieve fairly similar 
convergence properties.  In our experiment we used 
asynchronous update with 0=θ for simplification. 

If a trained pattern µξ is one of the fixed points of the 
network then it is successfully stored and is called a 
fundamental memory. 

B. Learning 
A one-shot Hebbian training is commonly used as the 
standard learning rule of the Hopfield Net.  Although simple 
to implement and also statistically tractable, this learning rule 
has several drawbacks.  The one-shot Hebbian rule does not 
guarantee that all trained patterns are actually learnt (which 
means they may not be fundamental memories).  Furthermore 
it is widely known that such a network has quite a low 
theoretical maximum capacity (0.14N for a fully connected 
network with N units[13]).  The performance of an 
associative memory can be improved using other classes of 
learning rules [13].  In our experiments, we adopted and 
modified Gardner’s perceptron learning rule [14] which 
guarantees all trained patterns with be memorized, as well as 
given a significantly higher theoretical maximum capacity of 
up to 2N for unbiased patterns.  The detailed training process 
is given as follows: 
 
Denoting T as the learning threshold 
Begin with a zero weight matrix 
Repeat until all units are correct 

Set the state of the network to one of the pξ  
For each unit, i, in turn: 

Calculate its local field p
ih  

If ( Th p
i

p
i <ξ ) then change the weight on 

connections  

into unit i according to: 
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where{ }ijC  is the connection matrix 

End For 
End 

C. Performance Measure 
It is important to investigate not only the capacity of the 

associative memory model but also the ability of fundamental 
memories to act as attractors in the state space of the network 
dynamics. 

To measure this we use the Effective Capacity of the 
network, EC [3, 15]. The Effective Capacity of a network is a 
measure of the maximum number of patterns that can be 
stored in the network with reasonable pattern correction still 
taking place. We take a fairly arbitrary definition of 
reasonable as correcting the addition of 60% noise to within 
an overlap of 95% with the original fundamental memory. 
Varying these figures gives differing values for EC but the 
values with these settings are robust for comparison purposes 
(see [15] for the effect on Effective Capacity of varying the 
degree of applied noise, and the required degree of pattern 
completion). For large fully-connected networks the EC 
value is about 0.1 of the maximum theoretical capacity of the 
network, but for networks with sparse, structured 
connectivity EC is dependent upon the actual connection 
matrix C. 

The Effective Capacity of a network is defined as 
follows: 

 
Initialise the number of patterns, P, to 0  

Repeat  

Increment P  

Create a training set of P random patterns  

Train the network  

For each pattern in the training set  

Degrade the pattern randomly by adding 60% of 
noise With this noisy pattern as start state, 
allow the network to converge 

Calculate the overlap of the final 
network state with the original pattern  

End For  

Calculate the mean pattern overlap over all 
final states  

Until the mean pattern overlap is less than 95%  

The Effective Capacity is P-1  

V. MODELS EXAMINED 
Four different types of sparse networks were examined.  

Including two non-modular networks and two modular 
networks. The first non-modular network is the well-studied 
Watts-Strogatz small-world network [2].  The second 
non-modular network is a network with Gaussian-distributed 
connectivity. The third one is a modular network which is 
initialized from fully connected modules and then rewired 



 
 

externally at different rewire rates.  The final one is a modular 
network constructed by rewiring modules with 
Gaussian-distributed connectivity and random intermodular 
connections. 

We used Effective Capacity as the performance measure of 
associative memory.  For the connectivity of a network, 
Global Efficiency, Clustering Coefficient, and Local 
Efficiency were measured. The first series of networks had 
5000 units (N = 5000) and 249 connections per unit (k = 249).  
The second series had 5000 units (N = 5000) and 499 
connections per unit (k = 499). Experiments were repeated 20 
times and a mean value was reported. 

A. Watts-Strogatz Small-world Network 
This model followed Watts and Strogatz’s original idea 

[10].  N units were arranged on a one dimensional ring.  Each 
unit was initially connected from k nearest units.  A fraction q 
denoted the proportion of connections which were randomly 
rewired.  Particularly, q = 0 gave a locally connected network 
and q = 1 constructed a random network.  In the experiments, 
q was increased from 0 to 0.5 by a step of 0.05, and then from 
0.5 to 1 by a step of 0.1. This was due to the fact that the 
performance of the network increased significantly at low q 
and tends to saturate when q exceeded 0.5.  Figure 3 gives the 
transformation of a network from regular local (q = 0) to 
Small World (q = 0.1) then to random (q = 1). 

 
 
 
 
 
 
 

Figure 3. The W-S model [2].  Left: A lattice or locally connected 
network (q = 0).  Middle: A small-world network with rewiring q = 0.1.  
Right: A random network (q = 1).  In all three cases the number of 
afferent connections is, k = 4.  Diagrams generated with the Pajek 
package [16].  The left network has both high L and C, whilst the right 
network has both low L and C.  The middle one has low L but high C (L: 
mean Path Length; C: Clustering Coefficient). 

 

B. Gaussian Distributed Network 
In the mammalian cortex most of the connections are local, 

with the probability of any two neurons in the same area being 
connected, falling off in a Gaussian like manner[17] (also see 
figure 4). This was the main inspiration for our Gaussian 
Distributed network. In this model, all units were still 
arranged on a one dimensional ring as in the W-S network.  
However, the connections were constructed according to a 
Gaussian distribution of distance between connected units.  
The standard deviation, σ, was varied to get different 
distributions of connections.  By increasing σ, the network 
changed from a strongly locally connected network to a 
randomly-connected network.  

 
 

Figure 4. The probability of a connection between any pair of neurons 
in layer 3 of the rat visual cortex against cell separation. Taken from 
[17], with permission .  
 

C. Fully-Connected Modular network 
In this model the postulated columnar structure of the 

mammalian cortex [11] was adopted.  The network initially 
contained m internally fully connected networks, defined as 
modules.  At the beginning there were no interconnection 
between the modules.  Thus it can be treated as m fully 
connected associative memories.  The whole network was 
then connected by rewiring the intramodular connections to 
random connections either within a module or across 
modules.  A fraction p denoted the proportion of rewired 
connections (Figure 5). 

 

             
     Initial Network            After Rewiring 
Figure 5. The construction of a fully modular network.  The network 

was initialized as several discrete modules (left), and then gained 
intermodular connections by rewiring the intramodular connections. 
Note that the regularity of the network is maintained during the 
rewiring (each node always has 3 incoming connections). 

 
In the experiments the number of modules, m, was defined 

as N / (k+1), so that the modules could be fully connected to 
keep the same degree of connectivity as the other models.  
Therefore for the network with k = 249, m = 20. And for the 
network with k = 499, m = 10. For simplification we denote 
this network as Modular network in later sections. 

D. Gaussian Distributed Modular network 
The final model examined was the most complex one of the 

four models in this paper.  This model was defined by two 
levels of connectivity.  The connections of a unit were 
classified as intramoduar connections (define intra-k as the 
number of intramodular connections per unit) and 
intermodular connections (define inter-k as the number of 



 
 

intermodular connections per unit).  At the intramodular 
level, the connections were constructed using a Gaussian 
distribution, characterised by the standard deviation σ.  At the 
intermodular level, the connections were connected 
randomly.  Although the proportions of intra/inter modular 
connections varied, the total number of connections per unit 
was maintained, that is, intra-k + inter-k = k for all networks. 
We denote this network as Gaussian Modular network 
followed by intra-k and inter-k later. For example, a network 
with intra-k = 49 and inter-k = 200 is denoted as “Gaussian 
Modular 49 200”. 

VI. RESULTS 

A. General Results from Each Model 
Here we give individual results for each type of network 

based on their wiring strategies. For simplification only 
results for 5000N, 249k networks are presented. The results 
for 5000N, 499k networks will be summarized at the end of 
this section. 
The first result is from the Watt-Strogatz network. Figure 6 

gives the relationship between Effective Capacity and 
rewiring rate of the network. The Effective Capacity 
increases rapidly from q = 0 to q ≈ 0.6 and then saturates. 
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Figure 6. Effective Capacity against rewiring rate q in W-S network.  N 
= 5000, k=249. The Effective Capacity increases untill q ≈ 0.6 and 
saturates later. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

G
lo

ba
l E

ff
ic

ie
nt

 
Figure 7. Global Efficiency against rewiring rate q in W-S network.  N = 
5000, k=249. The Global Efficiency increases rapidly untill q ≈ 0.2 and 
saturates in all others. 
 

Figure 7 and 8 show the way that Global Efficiency and 
Clustering Coefficient vary with the rewiring of the network. 
Global Efficiency saturates very quickly, much more quickly 

than the Effective Capacity. However the Clustering 
Coefficient declines less rapidly and appears to have an 
inverse relationship with Effective Capacity. The Local 
Efficiency shows a similar pattern as the Clustering 
Coefficient (Figure 9). These correspondences are 
investigated further in the next section. 
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Figure 8. Clustering Coefficient against rewiring rate q in W-S network.  
N = 5000, k=249. The Clustering Coefficient decreases untill q ≈ 0.6 
and saturates later.  Interestingly it has the same saturating point as 
Figure 7 (q ≈ 0.6). 
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Figure 9. Local Efficiency against rewiring rate q in W-S network.  N = 
5000, k=249. The Local Efficiency decreases rapidly untill q ≈ 0.6 and 
saturates later.  Again it has the same saturating point as Figure 7 (q ≈ 
0.6). 
 
For the Gaussian network we plot the Effective Capacity 
against the standard deviation of the connection distribution, 
sigma (Figure 10). The Effective Capacity increases with 
sigma and reach a saturation value of about 110 when sigma 
is 1000. Note that the maximum Effective Capacity of the 
Gaussian network and the W-S network are the same. 
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Figure 10. Effective Capacity against sigma in Gaussian network.  N: 
5000, k=249. The Effective Capacity increases untill sigma is about 
1000 and saturates later. 

 
The results for the Modular network are shown in Figure 11. 

Since the Modular network starts from discrete modules and 
is then rewired into a random network, its Effective Capacity 
is initially lower than the previous two models’. But with 
rewiring it approaches the maximum value obtained in the 
other two models. 
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Figure 11. Effective Capacity against rewiring rate p in the Modular 
network. N = 5000, k=249. The result is similar to the one in the W-S 
network (Figure 6), despite the difference of initial value. 

 
 The final network we investigated is the Gaussian Modular 
network. The results are shown in Figure 12. Interestingly the 
Effective Capacity does not change very much as the 
intraconnections are made less local. The Effective Capacity 
is quite high throughout whatever the value of sigma. 
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Figure 12. Effective Capacity against sigma of intraconnections 
distribution in Gaussian Modular network.  N = 5000, intra-k = 
199,inter-k = 50. There is slight change when change the distribution 
within modules but not significant. 

B. Effective Capacity and Clustering 
The above results suggest an interesting hypothesis: The 

performance of associative memory models, measured by the 
Effective Capacity, is clearly determined by some measures 
of the network connectivity, such as clustering and the 
efficiency of local sub-network. Therefore here we plot the 
Effective Capacity against each connectivity measures in all 
four types of networks, to analyze their relationships. Figure 
13 shows the relationship between Effective Capacity and 
Global Efficiency in six different networks. Obviously there 
is no simple relationship between the two measures. 
However, Figure 14 gives our more significant result. It 
shows that, in all six networks there is a linear relationship 
between Effective Capacity and Clustering Coefficient. 
Moreover this relationship is independent of the detailed 
topology of the network. Figure 15 gives the linear regression 
for this data. R-Square is 0.99 so the fit is highly linear. 
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Figure 13. Effective Capacity against Global Efficiency.  N = 5000, 
k=249. Results from four different types of networks are plotted 
together.  No clear relationship can be found in this figure. 
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Figure 14. Effective Capacity against Clustering Coefficient.  N = 5000, 
k=249. Results from four different types of networks are plotted 
together.  A clear linear relationship can be seen in this figure. 
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Figure 15. Linear fit to the data from Figure 14. 
 

A similar analysis was then done for Effective Capacity 
against Local Efficiency and the results can be seen in Figures 
16 and 17. Here R-Square is 0.97 so again the fit is highly 
linear. 
 

0

20

40

60

80

100

120

0.40.50.60.70.80.91
Local Efficiency

Ef
fe

ct
iv

e 
C

ap
ac

ity

W-S Fully Modular

Gaussian Gaussian Modular 49 200

Gaussian Modular 124 125 Gaussian Modular 199 50

 
Figure 16. Effective Capacity against Local Efficiency. N = 5000, 
k=249. Results from four different types of networks are plotted 
together.  A clear linear relationship can be seen in this figure. 
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Figure 17. Linear fit to the data from Figure16. 
 
The results for networks with N = 5000 and k = 499 are very 
similar (Figure 18, 19). A linear fit is obtained with R-Square 
= 0.99 for both Effective Capacity – Clustering Coefficient 
and Effective Capacity – Local Efficiency. The lines in 
Figures 15, 17 are different from the ones in Figures 18, 19 
because the level of connectivity is different (There are 
networks with 249 connections per each unit for the first two 
figures and networks with 499 connections per unit for the 
second two figures). 
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Figure 18. Effective Capacity against Clustering Coefficient. N = 5000, 
k=499. Results from four different types of networks are plotted 
together.  A clear linear relationship can be seen in this figure. 
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Figure 19. Effective Capacity against Local Efficiency. N = 5000, 
k=499. Results from four different types of networks are plotted 
together.  A clear linear relationship can be seen in this figure. 

VII. CONCLUSION 
In this paper we investigated how different connectivities 

affect the performance of high capacity associative memory 
models. Four different types of networks were examined: a 
Watt-Strogatz Small-World network, a Modular network, a 
Gaussian network and a Gaussian Modular network. Several 
measures of network connectivity were used in the 
experiments in order to find out potential differences. 

Although the global features of the network such as Path 
Length or Global Efficiency were thought to be important in 
determining  efficient wiring in the mammalian cortex [4, 10], 
in the work presented here they show no clear relationship 
with the associative memory performance. On the other hand, 
the local clustering (measured by Clustering Coefficient and 
Local Efficiency) is here shown to have a strong linear 
relationship with the associative memory performance.  

As shown in this paper, this linear relationship seems 
identical for different types of network models and 
connectivity distributions, but is different for different 
connectivity levels.  This result is potentially important since 
a purely static measure of network connectivity appears to 
determine an important dynamic property of the network. 
One may wonder if this relationship may also govern the 
associative memory performance in a real mammalian 
cerebral cortex. Therefore we are currently studying the effect 
of network connectivity on performance of more biologically 
plausible models such as spiking neural networks. 
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Abstract. The problem we address in this paper is that of finding effective and 
parsimonious patterns of connectivity in sparse associative memories.  This 
problem must be addressed in real neuronal systems, so results in artificial 
systems could throw light on real systems.  We show that there are efficient 
patterns of connectivity and that these patterns are effective in models with 
either spiking or non-spiking neurons.  This suggests that there may be some 
underlying general principles governing good connectivity in such networks. 
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1   Introduction 

In earlier work [1-3] we have shown how the pattern of connectivity in sparsely 
connected, associative memories influences the functionality of the networks.  The 
nodes in our networks are given a position, either in a 1D or 2D space.  It is then 
meaningful to talk about issues such as path length, clustering and other concepts 
familiar from the study of non-random graphs.  We have found that networks with 
only local connectivity do not perform well, as global computation is difficult, 
whereas random connectivity gives good performance, albeit with a much greater 
amount of connection fiber.  We, and others [3-5], have shown that small world 
patterns of connectivity can give good performance, with more economical use of 
resources.  However our most efficient networks have been those with almost 
completely local connections [4].   

In these experiments we have used large networks (up to 50,000 units) of simple 
threshold units with no signal delay between nodes.  The dynamics is therefore akin to 
a standard, sparse Hopfield network, although not identical, as we make no 
requirement for symmetry in connections.   In the work presented here we take steps 
towards much more biologically plausible networks.  Firstly we use artificial integrate 
and fire, spiking neurons and secondly we model signal propagation times according 
to the geometry of the model.  Of course the dynamical behavior of the resulting 
network is much richer than that of the non-spiking network, but we are now able to 
investigate the generality of our previous results.  Our main finding is that the relation 



between performance and connectivity in the spiking neural network is surprisingly 
similar to that of the more abstract model.  This in turn suggests that there may be 
some general principles at work, which could be of relevance to the analysis of real 
neuronal networks.  

2   Models Examined  

Our basic model has a collection of artificial neurons arranged in a ring.  The distance 
between any pair of neurons is taken as the minimum number of steps, on the ring, to 
get between them.  All our networks share two important features.  Firstly the 
networks are regular, so that each neuron has k incoming connections.  Secondly the 
networks are sparse, so that with a network of N units, k << N.   

 With this configuration there are two extremes of connectivity.  In a local network, 
or lattice, each node is connected to those nodes that are closest to it; such networks 
are known as cellular networks in the context of neural computation, where they are 
normally 2D lattices.  Alternatively the network can have random connectivity, where 
the probability of any two nodes being connected is k/N, independently of their 
position.  It has been established that whilst local networks have minimum wiring 
length, they perform poorly as associative memories: pattern correction is a global 
computation and local connectivity does not allow easy passage of information across 
the whole network [4].  Randomly connected networks, have very short characteristic 
path lengths (scaling with log N) and consequently pattern correction is much better, 
and in fact cannot be improved with any other architecture [4].   However, random 
networks use a lot of connecting fibre and this has encouraged the investigation of 
other types of connectivity: it is desirable to find patterns of connectivity that give 
performance comparable to random networks, but with more economical wiring.  It 
has been established that there are indeed such patterns of connectivity; in particular 
several researchers have shown that so-called small world [6] connectivity can give 
good performance.  We have also shown, that in non-spiking networks, fairly tight 
Gaussian distributions of connectivity can give very parsimonious networks [2].  In 
this paper we extend our analysis of how the connectivity affects performance to the 
more complex dynamics exhibited by networks of integrate and fire spiking neurons. 

2.1   Connectivity  

N artificial neurons are arranged in a 1-D space with periodic boundary conditions – 
they can be thought of as occupying a ring, see Figure 1.  Each neuron has k incoming 
connections, and so the network is regular.  The reason for this restriction is given in 
the next section, when discussing the learning rule. The local network has each node 
connected to its k nearest neighbours, excluding itself (none of our networks has 
direct self connectivity).  Small world networks are constructed using the standard 
method introduced by Watts and Strogatz [6].  The local network is made 
progressively more random by rewiring a fraction (p) of the connections to random 
locations.  When p = 1 the local network is transformed into a random network.  



   

 
Fig. 1. Units arranged in a simple one-dimensional ring.  On the left the units have random 
connectivity and on the right they have local connectivity and some distal connections – a small 
world model. 

We also investigate networks with a Gaussian pattern of connectivity.  Here the 
probability that any two nodes are connected falls as a Gaussian function of distance 
between the two nodes, see Figure 2.  The shape of the Gaussian is parameterised by 
its standard deviation, σ.  Such distributions are particularly interesting as 
connectivity between individual neurons in the mammalian cortex is thought to be 
similar [7], see Figure 2.   
 

 
Fig. 2. The probability of a connection between any pair of neurons in layer 3 of the rat visual 
cortex against cell separation. The horizontal axis is marked in µm. Taken from [7] 

2.2   Learning 

Before the effect of connectivity can be empirically evaluated the networks must be 
trained.  The simplest approach would be to use the covariance weights of the 
standard Hopfield network (with or without clipping).  This, however, is not a 



particularly good approach when the networks are sparse and non-symmetric [3].  A 
more effective method, in this case, is to use standard perceptron learning.  In this 
case, for a given level of connectivity, optimal capacity and performance is obtained 
when the connectivity is regular, and hence our restriction to regular networks    

The sets of training patterns used consist of random, bipolar or binary vectors, 
where the probability of any bit being on (+1) is 0.5 .   The learning process is: 
 
Begin with zero weights 
Repeat until all units are correct 

  Set state of network to one of the 
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"
p
 

  For each unit, i, in turn: 
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The value " i
p = on denotes the ith bit of pattern p being +1

and the value " i
p = off denotes the value -1 or 0 according to the type of network

 

T is the learning threshold and here we set T = 10. 
 

For the non-spiking network we use the standard bipolar +1/-1 representation.  
However for the spiking network we use 0/1 binary patterns, as these can then be 
easily mapped onto the presence or absence of spikes.   

2.3   Network Dynamics 

2.3.1   Non-Spiking Network 
These networks use the standard asynchronous dynamics of the Hopfield network: 
units output +1 if their net input is positive and -1 if negative.  As the connectivity is 
not symmetrical there is no guarantee that the network will converge to a fixed point, 
but, in practice these networks normally exhibit straightforward dynamics [8].  
However, if the network does not converge within 5000 epochs we take the network 
state at this point as the final state. 



2.3.2   Integrate and Fire Spiking Network 
The model uses a leaky integrate-and-fire spiking neuron which includes synaptic 
integration, conduction delays and external current charges.  The membrane potential 
(in volts), V, of each neuron in the network is set to 0 if no stimulation is presented, 
and is referred to as the membrane resting potential.  The neuron can be stimulated 
and change its potential by either receiving spikes from other connected neurons, or 
by receiving an external current.  If the membrane potential of a neuron reaches a 
fixed firing threshold, 

! 

V
FIRE

, the neuron emits a spike and the potential is reset to 
resting state (0mV) for a certain period (the refractory period).  During this period the 
neuron cannot fire another spike even if it receives very high stimulation.  Here the 
refractory period is set to a reasonable value of 3ms [9]. 

A spike that arrive at a synapse triggers a current, the density of this current (in 
Amperes per Farad), 

! 

I ij t( )  (where i is the postsynaptic neuron and j is the presynaptic 
neuron), is given by: 
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where tarrive  is the time that a spike arrives at node i from node j

so that tarrive = tspike + delayij

 

 
The value of 

! 

I ij t( )  will reach a peak 

! 

"  seconds (the synaptic time constant) after a 
spike arrives.  We set 

! 

"  to be 2ms.   
Two delay modes were used in the model.  The fixed delay mode gives each 

connection a fixed 1ms delay.  In the second mode, the delay of spikes (in ms) over a 
connection is defined by: 

! 

delayij = dij3 where 

! 

dij  is the distance between the two 
nodes.  This gives a rough mapping from a one dimensional ring structure to a more 
realistic three dimensional system.  For a network with 5000 units, the delay will vary 
between 1ms and about 14ms. 

The rate of change of membrane potential is defined by: 

! 

dV

dt
= "

V

#
m

+ I
TOTAL .  

Here the first term represents the leak of current density and consequently a decrease 
in voltage in the neuron.  The second term is the total current density entering the cell.  
It is calculated as the weighted sum of synaptic inputs and any external stimulation: 

! 

ITOTAL = wijI jj
" + IEXTERNAL  

The Injection of External Currents 
The network requires an initial stimulation from external currents in order to trigger 
the first spikes.  A simple current injection, which transforms a static binary pattern to 
a set of current densities is used.  Given an input pattern, unit i receives an external 
current if it is on in that pattern, otherwise the unit receives no external current.  Each 
external current has a density of 3A/F and is continually applied to the unit for the 
first 50ms of simulation.  This mechanism guarantees that the first spiking pattern 
triggered in the network is identical to the input pattern.  After the first spikes (about 7 



~ 8ms from the start of a simulation), both internal currents caused by spikes, and the 
external currents, affect the network dynamics.  Spike activity continues after the 
removal of external currents, as the internal currents caused by spike chains become 
the driving force.  The network is then allowed to run for 500ms, before its final state 
is evaluated, as will be described in the next section. 

3.   Performance Measures 

The Effective Capacity (EC) [10] of a network is a measure of the maximum number 
of patterns that can be stored in the network with reasonable pattern correction still 
taking place.  In other words, it is a capacity measure that takes into account the 
dynamic ability of the network to perform pattern correction.  We take a fairly 
arbitrary definition of reasonable as the ability to correct the addition of 60% noise to 
within an overlap of 95% with the original fundamental memory. Varying these two 
percentage figures gives differing values for EC but the values with these settings are 
robust for comparison purposes. For large fully connected networks the EC value is 
about 0.1 of the conventional capacity of the network, but for networks with sparse, 
structured connectivity EC is dependent upon the actual connectivity pattern.  

The Effective Capacity of a particular network is determined as follows: 
 

Initialise the number of patterns, P, to 0 
Repeat 

Increment P 
Create a training set of P random patterns 

 Train the network 
 For each pattern in the training set 
  Degrade the pattern randomly by adding 60% of noise 
        With this noisy pattern as start state, allow the network to converge 
        Calculate the overlap of the final network state with the 

original pattern 
 EndFor 
 Calculate the mean pattern overlap over all final states  
Until the mean pattern overlap is less than 95% 
The Effective Capacity is then P-1.  

 
The Effective Capacity of the network is therefore the highest pattern loading for 
which a 60% corrupted pattern has, after convergence, a mean overlap of 95% or 
greater with its original value. 

Of course this measure is simple to calculate for the network of non-spiking 
neurons, but its implementation in the spiking network is not as straightforward, as we 
need to define exactly what is meant by overlap of the network state, a collection of 
spike events, with a stored pattern.  To this end we follow the method of Anishenko 
[4].  The state of any unit in the network is assumed to be encoded in its firing 
rate,

! 

r
i
t( ) , as measured over a short time window (in our case 20ms).   The overlap of 



the network state and a binary pattern vector is then defined as the cosine of the angle 

between the pattern and the vector of firing rates: 
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4.    Results 

We use two patterns of connectivity, small world and Gaussian in networks of 5000 
units, with each unit having 100 incoming connections.  In the non-spiking network 
this implies a theoretical maximum loading of up to 200 unbiased random patterns, 
although in practice the capacity is around 140 patterns.  For each type of network 
results are means over 10 runs.  Error bars are not shown, as they are so small as to be 
virtually invisible. 

4.1   Small World Networks 

We begin by giving the results of the small world networks, as these include the two 
extremes of local and random connectivity.  Here a local network was progressively 
rewired, in increments of p = 0.1, until a random network with p = 1 was reached. 

In Figure 3 the results for the non-spiking network, the spiking network with fixed 
signal propagation delay and the spiking network with cube root delay are given.  At 
the left side of the graph the Effective Capacity of the networks with local 
connectivity only is shown.  All three networks show an EC value of about 20 
patterns.   At the right side of the graph can be seen the performance of completely 
rewired networks, a random graph.  The performance in this case is much improved, 
ranging from 44 to 56 patterns.  The best performing network is the spiking network 
with fixed delays.  To reiterate the implication of this: a local pattern of connectivity 
does not support good integration of information across the whole network, whereas 
random connectivity provides good global computation in these networks.  As our 
earlier work has already indicated a rewiring rate of about 0.6 gives optimal 
performance in the non-spiking network.  Interestingly the spiking networks continue 
to improve past this point.   It is worth pointing out that none of the well performing 
networks can be properly described as being small world networks, in the Watts and 
Strogatz [6] sense. They identified the small world regime at a rewiring level of only 
about 0.01, when path lengths have dropped, but clustering remains high.  At p = 0.6 
clustering has dropped to a level similar to a random network. 

There are two intriguing features of these results.  Firstly it is apparent that the very 
simple non-spiking network acts as a reasonable predictor of the much more 
complicated integrate and fire spiking network.  Secondly the spiking networks, in 
some circumstances, perform better than their non-spiking cousins.  It is not obvious 
to us why this should be the case. 



Fig. 3.   The Effective Capacity of three types of network: one learning rule, but varying 
dynamics.  Locally connected networks are transformed into random networks by progressive 
rewiring.  The networks are 5000 units with k = 100. 

4.2   Gaussian Networks 

In this pattern of connectivity the probability of any two nodes being connected falls 
with a Gaussian function of their spatial separation.  The specific distribution is 
controlled by σ.  In this experiment σ varies from 0.4k (40) and then in increments of 
0.2k (20) to k (100) and thereafter in multiples of k.  Remembering that with the size 
of the networks being 5000 units, the maximum separation between any two nodes is 
2500, so that a distribution with σ = 200, say, is very tight, relative to the size of the 
complete network. 
 



 
Fig. 4.  The Effective Capacity of networks with connection probability following a Gaussian 
distribution of varying s.  The networks are 5000 units with k = 100. 

The results are shown in Figure 4.  At the left hand side of the graph the initial 
networks have an Effective Capacity of 25-27 patterns.  These networks have very 
tight connectivity distributions, with most connections (~ 95%) made with the 80 
units on either side.  This has given the network a small improvement on the local 
network, with connections made to all 50 units on each side.  All three types of 
network then show rapidly improving performance to about σ = 2k (200) – here the 
performance of the three networks is similar with an EC of about 42 patterns.  Further 
widening of the connectivity does not bring much benefit to the non-spiking network; 
this is not surprising as it is already almost at the performance level of a random 
network.  However both spiking networks continue to improve, passing an EC of 50 
at a σ of 4k. 

5.   Discussion 

In the work presented here we have endeavored to examine the performance of 
associative memory networks of spiking neurons, in relation to the connectivity in the 
network, and to compare this performance to the simpler Hopfield type associative 
memories.  Our first finding is that the non-spiking networks provide a reasonably 
good prediction of the performance of spiking networks with the same connectivity 
and weights.  Moreover this prediction is both qualitative and quantitative.  To the 
best of our knowledge this is the first study to make this direct comparison of these 
neural models.   



In one sense the similarity of the two models could be expected: both types of 
neuron integrate their input and respond when this net input exceeds a firing 
threshold.  However, in another sense it would not be anticipated.  In the non-spiking 
network continuous time is not modeled.  In the spiking model, however, time is an 
integral part of the process, with signal propagation delays, refractory periods, 
integration of inputs over time and encoding of information in spiking frequencies.   

Our second finding is related to the first result.  In spiking neural networks local 
connectivity alone gives relatively poor performance, and increasing distal 
connectivity improves the network.  However, the most parsimonious use of resources 
is found when a fairly tight Gaussian distribution of connections is used.  A good 
network configuration to produce high effective capacity with relatively low wiring 
cost is a network with a distribution having a standard deviation of about 400 (in a 
network of 5000 nodes and 100 connections per node). 

The spiking network with fixed delays performed slightly better than the network 
with delays varying with the length of the connecting fiber.  However the difference 
was not pronounced, suggesting that associative memories are reasonably robust to 
this feature of their functionality. 

Finally we have found that in some circumstances the spiking model actually 
performs better than the non-spiking version.  Further work is needed to analyse why 
this should be the case. 
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Abstract. We test a selection of associative memory models built with different 
connection strategies, exploring the relationship between the structural properties of 
each network and its pattern-completion performance. It is found that the Local 
Efficiency of the network can be used to predict pattern completion performance for 
associative memory models built with a range of different connection strategies. This 
relationship is maintained as the networks are scaled up in size, but breaks down 
under conditions of very sparse connectivity. 

1 Introduction 

The seminal paper by Watts and Strogatz [1] on the small-world behaviour of 
sparsely-connected networks inspired work in a wide range of fields, including the 
study of neural networks [2-4]. Essential to their argument were the two graph-
theoretic measures of Clustering Coefficient and Characteristic Path Length. A 
network with local-only connections would have a high Clustering Coefficient, and a 
long Characteristic Path Length, whereas a randomly-connected network would have 
a very low Clustering Coefficient. 
 They argued that networks in nature achieved a compromise between these two 
parameters, having relatively high Clustering Coefficients, while at the same time 
relatively short Characteristic Path Lengths. In order to study the relationship between 
the two measures, they took a locally-connected network and randomly rewired a 
number of randomly-chosen connections to randomly-selected sites within the 
network. They found that after a very small amount of rewiring their networks took 
on the sought-after properties of relatively high Clustering Coefficients and relatively 
short Characteristic Path Lengths. They named such networks Small-World networks. 
 In 2001 Bohland and Minai [4] applied this technique to a one-dimensional 
sparsely-connected associative memory model. They found that as the degree of 
rewiring was increased, the performance of the model improved continuously until 
the degree of rewiring reached around 40%. By this point the performance of the 
network had almost reached the level of a random network, and further rewiring had 
little effect on performance. 
 Our goal in the present paper is to evaluate to what extent certain graph-
theoretic measures can be used to predict this behaviour. To this end we examine the 
two measures originally used by Watts and Strogatz, the Clustering Coefficient and 
Characteristic Path Length, together with a new measure named Local Efficiency, 
introduced by Latora and Marchiori [5]. These measures are applied to the underlying 
graphs of associative memory models built with a range of different connection 



strategies. It is found that the pattern-completion performance of our models is 
strongly correlated to the Local Efficiency of the networks from which they are built, 
to the extent that by measuring the Local Efficiency of a network we can accurately 
predict pattern-completion performance for a broad class of connection strategies. We 
will begin by defining the three measures used, and by describing our associative 
memory model, and the way in which we measure its performance. 

2 Characterising sparse directed graphs  

The connectivity pattern in an associative memory model may be defined by a 
connectivity (or adjacency) matrix, { }ijcC =  where cij =1 whenever node i has an 
incoming connection from node j, and 0 otherwise. The structural properties of graphs 
can be quantified in terms of the path lengths and clustering of the network. 

2.1 Path Lengths 

The shortest path length, , between any two nodes in a graph is the minimal 
number of arc traversals needed to get from one node to the other. The characteristic 

path length is then defined as the mean of these distances: 

dij
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1  where 

N is the number of nodes in the graph.  A problem can arise with this definition if the 
graph is disconnected as some of the distances will be undefined. For this, and other 
reasons, Latora and Marchiori [5] introduced the idea of measuring the global 

efficiency of a graph: ( )∑≠−
=

ji ijdNN
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1
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ijd
1 is taken as 0 whenever i is not 

connected to j. Note that high path lengths will give low efficiency and vice versa. 

2.2 Clustering 

Another important measure is the degree to which connections in the graph cluster 
together. In a social network this is the likelihood of two of your friends also being 
friends. Watts and Strogatz [1] formalised this with the Clustering Coefficient.  To 
calculate this the subgraph Gi  is defined as the subgraph made up by the immediate 
neighbours of node i (not including i). Then the Local Clustering Coefficient Ci  is 
defined as the ratio of the number of edges in  to the maximum number of possible 
edges that could be in 

Gi
Gi . The Clustering Coefficient of the complete graph is then 

defined to be the mean of the Ci . Once again Latora and Marchiori propose a 
generalisation of this measure that takes into account the distances in G . They define 
the local efficiency of node i to be the efficiency of 

i
Gi  and the Local Efficiency of 

the graph to be the mean of these individual efficiencies: 
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1 .  Here high clustering will imply high 

Local Efficiency. 



3 Network dynamics, training and performance measurement 

Our associative memory models consist of a network of perceptrons arranged in a 
one-dimensional structure with wrap-around at the ends, and the network is trained on 
sets of random patterns of length N, where N is the number of  nodes in the network. 
The output of each node is connected to the inputs of a fixed number, k, of other  
nodes. The networks used in the present studies have no symmetric connection 
requirement [6], and the recall process uses asynchronous random order updates, in 
which the local field of unit i is given by:  

  
hi = wijS j

j≠i
∑

where wij is the weight on the connection from unit j to unit i, and S  is the 
current state. The dynamics of the network is given by the standard update:    

, where  is the Heaviside function. Network training is based on the 
perceptron training rule [7] chosen for its higher resultant capacity than that of the 
standard Hopfield model. Further details may be found in [8, 9].  

)1( ±=

)('
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 Network performance is determined by measuring Effective Capacity [10, 11]. 
This is a measure of the number of patterns which a network can restore under a 
specific set of conditions. The network is first trained on a set of random patterns. 
Once training is complete, the patterns are each randomly degraded with 60% noise, 
before presenting them to the network. After convergence, a calculation is made of 
the degree of overlap between the output of the network, and the original learned 
pattern. The Effective Capacity of the network is the highest pattern loading at which 
this mean overlap for the pattern set is 95% or greater. The Effective Capacity of a 
network has been shown to track its underlying maximum theoretical capacity for 
fully-connected networks [10]. 

4 Results and Discussion 

In the first experiment we took a 500-node one-dimensional network with periodic 
boundary conditions, and connected it locally so that each node was connected to 50 
of its nearest neighbours around a ring. We then measured its Effective Capacity, 
Clustering Coefficient, Characteristic Path Length, and Local Efficiency as the 
network was progressively rewired in steps of 10% up to a full 100%, following the 
technique introduced by Watts and Strogatz [1]. The results appear as Fig. 1, with the 
Effective Capacity scaled (by dividing it by 20) to fit it on the same graph. 
 As first demonstrated by Bohland and Minai [4], the pattern completion 
performance of the network (as measured in this case by Effective Capacity) increases 
with rewiring up to the point where the rewiring reaches around 40%, after which, 
little further improvement is achieved. In comparing this behaviour with the structural 
properties of the underlying graph, we see immediately that Characteristic Path 
Length appears to be a poor indicator of performance in that it drops from unity to a 
value of just 0.2 as the local network is rewired by just 1%, whereas associative 
memory performance (as measured by Effective Capacity) barely increases at all. The 



other two measures, however, Clustering Coefficient and Local Efficiency, both vary 
approximately as the inverse of the Effective Capacity. 
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Fig. 1:  Effective Capacity, Clustering Coefficient, Characteristic Path Length and Local 
Efficiency vs degree of rewiring for a network of 500 units, with 50 afferent connections per 
node. Results are averages over 50 runs. 

 In order to assess to what extent the Clustering Coefficient and Local Efficiency 
might be used as a predictor of performance, a network of the same size, but using 
patterns of connectivity based on a Gaussian distribution was created, where the 
probability of a connection between any two nodes was a Gaussian function of the 
distance between them. We then made measurements of Effective Capacity, 
Clustering Coefficient and Local Efficiency for varying values of Gaussian σ, starting 
with a very tight (almost locally connected) distribution, and progressively increasing 
σ until a very broad distribution was achieved. 
 Figure 2a shows a plot of Effective Capacity vs Clustering Coefficient for the 
two networks (progressively rewired and Gaussian), while Figure 2b shows a plot of 
Effective Capacity vs Local Efficiency for the same networks. 
 
  
 
 
 
 
 
 
 
 
 
 

Fig. 2: (a) Effective Capacity vs Clustering Coefficient for a network with 500 nodes and 50 
afferent connections per node, with patterns of connectivity based on progressive rewiring 
strategy and Gaussian distributions. (b), as (a) but with Effective Capacity plotted against 
Local Efficiency. Results are averages over 50 runs in each case. 
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 As may be seen from Figure 2a, the Effective Capacity and Clustering 
Coefficient of the two networks only coincide at the two extremes of distribution - 
where the distributions of connections are extremely tight or extremely broad 
(corresponding to local connectivity or to a random graph). In the case of Figure 2b, 
however, there is an extremely strong correlation between the Effective Capacity vs 
Local Efficiency plot for both connection strategies. And indeed we have repeated 
this experiment with different patterns of connectivity - including ones based on 
exponential distributions, and on restricted uniform distributions, and their plot is 
inextricable from the curve in Figure 2b 

4.1 Larger and more sparse networks 

Further experiments were carried out to see if the relationship between Effective 
Capacity and Local Efficiency maintained for larger and for more sparse networks, 
and the results appear in Figure 3. Figure 3a is for a network of 2000 units, each with 
200 afferent connections. Clearly the relationship still maintains at this larger network 
size, and interestingly, the Effective Capacity vs Local Efficiency curve now 
approaches linearity. 
 When we decreased the connection density of the network from 0.1 to 0.001, as 
in Figure 3b, which is for a network of 5000 units, each with 50 afferent connections, 
the relationship was no longer maintained, however, with the Gaussian network 
achieving a higher Effective Capacity for a given Local Efficiency than the 
progressively-rewired network, in the central region of the graph. 
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Fig. 3: Effective Capacity vs Local Efficiency for networks based on a progressive rewiring 
strategy, and on Gaussian distributions. (a) is for a network of 2000 nodes, with 200 afferent 
connections per node, (b) is for a network of 5000 nodes, with 50 afferent connections per 
node. Results are averages over 10 runs. 

6 Conclusion 

In this work we have explored the relationship between the structural properties of 
different networks, and their pattern-completion performance when used as an 
associative memory. It was found that of the three graph theoretic measures 
examined, the Clustering Coefficient, the Characteristic Path Length and the Local 
Efficiency, one of these, the Local Efficiency, could be used to provide an accurate 
prediction of pattern-completion performance. 



 In our first experiments, using a network of 500 units, each with 50 afferent 
connections, plots of Effective Capacity against Local Efficiency for both 
progressively-rewired networks, and networks whose pattern of connectivity was 
based on Gaussian distributions followed precisely the same curve. In other words, by 
measuring the Local Efficiency of these networks we could predict exactly how many 
patterns these networks could recall under the test conditions defined by the Effective 
Capacity measure. This is an important result, especially in view of the dynamic 
nature of recurrent networks, whose performance is not straightforward to predict 
mathematically. 
 These experiments were repeated with a larger network of the same connection 
density of 0.1 (2000 units with 200 connections), and with a network of connection 
density of 0.01 (5000 units with 50 connections). It was found that in the case of the 
former the relationship was maintained, with the Effective Capacity vs Local 
Efficiency curve now approaching a straight line. In the case of the latter more sparse 
network, of connection density 0.01, the relationship was no longer maintained. 
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