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Abstract

This thesis addresses the problem of how the dendritic structure and other morphological properties

of the neuron can determine its pattern recognition performance.

The techniques used in this work for generating dendritic trees with di�erent morphologies

included the following three methods. Firstly, dendritic trees were produced by exhaustively gen-

erating every possible morphology. Where this was not possible due to the size of morphological

space, I sampled systematically from the possible morphologies. Lastly, dendritic trees were evolved

using an evolutionary algorithm, which varied existing morphologies using selection, mutation and

crossover. From these trees, I constructed full compartmental conductance-based models of neu-

rons. I then assessed the performance of the resulting neuronal models by quantifying their ability

to discriminate between learned and novel input patterns. The morphologies generated were tested

in the presence and absence of active conductances.

The results have shown that the morphology does have a considerable e�ect on pattern recog-

nition performance. In fact, neurons with a small mean depth of their dendritic tree are the best

pattern recognizers. Moreover, the performance of neurons is anti-correlated with mean depth.

Interestingly, the symmetry of the neuronal morphology does not correlate with performance.

This research has also revealed that the evolutionary algorithm could �nd e�ective morphologies

for both passive models and models with active conductances. In the active model, there was

a considerable change in the performance of the original population of neurons, which largely

resulted from changes in the morphological parameters such as dendritic compartmental length

and tapering. However, no single parameter setting guaranteed good neuronal performance; in

three separate runs of the evolutionary algorithm, di�erent sets of well performing parameters

were found. In fact, the evolved neurons performed at least �ve times better than the original

hand-tuned neurons. In summary, the combination of morphological parameters plays a key role in

determining the performance of neurons in the pattern recognition task and the right combination

produces very well performing neurons.
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Chapter 1

Introduction

1.1 Motivation and Goals

The brain contains many di�erent types of neurons with a large number of di�erent morphologies.

One of the main questions in neuroscience is the role these characteristic morphologies play in

determining neuronal function. Previously, it has been shown that the morphology of a neuron

can a�ect its �ring pattern [42, 76, 75]. Speci�cally, some morphologies tend to favour bursting

patterns, while others produce high �ring frequencies, with these functional changes coming about

by only changing the dendritic topology of the neuron. These studies have shown that the neuronal

morphology is an important factor in modulating �ring behaviour.

Previous work on associative memory in cerebellar Purkinje cells, a type of neuron that has

been implicated in motor control and motor learning, has suggested that the generation of burst-

pause sequences is important for information storage in the cerebellum [66, 33]. It was found that

Purkinje cells use a novel neural code, where information about learned patterns is represented by

the length of silent periods, and not by the number or the exact timing of individual spikes, as

has been classically assumed. These previous results have important implications for the coding

of information in the brain, but they are speci�c to one particular neuron with a very specialised

morphology. Given that neuronal morphologies a�ect the ability of neurons to generate burst-pause

sequences, they should also a�ect their ability to act as associative memory devices.

The aim of this research is to characterise the implications of neuronal morphology for associa-

tive memory and pattern recognition. It is assumed that associative memory is based on changing

synaptic weights, initially in this thesis focusing on Long-Term Depression (LTD), observed at

synapses between parallel �bres and Purkinje cells in the cerebellum, and later on Long-Term

Potentiation (LTP), a common form of synaptic plasticity that occurs for example at synapses

between CA3 and CA1 pyramidal cells in the hippocampus. Based on this assumption, I investi-

1
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gated the importance of dendritic structure and other morphological properties of the neuron for

its pattern recognition performance. To do this, I took three di�erent approaches: two involved

generating dendritic trees systematically and one evolved trees by using an evolutionary algorithm

(EA). The �rst two algorithms were designed to produce trees with a certain number of termi-

nal points, one exhaustively, by covering the whole range of morphologies; and the second one

selectively, to produce trees by sampling from the range chosen. This second approach was the

required method when the number of terminal points was large, so that the exhaustive method

could not be applied. The third approach, evolving trees using an EA, was inspired by biological

evolution theory [48, 5], where large sets of dendritic morphologies could be evolved by produc-

ing variations of existing morphologies, initially generated at random, using biologically inspired

mechanisms such as mutation and crossover. Using these three approaches, I could generate a

large number of dendritic trees to analyse which morphological parameters a�ected the pattern

recognition performance.

The work presented here has tried to answer the following questions:

� How does the morphology of a neuron a�ect to the storage and recall of memories?

� Which morphological parameters such as compartmental length and tapering, determine the

performance of the neuron in the pattern recognition task?

� Can we evolve e�ective neuronal morphologies to perform pattern recognition in the presence

and absence of active conductances?

� Which measurable characteristics of neuronal morphologies, such as asymmetry index or

mean depth, can predict the pattern recognition performance of a neuron?

1.2 Contribution to Knowledge

The following contributions to the �eld of computational neuroscience were achieved during my

PhD:

� In both active and passive neuronal models, I found an almost linear correlation between

the mean depth of the dendritic trees and the pattern recognition performance; the best

performing neurons were the ones with the smallest mean depth. A similar result was found

for the variance of depth, mean path length and mean electronic path length, which correlated

with the neuronal performance in some experiments. Interestingly, the asymmetry index did

not correlate with the performance for the full range of tree morphologies. In fact, any
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morphology with an asymmetry index below 0.5 performed as well as the most symmetric

one.

� The values of neuronal parameters play a major role in determining the performance of

neurons in the pattern recognition task. In particular, the values of the morphological pa-

rameters, dendritic compartmental length and tapering, a�ected the ability of the model

neurons to be good pattern recognizers. However, no single parameter setting guaranteed

good neuronal performance; in three separate runs of the evolutionary algorithm, di�erent

sets of well performing parameters were found.

� In my search for optimal neuronal morphologies for pattern recognition, I investigated dif-

ferent optimisation procedures that could alter di�erent neuronal features such as dendritic

topologies and morphological parameters. Following a survey of existing algorithms, I devel-

oped my own algorithms to generate dendritic morphologies either in a systematic way or

by evolving them using an Evolutionary Algorithm (EA). My EA was designed to meet six

requirements that were not met entirely by existing algorithms. As a result, I could generate

neuronal morphologies that allowed me to understand some of the neuronal features that are

important for pattern recognition.

� The �nal EA could evolve e�ective morphologies in the presence of active conductances,

with a pattern recognition performance that was �ve times better than that of hand-tuned

neurons.

Moreover in a preliminary investigation, I studied the e�ects of synaptic plasticity in a Purkinje

cell model. In these studies, I found that the best pattern recognition performance in the model

resulted from LTD that saturated at a lower bound value of zero, which corresponds to silencing

the PF synapses completely. On the other hand, the ability of the model to discriminate between

learned and novel input patterns was una�ected by the presence of inhibitory plasticity for a wide

range of parameter values.

1.3 Thesis Outline

This thesis is organized as followed:

Chapter 2 gives a review of neural systems, focusing on the structures involved in the process

of pattern recognition. It explains how biological neurons are represented by computational

models, where each dendritic segment can be described by mathematical equations using

cable or compartmental models. Two examples of compartmental models are presented, a
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cerebellar Purkinje cell model and a hippocampal pyramidal cell model, which served as a

basis for my studies of pattern recognition in neuronal models with di�erent morphologies.

Chapter 3 describes the concept of learning and memory based on di�erent types of synaptic

plasticity. Two types of synaptic plasticity are explained, long-term depression and long-

term potentiation, which then form the basis of the learning rules used by the models studied

in this work. These learning rules are implemented in two types of computational models,

arti�cial neural networks (ANNs) and compartmental models, which are used to analyse the

e�ect of synaptic plasticity on the pattern recognition task.

Chapter 4 presents the results of a study of synaptic plasticity in a compartmental Purkinje cell

(PC) model. The e�ect of biologically realistic synaptic plasticity that saturates at lower

bound values is analysed, for both synapses from excitatory parallel �bres to the PC and for

synapses between inhibitory interneurons and the PC. The main result of this study is that

the pattern recognition performance of the PC model is very sensitive to the lower bound

value at which LTD at PF synapses saturates, and that the performance is una�ected by the

presence of inhibitory synaptic plasticity. Moreover, I describe an unsuccessful attempt to

use a reduced version of the PC model for my studies of pattern recognition.

Chapter 5 introduces a review of previous work on dendritic morphologies. First, I described the

generic neuronal models used in my exploration of the best morphologies for pattern recogni-

tion. These multi-compartmental models were used as they are relatively simple models and

are not based on any real neuronal morphology [76]. Then I present the morphological met-

rics used to characterise dendritic trees with di�erent topologies. At the end of the chapter,

an analysis of existing tree morphology generation algorithms is carried out. The algorithms

used by me should meet six requirements to be able to generate all the desired morphologies

necessary to fully investigate the pattern recognition performance. As none of the existing

algorithms met all of the requirements, a new tree generation algorithm was implemented

using the best features of the existing algorithms, which is described in the next chapter.

Chapter 6 describes the algorithms used to generate neuronal morphologies for the pattern recog-

nition task, focusing on the dendritic tree structure. Three algorithms are described, two to

generate dendritic trees systematically and one to evolve trees by using an EA. The system-

atic tree generation algorithms were implemented to generate trees exhaustively, covering

the whole range of dendritic trees with a certain number of terminal points, and selectively,

by generating samples of trees from a larger range of morphologies, where the number of
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terminal points was very large. The third algorithm was implemented to evolve dendritic

tree structures and morphological parameters, meeting the six requirements speci�ed in the

previous chapter. The algorithm evolved new individuals by applying genetic operations like

mutation and crossover, and its �tness function was based on neuronal performance by cal-

culating a signal-to-noise ratio over the neuronal response from stored and novel patterns.

The aim of each EA run was to improve neuronal performance by evolving neurons with

an increasing �tness. The results of these three algorithms are presented in the next two

chapters.

Chapter 7 presents the results of the evaluation of the e�ect of neuronal morphologies on pat-

tern recognition using passive neuronal models. The three algorithms described in the last

chapter were used to generate the dendritic trees, and their performance was measured by

calculating a signal-to-noise ratio over their EPSP responses to the stored and novel pattern

presentations. The performance of these trees was tested in four di�erent experiments: com-

paring the two most distinct morphologies, comparing the evolved trees generated by the EA,

and comparing the trees generated systematically by exhaustive and selective searches. The

results show that morphology has a major impact on pattern recognition performance. More-

over, I found that the mean depth correlated well with performance. Another relevant point

found was that the EA could evolve morphologies that performed well for both a speci�c or

a variable set of patterns.

Chapter 8 presents the results of the study of pattern recognition in active neuronal models. The

same trees generated in Chapter 6 were tested, but the neurons now included a set of active

conductances taken from the simpli�ed models described in Chapter 5. The EA was used

to evolve not only dendritic trees as in the previous chapter, but also parameters related

to morphology and input patterns. The performance of the active models was measured by

calculating a signal-to-noise ratio over the number of spikes generated in response to stored

and novel patterns. A similar set of experiments as in the previous chapter tested the per-

formance of two distinct morphologies, trees generated selectively and �nally, trees evolved

using the EA. The results for the evolved trees were analysed in three ways: by comparing the

neuronal morphology and its performance, by comparing the neuronal parameters evolved

and the resulting neuronal performance, and by a sensitivity analysis over the parameters

evolved. From these results, I can conclude that the EA could e�ectively generate active

morphologies where the morphological parameters, dendritic compartmental length and ta-

pering, appear to be most important parameters for the pattern recognition task. Moreover,
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the mean depth of the trees was shown to be as good a predictor of performance in active

models as well as in passive models.

Chapter 9 gives a summary of the main contributions of in this work. It also discusses some

research not dealt with in this work, but which could represent suitable extensions to my

work, such as an optimisation of ionic conductances and input patterns, which could be

studied in the future. At the end, I present a list of publications that I have presented at

conferences during these four years of research.



Chapter 2

Neural Systems

2.1 Introduction

Neurons are cells responsible for learning and storing information in the brain. In my PhD work I

tried to understand the in�uence of neuronal morphologies � or in other words, the sizes and shapes

neurons can have � on their ability to store and recall input patterns. Thus, two relevant points are

described in this chapter. First, the morphological properties of neurons, which are related to their

shape, structure and branching pattern. Second, the way neurons transmit information, focusing

on the type of neuronal signals used in this work: synaptic potentials and action potentials. Both

points are detailed in Section 2.2.

As this study uses neuronal models to simulate the activity of neurons during pattern recog-

nition, an overview about how biological data are translated into computational models is given.

In Section 2.3, I present the details about how mathematical equations are used to represent the

morphology of a neuron, which can be modelled by cable models or compartmental models. As this

work uses only compartmental models, the details about this model are presented in Section 2.3.2.

At the end of this chapter, two examples of compartmental models are presented: a CA1 pyramidal

cell and a cerebellar Purkinje cell. Both models were used to understand how neurons can perform

the pattern recognition tasks, which is the subject of the next chapter.

2.2 Neuronal Structure and Function

2.2.1 Neuronal Morphology

Neurons consist of four main morphological parts: soma, dendrites, axons and axon terminals. The

soma or cell body contains the nucleus where the genetic information is stored. Dendrites are the

elements where the neurons receive most of the inputs. From the dendrites, the signals are passed

7
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on through the soma and axon to the axon terminals, where they are transmitted by synapses to

the next cell (Figure 2.1). Most neurons have many dendritic branches which form their dendritic

trees, but only one axon, although this axon usually also gives rise to many axon collaterals and

terminals.

Figure 2.1 � Typical structure of a motor neuron. Modi�ed from inside.salve.edu/~walsh/neuron.jpg.

Figure 2.1 shows a classical neuronal morphology (of a motor neuron), where the main parts

described previously can be easily identi�ed. However, there is a lot of variability: the human

brain contains a total of 1011 neurons and thousands of di�erent types of neurons with di�erent

morphologies [34]. Figure 2.2 shows examples of di�erent neuronal morphologies, highlighting

that the main di�erences are found in their dendritic trees. Thus, this present study of neuronal

morphologies focuses mainly on the properties and structures of the dendritic trees; more details

are given in the next section.

Figure 2.2 � Examples of neuronal morphologies. Based on the drawings by Ramón y Cajal. From
Stu�ebeam [68].
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2.2.1.1 Dendritic Trees

One interesting question related to the function role of neuronal morphologies is why di�erent

neurons exhibit distinct dendritic trees, like the ones shown in Figure 2.2. It is known that dendrites

play an important role in synaptic integration, integrating synaptic input often through dendritic

spines [19, 41, 11, 83]. A second role of dendritic trees is information processing, determining the

propagation of synaptic potentials, the backpropagation of action potentials and the induction of

synaptic plasticity, which is responsible for associative memory (explained later in Chapter 3). Due

to the importance of dendritic trees for transmitting information, this research focuses mainly on

dendritic trees.

The studies of Ramón y Cajal allow us to understand some of the dendritic properties and

branching structures. Morphologically speaking, most dendrites are very complex trees with a

large number of bifurcations and rami�cations. According to Segev and London, the number of

dendritic trees per neuron can vary between 1 and 16, and the total number of terminal points

can vary even more: from 10 to 400 dendritic tips per neuron [58]. To give an example of these

extremes, cerebellar Purkinje cells have on average only one main tree with approximately 400

terminal points, whereas α-motoneurons from the cat spinal cord can have 8 to 12 dendritic trees

with an average of 30 terminal points for each tree [7, 58]. In terms of length and diameter,

dendrites can also have a large variation. Dendrites are thin tubes which vary their diameter as

they get far from the soma: usually dendrites close to the soma have 1 to 6 µm in diameter, and

distal dendrites vary from 0.3 to 1 µm [58]. The dendritic length can also vary from very short

trees with 100 µm, such as the spiny stellate cell in the mammalian cortex, to longer ones, such

as the spinal α-motoneurons with a total dendritic length between 1 and 2 mm [7]. The total

dendritic length on average lies between 1 and 10 mm [58].

Some researchers proposed that these dendritic dimensions and branching structures are op-

timised to minimize the cost of transporting information from synapses to soma [11, 83]; other

studies relate the dendritic topology, or the connectivity pattern of the dendritic segments, to the

neuronal �ring pattern [42, 16, 36, 76]. To understand the relationship between neuronal morphol-

ogy and function, the next section presents an overview of the mechanisms underlying neuronal

signalling.

2.2.2 Neuronal Function

A feature of neurons that is central to integration and transmission of their signals is their ability

to generate and modulate membrane potentials. The membrane potential, also called membrane
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voltage, is caused by the di�erence in the electrical potentials across the cell membrane. This

potential di�erence is controlled by ion channels, which are membrane proteins that work as gates

allowing ions to cross the membrane. These gates are selective for ions such as sodium (Na+) and

potassium (K+) by using the size and charge of the ions and their interaction with water [34].

Hence, the di�erence in concentration of these ions between the inner and outer part of the cell

generates the membrane potential.

Neuronal voltage signals can be divided into two types: synaptic potentials and action potentials

(Figure 2.3). Both types of potentials are used by neurons to transmit information to other neurons,

but the main di�erence between them is given by the distance the signal can cover. Synaptic

potentials are used by neurons to transmit signals over the short distance from the synapses to the

soma and initial segment of the axon, while action potentials can travel longer distances as they

are larger and, most importantly, self-regenerating. Both types of potentials are considered in this

work: synaptic potentials in the study of pattern recognition in passive models (Chapter 7) and

action potentials in the active models (Chapter 8); therefore more details about both potentials

are given in the next sections.

Figure 2.3 � Neuronal electrical signals: synaptic potential (A) and action potential (B). Note the
di�erent scales of the y-axes. Modi�ed from Purves el al. [54].

2.2.2.1 Action Potentials

Action potentials are used by neurons to transmit information; their frequency and temporal

pattern are assumed to represent information under di�erent conditions and in di�erent brain

systems. Action potentials are characterised by a rapid increase in the membrane potential called

depolarization, followed by slightly a less sharp decrease called repolarisation. In the �nal stages

of the action potential, the membrane potential reaches a level lower than the resting potential,

which is called hyperpolarisation, before reaching the resting potential phase once again (phases

show in Figure 2.4a). Action potentials are initiated only if the membrane potential reaches a
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certain degree of depolarisation, which is called threshold, otherwise the signal is classi�ed as a

subthreshold postsynaptic response (explained in the next section). Action potentials are usually

generated in the segment of the axon that borders the soma, called axon hillock, and pass through

the axon before arriving at the axon terminals, which then transmit chemical signals to the cells

downstream via synaptic contacts (see neuronal parts in Figure 2.1) .

The rapid change in membrane potential during the upstroke of an action potential is caused

by the inner part of cell becoming more positively charged than the outer part [6]. This di�erence

is determined by the di�erent concentration of Na+and K+ ions. The �ux of these ions across

the membrane is regulated by special types of channels called voltage-gated ion channels. The

relative permeability of these channels in each phase of the action potential is shown in Figure

2.4b. In the �rst phase, the neuron is in the resting potential where the membrane is more

permeable to K+ than Na+, which makes the membrane potential negative as it approaches the

equilibrium potential for K+. Then, after the action potential is initiated, for example by an arrival

of a synaptic potential, the membrane becomes more permeable to Na+. As a consequence, the

membrane potential becomes more positive and moves towards the equilibrium potential of Na+.

This membrane depolarization results in the opening of additional (delayed recti�er) K+ channels,

and the Na+ permeability is transient, both of which lead to a repolarisation and hyperpolarisation

of the neuronal membrane back towards the K+ equilibrium potential.

(a) Phases of the action potential. Modi�ed from
Bear et al. [6].

(b) Relative membrane ionic permeabil-
ity during an action potential. From
http://amrita.vlab.co.in/?sub=3&brch=212&sim=742&cnt=1.

Figure 2.4 � Action potential.
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2.2.2.2 Synaptic Transmission

Synapses are the functional connections between neurons, which allow information to be transmit-

ted from one neuron to the next. Each neuron forms on average 1000 synaptic connections with

other neurons, but this number is highly variable and can go up to 200,000 like in the Purkinje cells

[34]. Synapses can be divided into two types of synapses: electrical and chemical. As electrical

synapses are less common and not used in this work, I will restrict the explanation about synapses

to the chemical ones only.

In chemical synapses, the action potential which arrives at the presynaptic terminal activates

Ca2+ channels, which causes Ca2+ in�ux into the terminal. This Ca2+ in�ux leads to the release of

neurotransmitters, chemical agents present in synaptic vesicles, which then bind to receptors on the

postsynaptic cell (see Figure 2.5). The most common types of these receptors are neurotransmitter-

gated ion channels; their activation by the neurotransmitters results in a change of the postsynaptic

conductance [6, 54]. This change in conductance generates an electrical current, called postsynap-

tic current (PSC), which consequently changes the membrane potential in the postsynaptic cell,

generating a postsynaptic potential (PSP).

Figure 2.5 � Chemical synapse. From Purves et al. [54]

PSPs are ultimately responsible for triggering action potentials in the postsynaptic cells. How-
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ever, depending on the type of PSP, the probability of action potential �ring can change: the

PSP is considered excitatory (EPSP) if it increases the probability of action potential �ring, and

the PSP is inhibitory (IPSP) if it decreases this probability. The generation of an excitatory or

inhibitory PSP depends on the type of synapse, or more precisely, on the type of ion channel that

is activated in the postsynaptic membrane. For example, glutamate (Glu) is a type of neurotrans-

mitter released by excitatory synapses, which makes the membrane more permeable to Na+, and

consequently it generates EPSPs in the postsynaptic cell. On the other hand, if an inhibitory neu-

rotransmitter, such as gamma aminobutyric acid (GABA), is released in the synapse, it activates

receptors to ions such as chloride (Cl-) which consequently can generate IPSPs.

2.3 Neuronal Models

As described in Section 2.2.2, neurons transmit information using the voltage across their mem-

brane. Based on this fact, neurons are modelled by analysing their electrical properties. The initial

step to understand the electrical activity of neurons is to characterise their passive properties. Pas-

sive properties are neuronal properties that do not depend on voltage or ligand gated ion channels

which a�ect the membrane resistance; a model is named passive if its membrane resistance does

not change [64]. A list of passive properties is presented in Table 2.1, where the typical range of

values found in dendritic trees is presented in the fourth column.

Table 2.1 � Passive properties of dendrites. The fourth column shows the typical range of values
found for dendritic trees [58].

Property Symbol Unit Value Range

Membrane resistance Rm kΩcm2 1-100

Axial resistivity Ra Ωcm 70�300

Membrane capacitance Cm µF/cm2 0.5�2

Membrane time constant τm ms 1�100

To characterise a neuron based on its passive properties, two types of models can be used:

cable models and compartmental models (Figure 2.6). Cable models are based on the idea that

the dendrites can be represented by an electric cable, if the membrane is passive and uniform.

This type of model calculates the voltage across the membrane as a continuous function of the

time and distance along the cable. On the other hand, compartmental models represent each small

segment of the dendrite by an iso-electric compartment, which is a homogeneous cylinder that can

be represented by an equivalent electrical circuit. Compartmental models use di�erential equations

to describe the behaviour of each compartment as well as the interactions between neighbouring
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compartments [7]. Both types of models are described in the next sections.

Figure 2.6 � Dendritic models. A. First, the neuronal morphology is reconstructed and the response
of the neuron to current injections is used to determine some of its passive properties. Then, the
neuronal model can be represented by either a cable model (B) or a compartmental model (C). The
cable model represents each dendritic segment as a cable, where the voltage can be measured at any
point of the dendritic tree by using the cable equation (Section 2.3.1). In the compartmental model,
each segment is represented by a RC circuit and the membrane voltage of each compartment can be
computed by using the neuronal passive and input properties. From Bower and Beeman [7].

2.3.1 Cable Model

In 1959, Rall started to apply the cable theory, which had been previously used to model electric

current �ow through transatlantic cables, to computational models of neurons, where he rep-

resented neurons by cylinders of �nite length [55]. Cable theory uses mathematical models to

describe the �ow of electric current in a dendritic tree that receives synaptic inputs at various sites

and times [7].

To analyse the spatio-temporal evolution of the membrane potential in a cable model, a spe-

cialised equation called the Cable Equation is applied. The cable equation is derived from the

combination of the principle of the conservation of electrical charge with Ohm's law [9]. In the

cable equation, the membrane potential Vm is calculated as a function of the distance x along the

cable, the time t and the injected current Ie at the point x:
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Cm
∂Vm
∂t

=
Em − Vm
Rm

+
d

4Ra

∂2Vm
∂x2

+
Ie
πd

(2.1)

where the passive properties are given in Table 2.1, V m is the membrane potential, Em is the leakage

reversal potential, ∂V/∂t is the partial derivative of the membrane potential, d is the diameter and

d/4Ra∂
2V/∂x2 is the density of current �owing along the cable length into the point x.

From the cable equation we can derive the three main passive properties when using cable

models [7]:

Cm = πdlCM (2.2)

Rm =
RM
πdl

(2.3)

Ra =
4lRA
πd2

(2.4)

where l is cable length, d is the diameter, and CM , RM and RA are the speci�c capacitance,

resistance and axial resistance respectively. More details can be found in [55, 7, 9, 64].

2.3.2 Compartmental Model

2.3.2.1 RC Circuit

Compartmental models discretise the Cable Equation by representing each small piece, or segment,

of the neuron as an electrical circuit [7]. The generic circuit used in compartmental models is a

resistor-capacitor circuit (RC circuit), which is composed of a capacitor and a resistor in parallel,

a battery in series with the resistor, and a current source (see equivalent circuit in Figure 2.7).

The circuit shown in Figure 2.7 can represent a membrane segment in passive models. In

this circuit, the change of membrane potential Vm at the time t can be calculated by combining

Kirchho�'s current and voltage laws [64], which gives the following equation:

Cm
dVm
dt

+ Iion = Ipulse (2.5)

where the passive properties are given in Table 2.1, Ipulse is the externally applied current and Iion

is the ionic current �owing across the membrane, which can be expressed as:

Iion = Ileak = gleak(Vm − Eleak) (2.6)

where gleak is the resting conductance and Eleak is the resting potential.
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Figure 2.7 � Equivalent RC circuit for the electrical model of a passive membrane. The elements
shown are: Cm is the membrane capacitance, gleak is the resting conductance represented by a resistor,
Eleak is the resting potential represented by a battery, Ipulse is the externally applied current, and
Vm is the voltage between the cell interior and the cell exterior. Modi�ed from Bower and Beeman
[7].

2.3.2.2 Hodgkin-Huxley Model

This model is based on the observations made on a squid axon by Hodgkin and Huxley beginning

of the 1950s [27, 24, 23, 25, 26]. Their idea was to model segments of the membrane based on their

electrical properties, using an equivalent circuit as shown in Figure 2.8.

Figure 2.8 � Electrical equivalent circuit proposed by Hodgkin and Huxley. From Bower and Beeman
[7].

The change of membrane potential Vm in the Hodgkin-Huxley circuit can be calculated by

the Equation 2.5, where the ionic current Iion is composed of three di�erent currents: sodium

(INa), potassium (IK), and a leakage current (IL). Each of these ionic currents is determined by a

conductance value g and a reversal potential E as shown in the following equations:

INa = gNam
3h (Vm − ENa) (2.7)

IK = gKn
4 (Vm − EK) (2.8)
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IL = gL (Vm − EL) (2.9)

where m and n are the activation variables and h the inactivation variable, which change according

to the following equation:

dx

dt
= αx (Vm) (1− x)− βx (Vm)x (2.10)

where x is the type of the gate (m, n or h) and α, β are voltage-dependent rate constants. Hence,

the total ionic current Iion can be expressed as:

Iion = gNam
3h (Vm − ENa) + gKn

4 (Vm − EK) + gL (Vm − EL) (2.11)

2.3.2.3 Modelling Synapses

As shown in Section 2.2.2.2, presynaptic terminals release neurotransmitters which bind to post-

synaptic receptors; for ionotropic receptors this leads directly to the opening of ion channels. The

opening of these neurotransmitter receptor ion channels results in a conductance change that pro-

duces a postsynaptic current (PSC), as previously explained in Section 2.2.2.2. This current can

be expressed as:

Is(t) = gs(t) (Vm − Es) (2.12)

where gs is the synaptic conductance at the time t, Vm is the voltage across the membrane, and

Es is the reversal potential of the synaptic channels [7].

The changes in the postsynaptic conductance can be represented by simple functions of time t

when the postsynaptic signal arrives. Three types of functions that are commonly used to represent

the conductance changes are single exponential decay, alpha function, and dual exponential. Each

of these waveforms is shown in Figure 2.9.

In this work I use a synaptic model with a dual exponential function, as it is replicates the

conductance changes of typical synapses well [64]. The dual exponential function is governed by

two time constants, a rise time constant τ1 and a decay time constant τ2 , and can be expressed

as:

gs(t) = gs
τ1τ2
τ2 − τ1

(
e−

t
τ2 − e− t

τ1

)
(2.13)

where gs is the synaptic peak conductance at the time of the most recent event.
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Figure 2.9 � Synaptic conductances changes. Three types of synaptic conductance waveforms are
presented here: single exponential decay (a), alpha function (b), dual exponential (c). The respective
time constant of each waveform is given as (a) τ = 3ms, (b) τ = 1ms, and (c) τ1 = 3ms and τ2 = 1ms.
From Sterratt et al. [64].

2.3.3 Examples of Multi-Compartmental Models

Here I present two examples of multi-compartmental models which were used in previous studies

of pattern recognition: a hippocampal CA1 pyramidal neuron model [18] and a cerebellar Purkinje

cell model [66]. The �rst model was used as basis for my studies of pattern recognition in passive

and active neurons; the results are presented in Chapters 7 and 8. The second model was used to

analyse the e�ects of di�erent forms of synaptic plasticity on pattern recognition in the cerebellum

(results given in Chapter 4). Both models are presented in the next sections.

2.3.3.1 Pyramidal cell

This multi-compartmental model was proposed by Graham [18] and it was based on the recon-

struction of a rat hippocampal CA1 pyramidal cell made by Major et al. [43]. The model has

890 compartments; the dendritic tree was divided into three areas (see Figure 2.10). The default

model was passive, which means no voltage gated ion channels were present in the dendrites and

soma, and the response was given by EPSPs. However, some experiments included four types of

voltage-gated ion channels (Na+, Ca2+, KA and h-type), which were used to amplify the EPSP

responses.
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Figure 2.10 � CA1 pyramidal cell compartmental model. On the left, the reconstruction of a rat

hippocampal CA1 pyramidal cell is shown. On the right, the branching diagram of the same cell is

given, showing part of the dendritic tree branching from the soma. Modi�ed from Major et al. [43].

More details about this neuronal model are presented in Section 3.3.2.2, which details my work

on pattern recognition using this model.

2.3.3.2 Purkinje cell

This multi-compartmental model of a cerebellar Purkinje cell was proposed by De Schutter and

Bower [13, 14], based on a reconstruction and a passive model of a guinea-pig Purkinje cell by

Rapp et al. [56]. It is composed of 4550 compartments and 147,400 dendritic spines. Ten di�erent

types of voltage-dependent channels were modelled using Hodgkin-Huxley-like equations. The

soma compartment had a fast and persistent Na+ conductance, a delayed recti�er, a transient

A-type K+ conductance, a non-inactivating M-type K+ conductance, an anomalous recti�er and

a low-threshold T-type Ca2+ conductance. The dendritic compartments contained a Purkinje-cell

speci�c high-threshold P-type and a low-threshold T-type Ca2+ conductance, two di�erent types

of Ca2+-activated K+ (KCa) conductances and an M-type K+ conductance. Figure 2.11 shows

the morphology of the reconstructed Purkinje cell (a) and the compartmental model (b), where

the soma and three types of dendrites are identi�ed (main, smooth and spiny). Each of these four

regions contains a di�erent set of ion channels. Details about the study of pattern recognition in

this model are presented in Section 3.3.2.1.
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(a) Reconstruction of a cerebellar

Purkinje cell. From Rapp et al. [56].

(b) Multi-compartmental Purkinje cell

model. From De Schutter and Bower [13].

Figure 2.11 � Cerebellar Purkinje cell compartmental model.

2.4 Conclusion

In this chapter, I presented the biological foundations of this work. The neuron was the core element

presented here, which was described in terms of morphology and function. The description of

neuronal morphology concentrated on the dendritic tree, which is the focus of this work as it is the

structure with the most diverse morphology and the place where neurons receive information from

other cells. Moreover, this discussion presented how neurons encode information by integrating

and transmitting signals through their membrane. This information is then used by neurons to

perform the pattern recognition task which is explained in details in the next chapter.

Another topic described in this chapter was how neurons are computationally modelled, where

electrical circuits represent each segment of the neuronal membrane, and mathematical equations

are used to describe the behaviour of these circuits. I also showed how ion channels and synapses

can be represented in computational models, as they play a key role in neuronal function. At

the end, I presented two relevant computational models which I used to understand the e�ects of

synaptic plasticity (presented later in Chapter 4) and which I used as basis of my work on passive

and active models, presented in the later chapters (Chapters 7 and 8).



Chapter 3

Review of Synaptic Plasticity and Pattern

Recognition

3.1 Introduction

My �rst goal in this research was to understand the mechanisms that underlie learning and memory.

As I based my research on pattern recognition in two neuronal models, a cerebellar Purkinje

cell and a hippocampal pyramidal cell, my initial studies were focused on the theories which are

fundamental for the learning process in these two cells: the Marr-Albus-Ito theory of cerebellar

learning and the theory of Hebbian learning. As memory is known to be encoded using long-lasting

modi�cations of synaptic strength, both of these learning theories use long-term synaptic plasticity

as their learning mechanism. For the cerebellar Purkinje cells, the learning process is assumed to

be based on a process called long-term depression (LTD); whereas hippocampal pyramidal cells

are assumed to use long-term potentiation (LTP) to learn their input patterns. These two types

of synaptic plasticity are presented in more detail in Section 3.2. After understanding how these

synaptic mechanisms occur, I then present the pattern recognition models which are used in this

research. Pattern recognition is studied in two types of computational models: arti�cial neural

networks (Section 3.3.1) and compartmental models (Section 3.3.2). For each type of model, I

present two examples of how the pattern recognition task can be implemented, using di�erent

learning rules re�ecting the types of synaptic plasticity previously mentioned. For example, in the

compartmental models, I explain pattern recognition in a cerebellar Purkinje cell model, which

uses an LTD learning rule (explained in Section 3.3.1.1) and in a CA1 pyramidal cell model, which

uses an LTP learning rule (explained in Section 3.3.1.2). The results obtained for each of these

models are presented in the next chapter.

21
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3.2 Synaptic Plasticity

Synaptic plasticity is a change of synaptic strength that happens after repeated synaptic stimulation

or by pairing speci�c pre and postsynaptic activations [60]. The change in plasticity at a synapse

can remain for milliseconds to a few seconds, called short-term synaptic plasticity; or for minutes

to hours or even days, which is then called long-term plasticity. This research focuses on long-term

synaptic plasticity, which is the form of plasticity that is assumed to be the basis of learning and

memory. There are two main forms of long-term plasticity: long-term depression and long-term

potentiation. These two types of plasticity are assumed to be responsible for the learning process

in cerebellar Purkinje cells and hippocampal pyramidal cells, respectively, which are the cells used

in this study of pattern recognition (presented later in Section 3.3.2). Hence, these two types of

synaptic plasticity are detailed in the next sections.

3.2.1 Long-term Depression in the Cerebellum

Although many di�erent types of cerebellar plasticity have been characterised, the type of cerebellar

plasticity that has received by far the most attention is long-term depression (LTD) at the synapses

between parallel �bres (PFs) and Purkinje cells (PCs). PF LTD, which is often called cerebellar

LTD, has been implicated in motor learning, which is responsible for the rapidity, smoothness and

precision of movements [74]. PF LTD is an associative process in which the strength of a PF

synapse onto a PC is depressed when the PF is activated together with climbing �bre (CF) input

to the PC [32, 31] (see Figure 3.1A, B). This synaptic weakening occurs due to the loss of AMPA

receptors in the postsynaptic membrane, which reduces the PC response to the PF activation, as

shown in Figure 3.1C.

3.2.2 Long-term Potentiation in the Hippocampus

Long-term potentiation (LTP) is a type of synaptic plasticity which can occur when both presynap-

tic and postsynaptic cells are activated at same time. The result of this process is a strengthened

synapse between the pre and postsynaptic cells, which is assumed to be the basis of information

storage by the postsynaptic cell. LTP occurs in many synapses in di�erent brain areas such as

hippocampus, cortex, amygdala, and cerebellum (although the mechanism of LTP induction in the

cerebellum is di�erent) [54].

In the hippocampus, three synaptic sites have been identi�ed where LTP has been observed

(Figure 3.2A): in the dentate gyrus, between the perforant path and granule cells; in area CA3,

between the mossy �bres from dentate granule cells and CA3 pyramidal cells; and in area CA1,
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Figure 3.1 � Cerebellar (PF) LTD. A. LTD is found in the cerebellum at the synapses between
parallel �bres (PFs) and Purkinje cells (PCs). B. LTD weakens the synapses between PFs and PCs
after coincident PF and climbing �bre (CF) activation. C. The mechanism which controls LTD:
1. glutamate neurotransmitter released by the PFs binds to AMPA receptors and metabotropic
glutamate receptors (mGluRs) in the PC, which results in the production of the second messenger
DAG in the PC. 2. The activation of the CF results in depolarization of the PC and in�ux of Ca2+

into the PC. Ca2+ and DAG activate the protein kinase PKC. 3. The phosphorylation of AMPA
receptors by PKC results in their internalisation, which decreases subsequent PC responses to PF
activation. Modi�ed from Purves et al. [54].

between Scha�er collaterals from CA3 pyramidal cells and CA1 pyramidal cells. This research is

based on a study which focuses on the Scha�er collateral pathway, where pattern recognition in

CA1 pyramidal cells has been studied previously [18].

LTP at the synaptic connection between CA3 and CA1 pyramidal cells is an associative process,

where the synapses are strengthened when both cells are stimulated at the same time, which can

occur for example when the Scha�er collateral axons of the CA3 pyramidal cells receive a brief high

frequency stimulus train [54] (see Figure 3.2B and C). This kind of Hebbian synaptic plasticity

at the CA3-CA1 synapses is assumed to implement a heteroassociative memory, which enables

patterns of activity in CA3 to be associated with patterns of activity in CA1.

3.3 Pattern Recognition

In this study, pattern recognition means the process where a neuron, represented by a computa-

tional model, recognises particular sets of patterns. The patterns here are represented by a number

of random binary inputs, which are learned by two di�erent models: an arti�cial neural network

(ANN) and a neuronal compartmental model. These two models were used in order to compare

the pattern recognition performance between the two models, as was done previously in studies of

pattern recognition in a hippocampal CA1 pyramidal [18] and a cerebellar Purkinje cell [65, 66].

The steps used to implement pattern recognition in each model are detailed in the next sections.
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Figure 3.2 � Hippocampal LTP. A. There are three synaptic pathways where LTP is observed in the
hippocampus: 1. perforant path, from entorhinal cortex to the granule cells in the dentate gyrus; 2.
mossy �bers, from granule cells in the dentate gyrus to CA3 pyramidal cells; 3. Scha�er collaterals,
from CA3 pyramidal cells to CA1 pyramidal cells. B. When CA3 and CA1 pyramidal cells are
activated simultaneously by a strong signal (for example a strong electrical stimulus to the Scha�er
collateral axons of the CA3 cells), LTP occurs at the synapses between CA3 and CA1 pyramidal cells.
C. LTP increases the response of CA1 cells (their EPSP amplitude) to Scha�er collateral stimulation.
Modi�ed from Purves [54].

The results of the experiments described here are to be found in Chapter 4.

3.3.1 Pattern Recognition in Arti�cial Neural Networks

The ANN used in this work is a modi�ed version of an associative net with feed-forward connections

between its inputs and output [84]. A number of patterns are learned by the ANN model in the

learning stage, these are called stored patterns. The new synaptic weights are then transferred to

the synapses in the compartmental model, explained in Section 3.3.2. In the recall stage the same

stored patterns are presented to both the ANN and the compartmental model together with an

equal number of new, unseen patterns, called novel patterns. The synaptic weights of the ANN

are modi�ed depending on the learning rule that is used. In my study of the e�ect of synaptic

plasticity in cerebellar PCs, presented in Chapter 4, I used an LTD learning rule based on cerebellar

LTD explained in Section 3.2.1. For my studies of the e�ect of dendritic morphologies on pattern

recognition (Chapter 6), which were based on a previous study on pattern recognition in pyramidal

cells, I used an LTP learning rule that was based on hippocampal LTP, explained in Section 3.2.2.

Both learning rules are presented in the next sections.
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3.3.1.1 LTD Learning Rule

This learning rule was implemented based on previous studies of pattern recognition in cerebellar

Purkinje cells [65, 66]. As explained in Section 3.2.1, Purkinje cells can discriminate activity pat-

terns presented by their a�erent parallel �bres based on the depression of their synaptic strengths

when a coincident activation of parallel �bres and climbing �bre occurs. It is important to note

that the PC model recognizes patterns by decreasing its output, in contrast to what is done by

traditional ANN learning rules which increase the neuronal output for learned patterns. Thus, the

LTD learning in the ANN was implemented as a simpli�ed rule where the synaptic strength was

decreased when patterns were stored. In the original LTD learning rule, proposed by Steuber and

De Schutter [65], the weights of activated synapses were decreased by half each time a pattern was

learned, which represented the AMPA receptor conductance being depressed by 50% during the

learning process. However, consecutive applications of this learning rule could result in very small

synaptic weights, while experiments with LTD induction in cerebellar slices show that the mean

AMPA receptor conductances are hardly depressed to less than 50% of the pre-induction baseline

[82, 49]. Therefore, I decided to investigate the e�ect of di�erent degrees of synaptic plasticity

on learning and recall in the ANN and PC model. In this study, I used a set of LTD saturation

or lower bound values, which varied from 0 to 80% of the pre-learning baseline. This meant that

the synaptic weight was decreased by the LTD factor chosen only when the �rst active input was

stored in a particular synapse, instead of for each active input as used in the original learning

rule, so that the weight could never fall below this saturation or lower bound value. In Figure

3.3, an example of the new LTD learning rule is presented, where an LTD factor of 0.5 was used,

representing synaptic saturation at a lower bound of 50%. The results of this study are presented

in the next chapter (Section 4.2).

Using the LTD learning rule, pattern recognition in the ANN was implemented in two phases:

learning and recall. In the learning phase, the weight of all the active synapses are adjusted; the

network learns each pattern by decreasing the synaptic weight by a speci�c LTD factor (in Figure

3.3, the LTP factor chosen was 0.5). In the recall phase, the network response is calculated by

summing all the synaptic weights associated with active inputs (or in other words, by calculating

the inner or dot product of input and weight vector). As shown for the recall phase in Figure

3.3, the stored patterns result in lower responses than novel patterns (middle and right graphs

respectively).

The discrimination between the stored and novel patterns was evaluated by calculating a signal-

to-noise (s/n) ratio [12]:
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Figure 3.3 � LTD learning rule. Learning phase: three patterns are stored by decreasing the synaptic
weight by a factor of 0.5 at the �rst active input and only at the �rst active input. Recall phase: the
network response is calculated by the inner product of the input and weight vector. The response to
a stored pattern (graph shown in the middle) is compared to the response to a novel pattern (right
graph). The resulting responses show a lower output value for the stored pattern (1) when compared
to the novel pattern (1.5). Note that a low output is found for stored patterns whereas a high output
is found for novel patterns, in contrast to the traditional LTP based method used by most ANNs.

s/n =
(µs − µn)

2

0.5 (σ2
s + σ2

n)
(3.1)

where µs and µn represent the mean values and σ2
s and σ

2
n the variances of the responses to stored

and novel patterns, respectively.

3.3.1.2 LTP Learning Rule

In contrast to the PC model, the pyramidal cell produces high responses for learned patterns,

while lower response are found for novel patterns. As previously explained in Section 3.2.2, CA1

pyramidal cells store information through a type of synaptic plasticity called long-term potentiation

(LTP). This type of plasticity increases the synaptic strength between the pre and postsynaptic

neuron when they are both active at the same time. Given this associative process, learning in

the pyramidal cells appears to be based on the Hebbian learning rule. This rule, formulated by

Donald Hebb in 1949, postulates that an increase in synaptic strength is caused by coincident pre

and postsynaptic neuronal activity [17, 63].

Based on Hebb's theory, the LTP learning rule used in this work was implemented by increment-

ing the synaptic weight, which were originally set to zero, by adding a value of one every time when

both pre and postsynaptic cells were activated. Di�erently from the learning rule implemented
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by Graham in his work on pattern recognition in CA1 pyramidal cells [18], which uses a clipped

learning with an upper bound value of one, the learning rule implemented here does not have an

upper bound value. Using this Hebbian learning rule, the pattern recognition was implemented in

two phases, learning and recall, as for the LTD learning rule (described in Section 3.3.1.1). In the

learning phase, the synaptic weights of all active synapses are adjusted, increasing the synaptic

weight by a value of one for each active input (see Figure 3.4 - Learning). In the recall phase, the

network output is again given by the sum of all synaptic weights associated with active inputs.

This results in a higher response for the stored patterns than for novel ones (see bottom values in

Figure 3.4 - Recall).

The discrimination between stored and novel patterns is evaluated as for the LTD learning rule,

that is a s/n ratio is used (see Equation 3.1).

Figure 3.4 � LTP learning rule. Left side: during the learning phase, three patterns are stored by
increasing the synaptic weight by a value of one for each active input. Right side: during the recall
phase, the response to a stored pattern (indicated by a red box) is compared to the response to a
novel pattern. Responses are calculated as the dot product of input vector x and weight vector w.
The resulting responses show a higher output value for stored pattern (7) when compared to novel
pattern (3).

3.3.2 Pattern Recognition in Compartmental Models

3.3.2.1 Cerebellar Purkinje Cell

The classical cerebellar learning theory proposed by Marr [45], Albus [2] and Ito [30] suggests that

motor learning is based on the association of particular patterns of PF inputs and PC outputs. This

theory suggests that a PC can learn to discriminate between di�erent activity patterns presented
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by its thousands of a�erent PFs based on cerebellar LTD. As explained in Section 3.2.1, cerebellar

LTD occurs at the synapses between PFs and PCs, where a teaching signal is given by a CF input.

The learning process is accomplished by decreasing the strength of the PF synapses activated when

the CF input is given. As a result of this PF LTD, the PC �ring rate has been assumed to be

reduced in response to presentation of a learned PF pattern, and thus the PC is expected to exert

less inhibition on the deep cerebellar nuclei (see circuitry in Figure 3.5). As a consequence of this

process, the cerebellar output would be increased, so implementing the motor learning.

Figure 3.5 � Schematic diagram of the cerebellar circuitry. Purkinje cells (PCs) receive excitatory
inputs (+) from ~150,000 parallel �bres (PFs) and a single climbing �bre (CF), and inhibitory inputs
(-) from basket cells (BCs) and stellate cells (SCs), and in turn inhibit the deep cerebellar nuclei
(DCN). Also shown are: mossy �bres (MFs), granule cells (GCs), Golgi cells (GoCs) and the inferior
olive (IO).

Inspired by this classical cerebellar learning theory, previous studies evaluated the pattern recog-

nition performance of PCs using somatic excitatory postsynaptic potential (EPSP) amplitudes [65]

and spike responses [66, 80, 81]. Steuber and collaborators [65, 66] used a multi-compartmental PC

model (presented in Section 2.3.3.2) to study pattern recognition under more biologically realistic

conditions. This work used two versions of the PC model proposed by De Schutter and Bower

[13, 14]. An extended version of the PC model contained 147,400 dendritic spines, which were ac-

tivated randomly by a sequence of PF inputs at an average frequency of 0.28 Hz. The background

excitation was balanced by tonic inhibition, which made the model �re simple spikes at an average

frequency of 48 Hz. Due to the large number of dendritic spines, which made the simulations
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computationally expensive, a simpli�ed version of the PC model was also used where the number

of spines was decreased to 1% of the original number. To compensate for this reduction, the rate

of PF excitation was increased to an average frequency of 28 Hz and each spine was set to receive

100 synapses. As this simpli�ed model gave identical results as the full model, it was used in most

of the simulations done by Steuber and De Schutter [65, 66] as well as in this follow-on study of

the e�ect of di�erent features of synaptic plasticity; the results are presented in Chapter 4.

The pattern recognition process in the PCs was simulated in two steps. First, 200 input patterns

were generated, each of them with 1000 active PF inputs, and half of these patterns were learned

by the ANN, described in Section 3.3.1.1. In the second step, the vector of synaptic weights was

transferred from the ANN onto AMPA receptor conductances in the multi-compartmental PC

model. This represents the mechanism that the PC model learns the input patterns by depressing

the corresponding AMPA receptor conductances based on LTD induction. To test the recall of

learned patterns, the PC model was then presented with the corresponding stored and novel

patterns of synchronous AMPA receptor activation at the PF synapses, as in the recall phase

for the ANN (shown in Figure 3.3). To evaluate the discrimination between stored and novel

patterns, s/n ratios (Equation 3.1) were calculated for di�erent features of the PC spike response,

and these results were compared with the s/n ratios for the corresponding ANN using the LTD

learning rule, described in Section 3.3.1.1.

In the study of pattern recognition in PCs, Steuber and collaborators [66] found that PCs can

use a novel neural code based on the duration of silent periods or pauses after the presentation

of a PF input pattern to the PC. They found that the PC model produced a burst sequence of

spikes followed by a pause, with shorter pauses in response to learned patterns when compared

to novel patterns, as can be seen in Figure 3.6A. The length of the pause duration is shorter for

learned patterns due to a negative feedback e�ect based on KCa channels, as the cell receives less

Ca2+ in�ux into the dendritic tree, which consequently results in a shorter afterhyperpolarization

(AHP). This form of neural coding diverges from the classical view, which assumes that the number

or timing of individual spikes is used to distinguish between novel and learned patterns. In the

study by Steuber et al., the pause was compared with two other spike features: the number of

spikes in a �xed time-window (25 ms) after pattern presentation and the latency of the �rst spike

in the response. Examples of response distributions for the latency, number of spikes and pause

duration are given in Figure 3.6B, where the respective s/n ratios are 0.33, 0.21 and 15.6. These

results suggest that the pause was the best criterion for pattern recognition by cerebellar PCs. In

a follow-up study, I used the same model to analyse the e�ect of synaptic plasticity saturation on

pattern recognition by PCs; these results are presented in the next chapter.
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Figure 3.6 � Responses of the Purkinje cell model to novel and learned patterns of PF input. (A)
Upper: The pauses evoked by the novel pattern are longer than those for the learned pattern. Lower:
Raster plot of spike responses to presentations of 75 learned and 75 novel patterns. (B) Response
distribution for three di�erent spike features. Upper: Latency of �rst spike after pattern presentation.
Middle: Number of spikes in the �rst 25ms. Lower: Length of pause. Modi�ed from Steuber et al.
[66].

3.3.2.2 Hippocampal Pyramidal Cell

This model of pattern recognition in a hippocampal CA1 pyramidal cell was proposed by Graham

[18]. Using the multi-compartmental pyramidal cell model described in Section 2.3.3.1 and an ANN

based on an associative net which uses an LTP learning rule (explained in Section 3.3.1.2), Graham

compared the pattern recognition capability of a CA1 pyramidal cell in the presence and absence

of noise.

The pattern recognition simulation in the CA1 pyramidal cell model was implemented in two
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steps, as in the Purkinje cell model explained in Section 3.3.2.1. In the �rst step, 60 binary input

patterns were generated, with initially 200 active inputs out of 8000 inputs, and each pattern was

learned by an ANN. As in the Purkinje cell, the pyramidal cell stores patterns by using a clipped

Hebbian learning, as explained in 3.3.1.2. In the second step, the vector of binary synaptic weights

was transferred from the ANN onto the AMPA receptor conductances of the excitatory synapses in

the pyramidal cell model, where each active input was represented by a single synaptic activation.

This represents the mechanism by which the pyramidal cell learns the patterns by strengthening

the excitatory conductances. The responses to the input patterns were determined by calculating

the inner products of input and weight vector (here called the dendritic sum) in the ANN (Figure

3.7A) and by measuring the somatic EPSP amplitudes in the neuronal model (Figure 3.7B). Again,

a s/n ratio was used to measure the capability of both models to discriminate stored and novel

patterns, shown in Figure 3.7.

Figure 3.7 � Response distributions for novel and stored patterns (left and right distributions re-
spectively). A. The ANN response is calculated by the sum of synaptic weights associated with active
inputs (as shown in Figure 3.4). B. The CA1 pyramidal cell response is given by the somatic EPSP
amplitudes. For both models, the pattern recognition performance is measured by the s/n ratio given
on the top of each graph. Modi�ed from Graham [18].

The results found by Graham showed that pyramidal cells could operate as an associative

memory and that their pattern recognition performance was robust even in the presence of many

sources of noise. However, the relevant part of his work was the pattern recognition model which

I used as a basis of my model for the exploration of dendritic morphologies for pattern recognition

(presented in Chapter 6).

3.4 Conclusion

To start my search of optimal morphologies for pattern recognition, I �rst had to study the fun-

damental concepts behind learning in neuronal systems. It is widely believed that learning and
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memory in the brain are based mainly on long-term changes in the strength of synaptic connections.

Based on this assumption, I started my studies of pattern recognition by studying the types of

long-term synaptic plasticity used in this work: long-term depression and long-term potentiation.

Based on these two types of synaptic plasticity, I then described the learning rules used in the

pattern recognition models studied here.

I �rst presented an LTD learning rule, which was used in studies of pattern recognition in

cerebellar Purkinje cells. For this learning rule, the ANN and compartmental PC model learned

input patterns by depressing the synaptic weights. In the studies by Steuber and collaborators,

presented in Section 3.3.1.1, the synaptic weights were decreased by half each time a pattern was

learned. However, as previous experiments have shown [49, 82], this could result in unrealistically

small values. So in my work a new learning rule was tested where the synaptic weights were

decreased to a �xed lower bound or saturation value. The results of these experiments are presented

in the next chapter (Chapter 4).

The second learning rule, based on LTP, was used in previous pattern recognition simulations

of a CA1 pyramidal model. In the LTP learning rule, the patterns presented to the ANN and

compartmental pyramidal cell model were learned by strengthening the synaptic weights by adding

a constant value. For the pattern recognition model implemented in my exploration of dendritic

morphologies, presented in Chapter 6, this LTP value was equal to one, which means that for each

active input of each pattern the synaptic weight was incremented by one. The results of all of

these studies are presented later in Chapters 7 and 8.

It is important to notice that the PC model used a gap (pause) between the spikes after

pattern presentation to encode the pattern recognition. This makes the background activity an

import feature of the model, as without a continuous level of activity, the pause could not be

measured.



Chapter 4

E�ect of Saturating Synaptic Plasticity and

Inhibitory Plasticity

4.1 Introduction

The original study of pattern recognition in the cerebellar Purkinje cell (PC), explained in the

previous chapter (Section 3.3.2.1), used a simpli�ed learning rule. This LTD learning rule was

implemented by decrementing the synaptic weight by 50% for each active synapse each time a

pattern was learned. As this oversimpli�cation could result in unrealistically small values of the

weights [49, 82], I decided that one of the �rst aims of my research should be to investigate the e�ect

of LTD saturation in the PC model. For this analysis, all synapses that received an active input

during pattern storage were decreased to a constant value. This saturation or lower bound value of

the synaptic weight was then kept constant and was una�ected by further pattern presentations.

So, if a synapse changed at all it was immediately set to the saturation value, which therefore

acted as a lower bound on all the synaptic weights, e�ectively implementing one-shot Hebbian

learning. This learning rule was supported by experimental evidence in cerebellar Purkinje cells of

rats which shows that once the saturation value was achieved, synaptic weights would not change

any longer [49]. For example, the initial weight of all synapses was one and a saturation value of

0.5 or 0.6, etc. was tested. The results of this new LTD learning rule are presented in Section 4.2.1.

Another issue which was not covered in the previous research was the e�ect of LTD at the

synapses between inhibitory interneurons and PCs. As LTD of inhibitory synapses can be induced

when the PC receives coincident CF input [49], it could potentially counteract the e�ect of the

depression of the excitatory PF synapses. Hence, I studied the e�ect of LTD of the inhibitory

synapses on pattern recognition in the PCs models; the results are presented in Section 4.2.2.

The last point discussed in this chapter concerns the complexity of the PC model simulations.

33
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Firstly, the pattern recognition simulations in the PC model could take a long time, varying from

days to weeks, depending on the number of parameters being analysed. Secondly, the original

PC model was a very complex model, including 4550 compartments, which were divided into

four di�erent types with distinct morphological and passive properties as well as di�erent sets

of ion channels. Thus, the large number of variables involved in the model description made it

di�cult to �nd the relationship between the neuronal morphology and performance, which is the

main focus of this research. Therefore, to achieve quicker results and have a better understanding

of the morphological properties related to the pattern recognition performance, a reduced PC

compartmental model was used. This reduced model and the results obtained for it are presented

in Section 4.3.

4.2 E�ect of Synaptic Plasticity Constraints on Pattern Recognition in

the Cerebellar Purkinje Cell

4.2.1 LTD Saturation at Excitatory Synapses

In my research into the e�ect of synaptic plasticity at excitatory synapses, I initially investigated

two essential parameters involved in cerebellar pattern recognition: LTD saturation and the number

of active PFs. Firstly, to study the e�ect of LTD plasticity at excitatory synapses, I varied the LTD

saturation value over a range of values from zero to 0.8, where zero represented that the synapses

were silenced completely and 0.8 represented that the synaptic weight was decreased from 1 to 0.8.

For this experiment, I used the same numbers of active PFs (1000), which represents 0.7% of the

total number of PF inputs (147,400), and PF patterns (100 novel and 100 stored) as in previous

work [66]. Using an ANN driven by the new LTD learning rule (explained in Section 3.3.1.1) and

the PC model where the duration of pause was considered the relevant response feature (explained

in Section 3.3.2.1), the performance of each model was calculated by averaging their s/n ratio,

where 10 di�erent sets of patterns were presented for each models. Figure 4.1 show the results for

the ANN (A) and PC model (B) where the LTD saturation value is given on the x-axis and their

pattern recognition performance is presented on the y-axis.

From these results, we can see that the ANN was insensitive to the amount of LTD induced

(Figure 4.1A). In contrast, the pattern recognition capacity based on the duration of pauses in the

PC model improved when the LTD saturation value decreased, �nding an optimal performance

when the synaptic weights of active PFs were set to zero (Figure 4.1B). The relative performance

of the ANN and the PC model to the amount of LTD induced are compared in Figure 4.1C. While

the ANN was una�ected by varying the amount of LTD, increasing the LTD saturation value to
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Figure 4.1 � Pattern recognition performance of the ANN and PC model for a range of LTD satura-
tion or lower bound values. The performance was evaluated by calculating the mean s/n ratio for the
ANN (A) and the PC model using the pause duration (B), averaging over 10 di�erent sets of patterns.
The relative decreases in s/n ratio are compared in (C), showing that the PC model is more sensitive
to the LTD saturation value than the ANN. Error bars indicate standard deviation (SD).

0.8 in the PC model reduced the s/n ratio down to 0.4 ± 0.4% (n = 10) of the maximal value

obtained by switching o� the synapses completely. For LTD saturation values below 0.5, the PC

model performed as well as or better than the previous model with a non-saturating learning rule,

for which the average s/n ratio was around 15 [66].

The reason for the di�erence in sensitivity of the ANN and the PC model to varying amounts

of LTD became apparent when the mean responses of the two models to stored and novel patterns

were plotted against the LTD saturation value (Figure 4.2). In the PC model, increasing LTD

saturation values reduced the di�erence in pause duration between stored and novel patterns, with

standard deviations that were a�ected to a much lesser extent (Figure 4.2B). This led to the drastic

reduction in s/n ratio for weak LTD shown in Figure 4.1. In the ANN, the di�erence between the

mean responses to stored and novel patterns was a�ected as well by the LTD saturation value, but

the standard deviation of the responses to novel patterns decreased with increasing LTD saturation

values (Figure 4.2A). Based on Equation 3.1 (given in Section 3.3 on page 26), the constant s/n ratio

of the ANN in the presence of varying amounts of LTD can be explained by a linear relationship
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between the squared di�erence of the mean responses to stored and novel patterns (µs − µn)2 and

the variance of the responses to novel patterns σ2
n. In other words, as the separation between the

novel and learned patterns decreases so does the variance of the response to the novel patterns. In

fact, it can be shown analytically that the s/n ratio of the ANN can be approximated as

S/N = 2
A(S −D)

D
(4.1)

where S is the total number of synapses, A is the number of active synapses per pattern and D is

the number of depressed synapses after learning, which can be approximated as

D = S(1− (1− A

S
)L) (4.2)

where L is the number of learned patterns (R. Maex, personal communication, 3 Feb 2009). For

analytical demonstration, see Appendix A. So, for the con�guration of the ANN used here, S =

147, 400, A = 1000, L = 100, D will be approximately 72,779, and the s/n ratio will be 2050

which correspond to the number shown in Figure 4.1A. It is important to note that the s/n ratio is

independent of the actual value of the synaptic depression. By contrast, in the PC model the s/n

ratio is dependent on the actual value of LTD saturation as the variance of the response to novel

patterns does not change very much while the mean di�erence between the responses to learned

and novel patterns decreases.

Figure 4.2 � Relationship between the LTD saturation value and the mean responses to learned and
novel patterns in the ANN and the PC model using pause duration as response feature. Although
the di�erence between the mean responses to stored and novel patterns decreases with increasing
LTD saturation values in both cases, in the ANN the variance of responses to novel patterns also
decreases. This results in s/n ratios in the ANN that are independent of the LTD saturation value.
Same simulation parameters as in Figure 4.1. Error bars indicate SD.



CHAPTER 4. EFFECT OF SATURATING SYNAPTIC PLASTICITY AND INHIBITORY

PLASTICITY 37

In a second experiment, I measured the e�ect of variation in the number of active PFs. The

range of active PFs was varied from 500 to 5000, which correspond to 0.3 to 3.4% of all PF inputs

respectively (147,400), where the same synaptic conductance was used regardless of the number of

active PFs. The LTD saturation values were varied over the same range as in previous experiments

(from zero to 0.8). Comparing once more the e�ects on pattern recognition by the ANN and

the PC model based on pause duration, we can see from Figure 4.3A that the ANN showed a

worse performance for a higher number of activated PFs, although the LTD factor did not a�ect

its performance. However, in the PC model, lower LTD factors produced better s/n values for

pattern recognition, especially in an optimal range of active PF numbers between 1000 and 2000

(Figure 4.3B). Interestingly, a worse performance was found in the PC model when compared to

the ANN for the LTD saturation value of zero with a low number of active PFs (500). This can be

explained by the fact the synaptic conductances were not scaled when varying the number of active

PFs. A further experiment has shown that in the case of 500 active PFs, the best performance

was achieved (s/n~38) when the synaptic conductance was doubled from the original conductance

value (0.7 nS), which was set initially for 1000 active PFs (results not shown here).

Figure 4.3 � Pattern recognition performance of the ANN (A) and PC model (B) using pause
duration as response feature. The numbers of active PFs simulated were: 500, 750, 1000, 1250, 1500,
2000, 2500, 3000, 3500, 4000, 4500 and 5000. The colour represents the resulting average s/n ratio
(10 trials) for each combination of a number of active PFs for each pattern (indicated on the x-axis)
and an LTD saturation value (y-axis).
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4.2.2 LTD at Inhibitory Synapses

LTD of inhibitory synapses can also be induced when the PC receives coincident CF input [49] and

this could potentially counteract the e�ect of the depression of the excitatory PF synapses. Thus, to

investigate the e�ect of saturating LTD at inhibitory synapses, the original PC model described in

Section 3.3.2.1 was provided with an inhibitory input by activating a variable number of inhibitory

synapses onto the soma and main dendrite. To simplify the implementation, a single inhibitory

signal was introduced at the soma. The inhibitory input followed the synchronous activation of

excitatory PFs synapses with a delay of 1.4 ms [49]. The ratio of inhibitory current to excitatory

current was measured as the ratio of the mean inhibitory postsynaptic current (IPSC) peak to the

mean excitatory postsynaptic current (EPSC) peak when the model was voltage clamped to -40

mV. I initially used an inhibition/excitation ratio of one, which is in the range of experimentally

observed data from cerebellar slices [49]. Then, I simulated LTD at the inhibitory synapses and

evaluated the pattern recognition performance of the PC for di�erent numbers of patterns. The

results are presented in Figure 4.4 which shows on the x-axis varying numbers of patterns tested.

For example, in the �rst set there are 40 patterns in total, consisting of 20 stored and 20 novel

patterns.

In this experiment, I did not train the inhibitory synapses explicitly. Instead the e�ect of

inhibitory LTD was examined by depressing the IPSP amplitude to a range between 25% and 75

% of the pre-depression baseline. The simulations were con�gured with four di�erent setups (see

Figure 4.4): no depression (100%), and values of 75%, 50% and 25% depression. Moreover, this

degree of depression was applied both separately and together for stored and novel patterns. For

example, the dark blue bars in Figure 4.4 represent depression down to 0% of the original value, in

other words, no inhibitory signal at all. The light blue bars represent the full value of the inhibitory

signal, 100% of the original value [49].

From the results presented in Figure 4.4, it is possible to see that the pattern recognition

performance of the PC model was una�ected by the presence of inhibitory LTD, even in the

extreme case where the inhibitory plasticity was restricted to stored PFs patterns.

4.3 Reduced Purkinje Cell Model

To speed up the pattern recognition simulations, a reduced version of the original PC model was

used. This reduced model, available from the GENESIS simulator library [7], was composed of

460 compartments (142 spines). This represented approximately 10% of the original model size,

which had 4550 compartments (1,474 spines), as shown in Figure 4.5. To compensate the model
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Figure 4.4 � The e�ect of LTD at inhibitory synapses on pattern recognition. Three di�erent
inhibitory synaptic plasticity rules were applied for varying numbers of patterns, from 40 to 300
where 40 patterns means 20 stored and 20 novel patterns (x-axis). The �rst bar of each graph shows
the s/n ratio when no inhibition is applied for either stored and novel pattern, resulting in the best
pattern recognition performance. The other bars represent cases with inhibition present, with from
left to right: plasticity for both stored and novel patterns, plasticity for stored patterns only and no
plasticity for either type of patterns, using the original inhibitory conductances. Error bars indicate
SD.

reduction, all the parameters that in�uenced the pattern recognition performance, such as the

number of active inputs per pattern and the size of patterns, were proportionally reduced.

A range of simulations were performed using this reduced model, varying for example, the LTD

saturation value, the number of patterns presented to the model, among other model parameters.

The results achieved for the variation of LTD saturation are presented in Table 4.1, where both the

original LTD learning rule (with no saturation value) and new learning rule (where the LTD value

saturated at lower bound value after the �rst active input in a pattern had been learned) were used.

The results obtained for the reduced model were then compared to the original one, calculating the

neuronal performance for the corresponding ANN and the three spike features studied previously,

length of pause, latency of �rst spike and number of spikes after the pattern been presented. For

the duration of pause as response feature, which was the best criterion for pattern recognition in

the PC model, in all cases but one (LTD saturation value of 0.5), the reduced PC model exhibited

a worse performance when compared to the original full sized model. Because one of the di�erences
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Figure 4.5 � Reduced Purkinje cell model. This model had 176 dendritic compartments, which
represents 10% of the original model size (to compare models, see Figure 2.11b on page 20).

between the full and reduced PC models was the absence versus presence of spontaneous activity,

I �rst checked whether this di�erence could account for the decline in s/n ratios. This experiment

is described in the next section.

Table 4.1 � Comparing the performance of the ANN, the original full sized PC model and the
reduced version for a range of LTD saturation values. For each PC model, the pattern recognition
performance was calculated for the three spike response features studied previously in the original PC
model (explained in Section 3.3.2.1): pause, latency and number of spikes. The pattern recognition
performance was calculated by averaging the s/n ratio over the response for stored and novel patterns,
using 10 di�erent sets of patterns. The parameters used in each model are (original/reduced): number
of PFs = 147400/14200; number of active PFs per pattern = 1000/100; number of stored patterns =
100/10. The LTD value marked as * corresponds to the original learning rule where the LTD did not
saturate (explained in Section 3.3.2.1).

4.3.1 E�ect of Spontaneous Activity in the Reduced Purkinje cell model

Another set of experiments done in the reduced Purkinje cell model was to analyse the e�ect of

spontaneous activity on pattern recognition performance. The reduced PC model was originally

characterised by spontaneous activity, as opposed to the original model which was silent if no

background activity was present. In the previous experiment (Table 4.1), I compared the perfor-

mance of the reduced PC model with the original model. However, the di�erence between both

models in terms of spontaneous activity did not allow a fair comparison between them. Therefore,
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to compare these models, a new version of the reduced PC model was developed which did not

exhibit spontaneous activity. To achieve this, the reduced model was hand tuned by changing

its leak reversal potential until the spontaneous activity ceased. The results for this new reduced

model (without spontaneous activity) are shown in Table 4.2, where it is possible to see that the

pause feature exhibited very low s/n values when compared to the original reduced model (with

spontaneous activity). From this experiment, it appeared that the reduced PC model was over-

sensitive to small changes in its parameters. Hence I sought a more robust neuron model to study

the e�ect of dendritic parameters on the pattern recognition performance.

Table 4.2 � Comparison between the reduced PC model with and without spontaneous activity,
using di�erent LTD saturation values. The reduced PC model without spontaneous activity show
very low s/n ratios for pause duration as a response feature, which means that the model is unable
to use pause duration to distinguish between novel and learned patterns. The PC models with and
without spontaneous activity give similar low values for other features of the spike response (latency
and number of spikes after presenting a pattern), the only exception being the number of spikes in
the not spontaneously active model with a LTD saturation value of 0.0, which also resulted in good
pattern separation (s/n = 12.01). These simulations used the same parameters as the reduced PC
model in Table 4.1.

4.4 Conclusion

Previous computer simulations and experiments in cerebellar slices and awake behaving mice sug-

gested that the cerebellum can use a novel neural code that is based on the duration of silent

periods in neuronal activity [66]. These simulations used a complex multi-compartmental model

of a cerebellar Purkinje cell that had been tuned to replicate a wide range of behaviours in vitro

and in vivo [13, 14], but they applied a simpli�ed LTD learning rule, which involved dividing the

synaptic weights of active PF inputs by two every time a PF pattern was learned. This could result

in very small synaptic weights and does not �t experimental data on LTD induction in cerebellar

slices, where the mean AMPA receptor conductances saturate and are hardly ever depressed to less

than 50% of their pre-depression baseline values [49, 82]. Moreover, the previous simulations did

not include the plasticity at synapses between inhibitory interneurons and PCs that has recently

been characterised [49]. Given these points, I decided to study the e�ect of inhibitory synaptic

plasticity and saturating LTD in the complex PC model. I found that the ability of the PC model
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to discriminate between learned and novel PF input patterns was una�ected by the presence of

inhibitory plasticity for a wide range of parameter values. However, the pattern recognition per-

formance of the PC model was very sensitive to the value at which LTD saturated. In contrast

to a corresponding ANN, which was una�ected by the level of LTD induced, the performance of

the PC model was improved by lower LTD saturation values. The best performance resulted from

LTD saturation values of zero, which corresponds to silencing the PF synapses completely. Inter-

estingly, large numbers of silent PF synapses have been observed by monitoring microscopically

identi�ed PF�PC connections in cerebellar slices [29]. My simulation results indicated that the

discrepancy between the existence of these silent synapses and the apparent saturation of LTD

in induction experiments needs to be resolved to understand the connection between LTD and

cerebellar learning.

In an attempt to speed up the pattern recognition simulations in the PC model, I decided

to use a reduced version of the original model which had approximately 10% of the size of the

original model. The results obtained for this reduced model did not reproduce the original PC

model performance, which could be due to the reduced model being spontaneously active, while the

full model was not. An attempt was made to remove the spontaneous activity in the reduced PC

model to allow for a fair comparison with the original model. However, once again the results found

were unsatisfactory, as the reduced model showed a very poor performance when its spontaneous

activity was removed. Hence, after many failed attempts trying to tune the reduced PC model to

behave as the original full-sized model, I concluded that this model could not be used in further

experiments. As a result, I started to look for di�erent neuronal models on which to carry out

my research into pattern recognition. As the Purkinje cell model and other biologically realistic

models had very complex morphologies, I decided to look for models with simpler morphologies,

which are discussed in the next chapter.



Chapter 5

Review of Dendritic Morphology and

Neural Physiology

5.1 Introduction

In my previous experiments, a reduced Purkinje cell model was used to investigate the e�ects of

synaptic plasticity on pattern recognition. However, as shown in the previous chapter, the results

obtained from this reduced version did not reproduce the results from the full-sized model; hence

the reduced Purkinje cell could not be used for further experiments. As the reduced Purkinje cell

was not a reliable model and the full-sized model had a very complex morphology to analyse the

e�ect of its �ring pattern on pattern recognition performance, I decided to modify the project di-

rection using simpler generic morphologies. The morphologies chosen were based on previous work

from van Ooyen and collaborators entitled �The e�ect of dendritic topology on �ring patterns in

model neurons�[76]. In this work, simple dendritic morphologies, built with the same electrophys-

iological properties but with di�erent topological arrangements were shown to produce di�erent

�ring patterns. This model was not based on any real neuronal morphology, but it was based

on an abstraction of dendritic morphology. The abstract model assumed all morphologies were

binary trees with a simpli�ed structure, including all dendritic segments being the same length.

The authors also restricted the model to produce morphologies with the same number of terminal

segments, just varying their dendritic topology, that is the way the dendritic segments are con-

nected to each other. Because of the simplicity of the morphologies produced by this model, they

were chosen to be used as initial morphologies in my search for optimal morphologies for pattern

recognition. This model is presented in more detail in Section 5.2.

After I de�ned the type of morphologies used as the starting point of this research, my next

step was to �nd systematic ways to generate di�erent examples of valid tree shapes. To do this, a
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critical analysis of the existing tree morphology generation schemes was performed. Each of these

morphology generating algorithms was evaluated with respect to some predetermined requirements,

which are described in Section 5.3.1. These requisites were formed keeping in mind the goal of

generating morphologies to perform pattern recognition. A full description of this analysis is given

in Section 5.3. Finally, a summary of the features chosen from the algorithms tested is presented

in the conclusion of this chapter.

5.2 Simple Dendritic Morphologies

In this section, I present the study by van Ooyen et al. [76] about how di�erent dendritic morpholo-

gies can produce di�erent �ring patterns using a simple neuronal model. In this work, the authors

described a model composed of a set of multi-compartmental neuronal morphologies with active

conductances. This model, named from this point on as van Ooyen's model, is presented in detail

in the next section as it served as basis for my evolutionary algorithm discussed later in Section

6.4. Moreover, �ve di�erent morphometrics are presented as they were used to compare dendritic

morphologies. The �rst two metrics described were presented with van Ooyen's model and widely

used in the literature (Section 5.2.2): the asymmetry index and the mean path length. The third

one was based on the mean electrotonic path length de�ned in van Ooyen's most recent publication

[75]. The last two metrics used were the mean depth, which was de�ned as a simpli�ed version of

the mean path length; and the variance of depth, which was calculated using the variance of each

normalized dendritic path. These �ve metrics are discussed in the Section 5.2.2.

5.2.1 Van Ooyen's Model

The idea behind the research by van Ooyen and collaborators was to investigate how neuronal mor-

phologies with the same membrane properties can generate di�erent �ring patterns when varying

only the dendritic topology. All neuronal models they studied have the same membrane properties

(see Table 5.1) as well as the same number of terminal points (namely 8). The axo-somatic com-

partment was a cylinder with a length and diameter equal to 20 µm, and all dendritic segments

were cylinders with the same length (varied in each experiment) and a diameter equal to 5 µm.

The only di�erence found between the studied morphologies was the dendritic topology.

The ion channel conductances used were based on those of the two-compartmental model by

Mainen and Sejnowski [42]. This model was written in the Neuron programming language [22] and

can be freely downloaded fromModelDB (http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=2488).

The only di�erence is found in the somatic conductance densities which are 10 times smaller than
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Table 5.1 � Passive properties used in van Ooyen's model [76]. The membrane properties are based
on Mainen and Sejnowski's two-compartmental model [42].

Membrane Properties Reversal Potentials

Cm 0.75 µF/cm2 ENa 60 mV
Rm 30 kΩcm2 EK -90 mV
Ra 150 Ωcm ECa 140 mV

ELeak -70 mV

in the original model to compensate for the larger axo-somatic compartment used in van Ooyen's

model (see conductances in Table 5.2).

Table 5.2 � Ion channel conductances from van Ooyen's model. These conductances are expressed
in pS/µm2.

Conductance Symbol Soma Dendrite

Fast Na+ conductance gNa 3000 15
Fast non-inactivating K+ conductance gKv 150 -

Slow voltage-dependent non-inactivating K+ conductance gKm - 0.1
Slow Ca2+-activated K+ conductance gKCa - 3

High voltage-activated Ca2+ conductance gCa - 0.3
Leak conductance gLeak - 0.33

To investigate the �ring pattern generated by each morphology, van Ooyen et al. used a set

of binary dendritic trees each with 8 terminal points. The structure of these trees followed the

de�nition given by van Pelt and Verwer [79], named ambilateral tree types. The ambilateral tree

types are de�ned by Toroczkai [73] as "a set of trees whose elements cannot be obtained from each

other via an arbitrary number of re�ections with respect to vertical axes passing through any of the

nodes on the tree". One way to ensure that a set of binary trees is ambilateral is to make the trees

right heavy. In other words, at any vertex the right subtree has at least as many leaves as the

left subtree. These tree types constitute a subset of two-dimensional topological tree types, which

describe the whole range of binary trees [79]. For example, for trees with �ve terminal segments, the

total number of possible di�erent 2D-tree types is 14, which can be divided into three ambilateral

types, the right-heavy representatives of which are shown in the right-side column of Figure 5.1.

The total number of ambilateral-tree types with n terminal segments is given by the recurrent

expression:

Nn =
1

2

(
n−1∑
r=1

NrNn−r + (1− ε (n))Nn/2

)
(5.1)

where N1 = 1, ε(n) = 0 for even n and ε(n) = 1 for odd n. Using this equation, it is possible to

calculate the total number of trees with 8 terminal segments, which gives the set of 23 trees used

in van Ooyen's model (see Figure 5.2).
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Figure 5.1 � 2D and ambilateral-tree types with 5 terminal segments. The left side shows the 2D-
topological tree types, covering the whole range of possible trees with 5 terminal points (14 trees). On
the right side, all the possible ambilateral-tree types are shown. Modi�ed from van Pelt and Verwer
[79].

Figure 5.2 � Morphological trees of van Ooyen's model. All possible ambilateral-tree types with 8
terminal points are shown. These trees are electrophysiologically unique, as each of them represents
a set of the 2D-tree types (as shown in Figure 5.1). The numbers presented below the trees are
asymmetric index (top) and mean path length (bottom) with the segment length equal to 1 µm.
Both are discussed in the next sections. From van Ooyen et al. [76].

The neurons in the van Ooyen model were stimulated by injecting a 100 pA current into

the axo-somatic compartment and the �ring pattern was also recorded at the soma. Figure 5.3

shows examples of output patterns, where a fully symmetric and fully asymmetric morphology are

compared, using two di�erent dendritic lengths. These results show that for trees with the same

number of terminal segments and total dendritic length, the �ring pattern can vary from single

spikes to bursts, by only varying the tree topological arrangement (see graphs in �rst column of

Figure 5.3). They also show that for the same topological tree, it is possible to obtain di�erent

outputs when increasing the total dendritic size (compare �ring patterns for 1150µm and 2100 µm

total dendritic tree length).

The results obtained by van Ooyen and his collaborators demonstrate that tree topology and

dendritic length are important neuronal morphology features to be studied, as regards to �ring

pattern analysis.
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Figure 5.3 � Example of �ring patterns I obtained for fully symmetric (upper traces) and fully
asymmetric (lower traces) trees using van Ooyen's morphology model. The output patterns from
both neurons were generated with Neuron simulator and compared for trees with larger dendritic
length (right traces) and smaller ones (left traces). These graphs reproduce the results found by van
Ooyen et al., 2002 (see original results in Figure 2 of [76]).

5.2.2 Morphological Tree Metrics

To study how the dendritic morphology a�ects the �ring pattern, I needed to analyse di�erent

dendritic topologies. In the next sections, �ve di�erent metrics are presented which enabled me to

distinguish dendritic trees with di�erent topologies.

5.2.2.1 Tree Asymmetry Index

This metric was de�ned in 1992 by van Pelt et al. [78]. The asymmetry index is simply the mean

of the partition asymmetries of all vertices in the tree. So, the index of asymmetry At for a given

tree αn, with n terminal segments and n− 1 bifurcation points, is de�ned as:

At(α
n) =

1

n− 1

n−1∑
j=1

Ap(rj , sj) (5.2)

The partition asymmetry Ap at a given vertex j is de�ned as :

Ap(rj , sj) =
|rj − sj |
rj + sj − 2

(5.3)

where rj and sj are the number of terminal segments in the two subtrees of the vertex j and

Ap(1, 1) is equal to zero. Given this equation, we �nd that the asymmetry index is zero for the

most symmetric tree and close to one for the most asymmetric tree (see top index in Figure 5.2).
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5.2.2.2 Mean Path Length

Van Ooyen and collaborators use the sum of all dendritic path lengths from the soma to the terminal

points to calculate the mean path length of a tree [76]. For the purpose of this work, I assumed

that the mean path length is calculated over all dendritic segments instead only for terminal ones.

This is required as the mean path length needs to consider the location of all synapses, which are

uniformly distributed over all dendritic segments (more details are presented later in Section 7.2).

So, for a given tree αn with n terminal segments, the mean path length Pt is here de�ned as:

Pt(α
n) =

1

2n− 1

2n−1∑
i=1

Pi (5.4)

where Pi is the total length of the dendritic path from the ith segment to the soma. See examples

of mean path length calculated for trees with 8 terminal points in the bottom indices of Figure 5.2.

5.2.2.3 Mean Electrotonic Path Length

Mean electrotonic path length is de�ned by van Elburg and van Ooyen [75] as the dendritic path

length from each terminal segment to the soma. However, as de�ned in the mean path length, I

calculate the mean electrotonic path length using the dendritic path from each dendritic segment

to the soma, as I am interested in the location of all synapses instead only terminal segments.

So, to calculate the electrotonic path length, each dendritic segment i which has its length `i

is normalized by an electrotonic length constant λi, which is de�ned as:

λj =

√
dirm
4ra

(5.5)

where di is the diameter of the dendritic segment i, rm is the membrane resistance and ra the axial

resistance of the cell. So, the normalised electrotonic length Λi is given as:

Λi =
`i
λi

(5.6)

To calculate the mean electrotonic path length (MEP) for the dendritic tree with n segments,

the following equation is used:

MEP (αn) =
1

2n− 1

2n−1∑
i=1

Λi (5.7)

where Λi is de�ned as the electrotonic lengths in the path from the dendritic segment i to the

soma.
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5.2.2.4 Mean Depth

This metric is calculated similarly to the mean path length, where the mean is computed over all

dendritic paths. However, instead of using the actual dendritic length, the compartmental length

is normalised and assumed to be equal to 1. This means that the mean will be calculated using

the number of steps required to reach each dendritic synapse instead of its actual path length, as

calculated in Equation 5.4.

Following this concept, the lower index previously shown in Figure 5.2 for van Ooyen's model

in fact shows the mean depth of each tree, which is equivalent to the normalised mean path length

presented in his model.

5.2.2.5 Variance of Depth

Variance of depth is de�ned as the variance of the dendritic path of each dendritic segment using

the normalised compartmental length (1). This metric was introduced as it correlates with the

calculation of the neuronal performance, which involves the variance of the stored and novel pat-

terns (as previously explained in Section 3.3.1.1). Using a large set of trees with 22 terminal points

(later discussed in Section 6.3.2), it is possible to see that this metric di�ers from the mean depth,

as shown in Figure 5.4.

Figure 5.4 � Plotting mean depth against variance of depth. This graph was plotted using 1, 721, 998
trees with 22 terminal points each. As variance of depth is not completely correlated with mean depth
metric, this fourth metric was introduced to evaluate pattern recognition performance in the di�erent
neuronal morphologies studied.
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5.3 Morphological Tree Generation Algorithms

5.3.1 Algorithm Requirements

Currently in the literature it is possible to �nd many algorithms to generate morphological tree

structures (for references see [4, 67, 71, 70]). Most of these algorithms are designed to make the

resultant trees look biologically realistic. However, since the visual appearance of the neuronal

trees does not make any di�erence to the performance of neurons to act as associative memories

and pattern recognisers, this feature is not relevant to this research. As a result, virtually none of

the current tree generation tools available in the �eld were appropriate for my work.

Here in this section, I present several tree generation algorithms found in the literature that

I have tested. Most of these existing algorithms have two stages: �rst, an algorithm to generate

morphological trees and then, an evolutionary algorithm to optimise the �tness of the population.

In order to generate and search for suitable morphologies for my research, the algorithm must meet

a number of requirements as described below:

I. Maximise the number of morphologies generated: this is the main requirement which the

algorithm must obey. The algorithm selected should be able to maximise the number of trees

generated for any given number of terminal points. Ideally, it should be able to generate all

possible tree morphologies (but see requirement II below), so that my analysis can cover the

whole search space. As the main goal of this research is to �nd the implications of neuronal

morphologies for pattern recognition, I am interested in testing the largest possible number

of achievable morphologies.

II. Generate electrophysiologically unique trees: the selected algorithm should ideally only gen-

erate tree structures that are electrophysiologically unique. This requirement means that

the resultant neurons should not produce an identical �ring pattern due to the similarity of

their equivalent electric circuits. Because the software packages for simulating the electri-

cal properties of neurons (like Genesis and Neuron) treat trees in essence as one-dimensional

(branching) cable structures, only the branching pattern is important and the rotation angles

of branches can be ignored. Still, di�erent branching sequences can generate tree structures

that are electrically identical mirror images. So, the algorithm should avoid such duplications

and produce a set of ambilateral trees rather than 2D morphological ones (Section 5.2.1).

III. Automatically generate morphologies: another prerequisite for the algorithm is that it should

be able to generate automatically all the trees containing a certain number of branch points,

or terminal points, for illustration and initial testing purposes. Tables listing the numbers of
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di�erent trees with a given number of branching points are available from the literature [78],

and the algorithm should be able to produce them all automatically and without duplication.

IV. Interact with evolutionary algorithms: an essential requirement for my purposes is that the

algorithm must interact with an evolutionary algorithm to search the possible tree morpholo-

gies, which also implies that the algorithm must allow a suitable tree representation for genetic

operations. This would allow the selected genetic algorithm to create new morphologies, us-

ing genetic operators like crossover and mutation over the genotypes. The new trees resulting

from these operations should also respect the other requirements: they should have the same

given number of terminal points (requirement VI) and ideally not be electrophysiologically

equivalent to previous ones, within the same generation (requirement III).

V. Total control over the morphologies generated: this is another essential requirement, which

means that stochastic methods would not be suitable for the actual tree generation algorithm.

Any algorithm with a stochastic element would not produce a unique tree from a given

genotype (possibly also violating requirement II) and would make allocating a �tness value

to the genotype problematic. Indeed, multiple runs would be required to average the �tness

over a su�cient number of sample trees. In summary, what the chosen algorithm should

have is a one-to-one mapping between the phenotype and genotype. Hence, a deterministic

algorithm should be used.

VI. Generate binary trees with a �xed number of terminal points m: This representation keeps

the size of the resulting trees constant and consequently allows a meaningful comparison

between them. Such trees always have m-1 branch points and 2m-1 branch segments, due to

the fact that these trees have a soma. Note that there is no requirement in this research for

the selected algorithm to generate morphologies that look like real neurons, as most of the

algorithms that generate morphological trees described at the next section aim to do.

The following section presents the description of each algorithm found in the literature which I

tested, including details of their implementation. This is followed in each case by a section named

Problems which explains the reasons why the algorithm presented is not suitable for the proposed

research.



CHAPTER 5. REVIEW OF DENDRITIC MORPHOLOGY AND NEURAL PHYSIOLOGY 52

5.3.2 Description of the Algorithms

5.3.2.1 EvOL-Neuron

EvOL-Neuron is a tool for generating virtual neurons written by Torben-Nielsen [69, 70]. This tool

uses L-System rules to generate morphologies. An L-System is a mathematical formalism used

originally to model the growth processes of plants [38, 53]. This system is composed of rules and

axioms. Axioms de�ne the initial state that is the branch start point. Rules de�ne how branches

grow from the axioms iteratively. An example of axioms and rules is shown in Figure 5.5.

Figure 5.5 � Example of morphologies I generated with EvOL-Neuron. These neurons were generated
following the L-system rules given above them, based on the morphologies presented by van Ooyen
[76]. Note that the rules to generate both morphologies are quite analogous, just varying in their
last part: for the symmetric tree (on the right), the rule B is called at the end of each rule to make
the tree grow its left branches as well. To generate the asymmetric tree (on the left), 7 cycles were
needed; for the symmetric tree, just 3 cycles were needed.

EvOL-Neuron uses a set of rules based on a simple alphabet. Three di�erent symbols are

used: F(x) to move forward x times, R(x) to rotate by x degrees and E(x) to elevate the angle

by x degrees. In addition, the symbols [ ] are used to determine when a new branch starts and

ends, respectively. Furthermore, the number of branches is determined by the number of times

(cycles) the rule is called. To generate simple tree structures like those shown in Figure 5.5, EvOL-

Neuron needs just one axiom (axiom_A) and two rules (A and B). However, to generate complex

morphologies, which look like real neurons, a stochastic component is needed [70].

Problems

One focus of EvOL-Neuron is to generate arti�cial neurons with morphologies close to real ones.

To achieve this, the algorithm uses a stochastic component (a random seed), which makes it

inappropriate for my purposes, because I wish to have full control over the generation process (see

requirement V). Another problem found is that this algorithm does not allow me to keep control
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of valid trees. My goal is to restrict the generation process to result in trees that have a certain

given number of terminal branches, since I want to compare trees of identical sizes (see requirement

VI). As shown above, two neurons with the same number of branch points can require di�erent

numbers of cycles in EvOL-Neuron. Moreover, the algorithm generates many unwanted neuronal

structures, such as duplicated or mirror-symmetric morphologies, which violates requirement II.

5.3.2.2 L-Neuron

This model, proposed by Ascoli and Krichmar [4], uses the same L-System syntax as the previous

model. However, the production rules (see Section 5.3.2.1) are replaced by neuroanatomical rules,

which are based on Hillman's approach [21]. These rules allow the model to describe neurons in

terms of �fundamental� parameters, which are expressed by dendritic features like diameter, length,

tapering, and branch ratio and angle. Examples of the morphologies produced by L-Neuron are

shown in Figure 5.6.

Figure 5.6 � Example of morphologies I obtained with L-Neuron. The set of neurons were obtained
using Hillman's algorithm [21]. The parameter values used to generate these neurons are given in
the table. For each parameter, the distribution used is given (column D at table), where k denotes
constants, g Gaussian distribution, u uniform distribution and m mean. The only parameter modi�ed
for each morphology is the random number generator seed, where neuron A uses a seed of 2, B a seed
of 50 and C a seed of 100.

L-Neuron uses a set of parameters to generate a morphological class instead of a single neuron -

for instance, to generate morphological variability among the various neurons in a network model.

To do that, the model reads a list of neuroanatomical parameters and samples them stochastically,

applying statistical distributions (Gaussian or uniform). The result is a list of multiple non-identical

neurons, as can be seen in Figure 5.6.
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Problems

The use of a random seed to generate a morphological class results in a loss of control over the

morphologies generated, which violates requirement V. The need to use a random number as

seed does not allow the model to generate neurons like those shown in Figure 5.5, which are the

types of morphologies aimed for in this work. Another considerable limitation of the model is the

number of neuroanatomical rules necessary to describe a morphological class. This constraint goes

against requirement III, since the algorithm needs to specify a limiting list of values to generate the

morphologies. Additionally, the algorithm infringes requirement II since it is impossible to limit

the rules to produce only electrophysiologically unique morphologies.

5.3.2.3 EvOL-Neuron II

In the �rst version of the algorithm (see Section 5.3.2.1), EvOL-Neuron used an L-System formalism

to generate the neuronal morphologies. In that version, some morphogenetic parameters were used

to validate the morphologies produced. However, in this second version [72], EvOL-Neuron uses

statistical information about morphological features to describe neuronal morphologies. These

features are expressed as the morphogenetic parameters (see Table 5.3) and presented in the form

of density distributions. This algorithm is based on Burke's algorithm [8], which uses a similar set

of parameters as employed by L-Neuron (see Section 5.3.2.2).

Table 5.3 � Parameters used by EvOL-Neuron to generate morphologies. Each parameter is described
following a distribution given in the last column. The symbols used are described by Ascoli et al. [3]:
µ (mean) is the location parameter and σ (standard deviation) is the scale parameter of a Gaussian
distribution; α is the shape parameter and β is the scale parameter of a γ-distribution; U is a uniform
distribution and G is a Gaussian distribution for the initial values given. From Torben-Nielsen and
Stiefel [72].
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This model uses an evolutionary algorithm to optimise neuronal models to perform a certain

computational goal, such as coincidence detection. To generate more realistic neuronal models,

the system generates multi-compartmental models with active dendrites, which incorporate ion

channels (for instance KA and CaT). The �tness function to evaluate the system output is based

on the desired computational function. As an example, the system was tested for input order

detection, as assessed from the amplitude of the compound postsynaptic potential (EPSP) evoked

by the input pattern [72]. The EvOL-Neuron genetic algorithm is explained in Figure 5.7.

Figure 5.7 � Genetic algorithm steps used by EvOL-Neuron II to optimise neuronal morphologies.
First, the initial population is generated following a set of parameters. Then these parameters are
used to generate the morphologies. After running simulations, the EPSPs are evaluated by the �tness
function and the best individuals are selected. Finally, crossover and mutation are applied to the
selected neurons to restart the GA process. From Torben-Nielsen and Stiefel [72].

Problems

As one of the main objectives of this research is to keep control over all morphologies generated,

this model does not �t with requirement V because it uses stochastic methods to generate the mor-

phologies. Moreover, the distributions employed in this model (Gaussian and Gamma-distribution)

do not allow it to generate the whole range of morphologies aimed at here, disobeying requirement

I. The algorithm described here seeks to produce morphologies that were of a speci�c type with

synapses in a certain region, whereas I want to generate all possible morphologies. Again, limit-



CHAPTER 5. REVIEW OF DENDRITIC MORPHOLOGY AND NEURAL PHYSIOLOGY 56

ing the rules to just produce unique electrophysiological morphologies is problematic, which goes

against requirement II.

5.3.2.4 Stiefel's algorithm

Similar to EvOL-Neuron II, this algorithm described by Stiefel and Sejnowski [67] uses a list

of morphometric parameters and a genetic algorithm to evolve morphologies. One of the main

reasons to consider this algorithm was the absence of a stochastic component, in contrast to the

previous models. Moreover, many parameters are allowed to vary with distance from the soma,

which enhances the number of possible morphologies. Stiefel's algorithm uses 14 morphometric

parameters (see Table 5.4) to encode the genome, obeying requirement IV. As the description lacks

a stochastic component, trees can always be reproduced from the reduced set of 14 parameters.

Table 5.4 � Parameters used by Stiefel model. From Stiefel and Sejnowski [67].

The model is also able to generate neurons in which multiple dendritic trees originate from the

soma, requiring a separate chromosome for each dendrite. The steps from genome to phenotype

are described in Figure 5.8.
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Figure 5.8 � Steps from genome to phenotype encoding in the Stiefel model. From Stiefel and
Sejnowski [67].

Problems

To generate a range of morphologies, the algorithm encodes features of the dendrites using a single

Gaussian function whose parameters (distance of centre from soma and standard deviation) are

part of the genome and can be varied by the genetic algorithm. However, this kind of function does

not allow the algorithm to generate all the possible morphologies with a speci�c terminal degree

(requirement I). Indeed, the constraints that the distance function has a single maximum and

that the same Gaussian distance function speci�es a given parameter in all of the sub-branches

simultaneously, unduly restricts the space of tree morphologies. One example of a neuron that

cannot be generated is the degree-9 tree (a tree with 9 terminal points) given in Figure 5.9. This is

because the Gaussian asymmetry index (see asymmetry graph in Figure 5.8) is used to distribute

the branches to the left and right sides of the tree. To adapt the algorithm for my purposes, it

would need to use a more complicated and �exible set of functions than a single Gaussian. In fact,

to generate this tree an asymmetry function with two maxima is required since the growth of the

tree requires two places where the asymmetry needs to be high. Larger, more complicated, trees
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of the type needed in this research would require a function with many maxima.

Figure 5.9 � Example of a tree that can not be generated by Stiefel's algorithm. The highlighted
points (a-d) are the examples of branch splitting points. As can be seen using the partition represen-
tation (the numbers between brackets), the points a and c are asymmetric points and the points b
and d are symmetric points. Since this tree has more than one asymmetric point (a, c), the function
to generate this tree needs two maxima, which is not possible using Stiefel's algorithm (a Gaussian
function just has one maximum).

5.4 Conclusion

In this chapter, I have described all the algorithms in the literature which initially looked appro-

priate for optimising neuronal morphologies for pattern recognition. However, having tested them

all, none of them was suitable for my proposed task. The main problems found were:

� the use of a stochastic component as seed to generate the morphologies;

� the need of an extensive parameter list to generate morphologies covering the whole search
space;

� the use of inappropriate functions like Gaussian distributions, restricting the range of possible
morphologies.

As none of the models analysed in this chapter were able to achieve all the requirements speci�ed, a

new tree generation algorithm was implemented using the best features of the existing algorithms.

This tool, presented in the next chapter in Section 6.4, was designed to meet all six requirements

described for the pattern recognition task and consequently generates all the morphologies desired.



Chapter 6

Exploration of Dendritic Morphologies for

Pattern Recognition

6.1 Introduction

In this chapter, three ways of generating tree morphologies are introduced. Firstly, for trees of

small order (having few terminal nodes), it is possible to generate every topologically di�erent

binary tree using an exhaustive search algorithm. As this is not possible for higher tree orders, I

implemented an algorithm which generates samples of trees with a particular number of terminal

points. In order to explore unique morphologies, my algorithm allows me to force the trees to be

particularly symmetric or asymmetric. Both algorithms to generate high and low tree orders are

described in Section 6.3. Finally I describe my evolutionary algorithm (Section 6.4) for �nding

morphologies that give rise to neurons that are functionally desirable.

All the three algorithms discussed in this chapter use the same dendritic tree representation

based on the partition notation de�ned by van Pelt and Verwer [77]. The details are given in the

following section (Section 6.2).

6.2 Representation and Construction of Dendritic Trees

To represent and generate dendritic trees, the partition notation from van Pelt and Verwer [77]

was used. A partition at a bifurcation point in a binary tree is de�ned by a pair of numbers which

denotes the degree of each subtree. Each partition represents a bifurcation point, where the nodes

of its subtree are split into those in its left branch and those in its right branch. The topology of

the whole tree can therefore be characterised by the set of partitions at its bifurcation points. So

for example, the most asymmetric tree with 5 terminal points can be described by the partitions

59
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5(1 4(1 3(1 2(1 1)))) (see Figure 5.1, top right side).

In general, a binary tree Tn with n terminal points can be described using the following rule:

Tn = n(Ta Tb) (6.1)

where a+ b = n; a, b > 0 and T1 = 1.

For example, for the tree described above with 5 terminal points we have:

T5 = 5(T1 T4) = 5(1 4(T1 T3)) = 5(1 4(1 3(T1 T2))) = 5(1 4(1 3(1 2(T1 T1)))) = 5(1 4(1 3(1 2(1 1))))

This representation was used for binary trees not only because it is commonly employed in this

�eld, but also because it facilitates the construction of trees with particular values of asymmetry. It

is also helpful when applying genetic operators like mutation and crossover used in the evolutionary

algorithm described later in Section 6.4.

6.3 Systematic Generation of Dendritic Morphologies

To understand the relationship between neuronal morphology and pattern recognition, the initial

task required a systematic algorithm to generate the dendritic trees. The algorithm to implement

this was based on the work from van Ooyen and collaborators presented in Section 5.2.1, where

simple morphologies were compared based on their asymmetry index. In this section, I present the

details about how the dendritic trees were generated, starting by comparing the most distinct den-

dritic morphologies: the fully symmetric and the fully asymmetric trees. In the following sections,

I describe the two algorithms which I have implemented to cover the whole range of dendritic trees

(Section 6.3.2) and to generate samples of trees (Section 6.3.3) given a certain number of terminal

points. The pattern recognition results obtained from the trees generated here are presented later

in Chapters 7 and 8.

6.3.1 Fully Symmetric and Fully Asymmetric Trees

To understand the e�ects that dendritic morphologies can have on pattern recognition performance,

simple morphologies based on van Ooyen's model (presented in Section 5.2.1) were chosen to start

this research. As was shown by van Ooyen and his collaborators [76], the most symmetric and

asymmetric morphologies exhibited completely di�erent �ring patterns for neurons with the same

membrane properties and ionic conductances (see Figure 5.3 on page 47). So given this fact, I

decided to initially compare the results using these two distinct morphologies (Figure 6.1).
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Figure 6.1 � Fully symmetric tree with 128 terminal points (left side) and fully asymmetric tree
with 16 terminal points (right side). These morphologies were generated using the rule presented in
Section 6.2 and plotted by the Neuron simulator tool [22].

These morphological trees were generated using the tree generation rule presented in Section 6.2.

The results obtained in pattern recognition tasks comparing both morphologies are presented in

Section 7.4 when running passive models and in Section 8.4 for active models.

6.3.2 Trees Exhaustively Generated

After having compared two extreme morphologies, the next step was to compare a large set of

neuronal morphologies. The initial idea was to cover the whole search space by generating all

possible binary trees for a given number of terminal points. To do this, I implemented a program

where the main steps are explained using the pseudocode below:

Listing 6.1 � Exhaustively tree generation algorithm

1 For a g i v en number o f t e rm i n a l p o i n t s N , c r e a t e e v e r y p o s s i b l e p a r t i t i o n (a

b) such tha t : a <= b and a+ b = N

2 For each new branch a and b , c a l l the p a r t i t i o n method r e c u r s i v e l y ( s t e p 1)

3 Repeat s t e p s 1−2 u n t i l N = 1 (when a l e a f has been reached )

As trees are recursive structures, the best method to generate these morphologies uses a recur-

sive algorithm as described above. Due to this fact, the algorithm was implemented in Common

Lisp, a functional programming language which has a natural representation of trees. See the full

Lisp code in Appendix B.1.

This algorithm was tested for di�erent tree orders. As previously shown by Harding [20], the

number of possible trees Sn for a given number of terminal points n is calculated by the following

equation:
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Sn =
α3/2β

2π1/2
· α

−n

n3/2
(6.2)

where Harding demonstrates that α
3/2β

2π1/2
= 0.3187766 and α−1 = 2.4832535. This equation gives an

approximated number of 8.042 × 1046 trees for 128 terminal points, which is the main tree order

investigated in this study. However, this large number of trees makes the simulations of this tree

order computationally infeasible. As a consequence, to compare a whole set of morphologies, the

tree size studied had to be reduced. So, the chosen tree order was 22 terminal points, which using

the Lisp code explained above generates a total number of 1, 721, 998 trees. This number is close

to the one calculated by using Equation 6.2, which gives a total number of 1, 514, 661 trees. The

reason for this di�erence is that my Lisp code generated some trees of the same ambilateral type,

which means they are not electrophysiologically unique trees. However, the removal of these extra

trees was computationally quite expensive, so I opted to keep these trees and carry on the pattern

recognition task using them.

Samples of the trees generated are presented in Figure 6.2. The performance of these trees

when executing the pattern recognition task is presented later in Section 7.7.

Figure 6.2 � Samples of tree morphologies with 22 terminal points generated by the exhaustive tree
generation algorithm. The trees are ordered according to their degree of symmetry, where the values
shown indicate asymmetry index (top) and mean depth (bottom) of the respective tree.

6.3.3 Trees Selectively Generated

As it was not possible to simulate the whole range of morphologies for the desired neuronal mor-

phology order (128 terminal points), a third method was used, comparing randomly generated

morphologies. To achieve this, I implemented an algorithm to produce random samples of mor-

phological trees with a given number of terminal points. The following pseudocode explains the

main steps of the algorithm (see the full Lisp code in Appendix B.2):
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Listing 6.2 � Selective tree generation algorithm

1 For a g i v en number o f t e rm i n a l p o i n t s N , c r e a t e a p a r t i t i o n by randomly

s p l i t t i n g N i n two branche s (a b) , f o r a and b such tha t : a <= b and

a+ b = N

2 Use paramete r asym to d e f i n e whether to g en e r a t e t r e e s more symmetr ic (

asym = 0) o r more asymmetr ic (asym = 1)

3 Use paramete r bias to c o n t r o l the asymmetry o f the t r e e , where bias v a r i e s from

0.01 to 0 . 5 . To gene r a t e random p a r t i t i o n s use bias equa l to 0 . 5 ; f o r

most symmetr ic o r asymmetr ic p a r t i t i o n s use bias equa l to 0 . 0 1 . For

example f o r m = 100 bias = 0.1 : asym = 0 => (46 54) to (49 51) ; asym = 1 => (5

95) to (10 90)

4 For each new branch a and b , c a l l the p a r t i t i o n method r e c u r s i v e l y ( s t e p 1)

5 Repeat s t e p s 1−4 u n t i l N = 1 (when a l e a f has been reached )

6 Repeat s t e p s 1−5 u n t i l number o f d e s i r e d t r e e s i s a ch i e v ed

This algorithm di�ers from the one to generate trees exhaustively mainly at the splitting func-

tion. Instead of generating the whole possible range of partitions for each pair of branches a and

b, this algorithm depends on a bias value which controls the partition generation. For example, if

bias is equal to 0.1, the left branch a will have up to 10% of the total number of terminal points

for that branch, when generating the most asymmetric tree. In the example shown in the Program

Listing 6.2, where the number of terminal segments is 100, the possible partitions generated in

this case will be within the range (5 95) to (10 90). In the case of the most symmetric tree, the

bias value means this value will be subtracted from half of the total number of terminal points for

that branch. For the same example given previously, the possible partitions generated are between

(46 54) and (49 51). In summary, low bias is more likely to generate trees with extreme values,

which means more symmetric or asymmetric trees. On the other hand, if the bias is equal to 0.5

it generates completely random trees.

A sample of trees generated with 128 terminal points using this algorithm is presented in Figure

6.3 and the results from these trees are presented later in Section 7.7.

6.4 Evolving Dendritic Morphologies

After analysing the four di�erent algorithms from the literature with no success, as presented

in Section 5.3, I decided to develop my own algorithm. This algorithm named Evol-Patrec (for

Evolutionary Pattern recognition) had as its main purpose the evolution of optimal neuronal mor-

phologies for performing pattern recognition. Using a tree generation procedure based on van Pelt
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Figure 6.3 � Sample of tree morphologies with 128 terminal points generated by the selective tree
generation algorithm. As previously shown for trees with 22 terminal points, the trees are ordered
according to their degree of symmetry. Upper values indicate the tree asymmetry index and lower
values its mean depth. The last two trees are plotted with the original visualisation, where the angles
of each branch are not speci�ed.

and Verwer's work [77] and an evolutionary algorithm developed in C++ programming language,

this tool was designed to meet all six requirements described in Section 5.3.1. As in Stiefel's al-

gorithm (see Section 5.3.2.4), Evol-Patrec did not use a stochastic component to generate trees,

allowing full control over the morphologies generated as speci�ed in requirement V (Section 5.3.1).

The optimisation process follows a sequence of four steps to generate all the di�erent morphologies,

as shown in Figure 6.4.

The evolutionary algorithm (EA) uses the partition notation, de�ned by van Pelt and Verwer's

work [77] and previously described in Section 6.2, as its genotype. To initialise a partition tree,

the EA needs as input the number of terminal segments m, which identi�es the degree of the full

tree. In Figure 6.4, the genotype speci�es a tree of degree 8 (m = 8). The initial population

was composed of 50 individual tree morphologies, each of them represented by a set of partitions

randomly initialised. The random initial population was produced using Program Listing 6.2, with

no symmetry bias (bias = 0.5, asym = 0). For the active models (used in Chapter 8), the genotype

also included a second chromosome: a list of parameters used to de�ne the morphological and

pattern recognition features, such as compartmental length and synaptic strength. More detail

about this chromosome is presented in Chapter 8.

The next step of the optimisation procedure is the translation of the genotype to a model neuron,

which forms the phenotype. The model neuron is produced by converting the tree morphology

to a NEURON hoc format [22]. This format describes the morphology of a multi-compartmental

model in the NEURON simulator language.

After the phenotype or compartmental model has been generated, the �tness value is assessed

to check if the suitable morphology has been generated. The �tness is computed by calculating

the signal-to-noise ratio of the neuronal output for pattern recognition. This ratio is measured as

previously described in Section 3.3.1.1 on page 25. Then the actual �tness of each individual is

evaluated by calculating the average s/n for a given number of pattern sets (trials). The �tness
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Figure 6.4 � Evolutionary algorithm used to optimise neuronal morphologies. The diagram shows
the sequential steps followed to generate all the morphologies. First, the genotypes are randomly
initiated specifying the binary tree structure. Then, the genotype is expressed as a model neuron
phenotype and then converted to a multi-compartmental model. After that, the �tness values are
assessed by evaluating the pattern recognition performance (the separation of the distributions of
responses to stored and novel patterns). Finally, genetic variation is introduced using a process
where the genes are modi�ed by crossover and mutation operators. This �nal step generates the
morphologies which will be part of the population in the next generation. Source code available at
http://code.google.com/p/evol-patrec.

function calculation is discussed in more detail in Section 7.3 for passive models and Section 8.3

for active models.

As the �nal stage of the evolutionary process, the genes are submitted to genetic variation.

This stage is composed of four main steps:

1. Select the parents.

2. Crossover the parents to generate new individuals (o�spring).

3. Mutate o�spring to introduce genetic variability in population.

4. Replace old individuals in the population by the new ones.
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These steps are explained in more detail in the following sections.

The �les needed on each EA step are automatically generated by the algorithm written in C++

language, where the main steps are explained by the pseudocode below:

Listing 6.3 � Evolutionary algorithm written in C++ code

1 c r e a t e new popu l a t i o n by app l y i n g mutat ion and c r o s s o v e r i n the genotype s (

t r e e and paramete r chromosomes )

2 f o r each i n d i v i d u a l i n the popu l a t i on , g en e r a t e the model d e s c r i p t i o n i n the

NEURON s imu l a t o r l anguage and the s e t o f p a t t e r n s used i n the p a t t e r n

r e c o g n i t i o n t a s k

3 send f i l e s g ene r a t ed i n s t ep 2 to a wo r k s t a t i o n to run the s imu l a t i o n i n

NEURON

4 when the s im u l a t i o n s f i n i s h , NEURON s imu l a t o r s a v e s the output f i l e s w i th

the neu r ona l r e s pon s e (EPSP or s p i k e t r a c e s ) i n t o output f i l e s

5 program read s f i l e s g ene r a t ed i n s t ep 4 to c a l c u l a t e s i g n a l−to−n o i s e r a t i o

f o r each i n d i v i d u a l

6 r e p e a t s t e p s 1−5 u n t i l t e rm i n a t i o n c o d i t i o n a ch i e v ed ( number o f g e n e r a t i o n s

or found d e s i r e d f i t n e s s )

6.4.1 Genetic Operators

6.4.1.1 Selection

To ensure that the �ttest genes are passed to the next generation without any genetic modi�cation,

a selection process called elitism is used. Elitism ensures that the best individuals are not lost when

genetic operators like mutation and crossover are applied over the population [48]. For all the tasks

performed by the EA, the individuals are ranked by their �tness and the best 10% of the individuals

are copied to the next generation.

The remaining 90% of the new population are selected, to apply crossover and mutation, using a

rank order roulette-wheel based selection. This method combines two classical selection algorithms:

roulette-wheel and rank selection. In the roulette-wheel selection, each individual is assigned to

a slice of a roulette wheel where the slice size corresponds to the �tness value of that individual

[48]. To select the parents, the wheel is spun N times, where N is the number of the individuals

in the population. In the rank selection, the individuals are ranked by their �tness where the

least-�t individual receives a rank 1 and the �ttest a rank N ; the slice size of the roulette wheel is

now the rank of the individual. Combining rank order with roulette-wheel selection allows an easy

algorithm to be implemented. At the same time, it prevents the EA from converging too quickly,
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as the best individuals which occupied a large part of the roulette-wheel are not selected every

time the wheel is spun [62]. The rank order roulette-wheel based selection was implemented by

the following pseudocode :

Listing 6.4 � Rank order roulette-wheel based selection algorithm

1 rank the popu l a t i o n i n a s c end i ng orde r , u s i n g the f i t n e s s v a l u e o f each

i n d i v i d u a l

2 s e l e c t a random number I between 1 and popu l a t i o n s i z e N

3 s e l e c t a random number J between I and N

4 r e t u r n the i n d i v i d u a l o f i nd e x J

The code above is used twice to selects individuals with high �tness to be a pair of parents,

which thereafter undergoes modi�cations by crossover and mutation operations to produce a pair

of o�spring.

6.4.1.2 Crossover

Crossover is a genetic operator where two individuals are combined to produce o�spring. To

combine the neuronal morphologies within the EA population, I used a common form of crossover

called subtree crossover [52]. This operation was implemented by selecting a random subtree in

each parent tree and swapping them. The resulting o�spring are produced by copying the original

root branches from each parent and the selected random subtrees from each other parent. To

ensure that this operator only produces trees of the same order (number of terminal points), only

the subtrees that have the same order between the parent genes can be selected for crossover.

An example is shown in Figure 6.5, where the subtree chosen has the same order (m = 6) in

both parents, guaranteeing that the o�spring have the same number of terminal points. For the

tasks performed, every individual within the population is eligible to be submitted to a crossover

operation as the best-�t individuals are already kept by the elitism operation.

As I mentioned earlier, a second chromosome is used in the active models which contains a

sequence of parameters (described in Section 8.6.1). To crossover two of these chromosomes, a

simple point-crossover is applied that means the parameters will be simply swapped between the

parents. More detail about this crossover operation is given later in Section 8.6.1.

6.4.1.3 Mutation

Mutation introduces genetic variability by randomly modifying the individual genetic information.

In genetic algorithms, it prevents the algorithm from falling into local minima [62]. Mutation
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Figure 6.5 � Example of crossover operation in trees with 8 terminal points. The branches selected
in both parents have the same order (6 terminal points) to ensure that the total number of terminal
points is maintained as described by requirement VI (Section 5.3.1). The resulting o�spring show that
they originated by swapping the branches from both parent trees (see the distinct colours from each
parent branch).

was implemented by randomly selecting a point in the tree and then replacing the subtree at this

point in the tree with a randomly generated new subtree. For this work, like in the crossover

operation, mutation also needs to ensure that the resulting dendritic trees have the same number

of terminal points. To do this, the subtrees generated after mutation need to keep the same number

of terminal points as the randomly selected ones on the parent genes. This rule also assures that

the trees generated maintain the electrophysiological uniqueness, obeying requirement II described

in Section 5.3.1. An example of mutation is shown in Figure 6.6 where a new tree with 8 terminal

points was produced by mutating its parent tree.

Figure 6.6 � Example of mutation in a tree with 8 terminal points. In the parent tree, a branch with
5 terminal points in its right side was selected. After mutation, the new tree branch was generated
(blue branch), keeping the same number of terminal points, only varying its topology.

In the active model where there is a second chromosome, mutation simply changes one or

more parameters with low probability. The details of this operation are given later in section

Section 8.6.1.

6.4.2 Testing the Evolutionary Algorithm

To test the performance of the evolutionary algorithm described here, before using it for the

real task to be investigated in this thesis, three simple tasks were selected to generate unique

morphological trees: �nding the most symmetric tree, the most asymmetric tree and trees with a

certain mean depth. These tasks used the metrics described in Section 5.2.2, so it could be tested
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if the EA was able to generate the desired trees varying only their topologies and using the metrics

as �tness functions.

All three EA tasks were performed using the same parameters:

� a population composed by 100 individuals;

� a �xed rate for elitism (10%), tree mutation (20%) and tree crossover (100%);

� a �xed number of terminal points (16).

The �rst EA task was to generate the most symmetric morphology. The �tness function used

was the asymmetry index of each individual (described in Section 5.2.2.1). For the degree of trees

chosen, which have 16 terminal points, the desired �tness was an asymmetry index equal to zero.

As shown in Figure 6.7, the most symmetric tree was obtained after only two generations. The

�gure shows all the individuals which were involved in the evolutionary process to obtain the �nal

tree (indiv 16).

Figure 6.7 � Genealogical tree showing the evolution of the most symmetric morphology. All the
ancestors of the �nal individual evolved (indiv 16) are shown.

The second task performed was to evolve the most asymmetric tree. This task was similar

to the previous one, as the �tness function was implemented using the tree asymmetry index.

For trees with 16 terminal points, the most asymmetric trees has an asymmetry index equal to

0.93, which was de�ned as the desired �tness of this task. However, di�erently from the previous

task, which quickly evolved the desired tree after only two generations, this task required many

more generations (see Figure 6.8). This happened mainly because the EA had a low mutation
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rate (20%). Moreover, to speed up the evolutionary process it was necessary to implement a new

genetic operator where the tree branches could be moved around the tree, like a transposition

mechanism [61].

Figure 6.8 � Evolution of the most asymmetric morphology for trees with 16 terminal points. The
�gure shows each generation where the �ttest individual was di�erent from the �ttest one in the
previous generation.

The last task used to test the EA performance was to generate all possible trees with a certain

mean depth (metric described in Section 5.2.2.4). The mean depth chosen was 7, which corresponds

to the trees with asymmetry index equal to 0.68 and mean path length equal to 35 µm. The �rst

morphology with the chosen mean depth was evolved at generation 50. After 100 generations, 86%

of the total population was composed by this speci�c morphology (Figure 6.9).

Figure 6.9 � Evolving trees with mean depth equal to 7. This graph shows the number of individuals
evolved with the required topology over the generations. After 100 generations, the EA was halted
and a total of 86 individuals with this mean depth were found. However, the highest percentage of �t
individuals was obtained at generation 93, where 95% of the population was composed of the desired
morphology.
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6.5 Conclusion

In this chapter I have described all the algorithms which I developed to generate dendritic mor-

phologies whether in a systematic way (Section 6.3) or by evolving them using a genetic algorithm

(Section 6.4). All these algorithms used the same dendritic tree representation, based on the binary

tree structures of van Pelt and Verwer [77], providing an easy de�nition for trees, showing a clear

tree structure visualisation, and facilitating the genetic modi�cation applied by the EA operators.

The tasks performed using the evolutionary algorithm described in this chapter could test all

the genetic operators described in Section 6.4.1. Moreover, I could also test the EA performance,

showing that some morphologies were evolved more quickly than others. As a result, the EA seems

to be ready to perform the �nal task which it was designed for: the evolution of morphologies

for pattern recognition. The results of this task as well as the results from the trees generated

systematically are presented in the next two chapters: Chapter 7 describes the results for mor-

phologies with no active conductances, called here passive models; and Chapter 8 presents the

results obtained from active models, which means the morphologies with active conductances.



Chapter 7

E�ect of Dendritic Morphology in Passive

Neurons

7.1 Introduction

In the previous chapter, I presented the algorithms I use to generate and modify the neuronal

morphologies to start my study about pattern recognition. The next step was to understand how

di�erent dendritic morphologies could a�ect the neuronal �ring pattern, and consequently, the

capability of neurons for storing information. In order to study the implications of dendritic mor-

phology for pattern recognition, the initial experiments used compartmental models with passive

parameters.

Following the methodology described in the previous chapter, four di�erent experiments were

designed to compare the dendritic morphologies generated. The �rst experiment was to study the

fully symmetric and the fully asymmetric tree which allowed me to compare the results of these two

distinct morphologies when performing the pattern recognition task. The idea of this experiment

was trying to �nd if there was, in fact, any di�erence between the performance of the two most

extreme morphologies. If little di�erences were found, the following experiments were unlikely to

be successful. However, as the most symmetric and asymmetric trees showed a clear di�erence in

pattern recognition performance, a second experiment was designed to evolve neuronal morpholo-

gies using the EA previously described in Section 6.4. The results found in this experiment were

generally disappointing. So, in order to �nd out why the EA did not work, I decided to explore the

morphological space more systematically. To do this, a third experiment was designed to evaluate

all possible ambilateral trees that could be generated with a small number of terminal points.

Finally, to cover the morphology range of trees with the desired degree, the last experiment was

designed to compare the results from samples of trees with 128 terminal points. The results of

72
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these four experiments are presented in Sections 7.4 to 7.7, where I investigated how the generated

morphologies performed when presented with either a �xed or di�erent sets of patterns. Further-

more, I was able to evaluate which of the three morphometrics studied, asymmetry index, mean

depth and variance of depth, could characterise better the morphologies studied when performing

the pattern recognition task.

7.2 Model Neurons

To evaluate how the neurons described in the previous chapter performed the pattern recognition

task, a set of common parameters was de�ned to be used in both types of neuronal morphologies:

the ones generated systematically (presented in Section 6.3) and the evolved morphologies (Sec-

tion 6.4). All parameters were based initially on previous works [76, 18], however most of these

parameters were hand-tuned later on, trying to optimise the pattern recognition performance. The

parameters used are related to the morphological and pattern recognition features and are detailed

in Table 7.1.

Table 7.1 � Morphological and pattern recognition parameters used to generate the morphologies in
passive models.

Morphological Parameters

terminal points (m) 128

dendritic compartments
(2m− 1)

255

soma length 20 µm

diameter 20 µm

dendritic length 10 µm

compartment diameter 2.5 µm

tapering false

Pattern Recognition Parameters

pattern size 255 (1 bit per synapse)

patterns presented 20 (10 stored + 10 novel)

active synapses 25 (10% of total synapses)

synaptic strength 1 nS

number of spikes 1 per stimulus

spike interval 10 ms

noise false

The membrane properties used are the same as those de�ned in van Ooyen's model (Table 5.1),

except for the reversal potential Eleak which was de�ned as -65 mV . This value was based on

the resting potential de�ned in a previous study about pattern recognition in CA1 pyramidal cells

[18]. The spike interval value de�ned in Table 7.1 gives the mean interval between the spikes in

the spike train, which have a spike distribution governed by a negative exponential distribution.

Thus, this value a�ects the timing of the �rst spike and therefore needs to be speci�ed.

The neuronal degree of 128 terminal points was chosen to allow a reasonable pattern size

(with 255 bits) to be presented, as each dendritic segment had one synapse per compartment,

located in the middle of each compartment. This synaptic distribution was chosen as it is the
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simplest way of positioning the synapses, whilst allowing a clear comparison between the topology

of the morphological trees. The lengths and diameters for soma and dendritic compartments

were also based on the values used in van Ooyen's model (Section 5.2.1). However, the dendritic

compartmental length, combined with the pattern recognition parameters such as synaptic strength

and number of spikes, were tuned to acquire a clear distinction between the neuronal outputs when

presenting stored and novel patterns.

The input presented to the model was similar to that given in the Purkinje cell model, where

a number of random binary input patterns were generated. To present the patterns to the model,

each bit of the input pattern was mapped to a speci�c synapse. To do this, each synapse was

numbered by the location of its dendritic compartment in the tree. The compartments were

indexed from the left side of the tree to the right. An example is given in Figure 7.1 where the

same pattern was mapped to the dendritic trees from both the most symmetric and the most

asymmetric morphologies.

Figure 7.1 � Mapping pattern to trees. The diagram shows how the same input pattern is mapped
to each synapse in the most symmetric and the most asymmetric morphologies.

Twenty input patterns were presented, where half of these patterns had previously been stored

by an ANN. This ANN, previously described in Section 3.3.1.2, was trained using a LTP learning

rule where the synaptic weight was increased by a value of 1 each time an active input pattern

was presented. The synaptic input was driven by an excitatory synapse with an alpha function

like conductance [9] with a rise time (tau1 ) and a decay time (tau2 ) constant, where tau2 > tau1

(see values in Table 7.2 left side). The peak conductance was calculated from the synaptic weight

learned by the ANN, where the weight w was translated to a peak conductance of w nS. The

passive model did not receive any background input.
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Table 7.2 � Synaptic properties and simulation parameters used in the passive models. The type
of synapse produces as alpha function like conductance, where the parameters are described in the
text. The simulation parameters are de�ned as: tsim is the simulation run time, dt is the integration
time step, tstim is the time the stimulus is presented to the neurons and Vinit is the initial membrane
potential.

Synaptic Properties

Synaptic type Exp2Syn

Rise time (tau1) 0.2 ms

Decay time (tau2) 2 ms

Reversal potential 0 mV

Simulation Parameters

tsim 200 ms

dt 0.025 ms

tstim 50 ms

V init -65 mV

All the simulations were performed using the Neuron simulator [22]. The parameters used in

each simulation are summarised in the Simulation Parameters table (Table 7.2), where the values

were based on previous pattern recognition simulations [18, 66].

7.3 Performance Evaluation

The pattern recognition performance was measured in a similar manner to that used in the Purkinje

cell model (Section 3.3.2.1), using the s/n ratio between the response distributions to the stored

and novel input patterns. However, in this study using passive models, the s/n ratio was calculated

over the EPSP amplitude of the neuronal responses as shown in Figure 7.2.

Figure 7.2 � Typical EPSP response for neuronal morphologies in passive models. The voltage traces
show the responses to 10 stored patterns (red traces) and 10 novel patterns (blue traces). The inset
on the right side of the �gure shows how the s/n ratio is calculated using the EPSP peak responses
for both stored s and novel n patterns, where the actual s/n value found here is equal to 23.76.
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7.4 Comparing Fully Symmetric and Asymmetric Morphologies

The �rst experiment performed on the passive models was to compare the pattern recognition

performance for the fully symmetric and fully asymmetric morphologies. These distinct morpholo-

gies were obtained as previously described in Section 6.3.1, where trees with 128 terminal points

were generated. For this experiment, the s/n ratio was calculated over the EPSP responses when

presenting a single set of patterns (10 stored + 10 novel patterns) for both morphologies, as shown

in Figure 7.3.

From the results shown in Figure 7.3, it is possible to see a clear distinction between the

traces resulting from stored and novel patterns for the fully symmetric morphology (right hand

side of each of the lower traces of the �gure). As a consequence, the s/n ratio for the most

symmetric morphology is more than twice as large as the one calculated from the most asymmetric

morphology when presenting the same pattern set. The di�erences between the EPSP amplitudes

can be explained by the di�erent locations of the synapses over the whole dendritic tree. It is clear

from the traces shown in the left side of Figure 7.3 that, the further the active synapses are located

from the soma, the lower are the resulting EPSPs amplitudes. Consequently, the EPSP amplitudes

in the asymmetric morphology have a larger variance compared to the symmetric one, as shown

in the bottom graphs of Figure 7.3, which results in a lower s/n ratio (see equation in Figure 7.2).

So, from these results, we can conclude that the most asymmetric morphology performs less well

than the most symmetric one.

7.5 Evolutionary Algorithm

Since there are clear di�erences in s/n performance between di�erent morphologies, it makes sense

to attempt to evolve an optimal morphology using an evolutionary algorithm. So the second step

of this study of dendritic morphologies in passive models was to evolve morphologies using the

evolutionary algorithm detailed in Section 6.4. In the present section, I describe details of the EA

parameters used to evolve the passive morphologies. I also describe implementation issues that

were found when running the experiments and how they were solved. Finally I present the results

found from the evolved morphologies.

7.5.1 Chromosome Details

As already mentioned in the previous chapter, the EA genotype in passive models was composed

of a tree chromosome which de�ned the morphological parameter used to generate the neuronal

morphologies studied here. These parameters as well as the pattern recognition parameters were
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Figure 7.3 � Example of traces comparing the most symmetric and the most asymmetric morpholo-
gies. The s/n ratios, shown on the top of each histogram, are calculated using the EPSP peaks
resulting from presentation of both sets of stored and novel patterns, red and blue traces respectively.
On the top of each of the EPSP traces the neuronal morphologies used in this experiment are shown,
where the red dots represent the location of each active synapse for the lowest and highest response
obtained from stored patterns (right and left morphologies respectively). The yellow circles shown
in the asymmetric morphologies indicate the location of some of the active synapses. It can be seen
that where there is a high response, there are more active synapses close to the soma; whereas where
there is a low response, there are more active synapses at the far end of the dendritic tree. The
synaptic distributions of active synapses for the stored patterns (bottom graphs) also show that the
performance is higher in the most symmetric morphology (right graph) as it has a higher number of
active synapses closer to the soma and consequently, a lower variance of the synaptic distribution,
when compared to the most asymmetric morphology (left graph).
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detailed in Table 7.1, and other simulation properties were also de�ned in that section (Section

7.2).

For all experiments using the EA in the passive models, the population was composed of 100

individuals, initialised with random morphologies (as explained in Section 6.4). The �tness of each

individual was evaluated by calculating the average s/n ratio for the given number of pattern sets.

The genetic operators rates were de�ned to cover all set of simulations here presented. As

mentioned in Section 6.4.1.1, 10% of the total population was selected to be passed to the next

generation by elitism. The morphological trees were modi�ed by mutation and crossover operations,

using a rate of 20% and 100% of the population respectively.

7.5.2 Implementation Issues

A signi�cant implementation issue that needed to be addressed was assessing the �tness of any

individual in the population. To run �ve di�erent sets of patterns (5 trials), composed by 20

patterns each, each individual could take up to 2 minutes of computational time to be assessed,

using a single 64 bit core. This means that each individual was taking approximately 12 seconds

per trial in passive models, and 22 seconds per trial in active models (which is explained later in

Chapter 8). It was therefore not feasible to run the EA in a normal SISD (single instruction, single

data stream) fashion. So, the evaluation of the population �tness needed to be parallelised, using

a MIMD (multi instruction, multiple data) technique. In order to do this, a parallel version of the

code was implemented using the MPI (message passing interface) speci�cation, which combined

C++ libraries and Neuron simulator code [22]. To run the parallel code, a cluster composed of 48

nodes with 8 cores each was used, where each individual in the population was run on a separate

core. Using this parallelised version of the EA, each individual started to take around 0.23 seconds

to run one set of patterns in the passive models, which was 10 times faster than the sequential

version of the same code. Additionally, a higher improvement was found when running the EA

for active models, where the parallelised code speed up was 14 times compared to the previous

version.

7.5.3 Results

7.5.3.1 Fixed Training Set

The initial experiment was designed to test the capability of the EA to evolve morphologies for a

given set of patterns. The test was performed using a population of 100 individuals, where each

individual was presented with the same set of 20 patterns in each generation. With this test it was
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possible to check which kind of morphology was evolved as well as to measure the performance of

the evolutionary algorithm in evolving the neuronal morphologies for the pattern recognition task.

Figure 7.4 shows that it was possible to evolve morphologies using only 150 generations, which

improved the average pattern recognition performance by 15% when compared with the initial

population performance. However, no correlation was found between �tness value and asymmetry

index (see graphs in Figure 7.4). The reason for the increase in �tness (left graph) and the

�uctuation in asymmetry index (right graph) could be that I had a �xed set of patterns and

the EA was therefore trying to �nd morphologies that performed well for that speci�c set of 20

patterns.

Figure 7.4 � Pattern recognition performance using a �xed set of patterns. The EA was run for 150
generations. The �tness of the best individual (blue line) and the average over the population (green
line) are plotted for each generation. The top graphs show that the performance of the best individual
and the overall population were slightly increasing over the generations (left graph), even though their
asymmetry index did not correspond to this improvement (right graph). The morphologies shown on
the bottom of the �gure highlight the evolution of the best individual, where a di�erent individual
was obtained in each generation.
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7.5.3.2 Varying Training Set

In order to force the EA to �nd morphologies that performed well regardless of the particular

pattern set, I ran a second experiment in which a di�erent training set was presented for each

individual every time the �tness was assessed. For this task, I used the same population size

from previous experiments (100 individuals), where for each individual I presented ten di�erent

sets of patterns (10 trials). As the asymmetry index did not seem to represent a good metric

to predict the pattern recognition performance, a second metric, mean depth, was tested. This

metric, explained in Section 5.2.2.4, was chosen for the simplicity of its calculation and because it

includes the location of each synapse in its computation. The results are presented in Figure 7.5.

Figure 7.5 � EA results from passive models when presenting di�erent sets of patterns. Each
individual in the population was presented with 10 di�erent pattern sets and the individual �tness
was calculated using the averaged s/n ratio over the patterns sets presented (top graph). After
160 generations, no improvement was found in the neuronal performance compared to the initial
population.

The results plotted in Figure 7.5 showed that the average s/n (top graph) did not improve over

time and the morphometrics show no clear directional change (middle and bottom graphs). Even

though the average population shows a decrease in mean depth (green line in the bottom graph),

this does not correlate with the population performance (green line in the top graph). The possible

reason for this is discussed later in Section 7.8.

7.5.3.3 Control Simulation

As both results from the EA that were shown in the previous sections did not correspond to the

results obtained from the distinct morphologies (Section 7.4), based on which the most symmetric
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morphologies were expected to be evolved as the best pattern recognizer, some experimental con-

trols were performed to try to identify the model �aws. One task which was designed was to try to

identify if the EA results could be related to the asymmetry index of the initial population. For this

control experiment, the initial population was deliberately constructed to contain all morphologies

with an asymmetric index equal to 0.99. This means that the EA population was initialised with

the most asymmetric morphologies, which were supposed to have the lowest performances in the

pattern recognition task, as shown in Section 7.4. The results from this control experiment are

presented in the �gure below (Figure 7.6).

Figure 7.6 � Control simulation using an initial population with asymmetric individuals. The av-
erage asymmetry index of the initial population was equal to 0.99. The results show that in the
�rst generation the best individual asymmetry was already 0.5 and after 9 generations the average
asymmetry index has decreased to 0.47 (middle graph). In the same generation, the average s/n ratio
(top graph) has reached a plateau (≈ 30). The asymmetry index has reached its plateau (≈ 0.4)
in generation 17. However, the mean depth (bottom graph) did not reach a plateau as the average
value kept decreasing until the last generations, which reached a mean depth around 9. These results
indicate that individuals that are in the middle of the range of the asymmetry index and have low
values of mean depth are already close to the best morphologies evolved for pattern recognition and
can no longer be improved.

This control experiment showed that the morphologies with an asymmetric index value in the

middle of the range (close to 0.5) performed as well as the most symmetric ones (asymmetry

index equal to 0). This middle range asymmetry index value was already found as the best

pattern recognizer in the initial population of the second EA experiment (generation 0 in Figure

7.5). This can be explained by the fact that the algorithm that generates random trees tends to
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generate random partitions, which means partitions that are neither completely symmetric (such

as the partition (64 64) for 128 terminal points) or asymmetric (like the partition (1 127)), as it

uses a stochastic component to create the dendritic tree partitions (explained in Program Listing

6.2). Hence, the initial population did not really start with a very wide range of morphologies

and the mutation operator was unlikely to generate new morphologies that fully sampled the

morphology space. However, by forcing the EA to start with asymmetric trees I could see that it

was able to evolve trees that were more symmetric. To test the prediction that the most symmetric

morphologies did not perform better than the morphologies with an asymmetry index in the middle

of the range, I conducted the experiments described in the next two sections.

7.6 Comparing Exhaustively Generated Morphologies

In order to determine what is happening when the trees are evolved it is necessary to evaluate a

larger sample of the tree morphology space, or even to evaluate the whole tree space. In this section

we consider the whole tree space. As mentioned in Section 6.3.2, the morphology degree chosen

for this study with 128 terminal points was too computationally expensive to evaluate the pattern

recognition performance when covering all possible trees. So, the solution was to choose the largest

tree size for which it was feasible to compute the performance of all generated trees. This tree

degree was 22 terminal points which generated a total number of trees equal to 1, 514, 661 using

the Lisp code given in Program Listing 6.1 (the trees with 24 terminal points, the next possible

number of terminal points for binary trees, generated a total of 8, 197, 377 trees, which was too

expensive to compute in terms of computational time). Setting the terminal points to 22 made

it possible to computed the pattern recognition performance of all trees within three weeks using

�ve di�erent Apple Macintosh servers with 8 cores each. To present this large amount of data,

I opted to plot each morphometric studied here, asymmetry index, mean depth and variance of

depth (previously described in Section 5.2.2), using three di�erent bin widths. For example, for the

asymmetry index, for which the bin width chosen was equal to 0.01, the �rst bin contained all the

trees from asymmetry index 0 to less than 0.01, the second bin ranged from 0.01 to less than 0.02

and so on. The width of each morphometric bin was chosen to allow a comparison between the

metrics since each metric varied in magnitude. These results are presented in Figure 7.7, where

the graphs on the left (a,c,e) show error bars indicating the standard deviation calculated over all

the trees within the respective bin, and the graphs on the right (b,d,f) plot only the mean values

obtained for each metric studied, using the same average bins. Since the graphs on the right do not

include error bars, the y-axis could be expanded which highlights the overall trends more clearly.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7 � Trees with 22 terminal points comparing three di�erent morphometrics: asymmetry
index (a,b), mean depth (c,d) and variance of depth (e,f). Each metric uses a di�erent bin width
(highlighted by the x-axis label) to result in a similar resolution of data. The pattern recognition
performance was calculated by averaging over the s/n ratio in response to �ve di�erent sets of patterns
presented to each neuronal morphology. Error bars (graphs a,c,e) represent the standard deviation
calculated over the average s/n for the trees within the bin. The plots on the right (b,d,f) highlight
the trend found for each metric, showing that the three metrics proved to be good predictors of the
pattern recognition performance.
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The results demonstrate that for trees with 22 terminal points, the trees with lower values

of the three metrics, which represent the most symmetric morphologies, are the ones with better

a pattern recognition performance. The trends presented on the right side of Figure 7.7 show a

decrease of performance when the morphologies become more asymmetric. The �uctuations found

in the last bins of each metric as well as the initial bins for the asymmetry index metric result

from the low number of trees that are contained in these bins. These results correspond to the

ones found in Section 7.4, where the fully symmetric morphologies are better pattern recognizers

when compared with the fully asymmetric ones.

7.7 Comparing Selectively Generated Morphologies

The results presented in the previous section raised the question if they could be generalised to

larger trees. This section therefore tests the pattern recognition performance over the tree size (128

terminal points) selected for my research. For this size of trees we could not generate and evaluate

all the trees so a sampling procedure was needed. To do this, a set of trees was generated using the

algorithm described in Section 6.3.3. This sample of trees was designed to cover the morphological

space more fully than the ones generated by the EA described earlier in Section 6.4. A total of

155,000 trees were generated and tested using the same set of parameters de�ned in Section 7.2.

The top graph of Figure 7.8 shows the performance the whole set of trees generated (blue data

points). The six distinct clusters of data that can be seen in the �gure are due to an artefact from

the algorithm used to produce the trees.

For testing the performance of this large set of neurons, di�erent numbers of pattern sets

(trials) were presented and the �nal results compared. In Figure 7.8 there are 155,000 blue points

representing all of the selectively generated trees. As they were so many each tree was assessed

using only 5 trials. In order to verify the overall trend visible in the data, 100 trees were selected

across the full range and run with 100 trials each. These results were compared with the mean s/n

ratio calculated over all trees in bins with a width of 0.01. The main di�erence between these two

results is the variability of the data, where the large number of trials resulted in a higher standard

deviation (see error bars in the bottom graph of Figure 7.8).

These results show that trees which are more symmetric tend to perform better when compared

to the most asymmetric ones, con�rming the previous results obtained with the trees exhaustively

generated. However, the trees which are in the middle range of the asymmetry index (0.2-0.4) also

performed as well as the most symmetric ones. This result is di�erent from what was shown for

trees with 22 terminal points (Figure 7.7), and it explains the performance of the EA. Once the
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Figure 7.8 � Trees selectively generated with 128 terminal points. The scatter plot shown in blue
is composed of approximately 155,000 trees (top graph); the red points correspond to 100 samples
of morphologies, covering the whole range of trees with di�erent asymmetry indexes (bin width =
0.01). Two methods were applied to measure the pattern recognition performance on these trees: 1.
presenting, for each tree out of 155,000, �ve di�erent sets of patterns and averaging the resultant s/n
ratios (blue data points); 2. for each sample tree, from the 100 trees selected, presenting 100 sets of
patterns (red data points). The error bars represent the standard deviation. The blue error bars were
calculated for the mean of 5 trials over all the trees within the respective bin. The red error bars were
calculated over 100 trials for each sample tree.
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EA had produced trees (or had them in the initial generations) that had an asymmetry index of

about 0.4-0.5 it did not evolve any further because these trees are as good at pattern recognition

as the more symmetric ones. These graphs also show that the 100 samples could well represent the

whole range of selectively generated morphologies, which was composed by 155,000 trees, showing

that the main results could be obtained using a fairly small sample of morphologies only.

The next step was to compare the same three metrics used to evaluate the results from the

exhaustively generated trees (Figure 7.9). The results obtained from the 155,000 samples of trees

show that the mean depth (b) and variance of depth (c) are good predictors for the pattern recogni-

tion performance for the large dendritic trees (128 terminal points); these results are similar to the

ones obtained with smaller dendritic trees. However, the asymmetry index could not correlate with

pattern recognition performance in the large trees, since morphologies with a di�erent asymmetry

index, varying from zero to about 0.5, performed equally well (see graph c in Figure 7.9). This

results from the fact that all of the trees with asymmetry index up to 0.4 correspond to a range of

trees with the same low mean depth (close to 7), as shown in Figure 7.10.

7.8 Conclusion

Di�erent techniques were used to compare the performance of the generated morphologies for

pattern recognition and their results were presented in this chapter. The initial results, when

comparing two distinct morphologies (Section 7.4), showed that the most symmetric morphology

proved to be the best pattern recognizer. The next experiment used an EA to evolve morphologies

for the pattern recognition task. The EA was able to evolve morphologies that performed well

on a particular pattern set. However, when the pattern set was varied for each individual, the

mean �tness of the population did not improve over time (Figure 7.5). The reason for this is

that the initial population in fact contained morphologies that already produced almost optimal

performance. This is evident from the average of the initial population, where the asymmetry

index was about 0.45 and the mean depth was about 9, and from Figure 7.9 it can be seen that

this puts these trees into an area of high performance. Another relevant point about the EA results

was that the performance measure of the best individuals evolved (s/n ≈ 50) was higher than the

best value found for the systematically generated morphologies (s/n ≈ 30). This can be explained

by the fact that the number of trials used to determine the �tness in the EA experiments was

10, which is 10 times lower than the number used in the experiments with selectively generated

morphologies. In fact, the �tness function of the EA is stochastic rather than deterministic, and

the individuals with the highest �tness values will always have been presented with pattern sets
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(a)

(b)

(c)

Figure 7.9 � Comparing selectively generated trees using three morphometrics: asymmetry index (a),
mean depth (b) and variance of depth (c). A set of 155,000 trees with 128 terminal points each was
tested, and three di�erent metrics were plotted against the pattern recognition performance. From
these results, it is possible to see that the best metrics to predict the pattern recognition performance
are the mean depth (shown in graph b) and the variance of depth (graph c).
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Figure 7.10 � Mean depth against asymmetry index for selectively generated trees with 128 terminal
points. The plot on the top of the �gure shows that all trees with asymmetry index up to 0.4
correspond to the same set of trees with the lowest mean depth, which explains the poor correlation
between asymmetry index and neuronal performance shown in Figure 7.9. The diagrams shown on
the bottom are examples of trees with the same mean depth (8.15) and di�erent asymmetry indexes
(presented below each tree), which correspond to the trees found in the beginning of the graph.

that are particularly easy to discriminate. Indeed, when the �tness of these best morphologies was

re-evaluated by increasing the number of trials to 100, the average s/n decreased from 50 close to

30 (results not shown).

Similar results were found for exhaustively generated trees (Section 7.6) and selectively gen-

erated trees (Section 7.7) where the fully symmetric morphologies showed a better performance

when compared to the fully asymmetric ones. However, the results from the selectively gener-

ated trees with 128 terminal points showed that the morphologies with an asymmetry index up to

0.5 performed as well as the most symmetric ones. These middle value range morphologies were

also found to be the best pattern recognizers in the evolved morphologies produced by the EA

(Section 7.5.3), as explained earlier. These results indicated that the asymmetry index could not

correlate with the neuronal performance for the pattern recognition task across its whole range.
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Moreover, the results showed that the best metric to predict neuronal performance was the mean

depth (Figures 7.7 and 7.8). This can be explained by the way this metric is calculated, which

uses the distance of each synapse from the soma. As shown in Figure 7.3, the main di�erence in

performance between the most distinct morphologies is highlighted by the synaptic distribution of

the active synapses, where the best performing tree shows active synapses closer to soma. Then,

minimising the variation in synaptic distances should also minimise variation in the EPSP ampli-

tudes and so, improve pattern recognition performance. Thus, from this point on I decided to use

the mean depth as the main metric for comparison with the neuronal performance, as the variance

of depth showed similar results to the mean depth metric (showed in Figure 7.9). I also decided

that for the next step of this research, which was the investigation of the neuronal morphologies in

the presence of active conductances (results presented in the next chapter), I would use the other

metrics described in Section 5.2.2, trying to obtain a better correlation between the metric and the

pattern recognition performance of the neurons studied.



Chapter 8

E�ect of Dendritic Morphology and

Parameters in Active Neurons

8.1 Introduction

The results found in the previous chapter gave an understanding about how dendritic morphology

can a�ect pattern recognition performance. Using the EA I �rstly found that I could evolve

morphologies for a speci�c set of patterns. However, when the pattern sets were randomly generated

for each individual the EA did not show an improved performance over the initial population.

Having systematically examined a large sample of tree morphologies I found that the reason for

this was that the original population already contained the well performing individuals. From the

results obtained for systematically generated morphologies (Section 7.4, Section 7.6 and Section

7.7), I found that more symmetric trees performed better than more asymmetric ones. I also

determined that the best metric to predict neuronal performance was the mean depth.

According to Cook and Johnston, �realistic active dendrite models had improved recall per-

formance as compared with the passive model� [10]. Moreover, real neurons contain active con-

ductances, so the study of pattern recognition in the presence of active conductances is more

biologically relevant. Based on these considerations and on the results obtained from other re-

search that has studied the e�ects of neuronal morphologies in the presence of active conductances

([42, 76, 75]), I decided to extend my research to use morphologies with an active soma and

dendrites. The active conductances used were based on the values from van Ooyen's model, as

presented in Section 5.2.1.

In the passive model, some important features of the pattern recognition task were not explored

such as the optimization of parameters related to the morphology and input patterns and the e�ect

of background input during the pattern presentation, which all could a�ect the pattern recognition

90



CHAPTER 8. EFFECT OF DENDRITIC MORPHOLOGY AND PARAMETERS IN ACTIVE

NEURONS 91

performance. Furthermore, some morphological metrics should be tested due to the variation of

parameters. Metrics such as mean path length and mean electrotonic path are now relevant to

this work as they can distinguish morphologies not only by their topology, but also by using some

morphological parameters such as dendritic compartmental length and tapering. Thus, all these

features are also included in the model proposed here, so trying to optimize the performance of the

resulting morphologies. Then, the next three logical steps to be studied were: 1. Test the other

morphometrics described in Section 5.2.2 on the new active model; 2. Evaluate the morphologies

generated systematically in the presence of active conductances; 3. Modify the EA to optimise

morphological parameters as well as parameters related to the input patterns to evolve active

morphologies. After describing the new model, the results of these experiments are presented. At

the end I summarise the metrics and parameters found that characterise the best morphologies for

pattern recognition in the presence of active conductances.

8.2 Model Neurons

A set of common parameters was de�ned to be used in the initial experiments with active models,

including the comparison of the distinct morphologies (Section 8.4) and the experiments with

selectively generated ones. These parameter values, presented in Tables 8.1 and 8.2, were are all

based on reasonably realistic ranges of values which were initially de�ned for the passive models

(presented in Section 7.2). From Table 8.1 it is possible to see that most of the parameters are

identical to the ones presented in Table 7.1 for passive models. The main di�erences are found

in the dendritic compartmental length which was reduced, and some of the pattern recognition

parameters related to the input stimulus, such as synaptic strength and number of spikes, which

were increased. The di�erences are highlighted in colour blue in Table 8.1 when compared to

values from Table 7.1 found on page 73. These changes in parameter values from passive to active

models were made to improve the distinction of the neuronal output when comparing stored and

novel patterns. To obtain these values, I spent a considerable amount of time hand-crafting the

parameters to give a good performance for the most distinct morphologies, which also worked

well for the morphologies generated systematically as they are morphologies found between these

extremes morphologies.

The synaptic properties are the same as those used in the passive model, presented in Table

7.2. However, di�erently from the previous models, active models receive background input. This

background input was necessary to include some noise in the spike response in order to study the

e�ect of noise on the distinction between stored and novel patterns. The full list of background



CHAPTER 8. EFFECT OF DENDRITIC MORPHOLOGY AND PARAMETERS IN ACTIVE

NEURONS 92

Table 8.1 � Morphological and pattern recognition parameters used to generate the morphologies in
active models.

Morphological Parameters

terminal points (m) 128

dendritic compartments
(2m− 1)

255

soma length 20 µm

diameter 20 µm

dendritic length 5 µm

compartment diameter 2.5 µm

tapering false

Pattern Recognition Parameters

pattern size 255 (1 bit per synapse)

patterns presented 20 (10 stored + 10 novel)

active synapses 25 (10% of total synapses)

synaptic strength 1.5 nS

number of spikes 5 per stimulus

spike interval 3 ms

noise true

input parameters is presented on the left side of Table 8.2. The right side of this table lists the

parameters used to control the simulation, where the simulation time (tsim) and the time when the

stimulus was presented (tstim) were adjusted to support the time window of the output detection

used in these simulations (more details about the neuronal response evaluation are presented in

the next section).

Table 8.2 � Background input and simulation parameters used in active models. The parameters
related to the simulation are: simulation time (tsim), integration time step (dt), time the stimulus is
presented (tstim) and initial membrane potential (V init).

Background Input Parameters

synaptic strength 0.5 nS

number of spikes 1 per stimulus

spike interval 1000 ms

noise true

Simulation Parameters

tsim 250 ms

dt 0.025 ms

tstim 100 ms

V init -70 mV

The last change in the model when compared to the passive models is related to the initial

membrane potential (V init), which had previously been de�ned as - 65 mV , based on a previous

work with passive models [18]. For simulations using active models, the initial membrane potential

was based on the value used in van Ooyen's model, presented in Section 5.2.1. The membrane

properties and ion channel conductances also use the same values as de�ned in van Ooyen's model

(see Tables 5.1 and 5.2 for more details).

8.3 Performance Evaluation

The spike response used as the criterion to discriminate between patterns was given by the number

of spikes after pattern presentation. The number of spikes was counted from the time when the

stimulus is presented (given in Table 8.2) and within a time window equal to 100 ms for both



CHAPTER 8. EFFECT OF DENDRITIC MORPHOLOGY AND PARAMETERS IN ACTIVE

NEURONS 93

stored and novel patterns. This size for the time window was de�ned to accommodate the large

number of spikes generated when presenting stored and novel patterns, as shown in the traces from

Figure 8.1.

The pattern recognition performance was measured using the signal-to-noise ratio (equation

given in the top of Figure 8.1), which was calculated using the number of spikes within the time

window described above.

Figure 8.1 � Pattern recognition performance in active models was determined by counting the
number of spikes. The spikes represent the responses to 10 stored patterns (left spikes) and 10 novel
patterns (right spikes). The histogram shows the frequency of each number of spikes produced for
stored (red bars) and novel (magenta bars) patterns, which was used for the s/n calculation (the
actual s/n value is presented in Figure 8.2, bottom right graph).

8.4 Comparing Fully Symmetric and Asymmetric Morphologies

As in the passive models, the �rst experiment was to compare the fully symmetric and fully

asymmetric morphologies to determine if any di�erence could be found in the neuronal response

between these two distinct morphologies. This experiment used trees with 128 terminal points as

previously described in Section 6.3.1. The results show that the distinction between the traces are

not as clear as for the EPSP traces shown in the passive models (compare traces from Figure 7.3

for passive model with traces in Figure 8.2 for active model). However, from the histogram shown

in Figure 8.2, it is possible to �nd a clear distinction between the number of spikes for stored and

novel patterns, which is more pronounced in the symmetric trees. As a consequence, the symmetric

morphology has a s/n ratio seven times larger than the asymmetric one, as shown on the top of

each histogram in Figure 8.2.
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Figure 8.2 � Traces from fully symmetric and fully asymmetric trees in active models. The histograms
on the right show the frequency of the number of spikes when presented with stored and novel patterns
(red and magenta bars respectively). The performance of each tree is measured by the s/n ratio; the
s/n values shown on top of each histogram con�rm that the symmetric morphologies (bottom graph)
perform seven times better than the asymmetric ones (top).

8.5 Comparing Selectively Generated Morphologies

The same set of 155,000 trees generated previously for passive models was used to test the active

ones (see Section 6.3.3 for details about how the trees were generated). These trees with 128 ter-

minal points were tested using the parameters given earlier in Section 8.2. The pattern recognition

performance was calculated by averaging a large number of pattern sets (100 trials), with di�erent

sets being presented for each trial for each model. Five random trees were selected from each

bin and their performance was averaged to calculate the �nal s/n ratio for that bin. The results

were plotted against the same metrics used for passive models: asymmetry index, mean depth and

variance of depth. From the graphs shown in Figure 8.3 it can be seen that the active morphologies
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performed similarly to the passive ones. Unsurprisingly, the asymmetry index was again the worst

metric for distinguishing between di�erent well performing neuronal morphologies (graph (a) in

Figure 8.3). The other two metrics, mean depth and variance of depth performed as well as in

the passive models, showing a roughly linear anti-correlation with the neuronal performance across

their whole range (graphs (b) and (c) in the same �gure).

8.5.1 Comparing Active and Passive Models

To compare the results from selectively generated trees between active and passive models, a new

experiment was designed where both models used the same set of trees, as given in the previous

section, and the same set of parameters, as presented in Section 8.2. The neuronal performance

was calculated as presented previously in Section 8.5, where the s/n ratio of �ve randomly selected

trees were averaged. The results were plotted against two metrics only, asymmetry index and mean

depth, as the variance of depth has already shown similar results to the mean depth metric. The

results shown in Figure 8.4 suggested a strong correlation between pattern recognition performance

and mean depth across its whole range, where a less accentuated performance di�erence was found

in passive models when compared with active ones (graph B). However, as shown in graph A, the

asymmetry index did not correlate with the performance over its full range for either the active or

the passive models.

8.6 Evolutionary Algorithm

8.6.1 Chromosome Details

As mentioned in Section 6.4, a second chromosome was de�ned in the active models. This chro-

mosome, named the parameter chromosome, contained a sequence of parameters related to the

morphology and pattern input, as shown in Table 8.3. The initial values for each parameter were

based on the values presented in Table 8.1. Then, for each parameter, a range of possible values

was de�ned based on realistic values found in related research ([18, 76, 67, 75]), and the combina-

tion of them were analysed to ensure that the neuronal morphology and the neuronal output for

the pattern recognition task were biological realistic (discussed in Section 8.6.2).

The �xed features of the model such as number of terminal points, number of dendritic com-

partments, somatic size, and the neuronal training set for the EA experiments were the same as for

the systematically generated morphologies (presented in Table 8.1 in Section 8.2). The simulation

parameters are also the values given in Section 8.2 (Table 8.2).
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(a)

(b)

(c)

Figure 8.3 � Pattern recognition performance in active models for selectively generated morphologies.
The results were obtained by generating a population of 155,000 random trees, and then averaging
over 5 randomly selected ones in each bin, using three metrics: asymmetry index (a), mean depth (b)
and variance of depth (c). The simulations use the set of parameters given in Tables 8.1 and 8.2. The
error bars represent the standard deviation calculated over the average neuronal performance of the
�ve selected trees of each bin.
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Figure 8.4 � Pattern recognition performance in active and passive models for selectively generated
morphologies. Results were obtained by generating a population of 155,000 random trees, and then
averaging over 5 randomly selected ones in each bin, using two metrics: asymmetry index (A) and
mean depth (B). Error bars represent the standard deviation calculated over the �ve trees selected in
each bin.

Table 8.3 � Morphological and pattern recognition parameters used by the EA to evolve active
morphologies. The range of values were de�ned based on previous work (see text). The other �xed
parameters, such as somatic length and diameter, use the values given in Table 8.1.

Morphological Parameters

parameter range type

dendritic
compartmental
length

1-10
µm

continuous

tapering 1-0.8 continuous

Pattern Recognition Parameters

parameter range type

synaptic strength 0.5-2 nS continuous

number of spikes 1-10 discrete

spike interval 1-10 ms continuous

noise true, false categorical

bg. synaptic strength 0-1 nS continuous

bg. spike interval 500, 1000 ms categorical

active synapses 5, 10, 15, 20% categorical

One of the parameters given in Table 8.3 is tapering, which is given by the ratio between the

diameter of the child branch and its parent (tapering = diamchild
diamparent

). From this equation, we can

see that tapering = 1 means no tapering as the diameter of the child branch is equal to its parent's

diameter, and tapering = 0.8 means that the diameter of the child branch will be 20% smaller than

its parent branch. Tapering is applied to all dendritic branches, from the soma to the terminal

points, until the minimum diameter is reached, de�ned as 0.1 µm.

As also shown in Table 8.3, each parameter had as a numerical type, which could be continuous,

discrete or categorical. This type was determined based on three factors: 1. Some parameters,
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such as the number of spikes, can only adopt discrete values; 2. To restrict the search space for

some parameters, such as noise and active synapses, the parameter type was set to categorical; 3.

To facilitate the mutation of parameters, as later described in Section 8.6.1.2.

8.6.1.1 Crossover

Whenever two individuals are selected as parents, crossover was always applied to their tree chro-

mosomes. The method used for the tree chromosome was as described in Section 6.4.1.2, where

two random branches were selected and swapped between parents. For the parameter chromosome

described in Section 8.6.1, crossover was applied following a one-point crossover technique: a point

was randomly selected in the parameter chromosome and all the parameters from that point on

were swapped between the parent individuals (see Figure 8.5).

Figure 8.5 � Crossover of the parameter chromosome. The parameters are numbered following
the list of parameters given in Table 8.3, where dendritic length is parameter 1 and number of active
synapses parameter 9. In this example of a crossover operation, the parameter 6 (noise) was randomly
selected to be the crossover point, where the resulting o�spring received all the genes from parameter
1 to 5 from one parent, and from parameter 6 to 9 from the other parent (see colour scheme for
parents and o�spring).

As the parameter chromosome was divided into two genomic blocks, morphological and pattern

recognition, the parameters of each parent could be selected during the crossover operation depend-

ing on the genomic block they belong to. To be able to investigate the evolution of morphological

and pattern recognition parameters both together and separately, three di�erent strategies were

de�ned, depending on which genomic block the parameters could be selected from:

� Strategy 1. The whole genomic block: the crossover point of parent individuals could be

selected from any genomic block, which means any morphological and pattern recognition

parameter could be selected for the crossover operation.

� Strategy 2. Only morphological parameters: crossover was applied only over parameters

within the morphological genomic block, which means dendritic length and tapering.
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� Strategy 3. Only pattern recognition parameters: crossover was only applied over parameters

within the pattern recognition genomic block, such as synapse strength and number of spikes.

8.6.1.2 Mutation

The mutation of the tree chromosome followed the rules given in Section 6.4.1.3, where a random

branch was selected and replaced by a new branch with the same order. In active models, the

binary trees were mutated with a probability of 20% (the same as in the passive models).

For the mutation of the parameter chromosome, the genes were selected based on the type of

each parameter, as given in Section 8.6.1. For categorical parameters, the new parameter value

was randomly selected from the number of possible categories for that parameter. For example,

for number of active synapses, for which the parameter range has four categories (5, 10, 15,

20%), a random value x between 1 and 4 was selected and the mutation algorithm returned the

correspondent value for the category selected (for example, x = 1 gives 5%). To initialise the

continuous and discrete parameters, the parameter was selected following a uniform distribution

over the range values. However, to mutate these parameters in the following generations, the

algorithm below was used:

Listing 8.1 � Selection algorithm to mutate parameters.

1 Get a random va l u e x from the s t anda rd normal d i s t r i b u t i o n (mean=0; va r=1)

2 Use a d e f a u l t s t anda rd d e v i a t i o n sd f o r a l l g i v e n r ange s where sd = max/4 and

max i s the h i g h e s t v a l u e w i t h i n the range

3 Ca l c u l a t e a new paramete r v a l u e based on the c u r r e n t one , such tha t :

new = current+ (x ∗ sd)

4 I f new v a l u e i s out o f range , change to min−max v a l u e s : i f

new < min : new = min i f new > max : new = max

5 I f range i s d i s c r e t e , round the v a l u e : new = round(new)

The probability of mutating the individual parameters depended on the strategy being used for

the crossover operation as described earlier. So, the corresponding mutation strategies and their

respective probabilities were given as:

� Strategy 1. The whole genomic block: each individual had a 2% chance of a mutation taking

place.

� Strategy 2. Only morphological parameters: each individual had a 3% chance.

� Strategy 3. Only pattern recognition parameters: each individual had a 10% chance.
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In fact, my initial experiments showed that Strategy 1 was more e�ective than Strategies 2 and 3,

so the results presented from here on relate to Strategy 1 only.

8.6.2 Preliminary Investigation

An initial run was made using the EA and an investigation of the results was undertaken that

consisted of analysing the �ring patterns produced by the morphologies evolved by the EA. This

was necessary as a large combination of parameters could be used by the EA, depending on the

strategy the EA was running (as described in the parameter chromosome variations - Sections

8.6.1 and 8.6.1.2). From the initial tests, it was found that some parameter combinations resulted

in irregular �ring patterns which could not be used in the pattern recognition task as the EA

uses the number of spikes after the pattern presentation as the criteria to discriminate between

patterns. Examples of these irregular patterns are shown in Figure 8.6 (middle and lower traces)

in comparison with normal ones (top traces). Each of these anomalies is described in the next

sections together with the procedures implemented to eliminate them.

Plateaus

The combination of some parameters such as a small dendritic length with a strong synaptic input

or background synaptic input resulted in a kind of response pattern called a plateau. Plateau

responses can be described as depolarized potentials that start with a transient burst of action

potentials and then stay at an approximately constant level of depolarization for a period of time

[35]. This kind of neuronal response can be found occasionally in CA3 hippocampal pyramidal

cells and subthalamic neurons [36, 35].

In this work, plateaus were characterized by noisy depolarised periods between bursts or indi-

vidual spikes (see middle traces in Figure 8.6), which usually measured around -20 mV and took up

to 40 ms of duration. To detect plateaus, a "band-pass �lter" was implemented with a passband

between -30 to -10 mV, and the membrane voltage was tested between 110 to 150 ms after the

start of the simulation (patterns were presented 100 ms after the simulation start). If at least a 5

ms consecutive part of the trace during this period was within the voltage range of the pass band,

the trace was classi�ed as a plateau.

Plateaus were considered irregular responses, and they could not be used to compute the pattern

recognition performance (which counts the number of spikes). So, to deal with this problem, a

new rule was implemented in the EA where the average s/n ratio was set to zero if a plateau

was detected, regardless of the number of plateaus found within that trial. This means that the
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Figure 8.6 � A comparison of normal traces with irregular ones: plateaus and doublets. For each
kind of trace, two samples of �ring pattern are given.

individual was penalised with a low �tness score for each generation when the individual generated

a plateau.

Lack of Variability

Another problem found during the evolution of active models were situations where the s/n value

was unde�ned. This problem was always caused by the lack of variation in response to stored and

novel patterns which could be a consequence of either a small number of active synapses or a weak

background input. As I considered this lack of variability not biologically plausible, I decided to
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eliminate it by setting the s/n value to zero for that trial, whenever this occurred. As a result, the

�tness of the individual was a�ected by receiving a lower average s/n value that decreased its rank

in the current population and reduced its chances of being selected in the next generation.

Doublets

The last problem found was related to a phenomenon which was caused by what I referred to as

�super neurons�. Super neurons were individuals with a much better performance than normal

ones; their s/n value could go up to 100 times the expected value (something around 12 for the

performance of the most symmetric morphology, as shown in Section 8.4). This huge di�erence in

performance was a consequence of another irregularity found in the �ring patterns, named doublets.

According to Simpson (1969), doublets are �two discharges of a single (motor) neuron with uniquely

short interspike intervals (ISIs) ranging between 2.5 and 20 ms� [qtd. in 37]. Doublets are a type

of �ring pattern also found in cerebellar Purkinje cells, which has been associated with dendritic

Ca2+ spike �ring [39, 40, 15], and more recently with Ca2+-dependent K+ currents [44]. These

two types of conductances were also present in the active models studied here, which could be

the reason for the doublets being generated by these models. In this work, doublets were found

as repetitive doublet patterns, where the spike train was mainly composed by a sequence of pairs

of spikes (bottom left trace in Figure 8.6), or as single doublets within a normal �ring pattern

(bottom right trace).

The problem found here was that the EA evolved individuals which inconsistently generated

doublets, sometimes in response to the presentation of stored patterns only and in other trials

for both stored and novel patterns. This resulted in an extremely variable performance of these

neurons, which could not be correlated with their morphology or the set of parameters used by

them; therefore I wished to eliminate them from the population. To solve this problem, several

modi�cations in the EA were tried, such as increasing the search spaces of some parameters and

changing the �tness function used by the EA. This last adjustment seemed to be e�ective initially

as the original �tness function was calculated by only averaging the s/n ratio for a given number of

pattern sets, which could result in a large variability of the actual �tness from the �ttest individual.

So to reduce this variability, seven di�erent �tness functions were tested, most of which included the

standard deviation in the �tness calculation (such as �tness = mean s/n ratio divided by standard

deviation of s/n ratio). However, although some improvements were noticed, that is the number of

doublets found was reduced and the pattern recognition performance was increased in some cases,

none of the �tness functions tested removed completely the doublets from the neuronal output.

Thus, another attempt to eliminate the super neurons from the population was made, aiming to
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detect any neuronal output with a doublet and penalising the individuals where this pattern was

found. To do this, a method to detect doublets was implemented as described next.

As shown before, doublets are characterized by short ISIs that are followed by longer ISIs. So

to detect them, a standard method to measure the variability of ISIs in spikes trains was used.

This method, named coe�cient of variation (CV2), was de�ned by Holt et al. in 1996 [28]. The

CV2 method calculates the di�erence of two adjacent ISIs divided by their mean, as given in the

following equation:

CV2 =
2 |4ti+1 −4ti|
4ti+1 +4ti

(8.1)

where 4ti gives the ISI for 1 ≤ i ≤ N and it is calculated as

4ti = ti − ti−1

and ti is the time at which the spike i occurs in the spike train, with 0 ≤ i ≤ N . The CV2 is can

adopt values between 0 and 2, with a mean of 1 for Poisson spike input.

From Equation 8.1, it is clear that the CV2 is low for a regular spike train and high for a large

variability of ISIs. Based on this, I decided to calculate the mean CV2 over a set of neuronal spike

trains obtained when presenting di�erent sets of stored and novel patterns. For this spike train

set, I identi�ed manually which of the traces were normal (no doublets found) and which ones had

doublets. Using 160 traces from which 38% contained doublets, I plotted the number of spikes per

trace against their mean CV2. Figure 8.7a shows a clear distinction between traces with doublets

(red data points) and normal traces (blue data points), where a possible cut-o� point around 0.3

was de�ned (green line). However, some data points presented an overlap between traces with and

without doublets, which required a further study to de�ne where exactly the cut-o� point for the

doublet detection should be de�ned.

To de�ne this cut-o� point, I used a method named receiver operating characteristic (ROC)

analysis, which was developed in statistical decision theory and has largely been applied in medical

diagnostics and classi�er systems [47, 50, 46]. This method plots a curve of the sensitivity or true

positive rate against the speci�city or true negative rate. For the set of spike trains plotted in

Figure 8.7a, the ROC curve suggested a cut-o� point of 0.295, as shown in Figure 8.7b. For this

set of spike trains, this cut-o� point resulted in a high rate of true positives (96.7%) and a low

rate of false negatives (3.3%), as shown in Table 8.4b. These rates indicated that the proportion

of traces with doublets which could be misclassi�ed as normal was low. As my major concern was

excluding doublets, the CV2 value of 0.295 was chosen as my cut-o� point to detect doublets.
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(a) Mean CV2 against spike number, showing which spike trains contained doublets .

(b) ROC curve.

Figure 8.7 � ROC curve for the detection of doublets.
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Table 8.4 � ROC curve analysis.

(a) Contingency table. The following fractions were calculated from the
ROC curve: TP - true positive; FP - false positive; FN - false negative; TN
- true negative.

(b) Test performance. This table was derived from the contingency table (Table 8.4a).

Using the CV2 value chosen, a rule to eliminate doublets - and consequently the super neurons

- was implemented: every time a doublet was detected in the neuronal response, the average �tness

of that individual was set to zero. As a consequence of this rule, all individuals which produced

doublets as output were graded low in the next EA generation.

8.6.3 Results

After I had solved the problems found in the preliminary investigation (presented in the previous

section), I then used the EA to evolve e�ective morphologies with active conductances. To do this,

I ran three di�erent EA simulations using the same set of parameters, as given in Table 8.3. The

population of each EA simulation was composed of 50 individuals, with dendritic trees with 128

terminal points. Each individual was run for 50 trials, which means that the individual's �tness

was calculated by averaging over 50 di�erent sets of patterns, each set composed of 10 stored and 10

novel ones. For crossover and mutation operations, Strategy 1 was chosen, where these operations

were applied over the whole genomic block (morphological + pattern recognition parameters). The

simulation setup is described in more detail Sections 6.4.1.2 and 6.4.1.3.

The evolution of the pattern recognition performance in these three simulations is shown in

Figure 8.8, where the best individual performance (blue line) and the average performance of the

population (green line) are plotted. Each simulation shown in the �gure was performed for a

di�erent number of generations (x-axis), which was large enough to evaluate the results obtained

from each EA simulation.

In all three simulations, populations of neurons were found with an average s/n ratio of more
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Figure 8.8 � Comparison of the performance of three di�erent EA simulations.
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than 40; this should be compared with the hand-crafted symmetric neuron shown in Figure 8.2,

whose s/n ratio was about 9. Thus, by evolving neurons the performance increased by a factor of

5. In all three cases we have a rapid improvement in the mean �tness of the population between

the �rst and twentieth generation. In the �rst two simulations the maximum �tness was reached

approximately by generations 40 and 80, respectively, and in the last simulation the performance

kept increasing gradually until the last generation.

In the next two sections I describe an investigation of how the neurons produced such a good

performance.

8.6.3.1 Morphology and Performance

In this section I present the results of an investigation of how the morphologies of the individuals

in the population changed over time. There are two parts of the genome that determine the

morphology of the phenotype: �rstly the tree chromosome and secondly the morphological part of

the parameter chromosome. To analyse the results I used four morphometrics: the two metrics used

previously for the passive models, mean depth and asymmetry index; and two new metrics which I

did not test before, mean path length and mean electrotonic path length, both previously explained

in Section 5.2.2. The decision to use the old metrics again was made to allow a comparison between

these metrics, which were the best and worst metrics found for passive models respectively, and

the new metrics chosen.

To present the results of each simulation, I opted to plot two versions of the data: the original

data, which are presented on the left side of each of the following graphs (Figures 8.9 to 8.14);

and a smoothed version, which in some cases allowed a better visualisation of the data trend. The

smoothed data were generated by applying a simple moving average �lter [1], with a lag of 5 data

points.

The results from Simulation 1 exhibited no meaningful change in the tree topology, as shown by

the absence of a consistent change in the mean depth after generation 25 in Figure 8.9. However,

there was a step decrease in the mean electrotonic path length which corresponded to an increase

in performance, as indicated by the red dashed line in Figure 8.10. In fact, as the mean path length

did not change over time, whereas the mean electrotonic path length did, this suggested that this

change was mainly due to a reduction in the dendritic diameter, as its length seemed to not be

a�ected, which otherwise would have caused a decrease in both metrics. A further discussion of

the parameters will be presented in Section 8.6.3.2.
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Figure 8.9 � Simulation 1 - Comparing mean depth and asymmetry index with neuronal performance.
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Figure 8.10 � Simulation 1 - Comparing mean path length and mean electrotonic path length with
neuronal performance.
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In Simulation 2, once again the tree topology was not responsible for the increase of the neuronal

performance, as shown in Figure 8.11. On the other hand, the metrics which are dependent on the

morphological parameters, mean path length and mean electrotonic path, showed a step decrease

which corresponded to an increase in the neuronal performance (Figure 8.12). This signi�cant

change found in both metrics (generation 67 � as marked in Figure 8.12) suggested that it was

a consequence of a decrease in the dendritic compartmental length (discussed in more detail in

Section 8.6.3.2).

Figure 8.11 � Simulation 2 - Comparing mean depth and asymmetry index with neuronal perfor-
mance.
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Figure 8.12 � Simulation 2 - Comparing mean path length and mean electrotonic path length with
neuronal performance.
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Simulation 3 was the only simulation which showed a persistent change in the dendritic tree

topology as the mean depth decreased as the performance increased (Figure 8.13). As expected,

a similar trend was found in both mean path length and mean electrotonic path length (Figure

8.14).

Figure 8.13 � Simulation 3 - Comparing mean depth and asymmetry index with neuronal perfor-
mance.
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Figure 8.14 � Simulation 3 - Comparing mean path length and mean electrotonic path length with
neuronal performance.

To summarise the results of these three simulations, we found that only one simulation showed

an improvement in performance related to a change in the dendritic topology (Simulation 3). In

the other two simulations, the only neuronal performance increase related to morphology was due

to changes of the morphological parameters, such as dendritic compartmental length and diameter

(tapering). These changes in the morphological parameters are explained in detail in the next

section.

In summary, any change in the actual tree morphology played only a minor role in the evolution

of successful neurons. In fact, as can be seem in Figure 8.8, very rapid evolution happens in all

three simulations in the �rst 20 generations, which suggests signi�cant changes in the parameter

chromosome. This is discussed in the next section.
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8.6.3.2 Neuronal Parameters and Performance

To examine how the parameter chromosome changed over the generations, I calculated the mean

value of the parameters at the beginning of each simulation, at generation 20 and at the �nal

generation. Table 8.5 shows the average s/n ratio for the population (column 3) and the mean

values of the nine parameters which compose the parameter chromosome (columns 4-12), where

the colour code represents each simulation. From this table, it is possible to see that the �tness

increases very rapidly from the initial population to generation 20, which is a consequence of

the parameter tuning that happens in the initial generations until the values obtained are close to

optimal. From generation 20 until the �nal one, we �nd a much smaller improvement in the �tness,

which results from a smaller variations in the parameters and small changes in the dendritic tree

topology (as explained in the previous section).

From Table 8.5 we can also identify values of �ve of the parameters that are required to obtain

the best performing neuron for the pattern recognition task: compartmental length should be close

to 7 or 8 µm, no tapering (tapering = 1), a high value for the number of input spikes (close to

10), no noise (noise = 0), a low value for background synaptic strength (close to 0). The other

four parameters, synaptic strength, interval, background interval and sparseness, do not seem to

correlate with the average s/n value and so appear to be able to take on several di�erent values while

still maintaining a high performing neuron, although there appears to be an inverse correlation

between sparseness (lower values indicate sparser input patterns) and synaptic strength.

Table 8.5 � A comparison of parameters for di�erent generations in the three simulations. The
colours indicate the three simulations previously described. The values given from the third column
on represent the average s/n of the population and the nine parameters which compose the parameter
chromosome as described in Table 8.3. The parameters presented are (units): dendritic compartmental
length (µm), tapering, synaptic strength (nS), number of spikes, interval (ms), noise, background
synaptic strength (nS), background interval (ms), sparseness (fraction of active synapses).

Having identi�ed the parameter changes related to the initial large scale increase in �tness,

I now discuss some of the jumps identi�ed in the �tness that occur in later generations. These

jumps, easily identi�ed in two of the three simulations, are interesting because in both cases only

two parameters were responsible for these changes.

As shown earlier in Section 8.6.3.1, Simulation 1 showed a decrease in the mean electrotonic
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path without there being a similar decrease in the mean path length (see the dashed red line at

about generation 32 in Figure 8.10). From the equation used to calculate the mean electrotonic

path length (given in Section 5.2.2.3), it can be seen that the only parameters that are involved

in this calculation are the dendritic compartmental length and the diameter. So, given the fact

that the mean path length, which only depends on the dendritic length, did not change when the

neuronal performance increased, the only parameter that could be responsible for this performance

improvement was the dendritic diameter. This hypothesis is con�rmed by the results shown in

Figure 8.15, where the tapering parameter increased (middle graph) in the same generation in

which the mean electrotonic path decreased. Surprisingly, the spike interval was another parameter

that also seems to be related to the increase of the neuronal performance (bottom graph in Figure

8.15). From further experiments which only varied tapering and spike interval (initial parameter

values from generation 31 and �nal values from generation 32), the results show that none of these

two parameters can improve performance when they are varied alone. In fact, when tapering was

increased from 0.98 to 1, without changing the spike interval, the actual neuronal performance

decreased (results not shown here). The results also show that when both parameters, tapering

and spike interval, were increased at the same time, the actual neuronal performance was improved.

Thus, we can conclude that the performance improvement found in generation 32 is a consequence

of the increase of both parameters, as shown in Figure 8.15.

As noted previously for Simulation 2, there is a similar clear increase of neuronal performance

at generation 67 (shown in Figure 8.12). This occurred at the same point as a decrease in the

mean path length and the mean electrotonic path length, which suggests that the main parameter

responsible for this performance improvement was the dendritic compartmental length. This was

con�rmed by the results shown in Figure 8.16, where the dendritic length decreased in the same

generation in which the s/n ratio increased. Again, tapering was another morphological parameter

that exhibited a step change coinciding with a step change in the neuronal performance (bottom

graph of Figure 8.16), which could explain the larger relative decrease of the mean electrotonic

path length (15%) compared to the decrease of the mean path length (9%). No pattern recognition

parameter was found to be responsible for the improvement of the neuronal performance in this

simulation.

As mentioned in the previous section, in Simulation 3 there were no clearly de�ned jumps in

performance that matched clear changes in metrics, so no parameter was found that could be

directly related to the increase of the neuronal performance. This suggests that this improvement

was only a result of the change in the dendritic tree topology (shown in Figure 8.13).

In the three simulations studied here, no further clear relationship was found between the
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Figure 8.15 � Simulation 1 - Comparing neuronal performance with two parameters: tapering and
spike interval.

parameters and the neuronal performance (see Appendix C for a full list of graphs comparing all

parameters in each simulation).
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Figure 8.16 � Simulation 2 - Comparing neuronal performance with parameters: dendritic length
and tapering.
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8.6.3.3 Sensitivity Analysis

The last analysis carried out on the EA results was to identify how sensitive were the parameter

values obtained from �nal evolved individuals. Table 8.6 lists all the parameters values (for mor-

phological and pattern recognition parameters) for the �ttest individual in the last generation of

each simulation, where each column represents one of the three simulations studied previously. In

the last column, a list of the original parameter values used in the experiments with the systemati-

cally generated morphologies is presented; these values were hand-tuned to obtain a good neuronal

performance. From the comparison between these values and the parameter values obtained from

the EA simulations, it is clear that most of the evolved parameters di�er from the original values.

This comparison shows an increase of the dendritic length, the number of spikes, and the spike

interval, a decrease of the synaptic strength for the input pattern and background input and a

removal of the input noise in the evolved morphologies. These changes in the models that were

evolved resulted in an improvement of the pattern recognition performance by a factor of at least

�ve when compared to the hand-tuned ones.

Table 8.6 � Parameters of the best individual evolved in each simulation. To allow a comparison
with the systematically generated morphologies, a column with the hand-tuned original values was
included which were used in those experiments (described in Section 7.2).

Parameters Sim 1 Sim 2 Sim 3 Original

Values

dendritic length (µm) 7.86 7.25 7.14 5

dendritic tapering 1 1 0.89 1

synaptic strength (nS) 0.71 0.59 1.2 1.5

number of spikes 9 10 10 5

spike interval (ms) 8.57 4.98 8.90 3

noise 0 0 0 1

background synaptic strength (nS) 0.16 0 0.18 0.5

background spike interval (ms) 1000 500 500 1000

sparseness (% active synapses) 10 15 5 10

To analyse the importance of each of the EA parameters more systematically, a one-way sen-

sitivity analysis was chosen where I could determine how the parameter values obtained could

in�uence the �tness function. The results of this kind of analysis are usually presented in a tor-

nado diagram, which is a bar chart where the length of each bar represents the variation of the

�tness function for changes of each parameter [57]. This sensitivity analysis is presented in Figure

8.17, where the tornado diagram was plotted along the x-axis to allow a comparison between the

results of the three simulations. The analysis was made by varying just one of the parameter values
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by 10% up (blue bars) and 10% down (red bars) and while keeping the other parameter values the

constant. The new �tness was calculated for each of the parameter variations and by averaging

the �nal �tness over 100 trials. The bars in Figure 8.17 show the di�erence between the new s/n

value resulting from the parameter variation and the original s/n value of the �ttest individual.

The error bars indicate the standard error of the mean calculated over the 100 trials.

Figure 8.17 � Sensitivity test over the best individual parameters from each simulation. The actual
s/n value obtained for the �ttest individual evolved is indicated by the horizontal black line, and
its standard error of the mean is given by the green error bar on the right side of each graph. The
di�erence between the average s/n value of the �ttest individual and the new average obtained from
each parameter variation is given by the bars, where the right y-axis shows the relative di�erence as
a percentage. Each parameter was varied by 10% up (blue bars) and 10% down (red bars), and the
resulting s/n ratio was averaged over 100 trials, where the error bars indicate the standard error of the
mean. The parameter noise is not shown here because it was not possible to vary its value since this
is a categorical parameter, accepting only two values (0, 1). Missing bars are due to the parameter
concerned already being at the limit of its value so that a decrease or increase in value cannot be
made.

It is clear from the sensitivity analysis that the vast majority (42 out of 44) of these 10% changes

to the parameters values found by the EA decreased the overall performance, while one change did

not have any e�ect, and only in two cases a very small increase in performance was found. In other

words, the EA did well in �nding parameters that could not easily be improved. It is noticeable

that some parameters appeared to have a larger e�ect on performance than the others. From

Figure 8.17 it is clear that the most sensitive parameters in all three simulations were tapering
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and sparseness (fraction of active synapses). From Section 8.6.3.2, it is known that tapering was

an important parameter in both Simulations 1 and 2, where the neuronal performance improved

when tapering increased. This can explain why the neuronal performance deteriorated when the

tapering decreased by 10%, as shown in the �rst two diagrams in Figure 8.17. The other particularly

sensitive parameter, sparseness, can be explained by the fact that it is a parameter that can not

be changed independently of the others. As shown in Table 8.6, when the sparseness increased

the synaptic strength decreased and vice-versa. Thus, this could explain that when sparseness

is changed on its own the neuronal performance degrades, as shown for the three simulations in

Figure 8.17.

8.7 Conclusions

In this chapter I have presented results obtained by an extensive investigation of neuronal mor-

phologies in the presence of active conductances. As for the passive models, this study included

a comparison of the most distinct morphologies and an analysis of morphologies and parameters

that were evolved by using an EA. It also included a comparison of selectively generated morpholo-

gies, and highlighted di�erences between active and passive models. In this chapter both the tree

morphology itself and the parameters associated with morphology and pattern recognition where

varied and an analysis of the e�ects on pattern recognition performance carried out. The main

conclusions we can draw from the results presented in this chapter are:

1. The EA could evolve e�ective morphologies in the presence of active conductances, with a

resulting pattern recognition performance that was �ve times better than that of hand-tuned

neurons.

2. The speci�c values of the neuronal parameters play a major role in determining the perfor-

mance of neurons in the pattern recognition task.

3. Dendritic compartmental length and tapering were shown to be important neuronal parame-

ters when evolving the best pattern recognizers. Moreover, a sensitivity analysis showed that

tapering and the number of active synapses were the most sensitive neuronal parameters

when measuring the pattern recognition performance of the active neuronal morphologies

evolved by the EA.

4. The EA did not evolve the dendritic topology much since the initial population already

contained reasonably good morphologies.
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5. Mean path length, mean electrotonic path length and mean depth were good predictors of

the pattern recognition performance of active models.

6. As in the passive model, the asymmetry index was not a good predictor of good morphologies

for the active model as all the morphologies with an asymmetry index in the range between

0 and 0.5 perform as well as the most symmetric one.

Overall we can see that the EA found a population of neurons that perform pattern recognition

signi�cantly better than the hand-crafted neurons that I initially used. In fact the EA managed

to increase the s/n ratio from 8 to between 40 and 60.



Chapter 9

Conclusion

9.1 Main Contributions

The main contributions of my PhD work to the �eld of computation neuroscience are:

� In both active and passive neuronal models, I found an almost linear correlation between

the mean depth of the dendritic trees and the pattern recognition performance; the best

performing neurons were the ones with the smallest mean depth. A similar result was found

for the variance of depth, mean path length and mean electronic path length, which correlated

with the neuronal performance in some experiments. Interestingly, the asymmetry index did

not correlate with the performance for the full range of tree morphologies. In fact, any

morphology with an asymmetry index below 0.5 performed as well as the most symmetric

one.

� The values of neuronal parameters play a major role in determining the performance of

neurons in the pattern recognition task. In particular, the values of the morphological pa-

rameters, dendritic compartmental length and tapering, a�ected the ability of the model

neurons to be good pattern recognizers. However, no single parameter setting guaranteed

good neuronal performance; in three separate runs of the evolutionary algorithm, di�erent

sets of well performing parameters were found.

� In my search for optimal neuronal morphologies for pattern recognition, I investigated dif-

ferent optimisation procedures that could alter di�erent neuronal features such as dendritic

topologies and morphological parameters. Following a survey of existing algorithms, I devel-

oped my own algorithms to generate dendritic morphologies, either in a systematic way or

by evolving them using an Evolutionary Algorithm (EA). My EA was designed to meet six

requirements that were not met entirely by existing algorithms. As a result, I could generate

122
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neuronal morphologies that allowed me to understand some of the neuronal features that are

important for pattern recognition.

� The �nal EA could evolve e�ective morphologies in the presence of active conductances,

with a pattern recognition performance that was �ve times better than that of hand-tuned

neurons.

Moreover in a preliminary investigation, I studied the e�ect of di�erent types and features of

synaptic plasticity in a Purkinje cell model. In these studies, I found that the best pattern recog-

nition performance in the model resulted from LTD saturating at a lower bound value of zero,

which corresponds to silencing the PF synapses completely. On the other hand, the ability of the

model to discriminate between learned and novel input patterns was una�ected by the presence of

inhibitory plasticity for a wide range of parameter values.

9.2 Future Research

Some ideas are suggested as extensions to my work:

� Optimisation of ion channel distributions. Ion channels are a key determinant of neuronal

function, as they regulate the ion �ux into the cell which is responsible for the neuronal

transmission of signals. In this work, I used a set of voltage-gated conductances studied

previously in related works [42, 76]. However, previous research suggests that including

variable types and densities of ion channels could improve the neuronal performance as it

can change the �ring pattern [13, 16, 72, 75]. Thus, a next step of this research should be

the optimisation of voltage-gated conductances by varying their type, density and location.

� Study of input pattern characteristics such as clustered and asynchronous input patterns.

Previous work has shown that these features of input patterns play an important role in

information processing [81, 51] and consequently they should be investigated in more detail

in further studies of pattern recognition by neuronal models.

� Study of di�erent spike response features. To analyse the pattern recognition performance in

the neuronal morphologies evolved by the Evolutionary Algorithm, di�erent features of the

neuronal response can be considered. Instead of using the amplitude of the EPSP response,

as used in the passive models, or the number of spikes, as used in active models, other

features of the spike response could be tested. Previous work has used the latency of the

�rst spike or the length of a pause after presentation of a pattern to measure the pattern

recognition performance [66]. By adjusting the neuronal model to have intrinsic properties
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such as spontaneous activity, these and other spike response features could be used to measure

the neuronal performance.

� Investigate the use of information theory to evaluate the neuronal performance. In this

work and in previous studies of pattern recognition, the signal-to-noise ratio was the only

measurement used to evaluate the neuronal performance of the morphologies studied. A next

step suggested is to study information theoretical measurements such as Shannon's entropy

[59], trying to identify better measures of neuronal performance.

� Incrementally increase the complexity of the active model. From the passive to the active

model, a number of features were included such as optimization of parameters, inclusion of

background input and use of new morphological metrics when compared to the passive model,

apart of the inclusion of the ionic channels. To acquire a better understanding of the active

model and its results, each of these steps should be done individually and progressively, �rst

in the passive model and then in the active one. Thus, the results from both models could

be fairly compared.

9.3 List of Publications

During the four years of my PhD, I have attended several conferences; I have published four

abstracts, presented as posters, and one full conference paper.

The following papers were presented in conferences in my �rst two years of research. Their

results were presented in Chapter 4.

� Seventeenth Annual Computational Neuroscience Meeting: CNS 2008. Portland, USA. G. De

Sousa, R. Adams, N. Davey, V. Steuber. Determinants of pattern recognition by cerebellar

Purkinje cells. Published in BMC Neuroscience, 9, Suppl 1 (2008), P67.

� I Congress IBRO/LARC of Neurosciences for Latin America, Caribbean and Iberian Penin-

sula: NeuroLATAM 2008. Buzios, Brazil. G. De Sousa, R. Adams, N. Davey, V. Steuber.

E�ect of LTD Saturation on Pattern Recognition by Cerebellar Purkinje Cells.

� International Conference on Adaptive and Natural Computing Algorithms: ICANNGA 2009.

Kuopio, Finland. G. De Sousa, R. Adams, N. Davey, R. Maex, V. Steuber. The E�ect of

Di�erent Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex.

Published in Lecture Notes in Computer Science, 2009. M. Kolehmainen, P. Toivanen, and

B. Beliczynski, Eds., vol. 5495, Springer Berlin / Heidelberg, pp. 413�422.
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The following papers were presented in conferences in the last year of my research. They summarize

some of the results presented in Chapters 7 and 8.

� Nineteenth Annual Computational Neuroscience Meeting: CNS 2010. San Antonio, USA. G.

De Sousa, R. Maex, R. Adams, N. Davey, V. Steuber. Optimization of Neuronal Morphologies

for Pattern Recognition. Published in BMC Neuroscience, 11, Suppl 1 (2010), P80.

� Twentieth Annual Computational Neuroscience Meeting: CNS 2011. Stockholm, Sweden.

G. De Sousa, R. Maex, R. Adams, N. Davey, V. Steuber. The E�ect of Dendritic Morphol-

ogy on Pattern Recognition in the Presence of Active Conductances. Published in BMC

Neuroscience, 12, Suppl1 (2011) , P315.
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Appendix A

Analytical Calculation of the

Signal-to-Noise Ratio in the ANN

(R. Maex, personal communication, 3 Feb 2009)

Suppose that S denotes the total number of Synapses, L denotes the number of Learned pat-

terns, A denotes the number of Active synapses per pattern andD denotes the number of Depressed

synapses after learning. In this demonstration, I consider that all synapses are binary and they

are all depressed by the LTD saturation value of zero.

The calculation of the S/N ratio consists of two subproblems: a) �nding the number D of

depressed synapses; b) calculating the responses to unlearned patterns. Let's start with the second

problem, so D is supposed to be known.

Calculating the responses to unlearned patterns is equivalent to the problem of drawing A balls

from a population of S balls of which D are white and S − D balls are red and calculating the

distribution of the number of red balls (drawn on each trial). This should be a hypergeometric

distribution, which can however, if S is very large, be approximated by a binomial distribution

with the probability of drawing a red ball being equal to (1−D/S). Then, the average output of

the ANN for unlearned patterns is A ∗ (1−D/S). The variance is A ∗ (1−D/S) ∗ (D/S). We also

know that for learned patterns the mean output is zero with variance zero. Hence, the S/N ratio

becomes:

S/N =
(µs − µn)

2

0.5 (σ2
s + σ2

n)

= 2
(A(1−D/S))2

A(1− (D/S)(D/S)

= 2
A(1−D/S)

(D/S)
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= 2
A(S −D)

D

What is the value of D? If the number of learned patterns L is very small and/or the patterns

are very sparse (A small), then the degree of overlap between learned patterns will also be small,

so that D becomes approximately equal to L ∗A (each depressed synapse is unique).

Then the S/N ratio reduces to:

S/N = 2
A(S − LA)

LA

= 2
(S − LA)

L

≈ 2
S

L

where it is assumed that LA� S. Hence the S/N is proportional to the number of synapses, and

inversely proportional to the number of learned patterns.

If LA is large, then we cannot assume that LA is a good approximation of D. I do not know

yet how to calculate D in that case! But let's assume all synapses are independently depressed

with probability A/S for each pattern, then the probability that a synapse is not being depressed

by any of the L patterns equals (1 − A/S)L, and consequently the mean number D of depressed

synapses will be S − S(1−A/S)L.



Appendix B

Systematically Tree Generation Algorithms

B.1 Lisp Code to Generate Trees Exhaustively

;; ;;;;;;;;;;;;;;;; Main code ;;;;;;;;;;;;;;;;;;

;this function finds all splits in N, a b such that a <= b and a +

b = N

(defun find-numeric-pairs (N &aux result)

(dotimes (i (floor (/ N 2)))

(push (list (+ i 1) (- N (+ i 1)) ) result))

result)

(defun generate-trees-exhaustively (N)

(with-open-file (stream "trees.txt" :direction :output :

if-exists :supersede)

(Let ((pt (mapcar 'partition (trees N))))

(dolist (x pt)

(format stream "~%~a" x)))))

;; ;;;;;;;;;;;;;;;; Auxiliar code ;;;;;;;;;;;;;;;;;;

;;;these two mutually recursive functions

(defun trees (N)

(if (= N 1) '(1)

(trees-helper (find-numeric-pairs N))))

(defun trees-helper (splits)

135



APPENDIX B. SYSTEMATICALLY TREE GENERATION ALGORITHMS 136

(if (null splits) nil

(append (cartesian (trees (caar splits)) (trees (cadar

splits)))

(trees-helper (cdr splits)))))

;cartesian product eg (a b c) * ( d e) = (a d) (a e) (b d) (b e) (

c d) (c e)

(defun distl (m N &aux res)

(dolist (x N)

(push (list m x) res))

(reverse res))

(defun cartesian ( M N )

(cond

((null M ) nil)

(t (append (distl (car M) N)

(cartesian (cdr M) N)))))

(defun partition (tree)

(cond ((null tree) nil)

((equal tree '( 1 1)) (list 2 '(1 1)))

((equal (car tree) 1)

(let ((pt (partition (cadr tree))))

(list (+ 1 (car pt)) 1 pt)))

(T (let ((ptl (partition (car tree)))

ptr (partition (cadr tree))))

(list (+ (car ptl) (car ptr)) ptl ptr)))))

B.2 Lisp Code to Generate Tree Samples from the Search Space

;; ;;;;;;;;;;;;;;;; Main code ;;;;;;;;;;;;;;;;;;

;;Code to produce random samples of the tree space if bias is 0.5

or

;; very asymmetric trees if bias is 0

(defun find-a-asymmetric-random-numeric-pair (N &optional (bias

0.5))
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(let ((i (+ 1 (random (max 1 (floor (* N bias)))))))

(list i (- N i))))

;;Code to produce very symmetric trees:

;;this function splits N into a,b such that a + b = N

;;and a <= N/2 a >= N/2 - (bias * N/2) - the lower bias the more

symmetric the trees become

(defun find-a-symmetric-random-numeric-pair (N &optional (bias

0.5))

(let ((i (- (floor (/ N 2)) (random (max 1 (floor (* (/ N 2)

bias)))))))

(list i (- N i))))

;;how to use: (lots-of-trees num_terminals num_trees bias asym))

;;bias range: 0-0.5, where 0 generates more (a)symmetric trees and

0.5 generate random trees

;;asym values: 0,1. Use 0 to generate asymmetric trees or 1 to

generate symmetric trees

;;eg. (lots-of-trees 120 1000 0.1 0)

(defun lots-of-trees (N how-many &optional (bias 0.5) (asym 0))

(with-open-file (stream "trees.txt" :direction :output :

if-exists :supersede)

(dotimes (i how-many)

(format stream "~%~a" (partition (car (a-tree N bias asym

)))))))

;; ;;;;;;;;;;;;;;;; Auxiliar code ;;;;;;;;;;;;;;;;;;

(defun a-tree (N &optional (bias 0.5) (asym 0))

(if (= N 1) '(1)

(if (= asym 0)

(a-tree-helper (list (

find-a-asymmetric-random-numeric-pair N bias)) bias)

(a-tree-helper (list (find-a-symmetric-random-numeric-pair N

bias)) bias))))

(defun a-tree-helper (splits &optional (bias 0.5))
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(if (null splits) nil

(append (cartesian (a-tree (caar splits)) (a-tree (cadar

splits) bias))

(a-tree-helper (cdr splits) bias))))

;cartesian product eg (a b c) * ( d e) = (a d) (a e) (b d) (b e) (

c d) (c e)

(defun distl (m N &aux res)

(dolist (x N)

(push (list m x) res))

(reverse res))

(defun cartesian ( M N )

(cond

((null M ) nil)

(t (append (distl (car M) N)

(cartesian (cdr M) N)))))

(defun partition (tree)

(cond ((null tree) nil)

((equal tree '( 1 1)) (list 2 '(1 1)))

((equal (car tree) 1)

(let ((pt (partition (cadr tree))))

(list (+ 1 (car pt)) 1 pt)))

(T (let ((ptl (partition (car tree)))

(ptr (partition (cadr tree))))

(list (+ (car ptl) (car ptr)) ptl ptr)))))
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Evolution of EA Parameters

C.1 Simulation 1

Figure C.1 � Evolution of all the nine parameter optimised by the EA.
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Figure C.2 � Dendritic compartmental length.

Figure C.3 � Tapering.

Figure C.4 � Synaptic strength.
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Figure C.5 � Number of spikes.

Figure C.6 � Interval between spikes.

Figure C.7 � Noise.



APPENDIX C. EVOLUTION OF EA PARAMETERS 142

Figure C.8 � Background synaptic strength.

Figure C.9 � Background interval.

Figure C.10 � Sparseness. It is given by the percentage of active synapses.



APPENDIX C. EVOLUTION OF EA PARAMETERS 143

C.2 Simulation 2

Figure C.11 � Evolution of all the nine parameter optimised by the EA.
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Figure C.12 � Dendritic compartmental length.

Figure C.13 � Tapering.

Figure C.14 � Synaptic strength.
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Figure C.15 � Number of spikes.

Figure C.16 � Interval between spikes.

Figure C.17 � Noise.
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Figure C.18 � Background synaptic strength.

Figure C.19 � Background interval.

Figure C.20 � Sparseness.
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C.3 Simulation 3

Figure C.21 � Evolution of all the nine parameter optimised by the EA.
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Figure C.22 � Dendritic compartmental length.

Figure C.23 � Tapering.

Figure C.24 � Synaptic strength.
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Figure C.25 � Number of spikes.

Figure C.26 � Interval between spikes.

Figure C.27 � Noise.
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Figure C.28 � Background synaptic strength.

Figure C.29 � Background interval.

Figure C.30 � Sparseness.
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Determinants of Pattern Recognition by Cerebellar Purkinje Cells
Giseli de Sousa, Rod Adams, Neil Davey, Volker Steuber 
Science and Technology Research Institute, University of Hertfordshire, Hatfield Herts, AL10 9AB, UK 
 
E-mail: g.sousa@herts.ac.uk 
 
Many theories of cerebellar function assume that long-term depression (LTD) of parallel fiber (PF) synapses enables 
Purkinje cells (PCs) to learn to recognize PF activity patterns. According to the classic view, a PC can store and 
learn to distinguish PF activity patterns that have been presented repeatedly together with climbing fibre (CF) input 
to the cell. The resulting LTD of the PF synapses is often assumed to lead to a decreased rate of PC simple spike 
firing, a reduction in the inhibition of their target neurons in the deep cerebellar nuclei and thus an increased output 
from the cerebellum. We have recently shown by combining computer simulations with electrophysiological 
recordings in slices and in awake behaving mice that the readout of learned patterns in PCs may operate in a 
fundamentally different way. Our simulations and experiments predict that the best criterion to distinguish between 
learned and novel patterns is the duration of a pause in firing that occurs after presentation of a pattern, with shorter 
pauses in response to learned patterns [1].  
 
Although our previous simulations have used a biophysically detailed PC model that has been tuned to generate 
realistic behaviours under in vitro and in vivo conditions, we have applied a simplified learning rule where the 
AMPA receptor conductance of an active PF synapse is halved every time a PF pattern is learned. Moreover, our 
previous simulations have not incorporated the LTD of inhibitory synapses that can be induced when the PC 
receives coincident CF input [2], and that could potentially counteract the effect of the depression of the excitatory 
PF synapses. Here, we study the effect of inhibitory synaptic plasticity on pattern recognition, and we explore a 
variation of our original learning rule that has been adapted to result in a better match to experimental data on LTD 
induction in slices [2,3].  
 
To study the effect of plasticity at the synapses between inhibitory interneurons and PCs, we presented the model 
with feed-forward inhibitory input, which followed the excitatory input with a time delay of 1.4 ms [1,2]. Initially, 
we chose an inhibition/excitation ratio of one, in the range of experimental observations in vitro [2]. We then 
introduced LTD at the inhibitory synapses and evaluated the pattern recognition performance for varying numbers of 
learned patterns. We found that the performance was unaffected by the presence of inhibitory LTD, even in the 
extreme case when the inhibitory plasticity was restricted to the presentation of learned PF patterns. Our simulations 
predict that LTD based pattern recognition is very robust in the presence of LTD at inhibitory synapses. 
 
By dividing the synaptic weights of active PFs by two for every pattern that was learned, our original learning rule 
could result in very small AMPA receptor conductances for large numbers of learned patterns. However, LTD 
induction in cerebellar slices hardly ever results in the depression of responses to less than 50% of the pre-induction 
baseline [2,3]. We studied the effect of saturating LTD in our simulations and found that the pattern recognition 
performance was very sensitive to the value at which the synaptic weights saturated. In contrast to a corresponding 
artificial neural network, which was unaffected by the value at which LTD saturated, pause based pattern 
recognition in the PC model deteriorated drastically in the presence of higher saturation values and therefore smaller 
amounts of LTD. To result in satisfactory pattern recognition, LTD had to depress the AMPA receptor conductances 
in the PC model down to at least 70% of their baseline values, and optimal performance resulted from setting the 
weights to zero and silencing the synapses completely. Interestingly, large numbers of silent PF synapses have been 
observed in another preparation [4]. Our simulation results suggest that it will be crucial to explore these differences 
to understand the connection between PF LTD and pattern recognition.  
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1. Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter E: Cerebellar LTD and 
pattern recognition by Purkinje cells. Neuron 2007, 54:121-136. 
2. Mittmann W, Hausser M: Linking synaptic plasticity and spike output at excitatory and inhibitory synapses 
onto cerebellar Purkinje cells. J Neurosci 2007, 27:5559-5570. 
3. Wang S-H, Denk W, Hausser M: Coincidence detection in single dendritic spines mediated by calcium 
release. Nat Neurosci 2000, 3:1266-1273. 
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Effect of LTD Saturation on Pattern Recognition by Cerebellar Purkinje Cells

Objectives
Many theories of cerebellar learning assume that long-term depression (LTD) of synapses between parallel 
fibres (PFs) and Purkinje cells (PCs) provides the basis for pattern recognition in the cerebellar cortex (1). 
Recent computer simulations and electrophysiological recordings in slices and awake mice have suggested 
that  PCs can use a novel  neural  code based on the duration of  silent  periods,  with  shorter  pauses in 
response to learned PF patterns (2). These simulations used a simplified learning rule, where the AMPA 
receptor conductance was halved each time a pattern was learned. However, experimental studies of LTD 
induction  in  cerebellar  slices  show that  the  mean  AMPA receptor  conductance  saturates  and  is  rarely 
reduced to less than 50% of its baseline value (3,4). Here we study the effect of LTD saturation at different 
minimal values on pattern recognition.

Methods
The simulations were performed using the GENESIS simulator. We used the multi-compartmental PC model 
with active dendrites and soma that is described in detail in (5,6). The pattern recognition performance was  
evaluated by calculating signal-to-noise ratios (2,7). Simulation data were analysed using C and MATLAB.

Results
We studied the effect of LTD saturation in our simulations and found that the pattern recognition performance 
was  very  sensitive  to  the  value  at  which  the  synaptic  weights  saturated.  The  pause  based  pattern  
deteriorated drastically for smaller amounts of LTD and was affected strongly by the number of active PFs 
per pattern. In contrast, a corresponding artificial neural network (7) was unaffected by the value at which  
LTD  saturated.  To  result  in  satisfactory  pattern  recognition,  LTD  had  to  depress  the  AMPA receptor 
conductances down to at least 70% of their baseline values, and optimal performance resulted from setting 
the weights to zero and silencing the synapses completely.

Conclusions
Our simulation results suggest that LTD based pattern recognition is improved by strong depression and 
optimized  by  setting  the  AMPA receptor  conductances  to  zero.  Interestingly,  large  numbers  of  silent 
synapses between PFs and PCs have been observed in cerebellar slices (8).

References
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The Effect of Different Forms of Synaptic

Plasticity on Pattern Recognition in the
Cerebellar Cortex
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Hatfield, Herts, UK
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Abstract. Many cerebellar learning theories assume that long-term de-
pression (LTD) of synapses between parallel fibres (PFs) and Purkinje
cells (PCs) provides the basis for pattern recognition in the cerebellum.
Previous work has suggested that PCs can use a novel neural code based
on the duration of silent periods. These simulations have used a simpli-
fied learning rule, where the synaptic conductance was halved each time
a pattern was learned. However, experimental studies in cerebellar slices
show that the synaptic conductance saturates and is rarely reduced to
less than 50% of its baseline value. Moreover, the previous simulations
did not include plasticity of the synapses between inhibitory interneu-
rons and PCs. Here we study the effect of LTD saturation and inhibitory
synaptic plasticity on pattern recognition in a complex PC model. We
find that the PC model is very sensitive to the value at which LTD
saturates, but is unaffected by inhibitory synaptic plasticity.

Keywords: Associative memory, Long-term depression, Purkinje cell,
Cerebellum

1 Introduction

The cerebellum is a part of the brain involved in a multitude of tasks, including
motor control, and its functioning is responsible for the smoothness and preci-
sion of movements. These skills are improved by a process called motor learn-
ing, which is often assumed to be implemented by a form of synaptic plasticity
known as long-term depression (LTD). LTD is a long-lasting decrease in synaptic
strength due to a loss of AMPA receptors in the postsynaptic membrane[1]. In
the cerebellum, LTD has been shown to occur at the synapses between Purk-
inje cells (PCs) and their excitatory inputs: climbing fibres (CFs) and parallel
fibres (PFs). More specifically, cerebellar LTD is an associative process in which
the strength of a PF synapse onto a PC is depressed when the CF and PF are
activated at the same time.

Classical cerebellar learning theories suggest that a PC can learn to discrim-
inate between different activity patterns presented by its thousands of afferent



PFs, due to LTD of the PF synapses [2]. It is assumed that as a result of LTD,
the PC firing rate will be reduced when a learned pattern is presented again,
and the PC will exert less inhibition on the deep cerebellar nuclei (Fig. 1). As a
consequence, the cerebellar output should be increased, which could implement
motor learning[1, 3]

Fig. 1. Schematic diagram of the cerebellar circuitry. Purkinje cells (PCs) receive exci-
tatory inputs (+) from 150,000 parallel fibres (PFs) and a single climbing fibre (CF),
and inhibitory inputs (-) from inhibitory interneurons (II), and in turn inhibit the deep
cerebellar nuclei (DCN). Also shown are: mossy fibres (MFs), granule cells (GCs) and
the inferior olive (IO).

Recent work on cerebellar pattern recognition has demonstrated that this
view is too simple. A combined theoretical and experimental study suggested
that PCs can use a novel neural code based on the duration of their silent periods,
where shorter pauses are produced in response to learned patterns [4] (Fig. 2A).
This form of neural coding diverges from the classical view that uses the number
or timing of individual spikes to distinguish between novel and learned patterns.
In the computer simulations and experiments, the pause was compared with
other spike response features like the number of spikes in a fixed time window
after pattern presentation and the latency of the first spike in the response, and
it was shown that the length of the pause was the best criterion for cerebellar
PCs to identify learned patterns (Fig. 2B).

The previous simulations (see Methods) applied a simplified learning rule,
where the AMPA receptor conductance was decreased by 50% each time a pat-
tern was learned. After having stored a number of PF patterns, this could result
in very small AMPA receptor conductances. However, experiments with LTD
induction in cerebellar slices hardly ever result in mean AMPA receptor conduc-
tances of less than 50% of the pre-induction baseline [5, 6]. We have therefore
investigated a different learning rule with AMPA receptor conductances that



saturate at varying values and have studied the effect of this learning rule in
pattern recognition simulations.

Fig. 2. Responses of a model Purkinje cell to novel and learned patterns of PF input.
(A) Upper: The pause evoked by a novel pattern is longer than that for a learned
pattern. Lower: Raster plot showing the responses to 75 learned and 75 novel patterns.
(B) Response distribution for three different spike features. Upper: Latency of first
spike after pattern presentation. Middle: Number of spikes in the first 25ms. Lower:
Length of pause (modified with permission from [4]).

Another contribution of the present work is to study the effect of LTD at the
inhibitory synapses made by interneurons onto PCs (Fig. 1). It has recently been
described that this inhibitory synaptic plasticity results in a mean depression of
inhibitory inputs down to 75% of their original values [5]. We have run computer
simulations to investigate the effect of different amounts of inhibitory synaptic
plasticity on pattern recognition.



2 Methods

2.1 Purkinje Cell Model

The simulations were performed using the GENESIS neural simulator [7], with
additional routines implemented in C++ and MATLAB. We simulated a multi-
compartmental PC model with active dendrites and soma, as described in detail
in references [8, 9]. The model morphology was based on a reconstruction of a
guinea-pig Purkinje cell [10]. Ten different types of voltage-dependent channels
were modelled using Hodgkin-Huxley-like equations. The soma compartment had
a fast and persistentNa+ conductance, a delayed rectifier, a transient A-typeK+

conductance, a non-inactivating M-type K+ conductance, an anomalous rectifier
and a low-threshold T-type Ca2+ conductance. The dendritic compartments con-
tained a Purkinje-cell specific high-threshold P-type and a low-threshold T-type
Ca2+ conductance, two different types of Ca2+-activated K+ (KCa) conduc-
tances and an M-type K+ conductance. Each cell was originally modelled with
147,400 dendritic spines, which were activated randomly by a sequence of PF
inputs at an average frequency of 0.28 Hz. The background excitation was bal-
anced by tonic inhibition, which made the model fire simple spikes at an average
frequency of 48 Hz. Due to the large number of dendritic spines, which made
the simulations computationally expensive, a simplified version of the model was
constructed by decreasing the number of spines to 1% of the original number.
To compensate for this reduction, the rate of PF excitation was increased to an
average frequency of 28 Hz. As this simplified model gave identical results as the
full model, it was used in the simulations presented here.

To study the effect of plasticity at inhibitory synapses, the model was pro-
vided with feed-forward inhibitory input by activating a variable number of
inhibitory synapses onto the soma and main dendrite. The inhibitory input fol-
lowed the synchronous activation of excitatory PFs synapses with a delay of 1.4
ms. Inhibition/excitation ratios were measured as ratios of the mean inhibitory
postsynaptic current (IPSC) peak to the mean excitatory postsynaptic current
(EPSC) peak when the model was voltage clamped to -40 mV.

2.2 Pattern Recognition

The pattern recognition simulations were performed in two steps. First, a num-
ber of random binary input patterns were generated, initially 200, and half of
these patterns were learned by a corresponding artificial neural network (ANN).
The ANN used was a modified version of an associative net with feed-forward
connections between its inputs and output [11] and was trained by applying a
modified version of the LTD learning rule [12](see below). The simulations of
the ANN consisted of two phases: learning and recall.

In the learning phase, the weights of all synapses that received a positive
input during the presentation of a pattern were set to a constant value. This
LTD saturation value was kept constant and unaffected by further pattern pre-
sentations, different from the learning rule that had been used in the previous



simulations [4]. During the recall phase, the response of the ANN was given by
the sum of the weights of all synapses that were associated with active inputs,
which resulted in responses of the ANN to stored patterns that were lower than
those to novel patterns (Fig. 3).

Fig. 3. Simplified schematic of the ANN model. Left side: during learning, three exam-
ple PF patterns are stored by changing the synaptic weights that are associated with
active input lines from their initial value of 1 to an LTD saturation value of 0.5 (this
value is varied between different simulations). Right side: during recall, the responses
to a stored and a novel pattern are calculated as dot product of input vector and weight
vector, resulting in values of 1 and 1.5, respectively (note the difference to the original
diagram in [12])

In the second phase of the pattern recognition simulations, the vector of
synaptic weights was transferred from the ANN onto AMPA receptor conduc-
tances in the multi-compartmental PC model. This represents learning the PF
patterns by depressing the corresponding AMPA receptor conductances during
LTD induction. To test the recall of learned patterns, the PC model was then
presented with a corresponding pattern of synchronous AMPA receptor activa-
tion at the PF synapses.

The discrimination between novel and learned pattern in the two models was
evaluated by calculating a signal-to-noise ratio [13, 14]:

s/n =
(μs − μn)

2

0.5(σ2
s + σ2

n)
(1)

where μs and μn represent the mean values and σ2
s and σ2

n represent the variances
of the responses to stored and novel patterns, respectively. In the PCmodel, three
different features of the spike response were tested as criteria to distinguish stored
from novel patterns: the latency of the first spike fired after pattern presentation,
the number of spikes in a 25ms time window after pattern presentation, and the
duration of a silent period that followed the pattern presentation (see response
distributions for these three different metrics in Fig. 2B). In all cases studied,
the pause duration was the best criterion, and only pause based signal-to-noise
ratios are presented here.



3 Results

3.1 LTD Saturation and the Number of Active PF Inputs

We initially investigated the effect of varying two parameters that were expected
to affect the pattern recognition performance: the value at which LTD saturated
and the number of active PFs for each pattern.

Fig. 4. Pattern recognition performance of the two models for a range of LTD values.
The performance was evaluated by calculating s/n ratios for the ANN (A) and the
PC model (B). The relative decreases in s/n ratio are compared in (C), showing that
the PC model is more sensitive to LTD saturation than the ANN. Error bars indicate
standard deviation (SD).

To study the effect of LTD saturation, we varied the LTD saturation value
over a range from zero to 0.8, while keeping the same numbers of active PFs
(1000) and PF patterns (100 novel and 100 stored) as in previous work [4]. We
found that the ANN was insensitive to the amount of LTD induced (Fig. 4A).
In contrast, the pattern recognition capacity based on the duration of silent
periods in the PC model improved when the LTD saturation value decreased,
with an optimal performance when the synaptic weights of active PFs were set
to zero (Fig. 4B). The relative sensitivities of the ANN and the PC model to the
amount of LTD induced are compared in Fig. 4C. While the ANN was unaffected
by varying the amount of LTD, increasing the LTD saturation value to 0.8 in
the PC model reduced the signal-to-noise ratio down to 0.4 ± 0.4% (n = 10) of
the optimal value obtained by switching off the synapses completely. For LTD
saturation values below 0.5, the PC model performed as well as or better than
the previous model with a non-saturating learning rule [4].



Fig. 5. Relationship between the LTD saturation value and the mean responses to
stored and novel patterns in the ANN and the PC model. Although the difference
between the mean responses to stored and novel patterns decreases with increasing
LTD saturation values in both cases, in the ANN the variance of responses to novel
patterns also decreases. This results in s/n ratios in the ANN that are independent of
the LTD saturation value. Same simulation parameters as in Fig. 4. Error bars indicate
SD.

The reason for the difference in sensitivity of the ANN and the PC model to
varying amounts of LTD became apparent when the mean responses of the two
models to stored and novel patterns were plotted against the LTD saturation
value (Fig. 5). In the PC model, increasing LTD saturation values reduced the
difference in pause duration between stored and novel patterns, with standard
deviations that were affected to a much lesser extent (Fig. 5B). This led to the
drastic reduction in s/n ratio for weak LTD shown in Figure 4. In the ANN,
the difference between the mean responses to stored and novel patterns was
affected much less by the LTD saturation value, while the standard deviation
of responses to novel patterns decreased with increasing LTD saturation values
(Fig. 5A). Based on Equation (1), the constant signal-to-noise ratio of the ANN
in the presence of varying amounts of LTD can be explained by a linear relation-
ship between the squared difference of the mean responses to stored and novel
patterns (μs − μn)

2 and the variance of the responses to novel patterns σ2
n.

In a second set of simulations, we measured the effect of varying the number
of active PFs in each pattern for a range of LTD values. As expected, the perfor-
mance of the ANN deteriorated for larger numbers of activated PFs, while being
independent of the amount of LTD induced over the whole range of numbers of
active PFs tested (500-5000, Fig. 6A). In contrast, the PC model showed the
best pattern recognition capacity for a range between 1000 and 2000 active PFs
and performed consistently worse for higher LTD saturation values (Fig. 6B).



Fig. 6. Pattern recognition performance of the ANN (A) and PC model (B). The colour
represents the resulting s/n ratio for each combination of a number of active PFs for
each pattern (indicated on the x-axis) and an LTD saturation value (y-axis).

3.2 Inhibitory Synaptic Plasticity

To investigate the effect of plasticity at the synapses between inhibitory in-
terneurons and PCs, we initially used an inhibition/excitation ratio of one (see
Methods), which is in the range of experimentally observed data from cerebellar
slices [5]. We then introduced LTD at the inhibitory synapses and evaluated the
pattern recognition performance of the PC for different numbers of patterns.
The effect of inhibitory LTD was examined by depressing the inhibitory conduc-
tance to values between 25% and 75% of their pre-depression baseline. We used
four different simulation setups (Fig. 7): no inhibition, plasticity at inhibitory
synapse for stored and novel PF patterns, plasticity for stored patterns only and
no plasticity for both patterns, that is, maintaining the baseline amplitude value
for the original inhibition/excitation ratio [5].

We found that the pattern recognition performance of the PC model was
unaffected by the presence of inhibitory LTD, even in the extreme case where
the inhibitory plasticity was restricted to learned PFs patterns.

4 Conclusion

Previous computer simulations and experiments in cerebellar slices and awake
behaving rats suggested that the cerebellum can use a novel neural code that is
based on the duration of silent periods in neuronal activity [4]. These simulations



Fig. 7. Depression at inhibitory synapses. Three different inhibitory synaptic plasticity
rules were applied for varying numbers of patterns. The first bar of each graph shows
the s/n ratio when no inhibition is applied for both stored and novel patterns, result-
ing in the best pattern recognition performance. The other bars represent cases with
inhibition present, with from left to right: plasticity for both stored and novel patterns,
plasticity for stored patterns only and no plasticity for either type of patterns, using
the original inhibitory conductances. Error bars indicate SD.

used a complex multi-compartmental model of a cerebellar Purkinje cell that
had been tuned to replicate a wide range of behaviours in vitro and in vivo [8,
9], but they applied a simplified LTD learning rule, which involved dividing the
synaptic weights of active PF inputs by two every time a PF pattern was learned.
This could result in very small synaptic weights and does not fit experimental
data on LTD induction in cerebellar slices, where the mean AMPA receptor
conductances saturate and are hardly ever depressed to less than 50% of their
pre-depression baseline values [5, 6].Moreover, the previous simulations did not
include the plasticity at synapses between inhibitory interneurons and PCs that
has recently been characterised [5].

We have studied the effect of inhibitory synaptic plasticity and saturating
LTD in the complex PC model. We found that the ability of the PC model to
discriminate between learned and novel PF input patterns was unaffected by the
presence of inhibitory plasticity for a wide range of parameter values.

However, the pattern recognition performance of the PC model was very sen-
sitive to the value at which LTD saturated. In contrast to a corresponding ANN,
which was unaffected by the amount of LTD induced, the performance of the
PC model was improved by lower LTD saturation values. The best performance
resulted from LTD saturation values of zero, which corresponds to silencing the



PF synapses completely. Interestingly, large numbers of silent PF synapses have
been observed by monitoring microscopically identified PF-PC connections in
cerebellar slices [15]. Our simulation results indicate that the discrepancy be-
tween the existence of these silent synapses and the apparent saturation of LTD
in induction experiments needs to be resolved to understand the connection
between LTD and cerebellar learning.
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Previous studies have shown that the morphology of a neuron can affect its firing pattern [1, 2]. Specifically, some 
neuronal morphologies tend to favour bursting, where short sequences of spikes are interspersed with pauses in  
firing [1, 2]. This type of bursting behaviour has been observed in cerebellar Purkinje cells (PCs), and previous work 
on  associative  memory  in  PCs  has  shown that  the  generation  of  burst-pause  sequences  can  be  important  for 
information storage in the cerebellum [3]. These results have implications for the coding of information in the brain, 
but they are specific to one particular neuron with a highly specialised morphology. In this study we therefore use a 
general  approach  to  optimise  generic  neuronal  structures  for  pattern  recognition,  while  analysing  how  their 
morphology influences their firing pattern.

To study how the ability of a neuron to perform pattern recognition depends on morphology, we have built  a  
genomic representation of neuronal models, focusing as a first objective on optimising dendritic architectures. The 
optimization process uses an evolutionary algorithm and involves four steps. Firstly, genotypes are generated, which 
specify binary tree structures [4]. Secondly, the genotype is expressed as a model neuron phenotype, in which the 
branching pattern is derived from the genotype, and which is then converted to a multi-compartmental model written  
in  NEURON  simulation  code.  Thirdly,  the  fitness  values  are  assessed  by  evaluating  the  pattern  recognition 
performance. Finally, genetic variation is introduced, using a process where the genes are modified by crossover and 
mutation operators. Unlike previous work that focussed on generating a subset of realistic neuronal morphologies  
for specific computational tasks [5], our representation ensures that the algorithm can generate the set of all possible 
morphologies  for  a  specific  number  of  terminal  branches.  The  fitness  function  evaluates  pattern  recognition  
performance as  described previously  [3,  6],  by storing a number of  input patterns  based  on changing synaptic 
weights and quantifying the ability of the model to distinguish the set of stored patterns from a set of novel patterns. 
The discrimination between stored and novel patterns is evaluated for different features of the spike response and 
quantified by calculating a signal-to-noise ratio. The evolved artificial neuronal morphologies are compared with 
reconstructed morphologies from real neurons. An extension of the work involves optimising other neuronal features 
such as types and distributions of ion channels and the spatial structure of inputs in patterns. 
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Figure 1.  Pattern recognition performance in active and 
passive  models.  Results  were  obtained  by  generating  a 
population of 150K random trees, and then averaging over 
5 randomly selected ones in each bin, using two metrics: 
asymmetry index (A) and average path length (B).
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In previous experiments [1], we showed that dendritic morphology affects the ability of passive neurons to recognise 
spatial  patterns  of  synaptic  inputs.  In  particular,  the  most  symmetric  morphologies  outperformed  the  most 
asymmetric ones based on the measure of signal-to-noise ratio between stored and novel patterns. In the present  
study, we analyse how the dendritic morphology affects the pattern recognition performance in active models.

To  evaluate  pattern  recognition  performance,  we  ran  a  set  of  simulations  using  a  large  sample  of  neuronal  
morphologies each consisting of 128 terminal points and the same set  of ion channel  conductances,  defined in  
previous models [2]. The model response was evaluated by calculating the signal-to-noise ratio over the number of 
spikes after presenting a pattern, differently from the experiments with passive models where the EPSP size was  
used  [1,  3].  For  all  experiments,  we  investigated  whether  the  pattern  recognition  performance  correlated  with 
different morphometric parameters, including the asymmetry index [4], and the average and variance of path length. 
We also investigated  suitable ranges  for  model  parameters  such  as  dendritic  compartment  length and  synaptic  
strength, among other properties related to the pattern presentation. The results achieved in active models were then 
compared with the ones from passive models, using the same set of parameters.

The experiments confirmed that there are different 
pattern  recognition  abilities  associated  with  a 
range  of  different  morphologies  from  the  most 
symmetric  to  the  most  asymmetric  ones.  The 
initial  results  suggested a strong anti-correlation 
between  pattern  recognition  performance  and 
neuronal  asymmetry  in  the  presence  of  active 
conductances (see Figure 1). The same correlation 
was  also  observed  in  passive  models,  however 
with  a  less  accentuated  performance  difference 
when compared with active ones. The results also 
show  that  average  path  length  is  the  best 
morphometric parameter tested to predict pattern 
recognition, where a more linear correlation was 
found when compared with other metrics (Figure 
1B). 

Currently we are investigating the optimization of active neuronal morphologies for pattern recognition, using an 
evolutionary algorithm, previously presented in [1]. In addition to the dendritic topology, different parameters were 
added to the genomic representation, such as dendritic compartment length and tapering, using the parameter ranges  
found in the previous experiments on these models. With these results, we want to confirm the more pronounced 
effect observed in active models (Figure 1), as they suggest the evolutionary algorithm may also be more successful 
in finding optimal morphologies for active as compared to passive dendrites. 
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