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Abstract 
 

Human complex diseases, like Diabetes and Cancer, affect many people worldwide today. 

Despite existing knowledge, many of these diseases are still not preventable. Complex diseases 

are known to be caused by a combination of genetic factors, as well as environmental and life 

style factors. The scope of this investigation covered the genomics of Type 1 Diabetes (T1D). 

There are 49 human genomic regions that are known to carry markers (disease-associated single 

nucleotide mutations) for T1D, and these were extensively studied in this research. The aim was 

to find out in how far this disease may be caused by problems in gene regulation rather than in 

gene coding. For this, the genetic factors associated with T1D, including the single point 

mutations and susceptibility regions, were characterised on the basis of their genomic attributes. 

Furthermore, mutations that occur in binding sites for transcription factors were analysed for 

change in the conspicuousness of their binding region, caused by allele substitution. This is 

called SNP (Single nucleotide polymorphism) sensitivity.  From this study, it was found that the 

markers for T1D are mostly non-coding SNPs that occur in introns and non-coding gene 

transcripts, these are structures known to be involved in gene regulatory activity. It was also 

discovered that the T1D susceptibility regions contain an abundance of intronic, non-coding 

transcript and regulatory nucleotides, and that they can be split into three distinct groups on 

the basis of their structural and functional genomic contents. Finally, using an algorithm 

designed for this study, thirty-seven SNPs that change the representation of their surrounding 

region were identified. These regulatory mutations are non-associated T1D-SNPs that are 

mostly characterised by Cytosine to Thymine (C-T) transition mutations. They were found to 

be closer in average distance to the disease-associated SNPs than other SNPs in binding sites, 

and also to occur frequently in the binding motifs for the USF (Upstream stimulatory factor) 

protein family which is linked to problems in Type 2 diabetes. 
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CHAPTER 1 

MOTIVATION 
 

Human complex diseases, including diabetes, cancers, and neuro degenerative disorders, are 

major challenges because they still affect many people worldwide today and are difficult to 

decipher. Diabetes affects 347 million people worldwide, and Type 1 Diabetes is the third most 

prevalent chronic disease of childhood, affecting up to 0.4% of children by the age of thirty. 

Although much research has been done towards finding the cause of T1D over the last four 

decades, the exact mechanism leading to its onset is still not known (Noble and Erlich, 2012). 

Despite existing knowledge, the disease is not preventable (WHO Diabetes fact sheet 312, 2015). 

Complex diseases are caused by a combination of genetic, environmental and life style factors, 

and describing the aetiology (biological mechanism that leads to disease onset) of such diseases 

is not an easy undertaking (Noble and Erlich, 2012). In order to delve into the intricacies of any 

complex disease, the underlying genomics have to be understood; especially as there is now 

sufficient evidence that genetic variation plays an important role in the determination of 

individual susceptibility to disease (Knight, 2010). Genome Wide Association Studies (GWAS) 

involve examining common genetic variation, particularly Single Nucleotide Polymorphism 

variants (SNPs) (see chapter 2) between different individuals to see if any particular variant is 

associated with a certain phenotype. It usually involves comparing the genomes (DNA 

sequences) of a large number of two groups of individuals. One group is the people with the 

phenotype of interest (cases) and the second is similar people without the phenotype (control). 

If a form of the SNP (called an allele) is more frequent in people with the phenotype, then the 

SNP is said to be "associated" with the disease. The associated SNP is considered to mark a 

region of the human genome which influences the risk of disease. This region is referred to as a 

disease susceptibility region or a disease risk locus (Burren et al., 2011). Each region may contain 

other correlated SNPs, genes and biologically active DNA sequences, like binding sites, that are 

linked with the associated SNP. 

GWAS have led to the discovery of SNPs that are significantly associated with a number of 

complex diseases including T1D, Rhuematoid arthritis, Crohn’s disease etcetera (Manolio et al., 

2009; Hindorff et al., 2009; Barrett et al., 2007). However, these studies cannot specify which 

genes are causal. Generally, studies of disease-associated SNPs tend to be strongly gene-

oriented. This means that the common focus is on the associated SNPs that occur within coding 

regions of genes, and their possible effects on gene products. This approach has been quite 

successful in studies of Mendelian or monogenic diseases (i.e. caused by problems in a single 
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gene). But this approach has been rather unsuccessful in the study of complex diseases which 

are typically polygenic, and are which are more common in people than monogenic diseases. 

Recent studies suggest that SNPs involved in the regulation of gene activity, may actually 

contribute more to the aetiology of complex diseases than those in coding sequences (Burton et 

al., 2007, Djebali et al., 2012, Ward and Kellis, 2012). It is therefore worthwhile to move beyond 

the conventional “one SNP-one gene” approach to probe for the effect of SNPs in other 

functional parts of the genome that are known to be involved in regulation. 

 

1.1 INTRODUCTION 

 

This research project grows out of interest in the genetics and genomics of complex diseases, 

particularly Type 1 Diabetes (T1D). The field of genomics has provided the first systematic 

approaches to discovering genes and cellular pathways underlying a number of diseases (Lander, 

2011.). My research is focused on SNP variants that occur in susceptibility regions for T1D. 

The main aim of the research is to study the impact of SNPs on the regulation of gene 

transcription, particularly identifying and analysing the effects of SNPs that occur in 

transcription factor binding sites (TFBS). This study is inspired by and extends unpublished 

work by Abnizova et al. (2007) which suggests a computational approach for identifying 

regulatory elements and variants thereof that may affect gene expression particularly through 

the binding of transcription factors (TFs) to DNA. 

The suggestion that the genetic determinants of complex diseases are perhaps better sought in 

problems associated with gene regulation is due to findings that many of the disease associated 

variants occur in non-coding DNA sequences within the genome (ENCODE, 2012; Schuab et 

al., 2012; Hindhorff, 2009; Barrett et al., 2007). Recent efforts by the Encyclopedia of DNA 

elements (ENCODE) consortium, to characterise the human genome, have revealed that most 

of the non-coding part of the genome is not inactive but is associated with different forms of 

regulatory activity (ENCODE, 2012; Thurman, 2012). One important regulatory process that 

takes place within the genome is the (in-) activation of gene expression through the interaction 

of a particular type of protein complex called a Transcription Factor (TF) (Lewin, 2008). The 

process of gene expression takes place in two main steps, transcription and translation. 

Transcription involves transcribing genetic information (in this case, the DNA sequence of gene 

parts called “codons”) to a messenger RNA template.  

The mature messenger RNA is either biologically active itself or is translated into a chain of 

amino acids that eventually form a protein product (Lodish et al., 2000; Jacob and Monod, 1961).  

The process of transcription is finely regulated by different factors, among which TFs play a 

vital role. These proteins bind to specific DNA sequences near the transcription start site of 
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genes in what is called a promoter region (Whitfield et al., 2012) and control the rate of 

transcription. The TFs can also bind to DNA within the region to be transcribed or to other 

distal (“upstream”) elements called enhancers or silencers (Lewin, 2008). The region of DNA 

that interacts with and is bound by a single TF is the Transcription Factor Binding Site (TFBS), 

which usually ranges in size from 8-10 to 16-20 nucleotides, the building blocks of DNA 

(Zambeli et al., 2012). TFBSs have characteristic motifs which the TFs recognise and bind to. 

These motifs are usually similar but not always identical. The binding of TFs to TFBSs will 

either activate gene expression or block it (Zambeli et al., 2012).  

The DNA sequences of any two unrelated people are the same at about 99.9%, yet of the 

remaining 0.1% there is considerable variation between different individuals. These DNA 

polymorphisms are usually defined as variation present at more than 1% frequency in the 

population. They are quite important because they influence how people differ in their risk of 

disease or even response to medication. SNPs are the most common variants in the genome, 

with about 10 million thought to exist in human DNA (Laurilla and Lahdeshmaki, 2009). SNPs 

occur when one of four possible nucleotide bases (A, C, G or T) is substituted by another at a 

single position. There are other forms of sequence polymorphisms. They include insertions and 

deletions of one or more nucleotides; short tandem repeated motifs of one to six nucleotides 

called “microsatellites” or longer repeating “minisatellites” as well as other sequence 

rearrangements (Knight, 2005). Most of the DNA sequence polymorphisms are of no functional 

importance. Yet, some that occur in the coding sequence of a gene (i.e. those parts that are 

translated into protein) have been found to cause disease (Choi et al., 2009). This is because they 

alter the structure of the encoded protein by changing the identity of an amino acid in the peptide 

chain of the protein (Cargill et al., 1999), leading to the formation of an aberrant protein. These 

functional coding polymorphisms can be identified through experimental follow up studies after 

GWAS by methods such as “exome sequencing 1” (Ng et al., 2010; Bamshad et al., 2011; Rabbani 

et al., 2014) and RNA-Seq (a method to measure levels of RNA transcripts including mRNAs, 

non-coding RNAs and small RNAs) (Cirulli et al., 2010; Wang et al., 2009). While coding 

polymorphisms have been successfully implicated in some monogenic Mendelian disorders like 

familial Alzheimer’s disease (AD) (Barber, 2012; Betram and Tanzi, 2009; Tanzi and Betram, 

2005) and Maturity Onset Diabetes of the Young (MODY) (Peltonen, 2006; Knight, 2005), this 

approach has not been successful in the study of complex diseases (Sanghera and Blackett, 2012; 

Ng et al., 2010; Petretto et al., 2007). In those cases, more than one SNP is linked to the disease 

and these may be positioned in both coding and non-coding parts of the genome. Also, more 

than one gene contributes to the condition and environmental and lifestyle elements may trigger 

disease onset. For many complex diseases, these triggers are still unknown (Silverman and 

Loscalzo, 2013). 

                                                           
1 Exome sequencing is a popular strategy using exon capture methods to identify rare variants in exons candidate 
susceptibility genes 
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Polymorphisms that occur in non-coding parts of the genome, especially in regulatory regions 

have long been suggested to be important modulators of gene expression. They are also thought 

to be associated with evolutionary change (Wray et al., 2003; King and Wilson, 1975). Today, 

non-coding polymorphisms within regulatory regions are receiving increased interest from the 

scientific community, especially because SNPs associated with complex diseases appear to occur 

more in non-coding DNA than in coding DNA (Encode, 2012). This suggests their possible 

influence on gene regulation. There are two important types variation that can occur in a key 

regulatory sequences, the cis-acting variants and the trans-acting variants. The cis-acting 

variants occur in cis-acting regulatory elements like TFBSs in promoters and response 

elements. These regulatory elements occur in the vicinity (near the locus/chromosomal 

position) of the structural portion of the target gene to be regulated or within the sequence of 

the gene itself. Cis-acting variants include SNPs in TFBSs. Each TFBS has a characteristic 

sequence motif which is modelled by what is called a consensus sequence. This term is defined 

as a sequence of DNA that has similar structure and function in the same or in different 

organisms.  For a particular TFBS, the consensus sequence is determined by calculating the 

order of most nucleotides found at each position in an alignment of multiple DNA sequences2. 

It shows positions where a nucleotide identity is highly conserved and also where the nucleotide 

identities are variable. A mutated nucleotide in a regulatory region can impact the consensus 

sequence of a TFBS in such a way that it alters the affinity with which a TF is recruited or binds 

to the region. This in turn affects the level of gene expression.  

There are two types of mutation that can take place. An up-mutation occurs when the mutated 

nucleotide causes a sub-sequence in the promoter to look more like the consensus sequence of a 

binding site. This triggers transcription by making the motif of the binding site more 

conspicuous. It increases binding intensity of transcription factors, where a tighter bind leads to 

an up-regulation of gene transcription. In contrast, a down-mutation destroys a conserved 

nucleotide in a consensus sequence causing it to look less like a binding motif. This reduces 

binding at the core sequence leading to a down-regulation of transcription. 

The second type of regulatory variant, the trans-acting variant, affects a protein that binds to 

the cis-acting elements to control gene expression. These proteins are referred to as trans-acting 

elements. A mutation in the gene of a trans-acting element could affect the expression its target 

gene (Schadt et al., 2003; Yvert et al., 2003; Brem et al., 2002). However, the current focus of 

complex disease studies and of this thesis is on potential cis-acting variants in regulatory 

modules.  

                                                           
2 Sequence alignment is a way of arranging sequences of DNA (or RNA or protein) from the same or different 
organisms, in order to identify regions of similarity that may be as a consequence of functional, structural, or 
evolutionary relationships between the sequences. It is a pattern of writing one sequence on top of another where 
the residues in one position are deemed to have a common evolutionary origin. If the same letter occurs in both 
sequences then this position has been conserved in evolution. If the letters differ, then it is assumed that the two 
derive from an ancestral letter (which could be one of the two or neither) 
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The experimental identification of functional regulatory variants (i.e. SNP alleles that impact 

regulatory processes like gene expression, gene regulation and post translational modification), 

especially those in binding sites, is not a straightforward task (Knight, 2014.). Firstly because, 

it previously involved a slow and costly laboratory process (but which does yield accurate 

results). Secondly, because there are many variants occurring in non-coding DNA, and it is quite 

difficult to pinpoint actual functional regulatory variants that may contribute to the phenotype 

under study. Computational prediction of candidate functional regulatory variants can be quite 

helpful in identifying regulatory variants, by narrowing down the non-coding variants to a 

considerable number of candidates for onward experimental verification. A number of 

computational methods have been previously developed for the identification of candidate 

functional regulatory variants that are likely to play an important biological role (Laurilla and 

Lahdesmaki, 2009; Xu and Taylor, 2009; Andersen et al., 2008; Laurilla and Lahdesmaki, 2008; 

Abnizova et al., 2007). These methods make use of computationally predicted regulatory regions 

and binding sites for the identification of regulatory variants that may affect function by 

influencing binding. However, the presence of a binding motif in the genome does not indicate 

that a transcription factor necessarily binds it in vivo.  

Recently, high-throughput methods3 have boosted experimental detection functional binding 

sites in the genome. Laboratory methods are combined with massively parallel4* DNA 

sequencing, which is the process of determining the order of nucleotides in a molecule of DNA. 

One of such methods is Chromatin Immuno-Precipitation assays followed by sequencing 

(ChIP-seq) method (Jothi et al., 2008; Johnson et al., 2007, Kim and Ren, 2006). Chromatin 

immune-precipitation (ChIP) is a method used to survey interactions between proteins and DNA 

as well as proteins and RNA. The process is aimed at determining whether particular proteins 

interact with specific regions in the genome that could be promoters and enhancers or binding 

sites. As the name implies, ChiP-seq combines chromatin immune-precipitation (ChIP) with 

massively parallel DNA sequencing to identify the protein binding sites in DNA.  

Another method is DNase-seq (DNase I-hypersensitive site identification by sequencing), a 

molecular biology that is used for identification of regulatory regions especially promoters in 

the genome. It is based on genome-wide sequencing of regions that are super sensitive to 

cleavage by the DNase I enzyme. DNase I hypersensitive sites are thought to be characterized 

by open, accessible chromatin (Tsompana and Buck, 2014; Boyle et al., 2008).  

 

                                                           
3 Methods involving the use of automation equipment with classical biology techniques to address biological 
questions that cannot be achieved using conventional methods 
4 This means high-throughput approaches to DNA sequencing also called next generation sequencing. 
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Also known as open chromatin, accessible chromatin regions are identified as nucleosome5-

depleted regions (NDRs) (Giresi et al., 2007; Kim et al., 2007; Hogan et al., 2006), which are 

often associated with regulatory factor binding.  They have been shown to be associated with 

all known classes of active DNA regulatory elements, including promoters, enhancers, silencers, 

insulators, and locus control regions (Cockerill, 2011; Gross and Garrard 1988). Also, 30 years 

of research have shown that DNase I hyper-sensitive (HS) sites are markers for these different 

types of genetic regulatory elements (Felsenfeld and Groudine, 2003; Gross and Garrard, 1988; 

Stalder et al., 1980). FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements 

followed by sequencing), the successor of DNase-seq is also a molecular biology method used 

to determine the sequence of a DNA region in the genome that is associated with regulatory 

activity (Giresi et al., 2007). These experimental methods enable accurate and reliable 

interpretation of regulatory events in the genome that are central to biological processes as well 

as diseases (Illunina help pages).  Information gained from these methods are stored in online 

repositories including the Encode project, the Ensembl genome browser (Cunningham et al., 

2015) and the UCSC genome browser (Rosenbloom et al., 2015). Research based on these 

methods have provided evidence that the presence of SNPs in these regulatory regions of the 

genome can lead to differences in transcription factor binding between individuals (Chen et al., 

2014; Gagliano et al., 2014; Schuab et al., 2012; Kasowski et al., 2010).  

For my project, the SNPs that occur in the susceptibility regions for T1D (referred to as T1D-

SNPs) will be identified from T1Dbase, a dedicated database for the genomics of T1D (Burren 

et al., 2011) (see section 2.11). Those that occur in experimentally verified regulatory regions 

(REG-SNPs) and binding sites (TFBS-SNPs) will be also be identified and accepted as given in 

the Ensembl genome browser (Cunningham et al., 2014) (see section 2.11). The local 

neighbourhood (adjacent sequence of nucleotides) of these SNPs will be analysed for change in 

sequential properties that occurs when the reference allele of the SNP is substituted with its 

alternate allele, this is referred to as SNP sensitivity. The alternate allele may alter the signal 

strength of the binding site in which the SNP occurs by causing it to become significantly over-

represented (more pronounced) or under-represented (less pronounced). A computational 

method will be developed and implemented to measure the change in representation caused by 

the presence of the alternate allele of the SNP. Biologically, this process can lead to change in 

binding affinity of a transcription factors. The outcome of the SNP sensitivity method will be 

the identification of T1D-SNPs that significantly change the representation of their surrounding 

                                                           
5 DNA is packaged into the cell nucleus by special proteins called histones. The basic unit of DNA packaging in 
eukaryotes is a segment of DNA wound around eight histone protein cores. This complex of DNA and proteins forms 
the chromatin (Kornberg, 1974). The structure of chromatin depends on the stage of the cell cycle. Parts of DNA in 
chromatin that are under active gene transcription, are structurally loose (or more loosely packed) allowing access to 
polymerase enzymes and transcription factors. This form of chromatin is called Euchromatin and makes up 92% of 
the human genome (IHGCS, 2004; Cooper, 2000). The DNA of less active genes are more tightly packed and referred 
to as heterochromatin (Dame, 2005; Cooper, 2000) 
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sequential neighbourhood. These SNPs will be suggested as candidate functional regulatory 

SNPs that may influence gene expression by causing alteration of TF binding. 

 

1.2  RESEARCH FRAMEWORK 
 

1.2.1 Aim 

The aim of this project is to elucidate the impact of SNPs on the regulation of Type 1 Diabetes 

(T1D). The set of SNPs to be studied are those that occur in the T1D susceptibility regions, 

which have been mapped by GWAS and SNP genotyping studies (Barrett et al., 2009). These 

will be referred to as T1D-SNPs. There are two sub-sets of the T1D-SNPs, the disease-

associated and non-associated SNPs. The former are those that have been identified by GWAS 

as having a statistically significant high occurrence in individuals that have T1D compared to 

those who do not. 

 

1.2.2 Research Questions 

The key research question is to find out in how far T1D can be considered as a disease caused 

by disruptions in gene regulation rather than disruptions in protein coding. This theme is 

addressed by the following enquiries: 

a) What proportion of T1D-SNPs is located in various genomic parts, such as introns, exons 

and upstream regions? 

b) What proportion of the T1D-SNPs is located in regulatory modules?  

c) How many of the T1D-SNPs in regulatory regions are located in transcription factor binding 

sites (TFBS)?  

d) Does the over- or under-representation of a binding motif containing a SNP variant differ 

significantly from that of its alternate allele? 

Questions (a) to (c) are concerned with the possibility of a SNP being in a regulatory region, 

while question (d) is explicitly about its possible effect on regulatory mechanism, in other words 

a SNP or its variant being a ‘recognition beacon’ for a transcription factor. Crucial to tackling 

the research questions are (a) a complete as possible, reliable dedicated and easy to work with 

database, and (b) to build and apply an appropriate statistical method test for SNP sensitivity.  
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1.2.3 Objectives 

Using available information about T1D, this project will involve first of all establishing the 

distribution of disease and non-disease associated SNPs over the various genomic parts. This 

will be done to investigate if the T1D-SNPs occur more frequently in certain genic positions, 

particularly the non-coding genic positions, than non-associated SNPs. To do this, the genomic 

regions that confer susceptibility to T1D as well as the SNPs that occur within these regions 

will be identified from two online databases, T1Dbase and Ensembl genome browser, which are 

described in the literature review. 

Subsequently, the susceptibility regions themselves will be characterised by their genomic 

properties, which will include factors such as total region size, number of genes and SNPs 

contained. This will be done to find out if the T1D susceptibility regions differ strikingly in 

genomic content among each other, and also if such eventual differences are related to the 

presence of loci associated with other autoimmune diseases6. 

Finally, the SNPs that occur in TFBS will be identified using an online software called the 

Variant Effect Predictor tool (VEP) (McLaren et al., 2010). This tool searches the Ensembl 

genome browser to locate SNPs that occur in regulatory sequences, including binding motifs. 

VEP has been chosen because the binding motifs used in prediction of TFBS-SNPs are from the 

Jasper database (Mathelier et al., 2014).  This is the largest and freely accessible online resource 

that contains information for transcription factor binding motifs in genomes of different 

organisms. Also, the identified TFBS-SNPs will be those that have been verified by 

experimentation using such methods as DNase-seq and FAIRE-seq mentioned in Section 1.1. 

Subsequently, the test for SNP sensitivity will be performed. 

The overall intention of my study is to analyse the consequence of SNPs that are located in 

TFBS and regulatory regions and to produce a list of those T1D-SNPs that significantly change 

the over- or under-representation of their surrounding sequential neighbourhood. A further 

intention is also to see if this signal enhancing or reducing effect is stronger than that of other 

T1D-SNPs that are in regulatory regions but not in binding sites. 

 

1.3 CONTRIBUTION TO KNOWLEDGE 
 

Through this research, the following facts have been discovered about the genomics of T1D: 

1) Characterisation of the disease-associated and non-associated T1D-SNPs 

                                                           
6 An illness that occurs when the body tissues are attacked by its own immune system. In an autoimmune disorder, 
the immune system does not distinguish between healthy tissue and antigens. As a result, the body sets off a reaction 
that destroys normal tissues 
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a) T1D-SNPs occur more in non-coding DNA than in coding DNA, although it must be noted 

that non-coding DNA is much more abundant than coding DNA. 

b) Disease-associated T1D-SNPs occur relatively more in some non-coding DNA parts than 

non-disease associated T1D-SNPs. The genic profiles of disease-associated SNPs show that they 

occur most often in introns overlapping with non-coding gene transcripts. 

c) The genic profiles of the non-associated SNPs show that they also occur most often in introns, 

but not overlapping with non-coding gene transcripts. 

d) T1D-SNPs may affect more than one process because many of them occur in overlapping 

alternative transcripts of the same gene or in transcripts of overlapping genes. 

e) The disease-associated T1D-SNPs occur significantly more in overlapping transcripts than 

non-associated T1D-SNPs. 

2) Characterisation of the T1D susceptibility regions 

a) T1D susceptibility regions, characterised by features reflecting genomic content, they can be 

grouped into three clusters 

b) One cluster of regions is characterised by high counts of intronic nucleotides and non-coding 

transcript nucleotides. A second cluster of regions is characterised by a high occurrence of 

intergenic nucleotides and high SNP counts. It contains the HLA (Human Leukocyte Antigen) 

region, which is the largest T1D region and most associated with the disease (see section 2.3). 

The third cluster is characterised by high gene density as well as non-coding transcript 

nucleotides. 

c) Twenty-five T1D regions carry markers for fourteen other autoimmune diseases. These 

regions are dispersed across all three clusters. The cluster of regions characterised by high gene 

density and high counts non-coding transcript nucleotides has the strongest degree of sharing. 

The regions mostly carry markers for Multiple sclerosis, Irritable bowel disease and Crohn’s 

Disease. 

d) The cluster (first) of regions with high intronic and non-coding transcript nucleotide counts 

has the second strongest degree of sharing, with most regions carrying markers for Rheumatoid 

arthritis, Ulcerative colitis and Crohn’s disease as well.  

3) SNP sensitivity  

a) Of all 260,000 SNPs in the T1D susceptibility regions, only 92 occur in TFBS. None of these 

regulatory SNPs is a disease-associated T1D-SNP. 
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b) 37 of the 92 TFBS-SNPs test positive for SNP-sensitivity. These regulatory SNPs change 

the sequential properties of the surrounding region in which they occur. Biologically, this 

implies a possible influence on TFBS recognition and binding by transcription factors.  

c) The regulatory SNPs are significantly closer in proximity to the disease associated SNPs than 

the TFBS-SNPs that were negative for SNP sensitivity. 

d) 16 of the 37 regulatory SNPs occur in the HLA region, the susceptibility region with the 

highest association (odds ratio = 7) to T1D. 

e) 37% of the regulatory SNPs are C-T transition mutations, which are thought to reduce 

binding affinity 

f) The regulatory SNPs are most often found within binding motifs for the USF family of 

regulatory proteins, which have previously been associated with Type 2 Diabetes. 

4) Constant change/update to accessible information in biological databases 

Our current understanding of the molecular events that functionally characterize cellular 

biology continues to be revised (Weinberg and Morris, 2013) especially with the advent of 

technological enhancements that have boosted experimental techniques. Hence, there is need to 

keep with regular updates that are made to biological databases due to constant revision of 

genomic information. Experimental techniques, recently boosted by next generation DNA 

sequencing methods, typically supersede in-silico (computational) methods by yielding more 

accurate results because they are carried out in-vivo. 

Data previously generated by computational methods are now vastly being validated and 

replaced by experimentally confirmed information. Due to this practice, massive changes to 

genomic information were seen during the course of this project. 

Changes have been made to the number of T1D susceptibility regions as well as region 

coordinates. The numbers and identities of the disease associated SNPs have also been revised 

over time. At the beginning of this project, there were 51 susceptibility regions, in the second 

year the number increased to 55, and by then end of the project the number had reduced to 49. 

Considerable changes have also been made to the numbers of SNPs that occur in regulatory 

regions and TFBSs. In the second year of my project, 973 TFBS-SNPs were identified from the 

Ensembl genome browser as occurring in binding sites in the T1D susceptibility regions. The 

following year, this number was reduced ten-fold to 97. 
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1.4 THESIS OVERVIEW 
 

The following is an overview of the subsequent chapters in this thesis: 

Chapter 2 is a summary of the genomics of T1D as a complex autoimmune disease. It also 

outlines the intricacy of gene expression in disease susceptibility regions, as well as the 

identification of regulatory SNPs that could influence gene expression.  

Chapter 3 describes a characterisation study of the associated and non-associated T1D-SNPs. 

This study involves distinguishing between the associated and non-associated T1D-SNPs on 

the basis of the types of genomic parts in which they occur. This chapter includes a brief 

introduction to the work, followed by a presentation of the statistical analysis done in order to 

differentiate between both SNP groups, and a short summary. 

Chapter 4 presents a study of the genomic make up of T1D susceptibility regions. In this study, 

the regions are classified on the basis of their structural genomic features. Functional genomic 

attributes are also related to the classes formed on the structural features. The susceptibility 

region groups are also studied for level of association with other autoimmune diseases. This 

chapter also contains an introduction, results, and a brief summary. 

Chapter 5 entails the identification of regulatory SNPs that may cause change in the 

presentation of the binding site within which they occur. This is referred to as SNP sensitivity 

and will be done using an algorithm developed for this project. 

Chapter 6 concludes the dissertation. It includes an outline and a review of the main findings of 

this thesis. It also highlights potential avenues that can be explored for future research. 

There are two additional sections after Chapter 6, the references and appendices. Finally, it is 

important to mention that, in this dissertation, two types of brackets have been used to 

distinguish between table references within the text. The brackets, () and {}, are used to denote 

tables that are within the main body of the text, and tables that are in the appendix, respectively. 
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CHAPTER 2 

LITERATURE REVIEW 
 

The sequencing of the human genome (Collins et al., 2003, IHGSC, 2004), which involved 

determining the exact order of nucleotide base pairs that make up human DNA, and attempting 

to identify and map the function of genes of the human genome, has led to significant 

development in the field of complex disease genomics. The following sub-sections outline the 

genomics of T1D, the intricacy of gene expression in disease susceptibility regions, as well as 

the identification of regulatory SNPs that could influence gene expression.  

 

2.1 COMPLEX DISEASE STUDIES 

 

Complex diseases are multifactorial conditions caused by a combination of genetic, 

environmental, and sometimes lifestyle factors. They are also multi-genic, meaning that more 

than one gene contributes to disease susceptibility. This is in contrast with Mendelian diseases, 

which are caused by defects in just one gene. Therefore, complex diseases do not obey the single-

gene dominant or single-gene recessive Mendelian pattern of inheritance that is characteristic 

of single-gene (monogenic) diseases (Davey and Ebrahim, 2004). They are more common than 

single-gene (monogenic) disorders, yet defining the risk patterns underlying complex diseases 

is still problematic (Ward and Kelis, 2012; Craig, 2008; Hirschhorn et al., 2002). The study of 

monogenic diseases (like Huntington's disease (Johnson, 2012), Cystic Fibrosis (O’Sullivan and 

Freedman, 2009) and Sickle cell anaemia (Gabriel and Przybylski, 2010; Diggs et al., 1933) has 

been quite successful, and has contributed a great deal towards the current understanding of 

many forms of genetic diseases (Duncan et al., 2014; Peltonen and McKusick, 2001) including 

underlying disease molecular mechanisms.  

However, the Human Genome Project, which set out to determine the sequence of chemical base 

pairs that make up the DNA and map all the genes of the human genome (IHGSC, 2004; Lander, 

2001), has dramatically accelerated biomedical research, and changed the approach to 

understanding complex diseases (Bell and Spector, 2011; Craig, 2008). The completion of the 

project has allowed for precise inference of gene structure and detection of mutations across the 

genome (Lander, 2011). It has also led to vast improvements in DNA sequencing technologies 

including high throughput next generation sequencing platforms, RNA sequencing and SNP 

genotyping methods. As a result, new insights into the genetic pathogenesis of disease continue 

to be revealed from on-going research projects carried out by consortiums such as the ENCODE 

project (Bernstein et al., 2012; Birney et al., 2007), the Type 1 Diabetes Genetics consortium 
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(T1DGC) (Hitner, 2010; Rich et.al., 2009; Rich et al., 2006), and the Wellcome Trust Case 

Control Consortium (WTCCC et al., 2007; WTCCC et al., 2007). Other genomes, like those of 

yeast (Saccharomyces cerevisiae) (Hong et al., 2008; Dwight et al., 2002; Cherry et al., 1997), mouse 

(Qi et al., 2005; Shaw, 2004), chimpanzee (Mikkelsen et al., 2005), and bovines (Elsik et al., 2009) 

genomes have also been sequenced, and have helped the interpretation of the human genome 

through comparative analysis. These have enabled experimental studies of genes associated with 

disease susceptibility in model systems (Lander, 2011; Todd, 2010). 

 

2.2 TYPE 1 DIABETES 

 

Diabetes (or Diabetes mellitus) is a set of disorders characterized by either an absolute or a 

relative deficiency of insulin and/or insulin resistance. T1D accounts for about 10% of all 

diabetes cases (Maahs et al., 2010). It has been reported to be the second most prevalent chronic 

disease of childhood, with a peak onset at about twelve years (Imkampe and Gulliford, 2011). 

The disease affects up to 0.4% of children by the age of 30, with an overall lifetime risk of nearly 

1% (Qiao, 2007; Concannon et al., 2005). Both genetic and environmental factors are thought to 

contribute to T1D susceptibility. Although this disease has been studied since the 1970s (Singal 

and Blajchman, 1973), its aetiology has not yet been elucidated. However, knowledge about its 

biochemistry and genetics has increased significantly (Noble et al., 2012). Animal (mouse) 

models and human studies have shown T1D to be a chronic immune-mediated disease 

manifested by an autoimmune attack on the pancreatic β-cells in the islets of Langerhans (Heras 

et al., 2010; Knip and Siljandera, 2008). It is characterized by selective loss of insulin-producing 

β-cells in the pancreatic islets in genetically susceptible persons (Knip and Siljandera, 2008), 

which is due to the presence of antibodies wrongly directed against the β-cells and insulin 

(Gilliam et al., 2004). This condition leads to complete dependence on exogenous insulin to 

regulate blood glucose levels (Noble and Erlich, 2012). The first indications of an association 

between T1D and a particular genomic region were reported for the Human Leukocyte Antigen 

(HLA) locus (Cudworth and Woodrow, 1974; Nerup et al., 1974; Singal and Blajchman, 1973), 

which is described in the following section. Since that discovery, a lot of research into the 

biochemistry of T1D has been done. 

 

2.3 THE GENETICS OF TYPE 1 DIABETES 

 

The study of the genome to map disease-susceptibility regions for T1D and other multifactorial 

diseases has been facilitated by recent advances in next generation DNA sequencing methods. 

Genome wide scans for the identification of SNPs linked with T1D susceptibility have been 
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carried out on large cohorts including collections of families with affected sibling pairs (Pociot 

et al., 2010). These studies have provided evidence for over forty T1D susceptibility regions, 

but the exact mechanisms by which the variation found in these regions confer susceptibility to 

T1D is still not clear (Noble and Erlich, 2012). The most important genes contributing to T1D 

susceptibility are located in the MHC class II region, also referred to as the Human Leukocyte 

Antigen (HLA) locus (Burren et al., 2011). The HLA region is located on chromosome 6, and is 

a system of 240 genes that encode for proteins on the surface of cells that are responsible for 

regulation of the immune system in humans (Gale and Gillespie, 2014; Noble and Erlich, 2012; 

Cano, 2007; Hurley et al., 1997). The proteins encoded by the HLA genes, particularly the HLA 

class I (A, B, and C) and class II (DR, DQ, and DP) antigens, are unique to each individual (Noble 

and Erlich, 2012). 

The HLA genes are highly polymorphic with up to 6500 unique allelic sequences reported as of 

July 2011, and increasing to 12500 as of February 2015 (http://www.ebi. 

ac.uk/imgt/hla/stats.html). The HLA has been implicated in the aetiology of more than 100 

diseases (Delves, 2014; Noble and Erlich, 2012). The risk of disease is determined by specific 

combinations of alleles referred to as haplotypes, where certain mutated HLA proteins, called 

antigens7 are more likely to develop particular diseases. These include complex autoimmune 

diseases like T1D, Coeliac disease, Systemic lupus erythaematosus (SLE), Sjögren syndrome, 

Narcolepsy and Ankylosing spondylitis (Delves, 2014; Gonzalez-Galarza et al., 2013; Noble and 

Erlich, 2012; Apanius et al., 1997).  

Presently, 48 other genomic regions, referred to as susceptibility regions, have been found to 

also confer susceptibility to T1D (Burren et al., 2011; Steck and Rewers, 2011; Yang et al., 2011; 

Bluestone et al. 2010; Poicot et al., 2010; Todd et al., 2010; Todd et al., 2007). But their 

contribution is minimal in comparison to the HLA locus (Gillespie, 2014). Also, research has 

shown that less than 10% of individuals with HLA-conferred diabetes susceptibility actually 

progress to clinical disease (Knip and Siljandera, 2008, Wenzlau et al., 2008). This implies that 

additional factors are needed to trigger and drive β-cell destruction in genetically predisposed 

persons (Knip and Siljandera, 2008). Environmental factors are believed to influence the 

expression of T1D. The reason being that in the case of identical twins, if one twin has T1D, 

the other twin only has it 30%–50% of the time, despite having the same genome. This means 

that other factors contribute to the prevalence or onset of this disease (Knip et al., 2005). 

Indications of environmental influence include the presence of a 10-fold difference in occurrence 

among Caucasians living in different areas of Europe. In addition, people who move to these   

destinations tend to acquire the rate of disease of the destination country. Other theories 

surrounding environmental factors include a virus-triggered autoimmune response in which the 

                                                           
7 A toxin or other foreign substance which induces an immune response in the body, especially the production of 
antibodies. It is recognized as non-self by the adaptive immune system triggers an immune response, stimulating the 
production of an antibody that specifically reacts with it (Albert et al., 2002). 

http://www/
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immune system attacks virus-infected cells along with the beta cells in the pancreas. The 

Coxsackie virus family is implicated (Fairweather and Rose, 2002). Also, a rodenticide 

(Pyrinuron) and an antibiotic (Streptozotocin) used in chemotherapy for pancreatic cancer are 

thought to selectively destroy pancreatic cells, leading to T1D onset (Mandal, 2013; Changrani 

et al., 2006). But evidence given for this is inconclusive. Furthermore, life style factors including 

psychological stress are also thought to have a negative effect on diabetes (American Diabetes 

Association, 2014).  The symptoms of Diabetes are depicted in Figure 1. 

 

 

 

Figure 1. An overview of the symptoms of Diabetes. (Source; Häggström, Mikael).  
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2.4 SINGLE NUCLEOTIDE POLYMORPHISMS (SNPS) 

 

There are numerous variations within the human genome, including SNPs, insertions, deletions, 

and copy number variations. SNPs are the most prevalent. They are common variations 

(occurring with a frequency of at least 0.1%) that occur in DNA where a single nucleotide differs 

between individuals or paired chromosomes of an individual (Barreiro et al., 2008). SNPs have 

been implicated in a number of diseases and are therefore, essential to the investigation of genetic 

disorders (Barreiro et al., 2008). The locations of SNPs are studied to assess disease risk and are 

also used as markers for the identification of disease-associated mutations. SNPs that occur in a 

coding sequence of a gene are particularly of much interest to scientists, especially if that gene 

may be involved in the susceptibility to a disease. If the SNP disrupts the production of a 

functional gene product (protein), then there is a high probability that this SNP will demonstrate 

a phenotypic effect. 

 

2.5 GENOME WIDE ASSOCIATION STUDIES (GWAS) 

 

Genome-wide association studies of large cohorts have been successful in identifying SNPs 

associated with a large number of phenotypes (Schaub et al., 2012). These range from physical 

differences between individuals to susceptibility to certain diseases including complex diseases 

(Hirshhorn et al., 2002). In the 1990s, extensive family-based studies were applied and were 

quite successful in uncovering the basis of monogenic diseases (Glazier et al., 2002; Beavis, 

1998). But they were largely unsuccessful for common complex diseases that afflict most people. 

In order to study the latter, geneticists conceived principles for genetic mapping based on 

populations rather than families. This gave birth to the genome wide association study (GWAS).  

The aim of a GWAS is to identify variants (like SNPs) that are significantly associated with a 

particular phenotype. The study involves testing a comprehensive catalogue of common genetic 

variants in cases (affected individuals) and controls (unaffected individuals) from a population to 

find those variants associated with a disease (Zhao et al., 2007; Yang et al., 2011). A typical study 

involves the comparison of common genetic variants in a large collection (up to 200, 000) of 

individuals to find out if any variant is associated (i.e. occurs more often than expected by chance) 

with a particular trait. A SNP that occurs more frequently (statistically significant) in the cases 

is said to be associated with the disease. The SNPs found to be associated with a particular 

disease are then used as markers for genomic regions that predispose one to susceptibility for 

that disease. Since the first GWAS in 2005, subsequent studies using high density SNP 

genotyping platforms soon followed providing evidence for susceptibility regions for T1D and 

a number of other diseases (Burton et al., 2007; Steck and Rewers, 2011). Currently, there is 
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about 200,000 identified SNPs in T1D regions, and 86 of these have been found to be 

significantly associated with T1D which are listed in Table 2. 

 

2.6 TYPE 1 DIABETES SUSCEPTIBILITY REGIONS 

 

GWAS have uncovered about 100 genomic regions that confer susceptibility to autoimmune 

diseases including T1D, Rheumatoid arthritis, Multiple sclerosis and Coeliac disease. Forty-

nine susceptibility regions for T1D have been mapped by genotyping the most significant T1D 

associated SNPs (Barrett et al., 2009). SNP genotyping involves the measurement of single 

nucleotide polymorphisms (SNPs) between individuals. Typically, after SNP genotyping, the 

pattern of linkage disequilibrium (LD) of the nucleotides surrounding the SNP is assessed. LD 

is the occurrence of a combination nucleotide variants (SNP and gene alleles or genetic markers) 

in a population more often or less often than would be expected from a random formation of 

haplotypes. LD is derive from genetic linkage which is the tendency of alleles that are located 

in proximity to each other on a chromosome to be inherited together. The DNA sequence that 

contains the cluster of tightly-linked alleles that are likely to be inherited together then is the 

haplotype8 (Lewin, 2008). 

Genes in strong LD (within the same haplotype block) as the disease-associated SNPs are 

assessed for possible functional relevance to T1D. (Bradfield et al., 2011; Burren et al., 2011). 

The LD block may be further studied for additional SNPs, some of which may be even stronger 

associated with disease than those identified by the original GWAS. Such extended haplotype 

investigations also allow scientists to establish whether an association is due to one or more 

causal variants (Todd et al., 2007). Figure 2, taken from the T1Dbase website, shows the human 

chromosomes with T1D susceptibility regions indicated by blue bars.  

Of the 49 T1D susceptibility region, the HLA association is the strongest with Odd Ratios (ORs) 

ranging from 0.02 to >11 for specific haplotypes (Noble and Erlich, 2012; Todd et al., 2010). 

This region contributes to about 50% of genetic susceptibility to T1D, specifically the HLA class 

II DR-DQ haplotypes (Erlich et al., 2008). Particularly, the DR4-DQ8 and DR3-DQ2 haplotype 

combinations are present in about 90% of children with T1D (Held et al., 1999; Tait and Boyle, 

1986; Deschamps et al., 1980). A genotype containing both haplotypes (DR4-DQ8/DR3-DQ2) 

carries the highest risk of diabetes, and is commonly seen in 5% of early-onset disease (Gale and 

Gillespie, 2014). Other strong associations to T1D susceptibility come from polymorphisms in 

the insulin INS gene (OR = 3.5), the PTPN22 gene (OR = 3.8), the IL2RA and COBL genes 

(OR = 2.5; 2.4, respectively) (Gillespie, 2014; Pociot et al., 2010; Todd et al., 2010). The rest of 

the genomic regions that confer susceptibility to T1D have smaller effects with ORs between 

                                                           
8 Put together, the haplotype is the group of genes that a progeny inherits from one parent 



 

18 
 

1.1 and 1.9 (Gillespie, 2014; Todd et al., 2010). The names of the T1D susceptibility regions are 

listed in Table 1 along with the names of the disease associated SNPs and genes. T1D has also 

been shown to be associated with some other autoimmune conditions like Rheumatoid arthritis, 

Graves' disease and Malignant anaemia (Heras et al., 2010; Knip and Siljandera, 2008). Markers 

for these other diseases can be found within the susceptibility regions forT1D. The names of 

diseases that share T1D susceptibility regions are shown in Table 2. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The human T1D susceptibility regions are depicted as blue bars at their respective 
chromosomal positions (Source: T1Dbase) 
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Table 1. The names of the T1D susceptibility regions, the disease-associated SNPs and candidate 
susceptibility genes (Source: T1Dbase). 

 

T1D-Region Associated SNPs Candidate Susceptibility Candidate Causal SNP

genes

1p13.2 rs6679677, rs2476601 PTPN22 rs2476601

1q32.1 rs3024493, rs3024505 IL10 rs3024505

2p23.3 rs478222

2q11.2 rs13415583, rs6740838, rs9653442 rs9653442

2q24.2 rs2111485, rs1990760 IFIH1 rs1990760

2q32.3 rs7574865

2q33.2 rs3087243, rs11571316 CTLA4 rs3087243, rs11571316

3p21.31 rs333 CCR5 rs333

4p15.2 rs10517086, rs11933540

4q27 rs4505848, rs6827756 IL2 rs2069762

MHC/HLA rs6916742, rs9268645 HLA-DQB1, HLA-DRB1, 

HLA-B, HLA-A

6q15 rs597325, rs72928038, rs11755527 BACH2 rs11755527

6q22.32 rs9388489 C6orf173 rs9388489

6q25.3 rs1738074 TAGAP rs1738074

6q27 rs924043

7p15.2 rs7804356

7p12.2 rs10272724 IKZF1 rs10272724

7p12.1 rs4948088 COBL rs4948088

9p24.2 rs10758593, rs7020673 GLIS3 rs7020673

10p15.1 rs10795791, rs12251307, rs7090530 IL2RA rs12722495, rs11594656, rs2104286

10p15.1 rs11258747 rs947474

10q23.31 rs10509540 C10orf59 rs10509540

11p15.5 rs7928968

11p15.5 rs689, rs7111341, rs689 INS rs689

12p13.31 rs10492166, rs917911, rs4763879 CD69 rs4763879

12q13.2 rs705704, rs2292239 ERBB3 rs2292239

12q14.1 rs10877012

12q24.12 rs17696736, rs653178, rs3184504 SH2B3 rs3184504

13q32.3 rs9585056

14q24.1 rs1465788

14q32.2 rs941576, rs4900384 rs4900384

14q32.2 rs941576 rs941576

15q14 rs12908309 rs17574546

15q25.1 rs34593439, rs3825932 CTSH rs3825932

16p13.13 rs12927355, rs12708716 CLEC16A rs12708716

16p11.2 rs9924471, rs4788084 IL27 rs4788084

16q23.1 rs8056814, rs7202877 rs7202877

17q12 rs12453507, rs2290400 ORMDL3 rs2290400

17q21.2 rs7221109

18p11.21 rs2542151, rs1893217, rs478582 PTPN2 rs1893217, rs478582

18q22.2 rs1615504, rs763361 CD226 rs763361

19p13.2 rs2304256

19q13.32 rs425105

19q13.33 rs516246, rs601338, rs602662

20p13 rs2281808

21q22.3 rs11203203, rs3788013 UBASH3A rs3788013

22q12.2 rs5753037

22q12.3 rs229541

Xq28 rs2664170
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Table 2. Autoimmune diseases that have markers in T1D susceptibilty regions (Source: T1Dbase). 

 

 

T1D-Region Other Diseases associated with region

1p13.2 Juvenile Rheumatoid Arthritis, Rheumatoid Arthritis, Crohn Disease, Systemic Lupus Erythematosus,

Autoimmune Thyroiditis, Vitiligo

1q32.1 Ulcerative Colitis, Crohn Disease, Inflammatory Bowel Disease,  Systemic Lupus Erythematosus

2p23.3

2q11.2 Juvenile Rheumatoid Arthritis, Rheumatoid Arthritis, Celiac Disease

2q24.2 Ulcerative Colitis, Inflammatory Bowel Disease, Psoriasis, Vitiligo

2q32.3 Rheumatoid Arthritis, Biliary Liver Cirrhosis, Systemic Lupus Erythematosus

2q33.2 Rheumatoid Arthritis, Celiac Disease, Autoimmune Thyroiditis

3p21.31 Celiac Disease

4p15.2 Rheumatoid Arthritis

4q27 Celiac Disease

MHC/HLA Rheumatoid Arthritis, Celiac Disease, Multiple Sclerosis

6q15 Rheumatoid Arthritis, Celiac Disease, Multiple Sclerosis, Autoimmune Thyroiditis

6q22.32

6q25.3 Celiac Disease, Multiple Sclerosis

6q27

7p15.2

7p12.2

7p12.1

9p24.2

10p15.1 Rheumatoid Arthritis, Vitiligo

10p15.1

10q23.31

11p15.5

11p15.5

12p13.31 Multiple Sclerosis

12q13.2

12q14.1 Multiple Sclerosis

12q24.12 Juvenile Rheumatoid Arthritis, Rheumatoid Arthritis, Celiac Disease,

Primary Sclerosing Cholangitis, Biliary Liver Cirrhosis, Vitiligo

13q32.3

14q24.1

14q32.2

14q32.2

15q14

15q25.1 Celiac Disease, Narcolepsy

16p13.13 Biliary Liver Cirrhosis, Multiple Sclerosis

16p11.2 Crohn Disease

16q23.1

17q12 Rheumatoid Arthritis, Biliary Liver Cirrhosis

17q21.2

18p11.21 Celiac Disease, Ulcerative Colitis, Crohn Disease, Inflammatory Bowel Disease

18q22.2 Celiac Disease, Multiple Sclerosis

19p13.2 Rheumatoid Arthritis, Biliary Liver Cirrhosis, Multiple Sclerosis, Psoriasis

19q13.32

19q13.33 Crohn Disease, Inflammatory Bowel Disease

20p13

21q22.3 Rheumatoid Arthritis, Vitiligo

22q12.2

22q12.3

Xq28
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2.7 GENES AND TRANSCRIPTS 

 

A gene is a molecular unit of heredity in a living organism. A modern working definition of a 

gene is: a particular region of the genomic sequence, corresponding to a unit of inheritance, of 

which parts (called exons) are involved in the synthesis of proteins. Proteins, in turn, play an 

important role in the development and functioning of all known living organisms. Within a 

gene, exons are interrupted by introns, parts that are not directly contributing to the synthesis 

of proteins (but may be involved in the regulation of gene activity). Exons are made up of series 

of three letter nucleotide sequences (codons), also called a reading frame9. These are transcribed 

to a complementary single strand (but with Thymine replaced by Uracil, and the introns “spliced 

out”) called messenger RNA (mRNA). In turn, mRNA functions as a template to which RNA 

(transfer- or tRNA) temporarily attaches. Each tRNA molecule consists of two functional sites. 

The first one, called “anticodon”, operates as a docking site; it is a sequence of three bases that 

are complementary to a codon in the messenger RNA. The second functional part attaches to 

one of the 20 possible amino acids, as specified by the sequence of nucleotides in the (anti-) codon. 

After dissolving the bonds between tRNA and mRNA, the amino acids link to form a polypeptide 

sequence which after intricate folding leads to a protein (Figure 3).  

The sequence of nucleotides in exons thus determines the string of amino acids and in this way 

the function and structure of a protein. From this it follows that changes in the succession of 

nucleotides by mutations (including SNPs, deletions, insertions and copy number variations) 

may lead to a (often disruptive) change in the protein. These mutations include single nucleotide 

changes (SNPs, insertions, deletions (together called “indels”)) and multiple nucleotide 

polymorphisms (“micro-satellites”, copy number variations and large sequence variations). A 

particular locus10 may be occupied by any one of the alleles (transcripts) of a gene or other 

functional DNA sequences, where an allele is one of several gene transcripts. Gene overlap 

occurs when the overlaying genes share the same DNA sequence perhaps in a different reading 

frame or on the opposite DNA strand, and yet do not share regulatory elements or any exons 

(Sanna et al., 2008; Gerstein, 2007). 

                                                           
9 A reading frame is a way of splitting the sequence of nucleotides that make up the exon into a set of consecutive, 
non-overlapping triplets. The triplets equate to amino acids or stop signals during translation and are referred to as 
codons. An open reading frame (ORF) is the part of a reading frame that has the potential to code for a protein. It is 
a continuous stretch of DNA that begins with a start codon, usually methionine (ATG), and ends with a stop codon 
(TAA, TAG or TGA in most genomes) (Brown, 2010) 
10 Nowadays the definition of locus also entails the location of other DNA sequences than just genes, i.e. although a 
gene has a locus, a locus can contain more than just a gene. 
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Figure 3. An illustration of transcription of a protein coding gene. The gene is first transcribed to an 
initial transcript, and the introns are spliced out to form a final mature mRNA. (Source: British 
Journal of Anaesthesia) 

 

There are also non-coding genes that are not translated into protein, but which produce 

functional RNA. They differ from the protein-coding genes in that they do not have an open 

reading frame. They are abundant in the genome and are involved in regulatory activity (Pique-

Regi et al., 2011). They include biologically active RNA genes like transfer RNA (tRNA) or 

small nuclear RNA (snRNA), ribosomal RNA (rRNA), long non-coding RNA (lincRNA), 

microRNA and silencing RNA (siRNA). 

Transcripts are generated by a process, in which a DNA stretch is transcribed to an initial 

transcript unit called a pre-messenger RNA. The pre-mRNA may be involved in protein 

synthesis by acting as template for transfer-RNA (or t-RNA). In this case the transcript is called 

a “coding transcript”. Alternatively, the pre-mRNA is a template for other types of RNA genes 

that are non-coding. Unlike coding transcripts, the non-coding transcripts do not result in a 

protein product, but instead are biologically active molecules that play other important roles in 

the genome such as chromatin11 maintenance and regulation of gene activity (Pique-Regi et al., 

2011). Known products of “non-coding transcripts” include lincRNA, microRNA, ribosomal 

RNA and other small nuclear RNA genes. Their structure and function is summarised in Table 

3. A gene can have more than one transcript. Many genes contain numerous exons and introns, 

                                                           
11 Chromatin is a complex of macromolecules consisting of DNA, protein and RNA. It packages DNA into a smaller 
volume to fit in the cell and prevents DNA damage. It is involved in the control gene expression and DNA replication. 
Chromatin maintenance is any regulatory activity that involves of the preservation of the physical structure of 
eukaryotic chromatin. 
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and the exons can be spliced together in more than one pattern to generate multiple, distinct 

mRNA transcripts. This process is referred to as alternative splicing (Lewin, 2008). These 

distinct mRNA transcripts, which are referred to as alternative transcripts, transcript variants, 

splice variants, or isoforms, in turn produce different variants of a protein from the same gene 

(Guttmacher, 2002) (see Figure 4). The creation of a protein from its gene is called gene 

expression. 

 

 

Figure 4. An Illustration of alternative splicing. The exons from a single gene are spliced together in 
three different patterns which give rise to three variants of the same protein. (Source: Guttmacher 
and Collins, 2002). 
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Table 3. Brief definitions of coding and non-coding transcripts (Source: Information given has been 
extracted from Ensembl Documentation, December, 2014). 
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2.8 REGULATION OF GENE EXPRESSION 

 

Apart from the protein coding sequences, there are other biologically relevant nucleic acid 

sequences that play other important roles in the genome such as regulation of gene expression 

and maintenance of the chromatin structure (Pique-Regis et al., 2011). Regulation of gene 

expression involves a process that leads to increase or decrease in the production of specific 

proteins (Jacob and Monod, 1961). It is an important aspect of the cell because it increases the 

versatility and adaptability of an organism by allowing the cell to produce proteins only when 

they are needed (Payankaulam, 2010; Jacob and Monod, 1961). Gene expression is regulated at 

the level of transcription (described in 2.8), which can only occur if transcription factors bind to 

the DNA. Binding occurs within special nucleotide sequences called regulatory regions that are 

usually several hundred base pairs long (Lodish et al., 2000). Regulatory regions surround 

transcription start sites (TSSs) of genes apart from some sequences called enhancers that are 

located far upstream or downstream of their target gene (Birney et al., 2007; Dineen et al., 2007). 

Regulatory regions contain transcription factor binding sites (TFBSs) which are short 

sequences of DNA nucleotides that have distinctive motifs (Zhang et al., 2014). These TFBSs 

are recognised by the transcription factors which bind preferentially to distinct motifs and 

activate gene expression (Whitfield et al., 2012). Accurate functional annotation of regulatory 

elements is therefore important for understanding the basic process of gene regulation (Pique-

Regis et al., 2011). Yet, this is still a challenge in modern genomics. 

 

2.9 IDENTIFICATION OF REGULATORY REGIONS AND TFBS  
 

The genetic basis of gene expression has been investigated across tissues (Dimas et.al, 2012) 

and populations (Stranger et al., 2012). Variation in genomic regions involved in regulation of 

gene expression is vital to evolution and disease (Pique-Regi et al., 2011; Nicolae et al., 2010). 

Computational approaches to the prediction of regulatory sequences have been encouraged 

through improvements in high throughput DNA sequencing techniques. These methods side 

step the ultimately more reliable but slow and expensive route of experimental verification 

(Abnizova et al., 2006). Computational methods have developed significantly in recent years 

(Chan et al., 2010; Dineen et al., 2010; Huang et al, 2004; Ohler and Niemann, 2001; Stormo, 

1990; Jensen and Knudsen, 2000; Vanet et al., 2000; van Helden et al., 2000; Hughes et al., 2000; 

Workman and Stormo, 2000; Zhu and Zhang, 1999; van Helden et al., 1998; Bailey and Elkan, 

1995; Lawrence et al., 1993). Most of the time, the models accurately predict in vitro binding 

motifs for transcription factors (Andersen et al., 2008; Tronche et al., 1997). Results from 

computationally identified binding motifs can be found in databases like TRANSFAC (Matys et 

al., 2006), JASPAR (Mathelier et al., 2014; Bryne et al., 2008), and SCPD (Zhu and Zhang, 1999). 
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However, there is still considerable need for reliable detection, in vivo, of regulatory regions 

and biologically relevant sites they contain (Dineen et al., 2010; Guhathakurta, 2006; 

Hoogendoorn et al., 2004; Hoogendoorn et al., 2003). Current experimental techniques like 

DNase-seq and its successor FAIRE-seq are applied to human cell lines to verify sequences 

associated with regulatory activity by detection of DNase hypersensitive sites (Song et al., 2011; 

Crawford et al., 2006). Combining data from computation and experimental methods can lead 

to accurate identification of true regulatory regions in the genome. 

 

2.10 Variation in regulatory regions and TFBS 

 

Genetic variation in regulatory regions can influence gene expression. There is now increased 

interest in regulatory SNPs, which have been suggested to have significant contribution to the 

aetiology of some complex diseases (Stranger et al., 2012; Wellcome Trust, 2007). However, 

their identification and evaluation is not effortless due to difficulty in identifying regulatory 

region prediction (Mariño-Ramírez et al., 2009). Most of the non-coding genome is yet to be 

deciphered (in terms of function), and the process of regulation is not yet fully described 

(Altshuler et al., 2008). This makes it difficult to predict the functional effect of regulatory 

variants (Pique-Regi et al., 2011). The effect of mutations on TF binding have been studied 

computationally. A number of in-silico (computational) methods to predict candidate regulatory 

variants that may affect function have been developed (Laurilla and Lahdesmaki, 2009; Xu and 

Taylor, 2009; Andersen et al., 2008; Laurilla and Lahdesmaki, 2008; Abnizova et al., 2007). 

These methods make use of computationally recognised regulatory regions to identify candidate 

regulatory variants. More recent methods make use of data from experimental methods like 

ChIP-seq and FAIRE-seq (Chen et al., 2014; Gagliano et al., 2014; Landt et al., 2012; Schuab et 

al., 2012). 

 

2.11 Biological data and databases 

 

The fundamental data for my research are the human T1D susceptibility regions and the SNPs 

that occur in the susceptibility regions. Three online biological databases, T1Dbase (Burren et 

al., 2011) Ensembl (Cunningham et al., 2014) and Entrez dbSNP (Sherry et al., 2001) will be 

used for data collection.  

T1Dbase 

T1Dbase is a bioinformatics resource of the International Type 1 Diabetes Genetics Consortium 

(T1DGC) (available at www.t1dbase.org). The 49 regions that affect risk of T1D are listed in this 
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database. Data that can be obtained from T1Dbase include names and chromosomal coordinates 

of the susceptibility regions. Also available are the identifiers for disease associated SNPs, 

candidate susceptibility genes and other autoimmune diseases associated with each of the 

susceptibility regions. For my research, the data I obtained from T1Dbase included a 

compilation of SNP variants in T1D susceptibility regions, the alleles12 (reference and mutant) 

of each SNP locus, the exact location of each SNP in the genome (chromosomal coordinates), 

and the genic position of each SNP based on gene structure. Genic positions can be classified on 

the basis of function and structure. The functional classification establishes if the SNP is in a 

gene or not; and if it is in a gene, whether or not the gene is protein coding or non-coding. The 

SNPs can also be classified structurally according to their genic position, i.e. whether they are 

in an intra-genic, gene flanking or inter-genic part of the susceptibility region.  

Advantages and Limitations of T1Dbase: It is completely dedicated to the genetics of T1D 

and as such the database is focused on T1D susceptibility loci data. This eliminates the need to 

search the much larger human genome data set. The limitation of T1Dbase at the time of this 

study was that one could not comprehensively retrieve the genic positions (genomic region in 

which a SNP is located) of the T1D- associated SNPs. This has however changed with a database 

update in early 2014. 

 

Ensembl  

Ensembl is a publicly available web resource that contains automatically annotated genomes. It 

is integrated with other available biological databases like Jasper for binding motifs. It is a much 

larger web resource than T1Dbase, and contains general information about the human genome 

including variants. These include SNPs, insertions, deletions and somatic mutations 

(Alterations in DNA that occur after conception, meaning that they are not inherited) for several 

species. Data from Ensembl can be accessed in a number of ways. The names of all the SNPs 

that occur in the T1D susceptibility regions can be collected from Ensembl using the Biomart 

tool (Kinsella et al., 2011). To achieve this, the coordinates of the T1D regions obtained from 

T1Dbase are uploaded to the biomart query page which allows one to search the genome 

browser and retrieve data like the names, chromosomal positions, and genic positions (referred 

to as “consequence to transcript”, in Ensembl) of the SNPs. The SNP genic positions tell if a 

SNP is located within a gene, adjacent to a gene or whether they occur in inter-genic positions 

between gene coding regions, as well as the particular genes in which they are located. 

Information about genes, including gene names, chromosomal coordinates, biotype (coding or 

non-coding), and number of splice variants, can also be retrieved from Ensembl. 

                                                           
12 Allele, in this case, refers to one of two or more forms of the variant. For SNPs, the original (non-mutated) 

nucleotide is referred to as the reference allele, while its variant form is called the alternate or mutant allele. Although 
most SNPs have only one mutant allele, some have more than one 



 

28 
 

Advantages of Ensembl: There is a number of advantages to using Ensembl. (i) It is a larger 

web resource than T1Dbase and integrates data from a wide range of biological research sources 

into its database. Therefore, available information is quite comprehensive. (ii) Genic positions 

for 99% of the variants obtained from T1Dbase could be retrieved. (iii) Ensembl contains quality 

checks for genetic variants in its variation pipeline. A variant is flagged as failed if certain quality 

criteria are not met, for instance if none of the variant alleles match the reference allele of the 

variant. Generally, Ensembl was found to give more detailed information regarding the genic 

positions of variants compared to T1Dbase. 

 

NCBI-dbSNP 

dbSNP (Database of Single Nucleotide Polymorphisms) (Sherry et al., 2001) is a large database 

for single nucleotide variants. It contains information about single nucleotide variant alleles and 

the sources of experimental data, and is available at (http://www.ncbi.nlm.nih.gov/SNP/). dbSNP 

was used to cross check information about SNP alleles retrieved from T1Dbase and Ensembl, 

and also to clarify any obscurities or incompleteness (especially missing alleles) encountered 

with the retrieved SNP data from both databases.  dbSNP is incorporated into NCBI's Entrez 

system of databases. It contains information about variations in the human, mouse, rat, 

chimpanzee and the malaria parasite species (Sherry et al., 2001). The database is mainly devoted 

to single nucleotide substitutions, the rest includes information about insertion/deletion 

polymorphisms, microsatellite and minisatellite repeats and other uncharacterized heterozygous 

assays.  

 

Ravendbase. 

All data retrieved from T1Dbase and Ensembl were incorporated into an own database, called 

Ravendbase. This database was designed and implemented by myself at the beginning of this 

project and completed through an unpublished MSc project (Beka, 2012). This database was 

created so as to link supplementary information about the T1D SNPs taken from Ensembl with 

the information retrieved from T1Dbase. This included such information that included the 

numbers and names of genes and transcripts that the SNPs intersect, the biotypes of the gene 

transcripts, if a SNP is in a regulatory region or not. At present, some of this information is not 

available from T1Dbase.  Altogether, information collected about the T1D SNPs, for this 

project, from both biological resources was stored in linked tables in Ravendbase for quick and 

easy access. Genomic information for 300,707 variants that occur in the susceptibility regions 

for T1D can be retrieved from this database, with SNPs forming the largest subset. Ravendbase 

is available online at (http://ravendbase.com), the structure of Ravendbase is described in 

Appendix D. 

http://www.ncbi.nlm.nih.gov/SNP/
http://ravendbase.com/
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CHAPTER 3 

CHARACTERISTICS OF ASSOCIATED AND NON-

ASSOCIATED T1D-SNPS 
 

This chapter is about the categorization of SNPs in the T1D susceptibility regions. Both 

associated and non-associated SNPs were classified by the type of genomic part in which they 

occur. The main aim of the work described here is to find characteristics that separate associated 

T1D-SNPs from non-associated T1D-SNPs. It was found that the associated SNPs occur more 

in multiple and different genic positions than the non-associated SNPs and most frequently in a 

combination of intronic regions and non-coding transcripts. In contrast, many non-associated 

SNPs are frequent in just intronic regions, as well as in gene flanking regions. 

 

3.1 INTRODUCTION 
 

The human genome is littered with millions of SNPs (Christley et al., 2008). SNPs are important 

as markers for certain diseases or as causative agents. Although the majority of SNPs has 

minimal effects, some of them have been shown to have detrimental consequences (Zhang et al., 

2014; Bush and Moore, 2012). The type of genomic structure in which a SNP is positioned is 

important because of its possible impact on the biological system. 

SNPs in genes may influence protein synthesis by affecting (a) the amino acid sequence of that 

protein, (b) affecting mRNA transcript stability (lifetime duration13)  through processes like 

nonsense mediated decay (Isken and Maquat, 2007), (c) translation rate (like causing translation 

pausing) due to change in RNA secondary structure (Sacchetti, 2001; Zama, 1999) or through 

mutations in translation initiation factors (Schwartz and Parker 1999), and (d) alternative 

splicing by altering the consensus sequence of a splice site (Zhang et al., 2014; Griffith et al., 

2008). 

SNPs in non-coding regions can alter gene expression by modulating the activity of cis-

regulatory elements (Zhang et al., 2014) e.g. transcription factor binding affinity (Griffith et al., 

2008), and possibly the activity of RNA genes involved in regulation (see Sections 2.7 and 2.8) 

                                                           
13 The greater the stability of an mRNA the more protein may be produced from that mRNA. A limit to the lifetime 
of mRNA enables a cell to alter protein synthesis rapidly in response to its changing needs. 



 

30 
 

(Chen et al., 2014; Schaub et al., 2012; Ward and Kellis, 2012; Laurilla and Lahdesmaki, 2009; 

Andersen et al., 2008; Abnizova et al., 2007; Knight, 2005; Stranger and Dermitzakis, 2005). 

Currently, there is seventy-nine SNPs have been linked with susceptibility to T1D (Burren, et 

al., 2011). These disease-associated SNPs have been identified by GWAS as occurring 

significantly more in individuals who have T1D than in individual who do not have the 

condition. These disease-associated SNPs are markers for the forty-nine T1D susceptibility 

regions, and within these regions are over 250,000 other non-associated SNPs that are in linkage 

with the disease-associated SNPs.  

In this chapter, I will classify and contrast the associated and non-associated SNPs by the 

structural part of the genome in which they occur. The aim of this is to investigate if the disease-

associated SNPs occur in other genic positions than non-associated SNPs. Non-coding genic 

positions are particularly of interest because they may be involved in a variety of gene regulatory 

activity, and this relates to the main thesis of my research. Characterisation will be done by first 

establishing the structural part of the genome in which each associated and non-associated SNP 

is positioned.  The term “structural part” refers to coding (exonic) and non-coding (intronic, 5’ 

UTR, 3’UTR, upstream, downstream, non-coding transcript, NMD transcript and intergenic) 

genic positions (see Figure 5).  

 

 

Figure 5. An illustration of the structure of a protein coding gene with possible genic positions of a 
SNP depicted. 

 

The following sections outline how the associated and non-associated SNPs were the classified 

by the genic positions in which they occur in the genome, and by the number of gene transcripts 

that they affect. SNPs that were found to affect multiple transcripts were further characterised 

by the numbers and different types of genic positions in which they occur. These features were 

analysed in order to distinguish between the associated and non-associated SNPs. 
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3.2 T1D SNP GENIC POSITIONS 

 

The genic position of a SNP refers to the type of genic structure in which it occurs. Nine main 

genomic structures are distinguished in my work. They are grouped into three general classes, 

(i) intra-genic, (ii) gene flanking and (iii) inter-genic (Figure 6). 

 

Figure 6. A grouping of the nine types of genic positions in which a SNP can occur in the genome  

 

(i) Intra-genic Genic positions: are within the transcripts of genes. A SNP’s position may be 

in any structure of a coding transcript including exons, introns, 3’ and 5’ UTR sequences. SNPs 

may also be in a non-coding gene transcripts such as NMD transcripts, and pseudogenes, as 

well as transcripts of functional non-coding RNA genes like miRNA, lincRNA, snoRNA (see 

Table 3). 

(ii) Gene-flanking Genic positions: include up to 5000 nucleotide base pairs (5 kilo-bases) 

adjoining the transcription start (upstream) and end (downstream) sites of functional coding and 

non-coding gene sequences. 

(iii) Inter-genic Genic positions: lie between the downstream and upstream sequences of 

neighbouring genes. These nucleotide sequences are assumed not to represent genes or any 

other functional (non-coding) sequences. 

For this work, the names (variant identifiers) of 260,302 T1D-associated (N = 79) and non-

associated (N = 260,223) SNPs were obtained from T1dbase. Their chromosomal coordinates 

Intragenic region 

(within gene)

Gene flanking region

(5kb sequences flanking   

gene start and stop sites )

Intergenic region

(outside gene)

Exonic

Intronic

Non-coding Transcript

NMD transcript

3’ UTR

5’ UTR

5KB Upstream

5KB Downstream
Genic Position
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and genic positions were retrieved from the Ensembl genome browser by means of the Biomart 

tool.  

 

3.3 SNP DISTRIBUTION IN GENIC POSITIONS 

 

The frequencies of associated and non-associated SNPs in various genic positions SNPs were 

determined. The results are presented as pie charts in Figures 7 and 8. Both appear to have a 

high frequency of occurrence in intronic, intergenic, upstream and downstream regions, and in 

non-coding transcripts. Remarkably, all these genic positions are non-coding structures, but it 

must also be noted that most of the genome (approximately 98%) is non-coding. What 

distinguishes the associated-SNPs from the non-associated SNPs is the fact that the associated-

SNPs seem to occur twice as often in non-coding transcripts than the non-associated SNPs 

(Figures 7 and 8).  

It should be taken into account that one and the same SNP may be located within more than one 

genic position and also in more than one type of genic position. This occurs if the SNP is within 

a genomic region that gives rise to more than one gene (gene-overlap) or to multiple splice 

isoforms of a single gene (transcript-overlap). Gene overlap occurs if overlaying genes share the 

same DNA sequence (i.e. in a different reading frame or on the opposite DNA strand) and yet 

do not share regulatory elements or any exons (Gerstein, 2007). Multiple splice isoforms are 

generated by alternative splicing. This mechanism entails the differential removal of introns 

from a primary RNA into a variety of possible mature mRNAs. Multiple transcripts overlaying 

a SNP locus can either be splice variants of only one gene (Figure 9), or splice variants of two 

or more overlapping genes. 

Many nucleotides in the T1D susceptibility regions are associated with multiple transcripts of 

one or more genes. On average, a SNP occurs in 7.8 transcripts. Consequently, many T1D 

associated and non-associated SNPs affect multiple transcripts. Each SNP occur within the same 

type of genic position in all the affected transcripts or could be in a different genic positions in 

each overlapping transcript. 71% of the SNPs are found in multiple transcripts. Approximately 

43% of these, which include most of the associated SNPs, occur not only in more than one genic 

position, but also in different types genic positions. Figure 10 depicts an actual example that 

shows how the associated-SNP ‘rs281417’ occurs in five different genic positions in transcripts 

of two genes. The SNP affects an exon and 5’UTR region in ZGLP1 transcripts, and an intron, 

NMD transcript and non-coding transcript in FDX1L. 
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Figure 7. A pie chart showing the distribution of associated T1D-SNPs in the various genic positions 

 

 

 

Figure 8. A pie chart displaying the distribution of non-associated T1D-SNPs in the various genic 
positions 
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Figure 9. An illustration depicting how a SNP may affect different structural parts in overlapping 
transcripts that overlay the SNP locus. 

 

 

 

Figure 10. A genome browser illustration of the associated T1D-SNP rs281417 in overlapping 
transcripts of 2 overlapping genes (Source: Ensembl genome browser V63) 

 

If a locus is characterised by transcript overlap, the alternative transcripts of the same gene 

may be read differently in the alternative splicing process. Each transcript may differ due to 
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exclusion or inclusion of exons from processed mRNA (Sammeth et al., 2008), because of intron 

retention, or as a result of alternative start sites (Matlin, 2005; Black, 2003). In case of gene 

overlap, the same applies for alternative transcripts of each of the overlapping genes. 

Furthermore, the overlapping genes themselves may have different start sites (and are therefore 

read differently) or may be on opposite strands of the DNA molecule, and consequently are read 

in opposite directions to each other. 

The current discovery and knowledge about extensive transcriptional activity within the human 

genome can be attributed to research by the ENCODE (ENCyclopedia Of DNA Elements) 

consortium (Becker et al., 2011). Previously, it was thought that a gene was mostly transcribed 

to a single mRNA transcript, which in turn is translated to a functional protein. However, an 

initial ENCODE study, which aimed to characterise 1% of the human genome (ENCODE, 2012; 

Birney et al., 2007), revealed that the human genome is much more pervasively transcribed than 

was previously thought. They found that most nucleotides in the genome are associated with at 

least seven alternative transcripts (Birney et al., 2007). This extensive transcriptional activity is 

also characteristic of loci within many of the T1D susceptibility regions, especially the HLA 

locus on chromosome six.  

 

3.4  SNP OCCURRENCE IN MULTIPLE GENIC POSITIONS  

 

A SNP’s ability to mutate multiple sites runs counter to the classic one-SNP-one-gene approach 

to disease studies and necessitates a deeper investigation into the genic properties of SNPs. Since 

many of the T1D-SNPs occur in more than one type of genic position in overlapping transcripts, 

Figures 7 and 8 may not be an entirely accurate representation because such these SNPs will be 

recounted in every category in which they occur. Thus the percentages of SNPs in some 

categories are likely to be inflated. This prompted me to look into more detail at the number 

and types of genic positions occupied by SNPs and the type of overlap occurs in the region 

surrounding the SNP. 

The “Genic position count” refers to the number of unique genic positions in which a SNP occurs 

in overlapping transcripts. If a SNP is in the same genic part in more than one transcript, it is 

counted as one occurrence. An example is illustrated in Figure 11 for the associated-SNP 

‘rs2476601’. This SNP maps to the 1p13.2 T1D locus and affects eleven alternative transcripts 

of the PTPN22 gene. However, it does not occur in one and the same but in four distinct genic 

parts (exon, intron, NMD transcript and non-coding transcript). Therefore, SNP ‘rs2476601’ 

has a unique genic position count of 4 (Table 4). This analysis was carried out for each T1D-

SNP (see Appendix A {Table 7}). 
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Figure 11. The associated SNP rs2476601 affects different genic positions in splice isoforms of the PTPN22 
gene.  (Source: Ensembl genome browser V63) 

 

 

 

Table 4. Genic positions of SNP rs2476601 in transcripts of the PTPN gene retrieved from Ensembl. 

 

 

Associated SNPs have a significantly higher genic position counts than non-associated SNPs 

(Kolmogorov-Smirnov test, D = 0.29, Dcrit = 0.15 for α = 0.05%) (Figures 12 and 13). 

Gene Name Transcript name Transcript biotype SNP Alleles Genic position

PTPN22 PTPN22-001 Protein coding G ( C ) Exon

PTPN22 PTPN22-002 Protein coding G ( C ) Intron

PTPN22 PTPN22-003 Retained intron G ( C ) Non-coding transcript

PTPN22 PTPN22-004 Protein coding G ( C ) Exon

PTPN22 PTPN22-005 Non-coding transcript G ( C ) Non-coding transcript

PTPN22 PTPN22-006 Protein coding G ( C ) Exon

PTPN22 PTPN22-007 Protein coding G ( C ) Exon

PTPN22 PTPN22-008 Nonsense mediated decay G ( C ) NMD transcript

PTPN22 PTPN22-009 Non-coding transcript G ( C ) Non-coding transcript

PTPN22 PTPN22-010 Nonsense mediated decay G ( C ) NMD transcript

PTPN22 PTPN22-201 Protein coding G ( C ) Exon
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Figure 12. A histogram and a cumulative frequency plot of unique genic position counts for associated-SNPs and 
non-associated-SNPs. The histogram shows that higher proportions of associated-SNPs (red) affect multiple 
genic positions than the non-associated-SNPs (blue). The largest proportion of the non-associated-SNPs are at 
a genic position count of one.  

 

 

 

Figure 13. The cumulative frequency plot indicates that the genic position count of one has the largest difference 
in proportions between both SNP sets. . The computed D value (0.23) is higher than the critical value (0.15) 
indicating a significant difference at α= 0.05. 
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3.5 TYPE OF TRANSCRIPT OVERLAP AT SNP LOCUS 

 

To identify the type of overlap (of transcripts) of T1D SNPs, four types of overlaps were 

considered: 

 

Gene & Transcript overlap: in this type of overlap, the overlaying transcripts are variants of 

more than one gene. The overlapping genes may be all coding or all non-coding genes (described 

in chapter 2), or a combination of both. 

 

Transcript overlap: in this type of overlap, the overlaying transcripts are variants of the same 

gene. The gene maybe a coding gene or a non-coding RNA gene. The coding gene may have 

both coding and non-coding transcripts (described in chapter 2), whilst the noncoding gene will 

have only non-coding transcripts. 

 

Gene flanking overlap: SNPs in this type of overlap include those solely in upstream and 

downstream positions of multiple transcripts, which are regions flanking genes.  

 

Single Genic Position: This refers to SNPs that are within a gene that has only one transcript 

or that are in inter-genic positions. 

 

The chi-square (χ2) statistic was applied to compare the frequencies between groups. The method 

tests if the distribution of observed frequencies deviate from what would be expected by chance 

(i.e. calculated expected frequencies). This is a non-parametric statistic, and has been chosen 

because the data to be analysed are nominal data. They are also discrete occurrences that are 

assumed to occur independently of each other. Generally, it is the preferred method for analysing 

nominal data (McDonald, 2015).  

The test indicates a significant association between type of SNPs (associated and non-associated 

SNPs) and type of overlap (χ2 = 13.25, df = 3, p = 0.004, α= 0.05) (Figure 14). The standardised 

residuals (Table 5) show that associated SNPs are under-represented in gene-flanking overlaps. 
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Figure 14. A Bar plot of SNP proportions in types of overlap, indicating that there is a much lower proportion of 
associated SNPs than non-associated SNPs in gene flanking (upstream and downstream) regions of transcripts.  

 

 

Table 5. Standard residual values indicating differences between SNP counts in types of overlap. The table has 
been colour coded to highlight the trend in residual values. The sharp colour contrast (bright yellow) in the cell 
representing associated SNPs in gene flank overlap indicates that these SNPs are much less in flanking regions 
than would be expected by chance. 

 

 

3.6 SNP GENIC PROFILES 
 

The genic profile of a SNP is a list of the identified types of genic positions in which it occurs. 

The components of each SNP profile were the name/names of unique genic positions in which 

the SNP occurs. In other words “SNP genic profiles” refine the “genic position counts” of each 

SNP by giving names to numbers. For example, the genic profile of SNP rs281417 is 

{Exonic/5’UTR/NMD/Intronic/Non-coding} (Figure 15). 286 unique genic profiles types 

were identified. The profiles size ranged from one to eight components, in accordance with the 

unique genic position counts. A complete list of created profiles and SNP counts is presented in 

the Appendix A. Figure 16 shows the counts of associated-SNPs (red bars) and non-associated-

Standardized Residuals Associated Non- Associated

Gene & Transcript Overlap 1.50 -0.03

Transcript Overlap 1.19 -0.02

Single Genic Position 0.75 -0.01

Gene Flanking -3.00 0.05
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SNPs (blue bars) belonging to the 286 identified genic profiles, expressed as percentages. Due 

to large size and software limitation, the figure does not properly capture the names of all the 

286 profiles even though they are all included in the plot. However, the figure gives a good 

visual overview of profile sizes. The non-associated-SNPs are largely grouped into the ‘one 

component’ genic profile category while the associated-SNPs are more spread out. 

To identify genic profiles common to associated-SNPs and non-associated-SNPs, I plotted the 

frequency (%) of associated SNPs (red) in each genic profile against that of non-associated SNPs 

(blue). In the plot (Figure 17), genic profiles for which the percentages of associated SNPs and 

non-associated SNPs are equal, fall along the diagonal line. Profiles with a much higher 

occurrence in one set than in the other will show a marked deviation from the diagonal. Genic 

profiles typical for the associated SNPs fall above the diagonal, those below the diagonal are 

characteristic for the non-associated SNPs. The margin for choosing over-represented profiles 

was set at 3%. The over- and under-represented genic profiles are listed in Table 6. 

 

 

Figure 15. Genic profile {Exonic/5’UTR/NMD/Intronic/Non-coding} of SNP rs281417 which is overlapped by 
different genic parts of overlapping gene transcripts. (source: Ensembl genome browser) 
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Figure 16. Counts of associated-SNPs (red) and non-associated-SNPs ((blue) belonging to the 286 identified 
genic profiles, expressed as percentages. 

 

 

 

 

Figure 17. A plot of frequency of associated SNPs (red) in each genic profile against non-associated SNPs (blue) 
in order to identify genic profiles common to associated-SNPs and non-associated-SNPs. 

 

The most common genic profile in both SNP groups is “Intergenic”. The profile over-

representing for associated SNPs is “intron nc_transcript”, whereas non-associated SNPs 

typically have an “intron” genic profile but these are not in overlap with non-coding transcripts 
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as is for the associated SNPs. The non-associated SNPs are also more in gene flanking parts as 

indicated by the third and fourth most represented profiles, “5KB_downstream” and 

“5KB_upstream intron.” Table 6 gives a better and more reliable representation of the genic 

positions of T1D SNPs than the pie charts in Figures 7 and 8, recurring genic positions are not 

over-counted. 

 

Table 6. The genic profiles over-representing for associated SNPs (red) and the non-associated SNPs (blue). 

 

 

 

3.7 CHAPTER SUMMARY 

 

This study revealed that one and the same SNP may affect multiple processes because it occurs 

in more than one transcript or overlapping genes. Furthermore, these transcripts may have 

different functions. The analysis also showed that associated SNPs are found more often in non-

coding than in coding parts the genome, (especially in introns overlapping non-coding RNA 

transcripts). Although not specifically tied to non-coding transcripts, non-associated SNPs are 

also frequently occurring in introns. This is important because introns and certain non-coding 

RNA transcripts (like microRNAs and lincRNAs) may be involved in regulatory activity.  

It is now widely recognized that most complex-disease-associated SNPs map to non-protein 

coding regions (Dirk et al., 2014; Zhang et al., 2014; Djebali et al., 2012) either within genes or 

outside genes. Yet, discovering the effects of non-coding variants is a challenge, especially 

because there is a wide variety of non-coding functions. Furthermore, annotation for human 

regulatory elements is incomplete, so there are still potentially unknown mechanisms of 

regulation in the genome (Ward and Kellis, 2012). Nevertheless, post-GWA studies have 

recently demonstrated how disease risk variants can affect non-coding functions (Zhang, et al., 

2014). For instance, microRNA can be negatively affected by a rare mutation that changes its 

sequence or modifies its complementary target sequence in the 3’ UTR region of its target 

mRNA transcript (Bartel, 2009). The latter has been demonstrated for the Crohn’s disease (an 

SN Genic Profiles No of Profile 

Components Assoc Non_Assoc
1 intron nc_transcript 2 19.767 2.069

2 nc_transcript 1 6.977 2.842

3 intron nc_transcript NMD_transcript 3 3.488 0.070

4 5KB_upstream intron nc_transcript NMD_transcript 4 3.488 0.236

5 exon 1 3.488 0.581

6 5KB_downstream intron 2 6.977 4.469

7 5KB_upstream 1 5.814 7.156

8 5KB_downstream 5KB_upstream 2 0.000 3.044

9 5KB_upstream intron 2 1.163 5.421

10 5KB_downstream 1 3.488 8.075

11 intergenic 1 19.767 26.479

12 intron 1 3.488 22.685

SNP Counts (%)
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autoimmune disease that has markers in T1D susceptibility regions) associated SNP, 

rs10065172. This mutation attenuates binding of miRNA-196 to the mRNA transcript of the 

IRGM gene (Brest et al., 2011; Singh et al., 2006). The resulting fluctuation in IRGM expression 

leads to an increase in intracellular bacteria which can lead to a Crohn’s disease associated 

inflammation (Brest et al., 2011; Singh et al., 2006). Also, in lincRNAs, a risk variant can be 

detrimental by altering the tertiary structure of the lincRNA transcript (Shen, et al., 1999). The 

highly conserved structure of lincRNA is important in guiding recruitment of chromatin 

regulators to the chromatin (Tsai et al., 2010; Rinn et al., 2007). The risk allele of SNP 

rs35955962 maps to the MIAT (Myocardial Infarction Associated Transcript) lncRNA 

(Broadbent et al., 2008). This variant has been found to affect the transcript by increasing it 

affinity for nuclear proteins compared to the non-risk allele (Broadbent et al., 2008; Ishii et al., 

2006). Though the particular influenced protein, and its functional consequence on heart disease, 

is still yet to be characterised (Zhang et al., 2014).  

SNPs that affect multiple processes have also been recognised. A prominent example is the 

impact of the rs1045642 SNP on different functional parts.  The SNP maps to an exon in the 

multidrug resistant gene MDR1 (Hoffmeyer et al., 2000). The SNP is synonymous, which means 

it does not change the amino acid sequence (primary structure) of the protein (MDR1) the gene 

is building (Kimchi-Sarfaty et al., 2007). However, it alters the drug substrate specificity of the 

protein. It is suggested that the SNP slows down the rate of translation of the MDR1 mRNA, 

which in turn impacts protein folding (Komar, 2007). This altered MDR1 conformation 

decreases the drug substrate specificity of the protein (Fung and Gottesman, 2009; Kimchi-

Sarfaty et al., 2007; Hoffmeyer et al., 2000). Recently, it has also been shown that a part of the 

coding sequence of the exon in MDR1 not only specifies an amino acid, but a transcription factor 

binding site (Stergachis et al., 2013). This provides an additional avenue through which the SNP 

may impart another functional effect. These sporadic references raise the impression that one 

SNP affecting multiple processes is a rather extraordinary event. This research shows that it 

might be a quite common but an overlooked phenomenon that is characteristic of complex 

diseases. 

The associated and non-associated SNPs have been successfully characterised by their genic 

positions in the T1D regions. Yet, the layers of genetic information embedded in the DNA that 

forms the susceptibility regions can also throw more light on the unique characteristics of the 

regions themselves. Therefore, in the following chapter, the genomic composition of the 

susceptibility regions including structural and functional parts are analysed. This is done in 

order to identify unique features characterising each region.  
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CHAPTER 4 

CLASSIFICATION OF T1D SUSCEPTIBILITY 

REGIONS 
 

In the previous chapter, it was shown that associated and non-associated SNPs can be 

characterised and distinguished by their genomic location within T1D susceptibility regions. It 

was also established that disease associated SNPs occur quiet frequently in non-coding parts. 

Led on by this finding, an understanding of the genomic make-up of the susceptibility regions 

themselves became the next objective of my research. To do this, the genomic composition of 

the susceptibility regions and other associated genetic features were identified and analysed. In 

this study I found that the T1D susceptibility regions can be grouped into three clusters 

reflecting genomic content. The clusters are mainly separated by differences in intronic content 

and gene density. Furthermore, there are twenty-five T1D regions carry markers for fourteen 

other autoimmune diseases. The study revealed that the cluster of regions characterised by the 

most relative gene density and counts of non-coding transcript nucleotides than others, also had 

the strongest degree of susceptibility region sharing with other diseases. 

 

4.1 INTRODUCTION 

 

Forty-nine genomic regions that confer susceptibility to T1D have been identified by genome 

wide association studies (GWAS) (Burren et al., 2011; Barett et al., 2009; Burton et al., 2007). 

Association studies typically identify the specific locations of genetic variants (mutations such 

as SNPs, insertions and deletions) that correlate with the phenotype of the disease. Identification 

of these loci is often followed up by intricate quantitative and statistical models to define disease 

risk patterns (Bush and Moore, 2012). Although relevant information has been generated from 

these GWAS studies, the aetiology of many complex diseases still remain unknown (Dirk et al., 

2014; Noble and Erlich, 2012). Understanding genomic aspects of disease, such as the discovery 

of relevant gene regulatory pathways and biochemical pathways for drug targets (Lander, 2013; 

Collins, 2010), can revolutionize medical practice (Ward, 2013). Therefore, it is important to 

build a clear picture of the genomic makeup of these susceptibility regions and the special 

features that describe them. Characterisation of a disease regions have been previously done in 

medical genomics to understand the genetic mechanism underlying complex diseases like 

Coeliac disease (Hrdlickova et al., 2011), Ovarian cancer (Permuth-Wey et al., 2013), and sex-

related diseases (Handel et al., 2013). These studies reveal that GWAS findings provide good 

starting points towards identifying the disease-associated variants and genes, but also that 
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bioinformatics approaches are needed help pinpoint the true causal variants. Many studies have 

been conducted on T1D, but to my knowledge characterising the T1D susceptibility regions on 

the basis of structural genomic content has not been reported. 

The aim of this study is to find out if the T1D susceptibility regions differ strikingly in genomic 

content among each other, and also if such eventual differences are related to the presence of 

loci associated with other autoimmune diseases. More specifically, it would be pertinent to know 

if certain regions have higher proportions of non-coding (intronic DNA and non-coding RNA) 

material than others. Because intronic DNA and many functional non-coding RNA sequences 

are involved in some form of regulatory activity (Djebali et al., 2012), querying the content of 

non-coding DNA in the susceptibility regions is in line with the main aim of this research (the 

role of disturbed regulation in the occurrence of T1D). The genic profiles of the associated T1D-

SNPs identified in the previous chapter also indicate that many of them are within non-coding 

sequences. Indeed, other studies have also shown that most genetic risk variants fall outside of 

coding sequences (Zhang et al., 2014; Encode, 2012; Frazer, 2009). The second aim was to 

establish if certain regions have a higher gene and SNP density than others. Gene density is 

particularly important from two regulatory perspectives. First, gene dense regions are expected 

to contain regulatory modules with binding sites that are involved in the activation or repression 

of gene transcription within the region. Secondly, gene dense regions may carry certain genes 

that are also involved in regulation of other genes via gene regulatory pathways. Although SNPs 

in binding sites are the main focus of this research, also SNPs in important non-coding 

regulatory sequences (but not in binding sites) or coding sequences for regulatory proteins may 

implicate the corresponding gene in the manifestation of disease (Zhang et al., 2014; Laurila and 

Lähdesmäki, 2009). Finally, the third question to be addressed by this study is: does the genomic 

composition of susceptibility regions relate to the presence of loci associated with other 

autoimmune diseases (Welter et al., 2014; Hindorff et al., 2013)? Susceptibility regions that 

harbour more disease associated variants could be more likely to harbour other trait-associated 

SNPs that are not detected by GWA studies (Lim et al., 2014; Pierce and Ashan, 2011). 

 

4.2 METHODS 
 

Susceptibility regions can be characterised by genomic features like total region size, the amount 

of coding- and non-coding DNA, and the number of genes and SNPs they carry. The number of 

nucleotides of a region that build up exons (coding sequences), introns, 5’UTR, 3’ UTR and 

intergenic parts will be referred to as structural features. Functional features will include the 

abundance (density) of SNPs, coding genes, regulatory modules and non-coding (putative 

regulatory) RNA transcripts (Table 7). 

 



 

46 
 

Table 7. Structural and functional features used for characterising the T1D susceptibility regions. 

 

 

4.3 Data Normalisation 

 

The T1D susceptibility regions vary widely in size, ranging from 45,078 bps in region 14q32.2 

(Chr14:101283661-101328739) to 3,808,585 bps in the HLA region (chr6:29690000-33498585) 

(Burren et al., 2011). In order to eliminate bias due to size, the data should be normalised. Ideally, 

this can be dealt with by expressing the features as proportions of the total region size. This 

would scale the sizes of features per region to values between zero and one, and add them up to 

one. However, this cannot be applied to counts of functional features because some counts are 

very small in comparison to the total susceptibility region size. Therefore, for this study, data 

normalisation was achieved by a two-step vertical and horizontal scaling. 

Feature-wise (vertical) scaling 

The objects to be clustered are a data set consisting of the structural features sizes for each 

susceptibility region. The columns are the structural features whilst the rows are the 

susceptibility regions. In vertical scaling, the abundance for each structural feature (𝒇𝒊𝒋) are 

normalised separately, by expressing the value of that feature 𝑗 as a proportion of the maximum 

(𝒎𝒂𝒙(𝒇𝒋)) of all susceptibility regions (Figure 18). Vertical scaling yields values (𝒇𝒊𝒋
∗ ) that are 

more comparable between regions but does not eliminate region size bias in the data.  

𝒇𝒊𝒋
∗ = 𝒇

𝒊𝒋
 / 𝒎𝒂𝒙 (𝒇

𝒋
) 

Type Feature 

Number  of:

Structural 3'UTR  nucleotides

5' UTR  nucleotides

Exonic  nucleotides

Intronic  nucleotides

Intergenic  nucleotides

Functional

Non-coding  RNA  nucleotides

Regulatory  module  nucleotides

Protein  coding  genes

RNA  genes

SNPs
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Figure 18. Vertical scaling showing how feature sizes are expressed as proportions of the maximum feature size 

 

Region-wise (horizontal) scaling 

Horizontal scaling is applied to the data to eliminate the effect of region size. This is done 

because the size range of the susceptibility regions is large (3,763,507). The differences in the 

sizes of regions will have an inherent influence on the amount of each structural feature, and 

possibly the functional features, characterising each region. A cluster analysis simply done on 

the 𝒇𝒊𝒋
∗  values would produce results reflecting the influence of region size bias as regions of 

similar size would simply come together when clustered. Thus, to normalise the data and correct 

for this problem, polynomial fitting was applied to the vertically scaled observed feature 

values 𝒇𝒊𝒋
∗ .  

To do this,  𝒇𝒊𝒋
∗   is measured as a residual from a polynomial regression model. This is done for 

each feature separately (i.e. Intron, Intergenic, Exon etc.) (Figure 19). 𝒇𝒊𝒋
∗  is plotted against the 

vertically scaled susceptibility region size 𝒙𝒋, then a 2nd order polynomial is used to fit data for 

features �̂� (𝒇𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅) (Figure 19). Subsequently, residual values are calculated by subtraction 

of the expected values �̂� from the scaled observed values 𝒇𝒊𝒋
∗

. These residual values are devoid 

of region size bias and can used for row-wise clustering of features. Polynomial regression has 

been chosen for data fitting in this work because it produces the best results for the data. This 

method, in comparison to linear, logarithmic regression, gives the best line of fit with the highest 

R2 values (Table 8). The graphical plots from the polynomial regression are presented in Figure 

20 and in Appendix B.  

  �̂�   =  𝒂𝒙𝒋
𝟐 + 𝒃𝒙𝒋 + 𝑐;  where, 𝒙𝒋 = 𝑠𝑐𝑎𝑙𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑖𝑧𝑒   
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𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝒇𝒊𝒋
∗  −  �̂�𝒊𝒋    

 

Figure 19. Horizontal scaling showing how vertically scaled feature sizes are expressed as residuals from a 
regression model 

 

 

 

 

Figure 20. Scatter plots showing data–fitting using a second order polynomial regression for intronic, intergenic 
exonic, and 5’UTR data. The rest can be found in Appendix B. 
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Table 8. R2 values of structural and functional features from second order polynomial regression plots 

 

 

 

4.4 Cluster Analysis of T1D susceptibility regions 

 

In order to sort out similarities among susceptibility regions on the basis of their genomic 

structural content, the regions were subjected to a cluster analysis. There are two popular 

methods for data clustering, Hierarchical clustering and K-means clustering. The former is the 

preferred method for this analysis because it gives organization and structure within cluster 

sets, whereas the latter gives simple cluster sets with flat partitioning i.e. no particular 

organization or structure.   

The cluster criterion used for the hierarchical clustering is the Ward’s method, and the distance 

measure used is the Euclidean distance between regions. Wards method (Murtagh and 

Legendre, 2014) is an agglomerative cluster method that uses a bottom up approach to group 

small clusters into larger ones. This reduces the total within-cluster variance. At each step the 

pair of clusters with minimum between-cluster distance are merged. For this analysis, Ward’s 

method is preferred to other existing methods (i.e. single linkage and complete linkage 

methods). This is because the data to which the cluster algorithm will be applied is (normalised 

base pair counts) are not overly complicated. In addition, Ward’s method produces better 

compactness (or clustering) and balance for this data than other methods used in this work, like 

the single linkage and complete linkage methods. 

The set of normalised values computed for each of the five structural features of the T1D regions 

(Appendix B {Tables 8 and 10}) was subjected to clustering by the Ward’s neighbour joining 

algorithm. This produced a dendrogram (Figure 21) that illustrates the clustering of regions 

into the most closely related groups (Mount, 2004) on the bases of genomic structure. 

Type Feature Linear Logarithmic Polynomial

Structural Intronic Nucleotides 0.7127 0.6477 0.8375

Intergenic Nucleotides 0.8232 0.3555 0.9265

Exonic Nucleotides 0.8207 0.3336 0.9338

5'UTR Nucleotides 0.7868 0.3346 0.8706

3'UTR Nucleotides 0.8187 0.4015 0.8603

Functional Non-Coding Transcripts 0.7800 0.5312 0.7879

Non-Coding Gene Counts 0.8289 0.3179 0.9627

Protein-Coding Gene Counts 0.7528 0.2740 0.9064

SNP Counts 0.7607 0.2350 0.9776

Regulatory Nucleotides 0.8045 0.6988 0.8572

R valuesGenomic Feature
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Three well generalized clusters can be distinguished from the data. The first cluster, CL1, is 

mainly separated from the other two by low exonic, UTR and intergenic content. Mean 

normalised value for each feature per cluster are presented in Table 9. Also shown are 𝒑-values 

indicating the difference in means between clusters. All three clusters have higher than expected 

amounts of intronic nucleotides (high intron content), however, CL1 has the highest mean 

content of all three clusters. CL2 and CL3 are mainly separated by differences in intronic 

content (higher for CL3) and intergenic nucleotides (higher for CL2). These differences are 

statistically significant, and 𝑃-values for pairwise comparisons between clusters are shown in 

Table 10. 

For the functional features, to find out if the structural attributes of the clustered regions 

associate with their functional features, the set of normalised values computed for functional 

features (Appendix B {Tables 9 and 11}) are juxtaposed to the dendrogram formed on structural 

attributes (Figure 22). For each cluster, the mean normalised value per functional feature is 

calculated. Subsequently, the differences between cluster means the tested for significance 

(Table 11 and 12). All three clusters appear to contain considerable amounts of regulatory DNA 

and non-coding RNA with significant differences from CL2 (Table 11). The highest mean 

content for regulatory DNA is in CL1. But the gene density and total SNP count of this cluster 

are both less than expected and also the lowest of all three clusters (Table 11). CL3 differs from 

CL1 in gene density, it has the highest gene density of all three clusters although the normalised 

values are also less than would be expected by chance. CL2 has the highest total SNP count, 

which is especially visible in the HLA/MHC region, however the normalised value is also less 

than expected. 

 

4.5 Unique attributes of T1D Clusters 

 

The first question of this study is do certain regions have higher proportions of non-coding 

(intronic DNA and non-coding RNA) material than others? A closer look at the first cluster, 

CL1, reveals that it consists of regions with significantly high intronic DNA content (except 

the outlier, 6q22.32, see Figure 21). The regions are also characterised by low content of 

intergenic, exonic, and UTR nucleotides. The third cluster, CL3, is similar to CL1 in containing 

regions with relatively high intronic DNA and low intergenic DNA content, but differs from 

CL1 by having more exonic, and utr nucleotides. Both clusters are also characterised by high 

content of non-coding RNA, and these attributes in CL1 and CL3 are positive for the first 

question. This finding is interesting as intronic and non-coding RNA sequences are known to 

be involved in various regulatory processes within the genome (Djebali et al., 2012; Ward and 

Cooper, 2010; Khalil et al., 2009).  
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Figure 21. Dendrogram produced by hierarchical cluster analysis of T1D regions on genomic structural features. 
The dendrogram splits the susceptibility regions into three cluster groups CL1, CL2 and CL3. The region size 
corrected feature values are colour coded using the inset scale. 

 

Susceptibility Intronic 3' UTR 5' UTR Exonic Intergenic

Region Name Bps
1p13.2 0.2873 -0.0719 -0.1769 -0.1354 -0.1595

22q12.2 0.2335 -0.0459 -0.1706 -0.1542 -0.1615

2p23.3 0.1773 -0.0925 -0.1588 -0.1535 -0.1403

Xq28 0.1959 -0.0472 -0.1278 -0.0975 -0.1279

17q12 0.2629 0.0199 -0.0495 -0.0768 -0.1239

2q11.2 0.1671 -0.0749 -0.1093 -0.1293 -0.0654

7p15.2 0.1145 -0.0767 -0.1068 -0.1128 -0.0433

2q24.2 0.2119 -0.1001 -0.0993 -0.0827 -0.1112

16p13.13 0.1537 -0.0983 -0.0840 -0.0692 -0.0894

4q27 0.0764 -0.1770 -0.1793 -0.1130 -0.0492

7p12.1 0.1108 -0.1710 -0.2086 -0.1918 -0.0918

6q22.32 -0.1895 -0.2391 -0.2644 -0.2616 -0.2682

1q31.2 0.0181 -0.0478 -0.0358 -0.0333 -0.0447

14q32.2 0.0269 -0.0449 -0.0243 -0.0242 -0.0322

16p13.13 0.0268 -0.0445 -0.0167 -0.0234 -0.0330

17q21.2 0.0270 -0.0019 -0.0339 -0.0335 -0.0216

22q12.3 0.0325 -0.0222 -0.0211 -0.0268 -0.0289

2q33.2 0.0250 -0.0602 -0.0470 -0.0461 -0.0329

6q25.3 0.0453 -0.0628 -0.0484 -0.0486 -0.0322

15q14 0.0346 -0.0657 -0.0488 -0.0556 -0.0183

13q32.3 0.0527 -0.0670 -0.0621 -0.0555 -0.0423

9p24.2 0.0647 -0.0558 -0.0289 -0.0359 -0.0459

10p15.1 0.0624 -0.0475 -0.0402 -0.0471 -0.0412

10p15.1 0.0704 -0.0531 -0.0420 -0.0342 -0.0361

19q13.32 0.0696 -0.0332 -0.0177 -0.0163 -0.0518

21q22.3 0.0587 -0.0470 -0.0157 -0.0236 -0.0311

4p15.2 0.0110 -0.0590 -0.0416 -0.0413 -0.0057

6q27 -0.0031 -0.0713 -0.0568 -0.0563 0.0049

14q32.2 0.0029 -0.0408 -0.0584 -0.0560 -0.0158

11p15.5 -0.0032 -0.0329 -0.0273 -0.0576 -0.0014

14q24.1 0.0053 -0.0426 -0.0249 -0.0444 -0.0138

MHC -0.0568 0.0143 0.0096 0.0205 0.0248

3p21.31 -0.0391 -0.0789 -0.0741 -0.1134 -0.0566

6q15 -0.0202 -0.0864 -0.0663 -0.0746 -0.0658

12p13.31 0.0042 -0.0702 -0.0951 -0.0908 -0.0682

10q23.31 0.0486 -0.0841 -0.0832 -0.0801 -0.0796

2q32.3 0.1043 -0.0627 -0.0410 -0.0406 -0.0582

16q23.1 0.1337 -0.0716 -0.0304 -0.0616 -0.0714

15q25.1 0.0793 -0.0581 -0.0521 -0.0605 -0.0773

18p11.21 0.0763 -0.0574 -0.0522 -0.0555 -0.0545

7p12.2 0.1509 -0.0255 -0.0660 -0.0681 -0.0751

16p11.2 0.0839 -0.0826 0.0467 -0.0440 -0.0531

18q22.2 0.0850 -0.0009 -0.0177 -0.0341 -0.0456

19p13.2 0.0956 0.0018 0.0098 0.0197 -0.0581

19q13.33 0.0568 -0.0207 0.0154 0.0084 -0.0552

12q13.2 0.0961 0.1362 0.1651 0.0345 -0.0898

CL1
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Table 9. Differences in genomic content between CL 1, CL 2 and CL 3. All values are normalised, and the highest 
mean values and significant p values are highlighted in red/bold text. (K is the test-statistic of the Kruskal Wallis 
test; statistical properties are derived from the normalised values). 

 

 

 

Table 10. P-values for pairwise comparisons of features in CL 1, CL 2 and CL 3 

 

 

  

Clusters Stats Intronic 3'UTR 5'UTR Exonic Intergenic Region Size

CL1 Mean 0.1501 -0.0979 -0.1446 -0.1315 -0.1193 597513

Stdev 0.1240 0.0690 0.0598 0.0545 0.0613 242454

CL2 Mean 0.0235 -0.0502 -0.0417 -0.0458 -0.0321 388354

Stdev 0.0336 0.0239 0.0240 0.0270 0.0241 763859

CL3 Mean 0.0962 -0.0241 -0.0022 -0.0302 -0.0638 298098

Stdev 0.0278 0.0635 0.0687 0.0372 0.0138 191162

K(obs) 27.61 9.66 24.71 23.24 25.79 11.86

P value <0.0001 0.0080 <0.0001 <0.0001 <0.0001 0.0030

Kruskal – Wallis,  𝑐𝑟𝑖 =    

Clusters Intronic 3'UTR 5' UTR Exonic Intergenic Region Size

CL 1 vs CL 2 0.0001 0.0160 0.0001 <0.0001 0.0001 0.0060

CL 1 vs CL 3 0.0330 0.0330 0.0010 0.0001 0.0460 0.0190

CL 2 vs CL 3 <0.0001 0.5880 0.2510 0.8750 0.0010 0.3420

Mann Whitney U test
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Figure 22. Functional feature values (normalised) are juxtaposed on the dendrogram produced by hierarchical 
cluster analysis of T1D regions on structural features. The feature values have been corrected for the effect of 
region size, and are colour coded using the inset scale. 

  

Susceptibility Non-coding Regulatory N-Cod P-Cod Total TFBS

Region Name RNA DNA Genes Genes SNPs SNPs
1p13.2 0.0608 0.0771 -0.1959 -0.1764 -0.1893 -0.3591

22q12.2 0.1377 0.2336 -0.1415 -0.1500 -0.1858 -0.3539

2p23.3 0.0657 0.0983 -0.1595 -0.1796 -0.1917 -0.3240

Xq28 0.1311 0.0314 -0.0868 -0.0961 -0.1694 -0.2818

17q12 0.0787 0.3432 -0.1511 -0.0956 -0.1940 -0.3254

2q11.2 0.2198 0.0047 -0.1385 -0.1387 -0.1342 -0.2251

7p15.2 -0.0070 0.1571 -0.1089 -0.0978 -0.1107 -0.2503

2q24.2 0.2475 -0.0155 -0.1199 -0.1075 -0.1278 -0.2050

16p13.13 0.0997 0.1921 -0.0655 -0.0931 -0.0811 -0.1287

4q27 -0.1396 0.0964 -0.0317 -0.0339 -0.0080 -0.0500

7p12.1 -0.1861 0.0254 -0.1525 -0.2173 -0.1869 -0.3268

6q22.32 -0.2392 0.2410 -0.0936 -0.1335 -0.1094 -0.2190

1q31.2 0.0240 -0.0004 -0.0334 -0.0482 -0.0451 -0.0586

14q32.2 0.0297 -0.0244 -0.0081 -0.0364 -0.0244 -0.0508

16p13.13 0.0089 -0.0027 -0.0150 -0.0302 -0.0131 -0.0322

17q21.2 0.0152 -0.0190 -0.0400 -0.0421 -0.0564 -0.0875

22q12.3 0.0326 0.0619 -0.0359 -0.0378 -0.0439 0.0065

2q33.2 -0.0175 -0.0347 -0.0616 -0.0563 -0.0476 -0.0971

6q25.3 -0.0300 0.0381 -0.0649 -0.0728 -0.0769 -0.1211

15q14 0.0002 -0.0066 -0.0503 -0.0649 -0.0634 -0.1019

13q32.3 0.0266 0.0669 -0.0395 -0.0673 -0.0295 -0.0989

9p24.2 0.0350 -0.0060 -0.0412 0.0654 -0.0426 -0.0700

10p15.1 0.0351 0.0244 -0.0201 -0.0550 -0.0539 -0.0913

10p15.1 -0.0102 -0.0255 -0.0521 -0.0534 -0.0466 -0.0745

19q13.32 -0.0173 0.0815 -0.0278 -0.0433 -0.0604 -0.0740

21q22.3 0.0255 0.0144 -0.0445 -0.0269 -0.0406 -0.0406

4p15.2 -0.0087 -0.1388 -0.1953 -0.2067 -0.1981 -0.3152

6q27 -0.0263 -0.0426 -0.0673 -0.0747 -0.0477 -0.0946

14q32.2 -0.0006 -0.0706 -0.0682 -0.0692 -0.0702 -0.1080

11p15.5 -0.0301 0.0697 -0.0582 -0.0601 -0.0673 -0.1068

14q24.1 -0.0061 0.0899 -0.0490 -0.0571 -0.0552 -0.0865

MHC -0.0451 0.0026 0.0165 0.0266 0.0201 -0.6080

3p21.31 0.0262 0.1811 -0.1540 -0.1162 -0.1509 -0.2523

6q15 0.0581 -0.1142 -0.2578 -0.2683 -0.2277 -0.4335

12p13.31 0.0190 0.0179 -0.0404 -0.0948 -0.0921 -0.1827

10q23.31 -0.0551 -0.0050 -0.0925 -0.0931 -0.0809 -0.1384

2q32.3 0.0488 -0.0211 -0.0470 -0.0615 -0.0557 -0.0951

16q23.1 0.0546 0.1115 -0.0532 -0.0622 -0.0816 -0.1184

15q25.1 0.0588 0.0668 -0.0608 -0.0691 -0.0742 -0.1005

18p11.21 0.0534 0.0141 -0.0323 -0.0732 -0.0611 -0.0908

7p12.2 0.0720 0.0115 -0.0939 -0.0884 -0.0878 -0.1434

16p11.2 0.0145 0.1906 -0.0807 -0.0658 -0.2137 -0.2566

18q22.2 0.0286 -0.0362 -0.0477 -0.0427 -0.0449 -0.0744

19p13.2 0.0265 0.1133 -0.0565 -0.0011 -0.0711 -0.0587

19q13.33 -0.0049 0.1264 -0.0512 0.0106 -0.0618 -0.0749

12q13.2 0.0722 0.1699 -0.0321 0.0272 -0.1158 -0.1665

Bps Counts

CL1

CL2

CL3

Functional features
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Table 11. Differences in functional features between CL 1, CL 2 and CL 3. All values are normalised, and the 
highest mean values and significant p values are highlighted in red/bold text. (K is the test-statistic of the 
Kruskal Wallis test; statistical properties are derived from the normalised values). 

 

 

Table 12. P-values for pairwise comparisons of functional features in CL 1, CL 2 and CL 3 

 

 

In the past, intronic DNA was mostly recognised as sequences that are spliced out during mature 

mRNA production. But recent studies indicate that certain intronic DNA sequences are further 

processed after splicing to give rise to functional non-coding RNA transcripts (Djebali et al., 

2012; Rearick et al., 2011). In addition, the high intron content in CL1 may be attributed to the 

encoding of large genes within the T1D regions in CL1. Intronic nucleotides make up a large 

part of coding genes, and about 26-40% of the human genome is reported to be comprised of 

intronic regions (Palazzo and Gregory, 2014, Gregory, 2005). Hence, large protein coding genes 

will most likely contain larger intronic sequences than smaller genes. The T1D susceptibility 

regions in CL1 are some of the largest with an average region size of 597,513bps, twice the 

average susceptibility region size in CL3 (Table 9). CL1 also has the highest average count of 

gene associated nucleotides, approximately 4 times that of CL2 and 2.5 times that of CL3, yet 

Non-Coding Regulatory Non-Coding P-Coding Total

Clusters Stats RNA DNA Genes Genes SNPs

CL 1 Mean 0.0391 0.1237 -0.1205 -0.1266 -0.1407

Stdev 0.1546 0.1108 0.0496 0.0496 0.0572

CL 1 Mean 0.0037 0.0066 -0.0625 -0.0660 -0.0673

Stdev 0.0288 0.0673 0.0604 0.0650 0.0546

CL 1 Mean 0.0424 0.0747 -0.0555 -0.0426 -0.0868

Stdev 0.0254 0.0797 0.0194 0.0401 0.0487

k(obs) 9.21 12.09 11.81 27.82 20.72

P value 0.0100 0.0020 0.0030 <0.000 <0.000

Kruskal-Wallis, k(crit)  = 5.9

Clusters Non-Coding Regulatory Non-Coding P-Coding Total

RNA DNA Genes Genes SNPs

CL 1 vs CL 2 0.1350 0.0030 0.0060 0.0001 0.0001

CL 1 vs CL 3 0.5420 0.5840 0.0070 0.7450 0.2940

CL 2 vs CL 3 0.0060 0.1030 0.8380 0.0010 0.0160

Mann Whitney U test
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it has the lowest gene density. To support this, an independent study of genomic makeup of the 

human chromosomes showed that genomic regions with lower gene density tend to contain 

genes with increased lengths as well as more introns per gene (Atambaeva et al., 2006). The 

average content of gene associated nucleotides, approximately 4.5 and 2.5 times that of CL2 and 

CL3, respectively.  

The abundance of non-coding sequences (with possibly important regulatory functions) found 

in the susceptibility regions of CL1 and CL3 is significant. It suggests further research to 

regulatory activity, specifically to RNA regulation in these regions, is needed. SNPs that occur 

in the regulatory RNA sequences can be studied for deleterious effects such as distortion of 

binding motifs and formation of aberrant molecules. These are factors that can negatively 

influence regulatory activity of non-coding RNA and gene regulatory networks (Weinberg and 

Morris, 2013; Knowling and Morris, 2011; Morris, 2011; Herranz and Cohen, 2010). Recent 

work by Wan et al., (2014) indicates that over 1,900 transcribed single nucleotide variants 

(approximately 15% of all transcribed single nucleotide variants) actually alter local RNA 

structure.  

The second question of the study is: are T1D regions are more gene dense than others? This 

indeed is the case, CL3 had the highest average gene density relative to region size. The high 

gene density can be linked with the higher content of exonic and UTR nucleotides in CL3 which 

are closer to the expected than for the other two clusters. The difference between clusters, 

particularly with CL1 was significant (Table 9). Lastly, CL2 is the largest cluster of twenty-two 

susceptibility regions. It includes the HLA region, which is the largest susceptibility region and 

the region most associated with susceptibility to T1D (rs6916742/C>T, p=4E-307) (Bradfield, 

2011). Altogether, the regions in CL2 are characterised by average counts of intergenic 

nucleotides (Table 9) and total SNP counts (Table 11) that are less than, but closest to the 

expected than for the other two clusters. 

 

4.6 Clusters associated with other autoimmune diseases 

 

The third question is, are certain regions are more associated with other diseases than others? 

This is associated with pleiotropy. This term was coined by a German scientist, Ludwig Herman 

Plate (Levit and Hoßfeld, 2006), in 1910 and describes the genetic effect of a single gene on 

multiple phenotypic traits. Certain susceptibility regions can be described as pleiotropic in the 

sense that they contain markers and genes associated with more than one distinct phenotype 

(diseases). Twenty-five of the susceptibility regions for T1D are pleiotropic, in that they are also 

susceptibility regions for fourteen other autoimmune diseases, which share at least one 

susceptibility region with T1D (Burren et al., 2011) (Table 2 and Table 13).  
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Pleiotropic regions were found to be dispersed across all three clusters. The relative occurrence 

(%) calculated for each cluster showed higher occurrences of pleiotropic regions in CL1 and 

CL3, with the highest being in CL3. This is another interesting finding, especially because CL1 

and CL3 are already outstanding with high content of intronic material, functional non-coding 

nucleotides, and regulatory module sequences. The pleiotropic regions in CL1 were most 

common with Rheumatoid arthritis, Ulcerative colitis and Crohn’s disease. Whereas in CL3, 

they were more associated with Multiple sclerosis, Irritable bowel disease as well as Crohn’s 

disease (Table 13). The relative occurrence (%) of these special regions was least in CL2, 

indicating that these regions are mostly only associated with T1D which I also found 

interesting. Even so, there was some shared susceptibility in CL2 that was most associated with 

Coeliac disease followed closely by Rheumatoid arthritis. 

 

Table 13. Diseases associated with the clusters of T1D susceptibility regions 

 

 

4.7 Chapter summary 

 

The foregoing analysis is based on the premise that characterisation of susceptibility regions in 

order to highlight prominent attributes can help to focus further research into the disease of 

interest. Distinct groups of T1D susceptibility regions have been identified by this work. These 

No of Loci 

Disease Name Alias shared with T1D CL1 CL2 CL3

Rheumatoid Arthritis RA 14 33.33 29.17 30

Coeliac Disease Coeliac 13 16.67 33.33 30

Crohn's Disease Crohn 12 33.33 16.67 40

Multiple Sclerosis MS 11 16.67 20.83 40

Irritable Bowel Disease IBD 11 25.00 16.67 40

Ulcerative Colitis UC 7 33.33 4.17 20

Primary Biliary Cirrhosis PBC 6 16.67 4.17 30

Juvenile Idiopathic Arthritis JIA 6 16.67 8.33 20

Aqueous Tear Disease ATD 6 25.00 12.50 0

Systemic Lupus Erythematosus SLE 5 25.00 4.17 10

Vitiligo Vitiligo 4 8.33 12.50 0

Primary Sclerosing Cholangitis PSC 3 8.33 4.17 10

Psoriasis Psoriasis 2 8.33 0 10

Juvenile Rheumatoid Arthritis JRA 1 0 4.17 0

Sjögren's Syndrome Sjögren's 1 0 0 10

Sweet's Syndrome SS 1 0 0 10

Alopecia Alopecia 1 0 0 10

Mean 15.69 10.05 18.24

Median 16.67 4.17 10

Friedman; χ
2
 = 7.03, df  = 2, p  = 0.03

Relative occurrence (%)
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include a cluster of regions that is rich in non-coding DNA including intronic, non-coding 

transcript and regulatory nucleotides. A second cluster of regions that contain relatively more 

genes than others and an abundance of non-coding transcript and regulatory nucleotides was 

also identified. Furthermore, these regions are associated with more diseases than others. These 

findings are positive for approaching the study of T1D from a regulatory perspective. This is 

especially important as the genetic determinants of T1D, being a complex disease, is thought to 

be better sought in problems associated with gene regulation rather than gene coding (Djebali 

et al., 2012; Ward and Kellis, 2012; Burton et al., 2007).  

What is unique to this part of my study is that measurements have been taken relative to region 

size which was not done in the previous chapter. By doing this two main features have been 

identified as characterising the susceptibility regions for T1D which are intron richness and an 

abundance of non-coding nucleotides. These unique features may explain why the associated 

T1D-SNPs occur frequently in a combination of introns and non-coding RNA transcripts, and 

non-associated T1D-SNPs similarly occur frequently in introns. These interesting results still 

serve to highlight the intricacy of the human genome. Problems in intronic DNA have been 

linked to genetic problems especially caused by disruption in gene splicing (Flanagan et al., 

2013; Wang and Cooper, 2007; Hastings et al., 2005, Lopez-Bigas et al., 2005). Also, mutations 

in the products of non-coding RNA expression, like linc-RNA and micro-RNA, have also been 

linked with diseases including cancers (Chen et al., 2013; Shi et al., 2013; Wahlested, 2013; Salta, 

2012). The abundant pleiotropy that is characteristic of human complex traits has also been 

taken up in recent studies in order to dissect and understand genetic relationships between 

SNPs, genes and clusters of complex diseases (Zhang et al., 2014; Park and Kim, 2012; 

Sivakumaran et al., 2011; Stranger et al, 2011).  

However, the T1D susceptibility regions that are abundant in regulatory DNA are more 

interesting for the next part of this work which is focused on SNPs in binding sites. The regions 

contain more regulatory nucleotides than expected, especially in CL1 and CL3, and regulatory 

regions are known to contain clusters of transcription factor binding sites. CL2, is equally 

important because it contains the most SNPs. Mutations in binding sites as well as active non-

coding RNA molecules can cause problems in regulation that lead faulty gene expression, 

formation of faulty proteins and obstruction of important biological networks, thereby causing 

disease. 
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CHAPTER 5 

SNP SENSITIVITY  

5.1 INTRODUCTION 
 

A mutation in a regulatory sequence can affect transcription factor binding and, as a 

consequence, the rate of gene transcription. It may lead to an up-mutation, resulting in increased 

gene expression, or a down-mutation that does the reverse. Clearly, any study devoted to the 

genomic aspects of a complex disease should take these mutations seriously. In the case of my 

research, it forms the core of this thesis. Variation in regulatory sequences is common (Garfield 

et al., 2012) and ever more of these mutations have been detected in binding sites over the years 

(1,969 in 2005 (Guo and Jamison, 2005), 47,832 in 2008 (Kim et al., 2008)) (Zheng et al., 2012). 

According to statistics compiled by the Human Gene Mutation Database (HGMD, 2014), 1909 

regulatory mutations have been identified in more than 700 genes that cause human-inherited 

disorders. 

Although some publications mention a possible association of regulatory SNPs with increased 

risk of T1D (Gillespie and Owen, 2014; Asad et al., 2007; Nielsen et al., 2003), until now no 

study has been done that takes into account the regulatory T1D SNPs. An important objective 

of this research is therefore to provide an analysis of all regulatory SNPs and, more specifically, 

to investigate how they might affect the structure of transcription factor binding motifs.  

For this, a “SNP sensitivity test” has been developed based on a previous method by Abnizova 

et al., (unpublished, 2007). The method, which is outlined in detail in section 5.2, assesses the 

extent to which a mutant allele in a binding site (from now on referred to as a “TFBS-SNP”), 

compared to its matching reference allele, distorts the representation of the binding motif in 

which it occurs. Unlike related methods (Chen et al, 2014; Schuab et al, 2012; Laurilla and 

Lahdesmaki, 2009; Andersen, et al., 2008; Laurilla and Lahdesmaki, 2008; Xu and Taylor, 2009; 

Abnizova et al., 2007) that rely on the correctness of computationally identified functional 

regulatory sequences (Chen et al., 2014), my work will only use those SNPs that occur in 

experimentally confirmed TFBSs (as given by Ensembl’s Genome Browser (Cunningham et al., 

2014)). This is done to eliminate the problem of false positives associated with the use of 

computationally predicted binding sites (Struckmann et al., 2011). 
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5.2 SNP SENSITIVITY 
 

The SNP sensitivity method, as initially proposed by Abnizova et al. (2007), is a computational 

approach with two main functions. The first is computational identification of regulatory 

elements in DNA. However, since this method was proposed, different computational methods 

for identification of DNA regulatory elements have been developed (Laurilla and Lahdesmaki, 

2009; Xu and Taylor, 2009; Andersen et al., 2008; Abnizova et al., 2007). But these algorithms 

tend to yield a significant amount of false positives. In recent times, high-through-put 

experimental methods are now applied to computational predictions for ultimate identification 

of true regulatory elements. These data can be found in dedicated online databases. 

The second function of the SNP sensitivity method is to identify variants in the regulatory 

elements that may affect gene expression, particularly those that affect transcription factor 

binding. This pertains particularly to change in the motif representation of a binding site, caused 

by the presence of the mutant allele of a SNP. The purpose of the SNP sensitivity test therefore, 

is to measure in how far a change in the identity of a SNP alters the underlying motif of a binding 

site in which it occurs. The motif of the binding site functions as a binding signal for specific 

families of transcription factor proteins, and change in a single nucleotide identity within a 

binding sequence could have either a slight or considerable effect on the representation of the 

underlying motif or binding signal. If the mutant allele of a SNP causes considerable change, it 

can influence transcription factor binding thus impacting the regulation of gene transcription. 

The SNP may cause an up-mutation where the mutated nucleotide causes a sub-sequence in the 

binding region to look more like the consensus sequence of a binding site. This makes the motif 

of the binding site more conspicuous and triggers transcription by. It increases binding intensity 

of transcription factors, and a tighter bind leads to an up-regulation of gene transcription. 

Alternatively, a down-mutation may occur, which destroys a conserved nucleotide in the binding 

sequence causing it to look less like a binding motif. This reduces binding at the core sequence 

leading to a down-regulation of transcription. 

My research involves developing and implementing a computational method (i.e. the SNP 

sensitivity test) to measure the change in signal representation caused by the presence of the 

alternate (mutant) allele of the SNP. The local neighbourhood (adjacent sequence of nucleotides) 

of each SNP will be analysed for change in sequential properties that occurs when the reference 

allele of the SNP is substituted with its alternate allele, this is referred to as SNP sensitivity. 

The alternate allele may alter the signal strength of the binding site in which the SNP occurs 

by causing it to become significantly over-represented (more pronounced) or under-represented 

(less pronounced). The SNP sensitivity test measures this change. The outcome of this test will 

be the identification of SNPs with mutant alleles that significantly change the representation 

of their surrounding local neighbourhood. As previously mentioned, the biologically effect on 

transcription factor binding is either an increase in binding affinity of transcription factors to 
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the binding site, leading to an up-mutation in gene transcription; or a decrease in binding affinity 

causing a down-mutation in gene transcription. Thus, the overall intention of this study, is to 

produce a list of regulatory T1D-SNPs that have either of both effects on the binding site in 

which they occur. They will be suggested as candidate functional regulatory mutations with the 

potential to influence gene expression by alteration of TF binding signals. 

Testing for SNP sensitivity involves three steps: (1) Identification of T1D-SNPs that occur in 

regulatory regions and transcription factor binding sites, (2) The SNP sensitivity test, (3) 

Significance testing. These are outlined in the following sub-sections. 

 

5.2.1. Identification of TFBS-SNPs  

 

For this project, SNPs that occur experimentally verified14 regulatory elements will be identified 

and accepted as given in the Ensembl genome browser (Cunningham et al., 2014) (see section 

2.11). SNPs that occur in regulatory regions (REG-SNPs) and particularly in transcription 

factor binding sites (TFBS-SNPs) will be selected using Ensembl’s Variant Effect Predictor 

(VEP) tool (version6.3) (McLaren et al., 2010). VEP searches the Ensembl genome browser to 

locate SNPs that occur in one or more, possibly overlapping, experimentally verified regulatory 

sequences and binding motifs. In addition, the names of the identified binding motifs, in which 

the TFBS-SNPs occur, are taken from the Jasper database (Mathelier et al., 2014). This is the 

largest and freely accessible online resource for Transcription factor binding motifs in genomes 

of different organisms. 

VEP found 10,085 T1D-SNPs to be in regulatory regions (i.e. REG-SNPs). From the REG-

SNPs, the tool also identified 92 to be in transcription factor binding sites (i.e. TFBS-SNPs). All 

other SNPs will be designated as NON-REG-SNPs. The results of the VEP search revealed that 

none of the disease-associated T1D-SNPs statistically associated with susceptibility to T1D is 

in a binding site (i.e. they are not TFBS-SNPs)(Table 14). As a result of this finding, the rest of 

the analysis is focused on the non-associated T1D-SNPs. So, though the 92 TFBS-SNPs 

identified using the VEP tool are not statistically linked to T1D susceptibility, they are in 

genetic linkage with the disease-associated T1D-SNPs and are therefore relevant for further 

study.  

                                                           
14  Experimental verification by methods such as DNase-seq, ChiP-seq, Histone modification techniques 
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Table 14. Numbers of associated and non- associated T1D SNPs in three genomic regions 

 

However, it is interesting to note that 22 of the disease-associated T1D-SNPs do occur in 

regulatory regions (see Table 14), and this occurrence is significantly more than would be 

expected by chance (2 = 137.64, df = 2, p << 0.0001, SRREG/ASSOC = 11.50). Also, the disease-

associated T1D-SNPs are significantly under-represented in non-regulatory regions (SR NON-

REG/ASSOC = -2.29). The expected frequency (0.03) of disease-associated T1D-SNPs in TFBS 

motifs does not differ much from the observed (0), indicating that a chance occurrence in binding 

sites within the susceptibility regions for T1D is rather low. The VEP search also reveals that 

the disease-associated T1D-SNPs that are REG-SNPs are mostly in promoters and promoter 

flanking regions.  

Finally, for the purpose of comparison, a random selection of 400 REG-SNPs and 400 NON-

REG-SNPs was made. These numbers are larger than the number of TFBS-SNPs (N=92). The 

reason for this was simply to have a better representation for these two large SNP categories. 

 

5.2.2. Markov models for local environments 

The aim of testing for SNP sensitivity is to identify T1D-SNPs in binding sites that cause 

significant change in the binding signal of their local environment (i.e. the binding motif in 

which they occur). Testing for SNP sensitivity starts with fitting a Markov model 15 (Fink, 2007) 

for the local environment of a SNP. This is a selected part of the regulatory region surrounding 

a regulatory SNP. The local environment is made up of 601 base pairs, with 300 bps flanking 

the SNP on both sides. For each TFBS-SNP, this should typically encompass the binding site 

that overlaps the SNP (Figure 23).  

                                                           
15 An algorithm (Markov algorithm 1) implemented in python 2.7, establishes the Markov order of nucleotide 
dependency of each 601bp local environment, and for both alleles of the 92 TFBS-SNPs. A full description of the 
method can found in (Appendix C). 

SNP counts

Associated SNPs Non-Associated SNPs

TFBS 0 92

REG 22 10085

NON-REG 57 250125

Total 79 260302
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Figure 23. Local environment and neighbourhood of TFBS-SNPs 

 

The fitted Markov model predicts the sequential characteristics of the local environment of the 

SNP.  The order of the fitted model 𝒎 is an estimate of the degree of sequential dependency of 

DNA nucleotides in the region (Edwards et al., 2009). Model fitting is done twice per regulatory 

sequence; first, with the sequence containing the reference allele of the SNP and again with the 

sequence containing the mutant allele of the SNP. Establishing the Markov models separately 

ensures for proper computation of expected probabilities for signal representation that will later 

be done. Ideally, the calculation of expectancies should be on the basis of the established Markov 

order of the sequence, and it is possible that the order of a given sequence may differ between 

both alleles of the SNP. A detailed explanation of how the regulatory sequences are fitted with 

the Markov model and the algorithm design is given in Appendix C. The Ensembl Biomart tool 

was used to select local environments of each SNP such that the 300 flanking nucleotides remain 

within the regulatory module in which the SNP occurs. The reason for this is that the Markov 

order could also differ within a sequence between the regulatory and non-regulatory parts.  

Findings: Markov models for local environments 

Markov models could only be established for orders  𝒎 = 0, 1 or 2; and only for less than half 

of the sequences (Table 15). This is either due to the length of the sequence (601 bps), or due to 

strong non-stationarity. In the first case, it has been shown that the number of nucleotides used 

to construct a Markov model limits the order to be fitted (Thijs et al., 2001). Exponentially 

larger sequence lengths are needed to build appropriate transition matrices needed to fit a model 

for sequences with higher Markov orders. In the second case, it is unlikely that DNA sequences 

are simple, stationary and low-order Markov chains. A stationary series is one with statistical 

properties that are constant overtime. Such properties would include the mean, variance, auto-

correlation and so on. In a stationary series, there is no change or relationship between adjacent 

time periods, and the series may be referred to as time homogenous or memoryless. Conversely, 

 

𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒐𝒓𝒚 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒘𝒊𝒕𝒉 𝑺𝑵𝑷 𝒊𝒏 𝒃𝒊𝒏𝒅𝒊𝒏𝒈 𝒔𝒊𝒕𝒆 

    …𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮 𝑻 𝑨 𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻… 

𝑺𝑵𝑷 

 

 

 

𝑨𝑪𝑮𝑻𝑨𝑪𝑮[𝑻 𝑨]𝑨𝑪𝑮𝑻𝑨𝑪𝑮 

   𝒃𝒑𝒔 𝑻  𝑺 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒘𝒊𝒕𝒉 𝑺𝑵𝑷 𝒊𝒏 𝒃𝒊𝒏𝒅𝒊𝒏𝒈 𝒎𝒐𝒕𝒊𝒇 

300 bps 300 bps 
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in a non-stationary process, there is a difference or relationship in properties between adjacent 

periods over time (Chatfield, 2003; Priestly, 1981). 

 

Table 15. Number of established Markov models for three types of SNPs. The sequences for which Markov 
models could not be established are assumed to have Markov orders > = 3. 

 

In DNA, the genomic signals are likely non-stationary because there is a statistical difference 

between adjacent coding and non-coding sequences. For example, a three-base periodicity 

(second order dependency) of nucleotides has been established for coding regions (Howe et al., 

2013).  Regulatory regions in non-coding DNA also contain distinct motifs that deviate from 

zero and first-order dependency (Howe et al., 2013; Abnizova and Gilks, 2006; Thijs et al., 2001). 

This makes them typically non-stationary and their sequence of a fractal nature (Abnizova et 

al., 2007). These notions are supported by the data presented in Table 15, which indicates a 

difficulty in establishing models for many regulatory and non-regulatory sequences. Interesting 

though, a chi square test indicates a significant association between Markov order and genic 

region (2 = 29, df = 6, p < 0.001). Chi-square values are also significant if the test is restricted 

to two categories of genic regions: i) NON-REG and ALL-REG ({TFBS + REG}, i.e. all 

regulatory sequences, including those with SNPs in binding sites), (2 = 13.35, df = 3, p < 0.004); 

(ii) TFBS and REG, (2 = 15.44, df = 3, p < 0.0025). Standardized residuals point to an over-

representation of 𝒎 = 0 models for NON-REG regions, 𝒎 = 1 models for ALL REG regions 

and more 𝒎 = 2 models than expected by independence for TFBS regions (Table 16). In 

addition, a regulatory region may overlap with another type of genic region, for instance an 

exon, which may lead to complex dependencies.  

Table 16. Standardized residuals after chi-square tests for associations between genic regions and Markov 
orders fitted to the data of Table 15. m = Markov order; G-R = Genic Region. 

 

Markov model

N % N % N %

0 13 14.13 49 12.53 41 10.28

1 5 5.43 68 17.39 86 21.55

2 3 3.26 42 10.74 18 4.51

Not Established 71 77.17 232 59.34 254 63.66

92 391 399

TFBS-SNPs REG-SNPs NON-REG-SNPs

Genic-Region TFBS REG NON-REG G-R ALL- REG NON-REG G-R TFBS REG

m m m

0 0.688 0.494 -0.820 0 0.745 -0.820 0 0.346 -0.17

1 -2.845 -0.296 1.659 1 -1.508 1.659 1 -2.39 1.158

2 -1.393 2.663 -1.967 2 1.788 -1.967 2 -1.9 0.923

higher 1.692 -0.950 0.128 higher -0.116 0.128 higher 1.749 -0.85
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It is also important to point out that the total number of the SNPs analysed in the REG- and 

NON-REG-SNP categories have each been revised  (from 400 to 391 and 399 respectively) 

because some of the selected SNPs have been described as “failed SNPs” in the recently updated 

version of the Ensembl database (v 73, 80). These are SNPs that have not passed a quality 

control pipeline16 set by Ensembl for SNPs. 

 

5.2.3 Change in Signal Representation 

A transcription factor binding site is characterised by a special sequence motif which serves as 

a binding signal for a specific family of transcription factor proteins. In this work, the binding 

signal will be taken as the direct neighbourhood of each TFBS-SNP. The direct neighbourhood 

of the SNP is extracted as a 15bps sequence17, which includes the SNP at the centre of the 

sequence and 7bps sequences flanking the SNP on both sides (Figure 23).  

The representation of the direct neighbourhood (which is assumed to include the binding signal 

surrounding the SNP) is calculated as a standard residual value 𝑺𝑹. The value of 𝑺𝑹 should be 

calculated on the basis of the established Markov order of the local environment of the SNP. In 

order to do this a sequence of steps are taken.  

The direct neighbourhood is decomposed into sub-strings of “k-mer words” (i.e. a sequence of 𝒌 

nucleotides) using a single step sliding window method (Figure 24). In this study, 𝒌 = 3. This 

value has been chosen because the Markov order of dependency for regulatory sequences could 

only be established up to 𝒎 = 2 (i.e. trinucleotide dependency) (see section 5.2.2). The sliding 

window process generates thirteen trimers per direct neighbourhood. Subsequently, the 

expected frequency of “trimers” is derived from the best fitting Markov model of the local 

environment (Thijs et al., 2001, Thijs et al., 2002). 

The expected frequencies of each i-th trimer (𝑬𝒊) are compared to the corresponding observed 

frequencies (𝑶𝒊) by converting them to standard residuals (𝑺𝑹𝒊 =  (𝑶
𝒊
− 𝑬𝒊)/√𝑬𝒊). The 𝑺𝑹s 

indicate if a word is significantly over-represented or under-represented (for 𝑺𝑹 > 2 00 or 𝑺𝑹 <

−2 00, respectively). 𝑺𝑹s are obtained for both alleles of the SNP, i.e. for the same sequence 

containing the mutant allele and the reference allele. Finally, the difference between scores for 

both allelic sequences are tested for statistical significance. 

 

                                                           
16 The ensembl quality control pipeline flags SNPs with ambiguous information. For example, a SNP that maps to more 
than one chromosomal position. 
17 The Binding motifs have an average length of around 15 bp (Stewart et al., 2012). 
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Figure 24. Sliding window method to decompose SNP neighbourhood into tri-mers 

 

The mutant allele of the TFBS-SNPs may lead to two types of change: (i) the word becomes 

over-represented - the presence of the SNP enhances signal effect, making the motif a more 

conspicuous signal for transcription factor binding; or (ii) the word becomes under-represented 

- the SNP reduces signal effect, making the motif a less conspicuous signal.  

 

5.2.4 Statistical Significance of 𝑫𝒎𝒂𝒙 

The change in over/under-representation of trimers in SNP neighbourhoods is captured by the 

difference between the standard residuals of the i-th word in the neighbourhood of the reference 

allele and that of the matching mutant allele (𝚫𝑺𝑹𝒊). The biological interpretation of this is that 

such a change may lead to increased or decreased binding affinity of a transcription factor. 

Thirteen 𝚫𝑺𝑹𝒊 scores that are generated for each neighbourhood and are subsequently 

converted to absolute values. The location of their maximum ( 𝑫𝒎𝒂𝒙 )  indicates the region in 

the neighbourhood where the highest change in over- or under-representation between the 

reference and the mutant allele sequence occurs (Figure 25). 𝑫𝒎𝒂𝒙 values are obtained for all 

the TFBS-SNPs, as well as the REG-SNPs and NON-REG-SNPs.  

A large 𝑫𝒎𝒂𝒙 suggests that 𝑺𝑹𝒓 is much greater than 𝑺𝑹𝒎 or vice versa (where r = reference 

allele and m = mutant allele. This implies that by switching to the mutant allele of the SNP, a 

core nucleotide in the motif has been affected, consequently causing substantial change in motif 

representation. Figure 26 illustrates an example of the change in motif representation caused by 

switching the alleles of SNP rs200372524, 𝑺𝑹𝒎 is less than 𝑺𝑹𝒓 indicating a decrease in 

representation. The opposite is shown in Figure 27 for SNP rs3130456,  𝑺𝑹𝒓 is less than 𝑺𝑹𝒎 

indicating that the mutant allele of the SNP causes an increase in motif representation.  

𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮[𝑻/𝑨]𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻

𝑹𝒆𝒈𝒖𝒍𝒂𝒕𝒐𝒓𝒚 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒘𝒊𝒕𝒉 𝑺𝑵𝑷 𝒊𝒏 𝒃𝒊𝒏𝒅𝒊𝒏𝒈 𝒎𝒐𝒕𝒊𝒇 (𝟔𝟎 𝒃𝒑𝒔)

⬇
𝑪𝑮𝑻𝑨𝑪𝑮[𝑻/𝑨]𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻
𝑻  𝑺 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 (   𝒃𝒑𝒔)

 

 

[𝑪𝑮𝑻]𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻
𝑪[𝑮𝑻𝑨]𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻

𝑪𝑮[𝑻𝑨𝑪]𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻

𝑪𝑮𝑻[𝑨𝑪𝑮]𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻
……

𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻[𝑨𝑪𝑮]𝑻

𝐂𝐆𝑻𝑨𝑪𝑮𝑻𝑨𝑪𝑮𝑻𝑨[𝑪𝑮𝑻]
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Figure 25. Location of 𝑫𝒎𝒂𝒙 , the largest change in over- or under-representation between the reference and the 
mutant allele sequence 

 

 

 

 

Figure 26. A decrease in motif representation caused by the substitution of alleles of SNP rs200372524 in its 
local environment, SRR > SRM 
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Figure 27. A depiction of increase in motif representation caused by the substitution of alleles of SNP 
rs3130456 in its local environment, SRR < SRM  

 

 

The statistical significance of each 𝑫𝒎𝒂𝒙 score was determined so as to assess in how far the 

change in representation is due to chance. To do this, each DNA sequence was reshuffled 5000 

times to yield random permutations of the same sequence. The 𝑫𝒎𝒂𝒙 score was obtained for 

each permuted sequence following the same procedure used to obtain the original 𝑫𝒎𝒂𝒙 score. 

The original 𝑫𝒎𝒂𝒙 is considered to be significant when it is larger than 4750 (95%) of the 𝑫𝒎𝒂𝒙 

scores of the permuted sequences. This corresponds to an empirical 𝒑-value cut off of 0.05. 

Those SNPs resulting in a 𝒑 < 0.05, test positive for SNP sensitivity and are associated with 

substantial change in the trimers making up their direct neighbourhood when alleles are 

substituted. For those cases in which the Markov order of the sequence could not be established, 

a SNP was considered significant if at least any of the three 𝑫𝒎𝒂𝒙 values (computed for 𝒎 = 0, 

1, and 2) are significant. SNPs that test positive for SNP sensitivity (from now on referred to as 

significant TFBS-SNPs and distinguished as such from non-significant TFBS-SNPs) are those 

with mutant alleles that have the potential to distort the recognition of the binding motif. They 

will be selected as candidate functional mutations with the propensity to disturb transcriptional 

regulation. 

An investigation of the possible disturbance in gene activity due to regulatory SNPs should 

involve a comparison with non-regulatory SNPs. This is taken up in the last section of this 

chapter which addresses to the following questions: (i) Do TFBS-, REG- and NON-REG SNPs 
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differ significantly in the over- or under-representation of trimers that surround them?, (ii) do 

the TFBS-SNPs occur in binding motifs that differ from those harbouring non-significant 

TFBS-SNPs.  If so, are these motifs associated with families of transcription factor proteins that 

relate to particular features or processes typical for T1D? 

 

5.2.5 Differences in 𝑫𝒎𝒂𝒙 values between SNP categories 

A one way analysis of variance to test for possible differences in 𝑫𝒎𝒂𝒙 between the three 

locations of SNPs was done.   The ANOVA Table (Table 17) shows that the 𝑫𝒎𝒂𝒙  indeed differ 

significantly between the locations, with TFBS-SNPs having the lowest values. The 

overlapping confidence intervals (Figure 28) indicate no differences between TFBS-SNPs and 

those in regulatory regions (but not in binding sites). This is probably due to the similar 

sequential properties of the local environments of both types of SNPs. In a comparable study 

(Andersen et al., 2008), the difference in motif change caused by mutant alleles between SNPs 

in (computationally predicted) TFBS and other SNPs in the surrounding regulatory regions was 

compared. As in my study, the difference was not statistically significant.  

 

 

 

Table 17. Analysis of variance indicating a significant difference between the Dmax scores of TFBS-SNPs, REG- 
and Non-REG-SNPs 

 

 

 

 

Anova: Single Factor (Summary)

Groups Count Sum Average Variance

TFBS-SNPs 92 254.450 2.766 1.928

REG-SNPs 391 1189.016 2.965 3.397

NON-REG-SNPs 399 1300.239 3.242 2.378

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 24.856 2 12.428 4.456 0.012 3.006

Within Groups 2485.174 891 2.789

Total 2510.030 893
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Figure 28. Bar chart depicting a significant difference between the average Dmax scores of TFBS-SNPs (N = 92) 
and NON-REG-SNPs (N = 399), but not the REG-SNPs (N = 391). 

 

 

5.3 Features of Significant TFBS-SNPs 

 

To find out more about the nature of the significant TFBS-SNPs, the values of a number of 

features (relating to possible regulatory activities) were compared with those from the (other) 

regulatory SNPs and non-regulatory SNPs.  These features include: (i)   the type of nucleotide 

substitution that characterises the SNP, (ii) the other genic positions in which the SNP occurs, 

(iii) distance to nearby disease-associated T1D-SNPs, and (iv) the type of binding motif in which 

the SNP is localised. I will first deal with features that relate to what the significant TFBS-SNPs 

are and where they are found. The last section explores how these SNPs may affect regulation 

by identifying the motifs they affect. 

 

5.3.1. Identity and Location of significant TFBS SNPs 

In this study, 37 out of 92 TFBS-SNPs were found to test positive for SNP-sensitivity. The 

names and alleles of these significant SNPs, the susceptibility regions in which they occur, the 

degree of sensitivity (𝑫𝒎𝒂𝒙), and the values of features i) and iii) are shown in Table 18.  

Identity of significant TFBS-SNPs: With respect to the identity of single nucleotide 

substitution, two types of mutations are generally distinguished. Transitions (TI) are SNPs of 

which the reference and mutant allele are of the same nucleotide class, i.e. both are either a 

pyrimidine (C, T) or a purine (G, A). Hence, transitions are C-T and G-A SNPs (and the reverses 

T-C and A-G). Transversions (TV) are SNPs in which a purine is substituted by a pyrimidine 

(i.e. C-G, G-C, A-T and T-A). 
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Table 18. The Names and features of significant TFBS-SNPs, including p-values and details of nearby disease 
associated SNPs. Dmax values are absolute. 

 

  

SNP ID Alleles T1D Nearby Distance to Region Dmax

Region associated associated Size

SNP SNP (Bps)

rs138680304 C/T 2p23.3 rs478222 91600 468897 4.6429

rs114096282 C/T 2p23.3 rs478222 13274 468897 6.9658

rs117640654 G/A 2p23.3 rs478222 75075 468897 3.0526

rs377664089 G/T 3p21.31 rs333 124049 599694 6.0142

rs34638008 C/T 3p21.31 rs333 131238 599694 3.6256

rs140935015 T/C MHC rs9268645 1350064 3808585 5.5389

rs140000554 T/A MHC rs9268645 1996519 3808585 3.4372

rs151190212 C/G MHC rs9268645 621897 3808585 7.0912

rs2267646 G/T MHC rs9268645 561683 3808585 4.7346

rs3134944 C/T MHC rs9268645 229660 3808585 4.1205

rs35131721 C/T MHC rs9268645 831989 3808585 4.1995

rs7741418 C/T MHC rs9268645 2312571 3808585 4.1217

rs3130288 C/A MHC rs9268645 280303 3808585 3.9943

rs116431137 A/G MHC rs9268645 2594487 3808585 3.7497

rs56245106 T/C MHC rs9268645 201542 3808585 3.9326

rs201033718 G/C MHC rs9268645 449305 3808585 3.6274

rs6921948 A/C MHC rs9268645 1205047 3808585 3.4668

rs9262142 G/A MHC rs9268645 1726278 3808585 0.0221

rs8192582 C/T MHC rs9268645 212692 3808585 3.4722

rs8192581 C/T MHC rs9268645 212640 3808585 2.8728

rs13206219 G/T MHC rs9268645 201543 3808585 3.3090

rs78180266 C/T 7p12.2 rs10272724 58315 299719 3.8173

rs188548927 C/T 7p12.2 rs10272724 58315 299719 4.5298

rs182785851 G/A 7p15.2 rs7804356 245105 544327 4.1407

rs184649955 C/T 12q13.2 rs2292239 39710 446498 4.0808

rs141305257 C/G 16p11.2 rs4788084 47776 730672 4.3615

rs7203793 C/G 16p13.3 rs12708716 91596 449453 3.7016

rs371243647 C/T 16p13.3 rs12927355 61513 449453 3.4342

rs139221703 G/A 16p13.3 rs12927356 60111 449453 3.4101

rs187731105 G/A 16p13.3 rs12927357 59878 449453 3.4749

rs191450302 C/A 16q23.1 rs8056814 265264 304790 3.4001

rs200372524 G/A 19p13.2 rs2304256 14159 237839 5.6772

rs201991101 C/T 19p13.2 rs2304256 13749 237839 3.2587

rs371391397 C/A 19p13.2 rs2304256 90052 237839 4.0387

rs372996186 G/C 19p13.2 rs2304256 70838 237839 4.9207

rs201432982 C/T 19p13.2 rs2304256 54719 237839 2.6915

rs141193051 G/C 19p13.2 rs2304256 27736 237839 3.3260

|𝑫𝑴𝒂𝒙| 
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The first thing one may notice in Table 18 is that the majority of significant TFBS-SNPs are C-

T mutations, which reflects the dominance of transitions (see Table 19). This is not surprising, 

because transitions in general are more common than transversions. Furthermore, Laurilla and 

Lahdesmaki (2009) report that C-T transitions are among the most effective SNPs in terms of 

weakening transcription factor binding. In Figure 29, the nucleotide substitution types are 

inventoried for significant (S) and non-significant (NS) TFBS-SNPs. Although NS-TFBS-SNPs 

appear to have more G-A, A-G mutations and less C-T transitions than S-TFBS-SNPs, there is 

no significant difference between the two categories (NS, S) concerning mutant composition (2 

= 5.16, df = 5, p = 0.40).  

 

Table 19. Counts of TFBS-SNP nucleotide substitution types 

 

 

 

Figure 29. Percentage transition and transversions of significant and non-significant TFBS-SNPs.  

TI TI Total TV TV Total Grand Total

T1D Susc Region A/G G/A C/T T/C A/C C/A C/G G/C G/T T/A

12q13.2 1 1 1

16p11.2 1 1 1

16p13.3 2 1 3 1 1 4

16q23.1 1 1 1

19p13.2 1 2 3 1 2 3 6

2p23.3 1 2 3 3

3p21.31 1 1 1 1 2

7p12.2 2 2 2

7p15.2 1 1 1

MHC 1 1 5 2 9 1 1 1 1 2 1 7 16

Grand Total 1 6 2 23 1 3 3 3 3 1 14 37
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Location of significant TFBS-SNPs in susceptibility regions: Another striking feature seen 

in Table 18 is that most of the significant TFBS-SNPs are found in the MHC (the HLA region), 

which has been shown to have the associated strongest with T1D (Todd et al., 2010). However, 

this is simply a consequence of its large size; the MHC is made up of about ten times more 

nucleotides than the other regions. 

As I have shown in the previous chapter, on the basis of its genomic components the MHC is 

placed in the second cluster, which indeed includes susceptibility regions with the highest SNP 

density. However, those regions do not have the highest density of significant TFBS -NPs. 

These happens to be in cluster 3 (CL 3), the one characterised by an abundance of non-coding 

nucleotides including regulatory DNA (Table 20). This cluster is also composed of regions with 

on average the highest number of both disease-associated T1D-SNPs and markers for other 

autoimmune diseases (i.e. “pleiotropic” regions). 

 

Table 20. Counts of Disease-associated T1D-SNPs and TFBS-SNPs in clusters of T1D susceptibility regions.  

 

Genic positions and –profiles of significant TFBS SNPs: As pointed out in chapter two, a 

single SNP can affect more than one gene and intersect multiple transcripts.  To see in how far 

this holds for SNPs that significantly change the motif structure of binding sites, the number of 

genes and transcripts intersected by each TFBS-SNP was counted. Non-significant TFBS-SNPs 

(N = 55) appear to affect more transcripts than significant TFBS-SNPs (N = 37) (𝒑 = 3.74E-06) 

(Figure 30).  This might be due to a possible relationship between gene size and the number of 

transcripts that gene can produce (large genes contain more SNPs and more transcripts). 

Next, I characterised the TFBS-SNPs by their genic-profiles (see chapter 2). Recall that a genic 

profile comprises the name of each unique type of the genic position in which a SNP occurs. The 

identification of genic-profiles typical for significant TFBS-SNPs is illustrated in Figure 31. 

Cluster Name CL1 CL2 CL3

Number of Regions (N) 12 24 10

Counts

Associated SNPs 19 41 19

TFBS-SNPs 12 43 32

Significant TFBS-SNPs 4 18 12

Normalised values

Associated SNPs 1.58 1.70 1.90

TFBS-SNPs 1.00 1.79 3.20

Significant TFBS-SNPS 0.33 0.75 1.20
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Profiles that are more typical for either significant- or non-significant TFBS -NPs differ more 

strongly in their proportions, and are therefore farther away from the diagonal line in Figure 

31 (i.e. those profiles that constitute identical proportions of significant- and non-significant 

SNPs fall along the diagonal).  

  

Figure 30. Average number of gene transcripts affected by significant TFBS-SNPs (N= 37) and non-significant 
TFBS-SNPs N= 55).  

 

 

 

Figure 31. Isolation of genic-profiles common to the significant and non-significant TFBS-SNPs using a scatter 
plot 
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Most of the SNPs are in upstream regions of genes, this is where TFBSs are most likely to be 

found (Table 21). But significant TFBS-SNPs do affect other genomic parts as well, including 

introns and non-coding transcripts. Note that the same was found for the disease-associated 

SNPs (chapter 3).  This may suggest that the disease-associated SNPs and TFBS-SNPs are close 

to each other; this is taken up in the next section. Also, all the components of the genic profiles 

typical for significant TFBS-SNPs (i.e. upstream, intronic, non-coding transcripts and 

downstream positions) are parts that are exclusively associated with regulatory activity. In 

other words, apart from affecting the binding motif in which they occur, some of the significant 

TFBS-SNPs may have an additional effect on overlaying transcripts.  

 

Table 21. . The most frequent genic-profiles of the significant and non-significant TFBS-SNPs  

 

 

Localisation of significant TFBS-SNPs relative to disease-associated SNPs: Although 

none of the TFBS-SNPs show up as being statistically associated with T1D in GWAS, this 

should not be taken as proof for a lack of causality. Current research supports rather the opposite 

view: disease-associated SNPs, instead of being causative, might be no more than just markers 

for a region of disease association. As such, any other mutation within that region is a putative 

causal variant. Therefore, many genomic studies nowadays aim to identify other (potentially 

causal) SNPs that occur in close proximity and linkage with disease-associated SNPs (Schuab et 

al., 2012). With this in mind, the distance (bps) between the disease-associated SNPs and both 

the significant and non-significant TFBS-SNPs were compared. The hypothesis is that 

significant TFBS variants are in closer in proximity to disease-associated SNPs than non-

significant TFBS-SNPs.  

Genic Profile

Counts (%) Counts (%)

upstream 4 11.43 7 13.73

intron / non_coding_transcript 3 8.57 6 11.76

intron / non_coding_transcript / upstream 2 5.71 4 7.84

downstream / intron / non_coding_transcript / upstream 3 8.57 2 3.92

intron 1 2.86 4 7.84

5_prime_UTR / downstream / upstream 1 2.86 3 5.88

intron / upstream 1 2.86 2 3.92

missense  /  non_coding_transcript_exon  /  non_coding_transcript  /  upstream 1 2.86 2 3.92

downstream / intron / non_coding_transcript 2 5.71 0 0.00

downstream 1 2.86 1 1.96

downstream / intron / non_coding_transcript_exon / non_coding_transcript 1 2.86 1 1.96

intron / NMD_transcript 1 2.86 1 1.96

intron / NMD_transcript / non_coding_transcript 1 2.86 1 1.96

5_prime_UTR / intron / non_coding_transcript / upstream 0 0.00 2 3.92

5_prime_UTR / upstream 0 0.00 2 3.92

downstream / intron / upstream 0 0.00 2 3.92

Total 35 51

Non-SIG TFBS-SNPsSIG TFBS-SNPS
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Indeed, the average distance between significant TFBS-SNPs and nearby disease-associated 

SNPs (172185 bps) turns out to be less than the average distance between the non-significant 

TFBS-SNPs and nearby disease-associated SNPs (355876 bps) (Figure 32). The relationship 

was tested by means of a two way ANOVA in which the possible effect of susceptibility region 

was controlled for (Table 22). The strong effect of susceptibility region is due to a large 

difference in the average SNP distance in the MHC/HLA (Figure 33). If the HLA is taken out, 

the effect of region disappears but the difference between groups still remains significant (𝒑 = 

0.040). 

 

Table 22. Analysis of variance indicating a significant difference in average distance between the significant 
and non-significant TFBS-SNPs and nearby disease-associated SNPs. 

 

 

Anova: Two-Factor Without Replication

SUMMARY Count Sum Average Variance

2p23.3 2 263269 131634.5 10267874905

2q11.2 2 672952 336476 2.26432E+11

3p21.31 2 348150 174075 4311768385

7p12.2 2 103571 51785.5 85268740.5

7p15.2 2 549744 274872 1772148578

12q13.2 2 608582 304291 1.40006E+11

16p11.2 2 405771.5 202885.75 48118069090

16p13.3 2 143655.5 71827.75 25251171.13

16q23.1 2 508318.67 254159.3333 246627243.6

19p13.2 2 142978.83 71489.41667 1381338121

MHC 2 2061692 1030845.975 17702930122

SIG 11 1894043.6 172185.7803 71569654055

NON_SIG 11 3914640.9 355876.4424 1.03609E+11

ANOVA

Source of Variation SS df MS F P-value F crit

Rows 1.48702E+12 10 1.48702E+11 5.616340127 0.0058 2.9782

Columns 1.85582E+11 1 1.85582E+11 7.009266466 0.0244 4.9646

Error 2.64767E+11 10 26476725820

Total 1.93737E+12 21
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Figure 32. Bar chart depicting a significant difference in average distances of significant TFBS-SNPs (N= 37) 
and non-significant TFBS-SNPs (N= 55) to nearby disease-associated SNPs 

 

 

Figure 33. Plot showing  differences in average distances to disease-associated SNPs between susceptibility 
regions. 
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5.2.3. Binding motifs in which the significant TFBS-SNP occur 

For each TFBS-SNP, the names of binding motifs in which it occurs, and the family of 

transcription factors that recognise and bind to those motifs, were obtained from the Jasper 

database (Mathelier et al., 2014) (via the Ensembl genome browser). This was done to identify 

families of transcription factor proteins that might distinguish significant TFBS-SNPs from 

non-significant TFBS-SNPs. These proteins will then be briefly described in relation to T1D. 

From my study, the TFBS-SNPs occur in a total of 31 different binding motifs. Eighteen 

different transcription factor protein families bind to these motifs. Some of the transcription 

factors, like JunD and USF, bind to more than one type of motif. These are transcription factors 

that display diverse target specificity and so have more than a single motif model (Mathelier et 

al., 2014). A scatter plot of the proportion of significant TFBS-SNPs in each type of binding 

motif against the proportion of non-significant TFBS-SNPs is depicted in Figure 34. The plot 

highlights the binding motifs more specific to either of both TFBS-SNP categories.  The 

significant TFBS-SNPs occur more frequently, and twice as much as the non-significant TFBS-

SNPs, in binding motifs for the Upstream transcription factor 1 (USF1). The significant TFBS-

SNPs also have a high occurrence in binding motifs for the E2F4 transcription factor. 

 

 

Figure 34. Scatter plot depicting counts of significant and non-significant SNPs in different binding motif 
structures  

 

The USF1 protein is a cellular transcription factor (Shieh et al., 1993; Corre and Gallibert, 2006) 

that is thought to activate transcription through binding enhancer (E)-box motifs. (Corre and 
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Gallibert, 2006; Ewing et al., 2007). Proteins that bind E-box motifs are said to play a major 

role in regulating gene transcriptional activity (Ewing et al., 2007).  

The target genes of USF1 include genes that contribute to the regulation of glucose and lipid 

metabolism. (Fan et al., 2014; Auer et al., 2012,). Along with another transcription factor, USF2, 

the USF1 protein has been found to be important for the regulation of different pancreatic islet 

genes involved in the control of glucose metabolism (Boonsaen et al., 2007; Mirasierra et al., 

2006; Martin et al., 2003). Already, this protein has been linked to other forms of diabetes. The 

locus of USF1 in humans is associated with increased risk of developing Type 2 diabetes (Meex 

et al., 2008). It is also associated with maturity onset diabetes of the young (MODY) (Bernardo 

et al, 2008; Qian et al., 1999). More recent studies also link USF1 and USF2 to activation of the 

promoter for the Alx3 gene (Mirasierra et al., 2011). Expression of Alx3 is required for 

maintaining adequate levels of expression of pancreatic islet genes including insulin; Alx3 loss-

of-function in mice models have shown a progressive decrease in pancreatic islet cell mass and 

alterations in glucose homoeostasis18 leading to diabetes (García‑ Sanz et al., 2013). This study 

is still ongoing, with the intention of providing a more in-depth characterization of the 

regulation of Alx3 by USF1 and USF2 in pancreatic islets. Table 23 presents a brief description 

of the protein families associated with the binding motifs in which the significant TFBS-SNPs 

occur. The USF and EGR protein families are of interest because they are thought to be 

associated with diabetes. Four motifs associated with these proteins are affected by the TFBS-

SNPs. Of these four, three are below the diagonal (Figure 34), hence specific for the significant 

TFBS-SNPs. Also the USF motifs are most outstanding in terms of distance to the diagonal, 

they are the most specific protein family for the significant TFBS-SNPs.  

                                                           
18 Homoeostasis is the property of a system in which variables are regulated so that internal conditions remain stable 

and relatively constant. Such as the regulation of temperature or the balance between acidity and alkalinity (i.e. pH). 
It maintains the stability of the human body's internal environment in response to changes in external conditions 
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Table 23. Brief descriptions of the protein families associated with the binding motifs in which the significant 
TFBS-SNPs occur 
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5.4 Chapter summary 

 

Variants that affect regulatory functions have been recognised in the aetiology of certain 

diseases.  Some examples include the blood related diseases β-thalassemia and haemophilia, 

atherosclerosis (de Vooght et al., 2009), as well as Gilberts syndrome in humans (Bosma et al., 

1995).  But for T1D, no regulatory SNPs have yet been implicated in the disease mechanism. A 

SNP that occurs in an experimentally detected binding site, and is closely linked with a disease 

associated SNP, is more likely to play a biological role in the genome than other SNPs that occur 

in parts for which there is no particular known function (Schuab et al., 2012). Through this 

work, I have found that though the associated T1D-SNPs are not regulatory SNPs that may 

influence transcription factor binding, there are other nearby non-associated SNPs that can 

influence this process. Thirty-seven of these rare regulatory TFBS-SNPs have been identified 

by their testing positive for SNP sensitivity. In addition to significantly changing the 

representation of their local environment, they are significantly closer to disease-associated 

SNPs than the other TFBS-SNPs. The significant TFBS-SNPs are mostly characterised by C-

T transitions, which have previously been shown to cause weaker affinity for transcription factor 

(TF) binding.  

Significant and non-significant TFBS SNPs influence 31 different binding sites for 18 

transcription factor families. The binding sites for the USF family of transcription factors are 

the most affected; these proteins, USF1 and USF2, have been linked to genetic disorders 

involving the regulation of insulin genes and of the metabolism of glucose. These are typical 

features of T1D, where insulin is primary auto-antigen19. Despite these important findings, 

further research is needed to determine whether these SNPs do affect function in vivo. 

Experimentation can reveal if the recognition and binding of TFs to the binding sites in which 

the significant TFBS-SNPs occur is altered, and how this in turn disturbs the transcription of 

target genes. 

  

                                                           
19 An antigen that despite being a normal tissue constituent of the body is the target of a humoral or cell-mediated 
immune response, it stimulates the production of autoantibodies and an autoimmune attack as in autoimmune 
diseases 



 

81 
 

 

CHAPTER 6 

CONCLUSION AND DISCUSSIONS 
 

This chapter concludes this dissertation. 6.1 highlights the results of my research, and 6.2 

discusses the results found for the research questions that made up basis of this thesis. 

Suggestions for future research are highlighted in 6.3. 

 

6.1 Conclusions 

 

The results of this research suggest an involvement of non-coding SNPs in the aetiology of 

T1D, but they are not the disease-associated SNPs. Through this work, it is shown that the 

associated T1D-SNPs are mostly (93%) non-coding SNPs and about a quarter of them are 

regulatory SNPs. The latter are situated mostly within promoter flanking regions but, none of 

them occur in a TFBS. Most of the remaining non-coding associated T1D-SNPs are found in 

introns of protein coding transcripts and in non-coding RNA transcripts. Note, that although 

these SNPs are not in conventional regulatory modules, they can still affect regulation. Another 

important finding is that especially the disease-associated SNPs affect multiple processes 

because many of them (50%) occur in overlapping genes and multiple overlapping gene 

transcripts. Furthermore, these overlapping transcripts, have different functions. This means 

that the associated SNPs are capable of affecting multiple processes associated with the 

biological activity of overlapping parts. 

This research has also been able to characterise the T1D susceptibility regions by their genomic 

content. The T1D regions can be split into three clusters. These characteristics are attributed 

to the presence of large sized protein coding genes that contain large introns and also have 

multiple alternative coding and non-coding transcripts. The second cluster includes the HLA 

(largest) region and is outstanding in the sense that its susceptibility regions contain a lot of 

intergenic material. It is also the cluster with regions with the largest number of SNPs (most of 

which are in the HLA region). With respect to its features, the third cluster is quite similar to 

the first one, but differs from it by having high contents of exonic and UTR nucleotides. This is 

due to the high gene density of the susceptibility regions that make up the cluster. The 

susceptibility regions of the first and third clusters are outstanding because they contain 

significantly more markers for other autoimmune diseases than the regions in the second cluster. 
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This is particularly interesting because these regions are also enriched in intronic and non-

coding transcript nucleotides. 

Finally, this study has been able to identify putative regulatory SNPs (mutations influencing 

regulatory function) that may affect transcription factor binding within the T1D susceptibility 

regions. A SNP sensitivity test, designed for this study, was used to identify SNPs with alternate 

alleles that change the representation of the binding region in which they occur. Counter-

intuitively, all SNPs that tested positively are non-associated SNPs (i.e. SNPs that did not appear 

to be significantly associated with T1D in GWAS).  However, they occur at loci that are 

significantly closer in distance to disease-associated SNPs than SNPs that tested negative for 

sensitivity. About 60% of the SNPs that significantly change the structure of the motif in which 

they occur are from the HLA region. This is also the susceptibility region that has the strongest 

association with T1D. Furthermore, they occur predominantly in binding motifs for the USF 

family of regulatory proteins. These proteins have been shown to be associated with other 

diseases including Type 2 Diabetes. 

  

6.2 DISCUSSION 
 

Although the aetiology of T1D is not fully understood, aberrations in the regulation of certain 

susceptibility genes, like CTLA-4, PTPN22 and IFIH19 (see Table 2 for susceptibility genes), 

are suspected to contribute to the cause of disease (Gillespie, 2014). The main aim of this study 

was to find out in how far T1D can be considered to be a disease caused by disruption in 

regulation rather than in gene coding. This thesis was addressed by the following four main 

objectives: (i) establishing the distribution of the T1D-SNPs (including disease-associated and 

non-associated SNPs) in various genomic parts, (ii) establishing the proportion of SNPs is 

located in regulatory regions (iii) finding out how many SNPs in regulatory regions are located 

in transcription factor binding sites (TFBS-SNPs), and then (1V) testing the identified TFBS-

SNPs for SNP sensitivity. 

Initially, I set out to out describe the T1D-SNPs by establishing their distribution in coding and 

non-coding parts of the genome. The aim was to find out whether the disease-associated SNPs 

occur more in non-coding parts of the genome compared to the non-associated SNPs. This is 

because it is now widely recognized that SNPs associated with complex diseases map to or are 

found in non-coding sequences (Dirk et al., 2014; Zhang et al., 2014; Djebali et al., 2012). It 

would be interesting to see if this trend also holds for the T1D-SNPs. If the disease-associated 

T1D-SNPs occur frequently in non-coding regions, they may also be within a regulatory 

module, as a large part of non-coding genome is now believed to be associated with regulatory 

activity (Mercer and Mattick, 2013; Thurman et al., 2o12). The first part of the study yielded 

positive results, revealing that the disease-associated T1D-SNPs are frequently non-coding 
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nucleotides in overlapping introns and non-coding RNA transcripts. They were also found to 

be less often in gene-flanking regions than would be expected by chance. Although non-

associated SNPs also occur often in intronic parts of protein-coding transcripts, they are found 

less often in non-coding transcripts and more often in upstream regions of genes.  

The subsequent study involved a classification of the susceptibility regions for T1D on the basis 

of their genomic content. It revealed that the regions are characterised by a high abundance of 

intronic nucleotides as well as high amounts of non-coding RNA nucleotides. This may relate 

to the high occurrence of SNPs in these particular regions. 

In the final part of my study it was established that the disease associated SNPs do not occur 

more often in regulatory DNA and in TFBSs than the non-associated SNPS. This outcome was 

unexpected. Only twenty-two of the seventy-nine disease-associated SNPs occur in regulatory 

DNA. They are mostly within promoters and in promoter-flanking regions, but they are not in 

binding sites. Because the disease-associated T1D-SNPs are significantly less frequent in gene 

flanking regions, this outcome could have been imminent. Regulatory regions, are thought to 

be symmetrically distributed around genes without bias (Birney et al., 2007; Dineen et al., 2007), 

but TFBS are quite commonly found in upstream gene flanking regions. The non-associated 

T1D-SNPs are more frequent in upstream regions. Consequently, many of them (over 10,000) 

occur in regulatory regions, and a total of 93 are in experimentally verified TFBSs.  

The last objective of the study was to identify the regulatory SNPs in TFBS (TFBS-SNPs) that 

change the underlying sequential structure of their surrounding binding region. Biologically, 

significant distortion can lead to changes in the binding affinity of a transcription factor due an 

up-mutation or a down-mutation. The SNP sensitivity test developed for this project allowed 

for the identification of SNPs that could have this type of effect. The test was designed to analyse 

the local region surrounding the TFBS-SNPs by computing trimer probabilities based on the 

established order of nucleotide dependency. Despite a challenge in establishing the Markov 

order of nucleotide dependency for some of the regulatory sequences, 37 out of the 93 TFBS-

SNPs tested positive for sensitivity. Especially strong results were found for rs140000554 and 

rs3134944 in the MHC region, and rs201991101 in region 19p13.2. All three SNPs occur in 

binding motifs for the USF family of transcription factor proteins which have been linked with 

other diseases. 

For T1D to be viewed as a disease that is caused by problems in gene regulation, the classical 

expectation would be for the disease-associated SNPs to be frequently located in regulatory 

regions and binding sites. Although this is not the case, this does not rule out the hypothesis 

that T1D is for a large part due to gene regulatory defects. The disease-associated SNPs occur 

the least often (7%) in protein coding regions; therefore, T1D cannot be described as a disease 

that is caused by disruption in protein coding alone. The findings of this research can be related 

to two current trends in the study of complex diseases. The first is centred on the function of 
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disease-associated SNPs in susceptibility regions. It is now widely suggested that the disease-

associated SNPs may be no more than markers that capture the variation present at a locus 

associated with disease risk (i.e. the disease susceptibility region) (Zhang, et al., 2014). They are 

unlikely to be the mutations that underlie disease association, but rather are in linkage with 

other genetic variants, all of which are putatively causal (Chen et al., 2014; Zhang et al., 2014; 

Marian, 2012; Schuab et al., 2012). This recent turn in complex disease genomics has come about 

because despite a number of post GWA-studies, many of the disease associated SNPs are still 

yet to be implicated as the underlying causal variant in associated complex diseases (Knight, 

2014). Recent studies now seek to identify other rare SNPs that are close by and in strong 

linkage with the disease-associated SNPs, which could account for the difference in phenotype 

that is associated with the region (Chen et al., 2014; Zhang et al., 2014; Marian, 2012; Schuab et 

al., 2012). The concept presents an important challenge in the sense that there are usually 

numerous variants linked with the associated SNPs. For instance, the susceptibility regions for 

T1D contain well over 200,000 non-associated SNPs. Therefore, if the notion that disease-

associated SNPs are markers is true, then is has been quite significant to be able to reduce the 

number of non-associated T1D-SNPs to 37 putatively causal regulatory candidates that test 

positive for SNP sensitivity. Furthermore, it has been important to find that these 37 regulatory 

SNPs have a significantly shorter mean distance to close-by disease associated SNPs in the 

region than the SNPs that tested negative for SNP sensitivity. One can then theorise that the 

associated SNPs are markers for these rare SNPs that affect regulation. Further studies could 

reveal that the target genes activated by TF binding to the affected TFBSs, could be implicated 

in the aetiology of T1D.  

Secondly, the associated T1D-SNPs could still influence regulation because of the type of genic 

position in which they occur.  Apart from the classic regulatory elements (promoters, enhancers, 

silencers, insulators and locus control regions) (Felsenfeld and Groudine, 2003; Gross and 

Garrard, 1988; Stalder et al., 1980), other non-coding sequences including introns and non-

coding transcripts have been shown to be involved in regulation within the genome (Mercer 

and Mattick, 2013; Djebali et al., 2012; Thurman et al., 2o12). The “intronic/non-coding 

transcript” genic profile found to characterise many associated T1D-SNPs in this study, 

indicates that gene regulatory activity involving introns and non-coding transcripts can 

possibly be disrupted by these SNPs. Particularly, regulation associated with gene splicing, 

nonsense-mediated decay (NMD) and RNA transcripts. In addition, the associated SNPs appear 

to be able to affect more than one process because they tend to occur in more than one gene and 

more than one alternative transcript of the same gene. A simultaneously occurrence in two 

genomic structures is interesting especially if they both stand for different functions. 

Furthermore, mutations in introns and non-coding transcripts have been found to cause disease. 

The following is a summary of a few examples. 
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The introns have long been thought to be extraneous nucleotides that are usually spliced out 

from the primary mRNA transcript of a gene to produce the mature mRNA transcript that 

guides the production of proteins. However, introns are now known to be crucial in the 

regulation of gene expression as well as influencing molecular evolution (Vreeswijk et al., 2008). 

They contain a splice site consensus motifs (a sequence of DNA that has a similar structure and 

function in different organisms) at the intron-exon junctions, which are bound by a protein 

complex known as the spliceosome during the alternative splicing process. The enzymes 

involved induce cleavage of the intron from the flanking exons and then joins the two flanking 

exons by what is called a phosphodiester bond20. A SNP that occurs in these motifs can disturb 

alternative splicing by altering recognition of the splice site or by altering splicing patterns 

(Heyd, 2014; Ward and, Cooper, 2010). Mis-splicing can result in exon skipping, intron 

retention or the activation of a cryptic splice site (Flanagan et al., 2013; Wang and Cooper, 2007; 

Hastings et al., 2005; Lopez-Bigas et al., 2005). Rs698 is an associated T1D-SNP that occurs at 

intronic splice sites in two overlapping genes, INS and INS-IGF2 on chromosome 11p15.5. The 

INS gene encodes insulin, a hormone which decreases blood glucose concentration and increases 

cell permeability to monosaccharides, amino acids and fatty acids. Research has shown that the 

protective allele of this SNP (homozygous “T”) is associated with increase in age of disease onset 

(Howson et al., 2010). This mutation is associated with production of anti-insulin autoantibodies 

(Howson et al., 2010), but how the SNP affects the INS gene locus has not been fully described 

(Raha et al., 2011). Medical research has demonstrated that mutation in splicing can play 

important roles in disease including hereditary diseases, neuro-degenerative disorders and 

cancers (Romano, et al., 2013; Ward and Cooper, 2010; Vreeswijk et al., 2008). Some diseases 

found to be caused by problems in splicing include Familial Dysautonomia (FD) (Rubin and 

Anderson, 2008; Close et al., 2006), atypical cystic fibrosis (Schram, 2012), Menkes disease (de 

Bie et al., 2007) and Frasier Syndrome (Klamt et al., 1998; Frasier et al., 1964). Yet, intronic 

mutations are quite often ignored as possible causes of human disease (Shiraishi et al., 2014; 

Homolova et al., 2010). Also, an intronic SNP can affect regulation if it occurs in a regulatory 

region that overlaps the intron (gene-associated regulatory region). If it is within a binding site 

it could distort the binding signal as demonstrated with SNP sensitivity, thus affect binding of 

regulatory proteins. However, no disease-associated TFBS-SNP occurs in a gene-associated 

binding site. 

The afore-mentioned SNP, just like 23 other associated SNPs, occurs in non-coding transcripts 

of the same susceptibility gene or in transcripts of a second overlapping gene. These non-coding 

transcripts include NMD transcripts, retained introns as well as RNA gene transcripts. NMD 

decay of a transcript, functions to detect and degrade transcripts harbouring premature signals 

for the termination of translation (Frischmeyer, 1999). An estimated one-third of inherited 

                                                           
20 Phosphodiester bonds make up the backbone of the strands of DNA. It is the linkage between the 3' carbon atom 
of one sugar molecule (nucleotide) and the 5' carbon atom of another. 
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genetic disorders and many forms of cancer are thought to be caused by a nonsense or frameshift 

mutation which results in the generation of premature termination codons (Baker and Parker, 

2004; Frischmeyer, 1999). The majority of these nonsense transcripts are recognised and 

degrade by the cell by the NMD pathway. However, a mutation can lead to a gain of function 

mutation that decreases the efficiency of NMD and causes the stability of nonsense transcripts. 

NMD mutations are implicated in diseases including the blood disorder Beta thalassemia 

(Galanello et al., 2010), Marfan syndrome (Kainulainen et al, 1994; Marfan, 1896), and Addison’s 

disease (Nieman and Chanco Turner, 2006; Ten et al, 2001). 

Regarding RNA genes, four associated T1D-SNPs occur in non-coding RNA transcripts that 

include lincRNAs, microRNAs and siRNAs. These gene transcripts (see chapter 2) are 

associated with a wide range of biological processes most of which are regulatory (Kumar et al, 

2013). A lot can be said about the disease-associated T1D-SNPs in non-coding RNA transcripts, 

however the lincRNAs are most interesting, because they make up a large percentage of the 

non-coding human transcriptome (Cabili et al., 2011; Birney et al., 2007). They are associated 

with regulation of gene expression (Khalil, et al., 2009), differentiation of embryonic stem cells 

(Guttman et al., 2011), and maintaining cellular physiology (Di Gesualdo et al., 2014). 

LincRNAs have an exon-intron structure but they do not have open reading frames that encode 

proteins (Orom et al., 2010). A problem in a lincRNA transcript can lead to dysregulation of its 

target gene thus contributing to disease (Shi et al, 2013; Modarresi, 2012); this occurs in the 

aetiology of Alzheimer’s disease (Tan et al., 2013; Faghihi et al., 2008). LincRNAs are also 

implicated in the aetiology of other diseases including Huntington’s disease (Johnson, 2012), 

type 2 diabetes (Pasmant et al., 2011), neuro-generative disorders (Salta, 2012), and are thought 

to play a role in the onset and development of Cancers (Chen et al., 2013; Deng and Sui, 2013; 

Pasmant et al., 2011). The associated T1D-SNP, rs941576, occurs in an intron of MEG2, a 

maternally imprinted21 linc-RNA gene on chromosome 14q32.3. MEG2 is expressed in many 

cells in the human body and is thought to be a tumor suppressor (Balik et al., 2013; Zhou et al., 

2012). It has been shown to inhibit proliferation of tumor cells as well as induce apoptosis (death) 

of the cells in humans (Zhou et al., 2012).  

However, there is robust evidence that rs941576 in the maternally expressed MEG2 gene, is 

associated with paternally inherited risk of T1D (Wallace, et al., 2010). It is hypothesized that 

this SNP may affect regulation of three other paternally expressed genes (DLK1, RTL1 and 

DIO3) that lie within the region (Arney, 2003). DLK1 has the strongest functional candidacy, 

as it is highly expressed in the pancreatic islets (T1D is characterised by attack on pancreatic islet 

beta cells) (Wallace, et al., 2010). In this study, rs941576 was also found to be in an enhancer22 

                                                           
21 For most genes, two working copies are inherited each from mother and father. With imprinted genes, only one 
working copy is inherited. For maternally imprinted genes the copy from the father is epigenetically silenced (by 
addition of methyl groups during egg or sperm formation.) and vice versa. 
22 Enhancer is a short (50-1500 bp) region of DNA that is bound by activator proteins to initiate transcription of a gene 
or genes. 
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region within a regulatory module, but not in a binding site. From the foregoing, it is clear that 

mutations occurring in the non-coding parts of the genome are just as important as coding 

mutations in the causation of diseases.  

Another significant outcome of this research is that the analyses done (classification of SNPs 

and susceptibility regions) and methods developed (the SNP-sensitivity test) can be applied for 

other diseases, especially complex diseases for which the contributing genetic factors have 

already been discovered. These methods can be applied to genomic data that has been made 

available for these diseases by dedicated research consortiums. This way, regulatory mutations 

that may contribute to the disease mechanism can be identified for further testing. In fact, 

comparing results from different diseases, especially mutations coming from pleiotropic 

susceptibility regions, may lead to isolation of particularly interesting mutations. These may 

include SNPs that have a common occurrence for more than one disease but yet affect a different 

process in the aetiology of each diseases because of the mere fact that SNPs intersect multiple 

transcripts and genes.  

Sometimes discovering a mutation or a mutated gene that causes a disease is simply the first 

step down the long road to using information to produce a cure. Hopefully, with time, this 

research will contribute positively to the life of people living with T1D. Being able pinpoint 

mutations, and then discover how they contribute to the genetic cause of a condition, can help 

to open up paths for pharmaceutical treatments. Currently, most treatment strategies for genetic 

disorders do not alter the underlying genetic mutation; but are designed to improve particular 

signs and symptoms associated with the disorder. For instance, T1D is managed by 

administration of insulin injections and dietary management, including keeping track of the 

carbohydrate content of food, and careful monitoring of blood glucose levels using glucose 

meters (Diabetes UK, 2015). Though invaluable to people living with T1D, insulin treatment 

may sometimes lead to hypoglycemia (low blood glucose levels) due to imbalance between 

insulin, food and physical activity. Mild cases can be self-treated by intake of a high sugar 

content food or drink, but severe cases can lead to unconsciousness requiring treatment with 

intravenous glucose or glucagon injections (Diabetes UK, 2015; ADA, 2015; Chiang et al., 2014). 

Discovering the underlying genetic cause of T1D would be remarkable; and for possible 

treatments, two emerging approaches that come to mind. The first, gene therapy (Geddes, 2013; 

GeneEd, 2012; Sheridan, 2011), though still largely an experimental technique, has yielded 

promising results for treatment of some genetic diseases like haemophilia (NIH, 2014; Ponder, 

2011; Ponder, 2006) and Parkinson's disease (Palfi et al., 2014; Lewitt et al., 2011). It is a process 

that involves delivering normal DNA to correct (repair or replace) the defect in the genome that 

may be causing the disease. The second, personalized/precision medicine (NIH, 2015; Dudley 

and Karczewski, 2014; Lu et al., 2014; PMC, 2014), is an approach for disease treatment and 

prevention that takes into account individual variability in genes, environment, and lifestyle for 

each person. These are the three factors that constitute the definition of a complex disease. 
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Because more than one genetic mutation contributes to T1D, the differences that occur between 

individuals of different backgrounds (for instance, race and locality) may need to be considered 

in the design of treatments. Personalized medicine is about the ability to classify individuals into 

subpopulations that differ in their susceptibility to a particular disease or in their response to a 

specific treatment (Blau and Liakopoulou, 2013; Timmeman, 2013). This will allow for a more 

accurate diagnosis per individual, and design of specific treatment plans including gene therapy. 

To conclude, in complex diseases studies, discovering a contributing factor and then 

characterizing its contribution to the disease is not quite an easy undertaking. This research 

initially set out to describe the SNPs associated with susceptibility to T1D as variants that cause 

disease by influencing transcription factor binding. This was not found to be. Instead, nearby 

non-associated T1D-SNPs were identified as the putative causal regulatory SNPs that could 

impact binding. The associated SNPs are either likely to influence regulation through other 

alternative processes or they are markers that have led to the identification of potential causal 

SNPs.  

 

6.3 FUTURE RESEARCH 

 

There are a number of potential avenues that can be explored for future research from this work. 

Some of these include in-silico methods to identify target genes and their functions. 

1) Identification of Target genes: What genes are targeted by the transcriptions factors that 

bind the sites in which the significant TFBS-SNPs occur? How can they be identified? 

There are online bioinformatics resources from which this type of information may be sourced. 

HaploReg (Ward and Kellis, 2012) is an online tool that can be used for exploring annotations 

of the non-coding genome. It contains data from the 1000 Genomes Project (www. 

1000genomes.org) about disease-associated SNPs and other non-associated SNPs in linkage with 

the associated SNPs. It also contains a map of chromatin states, which contains information 

about regulatory regions including promoters, enhancers, insulators and heterochromatin in 

nine human cell lines (Ernst et al., 2011). Protein binding information is also incorporated into 

this database form protein-binding microarray (PBM) experiments (Berger et al., 2006, Berger 

et al., 2008, Badis et al., 2009). All of this information can be mined using simple queries. 

Another tool is regulomeDB (Boyle et al., 2012), which is designed to align variants with 

regulatory information from a variety of sources. It includes information from high-throughput, 

experimental data sets from the ENCODE project and other sources. It also contains 

computational predictions and manual annotations to identify putative regulatory potential and 

to identify functional variants. The available information is expected to help and guide 

interpretation of regulatory variants in the human genome (Boyle, et al., 2012). 
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2) Candidate causal genes: Have any of the identified target genes already been recognised as 

candidate causal gene of T1D? Once target genes have been identified, an interesting line of 

enquiry would be to find out the function of these genes and to see how their functions may be 

linked to the biology of T1D. Mainly, one can ask if they are candidate genes already thought 

to be associated with T1D.  If not, are they genes involved in the regulation or activation of T-

cells or genes involved in innate immunity? To check if an identified target gene is also a 

candidate gene, one can look up information about T1D from T1Dbase, OMIM or Ensembl. 

The functional annotations of genes can also be searched from other online biological databases 

including UniProt, NCBI, DAVID, NONCODE, miRBase and fRNAdb. 

3) Not a candidate causal gene: If the genes are not found to be directly linked with T1D, then 

one can ask whether they are part of a gene-gene regulatory network that links them to a T1D 

susceptibility gene. This can reveal if and how their function relates to disease. 

4) Associated T1D-SNPs in regulatory regions: In a different context, the associated T1D-

SNPs that occur in regulatory regions, particularly promoters, can also be further analysed for 

influence on their surrounding region. Computationally, one can test whether these SNPs may 

lead to an up-mutation by creating a new/false binding site within the regulatory module.  

Results obtained from these computation-based questions can further streamline information 

and help guide the going about of experimental validation to identify the SNPs that impact 

binding in-vivo. 
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APPENDICES 
 

Appendix A: Additional data for Associated and Non-associated 

SNPs in the T1D susceptibility regions 

A.1 Occurrence of Associated and Non-associated SNPs in overlapping and 

single gene transcripts. 

 

Table 1. In overlap vs not in overlap 

        

Counts Associated Non-Associated Total 

In Overlap 62 199447 199509 

Not in overlap 24 62769 62793 

  86 262216 262302 

    2 = 0.74   p= 0.3884   
 

Table 2. Standardised residuals: In overlap vs not in overlap 

      

(O-E)/√E Associated Non- Associated 

In Overlap -0.422 0.008 

Not in overlap 0.752 -0.014 

      
 

Table 3. Gene vs Transcript vs Gene Flanking. 

        

Counts Associated Non-Associated Total 

Gene & Transcript Overlap 12 23809 23821 

Transcript Overlap 41 103762 103803 

Gene Flanking 9 71876 71885 

  62 199447 199509 

    2 = 13.19   p= 0.0013 
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Table 4. Standardised residuals: Gene vs Transcript vs Gene Flanking. 

      

(O-E)/√E Associated Non- Associated 

Gene & Transcript Overlap 1.690 -0.030 

Transcript Overlap 1.539 -0.027 

Gene Flanking -2.822 0.050 

      
 

Table 5. Gene vs Transcript vs Gene Flanking vs ‘No’ overlap. 

        

Counts Associated Non-Associated Total 

Gene & Transcript Overlap 12 23809 23821 

Transcript Overlap 41 103762 103803 

Single Genic Position 24 62769 62793 

Gene Flanking 9 71876 71885 

  86 262216 262302 

    2 = 13.25; p= 0.004   

 

Table 6. Standardised residuals: Gene vs Transcript vs Gene Flanking vs ‘No’ overlap. 

    

Standardized Residuals Associated Non-Associated 

Gene & Transcript Overlap 1.50 -0.03 

Transcript Overlap 1.19 -0.02 

Single Genic Position 0.75 -0.01 

Gene Flanking -3.00 0.05 
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Table 7. The Genic Profiles of Associated and Non-Associated SNPs 

 

No of Profile Genic Profiles

Components Non_Assoc Assoc

1 coding_sequence 4 0

1 splice_donor/acceptor 38 0

1 nc_transcript 7453 6

1 intron 59483 3

1 intergenic 69432 17

1 exon 1524 3

1 5KB_upstream 18764 5

1 5KB_downstream 21174 3

1 5_prime_UTR 144 1

1 3_prime_UTR 697 0

2 nc_transcript coding_sequence 3 0

2 nc_transcript splice_donor/acceptor 6 0

2 intron splice_donor/acceptor 15 0

2 intron NMD_transcript 163 0

2 intron nc_transcript 5424 17

2 intergenic nc_transcript 1 0

2 exon splice_donor/acceptor 4 0

2 exon NMD_transcript 8 0

2 exon nc_transcript 261 1

2 exon intron 392 0

2 5KB_upstream splice_donor/acceptor 13 0

2 5KB_upstream nc_transcript 2065 0

2 5KB_upstream intron 14215 1

2 5KB_upstream exon 304 0

2 5KB_downstream coding_sequence 3 0

2 5KB_downstream splice_donor/acceptor 19 0

2 5KB_downstream NMD_transcript 78 0

2 5KB_downstream nc_transcript 3353 1

2 5KB_downstream intron 11718 6

2 5KB_downstream exon 503 2

2 5KB_downstream 5KB_upstream 7982 0

2 5_prime_UTR nc_transcript 35 0

2 5_prime_UTR intron 129 0

2 5_prime_UTR exon 96 0

2 5_prime_UTR 5KB_upstream 258 0

2 5_prime_UTR 5KB_downstream 47 0

2 3_prime_UTR nc_transcript 68 0

2 3_prime_UTR intron 166 0

2 3_prime_UTR exon 9 0

2 3_prime_UTR 5KB_upstream 82 0

2 3_prime_UTR 5KB_downstream 1393 0

3 nc_transcript splice_donor/acceptor coding_sequence 1 0

3 intron NMD_transcript splice_donor/acceptor 1 0

3 intron nc_transcript splice_donor/acceptor 2 0

3 intron nc_transcript NMD_transcript 184 3

3 intergenic intron nc_transcript 8 0

3 exon nc_transcript NMD_transcript 10 0

3 exon intron NMD_transcript 8 0

3 exon intron nc_transcript 104 0

3 5KB_upstream nc_transcript coding_sequence 2 0

3 5KB_upstream nc_transcript splice_donor/acceptor 12 0

3 5KB_upstream nc_transcript NMD_transcript 7 0

3 5KB_upstream intron splice_donor/acceptor 5 0

3 5KB_upstream intron NMD_transcript 64 0

3 5KB_upstream intron nc_transcript 3044 2

3 5KB_upstream exon NMD_transcript 5 0

SNP Counts
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Table 7. The Genic Profiles of Associated and Non-Associated SNPs contd. 

 

No of Profile Genic Profiles

Components Non_Assoc Assoc

3 5KB_upstream exon nc_transcript 269 0

3 5KB_upstream exon intron 149 0

3 5KB_downstream NMD_transcript splice_donor/acceptor 3 0

3 5KB_downstream nc_transcript coding_sequence 10 0

3 5KB_downstream nc_transcript splice_donor/acceptor 19 0

3 5KB_downstream intron splice_donor/acceptor 11 0

3 5KB_downstream intron NMD_transcript 444 0

3 5KB_downstream intron nc_transcript 2202 2

3 5KB_downstream exon splice_donor/acceptor 3 0

3 5KB_downstream exon NMD_transcript 31 0

3 5KB_downstream exon nc_transcript 357 0

3 5KB_downstream exon intron 164 0

3 5KB_downstream 5KB_upstream coding_sequence 5 0

3 5KB_downstream 5KB_upstream splice_donor/acceptor 21 0

3 5KB_downstream 5KB_upstream NMD_transcript 1 0

3 5KB_downstream 5KB_upstream nc_transcript 1300 1

3 5KB_downstream 5KB_upstream intron 6724 0

3 5KB_downstream 5KB_upstream exon 448 0

3 5_prime_UTR intron splice_donor/acceptor 2 0

3 5_prime_UTR intron NMD_transcript 1 0

3 5_prime_UTR intron nc_transcript 29 0

3 5_prime_UTR exon NMD_transcript 1 0

3 5_prime_UTR exon nc_transcript 245 0

3 5_prime_UTR exon intron 60 0

3 5_prime_UTR 5KB_upstream splice_donor/acceptor 1 0

3 5_prime_UTR 5KB_upstream nc_transcript 128 0

3 5_prime_UTR 5KB_upstream intron 290 0

3 5_prime_UTR 5KB_upstream exon 41 0

3 5_prime_UTR 5KB_downstream nc_transcript 6 0

3 5_prime_UTR 5KB_downstream intron 47 0

3 5_prime_UTR 5KB_downstream exon 2 0

3 5_prime_UTR 5KB_downstream 5KB_upstream 243 0

3 3_prime_UTR nc_transcript NMD_transcript 3 0

3 3_prime_UTR intron splice_donor/acceptor 1 0

3 3_prime_UTR intron nc_transcript 6 0

3 3_prime_UTR exon NMD_transcript 1 0

3 3_prime_UTR exon nc_transcript 8 0

3 3_prime_UTR exon intron 24 0

3 3_prime_UTR 5KB_upstream nc_transcript 32 0

3 3_prime_UTR 5KB_upstream intron 28 0

3 3_prime_UTR 5KB_upstream exon 10 0

3 3_prime_UTR 5KB_downstream splice_donor/acceptor 1 0

3 3_prime_UTR 5KB_downstream NMD_transcript 16 0

3 3_prime_UTR 5KB_downstream nc_transcript 675 0

3 3_prime_UTR 5KB_downstream intron 515 0

3 3_prime_UTR 5KB_downstream exon 85 0

3 3_prime_UTR 5KB_downstream 5KB_upstream 524 0

3 3_prime_UTR 5_prime_UTR exon 2 0

3 3_prime_UTR 5_prime_UTR 5KB_upstream 4 0

4 intronnc_transcriptNMD_transcriptsplice_donor/acceptor 3 0

4 intergenicintronnc_transcriptNMD_transcript 1 0

4 exonintronNMD_transcriptsplice_donor/acceptor 2 0

4 exonintronnc_transcriptsplice_donor/acceptor 2 0

4 exonintronnc_transcriptNMD_transcript 33 1

4 5KB_upstreamnc_transcriptNMD_transcriptsplice_donor/acceptor 6 0

4 5KB_upstreamintronNMD_transcriptsplice_donor/acceptor 2 0

4 5KB_upstreamintronnc_transcriptcoding_sequence 14 0

4 5KB_upstreamintronnc_transcriptsplice_donor/acceptor 13 0

SNP Counts
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Table 7. The Genic Profiles of Associated and Non-Associated SNPs contd.

 

  

No of Profile Genic Profiles

Components Non_Assoc Assoc

4 5KB_upstreamintronnc_transcriptNMD_transcript 618 3

4 5KB_upstreamexonnc_transcriptNMD_transcript 469 0

4 5KB_upstreamexonintronNMD_transcript 10 0

4 5KB_upstreamexonintronnc_transcript 139 0

4 5KB_downstreamnc_transcriptsplice_donor/acceptorcoding_sequence 1 0

4 5KB_downstreamnc_transcriptNMD_transcriptcoding_sequence 1 0

4 5KB_downstreamnc_transcriptNMD_transcriptsplice_donor/acceptor 6 0

4 5KB_downstreamintronnc_transcriptcoding_sequence 3 0

4 5KB_downstreamintronnc_transcriptsplice_donor/acceptor 5 0

4 5KB_downstreamintronnc_transcriptNMD_transcript 518 1

4 5KB_downstreamintergenicintronnc_transcript 2 0

4 5KB_downstreamexonnc_transcriptNMD_transcript 174 0

4 5KB_downstreamexonintronNMD_transcript 46 0

4 5KB_downstreamexonintronnc_transcript 96 0

4 5KB_downstream5KB_upstreamNMD_transcriptsplice_donor/acceptor 3 0

4 5KB_downstream5KB_upstreamnc_transcriptcoding_sequence 6 0

4 5KB_downstream5KB_upstreamnc_transcriptsplice_donor/acceptor 35 0

4 5KB_downstream5KB_upstreamintronsplice_donor/acceptor 5 0

4 5KB_downstream5KB_upstreamintronNMD_transcript 435 0

4 5KB_downstream5KB_upstreamintronnc_transcript 4207 1

4 5KB_downstream5KB_upstreamexoncoding_sequence 1 0

4 5KB_downstream5KB_upstreamexonNMD_transcript 31 0

4 5KB_downstream5KB_upstreamexonnc_transcript 558 0

4 5KB_downstream5KB_upstreamexonintron 128 1

4 5_prime_UTRintronnc_transcriptsplice_donor/acceptor 1 0

4 5_prime_UTRexonnc_transcriptNMD_transcript 1 0

4 5_prime_UTRexonintronNMD_transcript 4 0

4 5_prime_UTRexonintronnc_transcript 28 0

4 5_prime_UTR5KB_upstreamnc_transcriptsplice_donor/acceptor 1 0

4 5_prime_UTR5KB_upstreamnc_transcriptNMD_transcript 18 0

4 5_prime_UTR5KB_upstreamintronnc_transcript 157 0

4 5_prime_UTR5KB_upstreamexonnc_transcript 146 0

4 5_prime_UTR5KB_upstreamexonintron 5 0

4 5_prime_UTR5KB_downstreamintronnc_transcript 37 0

4 5_prime_UTR5KB_downstreamexonNMD_transcript 2 0

4 5_prime_UTR5KB_downstreamexonnc_transcript 10 0

4 5_prime_UTR5KB_downstreamexonintron 1 0

4 5_prime_UTR5KB_downstream5KB_upstreamsplice_donor/acceptor 2 0

4 5_prime_UTR5KB_downstream5KB_upstreamNMD_transcript 2 0

4 5_prime_UTR5KB_downstream5KB_upstreamnc_transcript 60 0

4 5_prime_UTR5KB_downstream5KB_upstreamintron 194 0

4 5_prime_UTR5KB_downstream5KB_upstreamexon 19 0

4 3_prime_UTRexonnc_transcriptNMD_transcript 1 0

4 3_prime_UTRexonintronnc_transcript 30 0

4 3_prime_UTR5KB_upstreamintronnc_transcript 34 0

4 3_prime_UTR5KB_upstreamexonnc_transcript 96 0

4 3_prime_UTR5KB_downstreamnc_transcriptsplice_donor/acceptor 3 0

4 3_prime_UTR5KB_downstreamnc_transcriptNMD_transcript 157 0

4 3_prime_UTR5KB_downstreamintronnc_transcript 200 0

4 3_prime_UTR5KB_downstreamexonNMD_transcript 26 0

4 3_prime_UTR5KB_downstreamexonnc_transcript 86 0

4 3_prime_UTR5KB_downstreamexonintron 29 0

4 3_prime_UTR5KB_downstream5KB_upstreamNMD_transcript 10 0

4 3_prime_UTR5KB_downstream5KB_upstreamnc_transcript 486 1

4 3_prime_UTR5KB_downstream5KB_upstreamintron 191 0

4 3_prime_UTR5KB_downstream5KB_upstreamexon 34 0

4 3_prime_UTR5_prime_UTRexonnc_transcript 1 0

4 3_prime_UTR5_prime_UTR5KB_upstreamintron 2 0
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Table 7. The Genic Profiles of Associated and Non-Associated SNPs contd. 

 

 

 

No of Profile Genic Profiles

Components Non_Assoc Assoc

4 3_prime_UTR5_prime_UTR5KB_downstreamexon 1 0

4 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstream 3 0

5 exonintronnc_transcriptNMD_transcriptsplice_donor/acceptor 1 0

5 5KB_upstreamnc_transcriptNMD_transcriptsplice_donor/acceptorcoding_sequence 1 0

5 5KB_upstreamintronnc_transcriptsplice_donor/acceptorcoding_sequence 5 0

5 5KB_upstreamintronnc_transcriptNMD_transcriptsplice_donor/acceptor 4 0

5 5KB_upstreamexonnc_transcriptNMD_transcriptcoding_sequence 1 0

5 5KB_upstreamexonnc_transcriptNMD_transcriptsplice_donor/acceptor 3 0

5 5KB_upstreamexonintronnc_transcriptcoding_sequence 1 0

5 5KB_upstreamexonintronnc_transcriptsplice_donor/acceptor 1 0

5 5KB_upstreamexonintronnc_transcriptNMD_transcript 87 0

5 5KB_downstreamintronnc_transcriptNMD_transcriptsplice_donor/acceptor 9 0

5 5KB_downstreamexonintronnc_transcriptsplice_donor/acceptor 1 0

5 5KB_downstreamexonintronnc_transcriptNMD_transcript 34 0

5 5KB_downstream5KB_upstreamnc_transcriptsplice_donor/acceptorcoding_sequence 2 0

5 5KB_downstream5KB_upstreamnc_transcriptNMD_transcriptcoding_sequence 23 0

5 5KB_downstream5KB_upstreamnc_transcriptNMD_transcriptsplice_donor/acceptor 23 0

5 5KB_downstream5KB_upstreamintronNMD_transcriptsplice_donor/acceptor 3 0

5 5KB_downstream5KB_upstreamintronnc_transcriptcoding_sequence 4 0

5 5KB_downstream5KB_upstreamintronnc_transcriptsplice_donor/acceptor 14 0

5 5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcript 3188 2

5 5KB_downstream5KB_upstreamexonnc_transcriptcoding_sequence 1 0

5 5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcript 532 1

5 5KB_downstream5KB_upstreamexonintronsplice_donor/acceptor 2 0

5 5KB_downstream5KB_upstreamexonintronNMD_transcript 22 0

5 5KB_downstream5KB_upstreamexonintronnc_transcript 284 0

5 5_prime_UTRexonintronnc_transcriptNMD_transcript 1 0

5 5_prime_UTR5KB_upstreamnc_transcriptNMD_transcriptsplice_donor/acceptor 2 0

5 5_prime_UTR5KB_upstreamintronnc_transcriptsplice_donor/acceptor 2 0

5 5_prime_UTR5KB_upstreamintronnc_transcriptNMD_transcript 57 0

5 5_prime_UTR5KB_upstreamexonnc_transcriptcoding_sequence 2 0

5 5_prime_UTR5KB_upstreamexonnc_transcriptsplice_donor/acceptor 7 0

5 5_prime_UTR5KB_upstreamexonnc_transcriptNMD_transcript 152 0

5 5_prime_UTR5KB_upstreamexonintronNMD_transcript 3 0

5 5_prime_UTR5KB_upstreamexonintronnc_transcript 65 0

5 5_prime_UTR5KB_downstreamexonnc_transcriptNMD_transcript 1 0

5 5_prime_UTR5KB_downstreamexonintronnc_transcript 14 0

5 5_prime_UTR5KB_downstream5KB_upstreamnc_transcriptcoding_sequence 1 0

5 5_prime_UTR5KB_downstream5KB_upstreamnc_transcriptsplice_donor/acceptor 1 0

5 5_prime_UTR5KB_downstream5KB_upstreamnc_transcriptNMD_transcript 7 0

5 5_prime_UTR5KB_downstream5KB_upstreamintronsplice_donor/acceptor 2 0

5 5_prime_UTR5KB_downstream5KB_upstreamintronNMD_transcript 31 0

5 5_prime_UTR5KB_downstream5KB_upstreamintronnc_transcript 114 0

5 5_prime_UTR5KB_downstream5KB_upstreamexonNMD_transcript 32 0

5 5_prime_UTR5KB_downstream5KB_upstreamexonnc_transcript 109 0

5 5_prime_UTR5KB_downstream5KB_upstreamexonintron 15 0

5 3_prime_UTRexonnc_transcriptNMD_transcriptcoding_sequence 1 0

5 3_prime_UTR5KB_upstreamintronnc_transcriptNMD_transcript 2 0

5 3_prime_UTR5KB_upstreamexonNMD_transcriptsplice_donor/acceptor 1 0

5 3_prime_UTR5KB_upstreamexonnc_transcriptNMD_transcript 3 0

5 3_prime_UTR5KB_upstreamexonintronnc_transcript 148 0

5 3_prime_UTR5KB_downstreamintronnc_transcriptNMD_transcript 157 0

5 3_prime_UTR5KB_downstreamexonnc_transcriptsplice_donor/acceptor 1 0

5 3_prime_UTR5KB_downstreamexonnc_transcriptNMD_transcript 22 0

5 3_prime_UTR5KB_downstreamexonintronNMD_transcript 2 0

5 3_prime_UTR5KB_downstreamexonintronnc_transcript 46 0

5 3_prime_UTR5KB_downstream5KB_upstreamnc_transcriptNMD_transcript 10 0
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Table 7. The Genic Profiles of Associated and Non-Associated SNPs contd. 

 

  

No of Profile Genic Profiles

Components Non_Assoc Assoc

5 3_prime_UTR5KB_downstream5KB_upstreamintronNMD_transcript 14 0

5 3_prime_UTR5KB_downstream5KB_upstreamintronnc_transcript 166 0

5 3_prime_UTR5KB_downstream5KB_upstreamexonNMD_transcript 11 0

5 3_prime_UTR5KB_downstream5KB_upstreamexonnc_transcript 94 0

5 3_prime_UTR5KB_downstream5KB_upstreamexonintron 16 0

5 3_prime_UTR5_prime_UTR5KB_upstreamintronnc_transcript 4 0

5 3_prime_UTR5_prime_UTR5KB_upstreamexonnc_transcript 61 0

5 3_prime_UTR5_prime_UTR5KB_upstreamexonintron 1 0

5 3_prime_UTR5_prime_UTR5KB_downstreamintronnc_transcript 1 0

5 3_prime_UTR5_prime_UTR5KB_downstreamexonnc_transcript 3 0

5 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamintron 1 0

5 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexon 3 0

6 5KB_downstreamexonintronnc_transcriptNMD_transcriptsplice_donor/acceptor 3 0

6 5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcriptcoding_sequence 2 0

6 5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcriptsplice_donor/acceptor 16 0

6 5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcriptcoding_sequence 1 0

6 5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcriptsplice_donor/acceptor 4 0

6 5KB_downstream5KB_upstreamexonintronNMD_transcriptcoding_sequence 1 0

6 5KB_downstream5KB_upstreamexonintronnc_transcriptsplice_donor/acceptor 1 0

6 5KB_downstream5KB_upstreamexonintronnc_transcriptNMD_transcript 253 0

6 5_prime_UTR5KB_upstreamexonnc_transcriptNMD_transcriptsplice_donor/acceptor 2 0

6 5_prime_UTR5KB_upstreamexonintronnc_transcriptNMD_transcript 59 0

6 5_prime_UTR5KB_downstream5KB_upstreamnc_transcriptNMD_transcriptsplice_donor/acceptor 1 0

6 5_prime_UTR5KB_downstream5KB_upstreamintronnc_transcriptsplice_donor/acceptor 1 0

6 5_prime_UTR5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcript 64 0

6 5_prime_UTR5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcript 28 0

6 5_prime_UTR5KB_downstream5KB_upstreamexonintronNMD_transcript 7 0

6 5_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcript 43 0

6 3_prime_UTR5KB_upstreamexonintronnc_transcriptNMD_transcript 2 0

6 3_prime_UTR5KB_downstreamintronnc_transcriptNMD_transcriptcoding_sequence 1 0

6 3_prime_UTR5KB_downstreamintronnc_transcriptNMD_transcriptsplice_donor/acceptor 3 0

6 3_prime_UTR5KB_downstreamexonintronnc_transcriptNMD_transcript 34 0

6 3_prime_UTR5KB_downstream5KB_upstreamintronnc_transcriptsplice_donor/acceptor 2 0

6 3_prime_UTR5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcript 23 0

6 3_prime_UTR5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcript 25 0

6 3_prime_UTR5KB_downstream5KB_upstreamexonintronNMD_transcript 4 0

6 3_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcript 82 0

6 3_prime_UTR5_prime_UTRexonintronnc_transcriptNMD_transcript 2 0

6 3_prime_UTR5_prime_UTR5KB_upstreamexonintronnc_transcript 7 0

6 3_prime_UTR5_prime_UTR5KB_downstreamexonnc_transcriptNMD_transcript 1 0

6 3_prime_UTR5_prime_UTR5KB_downstreamexonintronnc_transcript 2 0

6 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamnc_transcriptNMD_transcript 7 0

6 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamintronnc_transcript 6 0

6 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonNMD_transcript 1 0

6 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonnc_transcript 5 0

6 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonintron 1 0

7 5KB_downstream5KB_upstreamexonintronnc_transcriptNMD_transcriptsplice_donor/acceptor 2 0

7 5_prime_UTR5KB_downstream5KB_upstreamintronnc_transcriptNMD_transcriptsplice_donor/acceptor 1 0

7 5_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcriptsplice_donor/acceptor 1 0

7 5_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcriptNMD_transcript 22 0

7 3_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcriptNMD_transcript 19 0

7 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonnc_transcriptsplice_donor/acceptor 1 0

7 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonnc_transcriptNMD_transcript 1 0

7 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonintronNMD_transcript 2 0

7 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcript 11 0

8 3_prime_UTR5_prime_UTR5KB_downstream5KB_upstreamexonintronnc_transcriptNMD_transcript 3 0

6 5_prime_UTR5KB_downstream5KB_upstreamintronNMD_transcriptsplice_donor/acceptor 0 1
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Appendix B: Data for nucleotide counts and normalised values of 

structural and functional features in T1D susceptibility regions 

 

Table 8. Nucleotide counts of structural features in T1D susceptibility regions 

 

 

Intronic Intergenic Exonic 5' UTR 3' UTR Non-coding

Name Size Transcripts

1p13.2 840000 515286 176648 22416 4148 23819 525827

1q31.2 88456 2904 29654 740 65 1211 53882

1q32.1 247391 107236 121874 4650 2442 4469 148222

2p23.3 801217 378861 199529 15560 4796 18937 514513

2q11.2 532426 325595 249428 4800 3260 12385 665263

2q24.2 431888 318094 46951 9959 2004 4519 664417

2q32.3 142329 116140 0 2304 744 591 130070

2q33.2 147249 26720 111543 1263 365 1184 6174

3p21.31 673459 96341 324341 17453 8910 16704 370737

4p15.2 107968 0 105994 0 0 0 1974

4q27 704867 237092 361040 19508 1217 1143 70956

MHC 3808585 1015895 2500273 244932 79194 144016 1910125

6q15 239462 0 40170 0 709 0 199883

6q22.32 981805 944323 0 309 99 405 28677

6q23.3 464566 75481 365861 3575 496 1992 70458

6q25.3 209177 66777 103176 4485 1518 2937 15402

6q27 167120 0 167120 0 0 0 0

7p15.2 547320 237878 280325 9777 3760 12609 239954

7p12.2 328680 220153 71578 7139 2549 13547 274022

7p12.1 773338 295066 299652 4453 282 4587 18675

9p24.2 93008 57488 0 387 704 0 77496

10p15.1 167810 75123 56500 2293 1327 4082 117627

10p15.1 109730 68516 33731 1835 0 1063 0

10q22.3 79492 57529 15287 2906 0 3769 15287

10q23.31 270333 242698 25574 571 0 1490 0

11p15.5 239880 19579 196005 4189 3812 9130 31587

12p13.31 354623 59317 103998 3196 768 6850 186601

12q13.2 453963 191492 111833 40039 23391 45501 341317

12q24.12 1951002 1144967 465226 46296 22020 44819 1673516

13q22.2 301602 242305 13114 5692 1817 3825 233348

13q32.3 191921 70617 68388 1726 82 1620 114170

14q24.1 150324 5051 111955 1860 2179 4288 29556

14q32.2 173692 8580 121178 485 0 5430 52514

14q32.2 40708 0 1371 0 0 0 39337

15q14 182000 47116 120148 1086 934 1492 58412

15q25.1 276556 124070 34937 5761 2590 6140 220912

16p13.13 321999 221530 33052 6446 985 907 323315

16p13.13 41669 31000 0 420 623 108 198

16p11.2 753180 258797 380955 39398 20092 18913 391128

16q23.1 325781 199731 78851 8542 5309 5596 239277

Susceptibility Region

Nucleotide counts
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Table 8. Nucleotide counts of structural features in T1D susceptibility regions contd. 

 

  

Intronic Intergenic Exonic 5' UTR 3' UTR Non-coding

Name Size Transcripts

17q12 873850 529318 315685 38866 14926 40646 578238

17q21.2 141100 27344 87578 3960 1281 10880 65207

18p11.21 189722 96989 37617 1584 816 3176 164148

18q22.2 92095 80445 0 768 1571 9311 64651

19p13.2 233021 130888 54890 22708 6610 14787 135934

19q13.32 172006 84482 33319 10086 3192 6653 19806

19q13.33 185652 73608 33478 16986 6093 9280 50640

20p13 263117 81330 170156 4468 1609 4148 39582

21q22.3 79544 46882 27615 2555 1475 1017 52025

22q12.2 862028 459735 184993 19170 5093 29034 684547

22q12.3 98116 21988 43937 2946 1421 5899 75577

Xq28 618122 350331 118944 17921 3528 20134 541509

Susceptibility Region

Nucleotide counts
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Table 9. Counts of functional features in T1D susceptibility regions 

 

  

Non-coding Protein SNP Regulatory

Name Size Genes Coding Genes Counts Nucleotides

1p13.2 840000 6 10 5744 91129

1q31.2 88456 2 1 772 17249

1q32.1 247391 4 5 1851 60963

2p23.3 801217 10 8 4356 94307

2q11.2 532426 3 4 3251 49587

2q24.2 431888 2 5 1102 36980

2q32.3 142329 2 1 1096 15249

2q33.2 147249 0 2 2162 11817

3p21.31 673459 6 13 5385 108354

4p15.2 107968 1 0 854 21794

4q27 704867 3 4 5599 45444

MHC 3808585 150 157 115045 277448

6q15 239462 2 1 5334 47811

6q22.32 981805 7 2 4025 110101

6q23.3 464566 10 1 1892 26908

6q25.3 209177 3 3 1453 38471

6q27 167120 0 0 2805 11198

7p15.2 547320 8 11 6382 92907

7p12.2 328680 2 4 2747 37270

7p12.1 773338 10 1 4108 72127

9p24.2 93008 1 19 1186 15995

10p15.1 167810 7 3 2026 29658

10p15.1 109730 0 1 1207 11743

10q22.3 79492 0 1 703 20399

10q23.31 270333 0 1 1864 28638

11p15.5 239880 4 5 2561 47247

12p13.31 354623 11 4 2993 40850

12q13.2 453963 16 27 3122 89949

12q24.12 1951002 29 19 12835 195768

13q22.2 301602 5 2 1626 41715

13q32.3 191921 5 2 5526 43122

14q24.1 150324 2 2 1375 46600

14q32.2 173692 0 1 327 3708

14q32.2 40708 4 1 1775 7237

15q14 182000 3 2 1344 22029

15q25.1 276556 5 5 2813 48980

16p13.13 321999 6 3 3331 86921

16p13.13 41669 3 2 3107 13345

16p11.2 753180 20 24 446 116550

16q23.1 325781 8 8 3371 64832

Susceptibility Region
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Table 9. Counts of functional features in T1D susceptibility regions contd. 

 

 

 

  

Non-coding Protein SNP Regulatory

Name Size Genes Coding Genes Counts Nucleotides

17q12 873850 14 24 6169 167311

17q21.2 141100 3 4 977 15748

18p11.21 189722 6 1 1829 28313

18q22.2 92095 0 2 899 7558

19p13.2 233021 4 14 1923 58846

19q13.32 172006 6 5 1403 45786

19q13.33 185652 3 14 1630 59181

20p13 263117 8 4 2544 22634

21q22.3 79544 0 4 1028 20732

22q12.2 862028 15 15 6778 136086

22q12.3 98116 2 3 1186 35188

Xq28 618122 14 14 1660 62980

Susceptibility Region
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Table 10. Standard residuals of structural features in T1D susceptibility regions 

 

  

ID Name 3' UTR 5' UTR Exonic Intergenic Intronic

1.1 1p13.2 -0.0719 -0.1769 -0.1353 -0.1595 0.2873

1.2 1q31.2 -0.0478 -0.0358 -0.0333 -0.0447 0.0181

1.3 1q32.1 -0.0618 -0.0465 -0.0576 -0.0340 0.0715

2.1 2p23.3 -0.0925 -0.1588 -0.1535 -0.1403 0.1773

2.2 2q11.2 -0.0748 -0.1092 -0.1293 -0.0654 0.1671

2.3 2q24.2 -0.1001 -0.0993 -0.0827 -0.1112 0.2119

2.4 2q32.3 -0.0627 -0.0410 -0.0406 -0.0582 0.1043

2.5 2q33.2 -0.0602 -0.0470 -0.0461 -0.0329 0.0250

3.1 3p21.31 -0.0789 -0.0741 -0.1134 -0.0566 -0.0391

4.1 4p15.2 -0.0590 -0.0416 -0.0413 -0.0057 0.0110

4.2 4q27 -0.1769 -0.1793 -0.1130 -0.0492 0.0764

6.1 MHC 0.0143 0.0096 0.0205 0.0248 -0.0568

6.2 6q15 -0.0864 -0.0663 -0.0746 -0.0658 -0.0202

6.3 6q22.32 -0.2391 -0.2644 -0.2616 -0.2682 -0.1894

6.4 6q23.3 -0.1218 -0.1267 -0.1171 0.0129 -0.0077

6.5 6q25.3 -0.0628 -0.0484 -0.0486 -0.0322 0.0453

6.6 6q27 -0.0713 -0.0567 -0.0563 0.0049 -0.0031

7.1 7p15.2 -0.0766 -0.1068 -0.1127 -0.0433 0.1145

7.2 7p12.2 -0.0255 -0.0660 -0.0681 -0.0751 0.1509

7.3 7p12.1 -0.1710 -0.2086 -0.1918 -0.0918 0.1108

9.1 9p24.2 -0.0558 -0.0289 -0.0359 -0.0459 0.0647

10.1 10p15.1 -0.0475 -0.0402 -0.0471 -0.0412 0.0624

10.2 10p15.1 -0.0531 -0.0420 -0.0342 -0.0361 0.0704

10.3 10q22.3 -0.0309 -0.0343 -0.0222 -0.0361 0.0680

10.4 10q23.31 -0.0841 -0.0832 -0.0801 -0.0796 0.0486

11.1 11p15.5 -0.0329 -0.0273 -0.0576 -0.0013 -0.0032

12.1 12p13.31 -0.0702 -0.0951 -0.0908 -0.0682 0.0042

12.2 12q13.2 0.1362 0.1651 0.0345 -0.0898 0.0961

12.4 12q24.12 -0.1806 -0.2361 -0.3195 -0.3177 0.5736

Susceptibility Region Standard Residuals
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Table 10. Standard residuals of structural features in T1D susceptibility regions contd. 

 
 

  

ID Name 3' UTR 5' UTR Exonic Intergenic Intronic

13.1 13q22.2 -0.0769 -0.0683 -0.0671 -0.0926 0.1766

13.2 13q32.3 -0.0670 -0.0621 -0.0555 -0.0423 0.0527

14.1 14q24.1 -0.0426 -0.0249 -0.0444 -0.0138 0.0053

14.2 14q32.2 -0.0408 -0.0584 -0.0560 -0.0158 0.0029

14.3 14q32.2 -0.0449 -0.0243 -0.0242 -0.0322 0.0269

15.1 15q14 -0.0657 -0.0488 -0.0556 -0.0183 0.0346

15.2 15q25.1 -0.0581 -0.0521 -0.0605 -0.0773 0.0793

16.1 16p13.13 -0.0983 -0.0840 -0.0692 -0.0894 0.1537

16.2 16p13.13 -0.0445 -0.0167 -0.0234 -0.0330 0.0268

16.3 16p11.2 -0.0826 0.0467 -0.0440 -0.0531 0.0839

16.4 16q23.1 -0.0716 -0.0304 -0.0616 -0.0714 0.1337

17.1 17q12 0.0199 -0.0495 -0.0768 -0.1239 0.2629

17.2 17q21.2 -0.0019 -0.0339 -0.0335 -0.0216 0.0270

18.1 18p11.21 -0.0574 -0.0522 -0.0555 -0.0545 0.0763

18.2 18q22.2 -0.0009 -0.0177 -0.0341 -0.0456 0.0850

19.1 19p13.2 0.0018 0.0098 0.0197 -0.0581 0.0956

19.2 19q13.32 -0.0332 -0.0177 -0.0163 -0.0518 0.0696

19.3 19q13.33 -0.0206 0.0154 0.0084 -0.0552 0.0568

20.1 20p13 0.9086 -0.0290 -0.0740 -0.0547 -0.0219

21.1 21q22.3 -0.0470 -0.0157 -0.0236 -0.0310 0.0587

22.1 22q12.2 -0.0459 -0.1706 -0.1542 -0.1615 0.2335

22.3 22q12.3 -0.0222 -0.0211 -0.0267 -0.0289 0.0325

X.2 Xq28 -0.0472 -0.1278 -0.0974 -0.1279 0.1959

Susceptibility Region Standard Residuals
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Table 11. Standard residuals of functional features in T1D susceptibility regions 

 

  

Regulatory Non-coding Protein No of SNPs TFBS

ID Name Nucleotides Genes  Genes SNPS SNPs

1.1 1p13.2 0.077140168 -0.195933071 -0.1764042 -0.189265 -0.35908

1.2 1q31.2 -0.000350589 -0.033431576 -0.0481706 -0.04505 -0.0586

1.3 1q32.1 0.117281223 -0.060103141 -0.0619344 -0.075309 -0.10749

2.1 2p23.3 0.098337141 -0.159504489 -0.1795674 -0.191657 -0.32404

2.2 2q11.2 0.004676059 -0.138514838 -0.1386798 -0.134227 -0.22507

2.3 2q24.2 -0.015507202 -0.119875483 -0.1074873 -0.127832 -0.20503

2.4 2q32.3 -0.02109244 -0.046991735 -0.061472 -0.05567 -0.09511

2.5 2q33.2 -0.034698266 -0.061563462 -0.0563173 -0.047631 -0.09714

3.1 3p21.31 0.181060197 -0.154013696 -0.1161764 -0.15085 -0.25229

4.1 4p15.2 -0.138816114 -0.195252612 -0.2067337 -0.198068 -0.31525

4.2 4q27 0.0963705 -0.031676197 -0.0338799 -0.007959 -0.04998

6.1 MHC 0.0026 0.0165 0.0266 0.0201 -0.608

6.2 6q15 -0.114159019 -0.257838583 -0.2682954 -0.227744 -0.4335

6.3 6q22.32 0.240979342 -0.09361811 -0.1335365 -0.109436 -0.219

6.4 6q23.3 0.003930396 -0.010691601 -0.0781802 -0.065627 -0.04921

6.5 6q25.3 0.038070454 -0.064909449 -0.0728484 -0.076925 -0.12111

6.6 6q27 -0.042644533 -0.067290026 -0.0746735 -0.047716 -0.09462

7.1 7p15.2 0.157071943 -0.108930415 -0.0977712 -0.110726 -0.25026

7.2 7p12.2 0.011464647 -0.093897407 -0.0883743 -0.087794 -0.14341

7.3 7p12.1 0.025397643 -0.152487176 -0.21727 -0.18686 -0.32683

9.1 9p24.2 -0.006013851 -0.041244008 0.06535516 -0.042587 -0.07

10.1 10p15.1 0.024440601 -0.020072123 -0.0550245 -0.053941 -0.09133

10.2 10p15.1 -0.025539934 -0.052119703 -0.0534232 -0.046575 -0.07452

10.3 10q22.3 0.013254713 -0.044508616 -0.0459574 -0.043414 -0.06443

10.4 10q23.31 -0.004990294 -0.092544448 -0.0930766 -0.080918 -0.13839

11.1 11p15.5 0.069731751 -0.058212577 -0.0600799 -0.067264 -0.10678

12.1 12p13.31 0.017850893 -0.040427417 -0.0947797 -0.092126 -0.18268

12.2 12q13.2 0.16986245 -0.032098561 0.02718975 -0.115779 -0.16651

12.4 12q24.12 0.175196451 -0.322245648 -0.3933889 -0.404708 -0.74118

Standard Residuals

Susceptibility Region 
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Table 11. Standard residuals of functional features in T1D susceptibility regions contd. 

 

  

Regulatory Non-coding Protein No of SNPs TFBS

ID Name Nucleotides Genes  Genes SNPS SNPs

13.1 13q22.2 0.03428786 -0.067081711 -0.0944276 -0.090785 -0.15367

13.2 13q32.3 0.066911753 -0.039474341 -0.067347 -0.029531 -0.0989

14.1 14q24.1 0.089896908 -0.049004125 -0.0570766 -0.055238 -0.0865

14.2 14q32.2 -0.07056804 -0.068219325 -0.0692156 -0.070176 -0.10805

14.3 14q32.2 -0.024441982 -0.008079783 -0.0363815 -0.024424 -0.05081

15.1 15q14 -0.006621075 -0.050310499 -0.0648975 -0.063408 -0.10195

15.2 15q25.1 0.066764686 -0.060777481 -0.0691353 -0.074221 -0.10048

16.1 16p13.13 0.19209902 -0.065549092 -0.0930942 -0.081051 -0.12875

16.2 16p13.13 -0.002668456 -0.014988339 -0.0302493 -0.013085 -0.03216

16.3 16p11.2 0.190574366 -0.080746619 -0.0657961 -0.213664 -0.25661

16.4 16q23.1 0.111534035 -0.053167711 -0.0621809 -0.081647 -0.1184

17.1 17q12 0.343217982 -0.151119987 -0.0955898 -0.194012 -0.32543

17.2 17q21.2 -0.018985171 -0.040015722 -0.0420603 -0.056397 -0.08746

18.1 18p11.21 0.014088391 -0.032254173 -0.0731735 -0.061118 -0.09085

18.2 18q22.2 -0.0361938 -0.047680867 -0.0426997 -0.044854 -0.07439

19.1 19p13.2 0.113260814 -0.056486126 -0.0010616 -0.071099 -0.05871

19.2 19q13.32 0.081516347 -0.027794949 -0.0433216 -0.060402 -0.07402

19.3 19q13.33 0.126367689 -0.051229729 0.01063396 -0.061833 -0.07488

20.1 20p13 -0.024817673 -0.037394804 -0.0721866 -0.073207 -0.13065

21.1 21q22.3 0.014441875 -0.044521705 -0.0268619 -0.040602 -0.04064

22.1 22q12.2 0.233644143 -0.141477651 -0.1499958 -0.185771 -0.35389

22.3 22q12.3 0.061879909 -0.035863056 -0.0378168 -0.043861 0.006461

X.2 Xq28 0.031420702 -0.086751706 -0.0961441 -0.169428 -0.28185

Susceptibility Region 
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Figure 1. Scatter plots showing data–fitting using a second order polynomial regression for 3’ UTR, 

non-coding transcript and regulatory nucleotides, as well as Non-coding gene, protein coding gene 

and SNP counts. 
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Appendix C: Methods for the SNP Sensitivity test 

C.1. Establishing the background model of SNP local environment 

The simplest model of the DNA sequence assumes that the sequence has been produced by a 

random process where any of the four nucleotides randomly occurs at each position in the 

sequence. The probability of choosing any one of the four nucleotides depends on a multinomial 

sequence model distribution, and the four nucleotides A, C, G, T are chosen with four 

parameters: p(A), p(C), p(G), and p(T) respectively. However, an assumption of a multinomial 

model of the DNA sequence is that the probability of choosing a particular nucleotide (for 

example “A”) at a particular position in the sequence only depends on the predetermined 

frequency of that nucleotide (p(A) here), and does not depend at all on the identity of nucleotides 

found at adjacent positions in the sequence. This assumption does not hold true for all DNA 

sequences. In regulatory sequences, which are characterised by recurrent binding motifs, the 

probability of finding a certain nucleotide at a particular position in the sequence does depend 

on the identity of the nucleotides are found at adjacent positions in the sequence. In order to 

characterise this type of DNA sequence a Markov sequence model is used to give a more accurate 

representation. The Markov model has more parameters than the multinomial model, where the 

four sets of probabilities p(A), p(C), p(G), and p(T) differ according to whether the previous 

nucleotide was “A”, “C”, “G” or “T”, and will be later explained 

For each regulatory sequence containing a TFBS-SNP therefore, the order of nucleotide 

dependencies in the sequence is fitted on the basis of the Markov process of order 𝒎. A model 

based on Markov orders means that the probability of a nucleotide 𝒂𝒍, at position 𝒍 in the 

sequence, depends on the 𝒎 previous nucleotides in the sequence. If 𝒎 = 1, this mean that the 

identity of a nucleotide depends on the identity of the previous nucleotide. For example, if “A” 

is the preceding nucleotide, then the probabilities of “A”, “C”, “G” or “T”, are symbolised as 

p(A|A), p(C|A), p(G|A), or p(T|A) . Similarly, if 𝒎 = 2, this mean that the identity of a 

nucleotide depends on the identity of the 2 previous nucleotides, if  “C” and “A” are the preceding 

nucleotides, then probabilities of “A”, “C”, “G” or “T”, are symbolised as p (A| CA), p (C| CA), 

p (G| CA), or p (T| CA). The model is described with a transition matrix.  

Given a sequence 𝑺𝒊 with nucleotide dependency of order 𝒎 = 1, the nucleotide dependency is 

described with a first order transition matrix. For instance the sequence in Figure 2a, is 

summarized with a first order transition matrix (Figure 2b). 
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Figure 2a. A short nucleotide sequence assumed to be characterised by first order Markov 

dependency 

 

 

Figure 2b.  First order transition matrix summarizing nucleotide dependency of sequence in Figure 

1 

 

The rows of the matrix represent the nucleotide found at the previous position in the sequence, 

while the columns represent the nucleotides that could be found at the current position in the 

sequence. When 𝒎 is 1, the transition matrix is computed as the frequencies of di-nucleotide 

base pairs 𝒅𝒊 in 𝑺𝒊, when 𝒎 is 2 the matrix is computed as the frequencies of tri-nucleotide base 

pairs 𝒕𝒊 and so on. 

𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝒎𝒂𝒕𝒓𝒊𝒙 (𝒎 =  )  =

(

 

𝑓𝑟𝑒𝑞 (𝐴, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐴, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐶, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐶, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐴, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐴, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐶, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐶, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐺, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐺, 𝐶′)

𝑓𝑟𝑒𝑞 (𝑇, 𝐴′) 𝑓𝑟𝑒𝑞 (𝑇, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐺, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐺, 𝑇′)

𝑓𝑟𝑒𝑞 (𝑇, 𝐺′) 𝑓𝑟𝑒𝑞 (𝑇, 𝑇′))
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𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝒎𝒂𝒕𝒓𝒊𝒙 (𝒎 = 𝟐) =    

𝑓𝑟𝑒𝑞 (𝐴𝐴, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐴𝐶, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐶𝐴, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐶𝐶, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐴𝐺, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐴𝑇, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐶𝐺, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐶𝑇, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐺𝐴, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐺𝐶, 𝐴′)

𝑓𝑟𝑒𝑞 (𝑇𝐴, 𝐴′) 𝑓𝑟𝑒𝑞 (𝑇𝐶, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐺𝐺, 𝐴′) 𝑓𝑟𝑒𝑞 (𝐺𝑇, 𝐴′)

𝑓𝑟𝑒𝑞 (𝑇𝐺, 𝐴′) 𝑓𝑟𝑒𝑞 (𝑇𝑇, 𝐴′)

𝑓𝑟𝑒𝑞 (𝐴𝐴, 𝐶′) 𝑓𝑟𝑒𝑞 (𝐴𝐶, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐶𝐴, 𝐶′) 𝑓𝑟𝑒𝑞 (𝐶𝐶, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐴𝐺, 𝐶′) 𝑓𝑟𝑒𝑞 (𝐴𝑇, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐶𝐺, 𝐶′) 𝑓𝑟𝑒𝑞 (𝐶𝑇, 𝐶)

𝑓𝑟𝑒𝑞 (𝐺𝐴, 𝐶′) 𝑓𝑟𝑒𝑞 (𝐺𝐶, 𝐶′)

𝑓𝑟𝑒𝑞 (𝑇𝐴, 𝐶′) 𝑓𝑟𝑒𝑞 (𝑇𝐶, 𝐶′)

𝑓𝑟𝑒𝑞 (𝐺𝐺, 𝐶) 𝑓𝑟𝑒𝑞 (𝐺𝑇, 𝐶′)

𝑓𝑟𝑒𝑞 (𝑇𝐺, 𝐶′) 𝑓𝑟𝑒𝑞 (𝑇𝑇, 𝐶)

𝑓𝑟𝑒𝑞 (𝐴𝐴, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐴𝐶, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐶𝐴, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐶𝐶, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐴𝐺, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐴𝑇, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐶𝐺, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐶𝑇, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐺𝐴, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐺𝐶, 𝐺′)

𝑓𝑟𝑒𝑞 (𝑇𝐴, 𝐺′) 𝑓𝑟𝑒𝑞 (𝑇𝐶, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐺𝐺, 𝐺′) 𝑓𝑟𝑒𝑞 (𝐺𝑇, 𝐺′)

𝑓𝑟𝑒𝑞 (𝑇𝐺, 𝐺′) 𝑓𝑟𝑒𝑞 (𝑇𝑇, 𝐺′)

𝑓𝑟𝑒𝑞 (𝐴𝐴, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐴𝐶, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐶𝐴, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐶𝐶, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐴𝐺, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐴𝑇, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐶𝐺, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐶𝑇, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐺𝐴, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐺𝐶, 𝑇′)

𝑓𝑟𝑒𝑞 (𝑇𝐴, 𝑇′) 𝑓𝑟𝑒𝑞 (𝑇𝐶, 𝑇′)

𝑓𝑟𝑒𝑞 (𝐺𝐺, 𝑇′) 𝑓𝑟𝑒𝑞 (𝐺𝑇, 𝑇′)

𝑓𝑟𝑒𝑞 (𝑇𝐺, 𝑇′) 𝑓𝑟𝑒𝑞 (𝑇𝑇, 𝑇′)

 

 

The transition frequencies in the transition matrices are converted to transition probabilities by 

dividing them by the grand total 𝑵. The row and column totals are also converted to marginal 

probabilities by dividing by the grand total 𝑵 (Figure 3). 

Transition probabilities:  𝑝𝑟𝑜𝑏 (𝑛𝑖, 𝑛𝑗
′) = 𝑓𝑟𝑒𝑞 (𝑛𝑖, 𝑛𝑗

′)/𝑁 

Marginal probabilities (Rows): 𝑝𝑟𝑜𝑏 (𝑛𝑖)   =  𝑅𝑖/𝑁   =  𝑓𝑟𝑒𝑞 (𝑛𝑖)/𝑁  =  ∑ 𝑓𝑟𝑒𝑞4
𝑗=1 (𝑛𝑖 , 𝑛𝑗

′)/

𝑁 

Marginal probabilities (Columns): 𝑝𝑟𝑜𝑏 (𝑛′
𝑗)   =  𝐶𝑗/𝑁   =  𝑓𝑟𝑒𝑞 (𝑛′

𝑗)/𝑁  =  

∑ 𝑓𝑟𝑒𝑞4
𝑖=1 (𝑛𝑖, 𝑛𝑗

′)/𝑁 
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Figure 3. Data for a fictional sequence of L = 1000 nucleotides, where n1 = C and n1000 = T 

 

The joint probabilities assume independence, that is the occurrence of 𝒏′ is independent of the 

occurrence of 𝒏 before it. However, to measure or establish if there is dependency between 

nucleotides in the regulatory sequence, a Chi squared test can be done. The Chi squared statistic 

𝑋2can be obtained as the sum of residuals using the following formula: 

 

where: 

𝑂𝑖 is the observed frequency (number of observations) of the nucleotide pair in each cell, 

calculated as transition frequencies: 

𝑂𝑖 = 𝑓𝑟𝑒𝑞 (𝑛𝑖, 𝑛𝑗
′) 

and: 

𝐸𝑖 is the theoretical frequency of each cell given the hypothesis of independence. It is calculated 

as joint frequencies, which is the product of the corresponding marginal probabilities (Figure 4). 

𝐸𝑖 = 𝑓𝑟𝑒𝑞 (𝑛𝑖, 𝑛𝑗
′) = 𝑓𝑟𝑒𝑞 (𝑛𝑖) x 𝑓𝑟𝑒𝑞 (𝑛′

𝑗) 
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Figure 35. Joint probabilities = product of the corresponding marginal probabilities 

 

To test for independence, 𝑋2 is used to obtain a 𝒑-value by comparing the value of 𝑋2 to a Chi-

squared distribution (df =[(r-1)(c-1 )], 𝜶 = 0.005). If the 𝒑-value is higher than 𝜶 (𝒑 ≥ 𝜶), then 

𝒑 is not statistically significant for 𝒎 = 1. This means that the nucleotides in the sequence 

occur independently of each other and the Markov order of the sequence 𝑚 is established as zero 

(𝒎 = 0). Alternatively, if the 𝒑-value is less than 𝜶 (𝒑 ≤ 𝜶), then 𝒑 is statistically significant. 

This means that there is dependency between the nucleotides in the sequence, and 𝑚 is not 

established. 

When 𝒎 is not established, the cylcle is repeated assuming a higher Markov order 𝒎 = 2. An 

order 2 transition matrix is computed and the 𝑂𝑖 and 𝐸𝑖values of tri-nucleotide words are 

calculated (Figure 5). Subsequently, the 𝒑-value is obtained for 𝑋2 If 𝒑 ≥ 𝜶, then 𝒑 is not 

statistically significant for 𝒎 = 2, and the Markov order of the sequence is established as 𝒎 =

1 (i.e. a first-order Markov model fits the data). This means that the occurrence of nucleotides 

in the sequence depend on the identity of the preceding nucleotide. Else, if 𝒑 ≤ 𝜶, then 𝒑 is 

significant, and the order of dependency of nucleotides in the sequence has not been established. 

This cycle is then repeated till the Markov order 𝒎 is established by a non-significant 𝒑-value. 
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Figure 5. Second order transition matrix summarizing nucleotide dependency for a fictional 
sequence of L = 1000 nucleotides. 
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C.2. Algorithm 1 to Fit Markov dependency of nucleotides in SNP-regulatory-sequence  

The Markov algorithm is designed to predict the Markov order of dependency m of nucleotides 

in the local environment of the SNP. 

Algorithm 1. Execute Markov dependency (𝒎) 

Given a sequence 𝑺𝒊, that contains a SNP 𝒁𝒊 with reference allele 𝒁𝒊,𝒓, and mutant 

allele/s 𝒁𝒊,𝒎; 

SNP 𝒁𝒊 is in a TFBS 𝑻𝒊, within a regulatory region 𝑹𝒊; 

1: for all 𝑺𝒓 (with reference allele  𝒁𝒊,𝒓)  in the file do steps 2-23 

2:  for nucleotide base 𝑛  in 𝑺𝒓 do 

3:  compute frequencies “𝑨”, “𝑪”, “𝑮”, and “𝑻” 

4:  compute transition matrix for all possible duplets 𝒅𝒊 in 𝑺𝒊 

5:   observed frequency (𝑶𝒊) of 𝒅𝒊== transition frequency 

6:  compute expected frequency (𝑬𝒊) of 𝒅𝒊 

7:  compute chi-square statistic ( 𝝌
  𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
𝟐 ) 

8:  compute 𝒑 value, 𝜶 = 0.05 

9: if 𝒑 ≥ 𝛼 then 

10:  Report 𝝌
  𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
𝟐  is not significant 

11: end if 

12: Print 𝒑-value, “Not Significant”, “Markov order is 0” 

13: else 

14: if 𝒑 ≤ 𝛼 , 𝒑 is significant 

15:  compute transition matrix for all possible triplets 𝒕𝒊 in 𝑺𝒊  

16  repeat steps 5-8 

17 if 𝒑 ≥ 𝛼 then 

18:  Report 𝝌
  𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
𝟐

 is not significant, 

19: end if 

20: Print 𝒑-value, “Not Significant”, “Markov order is 1” 

21: else 

22: if 𝒑 ≤ 𝛼 , 𝒑 is significant 

23:  continue cycle till Markov order is established 

24: Repeat process for 𝑺𝒎 (with mutant allele  𝒁𝒊,𝒎) from steps 2 to 23 
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C.2.1. Implementation of Algorithm 1. 

The algorithm was developed and implemented using the Python 2.7.3 programming software. 

The numpy and scipy modules were also applied for scripting. The SNP-sequences 𝑺𝒊 are called 

in fasta file format. In the first instance, the Markov order of dependency of nucleotides (𝒎) in 

of the sequence 𝑺𝒊 is assumed to be 1. This means that the occurrence of each nucleotide base 

(A, C, G, or T) in 𝑺𝒊 depends on the identity of the one before it. However, if 𝒑 is not significant, 

then 𝑚 is 0 and the nucleotides occur independently. Else the 𝒎 of 𝑺𝒊 is assumed to be order 2, 

the cycle is repeated till Markov order is established. The algorithm also computes the chi-

squared statistic 𝑋2  using a numpy function and determines the p-value by comparing the value 

of the 𝑋2 statistic and the degrees of freedom to a chi-squared distribution.  

 

C.3. Motif Representation (probability) of motifs in local background 

The motif representation of each binding sequence is computed as a Standard residual value 𝑺𝑹𝒙, 

the calculation is based on the established 𝒎 of the SNP-regulatory sequence. Motif 

representation is the probability that a particular motif will occur and entails computing the 

observed probabilities (𝑶𝒊) and expectancy values (𝑬𝒊). 

𝑆 𝑎𝑛𝑑𝑎𝑟𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑺𝑹𝒙) = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝒊/𝑆𝑞𝑟  (𝑬𝒊)  , 𝑺𝑹𝒊 > |𝟐| is high 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑥 = 𝑶𝒊 − 𝑬𝒊 

where   for 𝒎 = 0; 

𝑶𝑖 =  observed probabilities =, 𝑝𝑟𝑜𝑏 (𝑛) 

 𝑬𝑖 = joint probabilities = 𝑝𝑟𝑜𝑏 (𝑛𝑖) * 𝑝𝑟𝑜𝑏 (𝑛′
𝑗) 

 

for 𝒎 > 0; 

𝑶𝑖 = transition probabilities =𝑝𝑟𝑜𝑏 (𝑛𝑖, 𝑛𝑗
′) 

𝑬𝑖 = conditional probabilities = 𝑝𝑟𝑜𝑏 (𝑛𝑖, ) * 𝑝𝑟𝑜𝑏 (𝑛′
𝑗| 𝑛𝑖) 

 

For the theoretical probability 𝑬𝒊, joint probabilities assume independence of nucleotides in the 

sequence. But if there is dependency within the sequence, then 𝑬𝒊, is computed as a conditional 

probability and depends on the established Markov order of the sequence. Thus, the probability 

of a sequence in which the identity of the second nucleotide depends on the identity of the first 
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one.is the probability that the sequence starts with nucleotide 𝑛𝑖 multiplied by the probability 

of the transition  𝑛𝑖  n′j. Given a word or sub-motif of length 3 (Ø𝑘=3), if 𝒎 = 1, the conditional 

probability of “ACG”is 𝑝𝑟𝑜𝑏 (𝐴) * 𝑝𝑟𝑜𝑏 of the transition  (𝐴1
23 →  𝐶2 ) * 𝑝𝑟𝑜𝑏 (𝐶2  →  𝐺3) 

denoted as: 

𝒑𝒓𝒐𝒃 ("𝐀𝐂𝐆") = 𝑝𝑟𝑜𝑏 ( 𝑛𝑖=1 = "A")*𝑝𝑟𝑜𝑏 ( 𝑛𝑖=2 = "C"| 𝑛𝑖=1 = "A")*𝑝𝑟𝑜𝑏 ( 𝑛𝑖=3 = "G"| 𝑛𝑖=2 =

"C") 

For 𝒎 = 2, 

𝒑𝒓𝒐𝒃 ("𝐀𝐂𝐆") = 𝑝𝑟𝑜𝑏 ( 𝑛𝑖=2 = "C"| 𝑛𝑖=1 = "A") * 𝑝𝑟𝑜𝑏 ( 𝑛𝑖=3 = "G"| 𝑛𝑖=1,2 = "AC") 

For each SNP environment, the observed and conditional probabilities are determined using the 

appropriate transition matrices, so as to yield the value of 𝑺𝑹𝒙 

Algorithm 2. Compute Observed Probabilities (𝑶𝒊) and Expectancies (𝑬𝒊) of tri-mers in 

sub-sequence 

Given a sequence 𝑺𝒊, that contains a SNP 𝒁𝒊 with reference allele 𝒁𝒊,𝒓, and mutant 

allele/s 𝒁𝒊,𝒎; 

Create a sub-sequence 𝑻𝒊, that also contains SNP 𝒁𝒊 in a TFBS 𝑻𝒊, within a regulatory 

region 𝑹𝒊; 

1: for all 𝑻𝒊 in the file do 

2:  for nucleotide base in 𝑻𝒓 do 

3:   generate k-mers (k=3) in single-step sliding window 

4:  for each k-mer do 

5:   from 𝑺𝒊 compute observed probability (𝑶𝒊) 

6:   compute Expectancy (𝑬𝒊) given 𝑚 of 𝑺𝒊 

7:  else (if 𝑚 not known) 

8:   compute (𝑬𝒊) assuming 𝑚 = 0 

9:   compute (𝑬𝒊) assuming 𝑚 = 1 

compute (𝑬𝒊) assuming 𝑚 = 2 

end 

                                                           
23 where A1 represents a nucleotide of identity “A” at position 1 
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Repeat process for 𝑻𝒎 

 

C.3. Change in motif representation. 

The change in representation of the binding sequence is calculated as the difference between the 

SR value of the reference allele sequence and the SR value of the mutant allele sequence. 

Thirteen 𝜟𝑺𝑹 values will be generated per binding sequence. The maximum score is determined 

from the set of 𝜟𝑺𝑹 values and denoted as 𝑫𝒎𝒂𝒙. 

𝑀𝑜 𝑖𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝜟𝑺𝑹 = 𝑺𝑹𝒓 − 𝑺𝑹𝒎 

𝐷𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝜟𝑹) =  𝑀𝑎𝑥   𝚫𝑹 , 𝚫𝑹𝟐, 𝚫𝑹𝟑, 𝚫𝑹𝟒, 𝚫𝑹 , 𝚫𝑹𝟔, 𝚫𝑹𝟕, 𝚫𝑹𝟖, 𝚫𝑹𝟗, 𝚫𝑹 𝟎, …   𝚫𝑹 𝟑] 

𝑫𝒎𝒂𝒙 is the point with highest difference in the representation between the reference allele 

binding sequence and the mutant allele binding sequence of the SNP. This score is obtained for 

all SNPs in the three categories, TFBS-SNPs, REG-SNP and NON-REG-SNP. 
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C.4 Python Script 

 

Simple scripts were written in python to compute the Markov order of dependency of  

nucleotides in regulatory sequences, and to compute Dmax scores. The following is a  

script applied to compute the Dmax of a zero order sequence.  

 

 

#Import the following python functions: 

from numpy import * 

from scipy.stats import chi2 

from Bio.Seq import Seq 

from Bio import SeqIO 

from decimal import Decimal 

import re, itertools,  numpy as np, scipy as sp, random, math 

 

#Create instances, strings and lists, for appending data and calculation: 

duplet_list=[], triplet_list = [],raw_sequence='', , transition_freq = [] . . . . . . . . . etc 

 

#define functions: 

# function generating duplets to evaluate markov first order dependency 

def dups(lst): 

    for i in range(1, len(lst)): 

        yield lst[i-1], lst[i] 

 

#function generating triplets to evaluate markov second order dependency 

def trips(lst): 

    for i in range(1, len(lst)-1): 

        yield lst[i-1], lst[i], lst[i+1] 

 

#call regulatory sequences in fasta format from sequence files: 

for seq_record in SeqIO.parse("TFBS-SEQ1SEPT2014.fasta", "fasta"): 
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    sequence = seq_record.seq     

    sequence_list = list(sequence)     

    #print sequence_list 

    print seq_record.id 

    MAXI_ABSI_DIFF_list.append( seq_record.id) # appends SNP-ID to final result 

    SIGN_OF_list.append(seq_record.id) # appends SNP-ID to final result 

     

    #extract upflank of SNP [0-299 /R/M/ 305-605]  

    up_flank = sequence_list[0:300]  

    #print up_flank     

 

    #extract downflank of SNP [0-299 /R/M/ 305-605] 

    down_flank = sequence_list[305:605] 

    #print len(down_flank) 

 

    #Extract SNP Alleles from sequence 

    SNP_Position_REF = sequence_list[301:302] 

    #print SNP_Position_REF 

    SNP_Position_MUT = sequence_list[303:304] 

    #print SNP_Position_MUT 

 

    #join both flanks 

    join_flanks = up_flank + down_flank 

    #print join_flanks 

    #print len (join_flanks) 

 

    #Create reference allele sequence 

    ORI_sequence_REF = join_flanks[0:300] + SNP_Position_REF + join_flanks[300:600] 

    #print ORI_sequence_REF[298:303] 

    #print len(ORI_sequence_REF) 

 

    #Create mutant allele sequence 
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    ORI_sequence_MUT = join_flanks[0:300] + SNP_Position_MUT + join_flanks[300:600] 

    #print ORI_sequence_MUT[298:303] 

    #print len(ORI_sequence_MUT) 

    sequence_tot = len(ORI_sequence_REF) 

     

   #Compute 0 order Markov scores 

    nucleotide_freq_ref = [ORI_sequence_REF.count('A'),ORI_sequence_REF.count('C'), 

    ....ORI_sequence_REF.count('G'), ORI_sequence_REF.count('T')] 

    nucleotide_freq1_ref = [float(i) for i in nucleotide_freq_ref] 

    nucleotide_prob_ref = [i/float(sequence_tot) for i in nucleotide_freq1_ref] 

    nucleotide_prob_ref = [round(i,4) for i in nucleotide_prob_ref] 

     

    #Create 0 order Markov score dictionary 

    nucleotides = ['A', 'C', 'G', 'T'] 

    markov0_dict = dict(zip(nucleotides, nucleotide_prob_ref)) 

     

     

   #Generate overlapping trimers from regulatory sequence using a sliding window method 

    # SNP POSITION IS 300 

    # First triplet; [XXX]XXXX(XSX)XXXXXXX 

    SNP_SUR_MOTIF1 = ORI_sequence_REF[292:295]  

    #print SNP_SUR_MOTIF1 

    SNP_SUR_MOTIF1_obs = "".join(str(x) for x in SNP_SUR_MOTIF1)  

    #print SNP_SUR_MOTIF1_obs 

 

    # Second triplet; X[XXX]XXX(XSX)XXXXXXX 

    SNP_SUR_MOTIF2 = ORI_sequence_REF[293:296] 

    #print SNP_SUR_MOTIF2 

    SNP_SUR_MOTIF2_obs = "".join(str(x) for x in SNP_SUR_MOTIF2)  

    #print SNP_SUR_MOTIF2_obs 

 . 

 . 
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 . 

 . 

    # Twelveth triplet; XXXXXXX(XSX)XXX[XXX]X 

    SNP_SUR_MOTIF14 = ORI_sequence_REF[305:308] 

    #print SNP_SUR_MOTIF14 

    SNP_SUR_MOTIF14_obs = "".join(str(x) for x in SNP_SUR_MOTIF14)  

    #print SNP_SUR_MOTIF14_obs 

 

    # Thirtheenth triplet; XXXXXXX(XSX)XXXX[XXX] 

    SNP_SUR_MOTIF15 = ORI_sequence_REF[306:309] 

    #print SNP_SUR_MOTIF15 

    SNP_SUR_MOTIF15_obs = "".join(str(x) for x in SNP_SUR_MOTIF15)  

    #print SNP_SUR_MOTIF15_obs 

 

 

# Compute Expected probabilities of Trimers in the SNP environment (in this case, Markov Order = 1) 

# First triplet 

    prob_motif1 = markov0_dict[SNP_SUR_MOTIF1[0]] *  

    markov0_dict[SNP_SUR_MOTIF1[1]] * markov0_dict[SNP_SUR_MOTIF1[2]] 

    obs_win_1 = markov2_obs_dict[SNP_SUR_MOTIF1_obs] 

 

   # append computed scores to a list  

    expected_probs_ref_coll.append(prob_motif1) 

    observed_probs_ref_coll.append(obs_win_1) 

 

# Second triplet 

    prob_motif2 = markov0_dict[SNP_SUR_MOTIF2[0]] *  

    markov0_dict[SNP_SUR_MOTIF2[1]] * markov0_dict[SNP_SUR_MOTIF2[2]]  

    obs_win_2 = markov2_obs_dict[SNP_SUR_MOTIF2_obs] 

    expected_probs_ref_coll.append(prob_motif2) 

    observed_probs_ref_coll.append(obs_win_2)         

 . 



 

147 
 

 . 

 . 

# Twelveth triplet 

    prob_motif14 = markov0_dict[SNP_SUR_MOTIF14[0]] *  

    markov0_dict[SNP_SUR_MOTIF14[1]] * markov0_dict[SNP_SUR_MOTIF14[2]]  

    obs_win_14 = markov2_obs_dict[SNP_SUR_MOTIF14_obs] 

    expected_probs_ref_coll.append(prob_motif14) 

    observed_probs_ref_coll.append(obs_win_14)   

 

# Thirteenh triplet 

    prob_motif15 = markov0_dict[SNP_SUR_MOTIF15[0]] *  

    markov0_dict[SNP_SUR_MOTIF15[1]] * markov0_dict[SNP_SUR_MOTIF15[2]]  

    obs_win_15 = markov2_obs_dict[SNP_SUR_MOTIF15_obs] 

    expected_probs_ref_coll.append(prob_motif15) 

    observed_probs_ref_coll.append(obs_win_15)   

 

 

    ##compute SR = (O - E)/ Sqrt (E) ...convert probs to frequencies *599 

    expected_probs_ref_coll_1 = array(expected_probs_ref_coll) 

    

    observed_probs_ref_coll_1 = array(observed_probs_ref_coll) 

    O_subtract_E_ref = observed_probs_ref_coll_1 - expected_probs_ref_coll_1 

    expected_probs_ref_coll_1_sqrt = np.sqrt(expected_probs_ref_coll_1) 

    O_subtract_E_over_sqrtE_ref = O_subtract_E_ref/expected_probs_ref_coll_1_sqrt 

 

#Repeat same as above for Mutant allele Sequence 

 

#Compute Dmax (MAX (ABS (REF-MUT))) 

        REF_minus_MUT = O_subtract_E_over_sqrtE_ref - O_subtract_E_over_sqrtE_mut 

        Absi_REF_minus_MUT  = abs(REF_minus_MUT)  

        MAXI_ABSI_DIFF = max(Absi_REF_minus_MUT) ### value of Dmax 

        SIGN_OF = MAXI_DIFF == MAXI_ABSI_DIFF #### to know original sign of Dmax 
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#reshuffle regulatory sequence 5000 times to generate random Dmax values in order 

to determine the significance of the original Dmax. 

 

         count = 0 

         while (count<5000):         

         random.shuffle(join_flanks) 

        #print join_flanks[298:300],join_flanks[300:302] 

        #mixed_sequence = join_flanks[0:300] + join_flanks[300:600] 

        #print mixed_sequence 

        #print len(mixed_sequence) 

 

        mixed_sequence_REF = join_flanks[0:300] + SNP_Position_REF + join_flanks[300:600] 

        #print mixed_sequence_REF[298:303] 

        #print len(mixed_sequence_REF) 

 

        mixed_sequence_MUT = join_flanks[0:300] + SNP_Position_MUT +  

        join_flanks[300:600] 

        #print mixed_sequence_MUT[298:303] 

        #print len(mixed_sequence_MUT) 

 

        sequence_tot = len(mixed_sequence_REF) 

        #print sequence_tot 

 

         count = count + 1 

 

 

#Repeat entire process for new reshuffled sequence, compute O, E, SR and Dmax. 

#Refresh lists by deleting data of previous sequence, then call new sequence. 
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C.5 Statistics for Significant TFBS SNPs 

Table 12. Dmax and P values for the TFBS-SNPs that test positive for SNP sensitivity 

 

 

 

 

  

Variant ID Dmax Dmax Dmax Sus Region Background Model

SIGNIFICANT 0 1 2 0 1 2 Name N/E = Not Established
REF ALLELE MUT ALLELE

rs201991101 3.2587 3.8046 0.0259 0.0454 0.0028 0.0012 19p13.2 N/E N/E

rs200372524 5.6772 3.0151 0.0147 0.0000 0.0164 0.2086 19p13.2 N/E N/E

rs140935015 5.5389 2.7722 0.0129 0.0002 0.0420 0.4106 MHC N/E N/E

rs377664089 6.0142 3.2429 0.0109 0.0002 0.0144 0.5808 3p21.31 N/E N/E

rs371391397 4.0387 3.2229 0.0071 0.0096 0.0122 0.8630 19p13.2 N/E N/E

rs7203793 3.7016 2.8506 0.0155 0.0178 0.0394 0.0706 16p13.3 N/E N/E

rs140000554 3.4372 4.3251 0.0121 0.0342 0.0002 0.4832 MHC 0 0

rs151190212 7.0912 2.0264 0.0310 0.0000 0.2066 0.0008 MHC N/E N/E

rs114096282 6.9658 2.6129 0.0159 0.0000 0.0556 0.1546 2p23.3 N/E N/E

rs138680304 4.6429 1.8624 0.0131 0.0006 0.2812 0.4186 2p23.3 N/E N/E

rs372996186 4.9207 2.1970 0.0112 0.0012 0.1380 0.3250 19p13.2 N/E N/E

rs2267646 4.7346 1.0114 0.0066 0.0014 0.7294 0.8622 MHC N/E N/E

rs188548927 4.5298 1.2157 0.0175 0.0022 0.6150 0.1818 7p12.2 N/E N/E

rs141305257 4.3615 0.4984 0.0059 0.0046 0.9574 0.8910 16p11.2 2 2

rs3134944 4.1205 2.6313 0.0148 0.0052 0.0562 0.2990 MHC 0 0

rs35131721 4.1995 2.3002 0.0144 0.0054 0.1284 0.2836 MHC N/E N/E

rs182785851 4.1407 1.8244 0.0123 0.0088 0.2944 0.3354 7p15.2 N/E N/E

rs184649955 4.0808 2.7347 0.0084 0.0090 0.0508 0.6846 12q13.2 N/E N/E

rs7741418 4.1217 0.6879 0.0175 0.0096 0.9004 0.1046 MHC N/E N/E

rs3130288 3.9943 1.4025 0.0091 0.0108 0.5196 0.6662 MHC N/E N/E

rs78180266 3.8173 1.8773 0.0209 0.0140 0.2774 0.0118 7p12.2 N/E N/E

rs116431137 3.7497 1.8526 0.0259 0.0182 0.2778 0.0000 MHC N/E N/E

rs34638008 3.6256 1.0248 0.0233 0.0236 0.7458 0.0018 3p21.31 N/E N/E

rs56245106 3.9326 0.9111 0.0099 0.0144 0.7994 0.6636 MHC N/E N/E

rs201033718 3.6274 2.1600 0.0087 0.0222 0.1536 0.6564 MHC N/E N/E

rs371243647 3.4342 0.4959 0.0090 0.0286 0.9466 0.5624 16p13.3 N/E N/E

rs6921948 3.4668 1.5055 0.0084 0.0292 0.4586 0.7518 MHC 1 1

rs139221703 3.4101 1.7597 0.0109 0.0328 0.3008 0.4626 16p13.3 N/E N/E

rs191450302 3.4001 1.5373 0.0123 0.0346 0.4262 0.3644 16q23.1 N/E N/E

rs141193051 3.3260 1.8432 0.0084 0.0420 0.2612 0.6398 19p13.2 N/E N/E

rs201432982 3.0687 2.6915 0.0138 0.0692 0.0396 0.3242 19p13.2 N/E N/E

rs13206219 3.0920 3.3090 0.0081 0.0696 0.0144 0.7664 MHC N/E N/E

rs8192581 2.9018 2.8728 0.0036 0.0914 0.0330 0.9838 MHC 0 0

rs187731105 2.7626 3.4749 0.0066 0.1126 0.0078 0.8474 16p13.3 N/E N/E

rs117640654 2.7423 3.0526 0.0241 0.1252 0.0238 0.0064 2p23.3 N/E N/E

rs8192582 2.6939 3.4722 0.0111 0.1278 0.0068 0.4956 MHC 0 0

rs9262142 1.7649 1.1543 0.0221 0.4658 0.6766 0.0172 MHC N/E N/E

P-VALUE
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C.6 Statistics for Significant TFBS SNPs 

Table 13. Dmax and P values for the TFBS-SNPs that test negative for SNP sensitivity 

 

Variant ID Dmax Dmax Dmax Sus Region Background Model

NON-SIGNIFICANT 0 1 2 0 1 2 Name N/E = Not Established
REF ALLELE MUT ALLELE

rs374210880 3.240573 2.034279 0.010892 0.051 0.2004 0.5398 2p23.3 N/E N/E

rs78370725 3.160715 1.091354 0.012047 0.0564 0.6782 0.3532 19p13.2 N/E N/E

rs199581527 3.027160 1.603788 0.014405 0.0776 0.3894 0.2464 12q13.2 N/E N/E

rs139490960 2.803060 1.273316 0.003930 0.1138 0.5864 0.9802 2p23.3 N/E N/E

rs114760565 2.676032 0.375281 0.011650 0.126 0.9808 0.514 19p13.2 N/E N/E

rs181119155 2.356022 2.577291 0.012286 0.2174 0.071 0.4286 16p13.3 N/E N/E

rs204997 3.176675 0.908030 0.013487 0.0572 0.7946 0.239 MHC 1 1

rs199672847 2.933521 2.353332 0.015793 0.0874 0.1008 0.2212 MHC 0 0

rs113123395 2.901693 1.207738 0.008911 0.0896 0.6278 0.736 MHC 0 0

rs59564381 2.846325 2.362478 0.012286 0.0988 0.114 0.3508 MHC 0 0

rs147592187 2.859507 1.382912 0.011476 0.1 0.5258 0.5146 7p12.2 N/E N/E

rs148068088 2.824492 2.237404 0.007868 0.1098 0.1376 0.818 MHC 1 1

rs113977555 2.746047 0.702883 0.012286 0.1192 0.8942 0.3112 MHC N/E N/E

rs9469383 2.702570 1.527362 0.009876 0.1338 0.445 0.6306 MHC N/E N/E

rs73728831 2.543302 1.271656 0.009876 0.1598 0.5924 0.684 MHC N/E N/E

rs141920214 2.525023 1.989088 0.007220 0.172 0.228 0.8014 MHC 0 0

rs12194528 2.320206 1.031810 0.012286 0.2354 0.7296 0.3962 MHC 2 2

rs148149314 2.271842 1.912886 0.007121 0.2386 0.2484 0.8572 16p13.3 N/E N/E

rs183881418 2.297608 0.926283 0.012185 0.245 0.791 0.4006 19p13.2 N/E N/E

rs373832002 2.260078 0.944472 0.005302 0.2524 0.7518 0.9056 16p11.2 N/E N/E

rs112027660 2.210722 0.745931 0.010981 0.2638 0.8802 0.5322 3p21.31 N/E N/E

rs149723334 2.189628 0.723222 0.012291 0.2718 0.8806 0.5062 7p12.2 N/E N/E

rs794427 2.157357 1.094423 0.012286 0.2904 0.699 0.4722 16p13.3 N/E N/E

rs202169452 2.114167 1.252146 0.011387 0.2972 0.6124 0.4252 MHC 1 1

rs75810024 2.112495 1.463208 0.012393 0.2976 0.487 0.355 16p13.13 N/E N/E

rs2735072 2.112382 1.850149 0.008361 0.3046 0.2812 0.7378 MHC N/E N/E

rs149780751 2.058868 2.005689 0.012393 0.3246 0.213 0.408 MHC N/E N/E

rs375601741 2.024241 1.067739 0.012968 0.3436 0.7152 0.3484 12q13.2 N/E N/E

rs368672104 1.966531 1.281681 0.015470 0.357 0.5828 0.1888 16q23.1 N/E N/E

rs111297363 1.968790 0.563793 0.014405 0.3634 0.945 0.1482 MHC 0 0

rs200223154 1.966035 0.319814 0.008552 0.3694 0.9886 0.72 MHC 2 2

rs150428668 1.936227 0.962457 0.012968 0.384 0.781 0.3294 3p21.31 N/E N/E

rs11833282 1.926165 2.124640 0.007220 0.3858 0.1686 0.8274 12q13.2 N/E N/E

rs116908088 1.882544 1.475385 0.012968 0.3986 0.4714 0.4712 16q23.1 N/E N/E

rs77744705 1.833181 1.726470 0.006201 0.4264 0.3444 0.92 16p13.13 N/E N/E

rs150341510 1.809561 2.100026 0.017093 0.4376 0.173 0.1128 16p13.3 N/E N/E

rs11575516 1.616444 1.575862 0.015178 0.551 0.4166 0.1428 7p12.2 0 0

rs188878585 1.587201 2.025235 0.007913 0.5522 0.2156 0.7708 MHC N/E N/E

rs150127869 1.486201 2.341205 0.006044 0.6064 0.1226 0.9064 2p23.3 N/E N/E

rs137926274 1.457074 1.097976 0.014405 0.6122 0.7052 0.275 MHC 0 0

rs2735073 1.397497 1.753492 0.009732 0.623 0.311 0.623 MHC N/E N/E

rs188429583 1.348052 0.495543 0.004180 0.6552 0.9518 0.9712 7p15.2 N/E N/E

rs28382772 1.335038 0.545949 0.006201 0.6776 0.951 0.8876 19p13.2 0 0

rs371334332 1.180137 1.432280 0.011558 0.7428 0.4678 0.4256 16p11.2 N/E N/E

rs117234201 1.170157 0.871440 0.012286 0.7702 0.822 0.4316 16q23.1 N/E N/E

rs117071466 1.089586 0.921046 0.019169 0.792 0.7792 0.1052 16p11.2 N/E N/E

rs201503590 1.028949 0.384340 0.008722 0.8146 0.9832 0.7496 MHC N/E N/E

rs148180043 0.791948 1.800470 0.006817 0.9186 0.3082 0.8754 12q13.2 N/E N/E

rs12828657 0.732909 0.922325 0.006004 0.928 0.794 0.9206 12q13.2 N/E N/E

rs183163194 0.686688 0.453070 0.008402 0.9376 0.9732 0.7074 MHC N/E N/E

rs4781062 0.568535 0.552849 0.014405 0.9634 0.9452 0.234 16p13.13 1 1

rs28382773 0.515414 1.725389 0.004488 0.969 0.3278 0.9678 19p13.2 0 0

rs7567804 0.507978 0.549044 0.013589 0.9738 0.9468 0.3142 2q11.2 N/E N/E

rs185919902 0.420633 0.972615 0.004908 0.9842 0.7514 0.9478 19p13.2 N/E N/E

rs190388624 0.401348 0.953902 0.009322 0.9874 0.7622 0.6532 16p11.2 N/E N/E

P-VALUE
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C.7. Binding motifs in which the significant TFBS-SNPs occur 

Table 14. Binding motifs in which the significant TFBS-SNPs occur. The table shows 

the name of the motif, indicates the SNP position in the motif, and if it is in a high 

information position. A motif change score obtained from ensembl is also shown. 

 

  

SNP ID Motif Family High information SNP position Motif change score

& Motif ID position in motif (Ensembl)

rs138680304 USF1:MA0093.2 No 5 Less like consequence

USF1:MA0281.1 Yes 4 Less like consequence

rs78180266 Max:MA0058.2 Yes 6 Less like consequence

rs141305257 USF1:MA0281.1 Yes 4 Less like consequence

USF1:MA0093.2 No 5 Less like consequence

rs200372524 USF1:MA0281.1 Yes 7 Less like consequence

rs114096282 Egr1:MA0162.2 Yes 11 Less like consequence

SP1:MA0079.3 No 11 Less like consequence

rs117640654 USF1:MA0281.1 Yes 7 Less like consequence

rs377664089 Tcf12:MA0521.1 Yes 8 Less like consequence

rs34638008 USF1:MA0281.1 Yes 4 Less like consequence

rs188548927 Egr1:MA0337.1 Yes 2 Less like consequence

rs182785851 Egr1:MA0341.1 Yes 3 Less like consequence

Egr1:MA0366.1 Yes 3 Less like consequence

rs184649955 Egr1:MA0162.2 No 4 Less like consequence

rs7203793 USF1:MA0093.2 Yes 3 Less like consequence

rs371243647 SP1:MA0079.3 No 2 Less like consequence

rs139221703 Znf263:MA0528.1 No 5 Less like consequence

rs187731105 Znf263:MA0528.1 No 13 Less like consequence

rs191450302 SP1:MA0079.3 Yes 4 Less like consequence

Egr1:MA0162.2 No 4 Less like consequence

Egr1:MA0337.1 Yes 4 Less like consequence

rs201991101 USF1:MA0093.2 No 5 Less like consequence

rs371391397 E2F4:MA0470.1 Yes 4 Less like consequence

rs372996186 Egr1:MA0341.1 Yes 3 Less like consequence

Egr1:MA0366.1 Yes 3 Less like consequence

rs201432982 E2F4:MA0470.1 Yes 4 Less like consequence

rs141193051 E2F4:MA0470.1 No 6 Less like consequence

rs140935015 FOSL2:MA0478.1 Yes 4 Less like consequence

Jund:MA0491.1 Yes 3 Less like consequence

rs140000554 USF1:MA0093.2 No 2 Less like consequence

USF1:MA0093.2 No 11 Less like consequence

USF1:MA0281.1 No 1 No change

rs151190212 EBF1:MA0154.2 Yes 3 Less like consequence

rs2267646 Egr1:MA0366.1 Yes 3 Less like consequence

Egr1:MA0341.1 Yes 3 Less like consequence

rs3134944 USF1:MA0093.2 No 5 Less like consequence

USF1:MA0281.1 Yes 4 Less like consequence

rs35131721 EBF1:MA0154.2 Yes 5 Less like consequence

rs7741418 USF1:MA0093.2 No 5 Less like consequence

USF1:MA0281.1 Yes 4 Less like consequence

rs3130288 SP1:MA0079.3 No 11 Less like consequence

rs116431137 Jund:MA0491.1 Yes 9 Less like consequence

rs56245106 Jund:MA0491.1 Yes 3 Less like consequence

rs201033718 Egr1:MA0341.1 Yes 5 Less like consequence

Egr1:MA0366.1 No 5 Less like consequence

rs6921948 FOXA1:MA0546.1 Yes 8 Less like consequence

rs9262142 Jund:MA0491.1 Yes 4 Less like consequence

FOSL1:MA0477.1 Yes 4 Less like consequence

rs8192582 Egr1:MA0162.2 Yes 11 Less like consequence

SP1:MA0079.3 No 11 Less like consequence

rs8192581 Egr1:MA0162.2 No 9 Less like consequence

SP1:MA0079.3 No 9 Less like consequence

rs13206219 Jund:MA0491.1 Yes 4 Less like consequence
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C.8. Binding motifs in which the non-significant TFBS-SNPs occur  

Table 15. Binding motifs in which the non-significant TFBS-SNPs occur. The table 

shows the name of the motif, indicates the SNP position in the motif, and if it is in a 

high information position. 

 

 

. 

. 

SNP ID Motif Family High information SNP position Motif change score

& Motif ID position in motif (Ensembl)

rs112027660 Tcf12:MA0521.1 Yes 4 Less like consequence

rs114760565 ELF1:MA0473.1 Yes 11 Less like consequence

rs11575516 USF1:MA0281.1 Yes 5 Less like consequence

rs116908088 Nrf1:MA0506.1 Yes 3 Less like consequence

rs117071466 CTCFL:MA0531.1 No 4 More like consequence

rs117234201 Nrf1:MA0506.1 No 6 Less like consequence

rs11833282 Egr1:MA0162.2 No 9 Less like consequence

rs12828657 ZBTB33:MA0527.1 No 15 Less like consequence

rs137926274 Yy1:MA0095.2 Yes 8 Less like consequence

rs139490960 USF1:MA0281.1 Yes 4 Less like consequence

rs147592187 Jund:MA0491.1 Yes 3 Less like consequence

rs148068088 Egr1:MA0341.1 No 1 Less like consequence

rs148068088 Egr1:MA0366.1 Yes 1 Less like consequence

rs148149314 Egr1:MA0341.1 Yes 4 Less like consequence

rs148149314 Egr1:MA0366.1 Yes 4 Less like consequence

rs148180043 Yy1:MA0095.2 No 10 Less like consequence

rs149723334 Egr1:MA0423.1 Yes 2 Less like consequence

rs150127869 FOSL1:MA0477.1 No 11 Less like consequence

rs150127869 Jund:MA0491.1 No 11 More like consequence

rs150341510 FOSL1:MA0477.1 Yes 7 Less like consequence

rs150341510 Jund:MA0491.1 Yes 7 Less like consequence

rs150428668 MEF2A:MA0585.1 Yes 6 Less like consequence

rs181119155 MEF2A:MA0052.2 No 12 Less like consequence

rs183163194 SP1:MA0079.3 No 3 Less like consequence

rs183881418 Egr1:MA0341.1 Yes 2 Less like consequence

rs183881418 Egr1:MA0366.1 Yes 2 Less like consequence

rs185919902 Tcf12:MA0521.1 Yes 8 More like consequence

rs188429583 USF1:MA0093.2 No 1 More like consequence

rs188878585 Egr1:MA0341.1 Yes 5 Less like consequence

rs188878585 Egr1:MA0366.1 No 5 Less like consequence

rs190388624 Egr1:MA0162.2 No 2 Less like consequence

rs199581527 E2F4:MA0541.1 No 3 More like consequence

rs201503590 Egr1:MA0162.2 No 4 Less like consequence

rs2735073 Egr1:MA0162.2 No 10 Less like consequence

rs28382772 E2F4:MA0470.1 No 10 More like consequence

rs28382772 E2F4:MA0541.1 No 13 Less like consequence

rs28382773 SP1:MA0079.3 No 6 Less like consequence

rs368672104 Egr1:MA0162.2 No 12 Less like consequence

rs371334332 CTCFL:MA0531.1 Yes 7 Less like consequence

rs373832002 ZEB1:MA0103.2 No 2 Less like consequence

rs374210880 Pax5:MA0014.2 No 8 Less like consequence

rs375601741 ZBTB33:MA0527.1 Yes 5 Less like consequence

rs4781062 HNF4A:MA0114.2 No 12 Less like consequence

rs7567804 USF1:MA0281.1 Yes 3 Less like consequence

rs75810024 USF1:MA0093.2 No 6 Less like consequence

rs75810024 USF1:MA0281.1 Yes 5 Less like consequence

rs77744705 Jund:MA0491.1 No 6 More like consequence

rs78370725 Egr1:MA0366.1 No 5 Less like consequence

rs78370725 Egr1:MA0341.1 Yes 5 Less like consequence

rs794427 Jund:MA0491.1 No 11 More like consequence

rs112027660 Tcf12:MA0521.1 Yes 4 Less like consequence
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C.8. Binding motifs in which the non-significant TFBS-SNPs occur contd 

Table 15. Binding motifs in which the non-significant TFBS-SNPs occur. The table 

shows the name of the motif, indicates the SNP position in the motif, and if it is in a 

high information position. 

 

 

  

rs204997 SP2:MA0516.1 Yes 7 Less like consequence

rs204997 SP1:MA0079.3 Yes 7 Less like consequence

rs199672847 Egr1:MA0162.2 No 13 Less like consequence

rs113123395 USF1:MA0281.1 Yes 7 Less like consequence

rs113123395 USF1:MA0093.2 Yes 8 Less like consequence

rs59564381 ELF1:MA0473.1 No 2 Less like consequence

rs113977555 Srf:MA0083.2 No 12 Less like consequence

rs9469383 CTCFL:MA0531.1 No 12 Less like consequence

rs73728831 Srf:MA0083.2 Yes 7 Less like consequence

rs141920214 ELF1:MA0473.1 No 1 More like consequence

rs12194528 SP1:MA0079.3 Yes 7 Less like consequence

rs12194528 Egr1:MA0162.2 No 13 Less like consequence

rs202169452 SP1:MA0079.3 No 11 Less like consequence

rs2735072 Egr1:MA0162.2 No 12 Less like consequence

rs149780751 CTCFL:MA0531.1 Yes 13 Less like consequence

rs111297363 USF1:MA0281.1 Yes 6 Less like consequence

rs111297363 USF1:MA0093.2 Yes 7 Less like consequence

rs200223154 SP1:MA0079.3 No 11 Less like consequence

rs200223154 Egr1:MA0337.1 Yes 3 Less like consequence
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C.9. Facts about genes that are in proximity with some of the Significant TFBS-

SNPs. 

SNP that occurs in an experimentally detected binding site, and is closely linked with a disease 

associated SNP, is more likely to play a biological role in the genome than other SNPs that occur 

in parts for which there is no particular known function (Schuab et al., 2012). Through this 

work, it is found that though the associated T1D-SNPs are not regulatory SNPs that may 

influence transcription factor binding, there are other nearby non-associated SNPs that can 

influence this process. Thirty-seven of these rare regulatory TFBS-SNPs have been identified 

by their testing positive for SNP sensitivity. In addition to significantly changing the 

representation of their local environment, they are outstandingly closer in proximity to the 

disease-associated SNPs than the other TFBS-SNPs.  

The significant TFBS-SNPs are mostly characterised by C-T transitions, which have previously 

been shown to cause weaker affinity for transcription factor (TF) binding. Also, they influence 

31 different binding sites for 18 transcription factor families. The binding sites for the USF 

family of transcription factors are the most affected. These proteins, USF1 and USF2, have been 

linked to genetic problems involving insulin genes and regulation of glucose. These problems 

are similar to the features that characterise T1D, where insulin is primary auto-antigen24. 

Despite these important findings, further testing in a biological system is necessary to determine 

whether these SNPs do affect function in vivo. Experimentation can reveal if the recognition 

and binding of TFs to the affected sites is altered, and how this in turn disturbs the transcription 

of target genes. 

A non-coding SNP that is located at a transcription factor-binding site (TFBS) of a gene could 

affect the level or timing of gene expression (Xu and Taylor, 2009). 

An Ensembl genome browser search reveals that the 37 significant TFBS-SNPs are in the 

vicinity of about 60 protein-coding and non-coding genes. They occur in flaking regions as well 

as within gene sequences. A simple identification of the functional annotation of these genes was 

retrieved from the DAVID (Database for Annotation, Visualization and Integrated Discovery) 

bioinformatics resource. The result indicates that many of these genes are involved in positive 

and negative regulation of various biological processes. A good example relates to 4 SNPS, 

which are adjacent to genes that are involved in positive regulation of T-cell differentiation and 

activation. A T-cell is a type of lymphocyte25  that plays a role in cell mediated immunity. This 

type of immunity involves the activation of cells, called phagocytes, which protect the body by 

                                                           
24 an antigen that despite being a normal tissue constituent of the body is the target of a humoral or cell-mediated 
immune response, it stimulates the production of autoantibodies and an autoimmune attack as in autoimmune 
diseases 
25 A lymphocyte is a sub-type of a white blood cell which are cells of the immune system that are involved in protecting 
the body against both foreign particles and infectious disease 
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ingesting harmful foreign particles like bacteria. Auto-reactive T-cells (T-cells produced by an 

organism and acting against its own cells or tissues) play a major role in the pathogenesis of 

type 1 diabetes mellitus (Monti et al., 2009). T-cell response against the important insulin-

producing beta cells is a main characteristic of T1D, but this process is not yet fully understood. 

T-cells are a major target of immunomodulatory26  approaches that are aimed at delaying or 

even preventing the disease onset (Bluestone and Buor-Jordan, 2012; Monti et al., 2009).  

The significant TFBS-SNP rs2267646, in the HLA region, is upstream of the HLA-DMA gene. 

It is a heterodimeric molecule important for normal antigen27 presentation (Sanderson et al., 

1994). Cells involved in antigen presentation, take up and process antigens into such a form that 

when displayed at the cell surface is recognized by T cells, and activates an immune response. 

Rs56245106 and rs13206219 also in the HLA (haplotype: HSCHR6_MHC_COX) are 

overlapped by intronic parts of transcripts of the HLA-DRB1 gene. This protein is also involved 

in antigen presentation for recognition by the CD4 T-cells also called mature T-cells (Ayyoub 

et al., 2004; Janeway et al., 2001). CD4 T-cells are important in orchestrating overall immune 

responses, they play an important role in modulating immune responses to pathogens (an 

infectious agent or anything that can produce disease), as well as tumour cells (Macleod et al., 

2010). Rs188548927 in region 7p12.2 occurs in intronic regions of 12 coding transcripts of the 

IKZF1 gene. The protein is a transcriptional regulator of hematopoietic cell differentiation. 

Hematopoietic stem cells are the blood cells that give rise to all the other blood cells. These 

include lymphocytes, a type of which is the T-cell. This SNP occurs about 10,000 bps away from 

an associated T1D-SNP (rs10272724) which is in the 3’ UTR of the same gene. This disease-

associated SNP is linked with susceptibility to childhood acute lymphoblastic leukaemia, a rare 

cancer of T-cells (Swafford et al., 2011; Papaemmanuil et al., 2009), in addition to T1D. 

Problems in the genes highlighted in the foregoing examples could likely contribute to the 

aberrant autoimmune reaction that occurs in T1D. In fact, they have already been suggested to 

be candidate causal/susceptibility genes in the aetiology of T1D (Gillespie, 2014; Noble and 

Erlich, 2012; Todd, 2011). However, the significant TFBS-SNPs are also adjacent to many other 

genes that are linked to other conditions and that could possibly be associated with T1D. For 

instance, rs140000554 is adjacent of the RAGE/AGER gene, it occurs downstream of 14 

alternative transcripts of this gene which encodes a pattern recognition receptor. The molecule, 

is a member of the immunoglobulin superfamily, and is expressed on the surface of different cell 

types including lymphocytes (Mahajan et al., 2013). It has five binding domains that detect and 

bind glycoprotein ligands28 (Neeper et al., 1992), which mediate interaction between white blood 

                                                           
26 modification of the immune response or the functioning of the immune system, for example, by the inhibition of 
white blood cell activity or the stimulation of antibody formation. 
27 Simply put, an antigen is any substance that causes one’s immune system to produce antibodies against it. An 
antigen could be a foreign substance from the environment, like, bacteria, viruses, chemicals or pollen. An antigen 
could also be formed inside the body, as with bacterial toxins or tissue cells 
28 Glycoproteins are proteins that contain oligosaccharide chains (glycans/sugar) covalently attached to the 
polypeptide side-chains. They are important for white blood cell recognition 
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cells and inflamed endothelial cells that line the interior surface of blood and lymphatic vessels 

(Borges, et al., 1997). This interaction leads to a movement of leukocytes towards the site of 

infection or tissue damage commonly referred to as leukocyte extravasation (Vestweber, 1997). 

This innate immune response29 is believed to result in activation of pro-inflammatory genes 

(Bierhaus et al., 2001). However, this process has been linked to certain chronic inflammatory 

disorders (Mahajan et al., 2013). The RAGE gene is suspected to have an effect in inflammatory 

diseases including diabetic complications (e.g. diabetic nephropathy or retinopathy) (Singh et al, 

2014; Bierhaus et al., 2001; Hudson et al., 2001), because there is an enhanced level of RAGE 

ligands in diabetes (Hudson, 2002). 

A final example is related to the aforementioned rs2267646. It is also intronic of a second gene, 

BRD2, which is a transcription factor protein involved in the regulation of another gene, 

CCND1. The CCND1 protein belongs to the Cyclin family of proteins that are involved in cell 

cycle progression. Overexpression of this gene can alter cell cycle progression in such a way 

that contributes to tumorigenesis (the formation of a tumour). CCND1 is frequently observed 

in a variety of tumours, for instance, in ovarian cancer (Zhang et al., 2014), in the brain (Qin et 

al., 2014) and in gastric cancer (Kuo et al., 2014). 

These random examples highlight the significance of the non-associated regulatory SNPs 

identified in this work. They may have an influence on the regulation of any of these important 

nearby genes, as well as other genes that are farther away through gene regulatory networks. 

These instances also add to the finding that a single SNP can indeed affect more than one process 

in the genome. By occurring in a binding site and as well as within multiple gene transcripts, 

the effects of some of these SNPs may not be limited to just one process. 

  

                                                           
29 Innate immune systems provide immediate defence against infection. In vertebrates some of the major functions 
of innate immunity include the identification and removal of foreign substances present in organs, tissues, the blood 
and lymph, by specialised white blood cells, and activation of the adaptive immune system through antigen 
presentation. 
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Appendix D 

Ravendbase 

Ravendbase was created in my first year of research to bring together data collected from three 

online genomic databases. The first, T1Dbase, is a T1D dedicated resource containing 

information about T1D associated regions in the human and mouse genome. The second, 

Ensembl, stores general genomic data for several species; and the third, DbSNP, stores SNP 

information made available from biological research and GWAS. Ravendbase was originally 

created using Microsoft’s Access, and contains information collected for T1D susceptibility 

regions. Nowadays, it is good practice to store research data in a readily available format for 

view and use. Large amounts of biological data are continuously being generated by advanced 

biological techniques, even as old information is also being updated. The amount of data 

available for biological research is now quite large and can become overwhelming and confusing 

for a researcher if not properly stored in a format that will allow for easy data access, retrieval 

as well as data querying. Collecting data for my study required having to traverse between the 

above mentioned resources for information needed. To circumvent having to do this 

continuously throughout my research, any data retrieved from the larger online databases was 

formatted and stored in a desired set-up as ‘Ravendbase’.  

Having this database helped to have relevant data quickly accessible for studies, and made 

retrieving T1D region and T1D-SNP information easy and straightforward. It also allowed 

speedy data download for statistical analysis. Ravendbase is now being enhanced for sharing 

with other researchers or professionals who might be interested in information about T1D-

SNPS. 

 

D.1. Reason for database enhancement 

The reason for further development of Ravendbase is to make available a simple user friendly 

resource that gives general information about: (1) T1D susceptibility regions, (2) SNPS in T1D 

susceptibility regions, (3) Genes and Transcripts in T1D susceptibility regions and (4) Genic 

positions of SNPS in transcripts. The database is simple, sort of like a reference for T1D SNPs, 

eliminating the initial confusion first time researchers get when accessing- and having to 

navigate around the -much larger and highly developed biological databases. Users can find 

basic information needed and then carry out a more focused search in larger advanced biological 

resources. This work was done as a BSc (final year project) in computer science at the University 

of Hertfordshire, which I co-supervised, by Nathan Beka. 
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D.2. Conversion from MS Access to MySQL 

Ravendbase was initially created with Microsoft’s Access. This is a popular data management 

application that allows one to store information in tables in a database format, which it manages 

directly from the local disk of the computer. Access also has a front end user interface to 

information in the database.  However, this application is constrained in that it can only manage 

a limited amount of data and is generally used as a personal or single user application. MySQL 

is an open source relational database management system (RDBMS). It runs as a server 

providing multi-user access to a database, thereby opening up more possibilities for a database. 

It is able to manage hundreds of megabytes of data which can become a problem for Access, and 

is also able to handle many simultaneous users. A MySQL version of the database was therefore 

created, converting it from a single user system to a multiuser storage management system 

allowing for further improvement. The database structure is illustrated in the following section 

showing a data flow chart and Entity Relationship model.  

 

D.3. Database Structure 

The data flow chart for Ravendbase is shown in Figure 6. Information in the database is stored 

in a structure based on ten linked tables as presented in the entity relationship model in Figure 

7.  
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Figure 6. Ravendbase data flow chart  
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Figure 7. Entity Relationship model for Ravendbase 
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D.4. Ravendbase Graphical User Interface 

In addition to platform conversion, a graphical user interface (GUI) has been designed for 

Ravendbase.  The user friendly GUI was created for easy access to information stored in the 

database. The database front page is shown in Figure 8. It is kept simple with a short 

introduction to the database, links to other important web pages within the resource, and an 

image of the International Diabetes federation logo. More details about the features of the GUI 

as well as some of the ways by which data can be accessed via the GUI can be seen in Figures 9 

to 18. Although the database is still being developed, it is now available online for user access at 

http://ravendbase.com/v1/. Ravendbase is updated regularly as new T1D-SNP information 

becomes available. 

   

 

D.5. Future plans for Ravendbase 

The database is still undergoing further development. The underlying queries for data retrieval 

from the database will be fine-tuned to improve retrieval time. Also, all the new data created in 

this research will be added to the database. These will include the genic profiles and regulatory 

characteristics of T1D-SNPs.  

 

D.6. Ravendbase Table descriptions 

The descriptions of tables that make up the database are shown in Tables 16 to 22  

Table 16. REGION_TAB 

Column Type Default 
value 

Description Index 

REGION_ID Number  Primary key, internal identifier. primary key 

REGION_NAME Text  Text containing the names of T1D susceptibility regions  

REGION_START Number  Gives the chromosomal coordinate of the start position of the 
susceptibility region 

 

REGION_START Number  Gives the chromosomal coordinate of the end position of the 
susceptibility region 

 

CHROMOSOMAL_ID Number  Links region entity to the Chromosome entity foreign key 

 

Table 17. TRANSCRIPT_TAB 

Column Type Default 
value 

Description Index 

TRANSCRIPT_ID Text   Primary key primary key 

ENSEMBL_TRANSCRIPT_ID Text  Text containing transcript Ensembl ID  

http://ravendbase.com/v1/
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TRANSCRIPT_NAME Text  Text containing given  names  

TRANSCRIPT_BIOTYPE Text  Text describing transcript biotypes  

GENE_ID Text  Links transcript entity to the gene entity foreign key 

 

Table 18. ALL_VARIANTS_TAB 

Column Type Default 
value 

Description Index 

VARIANT_ID Text  Primary key primary key 

VARIANT_START Number  Text containing gene Ensembl ID  

VARIANT_STOP Number  Text containing given gene names  

VARIANT_TYPE Text  Text describing gene biotypes  

ALLELES Number  Text showing the alleles of  variants  

NUCLEOTIDE_SUBSTITUTION Text  Text showing if the mutation is a “transition” or a 
“transversion” 

 

ENSEMBL_QUALITY_CONTROL 
CHECK 

Text  Text showing if a SNP has “passed” or “failed” the 
Ensembl quality control check 

 
 

REFERENCE_ALLELE Text  Text showing the reference allele of a SNP  

VARIANT ALLELE_A Number  Binary numbers indicating if the mutant allele is an 
”A”, a“1” indicates positive and a “0” indicates 
negative 

 

 

Table 19. VARIANT_GENIC_POSITION_TAB 

Column Type Default 
value 

Description Index 

VARGEN_ID Number  Primary key primary key 

VARIANT_ID Text  Links transcript and genic position entity to the variant entity foreign key 

ENSEMBL_TRANSCRIPT_ID Text  Links genic position and variant entity to the transcript entity foreign key 

GENIC_POSITION_ID Text  Links variant and transcript entity to the genic position entity foreign key 

SPLICE_VARIANT Text  Text showing if  any other variant type is also a splice variant  

 

Table 20. GENIC_POSITION_TAB 

Column Type Default value Description Index 

GENIC_POSITION_ID Number  Primary key primary key 

GENIC POSITION_NAME Text  Text containing names of genic position s  

 

Table 21. DISEASE_TAB 

Column Type Default value Description Index 

DISEASE_CODE Number  Primary key primary key 

DISEASE_NAME Text  Text containing names of autoimmune diseases 
that share susceptibility regions with T1D 
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Table 22. DISEASE_ASSOCIATED_VARIANTS_TAB 

Column Type Default value Description Index 

SERIAL_No Number  Primary key primary key 

VARIANT_ID Text  Links disease marker  entity to the variant entity foreign key 

ALLELES Text  Text showing the alleles of  variants (markers)  

DISEASE_CODE Number  Links disease marker  entity to the disease entity foreign key 

 

 

D.7. Ravendbase GUI 

D.7.1 Browse Page Buttons 

The homepage of Ravendbase is shown in Figure 8. This page contains links to other parts of 

the database. The first link is to the browse page, a user friendly interface for users (scientists 

and researchers) seeking general information about T1D susceptibility regions. Information 

sought would include locus coordinates, region size, and number of variants in the region. It 

also includes named SNPS, genes, and transcripts in the regions. An image of the browse page 

is shown in Figure 9. There are five link buttons on this web page (T1D Regions, SNPs inT1D 

Regions, Genes inT1D Regions, Disease Associated SNPs and SNP genic positions) providing 

region and SNP information.  For example, the first button, “T1D regions”, displays information 

about the characteristics of each of the 56 T1D susceptibility regions. The result obtained from 

clicking the button is shown in Figure 10. A user has the option to download retrieved results 

from the database as an MS Excel file.  

 

 Figure 8. Ravendbase front page 
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D.7.2 Browse page chromosome maze 

The chromosome maze is an interesting feature of the database. It is a simple map with T1D 

region links interspersed in blocks representing chromosomes (Figure 11). Each region has a 

floating yellow link button which when clicked downloads a result page with general 

characteristics for all SNPs in the selected region. A small snapshot of region download for 

Figure 9. Ravendbase browse page 

Figure 10. Image of result page from Ravendbase’s T1D Regions link  
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1p13.2 on chromosome 1 is shown in Figure 12. This result page has a link to the same region’s 

page T1Dbase (Figure 13). The reason for this linkage is to allow for viewing the locus in the 

genome browser provided by T1Dbase (Figure 14). 

 

 

 

 

 

 

Figure 11. Ravendbase Chromosome maze 

Figure 12. Image showing downloaded SNPs in region 1p13.2 using the Chromosome maze 
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D.7.3 Search Page: SNP Information Search and SNP Genic Search 

The search page was created for users wanting to carry out a more precise searches for a 

specified SNP. The page has options to select for specific attributes of  the  SNP of interest which 

is in a T1D region. The ‘SNP Information Search’ page (Figure 15) has a search box were the 

‘variant ID’ of is entered, and nine tick boxes for variant attributes that can be selected for 

viewing in a result page. 

Figure 13. Image of T1Dbase page linked to region 1p13.2 in Ravendbase Chromosome maze  

 

Figure 14. Example of T1D region in T1Dbase genome browser 
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The ‘SNP Genic Search’ page (Figure 16) also has a search box for ‘variant ID’ input.  The page 

is quite important because it characterises how SNPs sit in the transcripts of genes within its 

vicinity. Here, there are seven attributes that can be selected for viewing in a result page. 

Retrieved results from any search such as that shown in Figure 17 also have the option to 

download as an excel file. 

 

 

 

Figure 15. SNP Information Search page 

Figure 16. SNP Genic Search page 
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D.7.4 Custom Query Page 

The custom query page was designed for the researcher with some programming experience. 

The user is able to input SQL queries and retrieve specified information from the database. An 

explanation of the database structure will be made available via the help pages to help users with 

appropriate query design. The query page is shown below in Figure 18. 

 

 

4.1.10 

Figure 17. Result page showing genic positions of SNP ‘rs1000528’ in transcripts of two genes 

Figure 18. Custom query page 
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This work is devoted to the analysis of human variations in complex human diseases. We present 

here an in-silico bioinformatics method for inferring possible function of regulatory single 

nucleotide polymorphisms, SNPs, in human disease development. The research presented here 

combines the strengths of both genetics and genomics by investigating genetic variants, Single 

Nucleotide Polymorphisms in regulatory regions instead of genes. By bringing together the 

computational search and characterisation of regions in DNA that regulate gene expression on 

the one hand and information about individual variation in the structure of human DNA on the 

other hand, it aims to identify likely regulatory regions, the individual variation in their 

molecular make up and the effect this may have in the phenotypic expression of genes. 

There is strong recent interest in regulatory SNPs [1-8]. There have been also demonstrated 

by combining experimental evidence and computation that the promoter regions of human 

genes provide a rich source of functional single nucleotide polymorphisms [4-8]. As many as 

35% of promoter SNPs may be of functional significance [4].  There are, however, currently no 

computational tools, except of [8] for promoters, which can be used to assess directly from 

regulatory  DNA sequence whether or not a given variant is likely to alter gene expression and 

hence be of functional significance.  

Here, we present the approach that can allow in-silico estimation of the likely functional 

consequences of single nucleotide changes in putative regulatory DNA. This approach is based 

on the integration of at least 16 sources of supervised sequence information about a given DNA 

stretch, with unsupervised methods [9, 10]. We have also incorporated the novel method, which 

analyse a SNP functionality due to sensitivity of a mathematical model with respect to the SNP 

variant.  

Essentially, the method consists of identifying regions in the human genome that are likely 

important in the regulation of gene expression and contain motifs that identity them as 

TFBSs. We then establish whether the motifs contain SNPs and if so, in how far these 

mutations destroy the signal by which regulatory proteins recognize the motifs as binding 

sites. Especially these SNPs could be strong candidates for further experimental verification to 

establish their possible role in the genesis of and susceptibility for particular diseases.  
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Results. To test the method, we collected several known from literature disease-associated 

regulatory SNPs [1-3]. We checked if the disease-associated regulatory SNP is within one of 

the feature-predictions, and thus has a high score. We found that the scores of the disease-

associated regulatory SNPs were among the highest scores for all SNPs for all our training sets. 

Furthermore, these SNPs appeared to be variant sensitive, namely some particular SNP variant 

changed the results of motif predictions. Interestingly, we found out that known disease-causal 

SNP variants formed significantly underrepresented motifs within local context. 
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