Functions and Polynomials over
Finite Groups from the
Computational Perspective

Gabor Horvath

A thesis submitted to the University of
Hertfordshire in partial fulfilment of the
requirements of the degree of

Doctor of Philosophy

The programme of research was carried out in the School of
Computer Science, Faculty of Engineering and Information Sciences,
University of Hertfordshire.

March, 2008

Acknowledgements

I am grateful to my supervisors Chrystopher Nehaniv and Csaba Szabd.
They always provided me guidance when I felt lost.

I thank every mathematician with whom my research ideas were discussed.

I received much support and encouragement from my family, especially on
those days when I felt my whole world collapsing.

Finally I would like to thank everyone who directly or indirectly helped me
to finish this thesis.

Abstract

In the thesis we investigate the connections between arbitrary functions and
their realizing polynomials over finite algebras. We study functionally com-
plete algebras, i.e. algebras over which every function can be realized by a
polynomial expression. We characterize functional completeness by the so
called Stone—Weierstrass property, and we determine the functionally com-
plete semigroups and semirings. Then we investigate the computational per-
spective of the function—polynomial relationships over finite groups. We con-
sider the efficient representability, the equivalence, and the equation solvabil-
ity problems.

We approach the efficient representability problem from three directions.
We consider the length of functions, we investigate the circuit complexity of
functions, and we analyse the finite-state sequential machine representation
of Boolean functions. From each of these viewpoints we give bounds on the
potential efficiency of computations based on functionally complete groups
compared to computations based on the two-element Boolean algebra.

Neither the equivalence problem nor the equation solvability problem
has been completely characterized for finite groups. The complexity of the
equivalence problem was only known for nilpotent groups. In the thesis
we determine the complexity of the equivalence problem for certain meta-
Abelian groups and for all non-solvable groups.

The complexity of the equation solvability problem is known for nilpotent
groups and for non-solvable groups. There are no results about the complex-
ity of the equation solvability problem for solvable non-nilpotent groups apart
from the case of certain meta-cyclic groups that we present in the thesis.
Moreover, we determine the complexity of the equation solvability problem
for all functionally complete algebras.

The idea of the extended equivalence problem emerges from the obser-
vation that the commutator might significantly change the length of group-
polynomials. We characterize the complexity of the extended equivalence
problem for finite groups. For many finite groups we determine the complex-
ity of the equivalence problem if the commutator is considered as the basic
operation of the group.

Contents

1 Introduction
1.1 The efficient representability problem
1.2 The equivalence problem
1.3 The equation solvability problem
1.4 Methods

2 Functionally complete algebras

2.1 Boolean algebras,
22 Rings.
23 Groupso

2.4 Semigroupso
2.5 Semirings

3 Length of polynomial expressions
3.1 Partial functionso
3.2 The two-element Boolean algebra
3.3 Finiterings
3.4 Finite groups
3.4.1 The partial function py,,,o

3.4.2 The partial function fb(”)
3.5 The alternating group A,

3.5.1 Bounds on v <fb(”)) over A,

3.5.2 Bounds on v (py,) over A,
3.6 The commutator as a basic operation
3.7 Problems.

4 Computations over functionally complete groups
4.1 Circuit complexity L
4.2 Functionally complete groups
4.3 Comparison with two-element algebras

11
16
17

19
25
27
30
33
34

37
50
54
S7
60
65

66
71
73
7
78
84

4.4 Simulating rings by groups 106

4.5 Finite-state sequential circuits 111
4.6 Problems. e 114
5 Complexity and functionally complete algebras 115
5.1 System of equations solvability 117
5.2 Equation solvability 119
5.3 Polynomial equivalence 120
6 Polynomial equivalence for meta-Abelian groups 121
6.1 Semidirect products 123
6.2 Equation solvability 0oL 127
6.3 Problems. 128
7 Equivalence for non-solvable groups 130
7.1 Proving coNP-completeness 133
7.2 Problems. 136
8 Extended equivalence for groups 137
8.1 Nilpotent groups 139
8.2 Preliminaries 140
8.3 Meta-nilpotent groups L. 141
8.4 Non-nilpotent groups 148
8.5 Choosing the commutator 149
86 Problems. 154
9 Summary and next directions 156
References 158

A Statement on joint work 163

Chapter 1

Introduction

Nowadays, computers play larger and larger role in everyday life and in
scientific research. This is especially true in mathematics and in algebra,
where one often wants to perform calculations or computations with a ma-
chine. Computers are based on the two-element Boolean algebra, namely
B=({0,1},—,V,A), where =(0) =1, = (1) =0, V(0,0) =0, V(0,1) =
V(1,0) = Vv(1,1) =1, A(0,0) = A(1,0) = A(0,1) = 0 and A(1,1) = 1.
Instead of V (z,y) we write z Vy and instead of A (z,y) we use z Ay. The al-
gebra B has a special property which makes the computers universal, namely
every arbitrary function from {0,1}" to { 0,1} can be expressed by the ba-
sic operations —,V and A. This property is called functional completeness.
However, not only B has this property.

By a functionally complete algebra A we mean an algebra with underlying
set A and with basic operations fi,..., f,, such that for every nonnegative
integer n and for every function f: A™ — A there is a polynomial expression
p(x1,...,x,) over A such that for every n-tuple (ai,...,a,) € A™ we have
play,...,an) = f(a1,...,a,). (Polynomial expressions are expressions built
up from variables, constants from A and the basic operations of A using
composition.) The two-element Boolean algebra, matrix rings over finite
fields, and the finite simple non-Abelian groups are examples for functionally
complete algebras [40, 41, 26]. A computer based on any of these algebras
offers an alternative paradigm for computation.

To assess the power of other functionally complete algebras (especially
groups) for providing a basis for computer science, we investigate the con-
nections between functions and their representing polynomials. An arbitrary
function can be represented by many polynomials and in many ways. Usu-
ally these polynomials are required to satisfy some natural conditions, such as
shortness or efficient computability. In other cases we are given polynomials,
and we are interested in whether the functions represented by the polyno-

2 INTRODUCTION

mials have some common properties, such as: are the functions equal or do
they attain the same value for some substitution? This work investigates
these problems mainly over finite groups and therefore consists of three main
themes.

1. Find representing polynomials for an arbitrary function over a given
finite functionally complete group. We are especially interested in those
representing polynomials which are either short or fast computable.
This problem is the efficient representability problem.

2. Decide whether or not two polynomials represent the same function over
a given finite group. We are especially interested in the computational
complexity of this question in the length of the two polynomials. This
problem is called the equivalence problem.

3. Decide whether two functions, which are represented by two polyno-
mials over a given finite group, attain the same value at some substi-
tution. We are especially interested in the computational complexity
of this question in the length of the two polynomials. This problem is
called the equation solvability problem.

In Chapters 2, 3 and 4 we are interested mainly in the first theme, while
Chapters 5, 6, 7 and 8 focus on the latter two themes, which are closely
related.

Now we give a brief survey on all three themes by recalling their back-
ground. Then we explain how the Chapters of the thesis relate to the former
results. At the end of this Chapter we summarize the different methods and
their importance.

1.1 The efficient representability problem

A natural question to ask is how a function can be represented as a poly-
nomial. More interestingly, whether there is a short way of representing
and a fast way of computing an arbitrary or a specific function over a given
functionally complete algebra. These questions have been thoroughly in-
vestigated before for the two-element Boolean algebra (see e.g. [40]) or for
rings (see e.g. [29]), but there are very few results for groups. Surprisingly,
the original paper [26], characterizing the functionally complete groups, is
not algorithmic: Maurer and Rhodes first prove that a finite group G has
the so-called Stone—Weierstrass property if and only if it is simple and non-
Abelian. Then they prove for groups that functional completeness follows

1.1 The efficient representability problem 3

from the Stone—Weierstrass property. In the thesis we are particularly in-
terested in functionally complete groups. We note that some of our results
apply in a more general context, e.g. we prove theorems which hold for every
functionally complete algebra.

In Chapter 2 we first give a basic overview about functionally complete
algebras.

Definition. (equivalent to Definition 2) Let A be a finite algebra and let S
be a finite nonempty set. Let F be an arbitrary subalgebra of A®, such that:

1. F contains the constant functions, namely for every a € A there is a
function f, € F such that for every s € S we have f,(s) = a.

2. F separates every two elements of S, namely for every s; # so € S
there exists a function f € F such that f(s1) # f(s2).

If for every S these two properties imply that F = A, then we say that A
has the Stone—Weierstrass property.

We prove that the Stone—Weierstrass property is equivalent with the func-
tional completeness for any finite algebra, not only for a group:

Theorem. (Theorem 3). Let A be a finite algebra. Then A has the Stone-
Weierstrass property if and only if A is functionally complete.

Then we determine the functionally complete classical algebras. Theo-
rem 14 in Section 2.1 shows that the only functionally complete Boolean
algebra is the two-element one. The functionally complete rings are the ma-
trix rings over finite fields (Theorem 16 in Section 2.2), while the functionally
complete groups are the finite simple non-Abelian ones (Theorem 18 in Sec-
tion 2.3). Although these results were already known (see e.g. [40, 29, 26]),
we introduce algorithmic proofs for them: we use these algorithms later in
Chapter 3 to obtain upper bounds on lengths of polynomials. The last two
Sections contain the results that there are no more functionally complete
semigroups (Section 2.4) or semirings (Section 2.5) other than those already
mentioned above for groups or rings:

Theorem. (Theorem 28) Every finite functionally complete semigroup is a
group.

Theorem. (Theorem 32) Every finite functionally complete semiring is a
Ting.

4 INTRODUCTION

In Chapter 3 we investigate the length of polynomials. We give upper
and lower bounds on the lengths of shortest polynomials realizing special or
arbitrary functions.

Definition. (Definition 35 and Definition 37) The length of a polynomial
expression over A is defined recursively:

1. The length of a variable x or a constant cis 1: ||z||, = |||l = 1.

2. For an m-variable basic function f of A and for polynomial expressions
P1,- -+, Pm, the length of f (p1,...,pm) is the sum of the lengths of p;’s:
1f 01y Pm)lla = Doiey IPillo- Then the length of f(z1,...,z,,) is
1flla = m.

The length of a function f over an algebra A is the length of a shortest
polynomial p over A realizing the function f.

The two most important theorems which can be applied for functionally
complete algebras in general are Theorem 45 and Theorem 48.

Theorem. (part of Theorem 45) Let A be a functionally complete algebra
and let 0 be an element of A. Let p be a shortest polynomial realizing an
arbitrary n-ary function f over A with e-many non-zero values (1 < e <
|A|"). Then the following inequality holds:

HPHA <c-n-e?

where ¢, ¢y and co are constants depending on the algebra A and on the ele-
ment 0, c; > 1, co > 1.

Theorem. (Part of Theorem 48) Let A be a functionally complete ring or
functionally complete Boolean algebra, N = |A|. Let p be a shortest polyno-
mial realizing an arbitrary n-ary function f over A with e-many non-zero
values, where 1 < e < N™. Then the following inequality holds:

Iplly <e-(1+T-(3+n—logye)) —2-T,

where T is a constant depending on the algebra A.

For an algebra A we denote by N the number of elements of A, i.e.
N = |A|. Let 0 be an element of A. Theorem 45 bounds the length of an
n-ary function by the product of some power of n, the number e of its non-
zero values, and some constant depending on the algebra. In Theorem 48

1.1 The efficient representability problem 5

we replace the factor of n® by another factor: (34 n —logye). This new
factor is linear in n, but it can be bounded by a constant unless e is really
small compared to N". Therefore Theorem 48 gives a better upper bound;
unfortunately it cannot be applied for arbitrary functionally complete alge-
bras. Theorem 46 states that if A is a functionally complete algebra then for
large enough n there exists an n-ary function which cannot be realized with
a polynomial shorter than ¢- N™ - (log n)*1 for some constant c¢. Here and
from now on we denote the base 2 logarithm function by log.

Then in the following Sections we derive bounds for every functionally
complete algebra mentioned in Chapter 2. In Sections 3.2 and 3.3 by using
Theorem 48 we obtain bounds on the length of arbitrary n-ary functions for
the two-element Boolean algebra and for functionally complete rings.

Theorem. (part of Theorem 61) Let B be the two-element Boolean algebra.
Let f be an arbitrary n-ary function over { 0,1} with e-many non-zero values
(1<e<2"). Then

Ifllg < (3+n—loge)-e—2.

Theorem. (part of Theorem 66) Let F be a finite field, |F| = q and let f be
an arbitrary n-ary function over ¥ with e-many non-zero values. Then

HfHF§2-q-(3+n—logqe)~e

if g > 3 and
1fllg <2-(34+n—loge)-e—4

if g = 2.

Theorem. (Theorem 68) Let F be a finite field, |F| = q and let R = M (F),
the k x k-matrices over F (k> 2). Let N = |M(F)| = ¢ and let f be an
arbitrary n-ary function over R with e-many non-zero values. Then

Ifllg < 16 (log N)**- N4 (341 —logye) - e.

Theorems 61, 66 and 68 have some common properties. Apart from the
factor e and the strange factor (n — log 4 e) there is only a constant factor,
which is at most linear in the size of the particular algebra. On the other
hand, in Section 3.4 the upper bound of Theorem 75 for groups is much worse
compared to the case of rings or the two-element Boolean algebra.

Theorem. (Part of Theorem 75) Let G be a functionally complete group.
Let N = |G|. Let f be an n-ary (possibly partial) function over G with

6 INTRODUCTION

e-many non-identity values (1 < e < N™). Then the following inequalities
hold:

Hf||G < 2'KG\{1},b'Kb,G\{1}'V2 (N — 1)logV.nlogV.€_+_1,
1fllq <6272 (K —1)*- (N —1)%-n®-e+1,

where Ka\(13,5, Kpa\(11 and V' are constants depending on the group, V > 4
and K = 14+max { Ka\{110, Kpa\(1} } s bounded by the number of conjugacy
classes of G.

Apart from the factor e the bound contains a power of n and a constant,
which is a power of the size of the group. This comparison of bounds seems to
imply that groups are not the most efficient way of representing an arbitrary
function; they seem to be less efficient than rings or the two-element Boolean
algebra.

In Section 3.5 we investigate the special case when the finite simple non-
Abelian group is an alternating group A,,. We show in Section 3.1 that if
a function can be realized by a polynomial over a group Gy, and G; < Gy,
then the same polynomial realizes the function over Gy, too. This other
realization has the same length, therefore when we try to find a shortest
realization over a functionally complete group G, we can as well just embed
it into another functionally complete group and investigate realizations of
the function over the larger group. Since every finite group can be embedded
into A, for some m, we dedicate a whole Section to investigate these groups.

Theorem. (part of Theorem 88) Let m > 5 and let N = |A,,|. Let f be an
arbitrary (possibly partial) n-ary function over the group A, with at most
e-many non-identity values (1 < e). Then the following inequality holds:

Ifll <m-(BN*—9N +8) - (3n* =3n+2)-e+1.
If 4+ m, then we can replace the factor m by |m/2].

This bound is linear in e, but square in both n, N and m. This is the
possible best bound we can obtain from Theorem 75, but still differs by a
square factor of n and N from the case of rings or the two-element Boolean
algebra.

We observe that the explanation for having worse bounds for groups can
be derived from the main difference between rings and groups, namely that
rings have two basic binary operations compared to only one for groups
(which is closely related to the addition for rings). And it is indeed the case
as Section 3.6 shows: in Theorem 101 we prove similar upper bounds on the
length of an arbitrary function over a two-element set if the commutator s
considered as a basic operation.

1.1 The efficient representability problem 7

Theorem. (Theorem 101) Let G = (G,-,"*,1) be a functionally complete
group and let G¢ = (G,[,]) = (G,-,7',1,[,]), where [,] is the commuta-
tor operation of G. Let 1 # uw € G, let f be an arbitrary n-ary function
f:A{Lu}" —{1,u} with at most e-many non-identity values. Then

1f1

where Kg\(1},4 @5 a constant depending on the group G and on the element
u. When G = A,, (m>5) and u is a 3-cycle, then

/1

If 44 m, then we can replace the constant factor 4 by 2.

ce S Kaviiyu- ((10+3(n—1loge)) -e—5) + 1,

ac <4-((10+3(n—loge)) e —5) + 1.

The idea of Theorem 101 unfortunately cannot be used for an arbitrary
function f: G™ — G. We still can obtain better bounds than those in Theo-
rem 75. The result looks similar to those in Theorem 45.

Theorem. (Part of Theorem 103) Let G = (G,-,71,1) be a functionally
complete group and let G¢ = (G,[,]) = (G,-,7',1,[,]), where [,] is the
commutator operation of G. Let f be an arbitrary n-ary (possibly partial)
function over G with e-many non-identity values. Let N = |G|. Then the
following inequality holds:

If1

where K is a constant depending on the group G and is bounded by the
number of conjugacy classes of G. If G = A,,, (m >5), then

/1

If 44 m, then we can replace the constant 176 by 28.

GC§3'K4-N~7L~€,

ac S176-|m/2]- (N —1)-n-e.

These results not only show the importance of the commutator operation
in groups, but they reveal that in some circumstances it behaves similarly
as the multiplication behaves in a ring. Therefore a group with commutator
can behave similarly to a ring. We use this property later on in the thesis.

The above results are relevant to the question of whether a computer
based on a particular algebra offers a more efficient way of doing calcula-
tions than one, based on another type of algebra. Efficiency, however, can
be defined in many ways. A natural way is to consider the length of poly-
nomial expressions representing the desired function f. We are concerned

8 INTRODUCTION

mostly about this aspect in Chapter 3. In Chapter 4 we investigate different
computational models. In Section 4.1 we consider the circuit complezity.

For a functionally complete algebra A an A-circuit C'is a directed acyclic
digraph with labelled nodes. The source nodes are labelled by variables or
by constants, the other nodes (called ‘gates’) are labelled by basic opera-
tions of A. A calculation at a gate is the application of the corresponding
basic function on the values calculated at the sources of the incoming edges.
Therefore a circuit computes a function at every gate. If every calculation
at a gate takes one time-step, then the number s (C') of gates (size) corre-
sponds to the required time for calculating a function with a single processor
machine. Similarly, the length d (C') of a longest path (depth) corresponds to
the time required to calculate a function with a multiple processor machine.
For a function f: A® — A* let the complexity of f with respect to A be the
size of a smallest n-ary A-circuit which computes f; let the depth of f with
respect to A be the depth of an n-ary A-circuit which computes f and has
the smallest depth. We denote the size of f by s (f) and the depth of f by
a(f).

The main result of Section 4.1 is Theorem 117 which gives an upper bound
on the size and the depth of an arbitrary n-ary function.

Theorem. (part of Theorem 117) Let A be a functionally complete algebra,
N = |A]. Let 0 € A be an element. Let f be an arbitrary n-ary function over
A with e-many non-zero values, where 1 < e < |A|". Then the following
inequalities hold:

s(f)<er- (B+n—logye)-e—2),

s(f)<cy-n-e,

d(f) < cs-[loge] +cq- [logn] + cs,
where ¢y, . .., c5 are constants depending on the algebra A and on the element
0.

In Theorem 120 we give a lower bound on the size and the depth: we
prove that for a functionally complete algebra A and for sufficiently large n
there exist n-ary functions f; and fo such that sa (f1) > ¢- N*-n~! and
da (f2) > - (nlog N —loglogn) for some constants ¢ and ¢'.

We refine our results for functionally complete groups in Section 4.2.
Theorems 127 and 128 give sharper upper bounds on the depth and the size
than Theorem 117.

Theorem. (part of Theorems 127 and 128) Let G be a functionally complete
group. Let f be an n-ary (possibly partial) function over G with e-many non-
identity values. Let N = |G| and let K be the number of conjugacy classes

1.1 The efficient representability problem 9

in G. Then the following inequalities hold:

s(f)y<e- (N -(2K+7)—Tn—-T7+4K) -1,
d(f) <14+2log(K —1)+8log (N — 1)+ 8logn + loge.

Moreover if G = A,,, (m >5), then

s(f)<e-((2TN —14) -n+m —2) — 1,
d(f)<14logm+2-(log3+logN +logn) + loge.

If 4 4 m, then we can replace the factor (2TN — 14) by (13N — 11) and the
factor m by 2 - |m/2] in the bound on the size.

In Section 4.3 we compare the possible efficiency of functionally complete
group based circuits and two-element algebra based circuits by simulating
one with the other. Theorem 130 gives an upper bound on how much faster
two-element algebra based circuits can be compared to circuit based on a
functionally complete group.

Theorem. (part of Theorem 130) Let G be a functionally complete group and
let K be its number of conjugacy classes. Let A denote a two-element algebra
whose basic operations are at most binary. Then there exists b € G, b # 1
such that for every positive integer n and any function f: {0,1}" — {0,1}
we can find functions p1, po over G such that p1 and ps are the same function
over {1,b} as f is over {0,1} and

sa (p1) < (6K +456) - sa (f), da(p2) < (14 +2logK) - da (f).

If G = A, (for m > 5) and b = (123), then for every positive integer
number n and any function f: {0,1}" — {0,1} we can find functions p;,
po over G such that p1 and py are the same function over { 1,b} as f is over

{0,1} and

Sa, (p1) <1354 (f), da,, (p2) < 8-da(f).

If G = A,, form > 6 then we can choose b= (12)(34) and we can replace
the constants 13 and 8 by 10 and 5, respectively.

Theorem 130 entails that, given that calculating basic operations take
the same amount of time, computations based on the two-element Boolean
algebra can be at most 13 times faster than computations based on the
alternating group A and at most 10 times faster than computations based
on the alternating group A, (for m > 6). For the lower bound: Theorem 131

10 INTRODUCTION

states that if the group multiplication of a functionally complete group G is
computed by a circuit based on a two-element algebra, then the circuit has
size at least [log |G]].

In Section 4.4 we introduce a method by which a functionally complete
group can simulate the ring Z,, for an odd prime p. For every ring-polynomial
g we build an A,,-circuit C' (for m > p + 2), which has linear size in ||q||
and simulates the computation of the ring polynomial q. Whenever for some
constant ¢ we have sz, (f) < ¢ | fllz, or dz, (f) < c-||fllz,, then we can
compute f by an A,,-circuit C, such that s (C) is linear in sz, (f) or d (C)
is linear in dz, (f).

Theorem. (Theorem 136) Let p be an odd prime and let m > p+ 2. Let
a=(1,...,p) € A, let r be a primitive root modulo p and let h € A,,
such that a" = a". Let H = (h) and let A = (a). Letin: Z, — H x H
and out: Z,, — A be embeddings such that for every 0 < k <p —1 we have
out (k) = a* and in (k) = (h**, h*?) such that r* — %> =k in Z,. Then for
every Zy,-polynomial q (z1, . .., z,) there exists an A,,-circuit C' such that for
every n-tuple (rq,...,r,) over Z, the circuit C computes out (q (r1,...,75))
on the input 2n-tuple (in (r1),...,in(r,)) and

s (C) <16 lqllz,
d(C) <8llqllz, -

In Section 4.5 we investigate a different approach for function realiza-
tions than that introduced in Section 4.1. Krohn, Maurer and Rhodes in [22]
showed a method how finite-state sequential circuits can be used for calcu-
lating an arbitrary Boolean function f: {0,1}" — {0,1}. They, however,
did not measure the efficiency of their method.

A finite-state sequential circuit is a 6-tuple M = (A, B, Q, qo, A\, pt), with
basic input set A, basic output set B, state set (), starting state qg, next-
state function A: Q x A — @ and output function p: Q — B. Let A" be
the free semigroup generated by A, i.e. all finite words with positive length
constructed from the alphabet A. For any ¢t = a;---a,, € A" let us define
N (t) : Q@ — Q inductively: X (a1) (¢) = A(q,a;) for a; € A and q € Q. Let
N(ay--ag)(q) = N(ag) (N (a1---ax_1)(q)) for ay...ap € AT and ¢ € Q.
Let My (a;...a;) = p (N (a1 ...ax) (¢)). This is the letter which machine M
when started in state ¢ outputs for the word a ... ay.

Let F(Q) denote the semigroup of all transformations of @ into itself
under the multiplication -, where for f,g € F(Q) we have (f-¢g)(q) =
g(f(q). Then X: A" — F(Q) is a homomorphism: X (ay...agby ...by) =
N(ay...ar) - N (by...by,). Let us denote N (AT) by M®. We call M® the
semigroup of the machine M.

1.2 The equivalence problem 11

Definition. (Definition 137) Let M = (A, B, @, qo, A\, i) be a finite-state
sequential circuit. We say that M is a simple non-Abelian Boolean circuit if
A=B={0,1}, u(Q) ={0,1}, and M* as a subsemigroup of F (Q) is a
transitive simple non-Abelian group which is generated by two elements.

All simple non-Abelian Boolean circuits can be constructed in the follow-
ing way: let G be a finite simple non-Abelian group generated by the elements
go and ¢g;. Let H < G be a subgroup. Let us consider the right cosets of
Hin G: let R={Hg:9€G}. Let p: R — {0,1} with u(R) ={0,1}
be arbitrary. Then M = ({0,1},{0,1}, R, H, A, 1) is a simple non-Abelian
Boolean circuit where A (Hg, k) = Hggy, for k =0, 1.

Definition. (Definition 139) Let G be a finite simple non-Abelian group,
where the elements g and g; generate G. Let M = ({0,1},{0,1}, R, H, A\, 1)
be a simple non-Abelian Boolean circuit. Let p be an n-ary polynomial over
G which does not contain inverses and every constant occurring in p is either
go or gi. Then B(M,p): {0,1}" — {0,1} is the Boolean function of n
variables such that

B(M,p) (1, yn) = Mu (0 (gys- - 9.) = (N 0 (g41+- - -, 9y)) (H)).

In Theorem 140 we use the results of Chapter 3 for giving an upper bound
on |[p].

Theorem. (Theorem 140) Let G be a finite simple non-Abelian group, where
the elements go and g, generate G. Let K be the number of conjugacy classes
of G andlet N = |G|. Let M = ({0,1},{0,1},R,H, A\,) be a simple non-
Abelian Boolean circuit such that p(R) = {0,1}. Let f: {0,1}" — {0,1}
be an arbitrary function with e-many non-zero values. Then there exists a
polynomial p over G such that p does not contain inverses and every constant
in p is either gy or ¢1, f = B(M,p), and

Ipl <1605632- (N —1)- (K —1)*-n® e+ (N —1).

IfG=A, m>5),H=A,,_1,9 =(123), and g1 = (3 ... m) (if24m)
orgr=(12)(3...m) (if 2| m) then we can choose p, such that

Ipll <128 |m/2] -n*-e+ (N —1).

1.2 The equivalence problem

Up to this point we were interested in finding polynomials which represent
certain functions. Another interesting aspect is to find the functions repre-
sented by polynomials, more precisely to decide whether or not two given

12 INTRODUCTION

polynomials define the same function. This problem is called the polynomial
equivalence problem or identity checking problem. This question is interest-
ing not only for functionally complete algebras, but for any algebra; and not
only for polynomials, but for terms (expressions built up from variables and
the basic operations of A using composition, but without constants) as well.
This problem is called the equivalence problem. These questions are clearly
decidable for any given finite algebra: one only has to check whether the two
polynomials (or terms) attain the same value for every possible substitution
from the given algebra. Thus the interesting question is whether or not this
decision can be made in some fast way, i.e. to determine the computational
complexity of deciding whether or not two polynomials (terms) represent the
same function.

To every term or polynomial expression ¢(x1, ..., z,) and each algebra A
we denote the naturally associated function by t4: A" — A. We recall that
an algebra A satisfies an equation s(Z) = () for & = (z1,...,x,), if the

corresponding functions s* and t* are the same function. We denote this by
AEs~t.

Definition. (Definition 141) FEquivalence problem and polynomial equiva-
lence problem.

Given: A finite algebra A.

Instance: Two term expressions (for the equivalence problem), or
two polynomial expressions (for the polynomial equivalence problem).
Let the two expressions be s and t.

Question: Do the two input expressions realize the same function over
A, ie. does A = s~ t hold?

The complexity is always in coNP: for proving that two polynomials or
terms are not realizing the same function it is enough to check a substitution
where they differ. Similarly, it is easy to see that whenever the equivalence
problem is coNP-complete, so is the polynomial equivalence problem. More-
over if the polynomial equivalence problem is in P, so is the equivalence
problem.

In Section 5.3 we determine the complexity of the polynomial equivalence
problem for functionally complete algebras.

Theorem. (Theorem 146) The polynomial equivalence problem for a non-
trivial functionally complete algebra A is coNP-complete.

1.2 The equivalence problem 13

This is a joint result with Nehaniv and Szabo [14]. A corollary of this
theorem is that the polynomial equivalence problem is coNP-complete for
matrix rings over finite fields or for finite simple non-Abelian groups.

For finite commutative rings the computational complexity of the equiv-
alence problem is completely characterized by Hunt and Stearnes [16]. They
proved a dichotomy theorem: if a finite commutative ring is nilpotent, then
the equivalence problem is in P; if it is not nilpotent, then it is coNP-
complete. Later Burris and Lawrence generalized the result for arbitrary
finite rings [2]. It follows from their proof that the same holds for the poly-
nomial equivalence problem, too.

Much less is known for groups. There is a result of Burris and Lawrence
[3] from 2004 that checking identities can be done in polynomial time for
every finite nilpotent group and for the dihedral group D,, for odd n. It thus
naturally arises to investigate the case of meta-Abelian groups. We carry
out this examination in Chapter 6 and prove for several kinds of semidirect
products that the complexity of the polynomial equivalence problem is in P.
The following theorem summarizes the main results:

Theorem. (Theorem 151 and Theorem 154) Let G ~ A x B such that the
following hold:

(a) A is Abelian and either the exponent of A is squarefree or A is cyclic;
(b) the polynomial equivalence problem for B is in P;

(¢c) for ever prime p dividing the size of A and P € Syl,(A) the group
B/Cg(P) is Abelian and p t |B/Cg(P)|, where Cg(P) denotes the
centralizer of P in B.

Then the polynomial equivalence problem for G is in P.

Examples for such groups are the above-mentioned dihedral groups, the
alternating group Ay, or the wreath product of two cyclic groups. This is a
joint result with Szabd [15].

These were results with polynomial time complexity. There are groups,
for which the equivalence problem (and so the polynomial equivalence prob-
lem) is coNP-complete. In Chapter 7 we prove the following:

Theorem. (Theorem 156) The equivalence problem for a finite nonsolvable
group G is coNP-complete.

From this result one wonders whether a dichotomy theorem, similar to
the one for finite rings, holds for finite groups. At the moment this is an open
question. Theorem 156 is a joint result with Lawrence, Mérai and Szabo [13].

14 INTRODUCTION

In Section 3.6 we observed that the commutator as a basic operation can
significantly change the length of realizing polynomials for several group-
functions. For example, the expression [[[x1, 23], 23], ..., z,] has length n if
the commutator is a basic operation, but has exponential length in n when
expressed by only the group multiplication. Such a decrease in the length
suggests that the complexity of the equivalence problem might change if
the commutator is a basic operation. Other group operations might have a
similar property. A straightforward question arises, whether the complexity
of the equivalence problem changes by taking one or more new operations as
additional basic operations. Moreover, this question is interesting not only
for groups but for all finite algebras. Hence we can raise the question in
general:

Definition. (Part of Definition 166) Let f1, ..., f, be polynomial expressions
over the group G. The algebra (G, fi,..., f,) is defined to be the algebra
(G,-, 7Y 1, f1,..., fn), i.e. the algebra with underlying set G and with basic
operations -, , 1 together with fi,..., f, as well.

1. The extended equivalence problem for G.
We say that the extended equivalence problem for G is in P if for all
possible term expressions fi,..., f,, built up from variables and the
basic operations of G, the equivalence problem over (G, f1,..., f.) is
in P (Theorem 168).

We say that the extended equivalence problem for G is coNP-complete
if there exist some term expressions f1, ..., f,, built up from variables
and the basic operations of G, such that the equivalence problem over
(G, fi1,..., [n) is coNP-complete.

2. The extended polynomial equivalence problem for G.
We say that the extended polynomial equivalence problem for G is in
P if for all polynomial expressions fi,..., f,, built up from variables,
constants from G and the basic operations of G, the polynomial equiv-
alence problem over (G, fi,..., f,) is in P.

We say that the extended polynomial equivalence problem for G is
coNP-complete if there exist some polynomial expressions fi,..., fy,
built up from variables, constants from G and the basic operations of
G, such that the polynomial equivalence problem over (G, fi,..., fu)
is coNP-complete.

In Chapter 8 we consider the complexity of the extended equivalence
problem and the extended polynomial equivalence problem for finite groups.

1.2 The equivalence problem 15

We start with nilpotent groups in Section 8.1. The (original) equivalence
and the polynomial equivalence problems for finite nilpotent groups are in P
by Burris and Lawrence [3]|. Using the idea of their proof we prove that the
extended polynomial equivalence problem is in P.

We prove in Chapter 7 that for non-solvable groups the equivalence prob-
lem is coNP-complete. As the extended problems are always at least as ‘hard’
as the original, we can conclude that the extended equivalence and the ex-
tended polynomial equivalence problems are coNP-complete for non-solvable
groups. The complexity of the equivalence problem for non-nilpotent solvable
groups is, for the most part, a terra incognita of mathematics. Only very few
partial results are known (in Section 6.1 we proved that for a special class
of meta-Abelian groups the complexity of the equivalence problem is in P,
e.g. for meta-cyclic groups, dihedral groups Dog 1, S3 or Ay), but we do not
know the answer even for the symmetric group S;. The following theorem
completes the characterization of the extended equivalence problem:

Theorem. (Theorem 169) Let G be a finite solvable non-nilpotent group.
Then there exists a term expression f (built up from wvariables and the ba-
sic operations of G) such that the equivalence problem for (G, f) is coNP-
complete.

From these results we immediately have the following corollary:

Corollary. (Corollary 170) Let G be a finite group. If G is nilpotent then the
extended equivalence and the extended polynomial equivalence problems are
in P. If G is not nilpotent then the extended equivalence and the extended
polynomial equivalence problems are coNP-complete.

The function f is not uniform in these proofs; it depends on the group
G. However, we show in Section 8.5 that for a large class of groups f can be
chosen as the commutator.

Let us recall that the lower central series for a group G is the following
sequence of normal subgroups: v (G) = G, % (G) = [G,7-1 (G)]. It is
clear that if ¢ < j, then v, (G) > v, (G). For every finite group the lower
central series terminates in 7;, (G) for some iy. Let us denote this normal
subgroup v;, (G) with N = N (G).

Theorem. (Theorem 184) Let G be a non-nilpotent group, let N = N (G) be
the final term of the lower central series as defined above. Let us suppose that
N and G/Cq (N) are both Abelian. Let us suppose that exp (G/F (G)) > 2,
where F (G) is the Fitting subgroup of the group G. Then the equivalence
problem for (G, [,]) is coNP-complete, where [,] denotes the commutator op-
eration.

16 INTRODUCTION

Comparing the results of Section 8.5 to the results of Section 6.1 we can
conclude that the complexity of the equivalence and the extended equiva-
lence problems are not always the same. In Section 6.1 we prove that the
equivalence problem for A4 is in P. By Theorem 184 the equivalence problem
for (A4, [,]) is coNP-complete. Moreover we observe that if a corresponding
theorem could be shown for any G such that G/Cg (N) and N are both
Abelian, and exp (G/F (G)) = 2, then Theorem 169 would follow by induc-
tion with f being the commutator of the group. If, however, it is not the
case, then the characterization would be much harder.

1.3 The equation solvability problem

One of the oldest algebraic questions, equally important in computer science,
is to decide whether or not an equation has a solution. This question again
can be easily decided over finite algebras: one only has to check whether
there is a substitution for which the two sides of the equation attain the same
value. Thus the interesting question is again to determine the computational
complexity of deciding whether two polynomials can attain the same value
at some substitution. This is the equation solvability problem or equation
satisfiability problem.

Definition. (Definition 142) Equation solvability problem.
Given: A finite algebra A.
Instance: Two polynomial expressions p, gq.

Question: Do the two input polynomials attain the same value for at least
one substitution over A, i.e. does the equation p = ¢ have a solution
over A?

The computational complexity of the equation solvability problem is NP-
complete for functionally complete algebras. Nipkow asserted it in [29]; his
proof, however, yields only a weaker theorem. In Section 5.2 we first give
the theorem that follows from his proof, then give the complexity of the
polynomial satisfiability problem for functionally complete algebras:

Theorem. (Theorem 143) The equation solvability problem for a nontrivial
functionally complete algebra A is coNP-complete.

This is another joint result with Nehaniv and Szabo in the paper [14].

Surprisingly there are no published papers about the complexity of the
equation solvability problem for finite rings. The complexity of the equation

1.4 Methods 17

solvability problem has been solved for nilpotent or non-solvable finite groups
by Goldmann and Russell [10]. In Section 6.2 we determine the complexity
of this problem for meta-Abelian groups with pg-many elements and prove
the following:

Theorem. (Theorem 155) For any group G of order pq where p and q are
primes the equation solvability problem for G is in P.

No other results are known about the complexity of the equation solv-
ability problem for groups.

After comparing the complexity of the equivalence, polynomial equiva-
lence, or equation solvability problems, one might think that if any of these
three complexities is in P for a particular algebra, then the two other com-
plexities are in P for the same algebra. This is, however, not the case: Seif
and Szabo presented a 10 element semigroup (see [34]) for which the equiv-
alence problem is in P and the equation solvability problem is NP-complete.
Klima proved an even stronger result in [20], where he showed a semigroup
of size 24 for which the equation solvability problem is NP-complete but the
polynomial equivalence problem is in P. An open question of the thesis is
whether there exist such examples among groups.

1.4 Methods

Several methods appear throughout the thesis; many of them are used and
recur for proving theorems from different areas of algebra or of computational
complexity. We summarize them here and note how they are used.

Iterating functions in logarithmic depth. This is one of the most im-
portant methods used in Chapter 3. We observe that certain binary
polynomial expressions can be iterated many times quite efficiently, i.e.
in a way that the n-ary version of the polynomial expression will have
polynomial length in n. Detailed description of the method can be
found in Lemma 44. The method is used in the proof of Theorem 45,
and in Section 3.4 for estimating the length of the ‘and’ function over
groups. The method is also used in Section 5.2, where we prove that the
equation satisfiability problem is NP-complete over functionally com-
plete algebras. Chapter 7 uses the method to prove that a certain n-ary
commutator expression has polynomial length in n.

Recursive function realization. Theorem 48 gives better bounds than
Theorem 45 as we realize the function recursively: we realize the n-
ary function f(xy,...,z,) with the help of the (n — 1)-ary functions

18

INTRODUCTION

fo (1, .. xn_1) = f(x1,...,24_1,a), where a is a constant element of
the algebra. Detailed description of the method can be found in the
proof of Theorem 48. The idea can be improved further in a way to
obtain the theoretically best possible bounds. The method, however,
cannot be used efficiently for every functionally complete algebra, it can
only be applied for algebras with at least two binary basic operations.
The method is useful for the two-element Boolean algebra or for rings,
but not for groups, since groups have only one binary operation. This
leads to the idea of taking the commutator as a basic operation, which
is investigated in Section 3.6. We observe that using the commutator
enables us to efficiently realize functions using recursion.

The commutator as a basic operation. In Section 3.6 we observe that

taking the commutator as a basic operation can change the length of
polynomial expressions significantly. The idea of the recursive function
realization (as mentioned above) can be used efficiently, which shows
that the group multiplication and commutator in some circumstances
behave similarly as the ring addition and multiplication. In Section 8.5
we show that for many non-nilpotent groups the complexity of the
equivalence problem is coNP-complete when using the commutator as
a new basic operation. For many of these groups the complexity of
the equivalence problem is in P. Therefore taking the commutator as
a basic operation effectively changes the complexity, which is further
evidence of the importance of the commutator in complexity questions
on functions over groups.

Exploiting the endomorphism ring structure. In Chapter 6 we con-

sider groups with structure G = A x B, where A is Abelian. We
reduce the equivalence problem of G to the equivalence problem over
the endomorphism ring End A. In Chapter 8 for any non-nilpotent
group we find some Abelian subgroup A < G and we polynomially
reduce the extended equivalence problem over the original group to the
equivalence problem over the endomorphism ring End A. The third
application of the method is used in Section 4.4, where we efficiently
simulate the ring Z, by an alternating group A,,, for m > p+2. Again,
we find an Abelian subgroup in A,, whose endomorphism ring is iso-
morphic to Z,.

Chapter 2

Functionally complete algebras

In this Chapter we give some general theorems about functionally complete
algebras. Then we determine all functionally complete algebras for some
classical structures, e.g. for Boolean algebras, rings, groups, semigroups and
semirings. These theorems and proofs are used in Chapter 3, where we try
to find short realizing polynomials for arbitrary functions.

Let A be a finite algebra with underlying set A (we usually denote the
algebra by boldfaced capital letter and denote the underlying set by an ital-
ics capital letter). Every algebra in the thesis is finite and contains at least
two elements, unless we explicitly indicate otherwise. Let p and ¢ be two
n-variable polynomial expressions over A, i.e. expressions built up from vari-
ables, constants from A and the basic operations of A using composition.
An equivalent definition is that an n-ary polynomial over A is a function
built up the constant function, the projections and the basic operations of
A using composition. The variable x; corresponds to the ith projection
mi: A" — A, for which m; (z1,...,x,) = z;. Both perspectives can be useful
in different situations. By definition A is functionally complete if and only
if every function over A can be expressed (or realized) as a polynomial of
A, ie. for every nonnegative integer n and for every function f: A" — A
there is a polynomial expression p (x1,...,z,) over A such that for every n-
tuple (ay,...,a,) € A" we have p(ay,...,a,) = f (a1,...,a,). We note that
a nontrivial functionally complete algebra must contain an at least binary
basic operation.

A term expression over an algebra A is an expression built up from vari-
ables (or projections) and the basic operations of A. The difference between
term expressions and polynomial expressions is that terms are not allowed
to have constants, but polynomials are. If every possible function over A can
be realized as a term expression of A, then A is a primal algebra. Primality
is a stronger assumption on an algebra than functional completeness, but

20 FUNCTIONALLY COMPLETE ALGEBRAS

they coincide if A contains all constants as nullary basic operations. In the
following we only consider functionally complete algebras.

Sometimes we add new functions over A to the algebra A as basic op-
erations. If we add the functions fi,..., f, as new basic operations to the
algebra A, then we denote the algebra obtained by (A, f1,..., fn)-

Maurer and Rhodes proved in [26] that among nontrivial finite groups
exactly the simple non-Abelian ones are functionally complete. They did
not give a direct proof but proved a Stone—Weierstrass Theorem and as a
corollary they obtained the functional completeness of the finite simple non-
Abelian groups.

Definition 1. Let A be a finite algebra with underlying set A. Let S be an
arbitrary set and let F(S, A) be the set of all functions S — A. For every
basic operation g of A we define ¢’ over F(S, A) in the following way: if ¢
is an n-ary operation and fi,..., f, € F(S,A), then ¢' (f1,...,fn): S — A
and ¢ (f1,..., fn)(s) = g(fi(s),..., fn(s)). With these basic operations
F(S,A) is an algebra with the same type as A. We usually denote ¢’ as g
if it does not create confusion. We note that F(S, A) is isomorphic to the
|S|-fold direct product A% of A with itself.

Definition 2. Let A be a finite algebra and let S be a finite nonempty set.
Let F be an arbitrary subalgebra of F(S, A), such that:

1. F contains the constant functions, namely for every a € A there is a
function f, € F such that for every s € S we have f,(s) = a,

2. F separates every two elements of S, namely for every s; # s; € S
there exists a function f € F such that f(s1) # f(s2).

If for every S these two properties imply that F = F(S, A), then we say that
A has the Stone—Weierstrass property.

In Section 2.3 we give a direct proof that the finite simple non-Abelian
groups are the only functionally complete groups. Comparing it to the the-
orem in [26] we can conclude that functional completeness and the Stone—
Weierstrass property are equivalent among finite groups. There are no direct
proofs, whatsoever, for this equivalence in the literature; moreover the two
properties are equivalent in general, namely

Theorem 3. Let A be a finite algebra. Then A has the Stone—Weierstrass
property if and only if A is functionally complete.

2 Functionally complete algebras 21

Proof. Let us suppose that A has the Stone—Weierstrass property. Let
S = A" for an arbitrary nonnegative integer n. Let F be a subalgebra
of F(S,A) = F(A", A) which contains every constant function and every
projection to a coordinate. Then F has both properties in Definition 2 and
A has the Stone—Weierstrass property, hence F = F(A™ A). This is true for
every nonnegative integer n, hence A is functionally complete.

Conversely, let us suppose now that A is functionally complete. Let S
be a finite nonempty set and F be a subalgebra of F(S, A) which contains
the constant functions and separates the elements of S. Let n = ('g ‘) and let
fs1.5» € F be a function for which fs, s,(s1) # fs,.5.(52). Let f1,..., f, be an
enumeration of these n-many functions. For every a € A let f,: S — A be
the constant a function: for every s € S let f,(s) = a.

The idea is the following: we give an embedding e: S — A* for some k.
The embedding e will be defined in a way, such that f;’s become the com-
position of 7; |im . with e™! (where 7;: A* — A is the ith projection). Then
using the functional completeness of A, for an arbitrary function f: S — A
we define a polynomial p: A* — A, built up by the projections and the con-
stant functions, such that f is the composition of p |im . and e™!. As p is
built up from the projections and constant functions, so is f from f;’s and
fa's.

Let e: S — A" be the following embedding of S to A™: e(s) = (fi(s), ..., fa(s)).
Note that if m;: A — A is the projection to the ith coordinate, then
fi = T; Oe.

S ¢ A"

Now let f: S — A be an arbitrary function. We prove that f € F. Let
p: A" — A be a function such that f = poe, i.e. for every s € S we have
f(s) = p(e(s)). Such a function p exists, since e is an embedding. Now A is
functionally complete, hence p is the composition of constant functions p,,
projections 7; and the basic functions of A. Composing p with the embedding
e we obtain f. In p replacing every m; by f; and every constant p, by f, yields
that f is a composition of the functions f; = m;oe (1 <i <n) and f, = p,oe
(a € A). Since all f;’s and f,’s are in F, f € F, too. O

The following proposition claims that a functionally complete algebra has
no nontrivial homomorphism:

22 FUNCTIONALLY COMPLETE ALGEBRAS

Proposition 4. If a finite algebra A is functionally complete, then it has no
nontrivial homomorphisms, namely if h: A — B is a surjective homomor-
phism, then either h is an isomorphism or |B| = 1.

Proof. If a nontrivial homomorphism h: A — B exists, then there are 3
distinct elements ay, as, ag € A such that h(ai) = h(az) # h(as). Let f: A —
A be any function such that f(a,) = a1, f(as) = az. Now, if f is represented
by a polynomial p of A, then by the interchangeability of p and h (which
follows from the definition of homomorphism) we have

h(ar) = h(p(a1)) = p(h(ar)) = p(h(az)) = h(p(az)) = h(as),

a contradiction. Hence if a nontrivial homomorphism h exists, then the
above-mentioned f cannot be represented as a polynomial of A and A is not
functionally complete. O

Remark 5. We note that an algebra has no nontrivial homomorphisms if
and only if it is congruence-simple, i.e. it has no nontrivial congruence rela-
tions. Proposition 4 claims that every finite functionally complete algebra is
congruence-simple. The converse holds for non-nilpotent rings (Section 2.2)
and for non-Abelian groups (Section 2.3) but not in general, e.g. does not
hold for semigroups (Section 2.4) or for semirings (Section 2.5).

The following theorem has been proved in [29] (first in [30]), but we
discuss it, as we use the ideas of the proof later on.

Theorem 6. Let A be an algebra, where |A| > 2. The algebra A is func-
tionally complete if and only if the following three conditions hold:

1. there exist two distinct elements, called 0 and 1,

2. there ezist two binomials (binary polynomials) + and - such that 0+a =
a+0=a,a-0=0anda-1=a for every a € A,

3. for every a € A there exists a monomial (unary polynomial) x, such
that xa(a) = 1 and x.(b) = 0 if b # a (the monomial characteristic
functions).

Proof. It A is functionally complete and |A| > 2, then assign 0 and 1 to two
distinct elements of A and the polynomials described in the three conditions
clearly exist.

If the three conditions hold, then we want to construct a polynomial
for every m-variable function f: A® — A. First we prove that for ev-
ery ai,...a, € A there exists an n-variable polynomial x4, 4, such that

2 Functionally complete algebras 23

Xayoonan (A1, -, ay,) =1 and X, a, (b1, ..., b,) = 0 whenever b; # q; for any
1 < n. Indeed,

n
Xai,....an (xla e 7xn) = H Xa; (xZ) (2-1)
=1

has the property that if z; = a; for every ¢ then x,, ., is evaluated as 1,
otherwise it is evaluated as 0.

We have to note though that since - is not necessarily associative or
commutative, the meaning of [[is not straightforward. But it is easy to see
that if we define] as an iterated version of -, then neither the ordering of the
elements we multiply together nor the iteration method of the multiplication
will change the fact that x,, . ., defined with formula (2.1) will have the
required property. Indeed, by the assumption we know that 1-1 = 1 and
0-1=0bya-1=a,moreover 1-0=0and 0-0=0 by a-0=0. During the
evaluation of x4, . ., on some input we multiply 1’s and 0’s together. The
result will be either 1 or 0, depending only on whether there were any 0’s
and not depending on the method or the ordering of the multiplication.

Now we create an n-variable polynomial p, which evaluates a given arbi-
trary n-variable function f: A" — A. Let p be the following:

p(xy, ..., 2p) = Z (f(a1,---50n) * Xayoan (T15 -2 20)),

(at,...,an)EA™

n

where) is an iterated version of +, the ordering of the elements or the iter-
ation method is immaterial. It is clear that when we evaluate p on the input

(ay,...,a,), then every summand will be 0 except one, which is f (aq, ..., a,).
So the sum is f (ay,...,a,), depending neither on the ordering of the sum-
mands nor on the method of the addition. O

Remark 7. We denote with x,(z) the characteristic function for which x,(a) =
1 and x.(z) = 0 if x # a. We denote the n-ary characteristic function with
Xar,an (1, - -, Tp), for which Xa,, . a, (a1,...,a,) = land xqy . ¢, (T1,..., %) =
0 if z; # a; for some i. These definitions however do not immediately
make sense over groups, where we have an identity element correspond-
ing to 0 (and the group multiplication naturally corresponds to the oper-
ation + in Theorem 6), but no natural group element corresponds to 1.
Hence for some b # 1 let x4 () be the characteristic function for which
Xap (@) = b and x4 (x) = 1 if # a. Let us denote the n-ary characteristic
function with xa, 4,5 (%1,...,2y), for which x4, 4.5 (a1,...,a,) = b and
Xayoand (T15 -+, Ty) = 1 if 2; # a; for some i. The semi-colon makes a dif-
ference between the two possible meanings of the indexes. We note here that
there not necessarily exists a natural group operation which corresponds to
the operation - in Theorem 6.

24 FUNCTIONALLY COMPLETE ALGEBRAS

Corollary 8. If R is a finite ring with an identity element, then R is func-
tionally complete if and only if every 1-variable function can be expressed as
a polynomial.

Proof. If R is functionally complete, then every 1-variable function can be
expressed as a polynomial. For the other direction we use Theorem 6: let us
choose + and - as the regular addition and multiplication of the ring, and let
us choose 0 and 1 as the zero and unit-element of the ring. The monomial
characteristic functions exist by the assumption that every 1-variable function
can be expresses as a polynomial. O

There are other equivalent conditions for functional completeness. One
of them is that the discriminator function can be expressed.

Theorem 9. An algebra A is functionally complete if and only if there exists
a three-variable polynomial d such that it is a discriminator, i.e.

= { 3050

Proof. 1t is clear that if A is functionally complete then the discriminator
polynomial exists. Now assume that d is a discriminator polynomial, let 0
and 1 be two arbitrary (different) elements of A. We will use Theorem 6 and
express +, - and X, using the discriminator d.

Let z+y =d(y,0,2z). Now 24+ 0=d(0,0,2) = 2 (hence 0+ 0 = 0) and
if x # 0 then 0+ 2 =d(z,0,0) = z as well.

Let z-y = d (0,d(0,y,1),z). Now 2-0=d(0,d(0,0,1),z) =d(0,1,z) =
Oand z-1=4d(0,d(0,1,1),2) =d(0,0,2) = z.

Let xo(x) = d(0,z,1) and x, () = d(0,d(a,z,0),1) for every a # 0.
Now x0(0) = d(0,0,1) = 1 and xo(b) = d(0,b,1) = 0 for every b # 0.
Moreover (for every a # 0) we have x, (a) = d (0,d (a,a,0),1) =d(0,0,1) =
1 and x, (b) = d(0,d(a,b,0),1) =d(0,a,1) =0 for every b # a. O

Remark 10. We mention that if the polynomials x + y, x - y and xo(z) have
the properties as in Theorem 6, and if x —y can be expressed by a polynomial
such that + —y = 0 if and only if x =y and 1 —0 = 1, then x, and d can be
expressed as follows:

Xa(2) = Xo(z—a),
d(z,y,2) = z-xo(@—y)+z-(1-x0(z—y)).
We summarize the conditions equivalent to functional completeness:

Theorem 11. The following are equivalent.

2.1 Boolean algebras 25

1. The algebra A s functionally complete.

2. For every nonnegative integer n and for every function f: A" — A
there is a polynomial expression p(xq,...,x,) over A such that for
every n-tuple (ay,...,a,) € A" we have f (ay,...,a,) =p(ay,...,a,).

3. The algebra A has the Stone—Weierstrass property, i.e. for every finite
nonempty set S if a subalgebra F of A has the following two properties
then F = AS:

(a) F contains the constant functions, namely for every a € A there
is a function f, € F such that for every s € S we have f,(s) = a.

(b) F separates every two elements of S, namely for every s; # s € S
there exists a function f € F such that f(s1) # f(s2).

4. The following three conditions hold:

(a) there exist two distinct elements, called 0 and 1,

(b) there exist two binomials (binary polynomials) + and - such that
O+a=a+0=a,a-0=0anda-1=a for everya € A,

(c) for every a € A there exists a monomial (unary polynomial) xq
such that x.(a) =1 and x.(b) = 0 if b # a (the monomial char-
acteristic functions).

5. The three-variable discriminator polynomial exists:

onr-{2 470

In the following Sections of this Chapter we determine all functionally
complete algebras for different classes. We start with one of the most well-
known class, the Boolean algebras.

2.1 Boolean algebras

It is well-known that the two-element Boolean algebra is functionally com-
plete. This is the main reason that we can build universal machines based
on this algebra. In this section we determine all finite functionally com-
plete Boolean algebras. Our main reference on Boolean algebras and their
representation is [36].

26 FUNCTIONALLY COMPLETE ALGEBRAS

Definition 12. A Boolean algebra is a distributive complemented lattice,
i.e. it has two binary operations A (meet or and), V (join or or), a unary
operation = (complement or not) and two distinct elements 0 (or false) and
1 (or true), such that A and V are both associative, commutative, moreover
they satisfy both distributive laws, the absorption laws (a A (a V b) = a and
aV(aAb)=a),aN—-a=0and aV-a=1.

Remark 13. The reader might wonder why we consider the quite specific
Boolean algebras instead of e.g. the more general concept of lattices. It is
easy to see, that there are no functionally complete lattices, as the lattice
operations are order-preserving considering the usual partial ordering on the
lattice. Hence, to make lattices as candidates for functionally complete alge-
bras, we have to include at least one more operation which does not preserve
the lattice partial ordering. The complement fulfills this requirement. We
note that a complemented lattice does not have to be distributive, such as
Boolean algebras are. Nevertheless, the most common complemented lattices
are Boolean algebras; we only consider them in this Section.

We denote the two-element Boolean algebra by B = ({0,1},A,V,—). By
Stone’s Representation Theorem we know that every finite Boolean algebra
has of order 2* for some positive integer k, and it is isomorphic with the
complemented lattice of all subsets of the set {1,...,k}. Moreover, the
2%_element Boolean algebra is isomorphic with B*. The following theorem
states that the only functionally complete Boolean algebra is the two-element
algebra B.

Theorem 14. If A is a finite Boolean algebra, then A is functionally com-
plete if and only if A = B.

Proof. The ‘only if’ part is quite easy, as by Stone’s Representation Theorem
we know that A = B* for some positive integer k. Since the projections are
nontrivial homomorphisms, applying Proposition 4 we have that £ = 1, so
the only possible candidate is A = B.

For the other direction we use Theorem 6. Let x +y = (x A —y) V
(mx Ay) and let x -y = x Ay. These are the usual mod 2 addition and
multiplication operations over the set {0,1} and satisfy the conditions in
Theorem 6. Moreover the two unary characteristic functions can be expressed
as xo () = =z and x; () = . By Theorem 6 we have that B is functionally
complete. O

Remark 15. We note that if we consider A = B* and we take the ith projec-
tion m;: A — A, m (a1,...,a,) = (0,...,0,a;,0,...,0) for every 1 <i <k

2.2 Rings 27

as a basic operation, then the obtained algebra (A, mq,...,m) is function-
ally complete. Expressing any function f: (Bk)n — B¥ over (A, m,...,m)
is, however, not essentially different than expressing every coordinate of f
over B and taking the V of their projections, hence we do not pay any more
attention to these algebras.

Second proof of Theorem 14. We give the discriminator operation:
d(z,y,2) = (((xA-y)V(czAy)) Ax) V(@ V-y) Az Vy)Az).
It is easy to see that d(z,y,2) = zif v =y and d(x,y,2) =z if x # y. O

B is not the only functionally complete algebra with 2-elements. If an
algebra over {0,1} can express the basic operations of B, then it is func-
tionally complete, too. In Section 2.2 we prove that the two-element field is
another such example. The multiplication of this field is the same as A and
the addition is the same as in the proof (z +y = (z A —y) V (mz Ay)). It is
sometimes called zor (ezclusive or), too.

We consider here another two-element functionally complete algebra, as
it has the most important practical application in Computer Science. Con-
sider the algebra By = ({ 0,1}, NAND, NOR), where t NAND y = = (z A y)
(negation of and) and x NORy = = (x V y) (negation of or). This algebra is
functionally complete: either only NAND or only NOR is already enough to
express A, V and —, as the following equations show:

~+ = 2NAND1 =2 NOR0 (2.2)
rAy = (zNANDy)NAND1 = (x NORO)NOR (y NORO) (2.3)
xVy = (zNAND1)NAND (y NAND0) = (x NORy) NORO (2.4)

These equations show that not only By, but Byanp = ({0,1},NAND) and
Bror = ({0,1},NOR) are functionally complete, too. Today’s computers
are based on By as the NAND and NOR operations can be realized quite
easily in practice [12]. In later Chapters we mainly consider B and By.

2.2 Rings

In this Section we determine the functionally complete rings. We note that
we do not require that the ring has an identity, the proofs work without it.
The only notion we use, which is usually not considered for rings without
an identity, is the Jacobson radical. The Jacobson radical can be defined
for rings without identity, the same properties (which make sense without
identity) can be proved and the Wedderburn—Artin Theorem holds, too [17].

28 FUNCTIONALLY COMPLETE ALGEBRAS

The following theorem has a similar proof in [29], but we give a proof here,
as it is quite algorithmic and gives an explicit way of realizing an arbitrary
function over a functionally complete ring.

Theorem 16. A finite ring R is functionally complete if and only if R is a
matrix ring over a finite field.

Proof. Suppose that the finite ring R is functionally complete. First we
prove that R has no nontrivial two-sided ideals. Indeed, suppose that I <R
and fix two elements (a,b) of R such that 0 # a € I, b ¢ I. Let f be a
function over R with the property that f(0) =0, f(a) = b. Now if f can be
represented with a polynomial p over R, then consider p + I over R/I. Now
b+1I=pa)+1=pla+1I) =pI) =p0)+1I=1I, which is a contradiction,
since b ¢ 1. This follows from Proposition 4, too.

Let J be the Jacobson radical of R. Since J is a two-sided ideal of R,
J is either R or {0}. If J = R, then R is nilpotent, i.e. there exists some
positive integer d such that the term x;z5 ... 24 is evaluated as 0 whenever
the variables attain values from R. In this case, we can give an upper bound
to the number of polynomials with n variables: Let N be the number of
elements of R, then there are at most (N + n)* monomials with length &
(under monomial with length & we mean a product of k members, each
member is either an element of the ring or a variable), hence there are (/N +
n)+(N+n)>+---+(N+n)?t < (N+n)? monomials which contain variables
from the set { z1, ..., x, } and have length less than d. Every polynomial with
at most n variables can be written as a sum of these monomials. Adding up
the monomial m k-many times (where k is an integer) can be written as
k"-m, where k" is k modulo N (observe that N -7 = 0 in R). Using this form
every monomial has a non-negative integer coefficient between 0 and N — 1.
This means that there exist at most NW+n)° polynomials over R. On the
other hand, it is easy to see that there exist NV"-many R" — R functions.
Since NV < NN" for large enough n, R is not functionally complete if
J=R. Hence J ={0}.

By the Wedderburn—Artin Theorem [17] we have that R/J = R is a
direct sum of matrix rings over finite fields. Since any summand of this
representation is a two-sided ideal, we can conclude that if R is functionally
complete then it is a finite matrix ring My (F) over a finite field F.

For the other direction let R be a finite matrix ring My (F'), where ¢ = |F|.
By Theorem 6 we only need to check if there exist polynomials x/(X) with
the property that xa/(M) = 1 and xp(N) =0 if N # M, where N and M
are k x k matrices over the finite field F. Let us denote the identity matrix
with I and let I; ; denote the matrix whose only non-zero value is 1 and is

2.2 Rings 29

in row ¢ and column j. Let us denote with M (7, j) the element of a matrix
M which lies in row ¢ and column j. Now with the following polynomial we
can check the element M (i,) of a matrix M:

k
Pij (X) = Z Ig;- X -1,
s=1

It is easy to see that for any k x k matrix M we have p; ; (M) = M(3,5) - I.
Now let X VY = X +Y — XY, and let \/;"_; X; be the iterated version of V,
the ordering or iteration method can be arbitrary. Observe that V acts like
the or function if we substitute only / and 0 (i.e. IVO=0VI=IVI=1
and 0V 0 = 0). Using the fact that u?~! is either 1 (if u # 0) or 0 (if u = 0)
we are able to check whether a matrix is 0 or not:

50 =V (P (X)) :{ ?: g{(;g '

ij=1
Finally we can find a realizing polynomial for y,,:

I it X=M
XM(X):]_(S(X_M):{ 0, if X#AM ~

Whenever R = F is a finite field containing ¢ elements, then y, (z) has a
quite simple representing polynomial:

Xo(z)=1— (x—a)qfl.

O

Remark 17. We note here that the proof actually shows that for finite non-
nilpotent rings the congruence-simple property is equivalent with the func-
tional completeness. The two properties are not equivalent for finite rings,
as e.g. O-multiplication rings of prime order are congruence-simple but not
functionally complete.

Second proof of Theorem 16. We give the discriminator operation (using the
notations of the previous proof of Theorem 16). If R = M, (F) a matrix ring
over a finite field F:

AX,Y,Z)=6(X=Y)- X+(I—-0(X-Y))Z

If R = F a finite field containing ¢ elements, then expressing d is even more
simple
d(z,y.2)=(@—y)" ot (1= (@-y"") =

30 FUNCTIONALLY COMPLETE ALGEBRAS

2.3 Groups

The following theorem gives us the functionally complete groups. We do not
repeat the first proof of [26], but show another one (based on Exercise 14 on
page 158 of |27]), which gives us an algorithm for finding realizing polynomials
for an arbitrary function.

Theorem 18. A finite group G is functionally complete if and only if G is
simple and non-Abelian.

Proof. Suppose that G is not simple, i.e. N is a nontrivial normal subgroup
in G. Fix1 # a € N and b ¢ N. Let f be a unary function such that
f(z) =11if x # a, and f(a) = b. If f can be represented with a polynomial
p over the group G then consider p/N over G/N. Now bN = p(a)N =
p(aN) = p(N) = p(1)N = N, which is a contradiction, since b ¢ N. This
follows from Proposition 4, too.

Suppose that G is Abelian and let 1 # a € G. Now if a function f(z,y)
has the property that f(1,1) = f(1,a) = f(a,1) = 1, f(a,a) = a, then it
cannot be represented with a polynomial over G: every two-variable poly-
nomial has a form of p(z,y) = 2% - y* . c. Now if p(z,y) = 2 -y . ¢
and p(1,1) = p(1,a) = p(a,1) = 1, then ¢ = 17 - 17 . ¢ = p(1,1) = 1,
ab = ah 1k e = pa,1) = 1, a* = 1M . ¥ . ¢ = p(1,a) = 1, hence
pla,a) =a* - a* . c=1.

Now suppose that G is a simple, non-Abelian group. We will prove the
theorem via the following lemmas:

Lemma 19. For every 1 # u € G and v € G there are yy, ...,y such that
v = uyl ...uyk_

Proof. Let C, be the conjugacy class of u in G, and H,, the subgroup gen-
erated by C,. If u # 1 then H, # 1. Now H,, is closed under conjugation,
because its generator set is closed, too. Thus H, <G, and G is simple, hence
H = G, which is equivalent with the statement of the lemma. O

Let py(x) = ¥ - - - 2¥%. Now we have p, (1) =1, py(u) = v.

Lemma 20. For everyu # 1 # v in G there exists y € G such that [u,vY] #
1.

Proof. [u,vY] =1 for every y means that u centralizes C,, thus u € Cg(C,).
For every subset X C G the centralizer of X is the same as the centralizer
of (X). Now v # 1 and Cg(C,) = Cqg ((Cy)) = Ca(G) = Z(G) is the center
of G. Since Z(G) =1, u € Cg(C,) implies u = 1, a contradiction. O

2.3 Groups 31

Lemma 21. For every 1 # b € G and for every natural number n there
exists a polynomial f," (z1,...,x,) such that f," (y1,...,yn) = 1, whenever
y; = 1 for some i, and fb(n)(b, ..., b)=h.

Proof. Let u; = b, we define u; for + < n inductively such that u; # 1 for
every i. By Lemma 20 there exists ¢; such that [u;_1,b%] # 1. Choose ¢;
and let u; = [u;_1,0%] # 1. Let hy(z1) = z; and for every 2 < k < n

let hy (x1,...,2) = [h—1 (1, ..., 2k—1) , 2*]. With these notations we have
that hy (b, ...,b) = ug, and if we substitute z; = 1, then for every k > i we
have hy (xq,...,2;) = 1. By Lemma 19 we have a unary polynomial p,,
such that py, 4(1) = 1, pu, s(u,) = b. With this notation f{™ (zy, ..., z,) =
Punp (P (21, ..., 2,)) satisfies the conditions of the lemma. O

Remark 22. 1t is easy to see that for any b € G the function fb(2) described
above is the ‘and’ function if we encode ‘false’ with 1 and ‘true’ with b. This

is in fact a function we cannot obtain as a polynomial expression if G is
Abelian.

Lemma 23. For every 1 # b € G there exists a unary polynomial x1,, such
that x1(1) = b and x15(u) =1 for all 1 # u € G.

Proof. Let G = {uy,...,un}, where u; = 1. By Lemma 19 we have the unary
polynomials p,,, such that p,, ;(1) = 1 and p,,(uw;) = b. By Lemma 21
we have the N — l-ary polynomial fb(N_l) such that fb(N_l)(b,...,b) =b
and fb(Nfl)(yl,...,yn) = 1, whenever for some i, y; = 1. Take xi,(z) =

b(N_l) (bPus b ()7 bpuns (x)fl). Now if we substitute x = 1 then for
every i we have bp,,,(z)”" = b, hence yi4(1) = b(N_l)(b,...,b) = b
If we substitute x = wu;, then bp,,,(r)" = bb~" = 1, hence xi,(u;) =
b(Nfl) (bpu%b (ui)_1 oo Lo bDun b (ui)_l) = 1. O

Remark 24. x1; is clearly the 1-variable characteristic function for the iden-
tity element. Among rings it is quite clear that a characteristic function
attains values 0 or 1. However among groups it is not the case. From now
on we denote with Xg, . a..5(Z1,-..,2,) the characteristic function for which
Xar,anb(@1s - -, @) = b and Xa,,. anp(Z1,...,2,) = 1 whenever z; # q; for
some . The semi-colon makes a difference between the two possible meanings
of the indexes.

Lemma 25. For every ay,...,a,;b € G there exists an n-ary polynomial

Xar,oanb SUCh that Xa,. anw(@1,...,an) = b and Xay,. anp(T1,. .. Ty) = 1
whenever x; # a; for some 1.

32 FUNCTIONALLY COMPLETE ALGEBRAS

Proof. Let us fix some b # 1. By Lemma 21 we have the n-ary polynomial
fb(") such that fb(n)(b, ...,b) =band fb(") (Y1, .- -,yn) = 1, whenever for some
t, ¥y = 1. By Lemma 23 we have the unary polynomial x;,; such that
x1:6(1) = b and x14(x) = 1, whenever x # 1. Let Xoy, . anp(T1,...,Tn) =

fb(") (Xl;b (xlal_l) sy X1sb (xna,,jl)). Now if we substitute x; = a; for every 1,
then Xa,...ann (a1, an) = £ (i (1), oxaw (1) = £ (b,...,b) = b.
If for some ¢ we substitute z; # a;, then we have xi, (a:iajl) = 1 thus
Xar,anb(T1, - ., Tp) = 1, as requested. O

Now let f: G™ — G be an arbitrary n-ary function. Then

play...,z,) = H Xarooanu (T15 -+ -y Tn)
(at,...,an)EG™
1#u=f(a1...,an)

is a representing polynomial for f as

p (ab BRI a'n) = Xai,...an;f(a1,....,an) (ab cee 7an) = f (ala) an) .
O

Remark 26. We note here that the proof actually shows that for finite non-
Abelian groups the congruence-simple property is equivalent with the func-
tional completeness. These two properties are not equivalent for all finite
groups as e.g. finite groups with prime order are congruence-simple but not
functionally complete.

Second proof of Theorem 18. We will use Theorem 6 and express 4, - and
Xq for every group element a.

Let 1 be the zero-element, let us fix a b element of a group as the unit-
element and let + be the multiplication of the group. Now, xi,(a™'z) will
do as the characteristic function for a. All we need now is the - function with
the following properties: - (z,1) =1, - (x,b) = x. For every a # 1 let ¢ be an
element of the group such that [b,b°] # 1. Let f, be the following function:
fo(z,y) = [x1(a™'2),9°]. f. has the following properties: f,(z,1) = 1,
fa(a,b) = [b,b°] # 1, and for every x # a we have f, (z,y) = 1. Now the
following - function will have the required properties:

(ZE,y): H Plb,be),a (fa (I7y))

1#a€G

2.4 Semigroups 33

2.4 Semigroups

In this Section we determine the functionally complete semigroups and prove
that every functionally complete semigroup is a group. Our leading reference
on semigroups is [5]. We note that a semigroup does not necessarily have an
identity element. For a semigroup S let S! be the smallest semigroup which
contains both an identity and S. It is easy to see that S! = S if S already
contained and identity, otherwise S' = SU {1}. We remind the reader for
the notion of 7-class:

Definition 27. Let S be a semigroup. Let us define the following relation:
for every a,b € S we have aJ0b if and only if there exists sy, s, 53,54 € S?,
such that b = sjass and a = s3bsy, i.e. a and b generate the same two-sided
ideal. Tt is easy to verify that 7 is an equivalence relation. We call the classes
of this equivalence relation [J-classes. Let J, be the J-class containing a.

There is a natural partial ordering on the [J-classes of a semigroup: let
Jo < Jy if and only if S'aS' C S'0S!. We remind the reader that for any
two elements a, b from the semigroup S we have that J,, < J, and J,, < Jy,
moreover if S is finite then there is a unique minimal [J-class with respect
to this ordering.

Theorem 28. Fvery finite functionally complete semigroup is a group.

Proof. Let S be a functionally complete semigroup, |S| > 2. We first prove
that S has only one [J-class. Indeed, let us suppose that S has at least
two J-classes. Let Jy be the minimal [J-class by the usual ordering and let
s1, 82 € S two elements of the semigroup such that s; € Jy, so ¢ Jy. Let the
function f: S — S be such that f(s;) = s2 and f (s3) = s;. This function
cannot be realized by a polynomial over S, as the semigroup multiplication
is order-preserving, so is every polynomial but not the function f. Hence S
has only one [J-class, which implies that S does not contain a 0 element with
the property 0-s=s-0=0 for every s € S.

We conclude that S has exactly one J-class, hence it is a Rees matrix
semigroup without a 0, by the Rees — Suschkewitsch Theorem. Let I and J be
the two index-sets, let G be the Schiitzenberger group and let C': I x J — G
be the corresponding structure matrix. Now C' contains elements only from
G and does not contain 0. Now S = M (G; I, J;C) and |S| = |I]-|J]| - |G].

Let us suppose that G = 1, then every entry of C'is 1. If |I|-|J| > 3, then
we prove that S is not functionally complete. Without loss of generality we
can assume that |I| > |J|. Let ig,i; € I are two distinct elements. Let S’ be
the Rees matrix semigroup M (1;1,J;C"), where the Schiitzenberger group

34 FUNCTIONALLY COMPLETE ALGEBRAS

is 1, the two index sets are I’ = I\ { iy } (for an element iy € I) and J' = J,
and the structure matrix is C': I’ x J' — {1}. Now clearly there exists
a nontrivial homomorphism h: S — S’, where h ([1;49,j]) = [1;71,7] and
h(s) = s otherwise. Hence S is not functionally complete by Proposition 4.

If G =1 and |I|-|J] = 2, then S has the identity either zy = y or
xy = x. Let f be a unary function which interchanges the two elements
of S. Clearly, f can not be realized by a polynomial of S, hence S is not
functionally complete.

If G # 1 and either |I| > 2 or |J| > 2, then with structure matrix
C": I xJ— {1} we have that h: S — M (1;1,J;C"), h([g;1,7]) = [1;1,]]
is a nontrivial homomorphism and S is not functionally complete.

We can conclude that if S is functionally complete, then S ~ G and is a
group. U

Remark 29. We note here that the proof actually shows that for finite semi-
groups the congruence-simple property is not equivalent with functional com-
pleteness as e.g. the two-element left-zero or two-element right-zero semi-
groups are congruence-simple but not functionally complete.

Corollary 30. A finite semigroup S is functionally complete if and only if
S is a finite simple non-Abelian group.

2.5 Semirings

In the final Section of the Chapter we determine all functionally complete
finite semirings and prove that all functionally complete semirings are rings.
As in Section 2.4 we proved that every functionally complete semigroup is a
group, we only consider functionally complete rings and groups later on in
the thesis.

Some basic references on semirings are [9, 11, 18]. Semirings differ from
rings only in that the addition is a commutative semigroup, not necessarily an
Abelian group. These structures arise quite naturally as the endomorphisms
of commutative semigroups.

Definition 31. A semiring S = (S,+,-) is a nonempty set S with two
associative operations + and -, the operation + is commutative and both
distributive laws holds, i.e. for every a,b,c € S, (a+0b)-c=(a-¢)+ (b-¢)
and (a+b)-c=(a-c)+ (b-c).

We later on omit the parentheses from (a - ¢)+(b - ¢) and simply write a-c+
b-c as with rings. We note that sometimes the definition of a semiring includes
a 0-element (identity for the addition). In that case, it is a requirement that

2.5 Semirings 35

for every element s from the semiring 0 -s = s-0 = 0 applies. This always
holds for rings, as the addition is an Abelian group. We, however, do not
require that a semiring has a 0-element.

Theorem 32. Fvery finite functionally complete semiring is a ring.

Proof. Let S = (S, +,-) be a functionally complete semiring. From Proposi-
tion 4 we know that it is congruence-simple. We claim first that the [J-class
decomposition of the addition is a congruence. Indeed, let a ~ b if and only
if a = b or if there exist ¢,d € S such that b =a + cand a =0+ d. It can
be easily verified that if a ~ b, then for every s € S we have a + s ~ b+ s,
sta~s+ba-s~b-sand s-a~ s-b. As S is congruence-simple, (S, +)
has either only one [J-class, or every element of S is in a separate [J-class.
We distinguish these two cases.

If every element is in a separate J-class of (S, +), then we define a partial
ordering on the set S: let a < b if and only if either a = b or there exist
c € S such that a + ¢ = b. This partial ordering is the exact reverse of
the usual J-class ordering and if a < b and b < a, then a = b (since every
element is in a separate J-class). We claim that any polynomial p over S is
order-preserving. For that we only have to prove that the basic operations
+ and - are order-preserving.

The addition is order-preserving: if a + ¢ = b, then for every x we have
a+r+c=a+c+x=0b+x hence a+x < b+ x. Similarly x +a < x +b
for every x if a < b. Finallyifa <band ¢ < d, thena+c<a+d <b+d.

Using the distributive law we can prove that the multiplication is order-
preserving: if a+-¢ =0, then a-x+c-2 = (a+c¢)-x =b-z, hence a-z < b-x.
Similarly if a < b, then z -a < x-b. Finally if a < b and ¢ < d, then
a-c<a-d<b-d.

Let o = ZSGS s and let a be an arbitrary element different from a: a # a.
Now a < a, for every polynomial p we have p (a) < p («), therefore if a unary
function f: S — S has the property f(a) = o and f(a) = a, then f can
not be realized by a polynomial over S, since f is not order-preserving. This
contradicts with our original assumption that S is functionally complete.

If (S,+) has only one J-class, then it is a (commutative) Rees matrix
semigroup with no absorbing elements (an absorbing element forms a 7-class
by itself), by the Rees—Susckewitsch Theorem [5]. Let I and J be the two
index-sets, let G be the Schiitzenberger group and let C': I x J — G be the
corresponding structure matrix. Now C' contains elements only from G and
(S,+) = M(G;1,J;C). (S,+) is commutative, hence for every iy,iy € I,

36 FUNCTIONALLY COMPLETE ALGEBRAS

1,72 € J, every g1, 9o € G we have

[i1, 915 1] [i2, 92, 2] = iz, 92, 2] i1, 91, J1]
liv, 91C (J1,72) g2, J2] = i2, 92C (J2,91) 91, J1)

This means that i1 = iy and j; = jo, hence |I| = [J] = 1. Let C(1,1) =
h € G. Now for every ¢gi,9o € G we have gihgs = gohg;. For go = 1
we have gih = hg, for every ¢ € G, hence h € Z(G). From that we
conclude to g1g2 = g¢2g1 for every ¢1,9o € G, hence G is Abelian. Now
v: (S,4+) — G, ¢([1,9,1]) = gh is an isomorphism between G and (S, +):

¢ (Lo, L 92, 1) = ¢ ([1, 91092, 1]) = gihgah = ¢ ([1,91,1]) ¢ ([1, g2, 1]).
Therefore (S, +) is an Abelian group and S is a ring. O

Remark 33. We note here that for finite semirings the congruence-simple
property is not equivalent with the functional completeness. Let V (G) be
the following semiring for any group G: the underlying set is G U { oo }; the
multiplication is the group multiplication, x - o0 = 0o - = 00; and for the
addition x +x = z and = + y = oo for x # y. It is easy to see that V (G) is
congruence simple for any finite group, but not functionally complete.

Corollary 34. A finite semiring is functionally complete if and only if it s
a matriz ring over a finite field.

Chapter 3

Length of polynomial expressions

In Chapter 2 we determined functionally complete algebras for several classes.
Moreover, our proofs are all algorithmic, so they all give us some method to
realize arbitrary functions over these functionally complete algebras. There
are of course many different realizations of a function. One usually wants
to find an optimal realization (or one close to the optimal) in some sense,
e.g. a polynomial which can be calculated efficiently. Efficiency can, how-
ever, be measured in may ways. In this Chapter we consider one of the
most basic ones: the length of the realizing polynomials. We give upper and
lower bounds on the length of arbitrary functions over arbitrary and spe-
cific functionally complete algebras. We consider computational models in
Chapter 4.

We define the length of a polynomial expression over an algebra A =
(A, f1,..., fr) (i-e. an expression which can be composed from variables, the
basic operations and some constants from A) in a natural way. We give a
definition which represents the idea that the length of a polynomial p is the
number of occurrences of the constants and the variables p has. This defini-
tion coincides with the usual length definition for group polynomials. Denote
the length of a polynomial expression p (z1, ..., x,) with ||p (z1,...,2,)]-

Definition 35. The [ength of a polynomial expression over A is defined
recursively:

1. The length of a variable z or a constant c is 1: ||z]|, = ||lc||[, = 1.

2. For an m-variable basic function f of A and for polynomial expressions
D1y - -+, Pm, the length of f (p1,...,pm) is the sum of the lengths of the
pi’st [1f (p1, - pm)lla = Doy IDill o Then the length of f (x4, ..., 2p)
is |/, = m.

38 LENGTH OF POLYNOMIAL EXPRESSIONS

We usually omit the subscript and just write |[p|| for the length of a polyno-
mial.

We have to mention here that every polynomial has a corresponding
rooted tree with ordered edges and labelled nodes. Every inner node rep-
resents a basic function in the polynomial, the children of a node represent
the inputs of the corresponding basic function in the polynomial. The or-
dering of the edges determines the ordering of the inputs. Finally the leaves
represent constants and variables. From now on by an edge uv we mean an
edge, where v is a child of w.

Now length can be defined by using this rooted tree. Let the length of
the polynomial be the number of leaves in the corresponding rooted tree.
It is easy to check that the length by this definition is exactly the same as
by Definition 35. Technically the length of a polynomial is the number of
occurrences of constants and variables in p (counting multiplicities).

Another definition could be to define the length of a polynomial as the
number of inner nodes in the corresponding tree (as in e.g. [40]). Technically
this definition counts the number of the basic functions used. This defini-
tion of length is almost the same as ours, apart from the use of the basic
unary operations. Generally the ‘unary part’ of the algebra is not really
interesting, as by the composition of unary functions we only obtain unary
functions. This idea suggests the notion of the branching tree: we take the
usual rooted tree corresponding to a polynomial and collapse every chain of
unary operations into a single edge. Then we label the edges with a unary
polynomial which we obtain by composing the unary basic operations of the
corresponding chain. The precise definition is the following:

Definition 36. For every polynomial p we define the corresponding branch-
ing tree. The branching tree has one root with degree exactly one. For a
branching tree 7" we denote this root by rr and we denote the label of the
edge of rr by er. The tree is defined recursively:

1. The branching tree T" for a variable x; has two nodes v and r = rr, and
an edge ru. The node w is labelled by x; and the edge ru is labelled by
er = id (the identity unary operation).

2. The branching tree T for a constant ¢ has two nodes u and r, and an
edge ru. The node wu is labelled by ¢ and the edge ru is labelled by
er = id (the identity unary operation).

3. Let f be a unary basic operation and let p be a polynomial with branch-
ing tree 7. Now the branching tree 7" of the polynomial f(p) is the
same as 1', except that ey is the polynomial g o er.

3 Length of polynomial expressions 39

4. Let f be a k-ary basic operation (k > 2) and let py,...,px be poly-
nomials with branching trees T1,...,7T;. Now the branching tree 7" of
the polynomial f (pi,...,px) is constructed by identifying rr, ..., rp
into a single node u, labelling it by f, adding a root r with an edge
rpu and labelling this by id (the identity unary operation). When we
identify the nodes 7, we linearly order the edges of u. The ordering
will be that the edge wv is the ¢th if v was originally in the tree T;.

Therefore in the corresponding branching tree the edges and nodes are
labelled, moreover the edges have a numbering. Every inner node (non-leaf
and non-root node) represents a basic non-unary function in the polynomial,
and the children of a node represent the inputs of the corresponding basic
function in the polynomial. The ordering of the edges at a node determines
the ordering of the inputs of the corresponding basic function. The leaves
represent constants and variables. Finally if v is a child of u, then the labelling
of the edge uv represents the composition of basic unary functions (or the
identity), which is applied on the result of v in the polynomial p. If A is a
group, then every edge uv (v is a child of u) is labelled either with the —!
or with the identity, depending on whether we invert the result of v before
applying u in the polynomial p. Similarly if A is the two-element Boolean
algebra B, then every edge is labelled either with — or with the identity,
depending on whether there is a negation at that particular place in the
polynomial p.

It is easy to see that the number of inner nodes in the corresponding
branching tree is essentially the same as the length of the polynomial (the
difference is 1). Moreover, if the algebra has no unary basic operations then
the corresponding branching tree is essentially the same as the usual corre-
sponding rooted tree. This is the case in [40], where the two-element algebra
with 16 binary basic operations was considered.

In this Chapter we search for short polynomials realizing particular func-
tions. In many cases we denote a function and its realizing polynomial with
the same symbol. In most of the cases this polynomial is a shortest one. In
order not to create confusion we introduce the following definition:

Definition 37. The length of a function f over an algebra A is the length
of a shortest polynomial p over A realizing the function f. We denote the
length of f with || f||, or shortly || f]:

| fllo = min {||p|| 5 : p realizes f over A }.

Throughout the Chapter we plan to give upper and lower bounds for
the length of polynomials realizing arbitrary functions. We calculate these

40 LENGTH OF POLYNOMIAL EXPRESSIONS

bounds for arbitrary and for specific functionally complete algebras, then we
compare the results.

For several algebras the length of a polynomial is closely related to the
number of variables in the polynomial expression (including multiplicities).
Therefore we introduce the following notion: Let va (p) (or shortly v (p))
be the number occurrences of the variables (counting multiplicities) in the
polynomial expression p containing n variables x4, ..., x,. Later we might use
the term ‘number of variable occurrences’ as well. Let v; (p) be the number
occurrences of the ith variable z; (counting multiplicities) in the polynomial
expression p. If p is an n-ary polynomial expression then v (p) = > 7", v; (p).
Similarly to || f|| we define va (f) (shortly v (f)) for a function f:

va (f) =min{wva (p) : p realizes f over A }.

Remark 38. We do not know whether for every functionally complete algebra
and for any arbitrary function f: A™ — A there exists a polynomial p over A
such that || f|| = ||p|| and v (f) = v (p). This is not true for partial functions
(see Remark 81). We do know that ||p|| = || f]| does not imply v (p) = v (f):
the polynomials = 4+ x and 2 - x realize the same function over the finite ring
Zs, they both have length two (which is the length of the function), but only
one of them has one variable occurrences.

Now we mention some properties of the length and the number of variable
occurrences. An immediate consequence of the definition are the following
lemmas:

Lemma 39. For polynomial expressions p,qi, ..., q, we have that

I (g, -5 gn) | < llpll - max {{lgill - i =1,)

Proof. Let g be a polynomial from { ¢y, ..., ¢, }, for which the length is max-
imal: ||g|| = max{||¢] : 1 <i<n}. Then

n
P (ars - au)ll = Y llasll < n-llall = llpll - llall
i=1

Lemma 39 holds for the number of variable occurrences, too:

Lemma 40. For polynomial expressions p,qi, .. .,q, we have that

v(p(qr,- - yaqn)) <v(p) max{v(g):i=1,...,n}.

3 Length of polynomial expressions 41

Proof. Let g be a polynomial from {¢qi,...,q, }, for which the number of
variable occurrences is maximal: v (¢) = max{v(g):1<i<n}. When
substituting the variable z; with ¢; in the expression p, then every variable
is substituted by a polynomial expression with at most v (q) variable oc-
currences. Hence there are at most v (p) - v (q) variable occurrences in the
expression p (g1, ..., qy)- O

With a slight modification of the proof we have the following:

Lemma 41. For polynomial expressions p,qi, ..., q, we have that

I (qus - - @)l < llpll + Zv (p) - (il — 1)

Proof. When substituting the ith variable by ¢; in the expression p, then
length increases at most by v; (p) - (||¢;|| —1). Hence comparing with ||p]|
the length increases by at most > ", v; (p) - (||¢:]] — 1) which finishes the
proof. O

Corollary 42. For polynomial expressions p,qi, ..., q, we have that

I (v, an) | < llpll + v (p) - max { {lgill = 1:i=1,...,n}.

Remark 43. 1t is easy to see that Lemma 39 and Lemma 40 hold not only for
polynomial expressions but for functions, too. Lemma 41 and Corollary 42,
however, may not necessarily hold for functions: it might happen that for
some function f the length || f|| and v (f) cannot be realized by the same
polynomial expression.

Let us recall the proof of Theorem 6, where we mentioned that both []
and) can be defined in an arbitrarily iterated way (even if - and + are not
associative in general). The following lemma is one of the most important
lemmas in this Chapter. Here we give a fast and short method for some
iterations, which we use later on as well. From now on by log we mean the
base 2 logarithm function.

Lemma 44. Let p be a binary polynomial over an algebra A. Define the
following polynomial expressions: pV (z1) = z1, p (z1,22) = p (21, 22) and
for every integer n > 2:

p(2n71) (ajla s 7'T2n71) = p (p(n) (ajla s 73711) 7p(n71) (xn+17 cee 7x2n71))
p(Qn) (xla v 7x2n) = D (p(n) (xla v 7xn) 7p(n) (xn-‘rl? o 7‘7;277,)) .

42 LENGTH OF POLYNOMIAL EXPRESSIONS

Let v (p(”)) be the number of variable occurrences in p™, let Hp(”) H be the
length of p™ and let V = v (p(Q)), L= Hp(Z)H. Suppose that V> 2. Then

v(p(”)) < V.nplsV (3.1)
Pl = = @) -1+, 52
[P < o (Vons 1) 5.3
[P < L-net, (3.4)

™| < 2-L-nbe.

Proof. Let V; be the number of variable x; occurrences in p, V =V, 4+ V5. By
the definition of p™ and using the ideas of proof of Lemma 40 and Lemma 41
we can give an easy recursion for v (p™) and Hp(”)H: v (pW) = Hp(l)H =1,
v(p®) =V, Hp@)H = L and for every n > 2:

v (V) = View (p™) + Vy v (pD)
)

v (p m\ — V.o (p(n)) 7
P20 =l Vi (™) = 1) + Ve - ([l = 1)
P21 =1+ v (™ - 1)

Solving the recursion is usually hard, but we can estimate using some prop-
erties of v (p(”)) and Hp(”) H

First we prove (3.2) by induction on n. The equation (3.2) holds for
n = 1and for n = 2, since |[pM|| =1 =0 = &2 (v (p®) —1) and
PP -1=L—-1={2-(V—-1) =L (v(p®) —1). Let us suppose
that (3.2) holds for k < 2n — 1 for some n > 2 and check |[p@*"~V|| — 1:

oD =1 = Vi (] 1)+ Ve (] ~1) + £ -1 =

Ve (321 00 =) e (5o @) 1)) 1=
T (Vo (0) + Voo (60 + (=) (1=) -

L1 .
1 ™) =)

Now let us suppose that (3.2) holds for k£ < 2n for some n > 2 and check

3 Length of polynomial expressions 43

lp]| = 1:

o) -1 -

This finishes the proof of (3.2).

We continue by proving (3.1). We claim first that v (p™) is strictly
monotone in n, i.e. v (p(”)) <w (p(”“)) for every positive integer n. We prove
this statement by induction on n. The statement is clearly true for n = 1,
since v (p@) =V > 2> 1= (p). Suppose that v (p*~) < v (p¥) for
every k < 2n — 1 (for some n > 2) and let us check v (p®"~1):

v (PPV) = Vi v (p™) + Vo v (pD) > Vv (pD) = o (p@D)

Now suppose that v (p(k'_l)) <w (p(k)) and for every k < 2n (for some n > 2)
and let us check v (p©®):

v () =V -0 (p) > Vi v (p™) + Vo - v (pD) = v (pnD) .

Thus v (p(")) is strictly monotone in n.
For n = 2¥ we can calculate v (p™):

v (P(n)) =0 <p(2k)> =V-.v <p(2k71)> =...=VF=pleV,
Now let n be arbitrary and suppose that 2¥~! <n < 2*. Then
o) <o (p) = (29" < 20 =V,

The inequality (3.3) immediately follows from (3.2) and (3.1). For proving
the inequality (3.4) we mention that % is strictly monotone in V' for
n > 2. If we we change V' to L in (3.3) then we can only increase the value

of the righthand side and we have
™|~ 1 < % (Lo 1) = Lt 1,

Finally (3.5) follows from (3.3) and the fact that ;*~ < 2. O

44 LENGTH OF POLYNOMIAL EXPRESSIONS

Now, closely examining the proofs of Theorem 6 and Theorem 9, recalling
Remark 10, then applying Lemma 39 and Lemma 44 we obtain the following
for a functionally complete algebra A with two arbitrary distinct elements 0
and 1:

Theorem 45. Let A be a functionally complete algebra. Let 0,1 € A be
two distinct elements and let 4+, - and x, be shortest polynomials with prop-
erties such as in Theorem 6. Let T be any positive real number for which
T >max{||xal| :a € A}. Let d be a shortest discriminator polynomial. Let
Xar,...an D€ @ shortest characteristic polynomial for the n-tuple (ai, ..., a,).
Let — be a shortest polynomial such that x —y = 0 if and only if x = y
and 1 — 0 = 1. Let p be a shortest polynomial realizing an arbitrary n-ary
function f over A with e-many non-zero values, where 1 < e < |A|". Then
the following inequalities hold:

Ixall < 1=11- ol (3.6)
Xl < 2 270 max { e, |11 <0 < n), (3.7)
Ipl <2 - 1] - €% max { Xyl s01 € A}, (38)
ol < 4- - 4] - e 1°g”<'>-T, (3.9)
Ipll < 4+ ll=I1 - 1P - 1] - €226 O (3.10)
el > max {1+, ol VI v/Txal }, (3.11)
Il < =1 1+ 11 - ol (3.12)

If |A| =2, then
[Pl < 2+ [+ - €57 max { Xy, s € A}, (3.13)
Ipll < 4+ [l - 4+ - € - plose) 7, (3.14)
ol < 4 QI -] el o) (3.15)

Proof. The proof is simply applying Lemma 39 and Lemma 44 on the fol-
lowing representations:

p(xlw”axn): Z (p(alw”aan)'Xal an(xla"wxn))a

(at,...,an)EA™

d(z,y,2) =z -xo(x—y)+x- (1 —x0(z—1vy)).

3 Length of polynomial expressions 45

Here we consider [and) as the iterated versions of - and + in the way
described in Lemma 44. If |A| = 2, then p can be represented as

P) = > Xavwoan (X1,)

(a1,..,an) €A™
U

Checking Theorem 45, especially (3.9) we understand the importance of
the number of occurrences of 4+ and -. The number e usually has the order of
|A|", hence e is very large compared to the other elements occurring in (3.9).
In our bound e is taken to the power logv (+), so we can obtain the best
bound when + is a binary polynomial with only two variable occurrences,
i.e. + is basically a basic operation of the algebra A. This is the case for
Boolean algebras, rings or for groups. The following theorem shows that it
is essential that a bound has a such large factor:

Theorem 46. Let A be a functionally complete algebra. For every ¢ > 0
and for sufficiently large n (depending on ¢) there exists an n-ary function f
over A, such that

log |A] A"

1+e logn

1FIF =

Proof. We use the same counting idea as e.g. [40], which shows a similar
bound for the two-element algebra with 16 binary operations as basic oper-
ations. Let us consider the number of functions f which can be realized by a
polynomial with length at most [. This way we count the number of functions
for which ||f|| < [. Let this number be N (I). If L is the least length such
that all n-ary functions have length at most L, then N(L) > [A|"Y". This
gives us a lower bound on the length.

Let A have m-many basic operation symbols, which are neither unary
operation symbols nor constant symbols. Let us suppose that every basic
operation of A is at most k-ary. For an arbitrary polynomial p with [|p|| <
we consider the corresponding branching tree as we defined it in Definition 35.
In this tree every inner node (non-leaf and non-root node) represents a basic
non-unary function in the polynomial and the children of a node represent the
inputs of the corresponding basic function in the polynomial. The labelling
of the edges corresponds to some composition of the basic unary operations.
The branching tree has at most [leaves for every polynomial p with ||p|| < [.

There are at most [—1 inner nodes in the tree, all of them are chosen from
m-many (at least binary) basic operations, so for every tree the labelling of
the inner nodes can be done at most m!~!-many ways. Each leaf is either a

46 LENGTH OF POLYNOMIAL EXPRESSIONS

variable or a constant, so all leaves can be labelled at most (n + |A|)’-many
ways. Moreover there are at most (Sk)lfl—many labellings for nodes and
leaves of the trees corresponding to polynomials ||p|| < I: every inner node
has k possible children and for each possible child there are three options
(the child is a leaf, the child is another inner node, or the child does not
exist).

We have not estimated on the labelling of the edges, yet. There exist
potentially infinitely many possible labellings of an edge, but every label
realizes one of the]A\'A‘—many unary functions. If two branching trees differ
only by a label of an edge, and both labels represent the same function, then
the corresponding polynomials represent the same function, too. Therefore
we count the possible realizations of every edge-label. Every edge is labelled

201
by a unary function, thus the edges can be labelled in at most <\A||A|> -
many ways, as there are at most 2/ — 1-many edges. Hence

N({) < (n+ \A‘)l N LIGS ’A‘\A\Ql‘

Let f be a longest n-ary function. Let L = | f||. Now applying N(L) >
1A we have that

|A]" log|A| < (L —1)-(logm + k -log3)+L-(log (n + |A]) + 2 |A| - log|A4]) .
Let us fix an ¢ > 0. For sufficiently large n we have |A| < n, thus
|A|" -log |[A| < L-(logm +k-log3+1+logn+2|A|-log|A4]).

For sufficiently large n we have logm +k-log3+1+2|A|-log|A| < e-logn,
therefore we obtain log|A| |A]"
0g
Ifl=L>—— —.
1+¢e logn
U

Remark 47. Though slightly sharper lower bounds can be derived for partic-
ular algebras (as e.g. in [40] for the two-element algebra with all 16 binary
basic operations), we do not calculate those here explicitly.

The other important factor in the upper bound (3.9) is n taken to the
power logv (-). We can get rid of this factor for some special algebras:

Theorem 48. Let A be a functionally complete algebra, N = |A|. Let
0,1 € A be two distinct elements and let 4, - and x, be shortest polynomials
with properties such as in Theorem 6 and let us suppose that ||+| = v (+) =

3 Length of polynomial expressions 47

v(:) = |||l = 2. Let p be a shortest polynomial realizing an arbitrary n-ary
function [over A with e-many non-zero values, where 1 < e < |A|". Let
T be any positive real number for which T > max { ||x.| : a € A}. Then the
following inequalities hold if N > 3:

Ipl| <e-(14+T-(3+n—logye)) —2-T,

loge
<e-|14T-(3 — -2-T
< e (147 (340 o)) -2

If N =2, then
Ipl < ((3+n—loge)-e—2)-T.

Proof. Consider the case where |A| > 3. The second inequality is the same as
the first one using log,y e = loge . We prove the first inequality by induction
on n. If n =1, then f(z) = ZaeA f(a) - xq (), which has length at most
e-(1+7T) < e-(1+T- (3+ 1 —logye))—2-T if we do not put any of those
summands into the polynomial where f(a) = 0.

The idea of the proof is that we try to calculate f recursively. For every
element a € A let f, be an n — l-ary function, such that f, (z1,...,7,-1) =
[y, .. xp1,a). Now f(z1,...,20) = > pen fa (@1, ., Zno1) Xa (@5). Let
fa have e,-many non-zero values. Now we apply the induction hypothesis for
the n — 1-ary functions. If there is only one e, > 0, then ¢, = ¢ and

Ipll < [fal+ T <e-(1+T-(B+n—1—logye))—2-T+T
<e-(1+T-(3+n—1logye))—2-T.

Otherwise
Ipl <> (Ifall +7)
acA
<Y (ea-(14+T-(B+n—1-logye,)) —2-T+T)
eq>0

<(eg+e1) - (3+n)—T-(eg+e1+eg-logey+ e -loge) —2T

<Zea- (1+T-(3+mn)) (Zea+26alogNea>—ZT

eq>0 eq>0 eq>0 eq>0

=e-(1+T-3+n—1logye)) —2-T.

The last of these inequalities holds by the following lemma:

48 LENGTH OF POLYNOMIAL EXPRESSIONS

Lemma 49. Let N > 2 be a positive natural number, let k < N be a positive
natural number, too. Ifeq, ..., e, are positive real numbers, e = Zle e;, then

k
e-logye < e—i—Z(ei-logNei).
i=1

Proof. The function f: R™ — R, f(z) = z - logy x is convex as the second
derivative is positive. Therefore we have

k k k
216 log Qi1 G < 2 i1 €t logy €
k Mok o k ’

k
e (logy e —logy k) < Z e; - logy e;,
i=1

k
e-(logye—1) < Zei -logy €,
i=1
k
e-logye < e—i—Z(ei-logNei).
i=1

O

The N = 2 case differs only in that we do not need to multiply by a
constant, since the only constant differing from 0 is 1. Hence if n = 1, then
f (@) = e j(a)z0 Xa (z), which has length at most

e-T<(B83+1—1loge)-e—2)-T.
The induction goes the same way as with the case of N > 3, and we have

U foll +T) + (LAl +T)
(B+n—1—logey)-eg—2+1)-T
(B+n—1—1logey)-eg—2+1)-T
e-(1+7T-B34+n)—T-e-logye—2-T
(34+n—1loge)-e—2)-T,

[l

INIAN + IA A

if both eg and e; are positive. If one of them is 0, then

Ipll < ((B34+n—1—loge)-e—2+1)-T
<((B4+n—loge)-e—2)-T.

3 Length of polynomial expressions 49

Remark 50. The idea of building up a polynomial recursively only works
when the operations + and - have the shortest possible representations, which
means that they are quite close to some basic binary functions of A. If either
+ or - has more than two variable occurrences then mixing them up will end
up having another exponential factor in the bound, which we wanted to
get rid of. Theorem 48 is useful for calculating bounds for the two-element
Boolean algebra or for functionally complete rings as we see it in Section 3.2
and in Section 3.3.

Remark 51. Notice that comparing the result (3.9) in Theorem 45 with the
result of Theorem 48 we almost completely got rid of the factor n. We have
a factor (3 +n — logy €) instead, but if e is large then this factor is just a
constant, e.g. if e = ¢; - N"~°, then this factor is at most (3 4 ¢ — logy ¢1).
If, on the other hand, e is really small, e.g. ¢ = c3 - N*™ where ¢4, < 1,
then this factor turns out to be linear in n: (1 —c¢4) - n+ (3 —logycs). In
that case e being small compensates for the slightly larger second factor, so
we do not lose anything (compared to Theorem 45) by having the factor
(34 n —logy e).

Finally we summarize the upper and lower bounds:

Corollary 52. Let A be a functionally complete algebra, let N = |A|. Let
0,1 € A be two distinct elements and let 4, - and x, be shortest polynomials
with properties such as in Theorem 6. Let T be any positive real number for
which T > max{||x.|]|:a € A}. Let f be an arbitrary n-ary function over
A. Then

LFIE< 4117 - (1] - (V) plesr O

If N = 2 then we can replace the factor HH2 by |||
Ifll+l=v(#) =1 =v(:) =2 then

lfl<@BT+1)-N"—2-T.
Tl =v(H) = [l = v() = N =2 then
Ifl < (3N —2)-T.

Moreover for every e > 0 and for sufficiently large n there exists an n-ary
function fy over A such that

logN N"

> . .
Ifoll = 1+¢ logn

Proof. We apply Theorems 45, 48 and 46. O

50 LENGTH OF POLYNOMIAL EXPRESSIONS

3.1 Partial functions

One does not always look for realizing polynomials for fully defined functions.
There are many situations, when one only needs a realizing polynomial which
fulfills several criteria, e.g. attains predefined values at only certain inputs,
not on all inputs. When a function is not necessarily given on the whole do-
main, we call it a partial function. We already used this notion in Chapter 2:
in the proof of Theorem 18, more precisely in Lemma 21: the function fb(2)
was not defined for every pair of group elements. x,; was, on the contrary,
defined for every group element input. This did not cause any confusion in
Chapter 2 as we always made clear exactly what we were looking for. From
now on, by ‘function’ we always mean possibly partial function, and we al-
ways determine the exact domain at where we require predetermined values
of the function. Moreover, we are looking for realizing polynomials not only
for functions, but for partial functions, too.

In this Section we make some easy observations about the connection
of partial functions over different functionally complete algebras. More pre-
cisely, if one functionally complete algebra contains another, then every func-
tion over the smaller algebra can be realized shorter or equally long over the
larger algebra. For this to make sense, we have to define the length of a
partial function.

Definition 53. Let f be an n-ary partial function over an algebra A. Let
the domain of f be D C A". Then let us denote the length of f with || f|| o
and define it as:

| fllo = min {||p||5 : p polynomial realizes f on the domain D }.
Similarly we define the number of variable occurrences va (f):
va (f) = min{wva (p) : p polynomial realizes f on the domain D }.

These definitions agree with the definitions for the case, when D = A"
We note that for a partial function f there does not necessarily exist a poly-
nomial p over the algebra A such that ||f||, = |lp|ls and va (f) = va (p).
We show such an example in Remark 81.

The following proposition makes some connection between length of func-
tions and partial functions:

Proposition 54. Let A be a functionally complete algebra and g be an n-
ary partial function on domain D C A™. Then its length [number of variable

3.1 Partial functions 51

occurrences/ is the minimum length [number of variable occurrences/ of func-
tions f with domain A™ agreeing with g on D:

vig) = minv(f),

min .
min [f]

gl

Proof. In the proof we denote polynomials by p and functions with domain
A" by f. By the definition we have

v(g9) = min{wva (p): p realizes g on the domain D } =
P
= min min {va (p) : p realizes f } =
p flp=g
= min min{va (p) : p realizes f } =
flp=g P
= min v (f).
flp=g
The very same argument works for the length ||g||. O

Now let us make some observation about partial functions over different
functionally complete algebras.

Proposition 55. Let A; and Ay be two functionally complete algebras with
the same signature. Let us suppose that there exists an embedding e: A, —
Ay, Let e: AT — AL be the nth power of the embedding e. Let us denote
with (e™) ™" the partial inverse of €". Let f: AT — Ay be a (possibly partial)
function.

A" ! A,
A7 A
2 eofo(e")71 2
Then
1
leofo(e) s, < Iflla,,

VA, (6 o f © (6n)_1) < VA, (f) :

Proof. First we note that eo fo (e”)_1 is a well defined partial function since
e” is an embedding. The domain of eo fo(e”) " is the image of A? under e”.
Let p be a polynomial over A; which realizes f with [|p|[,, = [|f]|,- Now,

52 LENGTH OF POLYNOMIAL EXPRESSIONS

p is a polynomial over Ay, too and realizes the (possibly partial) function
eofo(e")”", hence |eo fo (e”)_lHA2 <|Iplla, = lIPlla, = If[la,- Similarly,
let ¢ be a polynomial over A; which realizes f with va, (¢) = va, (f). Now,
q is a polynomial over A,, too and realizes the (possibly partial) function
eo fo(e") ™, hence va, (¢o fo(e") ') <wa, (g) = va, (@) =va, (f). O

Corollary 56. Let Ay and Ay be two functionally complete algebras. Let us
suppose that Ay < Ay. Let f be a (possibly partial) function over Ay (so it
is a possibly partial function over As, too). Then

1fllay, < flla,
va, (f) < wva, (f).

This proposition and corollary basically tell us that the ‘larger’ the al-
gebra, the shorter the possible realizing polynomials are. Therefore in the
later Sections of the Chapter we do not necessarily search for realizing poly-
nomials over every functionally complete algebra, but only over those which
contain the others. This property is especially useful among finite groups as
we explain it in Section 3.4.

We determined some upper bounds for several functions over different
functionally complete algebras in Theorem 45 and in Theorem 48. Even
these theorems can be applied to partial functions, as we just consider them
as functions which take value zero where they were not defined originally.
If, however, the partial function is only defined on a domain which is subset
of S; x --- x S, for some subsets S; C A, then we can benefit more. For
this we need the notion of the partial characteristic function over the domain
Syx-- xSy let XSIX XS (11,...,1,) be the n-ary partial function for which
Xa ﬁsn (ai,...,a) 1 and Xslx XSn (1q,...,1,) = 0 if every ; € S; and
for some ¢y we have x;, # a;,. In thls definition we require that every a; € S;.
The domain of x5 75 (x1,...,@,) is S1 X -+ X Sy,

Theorem 57. Let A be a functionally complete algebra. Let 0,1 € A be two
distinct elements and let 4, - be shortest polynomials with properties such as
in Theorem 6. Let x5 be a shortest polynomial representing the unary partial
characteristic function for the element a on domain S. Let X51X ais be a
shortest polynomial realizing the n-ary partial characteristic functzon for the
n-tuple (ai,...,a,) on domain Sy X ---x S,. Let — be a shortest polynomial
such that x —y = 0 if and only if x =y and 1 — 0 = 1. Let p be a shortest
polynomial realizing an arbitrary n-ary partial function f over A with e-many

non-zero values (1 <e <[, |Si|) on domain Sy x ---x S,. For a set S let

3.1 Partial functions 53

S—a={s—a:s€S}. Then the following inequalities hold:

Il < =1 =l

o <20 1 - O max { x| 1< i< n

Pl < 2+ 1 [€= - max {[[xg} ™| - ai € A}

Ipll < 4 =l I - fH - e ™m0 max { g ™| s 1< i< n)

Proof. The proof is simply applying Lemma 39 and Lemma 44 on the fol-
lowing representations:

Xf (‘I) - XOS_a (I - CL))
n
Xglli.,ais (.%1, s 7'7771) = H Xfii (ZBZ))
i=1
p(xy,...,x,) = Z (p(ar,...,a,) - Xfll,xﬂaf” (1, T)) -

(at,...,an)EA™

Here we consider [and) as the iterated versions of - and + in the way
described in Lemma 44. O

As we see, there is not too much to gain: we might be able to shorten
our polynomials if we can represent X2 shorter than y,. We note here that
Theorem 48 has a ‘partial’ version, too. The proof goes exactly as the proof
of Theorem 48, so we only state the theorem here:

Theorem 58. Let A be a functionally complete algebra. Let 0,1 € A be two
distinct elements and let 4, - be shortest polynomials with properties such
as in Theorem 6 and let us suppose that ||[+| = v(+) = v(:) = ||| = 2.
Let X2 be a shortest polynomial representing the unary partial characteris-
tic function for the element a on domain S. Let XS“ XS be q shortest
polynomial realizing the n-ary partial characteristic functzon for the n-tuple
(a1,...,a,) on domain Sy X --- x S,. Let — be a shortest polynomial such
that x —y = 0 if and only if x = y and 1 — 0 = 1. Let p be a short-
est polynomial realizing an arbitrary n-ary partial function f over A with
e-many non-zero values (1 < e <[],]Si|) on domain Sy x --- x S,. Let
s=max{|S;|:1<i<n} and let T be any positive real number for which
T > max{ HX H ae S, S=5,1<i<n } Then the following inequalities

54 LENGTH OF POLYNOMIAL EXPRESSIONS

hold if s > 3:

Ipll <e-(1+T-3+n—1logse)) —2-T,
1

Ipl| < e (1+T~ (3+n— Oge)) —92.T,
log s

If s =2, then
Ipll < ((3+n—loge)-e—2)-T.

Again, we see that basically |A| is changed to s, the maximum of the
number of elements in one coordinate of the domain set and 7" might be
decreased depending on the algebra. We do not give analogous theorems
in the later Sections, as the proofs are similar: they just use unary partial
characteristic functions on a subset, rather than on the whole algebra. It
is still interesting to know what algebras can benefit from considering only
partial functions on a domain S; x --- X S, so we always make a note for
particular algebras in the remaining part of this Chapter. This property can
be beneficial if a functionally complete algebra is embedded into another one
and we want to realize a function of the smaller algebra over the larger one.

3.2 The two-element Boolean algebra

First we consider the two-element functionally complete algebras, especially
B and By. Let us start with the observation that over B we only have to
use negation in front of variables:

Proposition 59. Let f be a (possibly partial) function over {0,1}. Then
there exist two polynomials py, ps realizing f such that every negation in p;
and ps is only used on variables, moreover || f|| = ||p1|| and v (f) = v (p2).

Proof. The proof is a basic one in mathematical logic, thus we just sketch it.
One can find more details, in e.g. [6]. We define the level of a polynomial. A
constant or a variable has level 0 and if p; and p, are two polynomials over
B with level [; and Iy, then the level of (p; A p2) is 1 4+ max (I3, l5), the level
of (p1 V p2) is 1 + max (I1,l2) and the level of —p; is 1 + 1.

Let us observe that = (z Ay) = -z V -y, - (x Vy) =z A-y and ~—z =
x. Now let p; be a polynomial which represents f and for which ||p|| = || f||-
If p; contains any negation which is not a negation of a variable, then it
either negates a negation, a A or a V. Let us substitute this negation using
the corresponding above-mentioned rule, this does not change the length of

3.2 The two-element Boolean algebra 55

the polynomial. Let L be the ordered list of polynomials ¢ which appear
negated (i.e. as —¢) in p;. After a substitution of a negation in p; using any
of the above-mentioned rules, a polynomial from L is removed and some new
polynomials are added. Each of the new added polynomials have strictly less
level than the removed polynomial.

If e.g. p1 has a subpolynomial — (x A y), then x A y appears in L. When
we substitute every appearance of = (z A y) to —x V -y, then the polynomial
x Ay is removed from L and z and y is added to it. The polynomial z A y
has level 1, the variables z and y have level 0.

Iterating this algorithm ends in a polynomial, when L only contains vari-
ables, i.e. every negation negates a variable or a constant. Replacing the
negation of the constants by the appropriate corresponding constants fin-
ishes the proof.

Using the same idea we have the result for the number of variable occur-
rences. 0

In the following proposition we compare the length and the number of
variable occurrences for B and for By.

Proposition 60. Let f be an n-ary (possibly partial) function over {0,1 }.
Then

UB(f) = UBo(f)
e < Ifllg, <3-[If1s

Proof. The proof based on an easy observation, namely that NAND and NOR
only differ from A and V by a negation. Now let p be a polynomial over B,
which realizes f. By Proposition 59 we can assume that every negation in p
negates a variable. Now changing every A, V, = using the rules (2.2), (2.3) and
(2.4) we do not change the number of variable occurrences, but we increase
the length by 1 each time. As p had negations only in front of variables we
can conclude that vg, (f) < wvs (f) and || f|lg, <3-[fls-

Now if p realizes f over By, then substituting for NAND and NOR using
zNAND y = = (2 Ay) and NORy = — (2 Vy) we increase neither the
length nor the number of variable occurrences of the polynomial. Hence, we

conclude that vg (f) < vs, (f) and [|fllg < [[flg,- =

Later on we only consider realizing polynomials over B. One can give
estimations on the length and on the number of variable occurrences over By
using Proposition 60.

Now we give some upper bounds on the length for an arbitrary function
over B. We basically use the idea of Theorem 48.

56 LENGTH OF POLYNOMIAL EXPRESSIONS

Theorem 61. Let B be the two-element Boolean algebra. Let f be an arbi-
trary n-ary function over { 0,1} with e-many non-zero values (1 < e < 2").
Then

v (f) = Ifls;
1fllg < (3+n—loge)-e—2.

Proof. Let p be a realizing polynomial for f with minimal length among
those polynomials which have exactly v (f)-many variable occurrences. If any
constants appear in p, then first let us change every negation of a constant
using the rules =0 = 1 and =1 = 0. Now every appearance of a constant has
one of the following forms: OAp’, 1Ap, 0V p', 1Vp' for some subpolynomial
p'. Since OANp' =0, 1Ap =0Vp =p/, 1Vp' =1, we could shorten p if any
of these forms appear. Therefore we have ||f|| = v (f).

The inequality for the length follows from Theorem 48 (V plays the role
of the addition, A is the multiplication) and from the fact that both unary
characteristic functions xo (x) = =z, x1 () = = have length 1. O

Remark 62. We can assume that e < 2”71, otherwise we realize —f with p,
then —p realizes f and has the same length as p.

Remark 63. Lupanov [25] considered the algebra over { 0,1} which contains
all 16 binary operations as basic operations. He proved that an arbitrary
n-ary function can be realized with length at most (2 + o (1)) -2" - (logn) ™"
over this algebra. Our bound is better than Lupanov’s, whenever e < ¢- 2" -
(logn)~? for some constant c.

The following Corollary summarizes our upper and lower bounds for the
algebras B and By:

Corollary 64. Let f be an arbitrary n-ary function over {0,1}. Then

Ifllg <2-2" =2,
Ifllg, <6-2" —6.

Moreover for every ¢ > 0 and for sufficiently large n there exists an n-ary
function fo over {0,1} such that

1 2n
>)
Ifolls = 1+¢e logn’
1 2"
> . .
ol 2 T

Proof. We apply Proposition 60, Theorem 61, Remark 62 and Theorem 46.
O

3.3 Finite rings o7

The last proposition of this Section gives an upper bound on the length
of the discriminator operation.

Proposition 65. Let d be the discriminator function over {0,1}. Then
Jdl < 10

Proof. In the second proof of Theorem 14 we gave a polynomial which has
length 10 and realizes the discriminator function. O

As the only functionally complete Boolean algebra has 2 elements, there
is no point considering partial functions over the set Sy x --- x §,,. If k is
the number of S;’s for which |S;| = 2, then we can easily consider a function
over B¥ instead of the original partial function.

3.3 Finite rings

So far we did not define exactly what are the basic operations of a ring, but
as soon as we are considering the length of polynomials, we have to be exact.

From now on the rings basic operations are the 4+, — and -. Let F be a
finite field, let ¢ = |F| and let R = M (F), the & x k-matrices over F. Now
I+ =v(+) = || =v(:) = ||-|]| = v(~) = 2, hence we are able to apply

Theorem 48. It is easy to see that the n-ary addition and multiplication both
have length n. First we start with the finite fields.

Theorem 66. Let F be a finite field, |F| = q and let f be an arbitrary n-ary
function over ¥ with e-many non-zero values (1 < e < q"). Then

1/l < ((QQ—Q)-(3+n—logqe)+1)-e—4q+47
1fl<2-q-e- (3+n—1log,e).

Proof. We have xq () = 1 — 297!, which has length ¢ < 2¢ — 2. For every
-1

a# 0t cg = (Tpuer (@—©) - Then xo (2) = ca [opper (= u),
hence ||xa|| < 2¢ — 2 (as one of the u’s is zero). Now applying Theorem 48
we obtain the required bounds. O

Remark 67. We note that if a partial function is defined over a domain
Sp X -+ x Sy, and s = max {|S;| : 1 <i < n}, then Theorem 66 holds if we
change ¢ to s, ie. || f]| < ((2s —2)- (34+n—log,e)+ 1) -e—4s+ 4.

Now we move to the k X k matrix rings. Let N = ¢** the number of
elements of the k£ x k matrix ring over the g-element field. The following
theorem gives us an upper bound on the length of an arbitrary n-ary function.

58 LENGTH OF POLYNOMIAL EXPRESSIONS

Theorem 68. Let F be a finite field, |F| = q and let R = M(F), the k x k-
matrices over F (k> 2). Let N = |M(F)| = ¢** and let f be an arbitrary
n-ary function over R with e-many non-zero values (1 < e < N™). Then

1]l < 16'(10gN)5/2~N1/4-6~(3—|—n—logNe).

Proof. We use the notations of the proof of Theorem 16. We recall that
XVY =X+Y —X-Y. Let us define the polynomial \/;_; X; the way
we described in Lemma 44. Let v(n) be the number of variable occurrences
in \/_,. V has 4 variable occurrences, hence v(n) < 4 -n* by Lemma 44.
Moreover for expressing \/!_; we do not need to have any constants. Thus
for every n we have ||\/[_,|| < 4n?.

Let us recall the following polynomials from the proof of Theorem 16:

hE

Di.j (X) = [s,i'X'[j,sa

@
Il
-

(pi,j (X)q_l),

ij=1

xu (X)) = I—-0(X—M)

<=

5(X) =

It is easy to see that ||p; ;|| = 3k, v(p;;) = k. Now, applying Lemma 40
and Lemma 41 we have

v(d) < v(k) vpiy) (¢—1)<4-K-(¢—1),
o < v (k) (¢ 1) llpigll <12+ k- (¢ = 1),
Ixarll < ol +0 (@) - (1=l =) +1<16-k°- (¢ — 1) + L.

Let us denote with 7' the right hand side of the last inequality and apply
Theorem 48. Then we derive the following bound on || f||:

1
17l < e-(1 + (16K (g—1)+1) - (3+n _ M?ifqu))_gzwq _ -1

Now using k* = (log, N)5/2 < (log N)*? and ¢ = NY%* < NY4 we easily
derive the desired bound. 0

Remark 69. If e > (N — 1) - N*~1| then there exists a value 0 # r € R such
that f takes the value r at least N !-many times. Let us realize f —r with
p, then p + r realizes f, v (p+7r) = v (p) and ||[p+r|| < |[p|| + 1. Therefore
we can assume that e < (N —1) - N1,

3.3 Finite rings 29

Remark 70. Building up the characteristic function over finite matrix rings
is somewhat different than building them up over finite fields. Over fields the
polynomial for x, () checks whether the input is different than any element
u € F (apart from u = a). On the other hand, in the case of matrix rings, the
polynomial checks whether all the entries of the matrix differ from anything
but zero. Hence if we want to have a theorem about partial functions, we
have to make a restrictions on the entries of the domain, like the entry in the
ith row and jth column has to be from the set S; ; C F. Then Theorem 68
applies, if we change N to [[,_, [Si;l.

Let us summarize our upper and lower bounds for functionally complete

rings:

Corollary 71. Let F be a finite field, |F| = q. For an arbitrary n-ary
function f over ¥ we have

Ifllp <10+ (g —1)"-¢"".

Moreover for every e > 0 and for sufficiently large n there exists an n-ary
function fy over ¥ such that

logg ¢"
1+e logn

I folle =

Let R = M(F), the k x k matrices over F (k> 2) and let N = |My(F)| =
qu. For an arbitrary n-ary function f' over F we have

Hf/HR < &0 - (10,52;]\7)5/2 . (N _ 1) LN/

Moreover for every ¢ > 0 and for sufficiently large n there exists an n-ary
function fi over R such that

logN N7™
> —. .
Il > 757 o
Proof. We apply Theorems 66, 68, Remark 69 and Theorem 46. O

We finish the Section with the upper bounds on the discriminator func-
tion. The following propositions show that it is linear in the size of the ring
R.

Proposition 72. Let F be a finite field, |F| = q and let d be the discriminator
function over F. Then
ldl <4-q—1.

60 LENGTH OF POLYNOMIAL EXPRESSIONS

Proof. As we showed in the second proof of Theorem 16, the discriminator
has the following polynomial realization:

d(r,y,z)=@—y)" o+ (1-(z-y"")- =
It is easy to see that this polynomial has length 4 - ¢ — 1. O

Proposition 73. Let F be a finite field, |F| = q and let R = My(F), the
k % k-matrices over F (k > 2). Let N = |My(F)| = ¢*° and let d be the
discriminator function over R. Then

ld|| < 32- NY*. (log N)? .

Proof. As we showed it in the second proof of Theorem 16, the discriminator
has the following polynomial realization:

AdX,) Y, Z2)=0(X-Y)- X+ —-6(X-Y))Z
Using Lemma 41 we can give an upper bound on the length:
ldll <2-([|o]| +v () +3 <32k (¢—1)+3<32-¢- k.

As in the proof of Theorem 68 we proved that if ¢ < N'/4 and k* < (log N).
]

We do not claim that a shortest polynomial p realizing an arbitrary func-
tion f is necessarily built up the way we obtained the bounds in this Section.
An interesting question is to find the minimal length of a realizing polyno-
mial for an arbitrary (or special) function and whether it can be found in
a fast way. Another interesting question is whether the shortest realizing
polynomial is unique for every function f, and if not, then characterize those
functions for which the shortest realizing polynomial is unique.

3.4 Finite groups

So far we gave bounds on the length of arbitrary n-ary functions for the
two-element Boolean algebra and for the functionally complete rings. Every
upper bound was based on Theorem 48 and on the idea that we build up our
given function recursively. Theorem 48, however, uses some strict conditions,
namely that some + and - operations must have exactly two variable occur-
rences. Among groups + naturally corresponds to the usual multiplication
of the group, but there is no short or natural function corresponding to -.
Unfortunately, as we stated in Remark 50, it is essential that both v (+) = 2

3.4 Finite groups 61

and v () = 2. Therefore we have to find another way for giving bounds on
the length and on the number of variable occurrences for an arbitrary n-ary
function over a functionally complete group. We use the idea of Theorem 45
and the proof of Theorem 18 helps us to build up our polynomials.

Throughout this Section let G be a finite simple non-Abelian group with
two basic operations: the group multiplication and the inverse. Let N = |G|.
We write [z, y] for the commutator = 'y~'ay and put 2¥ = y~'zy. First we
observe that the variable number of occurrences is connected to the length of
a function and the realizing polynomials can be chosen such that all inverses
are taken only on variables.

Proposition 74. Let [be an arbitrary n-ary (possibly partial) function over
G. Then there exists realizing polynomials p1 and po, such that every inverse
is used only on variables and || f| = |[p1ll, v (f) = v (p2). Moreover,

fllg <2 ve(f)+1.

Proof. Proving that it is enough to consider polynomials with only variables
inverted is entirely the same as the proof of Proposition 59 for the two-element
Boolean algebra. We iterate substituting every invers of a product (zy)™'
by y~!z~!. This operations changes neither the length, nor the number of
variable occurrences of the polynomial. When the algorithm terminates, the
resulting polynomial will have the required property.

For proving the inequality let p be a polynomial over G which realizes f
and v (p) = v (f). Then there exists a polynomial p’ which realizes f, v (p') =
v (p) and ||p’|| < 2v (p)+1: we replace in p every product of constants ¢; - - - ¢,
by the constant ¢, where ¢ = ¢; - - - ¢;. Then v (p') = v (p) and there must be
at least 1 variable between every two constants, hence [|p|| < 2-v(p') + 1.
Now

AT <Pl <2 v@)+1=2-v(p)+1=2-v(f)+1.
0

From now on we only consider the number of variable occurrences of a
function, and one can derive a bound for the length using Proposition 74.
We use Lemma 40 for estimating the number of variable occurrences in the
(partial) functions given in the proof of Theorem 18. We remind the reader
for some notations defined in the proof of Theorem 18.

For every 1 # u € G and for every v € G let p,, be the unary par-

tial function for which p,, (1) = 1 and p,, (u) = v. Let £ (for b # 1)
be the n-ary partial function defined in Lemma 21, i.e. fb(") (by...,b) = b
and fb(”) (z1,...,2,) = 1if & = 1 for some 1 < i < n. Let xi, (for

62 LENGTH OF POLYNOMIAL EXPRESSIONS

u # 1) be the unary characteristic function described in Lemma 23, i.e.
Xt (1) = w and x1, (z) = 1if # 1. Finally let x4, 4, be the n-ary
characteristic function described in Lemma 25, i.e. Xa,. apw (A1, .., 0n) = u
and Xa,,..anu (1, ..., 2,) = 1, whenever z; # q; for some 1.

Let V =v <fb(2)>. For every 1 # u € G, for every v € (G, and for every
subset S C G let

Ku,v =0 (pu,v) 5
Ksy=max{K,,:1#ueS},
K,s=max{K,,:veS}.

Later on we usually use u to denote an arbitrary element of G \ {1}, use

v as an arbitrary element of G, and use b whenever we are referring to a
(somehow) fized element of G\ {1}.

Theorem 75. Let G be a functionally complete group. Let N = |G|. Then
the following inequalities hold:

v (fé”’) <V .nlsV, (3.16)
o) <o (A7) max{o(pu) s 1Aue G, (3.17)
v (X15u) S v (X1p) 0 (Do) (3.18)
0 (Xarsesant) <0 () 0 Oria) (3.19)
U (Xar,aniu) < U (Xar,oanip) * ¥ (Do) (3.20)

Let f be an n-ary (possibly partial) function over G with e-many non-identity
values (1 < e < N"). Let K =1 —i—max{ Kevi1ye Kpang1y } Then K is at
most the number of conjugacy classes of G and

v(f) <e-max{v(Xa, awm) 1FueG}, (3.21)
v e o (£7) 0 (A7) max e) max v). (322)
v(f)<e Koy Kooy - V-n'2V (N — 1) (3.23)
v(f) <3136- (K —1)°- (N =1)%-n%-¢, (3.24)
IFI1 < 2- Kovgiye - Koygny - V- (N = 1) 0!8V e g1, (3.25)
IfIl <6272 (K —1)>- (N =1)° - n®-e+1. (3.26)

Proof. For proving (3.16) we use Lemma 44 on the polynomials p™, where
p (21) = 21, p? (21, 25) is a realizing polynomial for fb(2) such that v (p®) =

3.4 Finite groups 63

V', and for every integer n > 2:

p(2n_1) (xla tee 7x2n—1) = D (p(n) (xla tee 7xn) 7p(n_1) (xn-‘rl? s 7‘7;271—1))
p(Qn) (xla tet >x2n) = D <p(n) (xla tee >-Tn) >p(n) (anrl; s axZn)) .

Then p™ is a realizing polynomial for fb(n) and by Lemma 44 we have
v (fb(n)) <w <p('n,)) <V. nlosV
The inequalities (3.17), (3.18), (3.19), (3.20), (3.21) follow from Lemma 40

and the following representations based on the proof of Theorem 18, where
b#1and u# 1:

Xip(T) = (bPuQ b (2) 7 Bpuy s ()71
X1; u(x) = pbu (Xl p(x))
Xat,....an;b ($1, 7xn) = (Xl b (xlal 1) 7+ X1ib (%G;l)))
Xa1, ,an ;U (xla 7xn) - (Xal Gn;b (xla v 7xn)))
(>-Tn) = H Xai,...,an;u (xb o axn)a

(a1,...,an)EG™
1£u=F(ar..an)

where G = {1,ug,...,ux}. Then (3.22) and (3.23) simply follows from
the first 6 inequalities. The number K is at most the number of conjugacy
classes of G by Proposition 79 (see Section 3.4.1 below). The inequality
(3.24) follows if we apply Proposition 86 on (3.23) (see Section 3.4.2 below).

Finally, the last two equations are an immediate consequence of the equations
(3.23), (3.24) and Proposition 74. O

Remark 76. Similarly to Remarks 62 and 69, ife > (N — 1)-N"~!, then there
exists a value 1 # ¢g € G such that f takes the value g at least N" !-many
times. Let us realize f - g~ with p, then p - g realizes f, v (p-g) = v (p) and
lp- gl < llpll + 1.

Comparing the results of Theorem 75 with those of Theorem 45 we can
conclude that fb plays some similar role for the groups as the - in general.
One wants to minimize V' in order to have better upper bounds for v (f),
which may be possible to do by choosing b wisely. As we see, e is taken to
the first power, as the group multiplication plays the role of the general +.
The constants Ky 11 and Keg\f1y, depend on the choice of b, too. In the
following Subsections we give some upper and lower bounds on V' and on the
Ky.'s.

64 LENGTH OF POLYNOMIAL EXPRESSIONS

Remark 77. We note here that if Sq,...,5,,5 C G are subsets, where 1 €
SiN---NS,, and f is a partial n-ary function defined over the domain S; x
-+ xS, with values from S, then similar inequalities hold as in Theorem 75:

Xf;ib) <w <fb(‘5i‘71)> -max{v(pup):1#ue S},
) <o () v (o)
sy <o (A7) - max v (4

..... 1<i<n

S <o (IS v)

v(f ge-max{v(xfllx"'XS"):17éu€5'},

o

) An ;U
o log V'
v(f) < e Kusyry - max Koy V2on®h - max (|8 = 1),
v(f) <3136 (K —1)*- max (|S;]| — 1)° - n® - e.

1<i<n

The bounds apply even in the slightly weird situation when |S;| = 1 or |S;| =
2. When |S;| = 1 then the corresponding characteristic and fJ functions are
constant functions, and have zero variable occurrences. If |S;| = 2 then the
corresponding f} function has one variable occurrence as f}} (z) = .
Embedding Gy into a larger group Gs may allow us to shorten the length
of an arbitrary (partial) function f. Formally we obtain the same upper
bounds (as the sets S;’s and S are the same for the two groups), but by the
embedding we have a chance to choose b from a larger set. This may enable

us to decrease v <fb(2)), v <fb(”)), and v (py), hence also to shorten v (f) and

| f|I for the partial function f over Ga.

Let us summarize our bounds for functionally complete groups:

Corollary 78. Let G be a functionally complete group. Let N = |G| and let
K be the number of conjugacy classes of G. For an arbitrary n-ary function
f over G we have

Iflle <6272 (K —1)*- (N —1)”- N" "1 .n® 4 1.

Moreover for every ¢ > 0 and for sufficiently large n there exists an n-ary
function fy such that
log N N7™

> — . .
HfOHG “ 1+¢ logn

Proof. We apply Theorem 75, Remark 76 and Theorem 46. O

3.4 Finite groups 65

3.4.1 The partial function p,,

First we give upper bounds on the number of variable occurrences of the
partial functions p,,,. For the group G and a set S C G let

SF={up-up |ug,.. ., up €S},

For two elements u,v € G let us denote u ~g v if u is a conjugate of v in
G. If it is clear over which group we are considering the conjugation, we
just write u ~ v. Let C,, = {u°:c€ G} be the conjugacy class of u and
let D, = C,UC,-1. We generate every v € G using the elements of D, as
generators for some 1 # u € G. Let Sy = (), S; = D, and for every natural
number ¢ > 2 we will create S;, a subset of GG, using the following definition:

SZ‘:SZ‘_1U{I"y‘ZEGSZ'_l,yGDu}:UDi.

j=1

It is clear that S; C S;;; and by Lemma 19 it can only terminate in G, i.e.
if S; = S;41, then S; = G. Moreover, S; is the union of conjugacy classes,
hence the process will finish in at most as many steps as the number of the
conjugacy classes of G. The following proposition tells us that this is the
way to determine the K, ,’s.

Proposition 79. For every 1 # u € G and for every v € G we have v € S;
if and only if v (puw) = Kuw < 1. As a corollary we derive that K, , is always
less than the number of conjugacy classes K of G. Moreover,

Proof. For a fixed v and v if v € S;\ S;_; then we can construct a polynomial
(/) . (29 such that v = (u/1)”" - - (u/)” where j, € {1,—1} and y,’s
are constants from G. This polynomial clearly has the properties of p,, , and
the number of variable occurrences is i > K, ,.

For the other direction we note that calculating these S; sets gives us
polynomials with the least variable occurrences for a function f(z) with the
property that f(1) = 1. Any l-variable polynomial has the form p(z) =
G107 gox 72 g3a? . .. g,wi gy iy for some s, where ji,...,j5, € {1,—1} and ¢; €
G. Now we alter this polynomial with the trick gi27 gy = 127 g; ‘9192 =

]
() g1go:
. . . . -1 . .
Gt gox?? - a7y = (37]1)91 919207 - - 170 gey =
-1 -1 . .
(xh)gl (37]2)@192) 919293’ - 1 ge g = =

(le)gfl (ij)(glgz)’l o (xjs)(gl---gs)’l g1 Gpn.

66 LENGTH OF POLYNOMIAL EXPRESSIONS

With the notations ¢; = gfl, Cy = (9192)71 yooiCs = (g1 ~gs)71, C=g1° " Gst1

we have that p(x) = (291)7 (292)% ... (29:)® c¢. Now if p(1) = 1, then ¢ = 1,
Therefore for s = K, ,, then there exists ¢, ..., ¢s such that p, , can be real-

ized by p(z) = (291)°" (272)7 - - - (2%¢)”, which means that v = (u/1)" (u?2)? - -

and v € S, = Sk, -
Finally the estimation on the length is a consequence of Proposition 74.
O

Remark 80. Using 1 and —1 in the exponent is slightly inconvenient, however
does not make a real difference if v is conjugate to u~!. We use this writing
of polynomials later on.

Remark 81. Now we have an easy example that a polynomial with the least
number of variable occurrences is not necessarily the shortest one for realizing
a partial function: let u be a 3-cycle in As, v = u?, then u and v are conjugate,
thus there exists ¢ € Ajs such that v = ¢ !uc. Hence both polynomials ¢ txc
and 2% represent p, .

Using the method described in this Section one can easily determine K, ,’s
for a given functionally complete group. In Section 3.5.2 we give quite sharp
bounds on K, , for certain u,v € A,,.

3.4.2 The partial function fb(n)

After investigating the function p,,, we move on to the more important fb(n),
especially to fb(Q).
Let pl()”) be a polynomial representing fb(n) such that between every two

constants there is at least one variable. Using the idea of the proof of Propo-
sition 79 the polynomial pl()”) can be written as

pl()n) (xh cee axn) = (lel>61 (x222>62 e (xgss)cs Cs+1, (327)
where iy,...,1, € {1,...,n}, ji,...,js € {1,—1}, and ¢,’s are constants
from G. Now among iy,...7s all the elements of {1,...,n} must occur

at least once, because pl()") depends on each of its variables. Now, ¢, =
1, because f(1,...,1) = 1. Moreover if the ith variable occurs only once
in w then if we write z; = b and z; = 1 for every j # ¢, then we have

1 = pé")(l, 1,01, 000 1) = b° for some constant ¢ € G, contradiction.

(n)

Therefore we have Hpén) H > <pb") = s > 2n for every n > 2.

Let A = {r:c. #1,1 <r <s} the set of indexes of the non-identity
constants. Now there is a unique partition of the set I such that every
block of the partition contains only consecutive numbers and every block

()

3.4 Finite groups 67

is maximal in this sense. Let us denote the number of blocks with ¢ and
let us denote the blocks with A; (where 1 < i < t) such that if i < j and
c € A;,d € A; arbitrary elements, then ¢ < d. Let

si=|{e:reAyr+1€ A, ¢ #cir).

Now it is easy to see that

o

=s+> (2+s). (3.28)

Let B; = {r:4, =i} be the index set of the variable z;. This index set
cannot contain only consecutive numbers: then [] g (xf:)cr would be a
factor of the polynomial pl()n). Since [], 5, (xf:)cr =f(1,...,1,z1,...,1)
evaluates 1 for every substitution, pgn) would not depend on the variable z;.

The number ¢t > 1, otherwise pl()") is a term expression (containing no con-

stants), which would imply b = p\™ (b,b, ..., b) = pi™ (b,1,...,1)-p\" (1,0, ...
1 (powers of b are interchangeable). It immediately follows that Hpgn)H >

2n + 2.
Let r; € B; such that ¢,, # 1. We claim that there exist 7, € B;,
1 <17y <, ry # 1y such that ¢, # 1. If there existed no such an ry, then by
heph
[es, (:UZ:) = 1 we can conclude to that for some k we have 2™ = z* for

every x € G. The following lemma gives the contradiction.

Lemma 82. Let G be a finite, simple, non-Abelian group. Then for any
integer k and for any 1 # c € G there erists g € G such that g¢ # g~.

Proof. Let us suppose that for every g € G we have ¢° = ¢g*. If g € Cg (c),
then ¢¢ = g, thus k — 1 is divisible by the order of g. On the other hand, if
k —1 is divisible by the order of g, then g* = g, hence ¢° = g and g € Cg (c).
Therefore the subgroup Cg (c) is characteristic (it contains exactly those
elements whose order is a divisor of k£ — 1) and hence normal. The group G
is simple, Cg (¢) # G, since ¢ ¢ {1} = Z(G), hence Cg (¢) = {1}. This
contradicts to the fact that 1 # ¢ € Cg (¢). O

If |B;| =2, eg. Bi ={ry,ra}, then j,, = —j,, and ¢, = ¢,,. Otherwise

j 1 jry \ €72 . . .
(xf”) (x?”) can be rewritten into the form (z;)° = ¥ with some con-

stant ¢ € G and with an integer number k. Such equality does not hold for
every © € G by Lemma 82.

Let us assume that |B;| = 3 for some i, then we prove that either ¢ >
2 or s; > 1 for at least one 1 < j < t. Let B; = {ry,r,73}. Since

68 LENGTH OF POLYNOMIAL EXPRESSIONS

<x§”)cr1 (x?”)% (x?“)% = 1 holds for every € GG, we conclude that at
least one of ¢,,, ¢, ¢, is not 1. Now if only one of these three constants is
different from 1, then the equation can be rewritten into the form (z;)° = z*
with some constant ¢ € G and with an integer number k. Such equality
does not hold for every x € G by Lemma 82. If exactly two constants out
of ¢y, ¢y, €y differs from 1, and they are the same, then we obtain a similar
equation and Lemma 82 can be applied, too. If all three constant c,,, ¢,,, ¢,
are equal, then the equation has a form a:g1+j2+j3 = 1, which does not hold
for every x € G. Therefore there are at least two constants from c,,, ¢,,, ¢,
which differ from 1 and from each other, hence either t > 2 or s; > 1.

Now if t > 2, then Hp,()")H > 2n +4 by (3.28). If t = 1 and there exists
1 < i < n such that |B;| > 4, then again le()")H > 92n+4. If t =1 and there
exists 1 < i < n such that |B;| = 3, then s; > 1, hence Hpé")H > 2n + 4.

Therefore if Hpgn)H < 2n+ 3, then t = 1, |B;| = 2 for every 1 < i < n, the

constants in the form (3.27) are in one block, and either all constants are
the same or there are at most two different constants. Hence we proved the
following:

Proposition 83. For every n > 2 we have

om < v <fb(n)> <V. nlogV’

M+ 2< Hfé”’ <2.V.peV 41

where V =wv <fb(2)> Moreover if Hfb(n) H < 2n+4, then every variable occurs

exactly twice in the shortest representation of fb(n), and using the form (3.27)
there are at most two different constants.

The lower bounds for the variable occurrences and for the length of fbn)
are linear in n. On the other hand the upper bound is at least quadratic from
Proposition 84. Our conjecture is that the truth is rather closer to the upper
bound than the lower bound. Unfortunately there are no known methods for
proving a quadratic lower bound on the length for a function over an algebra.

Now with the help of this proposition we prove that the minimal length
of fb(2) is at least 9. In Proposition 90 we prove that length 9 can be achieved
for the group A,, (m > 5).

3.4 Finite groups 69

Proposition 84. Let V =wv (fb@)). Then we have

4<V <4 Ka(1ys,
9< Hfb@)H <8 -Kaqip+1

Proof. Applying Proposition 83 to n = 2 we have that v <fb(2)) > 4 and
HftEZ) [b,b°] # 1. Such ¢ exists by

Lemma 20. Now pp, e ([, y¢]) is realizing fb(Z), hence v (fb@)) <4-Kaqiyp

for some ¢, where [b,b°] # 1. The upper bound for the length follows from
Proposition 74. Now we only have to prove that Hfb@) H < 8 is not possible.

Let pb) be a shortest representation of fb We deal with the different
lengths separately:

Case 1: The length Hfb@) H < 7. By the observations which led to Propo-

sition 83 we know that there are at most two different constants in the form
(3.27). The index sets By and B are two-element sets, and neither of them
can contain only consecutive numbers. The constants for the two occur-
rences of the variable z; have to be the same, and the constants for the two
occurrences of the variable x5, have to be the same. Moreover there must

be at most one ‘change’ in the sequence of constants which leaves only one
possibility: pl(f) (x1,29) = <[x1,x2ﬂ]) Now pb (b b) =1#0.

Case 2: The length) O g 1f H 72 (3.28) we

have the following possibilities:

l.s=6,t=1and sy =0. If |B;] =3 forany i € {1,2}, then s; > 1.
Therefore either |B;| = 4 and |Bs| = 2 or vice versa. Without loss of
generality we can assume |Bj| = 4 and |Bs| = 2. t = 1 and s; = 0,
hence there is only one constant ¢ and it is in one block. If ¢ conjugates
any of the two occurrences of variable x5, then it conjugates the other
too. If ¢ conjugates both occurrences, then when calculating pb (b b)
we can move x5 and (:1:2)C next to each other. Their product is 1,

therefore pb (b b) = pb (1, b) - p (b 1) = 1 # b contradiction. The
same happens if ¢ does not Conjugate the occurrences of xg, then we
can move all the z1’s next to each other and have p (b b) = (1 b) -

b (b, 1) = 1 # b contradiction.

2. s =5t =1ands; = 1. Itis casy to see that p\” (1, z) = (2/)" (292)* 273
or piP(1,2) = a9 (27)* (272) and pi” (z,1) = ¥z~ (or the other

70 LENGTH OF POLYNOMIAL EXPRESSIONS

way around, let us assume it happens this way). Either way, when we
calculate fb(Z) (x,), using the fact that and ! centralizes each other,
we can sort the factors in such a way that the factors of p,(f)(l, x) are
appearing after each other, i.e.: pl(f) (x,z) = g1(x) -pf)(l,x) - go(z) for
some terms ¢g; and go where g1(z)ga(x) = pl(f) (z,1). Then pl(f) (x,z) =
g1(x) -p,(f)(l, x)-go(z) = g1(x) - go(x) = pl(f) (z,1) = 1, which contradicts

with p{” (b, b) = b.

3. If s=4,t=2and s; = s, = 0. Then pl(f) (z,y) is basically y72 - (z71)° -
g2 (2 or (a7)° - yi2 - (z71)° - y=32. From b = p{”(b,b) we can
conclude to b = b2, Let k be the order of b. Now k is odd, as b and
b% are conjugates, hence they have the same order. Moreover, b*¢ has
order k, too. Now

b=t = p(t*)" —

Y

hence k | 2¥ — 1. Let p be the smallest prime divisor of k, let k = p-m
and let ¢ be the smallest positive integer for which p | 2 — 1. By
Fermat’s Theorem we know that 2°~! = 1 (mod p), hence ¢ | (p — 1).
Now 2F = 1 (mod p) if and only if ¢ | k, which means that k has a
smaller prime divisor than p, as t < p.

4. s =4,t =1 and s; = 2. In this case there should be two constants
c1 and ¢ corresponding to the variables x; and z5. They are ordered
either as cy,c9,c1,c9 Or as co, ¢y, Co,c1, and we obtain s; > 3. The
contradiction finishes the proof.

O

We can give a constant upper bound on V using the following theorem
from [42]:

Theorem 85. Let G be a finite group. Then the following are equivalent:
1. G is solvable;

2. no non-trivial element g is the product of 56 commutators of the form

lg", g"] (with h,k € G);

3. no non-trivial 2-element g is the product of 126 commutators of the
form [g", g*] (with h,k € G). (The element g is a 2-element if the
order of g is a 2-power.)

The following proposition is an immediate corollary of this theorem:

3.5 The alternating group A,, 71

Proposition 86. For every finite simple non-Abelian group G there exists
b € G such that

v () <224,

Moreover there exists b € G such that the order of b is a power of 2 and

v () <504

Proof. We use the fact that if b = [bhl,bkl} [bhi,b"’i], then the polyno-

mial p (z,y) = [bhl, b"’l} [bhi, bki] represents the partial function fb(Z). The
number of variable occurrences in polynomial p is 4-¢. Applying Theorem 85
finishes the proof. O

Now we can take a closer look at the results of Theorem 45 and of Theo-
rem 75. Applying the first one to rings gives us an n factor, while Theorem 75
has a factor at least n? (as V > 4). The reason for that is that rings have the
multiplication as a basic binary operation next to the addition, but groups
have only one operation. We cannot use Theorem 48 on groups for the same
reason. One wonders whether there exists another operation (corresponding
to the ring multiplication) which we can take as basic operation for the group
so that we obtain similar bounds as for rings or can apply Theorem 48. This
is indeed the case: taking the commutator changes the algebra in a way that
we can derive similar bounds to those for rings. We investigate this idea in
details in Section 3.6.

3.5 The alternating group A,,

In Section 3.1 we investigated partial functions and in Proposition 55 we
stated that if a functionally complete algebra can be embedded into another
one, then the length of a partial function and the number of variable oc-
currences for the partial function do not increase. First we prove in this
Section that every finite simple non-Abelian group can be embedded into
A, for some m, therefore we only have to consider these groups when we are
looking for shortest possible realization among finite groups. The statement
holds for every finite group, so for this proposition the notation of G means
finite group, not necessarily simple or non-Abelian.

Proposition 87. Let G be any finite group. Then there exists m for which
G can be embedded into A,,.

Proof. We can choose m = |G| + 2, since the Cayley table of G gives an
embedding into S|g| and for every positive integer & there exists a subgroup

72 LENGTH OF POLYNOMIAL EXPRESSIONS

in Ag,o which is isomorphic with S;. This ¢: S — A2 embedding is the
following: for every permutation m € Sy

() = , if 7 is even
PI= 7 (k+1,k+2), ifrisodd °

Composing the two isomorphism gives us an isomorphism between G and a
subgroup of A,, for m = |G| + 2. O

In Theorem 75 we saw that one employs bounds on v (fb(”)> and on the

product Kg\11},* Kpg\(1} in order to obtain a proper bound on the number
of variable occurrences for an arbitrary partial function f. In Proposition 93

we give a sharper quadratic bound on v <fb(n)> than in Proposition 84, then

we prove that b can be chosen as a 3-cycle to reach that bound. In Sub-
section 3.5.2 we move on to give bounds on the product Kg\(1}p - Kpa\(1}
(Proposition 98). We summarize all the results in the following theorem:

Theorem 88. Let m > 5 and let N = |A,,|. Let f be an arbitrary n-
ary (possibly partial) function over the group A, with at most e-many non-
wdentity values. Then the following inequalities hold:

1
v(f) <5 m- (30" =3n+2)- BN* —ON +8) -e,
1fl <m-(3n"—3n+2) - (BN*—9N +8) -e+ 1.
If 4+ m, then we can replace the factor m by |m/2].

Proof. The proof follows by applying Propositions 98 and 93 below, Propo-
sition 74 and Theorem 75. O

Let us summarize our bounds for A,,:

Corollary 89. Let m > 5 and let N = |A,,|. For an arbitrary n-ary function
f over A,, we have

1flla, <m-(N—=1)- (3N —9N +8) - (3n® = 3n+2) - N""1 + 1.

If 4+ m then we can replace the factor m by [m/2].
Moreover for every ¢ > 0 and for sufficiently large n there exists an n-ary
function fy such that

logN N7™
> . .
HfOHAm “ 14¢ logn

Proof. We apply Theorem 88, Remark 76 and Theorem 46. O

3.5 The alternating group A,, 73

3.5.1 Bounds on v <fb(n)> over A,,

From now on by A,, we mean the alternating group A,, for some m > 5. In

the following propositions we determine v < fb@)) for A,,, give some examples
how b can be chosen to achieve the lowest possible v (fb(Z)) and give a sharp

upper bound for v <fb")>.

Proposition 90. There exists b € A, (m > 5) such that V =v < 13(2)) =4

and Hff) =9.

Proof. For 1 # b € GG there exists a polynomial [z, y©?] (for some constants
¢; and ¢y) representing fb(2) (x,y) if and only if there exists a conjugate b°
such that [b,0°] is a conjugate of b. This is the case for A,, (m > 5) with
b= (123) or with b= (12345) (the multiplication is from right to left):

(253) = [(123),(345)]
(13425) = [(12345),(15324)],

where (15324) = (245)71(12345)(245)and (13425) = (243)71(12345)(243).
The other conjugate relations are clear.

In the case of A,, for m > 6 we can even choose b from the conjugacy
class of (12)(34) or (123)(456) as the following equations show:

(14)(23) = [(12)(34),(23)(56)]

(143)(256) = [(123)(456),(135)(264)].

The conjugate relations are clear. These examples show that for every m > 5
we can choose 1 # b € A,, such that v (152)) =4 and Hfb@) H = 9, moreover

such b can be chosen as an element of order 2 if m > 6.

Actually, any odd cycle can be chosen as b for large enough m. For proving
this we first need some preliminaries. Later on, for an element v € A,, let us
denote the conjugacy class of v in A,, with (', and if v and v are conjugate
then we use the notation introduced earlier: u ~ u. Let us denote the set of
all permutations with the same cycle structure as u with D,,. The following
lemma is quite known about conjugacy classes of A,, and cycle structure [4]:

Lemma 91. Let uy € A,,. Then there exists us € A,, with the same cycle-
structure as uy and ug s not conjugate with uy in A, if and only if the

74 LENGTH OF POLYNOMIAL EXPRESSIONS

cycle structure of uy (and ug) contains only odd cycles with pairwise different
lengths (considering 1-cycles as well). If such a uq exists, then for every
ug € A, with the same cycle structure as uy (and us) we have either ug is
conjugate to uy in A, or us is conjugate to us in A,,.

We note as an easy consequence that if vy € S,, and uy € S,, have
the same cycle structure then wu, is conjugate to us in S,,. For m > 5 if
uy, us € A, have the same cycle structure but u; ¢ us in A,,, then u; has a
cycle with length at least 5. If u; and us share the same cycle structure and
uy stabilizes at least two points then u; ~ uy in A,,.

Proposition 92. If b is an odd cycle in A,, (m > 5) of length at most —2’”3’1,
then v <fb(2)> =4 and Hfb(Q)H =0.

Proof. Let b be an arbitrary 2[+ 1-cycle, where 5 < 3l + 2 < m. Without
loss of generality we can suppose that b = (1,2,...,2[,2l + 1). Now let

u=(20+2,20+3,....3l+ 1,1+ 1,1+2,...,2l+ 1),
v=(1,20+2,2,2l+3,3,2l+4,...,1 —1,31,1,3l + 1,3l + 2) .

Now b ~ v as they share the same cycle structure and they stabilize at least
m— (2l +1) > 1+ 1 > 2 points. Hence there is a constant ¢ € A,, such that
v = b°. Moreover it is easy to check that u = b” and

blu=(1—-1,...,2,1,20+ 1,20 +2,21 +3,...,3l+1).

Now b~'u has the same cycle structure as b and stabilizes at least 2 points,
hence b ~ b~! - u = b1 " = [b,b]. This means v (fb(2)> =4 and Hfb@)
9.

We do not use this proposition later on, only that b can be chosen as a
3-cycle and for m > 6 we can choose (12)(34) for b. We just mentioned
this in order to show that there are many possibilities in A,, for choosing b
in order to realize v <fb(2)) =4 and Hfb@)

choose when we want to minimize the product Ka\ (1} Ky q\(1} afterwards.

=9, so we still have a chance to

By Lemma 44 we already now that v (fb(n)> <V .nleV = 4.n2 Finally

we give a sharper upper bound for v <fb(”)) than this. The bound is still

quadratic, but the constant is improved.

Proposition 93. Let p(z,y) = [z, y®?| with some constants from G. Let
p™ be defined as in Lemma 44. Then v (p(”)) <3/2-n*-3/2-n+1.

3.5 The alternating group A,, 75

Proof. We prove the statement by induction on n. It is true for n = 1,2:
v(pW)=1<3/2-(1-1)+1,v(p?) =4<3/2-(4—2)+ 1 and for every
n>3

v <p(n)) —9. (U <p(Ln/2J)) 4o (p((n/ﬂ))) '

Let us assume that the statement is true for every k < n. If n = 2/, then
v(P™) =4-v(p"W) <4 (3/207 - 3/21+1) = (3/2n* — 3/2n + 1)
If n =20+ 1, then

v (p™) 20 (p0) + 2v (p+V)
< 2-(3/20% —3/20+ 1) +2- (3/2(1+1)* =3/2(1+ 1)+ 1)
— 62 +4<62+31+1=3/2(20+1)"-3/2(21+1)+1
= 3/2n°> —3/2n+ 1.

O

This proof shows not only that v (fb(")> < 3/2(n* —n)+1, but the bound

is sharp for n < 4, too. For a quadratic bound we cannot expect any better
as this is sharp at more than 2 points.

3.5.2 Bounds on v(p,,) over A,,

Now we know that b € A,, can be chosen so that V' = v <fb(2)) =4. As we

shown in Proposition 92 there are several choices for b. In this Section we
prove that b can be chosen as a 3-cycle so that we can obtain a reasonably
good (if not the best) upper bound on the product Ke\(1y,s - Kpeyg1} in
Theorem 75. First we try to bound Kg\(1},(123)-

Lemma 94. Let u € A,, (for some m >5) and let D, = C, U C\y-1. If u is
not a product of disjoint 2-cycles, then D> = {uy - ug | uy,us € D, } contains
a 3-cycle. If u is a product of disjoint 2-cycles and stabilizes at least 1 point,
then D? contains a S-cycle. If u is a product of disjoint 2-cycles and moves
every m point, then D? contains a product of two disjoint 3-cycles.

Proof. Let the longest cycle be a k-cycle in u. Without loss of generality we
can assume that this cycle is the ¢ = (1,...,k) cycle in w. If & < 4, then
by Lemma 91 the conjugacy class C, contains the elements in A,, with the
same cycle-structure as wu.

76 LENGTH OF POLYNOMIAL EXPRESSIONS

1.k >5 Letv=clu v =0ov"!=(13)(24) v (13)(24) and
let ¢, = (2,1,4,3,k,k—1,...,5) = (13)(24) - ¢;,' - (13)(24). Then
u =d¢, v € Cy-1 C D, and (multiplying from right to left)

uu=cu' v =g v'v=c) o = (2k4).

2. k = 4. Let v = ¢;'u, v = v7! and let ¢, = (1243). Then v’ =
v € C, € D, (since k£ < 4) and (multiplying from right to left)
uw-u=(142).

3. k=3. Let v = c,;lu, v =v ' and let v = ¢ -v. Now v’ € C, C D,
(since k < 4) and (multiplying from right to left) v’ - u = (132).

4. k = 2 and u stabilizes an element from {1,...,m}. Without loss of
generality we can assume that u = (12)v and stabilizes 3, then let
u = (13)v. Now v’ € C, C D, (since k < 4) and (multiplying from
right to left) ' - u = (123).

5. k = 2 and u moves all the elements from {1,...,m}. Then u is the
product of 2-cycles. Without loss of generality we can assume that
u=1(12)(34)(56)-v. Let ' =(16)(23)(45)-v. Then ' € C, C D,
(since k < 4) and (multiplying from right to left) v'-u = (135)-(264).

O

The following proposition indicates what we are going to choose as b for
different A,,’s.

Proposition 95. Let m > 5. Then
Kavgiy,a2s) <2, if44m,
Kavqiy,a2s <4, if4 [m.

Proof. From Lemma 94 it is quite clear that for any v € A,, we have
Ku7(123)§21f4{m and Ku7(123)§41f4]m U

Now we continue to estimate K(123) e\ q1}. Let us start with a trivial
observation:

Lemma 96. Let u = (1,...,k+ 1), let vy = (1,k+2,k+3,...,k+1) and
let vo=(k+1,1,k+2,k+3,k+4,...,k+1—1). Then (multiplying from
right to left)

viru=(1,2,....,k+1—1,k+1)

voru=(1,2,....k—=1k)- (k+1,k+2,....k+1—1).

3.5 The alternating group A,, 7

This lemma simply shows that by multiplying with the proper [-cycle
we can increase a cycle’s length by [— 1 or decrease it by 1 and create an
additional cycle with length [— 1. In the first case the resulting permutation
moves k+1[points, in the second case it moves k+[—1 points. This, however,
is the basic lemma on proving the following proposition.

Proposition 97. The following inequality holds for A,, (m >5):
Kuago\1y < [m/2].

Proof. Using the idea of Lemma 96 it is easy to see (by induction) that every
2k + 1-cycle can be obtained by multiplying k-many 3-cycles. Moreover the
disjoint product of an arbitrary 2k-cycle and an arbitrary 2[-cycle can be
obtained by multiplying £ + [-many 3-cycles. Therefore it can be proved
by induction that if u € A,, moves r-many points then it is a product of
|7/2]-many 3-cycles, which proves the inequality. O

Proposition 98. For m > 5 we have

Kaviy,a2s) - Ka2syen1y < 2-[m/2], if 41t m,
Kaviy,a29) - Kazsyavqiy < 2m, if 4| m.

Proof. The proof is combining the results of Propositions 95 and 97. U
Finally we prove that K 23)a\(13 > [m/2]:

Proposition 99. Let w € A, such that w moves m points, and acts transi-
tively on at least m — 2 points (m >5). If uy,...,u, € A, are 3-cycles such
that wy - Up_q -+ -+ Ug - up = w, then r > |m/2].

Proof. First we note that » > [m/3], otherwise u; ...u, moves less than m
points. Let O be the orbit with at least m — 2 points. If m is even, then w is
a product of a 2-cycle and an m — 2-cycle. If m is odd, then w is an m-cycle.

We prove the statement by induction on m. If m =5, then r > [5/3] = 2.
If m = 6, then the only way for two 3-cycles to move all 6 points is if they
are disjoint. Then they do not act transitively on at least 4 points. Hence if
m = 6 then r > 3.

Let a; be the number of w;’s, which contain the point j (j = 1,...,m).
Clearly 37, a; = 3r. Let k = |{a; | a; = 1}|. We distinguish 2 cases:

1. k<r. N0W3r:Z;n:1aj22-(m—k)+k:2m—k22m—r, which
implies r > m/2 > |m/2].

78 LENGTH OF POLYNOMIAL EXPRESSIONS

2. k > r. Now there exists ig such that u;, moves exactly two points from
{a; | a; =1} (if it contained three, then there would be a 3-orbit in
w). Without loss of generality we can assume that these points are m
and m — 1. Now let w' = u, - w1 1ui—1-+-u;. Now w' € A, o, it
moves m — 2 points and acts on at least m — 4 points transitively as
taking out w,;, from the product decreases the number of elements of
O exactly by 2 (for elements m and m — 1). By induction r — 1 >
|(m—2) /2] =|m/2| —1, hence r > |m/2].

U
Corollary 100. For G = A,,, (m > 5) we have Ke\(13- Ky or1) = [m/2].

Proof. For every u we have K, (1} < Kup - Kya\(1}- Applying Proposi-
tion 99 with u = (12 3) finishes the proof. O

3.6 The commutator as a basic operation

In Theorem 48 we gave an upper bound for several functionally complete al-
gebras. Theorem 48 used some strict conditions, though, namely that there
exist operations + and - with the properties described in Theorem 6 and
|+|| = v(+) = v(-) = ||| = 2. This condition can be fulfilled by the
Boolean algebra or rings, hence for these structures we were able to apply
the theorem (Section 3.2 and Section 3.3). On the other hand, groups only
have one basic binary operation: the group multiplication which corresponds
to the operation 4+ mentioned above. Groups have no natural operation
corresponding to the ring-multiplication -, at least not something which has
the required properties. They do have another operation, which is somehow
analogous to ring multiplication: the commutator. In this Section we con-
sider functionally complete groups when they have the commutator as an
additional basic operation. We observe that the commutator indeed behaves
similar to the ring multiplication. We prove Theorem 101, which gives sim-
ilar bounds for the length of an arbitrary function over a two-element base
set, as Theorem 48 does.

Let G = (G,-,7!) be a functionally complete group and let us consider
the algebra (G,[,]) = (G,-,7',[,]) whose underlying set is G and basic
operations are the group multiplication, the inverse and the commutator
[z,y] = x7 'y~ 'zy. According to the definition of length if p and ¢ are poly-
nomial expressions we have [|[p, ¢l[| = |[p[| + [l¢l| and v ([p, q]) = v (p) + v (¢).
The following theorem shows that using the commutator as a basic opera-
tion allows us to get rid of the n'8V and of the (N —1)"®" factors in the

3.6 The commutator as a basic operation 79

upper bounds of Theorems 75 and 88 for a two-element base set. We derive
a bound depending linearly on the number of non-identity values e of the
function f with the same factor n —loge as in Theorem 48. This shows that
the commutator seems to act similarly to the multiplication in rings or the
A operation in the two-element Boolean algebra.

Theorem 101. Let G = (G,-,71, 1) be a functionally complete group and let
G = (G,[,]) = (G,-,7',1,[,]), where [,] is the commutator operation of G.
Let 1 # w € G, let f be an arbitrary n-ary function f: {1,u}" — {1,u}
with at most e-many non-identity values. Then

1/1
When G = A, (m >5) and u is a 3-cycle, then

ce < Kavfiyw - (1043 - (n—loge)) - e —5) + 1.

1fllae <4-((1043- (n—loge)) -e—5)+1.
If 44 m, then we can change the constant factor 4 by 2.

In order to prove this theorem, we first have to introduce a series of non-
identity elements u; € G. Let 1 # u € G and let ug = u. We define u,, recur-
sively: if u, 1 # 1 is defined, then by Lemma 20 there exists ¢, 1 € G such
that [u,_1,u’'] # 1. Let us fix this element ¢, ; and let w,, = [u,_1, u“—1].
The following lemma has key importance in proving Theorem 101.

Lemma 102. Let G = (G,-,7',1) be a functionally complete group and
let G¢ = (G,[,]) = (G,-,7*,1,[,]), where [,] is the commutator operation
of G. Let u, be the element defined above. Let f be an arbitrary n-ary
function f: {1L,u}" — {1,u,} with at most e-many non-identity values
(1 <e<2"). Then

If1

Proof. The idea of the proof is that using the commutator we are able to
express f recursively as we did in the proof of Theorem 48. We prove the
lemma by induction on n.

For n =1 it is easy to see that

f (1) = [uo, (cgu) z7 o] - [uo, g 'wrco] , if f(1) = f(u) = u,
f (1) = [uo, (g u) 27 o], if f(1) = wa, flu) =1,
f(xy) = [uo,calajlco} Cif f(1) =1, f(u) = uy.

It is easy to see that in every case the length is at most

ce <(10+3-(n—1loge))-e—6.

4.-e<(104+3-(1—1loge))-e—6.

80 LENGTH OF POLYNOMIAL EXPRESSIONS

As for the general case, we define some new functions. Let f (z1,...,2,_1)
and f, (z1,...,2,-1) be the following n — 1-ary functions:
filzy, .. xp) =1,0f f(21,...,2p-1,1) =
fi(xy, .o) = Uy, if f (2, 20-1,1) =
fu(ze, o xmg) =1, 0f f (2, .., 20 1,u) =
fu(zy, oo 1) = Up_q, if f(21,..., 201,)—un

Now it is easy to check that

f (xla B 7xn) - |:f1 (xh R u‘rn—l)) (C;ilu) xrglcn—l] '
fu (@1, 1) G @] (3.29)
We note that if either f; or f, is identically 1, then we leave out the cor-
responding commutator from the formula (3.29). Let f; have e;-many non-

identity values and let f, have e,-many non-identity values. If e; > 1 and
e, > 1 then

A< QA+ 3) + (L full +3) -

Now if both e; and e, are positive then we have

NIfl<(er-(104+3-(n—1—1logey)) —6+3)+ (ey- (10+3-(n—1—1loge,)) — 6+ 3)
<(104+3-n)-(e;+e,)—3-(e1+e,+e -loge; +e,-loge,) —6
<(10+3-n)-e—3-e-loge—6
<(10+3-(n—1loge)) — 6.

Again, we use Lemma 49, just as we did in the proof of Theorem 48.
If one of e; and ¢y is 0, then we have

1fl<e-(10+3-(n—1—1loge)) —6+3
<e-(10+3-(n—1loge)) —6.

O

Proof of Theorem 101. Let f be an arbitrary function f: {1,u}" — {1,u }.
Let f’ be the n-ary function with the same domain as f and

(e, ywn) =10 f (2,00, 20)
f (1,) = up, if f(21,...,2,)

It is easy to see that f = p,, . (f"). After applying Lemma 102, Propo-
sition 79 and Corollary 42 we obtain the desired bound for a functionally
complete group G. If G = A,,,, then applying Proposition 95 gives us the
second bound of the theorem. O

1,
u.

3.6 The commutator as a basic operation 81

The idea of Lemma 102 unfortunately cannot be used for an arbitrary
function f: G™ — G. We still can obtain better bounds than those in Theo-
rem 75. The result looks similar to (3.9) in Theorem 45.

Theorem 103. Let G = (G,-,71,1) be a functionally complete group and

let G¢ = (G,[,]) = (G,-,7',1,[,]), where [,] is the commutator operation of

G. Let [be an arbitrary n-ary (possibly partial) function over G with e-many
non-identity values. Let N = |G| and let K = 14+max { Kevi1y vy } Then
the following inequalities hold:

Vge <f£”)) < Keviys-n, (
|77, < Ko Bn=1)+1 <3 Koo -m, (
(

(

vae (X1) < Keanf1y,p - Vae (fb(Nfl)> < K&y (N=1),

(N-1) (N-1)

Palee < [477+ v (A7) s sl (333

sllge <2 (Kavgiys +1)7 - (N = 1), (3.34)

HXl;u’ e < Kpu - (HXl;b’ ge T 1) +1, (3.35)

||Xal an;b’ Ge S Hfb(n) G + vge <fb(n)> ' (||X1;b| Ge + vge (Xl;b))) (336)
IXar,... an;u’ ge < Ky - (HXal an;bHGc + 1) +1, (3.37)

1 fllge < e-max{|Xa. anullge : 1 Zu€G}, (3.38)

1fllge <3 -K* N -n-e. (3.39)

IfG=A,, (m>5), then
| fllae <176-[m/2|- (N —1)-n-e.

If 44 m, then we can replace the constant 176 by 28.

Proof. For proving (3.30) and (3.31) let us define the following sequence of
group elements: u; = b and if u; 1 # 1 is defined, then by Lemma 20 there
exists ¢;_; such that [u;_1,0%'] # 1. Let us fix this element ¢; and let
w; = [u;—1,b%]. We note that this sequence is the same as the sequence we
defined earlier in this Section, but with a different indexing. Now let us define
the following polynomials: p™") (z1) = z; and for i > 2 let p® (zy,...,2;) =
[Dic1 (21, ..., xi-1) , 2], It is easy to see that v (p(”))GC =n and Hp(”)}

Ge —

3n — 2. Now py, (p(”) (x1,... ,xn)) realizes fb(”). By Lemma 40 we have

Vge <fb(”)) < K., »-n. By Corollary 42 we have Hfb")H < Ky, p(3n — 1)+1.
Gc

Similarly for any function f we have ||p.. (f)|| < Koo - ([l +1) + 1.

82 LENGTH OF POLYNOMIAL EXPRESSIONS

The inequalities (3.32), (3.33), (3.35), (3.36), (3.37), (3.38) follow from
Lemma 40 and Corollary 42 using the following representations based on the
proof of Theorem 18:

Xio(@) = FNT (bpuyy ()71 bpuy o ()7
Xl;u(

)
)
Xatand(T1s -y) = A7 (s (m1070) - xa (2nah))
)
)

= DPbu (Xa1,...,an;b($17 cee 7‘7;71)))

- H Xai,....an;u (xla o 7xn)7

(at,...,an)EG™
1#u=f(ai....,an)

where b # 1, u# 1, G ={1,us,...,uy } and K, , = v (py,). The inequality
3.34 simply follows from the earlier inequalities. Then (3.39) follows from
the other inequalities:

HXa1,~~,an;b|

g < Hfbn) o e (fén)) (Ixwellge + vae (xaw))
<3-(K-1)-Bn-1)+(K-1)-n-(N-1)- (2K*+ (K - 1)?)
<3 (K-1)n-(3+(N—-1)K*)—3-(K—1)
<3-K3N-n—1,

1f]

e t1)+1)-e<3-K*"N-n-e

We used in the estimations that K > 2.

If G = A,,, then we choose b = (123). Then Keg\f115 < 4 or 2 (de-

pending on whether 4 | m or not) and K \(1y < [m/2]. Therefore if 4 | m
then

Vge < b(n)) < 4n,

170,
vge (x16) < 16 (N — 1) = 16N — 16,
Ix1sll g < 16(N = 1) +12(N — 1) — 3 = 28N — 31,
IXar, - anpllae <120 —344n- (44N —47) =176-n- (N —1) = 3,
I£llae < (1760 (N —1)—2) m/2+1) e
<8 -m-(N—-1)-n-e.

3.6 The commutator as a basic operation 83

If 44 m then

Vge <fb(")) < 2n,
1.
vae (1) <4 (N —1) = AN — 4,
X1l e < 4N =1)+6(N —1) =1 = 10N — 11,
IXar, - anpllae < 6n—1+2n- (14N —15) =2-n- (14N - 12) - 1,
[fllae, < (2n (14N —12) - [m/2] + 1) -€
<28-|m/2]-(N—-1)-n-e.

<6n—1,

O

Comparing the result of Theorem 103 to those of Theorem 88 we observe
that the commutator shortens the length of the functions féZ) and fbn) to be
linear in n. Therefore using the commutator improves our upper bounds on
the length of an arbitrary function. Indeed, the upper bound (3.39) is now
linear in n and the constant is linear in the size of the group, too. Without
using the commutator our bounds in Theorem 88 are at least quadratic in
these values.

We finish the Section by summarizing our bounds if the commutator is a
basic operation:

Corollary 104. Let G = (G,-,7',1) be a functionally complete group and
let G¢ = (G,[,]) = (G,-,7',1,[,]), where [,] is the commutator operation of
G. Let 1 £u € G, let N = |G| and let K be the number of conjugacy classes
of G. For every arbitrary n-ary function f': {1, u}" — {1,u} we have

Hf/HGc <13 - K- (N _ 1) NP
When G = A, (m >5) and u is a 3-cycle, then
Hf/HAgn <52 (N — 1) NP

If 44 m, then we can replace the constant factor 52 by 26.
For an arbitrary n-ary function f over G we have

/]
When G = A,, (m >5), then

I1F]

a <3-K' (N—1)-n-N"

ac <176 [m/2] - (N =1)*-n- N1,

84 LENGTH OF POLYNOMIAL EXPRESSIONS

If 4+ m, then we can replace the constant factor 176 by 28.
Moreover for every ¢ > 0 and for sufficiently large n there exists an n-ary
function fy such that

logN N™
> — .
| folle = 14+¢ logn
Proof. We apply Theorems 101, 103, Remark 76 and Theorem 46. O

3.7 Problems

We already mentioned in Remark 38 that we do not know whether || f|| and
v (f) can always be realized by the same polynomial:

Problem 1. Let A be a functionally complete algebra. Let f: A™ — A be
an arbitrary function with domain A™. Does a polynomial p exist over the
algebra A such that v (p) = v (f) and ||p|| = ||f]|?

In Section 3.4.2 we observed that there is a gap between the linear lower
bound and the at least quadratic upper bound for the functions fb(n). We
conjecture that a quadratic lower bound can be found, but there are no
methods for proving such a lower bound.

Problem 2. With what rate do v <fbn)) and Hfb(n) increase in n?

Chapter 4

Computations over functionally
complete groups

In Chapter 3 we investigated the length of polynomials over functionally
complete groups. We gave several upper bounds on the length of realizing
polynomials for an arbitrary n-ary function. A natural question is to ask
how efficient these realizations are. From the practical perspective, though,
length of the polynomials is not necessarily the best measure for efficiency.

Nowadays, in the age of computers, the most frequent problems are the
time and resource needs of different calculations. In this Chapter by ‘effi-
ciency’ we mean required computational time. To be precise, we need to fix
a computational model. We consider two models in this Chapter: acyclic
circuits over an algebra and finite-state sequential circuits over simple non-
Abelian groups.

In our first approach we investigate the complexity of circuits. For a func-
tionally complete algebra A, an A-circuit is essentially a directed acyclic di-
graph with labelled nodes. The source nodes are labelled by variables or by
constants, the other nodes (called ‘gates’) are labelled by basic operations of
A. A calculation at a gate is the application of the corresponding basic func-
tion on the values calculated at the sources of the incoming edges. Therefore
a circuit computes a function at every gate. If every calculation at a gate
takes one time-step, then the number of gates corresponds to the required
time for calculating a function with a single processor machine. Similarly a
longest path corresponds to the required time calculating a function with a
multiple processor machine.

In the Section 4.2 we find circuits computing an arbitrary function over
a functionally complete group using the ideas of Section 2.3. Then we com-
pare the functionally complete groups (especially the alternating groups) to
other functionally complete algebras in the terms of circuit complexity. We

86 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

investigate the case where the other algebra is either one of the two-element
algebras B and By (in Section 4.3) or a ring (in Section 4.4). In particular we
investigate the case when the ring is a field of prime order (in Section 4.4).

Later in Section 4.5 we consider a completely different model: the no-
tion of finite-state sequential circuits over simple non-Abelian groups, and
investigate its efficiency.

4.1 Circuit complexity

The notion of circuit complexity emerged from the idea of finding functions
which can be calculated faster than others. Our main reference on circuit
complexity are the books [33] and [40].

Definition 105. Let A = (A, ¢1,...,gm) be an algebra with underlying set
A and basic operations g1, ..., gm,. An n-ary A-circuit C' consists of inputs
x1,...,%, and finitely many gates Gi,...,G,. The gate G; is a (n; + 1)-
tuple (h;, Py,..., P,,) such that h; is an n;-ary basic operation of A and
Py, ..., P, are predecessors from the set AU{zy,..., 2, JU{Gy,...,G;_1 }.
We denote by Resg, the function computed at the gate GG;. We define Res
inductively on an arbitrary input z = (xy,...,z,) € A", For an input
variable z; let Res,, (z) = x;, for a constant a € A let Res, (Z) = a. For
Gi = (hi, Pr, ..., P,,) let Resg, (z) = h; (Resp, (Z),...,Resp, (2)). Finally
the output of the circuit is a vector (y1,...,yx), where every y; is an input
variable, or a constant, or a gate. This represents the function f: A" — AF
computed by the circuit, i.e. f = (f1,..., fx) such that f; is the function
Res,, (z) computed at y;.

Remark 106. As we already mentioned in Section 3.1, sometimes one has to
work with partial functions instead of fully defined ones. The notion of a
circuit computing a function can be naturally extended to partial functions:
let us assume that C' computes a function f: A" — A*. Let g: A® — A* be
a partial function with domain set D. Let us assume that f}D = g‘D. Then
we say that the circuit C' computes the partial function g. Moreover, it is
clear that if an algebra A is functionally complete, then for every (possibly
partial) function f can be computed by an A-circuit.

Remark 107. A circuit differs in an essential way from the rooted tree cor-
responding to a polynomial. In a circuit, intermediate results of gates can
be used by multiple other gates further ‘downstream’, rather than only once.
Thus circuits may be viewed as a generalization of polynomials.

It is easy to represent a circuit as a directed acyclic graph with nodes
labelled by the basic operations of A, variables, and constants. The source

4.1 Circuit complexity 87

nodes correspond to inputs and to constants, the other nodes correspond to
the gates. Let us label the node corresponding to variable z; by z;. Let
us label the node corresponding to variable ¢ by c. Let us label the node
corresponding to G; by the basic function h;. There is an edge going from
every predecessor of (; to the node corresponding to ;. The incoming edges
at the node G; are ordered, where this ordering represents the ordering of
the inputs of h;.

This circuit model is quite close to how computers calculate different
functions. If we assume that each gate-computation takes one time-step,
then computing f for a particular input using a circuit C' takes s (C')-many
time-steps with a single processor. If, however, one can do arbitrary many
computations parallelly (by having multiple processors) then computing f
for a particular input using C' takes d (C')-many time-steps. Therefore the
size corresponds to the required time for single processor computations, while
the depth corresponds to the required time for multi-processor computations.

We want to compare the efficiency of circuits which calculate particular
functions over different functionally complete algebras. First we need some
way to measure this efficiency.

Definition 108. The size or complexity s (C') of a circuit C' is the number
of gates in C. The depth d (C) of the circuit C is the length of the longest
path in C. For a function f: A" — AF let the complezity of f with respect to
A be the size of a smallest n-ary A-circuit which computes f; let the depth
of [with respect to A be the depth of an n-ary A-circuit which computes f
and has the smallest depth:

sa (f) =min{s (C): C computes f over A},
da (f) =min{d (C) : C computes f over A }.

When it does not create confusion, we omit the subscript and just write s (f)
for the size and d (f) for the depth.

Remark 109. We defined circuits representing an f: A" — AF function.
Throughout the thesis we only consider A™ — A functions, unless explic-
itly indicated otherwise. This is not an essential restriction, as for a function
f: A" — A we have f = (fi1,..., fx), where f;: A" — A. Now it is easy to
see that

g%s(fi)gs(f)ng(fi),
d(f) = maxd (f;).

88 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

Indeed, a circuit C' computing f in particular computes every f; (1 <i < k).
On the other hand if circuits C, . . . Cy compute the functions fi, ..., fi, then
their union computes f.

Remark 110. It is easy to see that constant functions or projections can be
represented by a circuit without any gates, therefore their size and depth is
0.

We now introduce a definition for technical purposes. We do not want to
change the usual complexity measure. We use the notions of non-unary size
and non-unary depth for giving upper and lower bounds on the size and on
the depth.

In Chapter 3 we mentioned that the length of a polynomial is the same
as the number of leaves of the corresponding branching tree. This branching
tree can be considered as a circuit. There are some differences, though.
The main difference is that in the branching tree every node represents an
at least binary basic function. The edges are labelled with compositions of
unary functions. We can easily obtain a circuit from a branching tree by
replacing every edge with its correspondent chain of unary gates. With this
method we can assign a circuit to every branching tree. Let us call this
circuit the circuit corresponding to the branching tree.

We have to observe, though, that due to the unary basic operations,
the relationship is not clear either between the sizes or between the depths
of the branching tree and of the corresponding circuit. This idea suggests
the elimination of the unary part of a circuit, just like how we obtained a
branching tree from a rooted tree in Chapter 3. We collapse every chain of
unary basic operations into a single edge, and we consider the size and the
depth of the obtained circuit. The precise definition is the following.

Definition 111. Let C' be an A-circuit. Let C* be the circuit which we
obtain from C' by removing every unary gate: if G; is a unary gate with pre-
decessor P, then we remove the gate G;, and whenever GG; was a predecessor
of any other gate, then we change that predecessor to P. By iterating this
method we obtain a circuit C*, which has no unary gates. This circuit does
not necessarily compute the same function as C, but they are related.

The non-unary size or non-unary complexity s* (C') of a circuit C' is the
number of gates in C*. The non-unary depth d*(C) of the circuit C is the
length of the longest path in C*. For a function f: A" — AF let the non-
unary complexity of f with respect to A be the non-unary size of a smallest
n-ary A-circuit which computes f; let the non-unary depth of f with respect
to A be the non-unary depth of an n-ary A-circuit which computes f and

4.1 Circuit complexity 89

has the smallest depth:

sa (f) =min{s* (C) : C computes f over A},
da (f) =min{d" (C) : C computes f over A }.

When it does not create confusion, we omit the subscript and just write s* (f)
for the non-unary size and d* (f) for the non-unary depth.

It is clear that the depth of a branching tree is essentially the same as
the non-unary depth of the corresponding circuit. We reveal more about the
relationship of these quantities. For that we need to introduce some more
notations.

Let A = (A, g1,...,9m) be a functionally complete algebra with underly-
ing set A and basic operations ¢y, ..., gn. Let go = id the identity function
over A. Let us suppose that the functions g, . . ., g, are unary, the functions
Jmo+1s - - - » m are at least binary. Then let us denote the unary part of the al-
gebra by A', i.e. A = (A, go,..., gm,). Let H be the unary functions which
can be represented as polynomials over A! (including the identity function
id: x — x). Let

U= max sa1 (f).

Note that if H = {id }, then U = 0.

Proposition 112. Let A be a functionally complete algebra, where every
basic operation is at most k-ary (k > 2). Let U be the number defined above.
Then for any arbitrary n-ary (possibly partial) function f over A we have

s () <s(f)<sT () +(k+1)-U-s(f),
d*(f) <d(f) <d"(f)+U-(d"(f) +1).

Proof. 1t is clear that s* (f) < s(f) and d* (f) < d(f). Let us assume that
C} is an A-circuit which computes f and s (Cy) = s(f). Let C} be the
circuit we obtain from C} by collapsing every chain of unary basic operations
as in Definition 111. If a chain contains more than U-many unary functions,
then this chain can be replaced by a chain of at most U-many basic unary
functions (by the definition of U). This way the size of C; can be decreased.
Therefore every chain contains at most U-many unary basic functions.

In Cf there are s*(f)-many gates labelled by an at least binary basic
operation. Each of the gates has at most k-many incoming edges, which
represent (possibly empty) chains of basic unary functions. Moreover every
gate of C} might have been a predecessor of a unary chain. As every chain
contains at most U-many basic unary operations, we can conclude that we
removed from C' at most (k+ 1) - U - s* (f)-many edges.

90 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

We can derive the upper bound for d(f) similarly: let Cy be an A-
circuit which computes f and d (f) = d (Cy). Without loss of generality we
can assume that every unary chain in C5 contains at most U-many basic
unary functions, otherwise we change the particular chain with an at most
U-long chain. Now collapse every unary chain and obtain the circuit C3 as in
Definition 111. The longest path in Cy can contain at most d* (f)-many gates
labelled with a non-unary function. Each of the gates have incoming edges,
which represent (possibly empty) chains of basic unary functions. Moreover
every gate of C'; might have been a predecessor of a unary chain. As every
chain contains at most U-many basic unary operations, we can conclude that
in the longest path there are at most (d* (f) + 1)-U-many unary gates, which
proves the last inequality. O

This proposition shows that it is important how the basic operations
of a functionally complete algebra are defined. Therefore we set that the
basic operations of a ring are the binary operations 4+, — and -. The basic
operations of a group are the binary multiplication and the unary inverse.
The basic operations of the two-element Boolean algebra B are the unary
negation, and the binary A and V. The basic operations of the two-element
algebra B are the binary NAND and NOR.

Corollary 113. Let A be a functionally complete algebra and let f be an
arbitrary function over A. If A is a functionally complete ring or A is the
two-element algebra By, then s (f) = s*(f) and d(f) = d*(f). If A is a

functionally complete group or the two-element Boolean algebra B, then

s"(f)
d* (f)

s(f)<4-s7(f),
(f)<2-d°(f)+ 1L

AN

Proof. Functionally complete rings and By has no unary operations. The
two-element Boolean algebra B and the groups have one unary operation
which has order two, therefore U = 1. Every other basic operation is binary,
hence k = 2. Applying Proposition 112 finishes the proof. O

In the following we give some bounds on the size, on the depth, on the non-
unary size, and on the non-unary depth of an arbitrary function. Generally
it is easier to obtain lower bounds on the size or on the depth, and it is easier
to obtain upper bounds on the non-unary size or on the non-unary depth.
First we give bounds on the non-unary size and on the non-unary depth by
having information on the length.

4.1 Circuit complexity 91

Proposition 114. Let A be a functionally complete algebra, where every
basic operation is at most k-ary (k > 2). Then for any arbitrary n-ary
(possibly partial) function f over A we have

[logy. [| /[T < d"(f) <s"(f) <IIfl - 1.

Proof. The inequality d* (f) < s*(f) is trivial. Let p be a polynomial real-
izing f over A such that ||f|| = ||p|. This polynomial can be represented by
a rooted tree. Let us consider an A-circuit corresponding to the rooted tree
of p. This circuit contains at most ||p|| — 1-many non-unary gates, since p
contains at most ||p|| — 1-many occurrences of non-unary basic operations.
Therefore s* (f) < || f|| — 1.

All that remains is to prove that [log, || f||] < d* (f) holds. Let C' be an
A-circuit which computes f with non-unary depth d* (C) = d* (f). Then the
circuit can be translated to a rooted tree with the same depth, which rooted
tree corresponds to a polynomial p’. The longest path in the rooted tree
has d* (f)-many branching nodes, therefore the tree has at most k% (Y)-many
leaves. This proves that || f|| < ||p'|| < k4", hence log, || f|| < d*(f). Since
d* (f) is an integer number, we have [log || f]|] < d* (f). O

Proposition 115. For functions f, g1, ..., g, we have that

s(f (g1, 90)) SS(f)JrZS(gi),

d(f(gl,...,gn))gd(f)jtr;laxd(gi),

1<i<n

Proof. Let C,CY, ..., C, becircuits computing f, g1, . .., g, respectively, such
that s (C) = s(f) and s(C;) = s(g;) for every 1 < ¢ < n . Now by
replacing in C' every variable z; by the circuit C; we obtain a circuit of size
s(f)+ > i, s(g;) which computes the function f (g1,...,gn).

For the inequality about the depth, let C’, C1, ..., C} be circuits comput-
ing f,q1,...,9n respectively, such that d (C") = d (f) and d (C!) = d (g;) for
every 1 < i < n . Now by replacing in C’ every variable x; by the circuit
C! we obtain a circuit of depth d (f) + max;<;<,d (g;) which computes the
function f (g1,..., gn)- O]

The following lemma plays a similar role as Lemma 44, and determines
the sufficient size and depth for iterating a binary function.

Lemma 116. Let f be a binary function over an algebra A. Let us define
the following series of functions: U (x1) = x1, fP (21, 22) = f (z1,22) and
for every integer n > 2:

92 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

PO @y, wany) = F (™ @0 wa) SO @ 220)
fOY (xy,.. . 20n) = f (f(") (z1,...,2,), f (Tpt1s - -5 o)) -
Let S=s(f) and D =d(f). Then
S(f) < (n-1)-8,
d (f™) < logn] - D.

Proof. We prove the lemma by induction on n. Both inequalities trivially
hold for n = 1,2. Let us suppose that the inequalities hold for every k£ < n.
Now using the recursive definition of £ and Proposition 115 we have

s (F™) < s (F@) + 5 (FI7/2) 4 5 (F7/1)

<2-14|n/2]=1+[n/2]-1)-5
<(n-1)-$
Similarly we have
d (f™) <d (f2) +max{d (f"2),d (f) }
< (1+ [log [n/2]]) - D
< [logn]-D

O

Now we are ready to give bounds on the size and on the depth of an
arbitrary function.

Theorem 117. Let A be a functionally complete algebra, N = |A|. Let
0,1 € A be two distinct elements and let +, -, xq be functions with properties
such as in Theorem 6. Let g, be the characteristic function for the n-
tuple (ay,...,a,). Let us suppose that S, D are positive real numbers such
that S > max{s(x.):a € A} and D > max{d(x,):a € A}. Let f be an
arbitrary n-ary function over A with e-many non-zero values, where 1 < e <
|A|". Then the following inequalities hold:

.......

s (Xar,an) < (0 =1) -5 () + Z §(Xa)) Sn-(S+5() =s(), (41)

d (Xay....an) < [logn] - d(-) + 1r£1?<)7<1d (Xa;) < [logn]-d(-)+ D, (4.2)
s le-ves@e (sOrmas (w)), (49
d(f) <[loge]-d(+)+d()+ max d(Xay,.a0)- (4.4)

(a1,...,an)EA™

4.1 Circuit complexity 93

If N > 3, then

s(fY<(B+n—logye)-e—2)-(s(+)+s(-)+9), (4.5)

s(f)<e-(s(+)+n-s()+n-5)—s(+), (4.6)

d(f) < [loge] - d(+)+ (1 + [logn]) -d(-) + D. (4.7)
If N =2, then

s(f)<(B+n—logye)-e—2)-(s(+)+s(-)+9), (4.8)

s(fi<e-(s(H)+(n—=1)-s(-)+n-S)—s(+), (4.9)

d(f) <[loge]-d(+)+ [logn]-d(-)+ D. (4.10)

Proof. The inequalities apart from (4.5) and (4.8) follow from simply apply-
ing Proposition 115 and Lemma 116 on the following representations:

fxy,...,x,) = Z (f(a1,- s an) - Xayoan (T1, -, Tn))

and whenever the algebra has only 2 elements, then

flxy,. ... x,) = Z Xaoan (L1505 Tn) -

Here we consider [and > as the iterated versions of - and + in the way we
described in Lemma 116.

The inequalities (4.5) and (4.8) are the same. The proof of the in-
equality (4.5) is rather similar to the one for Theorem 48 in Chapter 3.
We prove the inequality (4.5) by induction on n. If n = 1, then f(z) =
Y wea f(@) - xq (z), which has size at most e- (s (-) +5) + (e —1)-s(+) <
(B+1—logye)-e—2)-(s(+)+s(-)+9) if we do not use any of those
summands where f(a) = 0.

The idea of the proof is that we try to calculate f recursively. For every
element a € A let f, be an n — l-ary function, such that f, (z1,...,2, 1) =
[y, .. op_1,a). Now f(z1,...,20) = > pca fa (@1, Zno1) Xa (25). Let
fa have e,-many non-zero values. Let T = s (-) + s (+) + 5. Now we apply
the induction hypothesis for the n — l-ary functions. If there is only one
eq > 0, then e, = e and

s(f)<s(fa) +s()+S5+s(+)=s(fa) +T
<e-T-3+n—1—logye)—2-T+T
<e-T-(3+n-—logye)—2-T.

94 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

Otherwise
IAT<D (s(fa)+s()+S+s(H) = (s (f) +T)
acA acA
<Z eo - T-3+n—1—logye,) —2-T+T)
€a>0
<Y T @en -7 (Lot Tee) - T
eq>0 eqa>0 eqa>0 eqa>0
<e-T-B4+n)—T-e-logye—2-T
=e-T-(3+n—logye)—2-T.
The last inequality holds by Lemma 49. O

Remark 118. While the idea of Theorem 48, namely iterate functions recur-
sively, can be used for giving sharper bounds on the size, it cannot be used
for building efficient circuits minimizing the depth. We note that if e is large,
e.g. e > c¢; - N" % then bounds (4.5) and (4.8) are linear in e and S, while
bounds (4.6) and (4.9) are linear not only in e and S, but in n, too. On the
other hand if e is small, e.g. e < ¢5- N“™ (for some ¢4 < 1), then all bounds
(4.5), (4.6), (4.8) and (4.9) are linear in e, n and S.

Unfortunately Theorem 117 cannot be applied to functionally complete
groups. It can be applied to functionally complete rings, or to the two-
element algebras B and By as the following Corollary shows. We prove some
upper bounds on the size and on the depth of an arbitrary function over a
functionally complete group in Section 4.2.

Corollary 119. Let A be a functionally complete ring or any of the two-
element algebras Bg or B. Let N = |A|. Let us suppose that S, D are positive
real numbers such that S > max{s(x,):a € A} and D > max{d (x,):a € A}.
Let f be an arbitrary n-ary function over A with e-many non-zero values,
where 1 < e < |A|". Then

s (f)
d (f)

Moreover, if N = 2 then

(3+n—logye)-e—2)-(S+2),

<
< [loge] + [logn] + D + 1.

3-e-(3+n—loge)—6,
[loge| + [logn] + 1.

4.1 Circuit complexity 95

Proof. The first two inequalities are simple consequence of Theorem 117.

If N = 2, then A is one of the three algebras B, By, and Z,. In any case
we have S = D = 1. The inequalities for the case of N = 2 are now an easy
consequence of Theorem 117. 0

The following theorem gives a lower bound on the size and on the depth:

Theorem 120. Let A be a functionally complete algebra. Let us suppose that

every basic operation is at most k-ary. For every ¢ > 0 and for sufficiently

large n (depending on €) there exists an n-ary function fi over A such that
1 A"

S(fl)zk—l—ire. n

Moreover for every e > 0 and for sufficiently large n (depending on €) there
exists an n-ary function fo over A such that

71(1)5;2’ ‘n — @ -loglogn +
Proof. The lower bound for the depth follows immediately from Proposi-
tions 112, 114 and Theorem 46.

As for the size we use a similar counting idea as Theorem 46 in Chapter 3.
Let us consider the number of at most n-ary circuits which have size at most
s. Let this number be N(s). If S is the least number such that all n-ary
functions have size at most S, then N(S) > |A|"Y". This gives us a lower
bound on the size.

Let A have m-many basic operation symbols. Let us consider an arbitrary
A-circuit with size s. Every gate can be labelled by m-many basic operations,
hence for every circuit the labelling of the gates can be done at most m?*-
many ways. There are at most n+|A|+s— l-many possibilities to choose one
predecessor of a gate (namely the predecessor is one of the variables, or one
of the constants, or one of the other s — 1 gates). There are at most k-many
predecessors for every gate, hence there are at most (s +n + |A| — 1)ks—many
ways to choose every predecessor for every gate. If a circuit has s-many gates,
then it computes at most s-many functions at its gates. Moreover every
circuit with size s has been counted s!l-many times, namely for the different
numberings for the gates. Therefore we have

loglog |A| —log (1 +¢)
log k

d(fy) >

N(s)<(s+n+|A -1 -m* s-(s)".

Let f be an n-ary function such that it has the largest size. Let S = s (f).
Now applying N(S) > |A|""" we have that

|A|" -log|A] < k-S-log(S+n+|A —1)+ S logm +logS —log S!.

96 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

By Stirling formula (see e.g. [32]), S! > ¢y- SF/2. 75, where ¢y = V27 and
e is the natural base. Now

|A" log|A| < k-S-log(S+n+|A —1)+S-logm+1logS+ S -loge
— (S+1/2) -log S — log cp.

Since the lefthand-side of the inequality is exponential in n, and the righthand-

side is polynomial in n and in S, for sufficiently large n we have n+|A|—1 < S.
Now we have

|A]" -log|A| < (k—1)-S-log S+ (k+1logm +loge) - S+ 1/2-log S.
For sufficiently large n we have k+logm+loge < e/2-log S and 1/2 < ¢/2-S.

Thus we obtain
log | Al

——— - JA|" < S -logS.
kE—1+¢ A" < o8
Let ¢ = ;== Now if S < c¢-|A[" /n, then for sufficiently large n we have
ATL
S~logS<c~u-(logc+n~log]A\—logn)
n
A" log |A] n
e 2 ntog|a] = B,
contradiction. Therefore s (f) =S > ¢ |A]" /n. O

Corollary 121. Let A be a functionally complete ring or a functionally
complete group or one of the two-element algebras B or By. For every e > 0
and for sufficiently large n (depending on) there exists an n-ary function
f1 over A such that

A7

s(f) = l+e n

Moreover for every e > 0 and for sufficiently large n (depending on) there
exists an n-ary function fo over A such that

d(f2) > n-log|A| —loglogn + loglog |A| — log (1 + ¢€).
Proof. We apply Theorem 120 with k = 2. O

We summarize our bounds for some two-element functionally complete
algebras.

4.1 Circuit complexity 97

Corollary 122. Let A be one of the two-element algebras B, By or Zs. For
an arbitrary n-ary function f over A we have

s(f)<6-(2" 1),

d(f) <n+[logn]+1.

For every e > 0 and for sufficiently large n (depending on €) there ezists an
n-ary function f; over A such that

S(f1)21+€ n

Moreover for every € > 0 and for sufficiently large n (depending on €) there
exists an n-ary function fo over A such that

d(f2) >n—loglogn —log (1 +¢).
Proof. We apply Corollaries 119 and 121. O
Remark 123. Lupanov |24] considered the algebra A over {0, 1} which con-
tains all 16 binary operations as basic operations. He proved that for an
arbitrary n-ary function f over {0,1} we have s(f), < (1+0(1))-2"/n.
Gaskov [8] proved that for an arbitrary n-ary function f over { 0,1} we have
d(f)p, <n—loglogn+2+o(1).

L2r

The definition of size and depth of a function is robust in the sense that a
complexity of a function over different functionally complete algebras differs
only by a constant factor depending on the algebras:

Proposition 124. Let A, and A, be two functionally complete algebras with
underlying sets Ay and Ay. Let e: Ay — AL be an embedding of A, to Al for
some l. For every m, let e™: AT — AL™ be the mth power of the embedding
e and let (™)' be the partial inverse of ™. Let f: A" — A¥ be an arbitrary
(possibly partial) function.

S k
A Ay
n-l Ak-l
2 ekofo(en) ™! 2
Then there exist constants ¢, = cs (A1, Ag,€),cq = cq (A1, Ay, e) such

that
SA, (ek ofo (e")_l) < cs-sa, (f),
dA2 (6k o f o (en)_l) <cq- dAl (f) :

98 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

Proof. The idea of the proof is to compute the basic functions of A; with
circuits over Ay. Then replace by these circuits every gate in the circuit
computing the function f. We prove the inequality for the size, the same
argument works for the depth.

Let the basic operations of Ay be ¢1,..., g, with arity nq,...,n,,. Now
let g/ = eog;o(e™) " = AS™ — AL and A, is functionally complete, therefore
g; can be computed by a Aj-circuit C;. We can assume without loss of
generality that sa, (g/) = s (C;). Now let

cs = max s (C;) = Hax sa, (97) -

Let Cs be an Aj-circuit computing f, such that s (Cs) = sa, (f). Now
we replace in Cy every gate, labelled by g; (for every 1 < i < m), by its
corresponding circuit C;. Moreover, we replace the variable x; (for 1 < j < n)
by the variables z;, ..., x;;. The circuit we obtain computes e¢* o f o (e”)_1
and has size at most ¢, - s (C5) = ¢5 - sa, (f). O

This proposition shows that whenever we want to compute functions over
different functionally complete algebras, we only have to compute the basic
operations of one algebra using the other algebra, and we can then derive
upper bounds on the complexities. In the following Section we find circuits
computing an arbitrary function over a functionally complete group using
the ideas of Section 2.3. Then we compare the functionally complete groups
(especially alternating groups) to other functionally complete algebras in the
terms of circuit complexity. We investigate especially the case where the
other algebra is a field of prime order or one of the two-element algebras B
and Bo.

4.2 Functionally complete groups

In this Section we consider functionally complete groups G from the circuit
complexity perspective. For an arbitrary n-ary function f: G™ — G we build
a circuit which computes f. Then we give upper bounds on the size and on
the depth of the constructed circuit (we gave lower bounds in Corollary 121).
Let us start with some easy observations.

Proposition 125. Let G be a functionally complete group, let f be an arbi-
trary n-ary (possibly partial) function over G. Then

[og [l fIIT=d" (f) <s*(f) < IfII -1,
s (f) <s(f) <fll+n—1,
[log [[f[IT < d (f) < [log [If]IT + 1.

4.2 Functionally complete groups 99

Proof. Let p be a polynomial realizing f over G such that || f|| = ||p||. By
Proposition 74 we can assume that every inverse in the polynomial p is used
on variables. Let us consider a G-circuit C corresponding to the polyno-

mial p. This circuit contains at most ||p|| — 1-many non-unary gates, since
p contains ||p|]| — l-many binary group multiplications, therefore s*(f) <
s*(C1) < ||fIl = 1. As every inverse is used only on variables, we need to

use at most n-many unary gates (labelled by the inverse operation), hence
s(f)<s () +n<|fll+n—-1

Moreover, by the associativity of the group multiplication, the |f|| —
1l-many multiplications can be executed in any order, not only as in the
polynomial p. Let I = |[p|| and let p = wywsy ... w; (omitting the parentheses),
where every w; is a constant, or a variable, or an inverse of a variable. Then
the following circuit Cy has non-unary depth [log || f]|]: first execute every
wa;—1 - wy; for every 1 < ¢ < 1/2 parallelly. Then execute every (ws;_qws;) -
(Wai41Wai42) for every 1 < i < [/4 parallelly, etc. Using this idea we do
exactly [log||f||]-many parallel multiplications, and so d* (f) < d*(Cy) <
[log || fII1- As every inverse is used only on variables, we have d (f) < d* (f)+
1 < log | fIIT+ 1.

The remaining inequalities follow from Propositions 112 and 114. O

Remark 126. The connection between the depth and the length is certainly an
important property of functionally complete groups. For every other algebra
we are only able to give the logarithmic lower bound which might not be
sharp. Proposition 125 shows that the trivial lower bound for depth can
almost be achieved, moreover by a circuit which corresponds to a minimal
length polynomial realization. It is open whether the length and the size can
be minimized with the same circuit.

We remind the reader of some notations from Chapter 3. Let G be a
functionally complete group, let N = |G|. For every 1 # u € G and for
every v € G let p,, be the unary partial function for which p,, (1) =1
and p,, (u) = v. Let fb(") (for b # 1) be the n-ary partial function defined
in Lemma 21, i.e. fb(n) (b,...,b) = b and fb(n) (x1,...,2,) = 1if z; =1 for
some 1 < i < n. Let x1, (for u # 1) be the unary characteristic function
described in Lemma 23, i.e. X1, (1) = w and x1,, () = 1 if # # 1. Finally
let Xa,....an:u D€ the n-ary characteristic function described in Lemma 25, i.e.
Xatoanu (A1, -5 @n) = W and Xay..anw (T1,...,2,) = 1, whenever z; # q;
for some 7.

Let V =w (b(2)>. For every 1 # u € G, for every v € G, and for every

100 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

subset S C G let

Ku,v =7 (pu,v) s
Ksy=max{K,,:1#ueS},
Kys=max{K,,:veS}.

Let K = 1+ max { Kav(11,, Kpa\(1) } We note here that K is bounded

by the number of conjugacy classes of G by Proposition 79. Using Proposi-
tion 125 we can give an upper bound on the depth:

Theorem 127. Let G be a functionally complete group. Let f be an arbitrary
n-ary (possibly partial) function over G with e-many non-identity values (e >
1). Then the following inequalities hold:

d(f) £241log Kev(1y + log Ky ayg1y +1logV - (2 + log (N — 1) + logn)

+ loge,

d(f)<14+2log(K —1)+8log (N — 1)+ 8logn + loge.

IfG=A, (m>5), then
d(f)<1l4logm+2-(log3+logN +logn)+ loge.

If 4+ m, then the constant 1 at the beginning of the formula can be omitted.
Proof. We apply Theorems 75, 88 and Proposition 125. O

The following theorem gives upper bounds on the size of several (possibly
partial) functions over G.

Theorem 128. Let G be a functionally complete group. Let f be an n-
ary (possibly partial) function over G with e-many non-identity values. Let
N =|G| and let K =1 —|—max{Kg\{1}7b, Kyen(1y } Then K is at most the
number of conjugacy classes in G and

8 (Puw) <2+ Ky + 1, (4.11)
s <fb(”)) <6-n—6+ max s (Pup) 5 (4.12)
s (x1p) < s (b(Nfl)> + Z (2 + s (pusp)), (4.13)
u#l
$ Qarsnt) 5 (A7) F1 (L5 (1)) (4.14)
$ (Xar,aniu) < 8 (Xar,anip) + 8 (Do) , (4.15)

4.2 Functionally complete groups 101

S (f) <e-: (977,N —Tn — 3+2Kb7g\{1} —|—2(7”LN—|— 1) KG\{l},b) -1, (4.17)
s(fy<e-(9mN-Q2K+7)—Tn—T+4K) - 1. (4.18)

Moreover if G = A, (m >5), then
s(fy<e-(2TN—-14)-n+m—2) — 1.

If 4 ¥ m, then we can replace the factor (27N — 14) by (13N — 11) and the
factor m by 2 - |m/2].

Proof. The inequality (4.11) follows from Propositions 74 and 125. For prov-
ing inequality (4.12) we introduce a series of elements w,, of G. Let u; = b,
we define u; inductively such that u; # 1 for every ¢. By Lemma 20 there
exists ¢; such that [u;_1,b%] # 1. Choose ¢; and let u; = [u;_1,b%] # 1. Let
hy (z1) = x; and for every k let hy (z1,...,25) = [he—1 (21, ..., Tp—1) , 277)
By Lemma 21 we know that py, 4 (hy (21,...,2,)) is a good representation
of fb("). Now it is easy to see by induction that s (hy) < 6n — 6, as commu-
tating can be done in size 4: calculate x -y, y - z, then (y - x)_l and finally
(y-z)'- (z-y). Using Proposition 115 we have inequality (4.12).

The inequalities (4.13), (4.14), (4.15), (4.16) follow from Proposition 115
using on the following representations based on the proof of Theorem 18:

= b(N_l) (bqu,b ('T)_l) bpu}\r,b (x)_l))

)
Xa,..., an;b(xlu B 7xn) - fb(n) (Xl;b (xlafl) yee ey X1sb (xnagl)))
)
)

..... an;b(xla s >xn)) 9

>0
5
i
3
IS
B
]
3

I
=
a@"
IS
—~
<
5

where G = {1,ug,...,uyn }. The inequality (4.17) follows from the former
inequalities. Finally the inequality (4.18) follows from the inequality (4.17).

If G = A,,, then we can choose b as a 3-cycle. Now by Proposition 95
we have Kg\(1y,5 < 4 and whenever 4 { m, then K (13, < 2. By Propo-
sition 97 we have Ky 13 < |m/2]. Moreover by the proof of Proposi-

tion 90 it is easy to see that for every n we can represent fb(") (1, ..., 2p)
with [Hxii, xgé] ,xgé] b ,xf{”} for some constants ¢/, ..., ¢, € G (as we can
choose the constants of h, such that h, (b,...,b) is a 3-cycle). From this

representation we can conclude by induction that s (fb(")> < 6n — 4. Now

102 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

applying the inequalities (4.13), (4.14), (4.15), (4.16) we have

S(xal,...,an b) <6n—4+n- (27N—20)_(27N—14)~n—4,
$ (Xaysoaniu) < (27N —14) -n— 442 [m/2] +1 < (27N — 14) - n+m — 3,
s(f)<e-((2TN—-14)-n+m—2) — 1.
If 41 m, then
s (x13) < 6N — 10+ 7N — 7 < 13N — 17,
s (Xar.anp) < 6n—4+n- (13N —17) < (13N —11) - n — 4,
s (Xay,... anu)ﬁ(l?)N—ll) n—4+2-|m/2|+1
< (13N —11)-n+2- |m/2] -3,
s(f)<e-((I3N —11)-n+2-|m/2] —2)— 1.

O

Remark 129. We have to observe that the representations used in the proof of
Theorem 128 do not minimize the depth, e.g. d <H[x§1 , $§2] ,x?’] . ,xf;”D

3n — 1, but using Proposition 125 on H [Hxii, 9552] ,x?”] Jo ,xg"} ‘ =3-2"—

—3 we have d <[Hxii,xﬂ ,xgé} ,,xf{"]) <n+1+log3. Generally it is
not possible to minimize the size and the depth with the same circuit.

4.3 Comparison with two-element algebras

In this Section we are going to compare functionally complete groups with
two-element algebras. Algebras over the set { 0,1 } have the most importance
in Computer Science as computers are based on them. In particular, com-
puters are based on the algebra By = ({0,1},NAND,NOR). In the theory
of Boolean functions another algebra is investigated as well: the algebra with
underlying set { 0,1} which has all binary operations over {0,1} as basic
operations. Beside these algebras we investigate the two-element Boolean
algebra B = ({0,1},—,A,V) and the two-element field Zy = ({0,1},+,).

We are interested about the possible efficiency of functionally complete
groups when computing different functions by circuits. By Proposition 124
we know that one functionally complete algebra can be more efficient than
another by only a constant factor. Moreover, this constant factor is deter-
mined by only simulating the basic operations. Therefore if we want to know
how much faster or slower functionally complete groups can be than algebras

4.3 Comparison with two-element algebras 103

over {0,1}, we have to simulate one’s basic operations with the other. In
this Section we simulate every binary function over { 0,1} with the group
operations of a functionally complete group.

There are 16 binary functions over { 0,1 }. Two of them are the constant 0
and 1 function, four of them are unary (namely z, y, ~z = 1—z, #y = 1—y)
and 10 of them depending on both variables. These functions are t Ay = x -y,
xVy,x+y, ~x Ay, x A -y and their negations.

In order to build a G-circuit for computing these functions, we need an
embedding { 0,1} — G. We assign the identity element 1 € G of the group
for 0 € B and We assign an element 1 # b € G of the group for 1 € B. As
the function fb plays an important role in the simulation of binary {0, 1 }-

functions, we choose b such that s (fb@)> or d <f£2)> is minimal. Moreover
let 1 # u € G be an element of order two. If ¥* = 1 then let u = b. Let
S = 3((2)) D = d()7 S = S(Z?b,u), Dy = d(pb,u)a Sy = 3(pu,b)7
D2 =d (pu,b)-

Table 4.1 shows a representation of the binary functions. Moreover, it
contains trivial upper bounds on the size and the depth of these representa-
tions.

The following theorem compares the circuit complexity and depth of a

function for two-element algebras with the circuit complexity and depth for
functionally complete groups.

Theorem 130. Let G be a functionally complete group and let K be its
number of conjugacy classes. Let A denote the algebra with underlying
set { 0,1} which has all binary operations over { 0,1} as basic operations.
Let B = ({0,1},—,A,V) be the two-element Boolean algebra, let By =
({0,1},NAND,NOR), and let Zo = ({0,1},+,-) the two-element field.
Then there exists 1 # b € G such that for every positive integer n and any
function f: {0,1}" — {0,1} we can find functions py, pa over G such that
p1 and py are the same function over {1,b} as f is over {0,1} and

sa (p1) < (6K +456) - sa (f), dg (p2) < (14+210gK) da (f),
sa (p1) <456 - sm (f), da (p2) < 14-dg (f),
sa (p1) < 454 - sp, (f), da (p2) < 12-dp, (f),
sg(p1) < (6K +448) - sz, (f), da(p2) < (10 +2log K) - dg, (f) -

If G = A, (form > 5) and b = (123), then for every positive integer
number n and any function f: {0,1}" — {0,1} we can find functions p;,
po over G such that p1 and py are the same function over { 1,b} as f is over

104 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

Table 4.1: Simulating binary functions over {0,1}

‘fover{O,l}‘ p over G ‘ s (p) ‘ d (p) ‘
0 1 0 0
1 b 0 0
x T 0 0
Y Y 0 0
-z bzt 2 2
-y byt 2 2
Ty=rNy 2 (2,y) S D
T Ay b(Q)(bx’l,y) 248 2+ D
T Ay fb (x, by~ 1) 2+ S 2+ D
—1
rVy b~< (bx=t, by™1) 6+ S 44+ D
Tty Pub (Pou (7) - Pou (Y)) 1+251+ S8 | 14+ 51+ 5
T
- (zAy) b- <(2)(a: y)) 248 2+ D
= (—x Ay) b- < ba:_l,y> 448 44 D
T
- (x A —y) b~< (x, byt) 4+ 5 4+ D
- (z Vy) @) (b1 by 1) 4+ 8 2+ D
l—z+y |b- (pub(pbu() Do () T | 34251 +5, | 3451+ 5,

{0,1} and
San (P1) < 13-sa(f), da,, (p2) <8-da(f),
SA,, (p1) <10 -5 (f), da,, (p2) <5- (f) ;
A, (p1) <10 5B, (f), da,, (p2) <5-ds, (f),
S, (p1) <11 -52, (f), da,, (p2) <6-dg, (f).

If G = A, for m > 6 then we can choose b = (12)(34) and we can replace
the constants 13, 11, 8 and 6 by 10, 10, 5 and 5, respectively.

Proof. We use the representations and upper bounds given in Table 4.1.
Applying Propositions 86, 74 and 125 we obtain S < 450 and D < 10. By
Propositions 79 and 125 we obtain S; < 2K —1, 9, < 2K -1, D; < 2+log K,
Dy < 2 +log K for an arbitrary element 1 # u € G with u? = 1. Applying
Table 4.1 we have the desired inequalities.

4.3 Comparison with two-element algebras 105

If G = A,,, then we can choose b = (123) and let uw = (13)(24). Then
we know by Propositions 90 and 125 that S < 10 and D < 5. Moreover
it is easy to see that not only fb@) (x,y) has length 9 but every polynomial

in Table 4.1 which involves fb(2) has length 9 as well. We have S; < 3 and
Dy < 2 by having p,, (x) = - ¢t -z -c with ¢ = (345). As we have
Pup () =c¢1-x-co-x-c3 with ¢; = (13)(25), co = (132), ¢c5 = (253), we
obtain Sy < 4 and Dy < 3.

Finally if G = A,, for m > 6 then we can choose u = b = (12)(34),
haVingsl:D1:SQZD2:03HdS:10,D:5.]

As we see, we can simulate 2-element algebras quite efficiently with A, for
m > 6, as the two-element algebra can be at most 10 times faster by using
a single processor and 5 times faster using multiple processors. The case
where m = 5 and we simulate with Ay can be interesting, as the symmetry
group of the icosahedron is As. Therefore if a machine which is based on the
symmetry states of an icosahedron will ever be built, then that machine will
be based on the group As.

We finish the Section with a lower bound on the efficiency of G-circuits.

Theorem 131. Let G be a functionally complete group and let A be a func-
tionally complete algebra over {0,1} with at most binary basic operations.
For every 1 # g € G let 0 (g) be the mazimal order of any subgroup of G not
containing g and let 6 (G) = min{d(g):1#ge G}. Lete: G — {0,1}
be an embedding. Let us suppose that f: {0,1}* — {0,1} is a function
such that f (e(x),e(y)) =e(x-y). Then

sa (f) = [log|GIT,

da (f) > 1+ [loglog 6|(C2)—‘ .

Proof. The first inequality is quite clear. First, [> [log|G|], otherwise e
cannot be an embedding. Since A has only binary basic operations and f has
to depend on at least [log |G|]-many variables, we obtain sa (f) > [log |G]].

The second inequality follows from a result of Spira [35]. He derives
the lower bound 1 + [log log %W for the required time for realizing the G-
multiplication by a logical circuit. We have to observe that Spira’s model
(which is the same as e.g. Winograd’s model in [43] and [44]) is quite similar
as our circuit model, although he allows the circuits to contain cycles. In
particular the required time in Spira’s model is the same as the depth in our

circuit model. O

106 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

4.4 Simulating rings by groups

In this Section first we build a G-circuit which simulates an arbitrary ring
R. This simulation is rather ‘brute force’, Theorem 132 gives the details.
It basically compares the sizes and the depths of R-circuits and G-circuits
computing the same functions.

Then we introduce another method by which we can simulate the ring Z,
for an odd prime p. For every ring-polynomial ¢ we build a A,,-circuit (for
m > p + 2), which has linear size in ||¢||. Whenever for some constant ¢ we
have sz, (f) < c-[[fllz, or dz, (f) < c-| fllz,, then we can compute f by an
A,,-circuit C', such that s (C) is linear in sz, (f) or d (C) is linear in dz, (f).

Let us start first with the comparison of R-circuits and G-circuits.

Theorem 132. Let G be a functionally complete group, let K be its num-
ber of conjugacy classes, and let N = |G|. Let R be a finite ring. Let
[= [log|G| RW and let e: R — G! be an embedding. Then for any n-ary
function f: R™ — R which can be represented by an R-polynomial we can
find functions p1, po over G such that

pre(zy),...;e(xy) =e(f(x1,...,2n)) =pale(z1),...,e(x,))

) < (9IN +1)- (4K + 14) - N* - s (f),
)< (9IN +1)- (4K +14) - N> - R - sg (f)
dg (p2) < (14 + 2log K + 8log N + 8 + 8logl + 2llog N) - dr (f),
) < (14 +2log K + 8log N + 8 + 8logl + 2log N + 2log |R|) - dr (f) .

If G = A, (for m > 5), then for any n-ary function f: R" — R we can
find functions p1, po over G such that

ple(zy),...,e(x,)) =e(f(x1,...,2,)) =pale(z1),...,e(x,))

and
sa,, (p1) < (20- (2TN —14) + m) - N - sg (f),
Sa, (1) < (20 (2TN —14) +m) - N* - |A, [- sr (f),
da,, (p2) < (3+2log3+1logm+2logl+2l-logN)-dgr (f),
da,, (p2) < (3+2log3 +1logm+2logl+2-log N +2log |R]) - dr (f).

If 4 1 m, then we can replace the factor (27N — 14) by (13N — 11) and the
factor m by 2- |m/2|. in the bounds on sa,, (p1)-

4.4 Simulating rings by groups 107

Proof. By Proposition 124 we only have to build a circuit for the ring addi-
tion and the ring multiplication. These are 2[-ary partial functions over G,
therefore applying Theorems 127 and 128 gives us the desired bounds. [

Remark 133. We note that whenever |R| < |G|, then we can embed R into
G. Let S be the image of R. Then we can consider the ring addition and

ring multiplication as partial binary functions over S, and N can be replaced
by |S| = |R| in the bounds of Theorem 132.

The following theorem gives us a lower bound on the efficiency of G-
circuits.

Theorem 134. Let G be a functionally complete group and let R be a func-
tionally complete ring. For every 1 # g € G let 6 (g) be the maximal order of
any subgroup of G not containing g and let 6 (G) =min{d(g9) : 1 #g € G }.
Let e: G — R! be an embedding. Let us suppose that f: R¥ — Rl is a
function such that f (e (x),e(y)) = e(x-y), where - denotes the group mul-
tiplication in G. Then

sr (f) > [logg |G|],
G|

dr (f) > 1+ [loglogR %w .

Proof. The first inequality is quite clear. First, [> ﬂog‘m \Gﬂ, otherwise
e cannot be an embedding. Since R has only binary basic operations and
f has to depend on at least [log|R| \Gﬂ—many variables, we obtain sa (f) >

The second inequality follows from a result of Spira [35]. He derives the

lower bound 1 + {log log g, %-‘ for the required time for realizing the G-

multiplication by a circuit. We have to observe that Spira’s model (which is
the same as e.g. Winograd’s model in [43] and [44]) is quite similar as our
circuit model, although he allows the circuits to contain cycles. In particular
the required time in Spira’s model is the same as the depth in our circuit
model. O

In the following part of the Section we show another method which can be
useful for simulating the ring Z,, with the alternating group A, for m > p+2.
Let G = A,, be such an alternating group. Let a = (1,2,...,p) and let
A = (a) an Abelian subgroup of G. Let r be a primitive root modulo p.
The elements a and a” have the same cycle structure, therefore there exists
an element h' € S, such that a” = a". If b’ is even, then let h = b’ € A,,,
otherwiselet h = h'-(p+ 1,p+2) € A,,. Let H = (h). The subgroup H < G

108 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

acts on A by conjugation and the action is isomorphic to B = H/Cy (A).
Let ¢: H — B be the natural homomorphism. Every element of B acts as an
automorphism of B, in particular every element is an endomorphism. Since
B is commutative, the actions of B generate a finite nontrivial commutative

subring R (B) of End A =Z,. Let b = ¢ (h), then B = (b).

Now for any natural number ¢ we have a?) = (") = (). Since 7 is a
primitive root modulo p, the elements b and h are of order p — 1, therefore
B|=p—1. Since BU{0} CR(B) CEnd A=7Z,and p=|B|+1<
IR(B)| < |End A| = p, we have |[R(B)] = pand R(B) = BU{0} =
End A =7,.

The idea is the following: for every Z,-polynomial ¢ (z1,. .., z,) we build
a G-circuit C (q), which computes a?*) over G, where ¥+% = g¥z% =
y lryzloz, 27V = (7)Y =y Loty and 2¥* = (2¥)* = (y2) 'zyz. Now let
us consider the inputs 2, ..., z, as elements of Z, = R(B) = End A. Then
the circuit C (q), for a suitable encoding of the inputs 21, ..., z,, computes
ad12n) ¢ A Now we read the result of the computation as an element of
Z, considering A ~ (Z,,+). This idea can be applied for simulating more
general finite rings.

There is a slight problem with this construction, therefore some refine-
ments are necessary. The input z; can attain p-many values when we consider
it as input for the Z,-polynomial g. On the other hand, when z; is considered
as an input of the circuit C', then it can only attain automorphisms as value
from R (B). More precisely z; attains values from the group B, never from
R (B) \ B. On the other hand B generates R (B): the polynomial y — ¢ has
the property that if y,y’ € B, then y — ¢’ € R(B) and for every z € R (B)
we can choose y, 3" € B such that z = y —y’. Therefore the above-mentioned
idea works with substituting z; = y; — ¥/ in the polynomial q.

First we state a proposition which handles the situation when the polyno-
mial ¢ is ‘nice’. Let us recall that by v (¢) we denoted the number of variable
occurrences in the polynomial q.

Proposition 135. Let ¢ (21,...,2,) be a Z,-polynomial, which contains
add (¢')-many additions and does not contain subtraction or the constant 0.
Then for m > p + 2 there exists an A,,-circuit C (¢') which computes the
A, -function aq'(zl""’Z"), where a = (1,...,p), ¥ = 2¥2* = yloyzlzz,
Y= (7Y =y laly, 2¥* = (2¥)* = (y2) lzyz and

s(C(q) < add(q) + vz, (d) + 2z, <4z,
d(C(q) <2(|dllg, -

4.4 Simulating rings by groups 109

Proof. We construct a circuit C’ (¢’) computing the function z¢ by induction
on ¢'. For a variable z let C’ (z) be a circuit which computes z7! - z - 2 in
size 3 and in depth 2. Let r be a primitive root modulo p and let h € A,,
be an element for which a" = a”. Now every nonzero constant from Z, is of
the form r*, represented by a +— a(rk) in End A. Then for 0 < k <p-1
let C' (Tk> be a circuit which computes (h"‘)_l -2 - h* in size 2 and in depth
2. Now let ¢ = ¢} + ¢5. By induction we have circuits C’ (¢}) and C’ (¢5)
computing z% and z% such that

s(C"(q1)) < add (¢1) + vz, (¢1) + 2| a1llz, ,
d(C"(q1)) < 2||dill, -
s (C" () < add (g5) + vz, (65) + 2@z, »
d(C"(g5)) < 2||glg, -

Now let C’ (¢') be the circuit which contains both C’ (¢}) and C’ (¢}) paral-
lelly, and multiplies the final gates of C’ (¢}) and C’ (¢}). Now C’ (¢') clearly
computes z¢ = z9 - 2%. Using the bounds on the sizes and depths of C’ (q7)
and C' (¢5), it is easy to see that

s (C'(q") < s(C" (@) +5(C" (g3)) +1
< add(q) + vz, (d) +2(dl,

d(C'(¢) < 1+ max{d(C"(q1)).d(C"(g3)) } <d(C"(q1)) +d(C"(a3))
<2(dllz, -

The proof is very similar /if q = qil - ¢4. By induction we have circuits C’ (q])
and C” (¢5) computing % and z% such that

s(C"(q1)) < add (¢1) + vz, (¢1) + 2| a1llz, ,
d(C"(q1)) < 2||dillg, -
s (C" () < add (g5) + vz, (65) + 2@z, »
d(C"(g3)) < 2||glg, -

Now let C’(¢’) be the circuit which contains both C’(q}) and C’(g), but
C’ (¢4) is not applied on the variables x, z1, ..., z,, but on the final gate of
C’ (¢}) and on the variables zy,...,z,. Now C’(¢') clearly computes z¢ =

(a:qi)qé. Using the bounds on the sizes and depths of C’ (¢}) and C’(g}), it

110 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

is easy to see that

s (C'(d) < 5(C" (@) + 5 (C" ()
< add (q') + vz, (¢') +2¢ll, ,

d(C'(¢) <d(C"(q1)) +d (C"(g2))
<2(|dllz,

Finally we obtain C (¢') from C’ (¢') by replacing every outgoing edge from
x by an outgoing edge of a: if an edge was going from x to the gate G;, then
we remove it and add an edge from a to Gj. O

Now we can state the main theorem of this Section.

Theorem 136. Let p be an odd prime and let m > p+2. Leta = (1,...,p) €
A,,, let v be a primitive root modulo p and let h € A,, such that a" = a".
Let H = (h) and let A = (a). Let in: Z, — H x H and out: Z, — A
be embeddings such that for every 0 < k < p — 1 we have out (k) = aF
and in (k) = (h"’l,h’”) such that ¥ — rk2 =k in Z,. Then for every Z,-
polynomial q(z1,...,2,) there exists an A,,-circuit C' such that for every
n-tuple (11, ...,1,) over Z, the circuit C' computes out (q (rq,...,r,)) on the
input 2n-tuple (in(r1),...,in(r,)) and

s (C) <16 gl ,
d(C) < 8llgll, -

Proof. Let us replace in ¢ every variable z; by y; + (p — 1) - 4}, every con-
stant 0 by 1+ (p— 1), and every subtraction g9 — ¢; by o + (p—1) - ¢
(for subpolynomials ¢y and ¢;). Thus we obtain a polynomial ¢, such
that ||¢'|| < 4 -||q|]. Moreover for z; = y; —y. (1 < ¢ < n) we have
q(z1y-. .y 2n) = ¢ (Y1, Y5, - - -, Yn, yl,). By Proposition 135 we have a circuit C'

such that C' computes o8 (W hn) — s (¢ (Y1, Y5, -y Yn, Yl) With

s (C) <4[dllz, < 16dll, ,
d(C) <2|q'llz, <8llall, -

O

The bounds on the size and on the depth in Theorem 136 show that
whenever for some constant ¢ we have sz, (f) < c[|fllz, ordz, (f) < c||fllz,,
then we can compute f by an A,,-circuit C, such that s (C)) < 16¢ - sz, (f)
or d(C) < 8c-dg, (f). Therefore this method of simulating the ring Z, can
be more efficient than that of Theorem 132 for certain functions.

4.5 Finite-state sequential circuits 111

4.5 Finite-state sequential circuits

In this Section we investigate a different approach for function realizations
than that introduced in Section 4.1. Krohn, Maurer and Rhodes in [22]
showed a method how finite-state sequential circuits can be used for calcu-
lating an arbitrary Boolean function f: {0,1}" — {0,1}. They, however,
did not measure the efficiency of their method. First, we recall their method,
then we give an upper bound on the time required for calculating an arbitrary
Boolean function f: {0,1}" — {0,1}.

A finite-state sequential circuit is a 6-tuple M = (A, B, @, qo, A, pt), with
basic input set A, basic output set B, state set (), starting state g, next-
state function \: Q x A — @ and output function p: Q — B. Let AT be
the free semigroup generated by A, i.e. all finite words with positive length
constructed from the alphabet A. For any ¢t = ay---a,, € A" let us define
N (t) : Q@ — @ inductively: X (a1) (q) = A(g,a1) for a; € A and g € Q. Let
N(ay-ag)(q) = N(ag) (N (a1---ag_1)(q)) for ay...ap € AT and ¢ € Q.
Let M, (ay...ax) = (N (a1 ...ax) (¢)). This is the letter which machine M
when started in state ¢ outputs for the word a; ... ay.

Let F(Q) denote the semigroup of all transformations of) into itself
under the multiplication -, where for f,g € F(Q) we have (f-g)(q) =
g(f(q)). Then N: At — F(Q) is a homomorphism: X (ay...agb;...by) =
N(ay...ar) - N (b ...by). Let us denote N (AT) by M®. We call M* the
semigroup of the machine M.

Definition 137. Let M = (A, B, Q, qo, A\, pt) be a finite-state sequential cir-
cuit. We say that M is a simple non-Abelian Boolean circuit if A = B =
{0,1}, u(Q) = {0,1}, and M as a subsemigroup of F (Q) is a transitive
simple non-Abelian group which is generated by two elements.

From the theory of permutation groups [4], all simple non-Abelian Boolean
circuits can be constructed in the following way: let G be a finite sim-
ple non-Abelian group generated by the elements gy and g;. Let H < G
be a subgroup. Let us consider the right cosets of H in G: let R =
{Hg:9€ G} Let u: R — {0,1} with u(R) = {0,1} be arbitrary. Then
M = ({0,1},{0,1},R,H A\) is a simple non-Abelian Boolean circuit
where A (Hg, k) = Hggy, for k =0, 1.

Remark 138. Krohn, Maurer and Rhodes in [22] consider only those circuits

for which G acts on) primitively, in order to ensure that the size of the
circuit (i.e. the number of states) is small.

We are especially interested in the following circuit corresponding to the
group A,, form > 5: let H=A,, 1 <A, ={re€A,:m(m)=m}is

112 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

the stabilizer subgroup of the element m. For 2 {m, let go = (123) and let
g1 =(34...m). For 2 | m, let go = (123) and let g = (12)(34 ... m).
Then gy and g; generates A,, (see e.g. [4]). Finally let u: R — {0,1} be
arbitrary such that p (Hgg) = 0 and p (Hgy) = 1 (such p exists, since go € H
and ¢; ¢ H).

Now we define how Boolean functions correspond to special polynomials
over G:

Definition 139. Let G be a finite simple non-Abelian group, where the
elements go and g; generate G. Let M = ({0,1},{0,1},R,H, A\, 1) be a
simple non-Abelian Boolean circuit. Let p be an n-ary polynomial over G
which contains no inverses and every constant occurring in p is either gy or
g1- Then B(M,p): {0,1}" — {0,1} is the Boolean function of n variables
such that

B(M,p) (1, ¥n) = Mu (0 (gyss -5 99)) = (N (0 (9g1+- -+, 9,)) (H)).

The value attained by the function B (M, p) at the input n-tuple (y1, ..., yx)
is nothing else than the output what the machine M attains for the word
p(x1,...,2,), where z; = g if y; =0 and z; = ¢, if y; = 1.

Krohn, Rhodes and Maurer in [22] proved that for every finite simple
non-Abelian circuit M and for any n-ary Boolean function f there exists
a polynomial p over G such that f = B(M,p). They, however, did not
investigate how long such a p must be. In the main theorem of the Section
we use the results of Chapter 3 for giving an upper bound on ||p||.

Theorem 140. Let G be a finite simple non-Abelian group, where the ele-
ments go and g1 generate G. Let K be the number of conjugacy classes of
G and let N =|G|. Let M = ({0,1},{0,1}, R, H, A\, u) be a simple non-
Abelian Boolean circuit such that u(R) = {0,1}. Let f: {0,1}" — {0,1}
be an arbitrary function with e-many non-zero values. Then there exists a
polynomial p over G such that p does not contain inverses, every constant in
p is either go or g1, f = B(M,p), and

Ip|l <1605632- (N —1)- (K —1)*-n®-e4 (N —1).

or g1 =(12)(3...m) (if 2| m) then we can choose p, such that

Ipll < 128-[m/2]-n® e+ (N —1).

Proof. Let ug,u; € G be elements such that p (Hug) = 0 and p (Huy) = 1.
Since G is functionally complete, we can find an n-ary polynomial p’ over

4.5 Finite-state sequential circuits 113

G such that p' (g;,,...,9;j,) = u;, whenever f (ji,...,7,) = j. Moreover by
Remark 77 choosing S1 =--- =S5, ={1,90,91 } and S = { go, g1 } we have

v(p) <3136 (K —1)*-28-n®.e=802816- (K —1)*-n®-e.

Now p’ might contain inverses and constants apart from gy and g;. For every
occurrence of x;l (for every 1 < j < n) we replace x;l by xj-v’l. Moreover
for every constant ¢ appearing in p’ we replace ¢ by a product t. of gy and
g1 such that t. = ¢. Thus we obtain a polynomial p such that p does not
contain inverses, every constant in p is either gy or g1, and f = B (M, p). All
that remains is to give an upper bound on ||p||.

Let us define the following sequence of sets: let T} contain every element
of G which can be obtained by multiplying j-many elements from the set
{g(),gl } Now T1 Q T2 Q s Q TN and if ,-rj—l ; ,_Tj, then 1 + ‘,-rj—l‘ S |7}|
Since go and g; generate G and |Ti| = 2 we have Ty_; = G. Applying
Proposition 74 we have

Ipll < (N =1) - [P < (N =1)- 20 (p) +1),

from which we obtain the desired bound.

Now let us suppose that G = A,,, H = A,,_; and go = (123). Let
us choose ug = go and u; = ¢;. Similarly as before we can choose p’ such
that p' (gj,,...,9;,) = u; = g;, whenever f (j1,...,7,) = j. By Remark 77
choosing S;1 =---=5,={1,90,91 } and S = { g9, 91 } we have

3 1 (2)
v(p) < Ky {g0.91} " I {g0.91 1.0 " ¥ (1,(2)> : nogv(fb) - e,

for some b € A,,. Let us choose b = gy, then by Proposition 92 we have
v (fb(2)> = 4. Clearly K{4 414 = 1, and by Proposition 97 we have

Ko 190,911 < Im/2]. Therefore

v(p) <64-|m/2]-n*-e.

Similarly as above, we can obtain a polynomial p such that p does not contain
inverses, every constant in p is either g or g;, f = B (M, p) and

Ipll < (N =1)- [Pl < (N =1)- (2-v(p) +1),
which gives us the desired bound. O

If applying an element of G on the machine M takes one time-step, then
||p|| is the time required for calculating the function f with the machine M.
This is an alternative way of representing Boolean functions than what we

114 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS

introduced in Section 4.1. Our upper bound on |[|p||, however, does not seem
to be any better than that in Corollary 119. This might suggest that this
representation is not better than the circuit-representation. There are ex-
amples, however, when the circuit-representation is less efficient, e.g. Krohn,
Maurer and Rhodes in [22] represent the function f: {0,1}* — {0,1},
f (21,29, 23) = x1 4+ x2 + x3 by a polynomial p with ||p|| = 4 over A;. On the
other hand, s (f) = 6 (see e.g. Theorem 3.1 on page 125 in [40]). Therefore
there are situations when the method presented in this Section can be more
efficient than the circuit representation.

4.6 Problems

Several gaps in our knowledge remain to be filled. One of the most interesting
is whether the method for simulating the ring Z, with the alternating group
A,, (for m > p+ 2) can be extended to other rings.

Problem 3. Find a way of efficiently simulating an arbitrary ring R by a
G-circuit.

In Section 4.5 we investigated the efficiency of finite-state sequential cir-
cuits. We observed that in general it seems to be less efficient to realize a
function by finite-state sequential circuits rather than by the two-element
Boolean algebra B. On the other hand, we showed a function which can be
realized more efficiently using the finite-state sequential machines. More of
such examples would be naturally welcome.

Problem 4. For a finite simple non-Abelian group G characterize the n-ary
functions f: {0,1}" — {0,1} which can be represented more efficiently
by G-circuits or by finite-state sequential circuits over G than by the two-
element Boolean algebra B.

Chapter 5

Complexity and functionally
complete algebras

Up to this point we were examining the situation when a function or partial
function was given over a functionally complete algebra and we had to find
some polynomials which realize this function. While in Chapter 3 we gave
upper and lower bounds on the length of a shortest realizing polynomial,
in Chapter 4 we were considering computational models and studied fastest
ways to compute the given function.

There are situations when one has to deal with polynomials directly. In
such a situation it is important to know what function does the polynomials
realize. From now on we consider two main versions of this problem. The
first problem is called the polynomial equivalence problem, when one has to
decide, whether or not two polynomials realize the same function. If both
polynomials are terms (i.e. polynomials without any constants from the al-
gebra) then we call it the equivalence problem or identity checking problem.
The other problem is the polynomial equation satisfiability problem or poly-
nomial equation solvability problem, when one has to decide whether the two
polynomials attain the same value for at least one substitution. Among clas-
sical algebras (like groups or rings) this problem is trivial if neither of the
polynomials have constants (and the answer is always ‘yes’, not depending on
the two terms). Therefore we leave the word ‘polynomial’ out from the name
of this problem. Compared to function realization problems, the equivalence
and the equation solvability problems make sense not only over functionally
complete algebras, but over any finite algebra.

These problems are all decidable questions for a finite algebra, the inter-
esting question to ask is how hard is or how long it takes to decide them.
Therefore we check the computational complexity of these questions.

Let us start with a notation. To every term or polynomial expression

116 ~ COMPLEXITY AND FUNCTIONALLY COMPLETE ALGEBRAS

t(zy,...,x,) and each algebra A we denote the naturally associated function
by tA: A" — A. We recall that an algebra A satisfies an equation s(¥) ~ t(7)
for ¥ = (x1,...,x,), if the corresponding functions s and t* are the same

function. We denote it by A |= s = t.
Definition 141. FEquivalence problem and polynomial equivalence problem.
Given: A finite algebra A.

Instance: Two term expressions (for the equivalence problem), or
two polynomial expressions (for the polynomial equivalence problem).
Let the two expressions be s and t.

Question: Do the two input expressions realize the same function over
A, ie. does A |= s~ t hold?

Definition 142. Equation solvability problem.
Given: A finite algebra A.
Instance: Two polynomial expressions p, gq.

Question: Do the two input polynomials attain the same value for at least
one substitution over A, i.e. does the equation p = ¢ have a solution
over A?

We investigate these problems from Chapter 5 to Chapter 8. We start
with the case when the algebra is functionally complete.

In Theorem 6 on page 752 of [29] Tobias Nipkow asserted the following:

Theorem 143. The equation solvability problem for a nontrivial functionally
complete algebra A is NP-complete.

In the ‘proof’ he claims to give a polynomial reduction from deciding
whether an equation over Zy = ({ 0,1}, +,) has a solution (a problem which
is well-known to be NP-complete, see e.g. [7]) to the problem of whether an
equation over A has a solution. Following the original proof from [29| shows
that Nipkow’s construction actually yields a reduction to the problem of
whether a system of equations over A has a solution, which proves a weaker
theorem:

Theorem 144. The system of equations solvability problem for a nontrivial
functionally complete algebra A is NP-complete.

The definition of this problem is the following:

5.1 System of equations solvability 117

Definition 145. System of equations solvability problem.
Given: A finite algebra A.

Instance: A natural number n and two system of polynomials py, ..., p,
and ¢q,...,q, over A.

Question: Does the system of equations p; = ¢1,...,p, = ¢, have a
solution over A?

In Section 5.1 we first give the original proof from [29] (with slight mod-
ifications) yielding Theorem 144. Then in Section 5.2 we prove the theorem
that Nipkow intended to prove. Finally in Section 5.3 we prove the following
corollary of the method:

Theorem 146. The polynomial equivalence problem for a nontrivial func-
tionally complete algebra A is coNP-complete.

5.1 The complexity of system of equations solv-
ability problem

We give the proof of Theorem 144 in this Section.

Let A be a nontrivial functionally complete algebra (JA| > 2). The
problem is in NP, since we only need to substitute a possible solution.

It is well-known (see, e.g. [7] p. 251, problem AN9) that deciding whether
an equation over Zs = ({0,1},+,-) has a solution is NP-complete (it is
almost the same as the SAT problem). Following the proof in [29] we give a
polynomial reduction from the problem of determining whether an equation
over Z» has a solution to the problem of whether a system of equations over
A has a solution.

Let f(z) = g (z) be an equation over Zs, where f and g are polynomial
expressions and x is an n-tuple of free variables. We create a system of
equations over A in polynomial time such that the system has a solution
over A if and only if f = ¢ has a solution over Z,. The size of the system
will be polynomial in || f|| + [lg||-

Let us denote two arbitrary distinct elements of A with 0o and 14. Since
A is functionally complete, there exist two 2-variable polynomial expressions
(let us denote them with +a and -a) such that 0o and 1o behave under
the operations +4 and -5 as 0 and 1 behave under the operations + and -,
namely:

+a(04,0a) =44 (1a,1a) =04, +4 (0a,14) = +a (1a,0a) = 14,

118 COMPLEXITY AND FUNCTIONALLY COMPLETE ALGEBRAS

‘A (0a,0a) = A (0a,1a) = A (1a,04) =04, and -5 (1a,1a) = 14.

There exist many possible functions for +, and for -5, and each can be
expressed as a polynomial expression. We choose +4 and -5 arbitrarily (with
respect to these properties) and fix them for the proof.

There exists a 1-variable expression y;, such that xi, (1a) = 1a and
X1, (@) = 0a for every a # 1a. Now using +a and -5 instead of + and
- and using x1, (z;) instead of the variable z; we can encode the equation
f = g over Zy as an equation fa = ga over A such that f = ¢ has a solu-
tion over Zs if and only if fo = ga has a solution over A. We can observe
though that if we want to express this equation using the basic operations of
A then the length of the resulting equation might be exponential in the size
of the original equation (e.g. if any variable occurs more than once in the
polynomial expression for +4 or for -4).! For this reason, the proof is not a
polynomial reduction from deciding whether an equation over Z, has a solu-
tion to deciding whether an equation over A has a solution. However, using
an easy trick we can encode the original equation to a system of equations
with polynomial size in || f]| + ||g]|:

At first we have the equation f(z) = g(z) over Zy. In every step we
will shorten this equation and add other equations to our system until the
equation cannot be shortened any more. In each step we search reading from
left to right in our modified equation for any occurrence of x + y or of x - y,
where z and y are variables or constants (polynomial expressions with length
1). If we find an occurrence of x 4+ y with variables or constants x, y then for
a new variable z we replace every occurrence of x +y with z in the modified
equation and add the equation z = +4 (z,y) to our system of equations.
Similarly, if we find an occurrence of x - y with variables or constants z,y
then for a new variable z we replace every occurrence of x -y with z in
the modified equation and add the equation z = - (z,y) to our system of
equations. Each step takes at most | f|| + ||g|| time and each step shortens
the equation f = g, hence the algorithm stops in at most (||f|| + |lg|])* time.
After the final step, in every equation of the system for every original variable
x; (i.e. which occurred in f = g) we replace x; with xq, (x;).

After this translation we have a system of equations over A such that the
system has a solution over A if and only if the original equation f = g had a
solution over Z,. The size of the system is linear in the size of the equation
f = g over Zy, since there are at most (|| f|| + ||¢g||)-many equations, and by
Lemma 39 each equation has length at most (|[4+all + ||-all) - [[x14]l, Which

! An easy example for such an exponential blowup is if for a group one wants to express
the commutator expression [[[[z1, z2], x3]...], zx] using only the inverse operation and the
multiplication of the group.

5.2 Equation solvability 119

does not depend on the equation but on the algebra A. The time of the
translation of f = g over Zs to a system of equations over A is polynomial
as well, which finishes the proof.

5.2 The complexity of the equation solvability
problem

We give the proof of Theorem 143 in this Section.

Let A be a nontrivial functionally complete algebra (|A| > 2). The
problem is in NP, since we only need to substitute a possible solution.

It is well-known (see, e.g. |7]) that deciding whether a formula written in
conjunctive normal form can be satisfied over the two-element Boolean alge-
bra B = ({0,1},-,V,A) is NP-complete (this is called the SAT problem).
The formula is usually given by the clauses, which we take the conjunctions
of, where each clause is a disjunction of arbitrary many literals, i.e. variables
or negations of variables ([7] p. 259 problem LO1). The problem remains NP-
complete, if every clause in the conjunctive normal form contains exactly 3
literals (this is called the 3SAT problem, [7]| p. 259 problem LO2). We will
give a polynomial reduction from the problem of determining whether a 3SAT
formula can be satisfied over B to the problem of whether an equation over
A has a solution.

Let ¢ (z) = A, p; be a 3SAT formula over B. We create an equation
over A such that the equation has a solution over A if and only if ¢ can be
satisfied over B. The length of the equation will be polynomial in the size of
the formula.

Let us denote two arbitrary distinct elements of A with 0o and 14. Since
A is functionally complete, there exists a 2-variable polynomial expression A
such that 05 and 154 behave under the operation As as 0 and 1 behave under
the operation /\, namely /\A (OA, OA) = /\A (OA, 1A) = /\A (1A7 OA) = OA, and
Aa (1a,14) = 1a. There exist many possible functions for A, and each can
be expressed as a polynomial expression. We choose Ap arbitrarily (with
respect to these properties) and fix it for the proof. Similarly, for each of
the eight possible 3-variable forms of disjunctive clause ¢; = g; (21, 22, x3),
(j=1,...,8) we can choose an arbitrary but fixed 3-variable expression ¢; o
such that 0o and 15 behave under the function ¢; o as 0 and 1 behave under
the clause g;. Moreover there exists a 1-variable expression x;, such that
X1, (1a) = 1a and x1, (a) = 04 for every a # 14.

For every positive integer number k we will use a polynomial A®) =

/\E:)(a:l, ...,x) over A in a way that it behaves on inputs from {0a, 14 }

120 COMPLEXITY AND FUNCTIONALLY COMPLETE ALGEBRAS

the very same as /\f:1 x; behaves on the inputs { 0,1} over B. Let us define
A®) in the same way we defined the polynomials p™ in Lemma 44: let
/\Ei) (x1) = 1 and /\f) (1, 22) = Aa (21, 22). For every integer i > 2 let

/\fiil) (.Z'l, P 71‘21'71) = Af) (/\X) (.Tl, Ce ,.TZ‘) s /\Xﬁl) (.CEZ‘Jrl, P ,.Tgl',l)) s
/\Ezi)(i'l, e ,I’QZ‘) = /\f) (/\X) (ZEl, Ce ,ZEZ‘) s /\X) (ZEZ‘+1, e ,ZEQZ‘)) .

It is clear that /\Ef), for every integer k, has the required property.

Now using the expression ¢; a instead of the clause g;, using /\Xl) instead
of AI"; and using x1, (z;) instead of the variable z; we can encode the formula
@ over B as an expression @ over A such that ¢ can be satisfied over B if
and only if oo = 1 has a solution over A. The only remaining part is to
prove that ||pa|| is polynomial in ||¢||.

Let ¢ = ||x1.ll;, let I = [[Aa|l and let d = max{||¢al :7=1,...,8}
the length of the longest clause expression. For every k we have ‘ /\f:) <

[Mogkl < 1. klogl which is quite straightforward from Lemma 44 or from the
fact H/\XC)H <)/\f) -max{ H/\E{k/ﬂ) /\%km) }

Using Lemma 39 we can conclude that the length of the expressed 3SAT
formula ¢ over A is not more than c¢-d-[-n'°8!, which is polynomial in the
length of the original 3SAT formula [|¢||, since n < ||¢|| and ¢, d, [depend
only on A. Thus, Theorem 143 is recovered.

Y

5.3 The complexity of the polynomial equiva-
lence problem

With a slight modification we can easily prove Theorem 146. Let A be a
nontrivial functionally complete algebra (JA| > 2). The problem is in coNP,
since we only need to substitute a possible counterexample.

In the proof of Theorem 143, for every 3SAT formula ¢ we created an
expression @ over A such that ¢ can be satisfied over B if and only if
@A = 1A has a solution over A. Moreover the length of ¢ was polynomial
in the length of ¢. Observe that the image of @ over A is a (not necessarily
proper) subset of {0a,1a }, hence pa = 1o has a solution over A if and
only if oo ~ 04 is not an identity over A. This is a polynomial reduction
from the problem of 3SAT over B to the problem of determining whether an
equation is an identity over A.

Chapter 6

The complexity of the polynomial
equivalence problem for
meta-Abelian groups

Having investigated the polynomial equivalence and equation solvability prob-
lems for functionally complete algebras, we turn our attention to classical
algebraic structures.

Early investigations into the equivalence problem for various finite al-
gebraic structures were carried out by computer scientists, in particular at
Syracuse University where the terminology the term equivalence problem was
introduced. They considered finite commutative rings and finite lattices. In
the early 1990’s it was shown by Hunt and Stearns (see [16]) that the equiv-
alence problem of a finite commutative ring either has polynomial time com-
plexity or is coNP-complete. Later Burris and Lawrence proved in [2] that
the same holds for rings in general.

Theorem 147. Let R be a finite ring. The equivalence problem for R is in
P if R is nilpotent, and it is coNP-complete otherwise.

It is not hard to see that from the proof the same follows for the polyno-
mial equivalence problem. Surprisingly enough there are no published results
about the complexity of the equation solvability problem for finite rings.

The equivalence problem for finite groups has proved to be a far more
challenging topic than that for finite rings. This problem for a group G
is the problem of deciding which equations s ~ t are satisfied by G. We
recall a notation from Chapter 5. To every term or polynomial expression
t(z1,...,x,) and each group G we denote the naturally associated function
by t¢: G" — G. We recall that a group G satisfies an equation s(7) ~ t(7)

122 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPS

for ¥ = (21,...,x,), if the corresponding functions s¢ and t© are the same
function. We denote it by G = s ~ t. We recall that G = s ~ t if and only
if G | s-t7! ~ 1. Therefore we view the equivalence problem for groups as
the problem of deciding which equations ¢t ~ 1 are satisfied by G.

In 2004 Burris and Lawrence [3| proved that if G is nilpotent or G ~ D,
the dihedral group for odd n, then the polynomial equivalence problem for
G is in P. The groups arising for the next step of the investigation are the
meta-Abelian groups.

This Chapter investigates the case of meta-Abelian groups. We prove that
for several kinds of semidirect products the polynomial equivalence problem
is in P. Examples for such groups are the above-mentioned dihedral groups,
the alternating group Ay, or the wreath product of two cyclic group.

From Theorem 146 in Chapter 5 we already know that the polynomial
equivalence problem is coNP-complete for finite simple non-Abelian groups.
The result does not tell us anything about the complexity of the equivalence
problem as it uses the constants of the group. In Chapter 7 we prove that
not only for the simple non-Ableian groups but for every finite nonsolvable
group the equivalence problem is coNP-complete.

Interest in the computational complexity of the equivalence problem of
a finite algebraic structure has been steadily increasing since 2004. There
are many results about the equivalence problem of finite monoids [21], [37],
[38]. Their initial approach came from the complexity of recognizing formal
languages. The first hardness result for semigroups was proved by Popov and
Volkov [39], and several results were proved by Seif and Szabé in [34]. For
commutative semigroups the topic was thoroughly investigated by Kisielewicz
[19].

The complexity of the system of equation solvability problem is com-
pletely characterized for groups in [10] and [23]. For a finite Abelian group
deciding whether a system of equations has a solution is in P, otherwise it is
NP-complete.

The characterization of solving a single equation looks more complicated,
though (|10]). Goldmann and Russell proved that for a finite group G de-
ciding whether an equation has a solution is in P if G is nilpotent and
NP-complete if G is non-solvable.

The result tells nothing about non-nilpotent solvable groups. Goldmann
and Russell explicitly ask in [10] to decide the complexity of solving an equa-
tion over Ss.

The equation solvability problem was first examined for monoids and
semigroups. Klima [20] has analyzed the question for semigroups of size at
most 6. He proved for almost all of these semigroups that solving an equation

6.1 Semidirect products 123

is in either in P or NP-complete. The only remaining case is the 6 element
‘monoid’ S3. He conjectures that the problem is in P.

In Section 6.2 we show the following: If G ~ A x B, where A ~ Z,, and
B ~ Z, for some primes p and ¢, then equation solvability problem is in
P. Thus, with Z3 ~ A and Z, ~ B we answer the questions of Goldmann,
Russell and Klima.

The results suggest that the complexity of equivalence problem for a finite
algebra A is in P if and only if the equation solvability problem for A is in P.
This is far from to be true. Seif and Szab6 presented a 10 element semigroup
(see [34]) for which the equivalence problem is in P and the equation solvabil-
ity problem is NP-complete. Klima proved an even stronger result in [20],
where he showed a semigroup of size 24 for which the equation solvability
problem is NP-complete but the polynomial equivalence problem is in P.

It may happen, though, that the complexity of the two problems coincide
in case of groups. At this point we do not even know these complexities for
the symmetric group S;.

6.1 Semidirect products

In this Section we prove for a class of non-nilpotent groups that the poly-
nomial equivalence problem (and so the equivalence problem) can be solved
in polynomial time. The following method will play a crucial role in our
investigation.

Collecting procedure: Let G ~ A x B where A is Abelian and let
t = z129 ... 2% be a group polynomial over G. Without loss of generality we
assume that the x; are constants or variables over G. Every element of G
can be uniquely written of the form ba where a € A and b € B. So we write
x; of the form b;a; where a; € A and b; € B. Collecting the elements of B
to the left we obtain

t = (b1by...by) - <ali2b3"'b’“ag‘°’"'bk . .azk_lak.) :
This term is an identity if and only if both
blbg . bk

and
babs..by _bs...by by
<a1 ay> k. .ak_lak) (6.1)

are identities (i.e. both are identically 1 for all substitutions over G). Let
us examine the latter expression. Substitute a; = 1 for all 7, where x; was

124 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPS

wi w2 Cwm

a variable, not constant. Then we have t' = ¢{"¢y? ... c%m, where all ¢;s are
constants from A and w; is a word over B (let us call ¢’ the constant part of
(6.1)). Let us fix j. Substituting a; = 1 for ¢ # j (where g; is not constant)
we obtain an identity of the form t’t' where t}; = a;»”a;” . .a;” and [is the
number of the occurrences of ; in ¢ and h; is a semigroup polynomial over
B for every 1 <i < [. Obviously, (6.1) is an identity if and only if ¢ and ¢/
are identities for every 1 < j < k. Hence we are looking for the complexity

of checking whether or not byby ... by, t" and t; are all identities.

Lemma 148. Let F be a field of prime characteristic p and let H be a multi-
plicative subgroup of F*: H < F*. For a polynomial f(z) € Flxy, xa, ..., xx]
it can be checked in polynomial time whether or not it vanishes on H.

Proof. Let a be a generator of F* and let H = (a). Putting z; = 2 we
have f(Z) is identically 0 over H if and only if f(Z) is identically 0 over
F*. A polynomial g € F[zy,...,z;] admits this latter property if and only
if g = (27" — 1)gi(z) for some g; € Flzy,..., 2], where |[F| = ¢. This
condition can be checked in linear time since we only need to divide g by
297" — 1 (i.e. substitute 277" = 1) for all i € {1,...,k} and the remaining
expression has to be 0. O

Theorem 149. If G ~ A x B where A ~ Z, for some prime p, and the
polynomial equivalence problem for B is in P then the polynomial equivalence
problem for G is in P, too.

Proof. The subgroup B acts on A. Now, Aut A ~ C,_;, the cyclic group
of order p — 1 and consists of the maps a — a' for every a € A for some 1 <
[< p—1. Thus there is a homomorphism ¢ : B — C,_; such that ab = a®®
for every a € A. Now, using the collecting procedure it is enough to check
whether or not byb, . . . by, a;-“a?? . .a;-” and ¢ cy? ... c¥m are identities. The
first condition can be checked in polynomial time by the assumption. For the

second one we rewrite the expression a2 i 9(h1) o (ha) a? —

jaj...aj :aj aj s Q4
w1Fwz+--Fwy
;

. Here w; denotes the image of h; at ¢. Substituting ¢(b;) = y;
we have w; as a product of some of yy,...y; over Z,, shortly a monomial,
and f = w; + wq + - - - + w; is a k-variable polynomial over ¢(B) where both
the addition and the multiplication is understood in Z,. The expression
a;f’1+w2+"'+wl is an identity if and only if f attains 0 every time when we
substitute elements of ¢(B) for the variables. And this can be checked in
polynomial time by Lemma 148. Finally, ¢;"¢3? ... cm can be written in the
form ¢*i¢¥s ... c¥m, where ¢ is the generator, of A. Using the same idea,
this is an identity if and only if w] + - - - 4+ w), attains 0 every time when we
substitute elements of ¢(B) for the variables. And this can be checked in

polynomial time by Lemma 148, again. U

6.1 Semidirect products 125

Corollary 150. If G ~ A x B, where the polynomial equivalence problem
for B is in P, and A ~ Z,, where m is squarefree, then the polynomial equiv-
alence problem for G is in P, too.

Proof. Now, A ~ ®,,,Z, and all summands are B invariant. Every constant
can be uniquely decomposed into a product of elements from Z, for p|m. For
a polynomial p let ¢, denote the polynomial when we replace each constant
by its p part. Obviously, a polynomial is an identity over G if and only if ¢,
is an identity over Z, x B for every prime p dividing m. This can be checked
in polynomial time by Theorem 149. U

Unfortunately the same idea does not work for a noncyclic normal sub-
group, A. The collecting procedure can be used in a few other cases, though.

Theorem 151. Let G ~ A x B such that the following hold:
(a) A is Abelian and the exponent of A is squarefree;
(b) the polynomial equivalence problem for B is in P;

(¢c) for ever prime p dividing the size of A and P € Syl,(A) the group
B/Cg(P) is Abelian and p t |B/Cg(P)|, where Cg(P) denotes the
centralizer of P in B.

Then the polynomial equivalence problem for G is in P.

Proof. After the collection procedure we see that it is enough to check iden-
tities over B and identities of the form (6.1)

x}fllx};u...xﬁl" ax’fmx;m xﬁQn axlfllx;“mmxﬁln (6 2)
o , .
and "¢y ... cm for the constants. The Sylow subgroups of A are B invari-

ant, hence it is enough to check the identity for the Sylows of A. Thus we
may assume that A is an elementary Abelian p-group. Let A ~ Z7 and let
¢: B — Aut Z' ~ GLy, (Z,) be the action of B on A, p(B) = H. With
these notations we need to check identity (6.1) for G ~ Z7" x H, where H is
an Abelian matrix group acting faithfully on Z* (note that H ~ B/Cg(Z})).
Let R denote the subring of the ring of m by m matrices generated by H.
Now (6.2) can be rewritten as:

kyy k k ko kK k kjp k k
a$111$212---$nln+$12l$222---$n2n+"'+$1ll$2l2---:L'nln

and it is enough to check whether or not the exponent

ki, k k ko, k k ki k k
R I Rt A it PRI S e AL A (6.3)

126 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPS

is identically 0 in R when substituting the elements of H. The ring R acts
semisimply on Z7*, because p { [H|. By the Wedderburn—Artin Theorem [17]
R is a direct sum of matrix-rings. As H is commutative, R is commutative,
as well, hence R is a direct sum of fields: R = @®{_;F,,. Thus H < R* ~

i1, Let H; denote the projection of H to its i-th coordinate. Expression
(6.3) is identically 0 over R if and only if it is 0 at every substitution from
H; for every ©+ < s. By Lemma 148 this can be checked in polynomial time,
and so the polynomial equivalence problem for G is in P.

Finally, consider the identity ¢} c5”...¢"" ~ 1. Here we can write every

¢j as a linear combination of some fixed basis, {v;}, of A. Let ¢; = AR
Thus, it is enough to check, whether v . o™ ~ 1 is an identity
for all 1 <i <'s. The exponent has to be identically 0 over H;, and this can

be checked in polynomial time by Lemma 148. O

Corollary 152. Let G ~ A x B, where A and B are Abelian groups, such
that the exponent of A is squarefree and (|A],|B|) = 1 then the polynomial
equivalence problem for G is in P.

Proof. The conditions of Theorem 151 trivially hold. O

Now, we investigate the case when neither the size nor the exponent of the
normal subgroup is squarefree. The modification of the Lemma 148 remains
valid for cyclic groups.

Lemma 153. Let f (z1,...,25) = wy + -+ - +w; be a sum of monomials in
k variables over Zyo (p > 2) and let H be the p— 1 element subgroup of Zy..
Then, for any M < H it can be checked in polynomaial time whether or not
f vanishes on M.

Proof. Let a be a generator of H and let M = (af). Putting z; = 2 we have
f(z) is identically 0 over M if and only if f(2) is identically 0 over H. We
claim that a polynomial f € Zn[z1, ..., z;] admits this latter property if and
only if f = S (27! — 1)g;(&) for some g; € Zyn[x1, ..., x;]. This condition
can be checked in linear time. Since the exponent of H is p — 1, if f is of
the required form, it vanishes over H. On the other hand, as the elements
of H are pairwise incongruent mod p (not only mod p®), the polynomial
has to vanish over Z;, as well. By Lemma 148 this happens if and only
if f= (a7 —1)ga(z) modp and so f = > (27" — 1)gu(2) + pfi

mod p®. Hence f; is vanishing mod p®~!. By the previous arguments f; =

S ("' —1)gi2(£) mod p. Continuing in the same fashion we obtain that

f=X@E - D). =

The following theorem is a generalization of Theorem 149:

6.2 Equation solvability 127

Theorem 154. Let G ~ A x B such that the following hold:
(a) A is cyclic;
(b) the polynomial equivalence problem for B is in P;

(¢c) for ever prime p dividing the size of A and P € Syl,(A) we have
p1[B/Cs(P)].

Then the polynomial equivalence problem for G is in P.

Proof. Going along the lines of Theorem 151, we may assume that A ~ Z,m.
Moreover, after the collection procedure, it is enough to check identities over
B and identities of the form f = w; +ws+---4+w;, = 0 over B/Cg(P)
(Note that this works for the constant part, as well, since we can write
every constant as a power of the generator of A). As B/Cg(P) < Aut Z,0,
condition (c¢) implies that B/Cg(P) < H, where H denotes the p—1 element
subgroup of Aut Z,.. If p = 2 then H = 1, if p > 2, then identities can
be checked in polynomial time over B and H, by condition (b), and by
Lemma 153, respectively. O

6.2 Equation solvability

A modification of the collecting procedure and Lemma 148 will also help
us to find out the complexity of the equation solvability problem for some
metacyclic groups, including Sj.

Theorem 155. For any group G of order pq where p and q are primes the
equation solvability problem for G s in P.

Proof. Consider the case when G ~ A x B where A ~Z, and B ~Z,. We
may assume that G is not abelian, and so p # q.

Let {t,s} be an instance of the equation solvability problem for G. We
would like to know whether or not ¢t = s has a solution. Multiplying by s~*
and writing ¢ for ts~1, we have to solve ¢t = 1. After the collecting procedure
we obtain the following equation:

t(gr---gr) = (b1ba ... by) - <al{2b3"'b’“ag‘°’"'bk . .aZ’ilak) = 1.
As p and ¢ are coprime, both

biby... by =1

128 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPS

and

bobs...bg _b3...b b
(]/12 3 ka/23 k . akk_lak — 1

must hold. Since B is cyclic, we can solve b;...b, = 1 as a congruence
mod ¢, and we can express one of the variables (say, b;) using the other
variables and constants: by = c[] bfid, this is what a solution looks like mod
q. Substituting this expression for by in ¢}t/ ... ¢, t" = 1, we only need to check
the complexity of the solvability of this latter equation under the constraint
for b;. By a similar argument as in the proof of Theorem 149 we arrive at
the solvability of

k11 k k kot ki k kj1 k k
&x111x212mzn1n+x121x222mxn2n+m+xlllx212mxnln _ 1’

where a is a generator of A. Now, it is enough to check whether or not the
exponent attains 0, that is whether or not

ki, k k kot k k ki k k

T T e A I e I S Al AL A |
has a solution over Z,. As p is a prime, this equation has no solution if and
only if

k11,.k12 k1 ka1 ko2 ko ki1, k2 kin\p—1 _
(M ws? o P e 4t)P =1

is an identity. This can be checked in polynomial time by Lemma 148, hence
the equation solvability problem for G is in P. O

6.3 Problems

Klima’s example mentioned in the beginning of the Chapter suggests the
following question:

Problem 5. Is there an algebra A such that the polynomial equivalence
problem for A is coNP-complete, but the equation solvability problem for A
is in P?

If there is an example, it is not a group. Indeed, for a group G every in-
stance fi; =~ f5 of the polynomial equivalence problem for G can be rewritten
in the form f; f, ' ~ 1. If one can check the solvability of p = a in polynomial
time, then one only has to check the solvability of f,f, ' = g for every g # 1.
The two polynomials are equivalent if and only if none of these equations
have a solution.

The smallest group not discussed in this Chapter is S;. This group can be
considered as a semidirect product of Z3 and S3. Here, the exponent of the

6.3 Problems 129

first group is squarefree, the equivalence problem for Sj is in P, but the action
of S3 is not Abelian. If we attack this problem using our technics, then after
the collecting procedure, going along the lines of the proof of Theorem 151
or Theorem 154, we should discuss terms over My(Zy) evaluated on the
invertible elements.

Problem 6. Find the complexity of the equivalence, the polynomial equiv-
alence and the equation solvability problems for Sy.

Chapter 7

The complexity of the equivalence
problem for nonsolvable groups

In this Chapter we deal with non-solvable finite groups. A corollary of The-
orem 146 is that the polynomial equivalence problem is coNP-complete for
finite simple groups. In this Chapter we prove that this result is true for not
only simple but for every non-solvable group and not only for the polynomial
equivalence problem but for the equivalence problem:

Theorem 156. The equivalence problem for a finite nonsolvable group G s
coNP-complete.

Let us recall a notation from Chapter 5. To every term expression

t(z1,...,x,) and each group G we denote the naturally associated function
by t¢: G® — G. We recall that a group G satisfies an equation s(7) ~ t(7)
for ¥ = (x1,...,2,), if the corresponding term functions s& and t© are the

same function. We denote it by G = s ~ t. We recall that G = s ~ t if
and only if G |= s-t! ~ 1. Therefore we view the equivalence problem for
groups as the problem of deciding which equations ¢t & 1 are satisfied by G.

Now we recall some definitions and easy observations about commutators
and solvable groups (for more details see [31]).

Definition 157. a. The commutator [z,y] is a group term defined by

[z, y] == 27y 2y

b. Define the commutator terms c, (acl, o ,xgr) by induction: ¢;(xy,z5) =
[z1, 9] and for r > 1 let ¢, be of arity 2"

CT(.CEl,.fEQ, . ,.CEQT) = [CT,1($1, .. .,xQT—l),Crfl(xQT—1+1, c. ,.CEQT)].

7 Equivalence for non-solvable groups 131

c. G is solvable if and only if for some r > 1, G = ¢, ~ 1. The smallest
possible r is called the solvable length of G.

d. For a € G let
[a,G] = <{[a,g]:g€G}>.

Lemma 158. a. If N < G with both N and G/N are solvable then G is
also solvable.

b. If N1,Ny are two normal solvable subgroups of G then the product
N; - Ny is also a normal solvable subgroup of G.

c. la, G] is a normal subgroup of G.

d. If G is a non-abelian simple group then

0.G] - {1 z:fazl‘
G ifa#1l

Here are some notations and claims about the verbal subgroups of a group
(see [28]).

Definition 159. a. Given a set T of group terms and let

TG) = URange(tG)

teT
the union of the ranges of the term functions t&.

b. The subgroup generated by T(G), which we denote by

is called a wverbal subgroup of G.

c. 1 and G are verbal subgroups of G. If these are the only verbal sub-
groups of G then we say G is verbally simple.

d. Given two terms s(xq,...,2,,) and t(xq, ..., z,), we define the term s,

by

st(xl, e ,xmn) = s(t(a:l, cos T)y H(@ty o Ton)y e (T - ,xmn))

132 EQUIVALENCE FOR NON-SOLVABLE GROUPS

e. For a finite group G let dg be a positive integer such that for any set
X of generators of G we have

G = U Xk,

0<k<dg
f. Given a term s(z1,...,z,,) and a finite group G define the term sg by
sG(xl, . ,xde) = f(ajl, ces) S(Taty e Tom) ¢ >

~
a product of dg terms s(---), with distinct variables

Lemma 160. a. Every verbal subgroup of G is normal in G.
b. A finite group G has a unique largest solvable verbal subgroup.
c. Suppose G is finite. If T = {ty,...,ty} let t =ty ---tx. Then
T"(G) = ta(G).
d. Thus for a finite G, every verbal subgroup V of G is the range of a
single term function.
The length of a term is important in our investigations.

Definition 161.

We recall that the length of a term function is defined inductively (by Defi-
nition 35): the length of a variable or its inverse is 1, and if s and ¢ are terms
with length a and b, then the length of the product term st is a + b.

Lemma 162. a. The length of s; is the product of the length of t and the
length of s.

b. The length of sg is the product of dg and the length of s.
The following proposition plays a crucial role in the proof of Theorem 156.

Proposition 163. Let G be a finite group.

a. For a verbal subgroup V let s be a term with s(G) = V. For all terms
t we have

ViEtx1l ifand only if GEts~ 1.

7.1 Proving coNP-completeness 133

b. Suppose G is nonsolvable but every proper verbal subgroup of G is solv-
able. Let V be the largest solvable verbal subgroup of G, denote its
solvable length by r. Then for all terms t we have

G/VEt=1 ifand only if G = ¢y = 1.

c. If G is verbally simple and N 1is a proper normal subgroup of G then
for all terms t we have

GEt~x1 ifand only if G/N |t~ 1.

Proof. a. Let t be n-ary and s be m-ary. Let i = (i1, ..., Yim) for i =
1,...,n, and we consider the terms t(z1, ..., x,) and t, (yn, . ,ynm) =
t(s(gjl), ce s(gjn)) While ¢; run through all tuples from G, the values
of s(y;) attain every element of V. Thus if t # 1 at some evaluation
(hi,...,hy,) € V" then we can choose the tuples ¢; such that s(y;) = h;.
Thus there is an evaluation of t, such that ¢, # 1.

On the other hand, if t; % 1 over G, then there is an evaluation
U1, ..., Uk such that t; # 1. Now, for the elements h; = s(¢;) we have
t(hy,...,h,) # 1, hence t % 1 over V.

b. Let m be the arity of tg. If t = 1 over G/V, then tg(G) < V, hence
ta(G) is solvable and ¢, ~ 1 over G. On the other hand, if ¢ % 1 over
G/V then tg(G) is non-solvable and tg(G) = G. As there are some
elements g, ... gor € G such that c.(g) # 1, and there are m-tuples 3
such that tg(y") = ¢, we have ¢4 (*,...,9%) # 1. Hence ¢,y # 1
over G.

c. If t & 1 over G then clearly t = 1 over G/N. Now, if ¢t = 1 over G/N,
then tq(G) < N. As tg(Q) is verbal, tg(G) = 1, hence t =~ 1 over G.
U

7.1 Proving coNP-completeness

Our leading reference on computational complexity will be [7]. The equiv-
alence problem of any finite group G is clearly in co-NP: to check if an
equation t(Z) ~ 1 fails in G one only needs one instance § where tS(g) # 1
, and given such an instance § one can find the value of t&(g) in polynomial
time. Thus to prove the theorem we will exhibit an NP-complete problem
that polynomially reduces to the equivalence problem of G. The most ele-
gant choice we have found is to use the NP-completeness of the k-coloring

134 EQUIVALENCE FOR NON-SOLVABLE GROUPS

problem where k is the size of the group G when G is a simple non-Abelian
group. Then we use induction for non-solvable groups in general.

Theorem 164. Let G be a finite, simple, non-Abelian group. Then the
equivalence problem for G is coNP-complete.

Proof. Let k = |G|. The group G is non-Abelian and simple, hence k > 60.
We polynomially reduce GRAPH k-COLORING to the equivalence problem
of G. Let I' = (V| E) be an arbitrary simple graph with no loops, or multiple
edges, V. = {vy,...,v,} and E = {eq,...,e,}. We shall color the vertices
of I' by the elements of G. The color of v; will be g;. We exhibit a term
function ¢ over G such that ¢(g,...,g,) # 1 if and only if the appropriate
coloring is a k-coloring.

By Lemma 158/d we have [g,G] = G for every g # 1. Let dg be the
constant defined in Definition 159/e. This constant is depending only on G
and for every g € G

da

1

holds. Let

da
S(-Ta Y1y >ydg) = S([L’,g) = H[-Ta yk]

k=1
Every vertex v; in V' will be associated to a variable x;. Then for every edge
e = (v;,v;) we define

Sii(y) = S(xx; ', 7).
Thus 5, ;(G) = 1 if we substitute z; = x; and 5, ;(G) = G if we substitute
x; # xj. The length of S; ; depends only on G: each commutator contains 3
variables, repeated twice and we multiply dg of them, so the length of this
term fuction is 6dg. We are ready to define ¢. Let e = (v;,v;) be an edge of
I'. Let
te(y) = Si;(y) = S(xiiﬂ;l;@)-
Let ey, €, ..., e, be the list of edges of I and r such that 2"1 < m < 2.
Moreover let
t=Cr(teysteny - slen ey - ,tem).

Here we repeat t., enough many (2" —m many) times in order to match the
arity of c,. In the terms t., the variables of § are all distinct. So there are
altogether dg2" many ’y’-s and their inverses. The length of ¢ is 6dg - 4" <
6dg(2m)? = 24dgm?® hence polynomial in the size of I'. We claim that
t % 1 over G if and only if ' is k-colorable. Firstly, let us assume that
I' is k-colorable by the elements of GG, and let g; be the color of v;. Now,

7.1 Proving coNP-completeness 135

substituting z; = g;, for every edge e of I' we have t.(G) = G. Since G is not
solvable, ¢, % 1 over G and so t % 1, either. Secondly, if G is not k-colorable,
then at any assignment of the variables we have a monochromatic edge, e.
Then t, = 1 at every substitution, hence t = 1 at every substitution, thus
t~1.]

The first step of the induction is about verbal subgroups.

Lemma 165. Let V be a verbal subgroup of G. If the equivalence problem for
V is coNP-complete, then the equivalence problem for G is coNP-complete.

Proof. We give a polynomial reduction from the equivalence problem of V
to the equivalence problem of G. For every term function ¢(zy,...,x) over
V we present a term function ¢ over G such that ¢t ~ 1 over V if and only
if ' ~ 1 over G. As V is verbal, there is a term s(z,...,x,) over G such
that s(G) = V. Let ¢’ = t, as in Proposition 163/a. Now ¢t ~ 1 over V if
and only if t' ~ 1 over G.

The reduction is polynomial in the length of ¢ because the length of ¢’ is
the product of the length of ¢ and the length of s. The latter depends only
on the group G. O

Now, we prove Theorem 156.

of Theorem 156 . We proceed by induction on the order of G.

Case 1: There exists a non-trivial, non-solvable verbal subgroup V of
G. Now, | V| < |G| and the equivalence problem for V is coNP-complete by
the assumption. Thus the equivalence problem for G is coNP-complete by
Lemma 165.

Case 2: There are no nontrivial nonsolvable verbal subgroups of G but
there is a non-trivial solvable verbal subgroup of G. Let V be the largest
solvable verbal subgroup and r denote its solvable length. The quotient
group G/V is non-solvable. Now, the equivalence problem for G/V is co-
NP-complete by the assumption, as |G/V| < |G|. We give a polynomial
reduction from the equivalence problem for G/V to the equivalence problem
for G.

Let t be a term over G/V. Then we know by Proposition 163/b that
t ~ 1 over G/V if and only if ¢,;, ~ 1 over G. The length of ¢, is the
product of the length of ¢, and the length of tg, which is the product of ¢
and dg. The latter and the length of ¢, depend only on the group G, hence
the reduction is polynomial.

Case 3: There are no verbal subgroups in G. If G is simple, we are
done by Theorem 164. Let N be a normal subgroup of G and ¢ be a term
function. By Proposition 163/c¢ we know that ¢t ~ 1 over G if and only

136 EQUIVALENCE FOR NON-SOLVABLE GROUPS

if t ~ 1 over G/N. The factor group G/N is non-solvable, because G’ is
verbal and so G’ = G. Thus by induction the equivalence problem for G is
coNP-complete. O

7.2 Problems

There is still work left to be done if one wants to prove a result similar to
Theorem 147.

Problem 7. Give an algebraic characterization of the class of finite groups
with a polynomial time equivalence problem; likewise for the class of finite
groups with a coNP-complete equivalence problem.

It is not yet clear whether or not these two complexity classes exhaust all
finite groups.

Problem 8. Is there a polynomial time/coNP-complete dichotomy for the
equivalence problem for finite groups?

Chapter 8

The extended equivalence
problem for groups

In Section 3.6 we observed that the commutator as a basic operation can
significantly change the length of realizing polynomials for several group-
functions. For example, the expression [[[x1, 23], z3],...,z,] has length n if
the commutator is a basic operation, but has exponential length in n» when
expressed by only the group multiplication. Such a decrease in the length
suggests that the complexity of the equivalence problem might change if the
commutator is taken as a basic operation. Other group operations might have
a similar property. A straightforward question arises, whether the complexity
of the equivalence problem changes by taking one or more new operations as
additional basic operations. Moreover, this question is interesting not only
for groups but for all finite algebras. Hence we can raise the question in
general:

Definition 166. Let A = (A, g1,...,¢9n) be a finite algebra with un-
derlying set A and with basic operations ¢, ..., gmn. Let fi,..., f, be
polynomial expressions over the algebra A.

The algebra (A, fi, ..., f,) is defined to be the algebra (A4, g1, ..., gm, f1,- - fn),
i.e. the algebra with underlying set A and with basic operations g1, ..., gm
together with fi,..., f, as well.

1. The extended equivalence problem for A.
We say that the extended equivalence problem for A is in P if for all

possible term expressions fi,..., f,, built up from variables and the
basic operations of A, the equivalence problem over (A, fi,..., f,) is
in P.

We say that the extended equivalence problem for A is coNP-complete

138 EXTENDED EQUIVALENCE FOR GROUPS

if there exist some term expressions fi,..., f,, built up from variables
and the basic operations of A, such that the equivalence problem over
(A, fi,..., fn) is coNP-complete.

2. The extended polynomial equivalence problem for A.
We say that the extended polynomial equivalence problem for A is in
P if for all polynomial expressions fi,..., f,., built up from variables,
constants from A and the basic operations of A, the polynomial equiv-
alence problem over (A, fi,..., f,) is in P.

We say that the extended polynomial equivalence problem for A is
coNP-complete if there exist some polynomial expressions fi,..., fy,
built up from variables, constants from A and the basic operations of
A, such that the polynomial equivalence problem over (A, fi,..., fa)
is coNP-complete.

Remark 167. The extended equivalence problem is ‘harder’ than the (orig-
inal) equivalence problem: by introducing new operations the length of a
polynomial expression cannot increase and the complexity is determined by
the length of the input expressions. Thus, if for an algebra A the equiva-
lence problem is coNP-complete, then the extended equivalence problem for
A is coNP-complete. If the extended equivalence problem for A isin P, then
the (original) equivalence problem for A is in P. Similar statements can be
derived for the polynomial equivalence and the extended polynomial equiv-
alence problems. Moreover, the polynomial extended equivalence problem is
‘harder’ than the extended equivalence problem, since every term is a poly-
nomial. Hence, if the extended equivalence problem is coNP-complete for
A, then the extended polynomial equivalence problem is coNP-complete for
A. If the extended polynomial equivalence problem is in P for A, then the
extended equivalence problem is in P for A.

In this Chapter we consider the complexity of the extended equivalence
problem and the extended polynomial equivalence problem for finite groups.
We start with nilpotent groups in Section 8.1. The (original) equivalence
and the polynomial equivalence problems for finite nilpotent groups are in P
by Burris and Lawrence [3]. Using the idea of their proof we prove that the
extended polynomial equivalence problem is in P.

Theorem 168. Let G be a nilpotent finite group, let fi, fa, ..., fm be polyno-
mial expressions built up from variables, constants of G and the basic opera-
tions of G. Then the polynomial equivalence problem for (G, fi, fo, ..., fm)
15 1n P.

8.1 Nilpotent groups 139

We proved in Chapter 7 that for non-solvable groups the equivalence
problem is coNP-complete. By Remark 167 we can conclude that the ex-
tended equivalence and the extended polynomial equivalence problems are
coNP-complete for non-solvable groups. The complexity of the equivalence
problem for non-nilpotent solvable groups is, for the most part, a terra incog-
nita of mathematics. Only very few partial results are known (in Section 6.1
we proved that for a special class of meta-Abelian groups the complexity of
the equivalence problem is in P, e.g. for meta-cyclic groups, dihedral groups
Doiy1, S3 or Ay), but we do not know the answer even for the symmet-
ric group S4. The following theorem completes the characterization of the
extended equivalence problem:

Theorem 169. Let G be a finite solvable non-nilpotent group. Then there
exists a term expression [(built up from variables and the basic operations
of G) such that the equivalence problem for (G, f) is coNP-complete.

The function f is not uniform in these proofs; it depends on the group
G. However, we show in Section 8.5 that for a large class of groups f can
be chosen as the commutator. From these results we immediately have the
following corollary:

Corollary 170. Let G be a finite group. If G is nilpotent then the extended
equivalence and the extended polynomial equivalence problems are in P. If G
15 not nilpotent then the extended equivalence and the extended polynomial
equivalence problems are coNP-complete.

Comparing the results of Section 8.5 to the results of Section 6.1 we can
conclude that the complexity of the equivalence and the extended equivalence
problems are not always the same. By Theorem 151 the equivalence problem
for A4 is in P. By Theorem 184 the equivalence problem for (Ay, [,]) is coNP-
complete.

8.1 Nilpotent groups

In [3] Burris and Lawrence state the following:

Proposition 171. Let G be a finite nilpotent group with nilpotency class c.
Let p(xy,...,2,) be a polynomial over G. Then G |= p(x1,...,2,) =~ 1 if
and only if p(ay,...,a,) =1 for every substitution (a1, ...,a,) € G", where

Hi:a; #1} <ec.

This proposition claims that if one wants to check whether or not a poly-
nomial p attains 1 for every substitution, then it is sufficient to check only

140 EXTENDED EQUIVALENCE FOR GROUPS

those substitutions where the value of at most c-many variables differ from
1. The following set contains all the necessary substitutions:

T={(a1,...,a,) €G": {i:a; #1} <c}.

Now |T| = >0, () (IG| - 1) < (¢+1)|G|° - n¢, which is polynomial not
only in the length of p but in the number of different variables of p as well.
Finding T is polynomial in n, too. Checking, whether p(ai,...,a,) = 1
for (ai,...,a,) € T is polynomial in the length of p. Hence checking every
substitutions from 7" requires polynomial time in n and in the length of p.

Proof of Theorem 168. Let f1,..., fr be polynomial expressions over G and
let p(x1,...,2,) be a polynomial over (G, f1,..., fr) (and not over G). Let
p' (z1,...,2,) be the polynomial we obtain after expanding p over G, i.e.
p’ is a polynomial over G such that for every (ay,...,a,) € G" we have
play,...,a,) = p'(a1,...,a,). Now (G, f1,...,fx) F p ~ 1 if and only
if G E p' = 1. To decide whether or not G = p’ &~ 1 we only have to
check for every substitutions (ay,...,a,) from T, whether p/ (a4, ...,a,) =
1. p'(a1,...,a,) = p(aq,...,a,) and checking the value of p(ay,...,a,) is
polynomial in the length of p. The number |T'| and finding the set 7" are both
polynomial in n (so is in the length of p). Hence checking every substitutions
from T requires polynomial time in n and in the length of p. O

Remark 172. Notice that the algorithm does not calculate p’. We only used
p’ for proving that |T|-many substitutions are sufficient to check whether
or not (G, f1,...,fx) E p ~ 1. The length of p’ might not necessarily be
polynomial in the length of p.

8.2 Preliminaries

First we list the necessary notations and definitions from group theory. We
denote the commutator in a group G with [,]: [z,y] = z 7'y 'zy. The lower
central series for a group G is the following sequence of normal subgroups:
7 (G) = G, 7 (G) = [G, ;-1 (G)]. Tt is clear that if ¢ < j, then v, (G) >
7v; (G). For every finite group the lower central series terminates in ;, (G) for
some ig. Throughout this Chapter we denote this normal subgroup 7;, (G)
with N = N (G). Recall that a group is nilpotent if and only if N = 1. For
a non-nilpotent, finite group the lower central series terminates in N # 1.
For a normal subgroup H of G and for every non-negative integer ¢ we have
7 (G/H) = 7 (G)/(HN~; (G)). Hence if H is a normal subgroup of a
non-nilpotent finite group G such that G/H is nilpotent, then N < H. The

8.3 Meta-nilpotent groups 141

following statement is an interesting structural theorem we use in the proof
of Theorem 169:

Theorem 173. Let G be a finite group. Let V be a normal subgroup of G
such that G' <V and both V and G/Cqg (V) are nilpotent. Let N = N (G)
be as defined above. Then both N and G/Cq (N) are Abelian.

Proof. G/Cg (V) means that N < Cg (V), and clearly N < G’ < V| hence
N<Cq(V)NV =Cy(V)=2Z(V), thus N is Abelian.

Moreover from N < Cg (V) we have Cg (N) > Cg (Cg (V) >V > G,
so G/Cg (N) < G/G’, hence G/Cg (N) is Abelian. O

Let us recall that a group element g € G is called a left-Engel element
if for every h € G there is a positive integer kj such that [[[h, g],9]... 9] =
1 where the commutator is iterated kp-many times. The set of left-Engel
elements form F(G), the Fitting subgroup (see [1]) which is by definition the
maximal nilpotent normal subgroup in G.

We prove Theorem 169 in Section 8.4. The following theorem is the key:

Theorem 174. Let G be a non-nilpotent, finite group, let N = N (G) be
as defined above. Let us suppose that the groups N and G/Cg(N) are both
Abelian. Then there exists a term expression f (built up from variables and
the basic operations of G) such that the equivalence problem for (G, f) is
coNP-complete.

We prove Theorem 174 in Section 8.3. Before that we list the necessary
notations and definitions from ring theory. Let R be a finite, commutative,
non-nilpotent ring, let J (R) be its Jacobson radical. By the Wedderburn—
Artin Theorem [17] we know that R/J (R) is the direct sum of finite fields
Fi,...F;. Recall that for every finite ring there exist a positive integer e
such that 7¢ is idempotent (i.e. (r¢)> = r¢) for every r € R and ¢ = 0 for
every r € J(R). If R is commutative, then 7° = 0 implies r € J (R): 7 =0
in R implies (r + J(R))* =7 +J(R) =0+ J(R) in R/J(R) = &._,F,.
This means that (r +J (R))“ has 0 in each coordinate, and so has r +J (R).
Hence r € J(R). In other words the Jacobson radical of a commutative
ring is exactly the set of nilpotent elements. This is not necessarily true for
arbitrary rings, e.g. the ring My (F) (for £ > 2) contains nilpotent elements,
but J (My(F)) = 0.

8.3 Meta-nilpotent groups

We prove Theorem 174. Let G be a non-nilpotent finite group and let
N = N(G) be defined as in Section 8.2. Let us suppose that N and

142 EXTENDED EQUIVALENCE FOR GROUPS

G/Cq (N) are both Abelian. Let A = N (G) throughout the Section.
The group G acts on A by conjugation and the action is isomorphic to
B = G/Cg(A). Let ¢: G — B be the natural homomorphism. Every ele-
ment of B acts as an automorphism of A, in particular every element acts
as an endomorphism. Since B is commutative, the actions of B generate a
finite nontrivial commutative subring R (B) of End A.

Let us examine the elements of R (B), the ring generated by B. We write
the action as an exponent: the image of a € A at the action of r € R (B) will
be denoted by a”. With these notations #! = z and for every b = ¢ (g) we
have 2° = 2%9) = g7lag thus 2071 = 299~ = 271490 = 27 1g7 199 = [z, g].
Sometimes we omit ¢ from the exponent: by z9 we mean the conjugation
with the group element g and write 29 = g~'zg. Obviously 29 = 2% for
every x € G.

Let C={b—1|beB}. Let R(C) <End A be the subring generated
by the action of the commutator elements from R (B):

R(C)=(C)=(p(9)—1]lg€G).
Let |B| = |C| = c and let |R(C)| = d.

The idea of the proof is the following: for any ring expression ¢ we have
a' = 1 for every a € A if and only if End A = ¢ ~ 0. This statement
still holds if we replace End A by any subring of End A. It is coNP-
complete to decide over a non-nilpotent commutative ring R whether or not
R =t =~ 0 (see [16]). Hence if we choose a commutative non-nilpotent
subring R of End A and we are able to translate the ring operations into
group operations, then we can reduce the equivalence problem over R to the
equivalence problem over G. This subring needs to be verbal: there must
exist an integer coefficient polynomial p such that if the variables of p run
through over ¢ (G) then p (G) runs through on the elements of the subring
R. In our case R(C) plays the role of R as Lemma 175 and Lemma 176
show.

Unfortunately we cannot translate the ring operations over the group
G, we need to understand properly the structure of R (C) and follow a
proof for the coNP-completeness of the equivalence problem over R (C).
From Lemma 176 we know that R (C) is commutative and non-nilpotent,

hence R(C)/J(R(C)) is the direct sum of finite fields Fy,...,F;. Let
¢ = maxi<;< |F;|. Lemma 177 tells us that ¢ > 2.

After we understand the structure of R (C), we reduce the GRAPH ¢-
COLORING problem to the equivalence problem over G in the following way:
Let I' = (V, E) be an arbitrary simple graph with no loops, or multiple edges,
V=A{wv,...,v,}and E ={eyq,..., e, }. With the help of Lemmas 178, 179

8.3 Meta-nilpotent groups 143

and 180 we exhibit a word tr over R (C) such that R (C) = tp ~ 0 if and
only if I' is not g-colorable. For every graph I' we exhibit a word Qr = a'r
over G and Lemma 181 proves that G = Qr ~ 1 if and only if ' is not
g-colorable. This finishes the reduction.

We observe though, that this reduction is not polynomial, since Qr is ex-
ponentially long in the size of I' when expressed using only the multiplication
and the inverse operations of G. Nevertheless there exists a term operation
f (built up from variables and the basic operations of G) such that using
f makes Qr polynomially long in the size of I', i.e. the length [|Qrl| g is
polynomial in n (the number of vertices in I') and in m (the number of edges
inI).

Therefore the proof consists of the following steps:
1. In Lemma 175 we prove that R (C) is verbal.

2. In Lemma 176 we prove that R (C) is not nilpotent. Thus the factor
R (C)/J (R (QC)) is the direct sum of finite fields Fy, ... F,.

3. Let ¢ = maxj<;< |[F;|. Lemma 177 tells us that ¢ > 2. Thus the
GRAPH ¢-COLORING problem is NP-complete.

4. Let T' = (V, E) be an arbitrary simple graph with no loops, or multiple
edges, V.={v,...,u, } and E = {ey,...,e, }. We exhibit a word tr
over R (C) such that R (C) | tr ~ 0 if and only if I is not g-colorable
(Lemmas 178, 179 and 180).

5. We present a term expression f over G. For every graph I we exhibit a
word Qr = a'T over (G, f) and Lemma 181 proves that (G, f) | Qr =~
1 if and only if I' is not g-colorable.

6. We prove that the length of Qr over (G, f) is polynomial in the size of
I'. Thus we polynomially reduced the GRAPH ¢-COLORING problem
(for some g > 2) to the equivalence problem over (G, f).

We start first with step 1 of the proof. Let us recall that ¢ = |B| = |C|
and d = |R (C)|.

Lemma 175. There exists an integer coefficient polynomial p of cd-many
variables such that R (C) = p(B*) = p (p (G)).

144 EXTENDED EQUIVALENCE FOR GROUPS

Proof. Obviously, R (C) consists of all (integer coefficient) polynomials of
the elements b; — 1 where b; runs over the group B. As R (B) is finite R (C)
is finite, too. Let 7q,79,...,74 denote the elements of R (C). For every
r; € R (C) there is a polynomial p; € Z[z1, 5. .., x| such that

TZ':pi(bl—l,bg—l,...,bc—l).

There are several polynomials of this form, we fix one for every i for the
remaining of the proof. Let

p(z) = Z pi(zri—Lwg;—1,... 2. — 1),

1<i<d

where all the variables z;; differ from each other. We have p(B*!) C R (C)
and substituting x;; = 1 for [# ¢ and x;, = b;, we have that r; € p(BCd).
Hence R (C) = p(B“) = p (¢ (G*)). O

We continue with step 2 of the proof.

Lemma 176. The ring R (C) is not nilpotent.

Proof. 1t is enough to show that there exists a ¢ € G such that ¢ (g) — 1
is not nilpotent in R (C). The element ¢ (g) — 1 is nilpotent if there exists
some k such that (¢ (g) —1)* = 0. For a group element h € G we have
he@=1 = [h, g]. Moreover h(?@-D" = [[[h,], g]...g], where the commutator
is iterated k-many times. Let us recall that a group element g is called a left-
Engel element if for every h € G there is a positive integer k; such that
[[[h,g],9]-..g9] =1, where the commutator is iterated kj-many times. The
set of left-Engel elements form F(G), the Fitting subgroup. The Fitting
subgroup is the maximal nilpotent normal subgroup in G (see [1|). By our
assumption F(G) # G. Hence every g ¢ F(G) is not an Engel element
and we can choose h € G such that [[[h, g],¢]...g] never terminates in the
identity element. Moreover, if the commutator action of ¢ is not nilpotent
on G, then it is not nilpotent on N (G), as for large enough k the element
h#@9~1 ¢ N(G). As A = N(G) throughout this Section, we have that
¢ (g) — 1 is not nilpotent for any g ¢ F/(G), thus R (C) is not nilpotent. [

Lemma 176 implies that R (C)/J (R (C)) is the direct sum of finite fields
Fi,...,F;. For every commutative ring there exists a positive natural number
e such that (r¢)> = r¢ for every r € R(C) and r° = 0 if and only if r €
J(R(C)). Let us fix an e with this property for this Section. We continue
with step 3 of the proof.

Lemma 177. For the ring R (C) we have R (C)/J (R (C)) # Z5.

8.3 Meta-nilpotent groups 145

Proof. If R (C)/J (R (C)) = Z7 for some n, then r*+r € J (R (C)) for every
r € R(C). Let ¢ be a natural number, such that the exponent of G divides
¢ and ¢ > e. Since ¢ > e, if ' € J(R(C)) then (') = 0. Substituting
r=b—1for any b = ¢(g) we have ((b— 1%+ (b— 1))6 = 0 for every
beB. AsR(C) is a Commutative subring of the commutative ring R (B),
the equation ((b— 1%+ (b— 1)) =0 holds in R (B) as well. Now

2hb-1)"=(b=1)-(b—1+1))"

0=((b-1)
=((b=1)-b)" = (-1 v"

— (-1

The equality (b—1)>4 (b—1) = (b—1)- (b — 1 + 1) holds because 1,b €
R (B). The following equality holds as b = b — 1 4+ 1. Again, as R (B) is
commutative, we have ((b— 1) -b)¢ = (b— 1) -b°. Finally b° = 1, since the
exponent of G divides ¢’ and G = ¢¢ ~ 1. Now 0 = (b—1)* = (¢ (g) — 1)°
means that commuting with the element ¢ is a nilpotent action, which is not
true for every g € G. The contradiction proves the lemma. O

Now we move on to step 4 of the proof. Let ¢ = maxj<;<; |F;|. We now
give the polynomial reduction from GRAPH ¢-COLORING to the equiv-
alence problem over (G, f) for a particular function f. By Lemma 177
we have ¢ > 3, therefore the GRAPH ¢-COLORING is NP-complete. Let
I' = (V, E) be an arbitrary simple graph with no loops, or multiple edges,
V={v,...,v,} and E={ey,...,ey}. Let

tr(21y .00y 20) = H (zi — zj), and let
viv; EE
tr(z1, . .m) = (tr(z..) = [(- 2)
viv; €L

Lemma 178. Let ¢’ be a prime power. The graph T' is not ¢'-colorable if
and only if GF(¢') =t = 0.

Proof. We color the vertices of I' by the elements of GF(q’). The color of
v; will be s;. We prove that t(sq,...,s,) # 0 if and only if the appropriate
coloring is a ¢'-coloring of T'.

First, let us assume that T" is ¢’-colorable by the elements of GF(¢’), and
let s; be the color of v;. Now, substituting z; = s;, for every edge e = v;v; of
I' we have z; — z; # 0, hence ¢t % 0. Conversely, if I' is not ¢’-colorable, then
at any assignment of the variables we have a monochromatic edge, e = v;v;.
Then ¢, = 0 at every substitution. O

146 EXTENDED EQUIVALENCE FOR GROUPS

Lemma 179. The graph T is not q-colorable if and only if ®'_,F; =t ~

Proof. By Lemma 178, if T" is g-colorable, then GF(q) |= ¢} % 0, hence
®!_F; &= t, 2% 0. If T is not g-colorable, then it is not ¢’-colorable for

any ¢ < g, thus we have that GF(¢') = t[=~ 0 for every ¢ < ¢. Hence

Lemma 180. The graph I" is not g-colorable if and only if R (C) = tr =~ 0.

Proof. We chose the number e such that for every ring element r € R (C)
we have ¢ = 0 in R(C) if and only if » € J(R(C)). Now tr = (t})5,
hence R(C) | tr ~ 0 if and only if R(C)/J (R (C)) | t ~ 0. Since
R (C)/J(R(C)) = ®'_,F;, Lemma 179 finishes the proof. O

(where a runs through A and z;’s run through R (C)) if and only if T' is
g-colorable. We give an expression () over G (using a new operation f built
up from variables and the basic operations of G) such that the image of @
over G will be the same as the image of a'r(*1-%).

We continue with step 5 of the proof. Let us introduce a new operation
f over the group G on 2cd 4+ 1-many variables.

[y, 71, 73) = y:1m22) = @) -p@2))

1 1

where 2; = p(&;), 2V = 2¥2* =y~ vz, v7Y = (x7 1) = y a1y and
¥* = (2¥)* = (yz) layz.

Now we polynomially reduce the GRAPH ¢-COLORING problem to the
equivalence problem over (G, f). Let I' = (V, E) be a graph, with n vertices,
V ={vy,...v,} and m edges, E = {e1,...en}. Let Ty,...,T, be different
vectors of cd-many variables assigned to the vertices (we remind the reader
that polynomial p is of cd-many variables). So there are altogether n - cd
many ‘z’ variables and their inverses. Let us denote all these ‘z’ variables
by & = (Z1,...,Z,). We exhibit the expressions y'r(*1-+22) and y'r (12 in
the following way: for every edge e; let e; = v; 1v; 2 and let

TYz

wi (y,Z) = f(y,T11,%1,2),

w; (y, %) = fowi—y = f(wi—1 (Y, T) , Ti1, Ti2)

where 7, ; is the vector of variables assigned to the vertex v; ;. Let us denote

8.3 Meta-nilpotent groups 147

p(Z;) by z;. Now it is easy to see, that

w1 (y: il) - yZ1’17Z1’27
w; (y,) = wi—1 (y, 7)™
_ y(le—Z1,2)~~(Zi,1—zi,2)
)

Wy (y7 ‘T) - y(zl’l_z1!2)"'(zm,l—zm72)

[lojo;ep(zizz) _ yt’r(m,m,zn)

Now we exhibit the term expression yr*1-+#0) by applying tp (z1,...,2,) =
(th (21, .+, 20))". Let

Wl (y7 ‘T) = Wnm (yw%) ;
WZ‘ (y, i’) = Wl o Wi—l = W1 (Wi—l (y, i’) ,Zf‘) .

Now it is easy to see that

Now A = N is a verbal subgroup of G, let W, (y) be a word with image A.
We are interested in Qr = W, (Wy (y) , Z), where e was the natural number for
which (7¢)* = r¢ for every r € R (C) and ¢ = 0 if and only if 7 € J (R (C)).
Observe, that Qr = W, (gj)tr('z1 """) with the notation z = p (7).

Lemma 181. The graph T' is not g-colorable if and only if (G, f) E Qr ~ 1.

Proof. 1If T' is g-colorable, then R (C) = tr % 0, hence there exists a substi-
tution of zq,. .., z, from R (C) such that tr (z1,..., 2,) # 0 over R(C). The
image of the polynomial p over B is R (C), hence we can choose the tuples
T1,...,T, from G such that p(p (z;)) = 2. With this evaluation tpr # 0
over R (C), hence there exists an a € A such that a'™ # 1 over G. Let
us choose y such that a = W, (y) and with this evaluation of the variables
we have that (G, f) E Qr # 1. If " is not g-colorable, then we have that
R(C) = tr = 0. Thus for every a € A (especially a = W, (y)) we have
at=1and (G, f) EQr ~ 1. O

148 EXTENDED EQUIVALENCE FOR GROUPS

Finally we finish with step 6 of the proof. Let us denote the length of
an expression w with ||w||. The reduction from GRAPH ¢-COLORING to
the equivalence problem over (G, f) is polynomial, because the length of
Qr = Qe is |Qr|[= [|Qe]l < I f]I - m - € - (ned + [[Wol]): when building up Qr
we use the function f exactly e-m-many times on first input of length |||
and on necd-many variables. Hence ||Qr|| is polynomial in the size of T" and
Theorem 174 is proved.

8.4 Non-nilpotent groups

First we prove two lemmas which play a great role in the inductive proof of
Theorem 169.

Lemma 182. Let H be a verbal subgroup of G and let f be a term operation
(built up from variables and from the basic group operations). If the equiva-
lence problem for (H, f) is coNP-complete, then the equivalence problem for
(G, f) is coNP-complete, too.

Proof. We give a polynomial reduction from the equivalnce problem for
(H, f) to the equivalence problem for (G, f).

For every word w(z1, ..., x,) over (H, f) we present a word w’ over (G, f)
such that (H, f) = w =~ 1 if and only if (G, f) = w’ ~ 1. As H is verbal,
there is a word v(zy,...,x;) over G such that the image of v over G is H.

Let w’ be the composition of w and v: substitute v into every variable x; of
w. Let ; = (yi, ..., yi) fori =1,... n and let

w/(gla‘”ugn):w(v(gl)w”vv(gn))'

While 3; runs through all tuples from G, the values of v(y;) attain every
element of H. Thus if w # 1 at some evaluation (hq,...,h,) € H", then we
can choose the tuples y; such that ¢(y;) = h;. Thus there is an evaluation of
w’ such that w' # 1.

On the other hand, if (G, f) = w' % 1, then there is an evaluation
U1,-.-,Yn such that w’ # 1. Now, for the elements h; = v(y;) we have
w(hy, ..., hy,) # 1, hence (H, f) = w % 1.

The reduction is polynomial in the length of w because the length of w’
is at most the product of the length of w and the length of v (we changed
every variable to v). The latter depends only on the group G. O

Lemma 183. Let V be a verbal subgroup of G and let H = G/Cq (V).
Let f be a term operation (built up from variables and from the basic group
operations). If the equivalence problem for (H, f) is coNP-complete, then the
equivalence problem for (G, f) is coNP-complete, too.

8.5 Choosing the commutator 149

Proof. As V is verbal, there is a word v(yy,...,yx) over G such that the
image of v over G is V. Let ¥ = (y1,...,yx). We give a polynomial reduc-
tion from the equivalence problem for (H, f) to the equivalence problem for
(G, f). If we need to check whether or not (H, f) = w (z1,...,,) ~ 1, then
we consider the word
w, = (w (xlu s 7xn))71 (U (g))il w (‘Ib R 7x7l) v (g)

= [w(xy,...,2,),v(Y)]

over (G, f). We prove that (G, f) = w’ =~ 1 if and only if (H, f) = w = 1.
First, if (H, f) E w(zy,...,2,) ~ 1, then w (z1,...,2,) € Cg (V) if we
substitute from G. Thus commuting it with any yo = v (y) € V we have
(G, f) E [w(z1,...,2,), 9] = 1. Conversely, if (G, f) | [w (z1,...,2,),v(9)],
then w (xy,...,2,) € Cg (V) for every substitution over G, hence (H, f) |=
w(x1,...,2,) = 1. The reduction is polynomial, because the length of w’ is
at most twice as the sum of the length of w and the length of v. O

Proof of Theorem 169. We proceed by induction on the order of G. Let V
be any verbal normal subgroup with the property G # V > G’. Such a
verbal subgroup exists, e.g. V= G’ < G as G is solvable. Let us fix such a
V for the proof.

Case 1: V is not nilpotent. Now |V| < |G| and by the assumption there
exists a function f (built up from variable and from basic group operations)
such that the equivalence problem for (H, f) is coNP-complete. Thus the
equivalence problem for (G, f) is coNP-complete by Lemma 182.

Case 2: V is nilpotent but G/Cg (V) is not nilpotent. Let H =
G/Cg (V). Since V is nilpotent 1 # Z(V) < Cg(V) and [H| < |G].
The group H is not nilpotent, hence there exists a function f (built up from
variable and from basic group operations) such that the equivalence problem
for (H, f) is coNP-complete and so is the equivalence problem for (G, f) by
Lemma 183.

Case 3: V and G/Cg (V) are both nilpotent. Let N = N (G) be as
defined in Section 8.2. By Theorem 173 we have that both N and G/Cg (N)
are Abelian. Theorem 174 finishes the proof. O

8.5 Choosing the commutator

With a deeper analysis of the structure of non-nilpotent groups, we can prove
that the commutator is usually enough to obtain coNP-complete extended
equivalence problem.

150 EXTENDED EQUIVALENCE FOR GROUPS

Theorem 184. Let G be a non-nilpotent group, let N = N (G) be as defined
in Section 8.2. Let us suppose that G/Cq (N) and N are both Abelian. Let
us suppose that exp (G/F (G)) > 2, where F (G) is the Fitting subgroup of
the group G. Then the equivalence problem for (G,[,]) is coNP-complete,
where [,] denotes the commutator operation.

Corollary 185. The equivalence problem for (Ay,[,]) is coNP-complete.

We use similar notations as in Section 8.3. Let A = IN. The group G acts
on A by conjugation and the action is isomorphic to B = G/Cg(A). Let
¢: G — B be the natural homomorphism. Similarly as in Section 8.3, every
element of B acts as an automorphism of A, in particular every element acts
as an endomorphism. Since B is commutative, the actions of B generate a
finite nontrivial commutative subring R (B) of End A. Since B is commu-
tative, it generates a finite nontrivial commutative unitary subring R (B) of
End A. Let exp(G/F(G)) = ¢q > 3. R(B)/J(R(B)) is a sum of finite
fields Fy,...,Fy. Let eg be a positive natural number such that (7“‘30)2 = o
for every r € R (B) and 7 = 0 if and only if r € J (R (B)).

First we prove three structural lemmas about R (B) (Lemmas 186, 187
and 188), then we move on to the proof of Theorem 184. Let us recall that
the Fitting subgroup F'(G) of the group G is the largest nilpotent subgroup
in G. Moreover by [1| the Fitting subgroup is formed by the left-Engel
elements of the group G. The following lemma shows that G/F (G) controls
the properties of R (B)/J (R (B)):

Lemma 186. Let g1, g2 be two arbitrary elements of G and let by = ¢ (g1),
by = ¢ (g2). Then by — by € J (R (B)) if and only if g1g; " € F (G).

Proof. Suppose first that b —by, € J (R (B)). Then by ' (by — by) = biby ' —1 €
J (R (B)), thus b;b; ' — 1 is nilpotent in R (B). This means that commuting
in G with the element g;g,"' is a nilpotent action, i.e. gig; ' is a left-Engel
element. The set of left-Engel elements form the fitting subgroup [1], hence
q19; " € F(G).

Conversely, if gig,' € F (G), then commuting with g;g," is a nilpotent
action, i.e. biby' —1 € J(R(B)). Then (biby' — 1) by = by — b, € J (R (B)),
too. U

Let 7: R(B) — @ |F;, = R(B)/J (R (B)) the natural homomorphism.
For every 1 < ¢ < k let m; be the projection from R (B)/J (R (B)) to F;.
Now let

S={rn(b+IJRB)))|beB},
Si={m(+J(R(B))[beB}.

8.5 Choosing the commutator 151

Let ¢; = |S;| and let gy = maxj<;< ¢;- Let ig be an index for which ¢;, = qo.
Lemma 187. The following statements hold:
1. m: R(B) — ®% | F, is a ring-homomorphism.

2. m: B — S is a group-homomorphism, which is an isomorphism between

G/F(G) and S.

S is a multiplicative cyclic subgroup of ®F_,F;.
S; is a multiplicative cyclic subgroup of F;.

S generates the ring ®F_|F;.

S; generates the ring F;.

g | [Fi| — 1.

qZ‘|CI-

© NS oA e

Let g € G such that for some integer m we have g™ € F (G) and
¢ ¢ F(G) for every 1 < j <m — 1. Then there exist 1 <i < k such
that m | g;.

10. If for a prime p we have p* | q, then there exists ani such that 1 < i <k
and p* | g.

Proof. Ttem 1 is by definition, item 2 is a consequence of Lemma 186. Item 3
and item 4 follows from item 2. Item 5 and item 6 can be derived from the
fact that B generates R (B). Item 7 follows from item 3. For item 8 let s € S.
There exist an element ¢ € G and an element b € B such that ¢ (¢g) = b and
w(b) = s. Now ¢? € F(G), therefore by item 2 we have s? is the identity
element in @<;<xF;. This means ¢; | ¢, which is item 8. For item 9let g € G
and element such that ¢™ € F (G) and ¢’ ¢ F (G) for every 1 < j < m — 1.
Let b= ¢ (g) and let s = (s1,...,s;) = 7 (b). Since ¢/ ¢ F(G) for 1 < j <
m — 1, and ¢ and 7 are homomorphisms, ¥ ¢ J (R (B)) and s/ # (1,...,1).
However g™ € F'(G), therefore s™ = (1,...,1). This means that there is a
coordinate i such that the order of s; is exactly m, hence m | ¢;. Finally for
item 10 we use item 9 with m = p®. O

Lemma 188. Ifexp G/F (G) > 3 then maxj<;<x ¢; = qo > 3.

Proof. By item 10 from Lemma 187 we know that there exists ¢; such that ¢;
is at least the largest prime power factor of ¢q. Since ¢ > 3, its largest prime
power factor is at least 3. Therefore gy > 3. O

152 EXTENDED EQUIVALENCE FOR GROUPS

Remark 189. By Lemma 187 we have that ¢ is at most exp (G/F (G)) and
is at least the largest prime power divisor of exp (G/F (G)). Both of these
bounds are sharp, as the following two groups show:

G, = <a,b]a7:b6: 1,b’1ab:a3> (g =qo = 6),
Gy =8S3® Ay (q=6,q0=3).

Now we continue on the proof of Theorem 184.

Proof of Theorem 184. In the proof of Theorem 174 we introduced the fol-
lowing operation:

f (y, X, :Z’Q) — yp(i"l)—p(;rg) _ yz1—z27

using the notation z; = p(z;). However, if z5 is invertible, then y*'=%2 =
(yZQ)le’;l_l, and if y runs through the elements of a normal subgroup, then
y*? runs through the elements of the same normal subgroup. Moreover, if
z1 = ¢ (g1) and 22 = ¢ (go), then y™ 722 = [y92,g;g;,'|. Using this idea we
change f to the commutator of G.

The proof consists of the following steps:

1. Let I' = (V, E) be an arbitrary simple graph with no loops, or multiple
edges, V.= {wvy,...,v, } and E = {ey,...,e, }. We exhibit a word
ur over R (B) such that r = 0 in R (B) for every substitution of the
variables from B if and only if I is not go-colorable (Lemmas 190, 191
and 193).

2. For every graph T' we exhibit a word Qr = a"* over (G,[,]) and
Lemma 194 proves that (G,[,]) E Qr ~ 1 if and only if T' is not
go-colorable.

3. We prove that the length of Qr over (G, [,]) is polynomial in the size of
I'. Thus we polynomially reduced the GRAPH ¢o-COLORING problem
(for some gy > 2) to the equivalence problem over (G, |,]).

We start with step 1 of the proof. Let I' = (V,E) be an arbitrary
simple graph with no loops, or multiple edges, V = {vy,...,v,} and F =

{e1,...,em}. Let uf and ur be the following ring-expressions:
up (21, ..., 1,) = H (2t — 1),
viv; EE

ur (z1, .., 2n) = (up (21,...,2,))° = H (za; 't —1)%.

8.5 Choosing the commutator 153

Lemma 190. For every 1 < i <k we have up = 0 in F; for every substitu-
tions of the variables from S; if and only if I' is not g;-colorable.

Proof. We color the vertices of I' by the elements of S;. The color of v; will be
s;. We prove that up(sy,...,s,) # 0 if and only if the appropriate coloring
is a ¢;-coloring of T.

First, let us assume that I' is g;-colorable, and let s; be the color of
vj. Now, substituting z; = s;, for every edge e = v;v;, of I' we have
a:jlxj_; —1#0, hence uf-(s1,...,8,) # 0. Conversely, if T" is not g;-colorable,
then at any assignment of the variables we have a monochromatic edge,
e = vj,vj,. Then up. = 0 at every substitution from S;. O

Lemma 191. We have u. = 0 in ®1<;<F; for every substitutions of the
variables from S if and only if I' is not qo-colorable.

Proof. If T is gg-colorable, then by Lemma 190 there exists a substitution of
the variables from S;, such that up # 0in F;,. Let us extend this substitution
to a substitution from .S, then we have up # 0 in @F; for this substitution.
If I is not gop-colorable, then it is not g;-colorable for any 1 < i < k, thus
uf = 0 for every substitution from .S; (for every 1 < i < k). Hence uf. =0 in
@F; for every substitutions from &5;, and so from S. U

Remark 192. We note here that S < @.5;, but they are not necessarily equal
as the following example shows:

G = <a, bela®=b =c'=1,b"rab=a,c 'ac =a® c 'bc = b3>

~ (Z5 D Z5) X Z4.

Lemma 193. We have ur = 0 in R (B) for every substitutions of the vari-
ables from B if and only if I' is not qg-colorable.

Proof. By ur = (uf)®, we have ur = 0 for some substitution from B if and
only if up. € J (R (B)) for the same substitution.

If T is gp-colorable, then by Lemma 191 there exists a substitution from
S such that v, # 0 in &F; = R(B)/J(R(B)). This substitution has a
pre-image in B, and for the pre-image substitution we have up. ¢ J (R (B)).

If T" is not gp-colorable, then by Lemma 191 for every substitution from
S we have up = 0 in ®F; = R(B)/J (R (B)). This means that for every
substitution from B we have u;. € J (R (B)). O

We continue with step 2 of the proof. Now, we polynomially reduce the
GRAPH ¢,-COLORING problem to the equivalence problem over (G, |,]).
Let I' = (V, E) be a graph, with n vertices, V' = {v1,...v,} and m edges,

154 EXTENDED EQUIVALENCE FOR GROUPS

E ={ey,...en}. Let xq, ..., x, be different variables assigned to the vertices.
Let us denote all these ‘x’ variables by = (zy,...,x,). For every edge ¢;
let e; = v;1v; 2 and let

-1
xl’lxl,zfl)

wy (y,T) = [yaxl,lxl_é} = y()
w; (y, @) = [wi1 (y,), Tin2;,]

= y(aes1) (e 1)
Y

where z; ; is the variable assigned to the vertex v; ;. Observe, that w,, =
yUr(z1-5%) with the notation z; = p (7). Let

Now A = N is a verbal subgroup of G, let Wy (y) be a word with image
A. We are interested in Qr = W, Wy (9) , 211,125 - -, Tim.1, T 2), Where
eo was the natural number for which (r%)* = r¢ for every r € R (B) and
re = 0 if and only if 7 € J (R (B)). Observe, that Qp = W, ()T 1),

Lemma 194. The graph T is qo-colorable if and only if (G,][,]) E Qr # 1.

Proof. 1f T is gg-colorable, then by Lemma 193 there exists a substitution
of z1,...,x, from B such that ur (xy,...,2,) # 0 in R(B). Thus there
exists an a € A such that a"" # 1 in G for the same substitution. Choose y
such that a = Wy (y) and with this evaluation of the variables we have that
(G,[,]) E Qr % 1. If T is not gp-colorable, then we have that ur ~ 0 in
R (B) for every substitution of the variables from B. Thus for every a € A
(especially a = Wy (y)) we have a" =1 and (G, [,]) E Qr ~ 1. O

We finish with step 3 of the proof. Denote the length of an expression
w with [|w|. The reduction from GRAPH ¢,-COLORING to the equiva-
lence problem over (G, |,]) is polynomial, because the length of Qr = @,
is ||Qr|| = [|Qell = O (m - eg - (n+1|So]|)): when building up Qr we use the
commutator exactly eq-m-many times on first input of length ||WWs|| and on n-
many variables. Hence ||@Qr|| is polynomial in the size of I and Theorem 184
is proved. O

8.6 Problems

In Section 8.5 we did not consider any non-nilpotent groups G for which
both N = N (G) (defined in Section 8.2) and Cg (N) are Abelian and

8.6 Problems 155

exp G/F (G) = 2. Checking the proof of Theorem 169 we observe that
if the complexity of the equivalence problem for (G, [,]) is coNP-complete
for such groups, then Theorem 169 would follow by induction with f being
the commutator of the group. If, however, this is not the case, then the
characterization would be much harder:

Problem 9. Characterize those non-nilpotent finite groups G, for which the
equivalence problem for (G, [,]) is coNP-complete!

The first step on the way answering Problem 9 would be to check the
smallest possible group for which we do not know this complexity.

Problem 10. What is the complexity of the equivalence problem for (S, [,])?

Chapter 9

Summary and next directions

In the thesis we investigated the relationship of functions and their realizing
polynomials over finite algebras. We studied functionally complete algebras,
i.e. algebras over which every function can be realized by a polynomial ex-
pression. In Chapter 2 we characterized functionally completeness by the
Stone-Weierstrass property. While the functionally complete rings and func-
tionally complete groups are all described, we determined the functionally
complete semigroups in Section 2.4 and the functionally complete semirings
in Section 2.5.

From Chapter 3 we were especially interested about the computational
perspective of the function—polynomial relationships over finite groups. We
considered three themes regarding polynomials over algebras.

1. The efficient representability problem.
2. The equivalence problem.

3. The equation solvability problem.

We approached the efficient representability problem from three direc-
tions. We considered the length of functions in Chapter 3. We investigated
the circuit complexity of functions in Sections 4.1, 4.2, 4.3 and 4.4. Finally
we analysed the finite-state sequential machine representation of Boolean
functions in Section 4.5. We observed that computers based on functionally
complete groups do not seem to be more efficient than the usual two-element
Boolean algebra based computers in general, but they might be more efficient
in special circumstances. Finding several examples of functions which can be
represented more efficiently by functionally complete groups could be a next
step of this research.

9 Summary and next directions 157

Neither the equivalence problem nor the equation solvability problem
has been completely characterized for finite groups. The complexity of the
equivalence problem is known for nilpotent groups, and we determined the
complexity for non-solvable groups in Chapter 7. Not much is known about
the case of solvable, non-nilpotent groups: we provide results for some meta-
Abelian groups in Section 6.1. It is likely that, with a deeper investigation of
solvable, non-nilpotent groups, the characterization of the equivalence prob-
lem for finite groups can be finished.

The complexity of the equation solvability problem is known for nilpo-
tent groups and for non-solvable groups. There are no results about the
complexity of the equation solvability problem for solvable, non-nilpotent
groups apart from the case of certain meta-cyclic groups that we presented
in Section 6.2.

The idea of the extended equivalence problem emerged from an observa-
tion of Section 3.6, namely that the commutator might significantly change
the length of group-polynomials. In Chapter 8 we characterized the com-
plexity of the extended equivalence problem for finite groups. For many
finite groups G we determined the complexity of the equivalence problem for
(G,[,]), but a complete characterization is still required.

Bibliography

[1] R. Baer. Engelsche elemente noetherscher gruppen. Math. Ann.,
133:256-270, 1957.

[2] S. Burris and J. Lawrence. The equivalence problem for finite rings.
Journal of Symbolic Computation, 15:67-71, 1993.

[3] S. Burris and J. Lawrence. Results on the equivalence problem for finite
groups. Algebra Universalis, 52(4):495-500, 2004. (2005).

[4] P. J. Cameron. Permutation Groups. LMS Student Text. Cambridge
University Press, Cambridge, 1999.

[5] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups,
volume 1. American Mathematical Society, 1961.

[6] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Un-
dergraduate Texts in Mathematics. Springer, 2nd edition, 1996.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman & Co., San Francisco,
1979.

[8] S. B. Gaskov. The depth of Boolean functions. Problemy Kibernetiki,
34:265-268, 1978. in Russian.

9] K. Glazek. A Guide to the Literature on Semirings and Their Appli-
cations in Mathematics and Information Sciences. Kluwer Academic
Publishers, Dordrecht, 2002. With complete bibliography.

[10] M. Goldmann and A. Russell. The complexity of solving equations over
finite groups. In Proceedings of the Fourteenth Annual IEEE Confer-
ence on Computational Complexity, pages 80-86, Atlanta, Georgia, May
1999.

BIBLIOGRAPHY 159

[11] U. Hebisch and H. J. Weinert. Semirings: Algebraic Theory and Ap-
plications in Computer Science, volume 5 of Series in Algebra. World
Scientific Publishing Co. Inc., River Edge, NJ, 1998. Translated from
the 1993 German original.

[12] J. L. Henessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers, fourth edition, 2006.

[13] G. Horvath, J. Lawrence, L. Mérai, and Cs. Szab6. The complexity of
the equivalence problem for non-solvable groups. Bulletin of the London
Mathematical Society, 39(3):433-438, 2007. doi:10.1112/blms/bdm030.

[14] G. Horvath, C. L. Nehaniv, and Cs. Szabo. An assertion concerning
functionally complete algebras and NP-completeness. Theoretical Com-
puter Science, 2007. submitted.

[15] G. Horvath and Cs. Szabdé. The complexity of checking identities over
finite groups. International Journal of Algebra Computation, 16(5):931—
940, October 2006.

[16] H. Hunt and R. Stearns. The complexity for equivalence for commutative
rings. Journal of Symbolic Computation, 10:411-436, 1990.

[17] N. Jacobson. The radical and semi-simplicity for arbitrary rings. Amer.
J. Math., 67:300-320, 1945.

[18] M. Kilp, U. Knauer, and A. V. Mikhalev. Monoids, Acts and Categories,
volume 29 of de Gruyter Ezxpositions in Mathematics. Walter de Gruyter,
Berlin, 2000.

[19] A. Kisielewicz. Complexity of semigroup identity checking. International
Journal of Algebra and Computation, 14(4):455-464, 2004.

[20] O. Klima. Complexity issues of checking identities in finite monoids.
manuscript, http://math.muni.cz/~klima/Math /coNPidcheck.ps.

[21] O. Klima. Unification Modulo Associativity and Idempotency. PhD
thesis, Masarik University, Brno, Czech Republic, 2004.

[22|] K. Krohn, W. D. Maurer, and J. Rhodes. Realizing complex boolean
functions with simple groups. Information and Control, 9(2):190-195,
1966.

160 BIBLIOGRAPHY

[23] B. Larose and L. Zadori. Taylor terms, constraint satisfaction and the
complexity of polynomial equations over finite algebras. International
Journal of Algebra and Computation, 16(3):563-581, 2006.

[24] O. B. Lupanov. On a method of circuit synthesis. Izv. VUZ, Radiofizika,
1:120-140, 1958. in Russian.

[25] O. B. Lupanov. Complexity of formula realization of functions of logical
algebra. Probl. Cybernetics, 3:782-811, 1962.

[26] W. D. Maurer and J. L. Rhodes. A property of finite simple non-abelian
groups. Proc. Amer. Math. Soci., 16:552-554, 1965.

[27] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, Lattices,
Varieties., volume 1. The Wadsworth & Brooks/Cole Mathematics Se-
ries. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey,
Calif., 1987. ISBN: 0-534-07651-3.

[28] H. Neumann. Varieties of Groups. Springer-Verlag, Berlin, 1967.

[29] T. Nipkow. Unification in primal algebras, their powers and their vari-
eties. Journal of the Association for Computing Machinery, 37(1):742—
776, October 1990.

[30] E. L. Post. Introduction to a general theory of elementary propositions.
Amer. J. Math., 43:163-185, 1921.

[31] D. J. S. Robinson. A Course in the Theory of Groups. Springer-Verlag,
New York, Berlin, Heidelberg, 1995.

[32] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Sci-
ence/Engineering/Math, 3rd edition, 1976.

[33] J. E. Savage. The Complezity of Computing. John Wiley and Sons Inc.,
New York, 1976.

[34] S. Seif and Cs. Szabo. Computational complexity of checking identities in
0-simple semigroups and matrix semigroups over finite fields. Semigroup
Forum, 72(2):207-222, 2006.

[35] P. M. Spira. The time required for group multiplication. Journal of
Association for Computing and Machinery, 16(2):235-243, April 1969.

[36] M. H. Stone. The representation of boolean algebras. Bull. Amer. Math.
Soc., 44:807-816, 1938.

BIBLIOGRAPHY 161

[37] P. Tesson. Computational Complezity Questions Related to Finite
Monoids and Semigroups. PhD thesis, McGill University, Montreal,
2004.

|38] P. Tesson and D. Thérien. Monoids and computations. International
Journal of Algebra and Computation, 14(5-6):801-816, 2004.

[39] M. V. Volkov. Checking identities in semigroups. Lecture presented at
the Conference on Universal Algebra, Nashville, 2002.

[40] I. Wegener. The Complezity of Boolean Functions. John Wiley & Sons
Ltd, and B. G. Teubner, Stuttgart, 1987.

[41] H. Werner. Einfihrung in die Allgemeine Algebra. Bibliographisches
Institut, Mannheim/Wien /Ziirich, 1978.

[42] J. S. Wilson. Finite axiomatization of finite soluble groups. J. London
Math. Soc., 74(3):566-582, 2006.

[43] S. Winograd. On the time required to perform addition. Journal of
Association for Computing and Machinery, 12(2):277-285, April 1965.

[44] S. Winograd. On the time required to perform multiplication. Journal
of Association for Computing and Machinery, 14(4):793-802, October
1967.

Appendix A

Statement on joint work

Chapter 7 is published as a joint paper with not only my secondary supervisor
Csaba Szabo, but with Laszl6 Mérai and John Lawrence. My contribution to
this joint work was Lemma 165 and the final reduction from a non-solvable
group to a simple group.

The results of other Chapters are mine, unless explicitly indicated otherwise.

