
1

Real-Time Accuracy and Effectiveness of Computer Vision

and Machine Learning in Vehicle Intent Prediction at

T-Junctions

Simon McCool

A thesis submitted to the University of Hertfordshire in partial

fulfilment of the requirement of the degree of

Doctor of Philosophy

February 2024

The research programme was conducted in the School of

Computer Science, University of Hertfordshire.

2

Acknowledgements

I am deeply grateful to my esteemed supervisors, Dr. Christoph Salge, Dr. Wei Ji, and Prof.

Volker Steuber, for their invaluable guidance, unwavering support, and thoughtful counsel

throughout my doctoral research. It was a privilege and an honour to benefit from their

remarkable scientific expertise and exceptional personal qualities. Their ability to maintain

perspective and their genuine concern for my work has been greatly appreciated.

I am also profoundly thankful for their mentorship, which transcended academic instruction,

fostering my professional growth and personal development. Their dedication to excellence

and nurturing approach significantly contributed to my journey, offering insights that extended

well beyond the confines of my research. Their encouragement during challenging moments

and celebration of my achievements have shaped my doctoral experience. It is with heartfelt

appreciation that I acknowledge the pivotal role they have played in my academic and personal

endeavours.

This work would not have been achievable without the tireless support of my family: Lisa,

Hannah, and Sam.

3

Abstract

This thesis introduces a systematic approach to devising and evaluating advanced methods

for predicting vehicle intent at unsignalised UK T-junctions. The primary focus of this thesis

revolves around exploring the application of machine learning and computer vision techniques

for the real-time prediction of vehicle intentions, emphasising increasing the prediction

distance from the merge line at T-junctions to improve prediction efficacy.

This thesis addresses the sparsity of publicly available data on vehicle behaviour and feature

vector data at UK T-junctions by demonstrating methods to create a unique Junction Video

Dataset as a foundational contribution to the field. The methodology encompasses collecting,

preprocessing, and annotating video data to develop video data input for a pipeline for vehicle

intent prediction. The thesis presents a comparative analysis of YOLOv5 and Faster R-CNN

models, focusing on their performance in vehicle detection using the curated Junction dataset.

It then introduces an innovative fine-tuning process that enhances real-time detection

capabilities.

This thesis uses an advanced feature extraction method to extract the stochastic nature of

vehicle behaviour exhibited at T-junctions. This approach employs a sophisticated data

processing and learning strategy incorporating extracted features. It continuously updates the

training dataset with new feature vectors, enabling perpetual learning and the capability to

make intent predictions on newly acquired data in real-time.

This thesis evaluates DAISY, a real-time vehicle intent prediction model, by comparing its

performance with state-of-the-art systems such as Waymo's ChauffeurNet, Tesla Autopilot,

NVIDIA Drive, and Mobileye. Key metrics for comparison include accuracy, latency,

robustness, and scalability. DAISY demonstrates competitive accuracy and latency, which are

crucial for real-time applications. It also benefits from a modular design that enhances

scalability. However, direct comparisons are challenged by systematic differences like

proprietary datasets, specialised hardware, and varied algorithm complexities.

This thesis revealed that integrating machine learning and computer vision techniques with

high-quality data can accurately predict vehicle intent at T-junctions. Such an approach has

the potential to serve as a crucial element within a safety model, functioning as an early

warning system or activating driver assistance features.

4

Contents

Abstract .. 3

Glossary of Key Terms .. 9

Chapter 1: Introduction ... 11

1.1 Motivation .. 11

1.2 Research questions ... 11

1.3 Overview .. 13

1.3.1 Structure of thesis ... 14

1.4 Contributions of this thesis ... 15

1.5 Ethics ... 17

1.6 Real-Time intent prediction in context .. 17

Chapter 2: Background and Literature Review .. 19

2.1 Background information ... 19

2.1.1 Intent prediction .. 19

2.1.1.1 Static vs. Dynamic (Vehicle-Mounted) Video Sources.. 21

2.1.2 Simulated data ... 25

2.1.3 UK T-junction accident information ... 26

2.2 Literature review .. 26

2.2.1 Traffic video datasets ... 26

2.2.2 Vehicle object detection .. 28

2.2.3 Vehicle Intent classification at intersections .. 34

2.2.3 Non-predictive, reactive methods of accident mitigation ... 39

2.3 Chapter summary .. 40

Chapter 3: Creating a Target Vehicle Video Dataset ... 41

3.1 Introduction .. 41

3.1.1 Organisation of the Chapter ... 43

3.2 Junction Dataset Considerations .. 43

3.2.1 Types of unsignalized junction .. 44

3.3 Selecting Experimental Junctions ... 46

3.4 Camera position at a T-junction and point of view (POV) ... 49

3.4.1 Experiments with camera points of view (POV) ... 49

3.5 Constructing the video for the dataset .. 52

3.6 Chapter conclusion .. 53

Chapter 4: Selection of Target Vehicle Detector ... 54

4.1 Introduction .. 54

4.1.1 Organisation of the chapter .. 55

5

4.2 Anatomy of Faster R-CNN.. 57

4.2.1 Training Faster R-CNN ... 59

4.3 Anatomy of YOLOv5 ... 61

4.3.1 Training YOLOv5 .. 64

4.4 Selecting a vehicle detection and classification base model .. 65

4.4.1 Common Objects Dataset .. 68

4.4.2 Backbone Network Model... 68

4.4.2.1 Choice of Faster R-CNN Backbone Model .. 69

4.4.2.2 Choice of YOLOv5 models ... 69

4.4.2.3 Limitations of the YOLO model .. 70

4.4.3 Comparison of YOLOv5 and Faster R-CNN ON COCO 80 ... 71

4.5 Improving target vehicle detection accuracy with focused target training .. 74

4.5.1 Target vehicle image dataset creation .. 75

4.5.2 Image augmentation post-labelling ... 76

4.5.3 Training target dataset on YOLOv5 models .. 77

4.6 Chapter conclusion ... 79

Chapter 5: Optimising target vehicle detection and classification ... 80

5.1 Introduction .. 80

5.1.2 Chapter organisation .. 81

5.2 Feature selection ... 82

5.2.1 Frame rate ... 82

5.2.2 Creating video samples of various FPSs and resolutions ... 83

5.3 Distance and velocity feature vector evaluation metrics ... 83

5.4 Establishing a detection model ... 84

5.4.1 Training all YOLOv5 models with transfer learning ... 85

5.4.2 Selecting dataset and model combination ... 90

5.5 Experimentation with a variety of FPSs, neural networks, resolutions, and Vo .. 92

5.5.1 Video samples .. 92

5.5.2 Class confidence .. 92

5.5.3 Results from experimentation with FPSs, neural networks, resolutions, and Vo .. 94

5.5.3.1 Correlation analysis based on results in Table 14. ... 95

5.6 Selecting the optimal Vo based on resolution, fps, and ground truth data .. 100

5.7 Chapter conclusion .. 103

Chapter 6: Creating and extracting feature vectors from target vehicles .. 104

6.1 Introduction .. 104

6.2 Chapter organisation .. 105

6.3 DUKE... 105

6.3.1 Bounding box predictions ... 106

6

6.3.2 Intersection Over Union (IoU) ... 108

6.3.3 Anchor boxes and ground truth associations .. 109

6.3.4 Localisation errors and refinement ..111

6.3.5 Confidence ... 112

6.3.6 Non-max suppression .. 113

6.3.7 Full bounding box prediction ... 115

6.3.8 Vehicle tracking ... 117

6.3.8.1 Overview of DeepSORT ... 118

6.4 Feature vector extraction ... 119

6.4.1 Feature vector creation .. 122

6.4.2 Feature vector constant, variable, and calculated values .. 123

6.5 Initial analysis of feature capture .. 126

6.5.1 Discussion of Figure 35 ... 127

6.5.2 Comparison of DUKE-derived data ground truth values ... 127

6.6 Chapter conclusion .. 128

Chapter 7: Intent prediction training dataset DYLE.. 129

7.1 Introduction .. 129

7.2 Chapter organisation .. 130

7.3 Extracting training features from Bo video .. 130

7.4 Feature training data single junction ... 131

7.4.1 Prediction Class ... 133

7.4.2 Subclasses ... 134

7.4.3 DYLE video training analysis for single junction .. 136

7.4.4 Empirically and quantitatively determining the reliability of feature vectors ... 137

7.4.5 Manual classification of training data .. 141

7.4.6 Complete single junction dataset ... 144

7.4.7 Accuracy using K-fold cross-validation .. 144

7.4.8 Pandas profiling report ... 145

7.5 Dataset creation for other junctions .. 148

7.5.1 Results from k-fold cross-validation on Aggregated DYLE .. 152

7.5.2 Results discussion ... 153

7.7 Chapter conclusion .. 154

Chapter 8: Intent Prediction using DAISY ... 156

8.1 Introduction .. 156

8.2 Chapter organisation .. 158

8.3 DAISY .. 158

8.3.1 Intent prediction DAISY .. 159

8.3.2 Probability density function (PDF) of a Gaussian distribution ... 160

7

8.3.3 Intent classification steps.. 161

8.4 Live prediction by DAISY ... 161

8.4.1 Intent prediction for a single junction JM377 ... 164

8.4.2 Initial discussion from results of JM377. ... 166

8.4.2 Evaluation metrics .. 167

8.5 Intent prediction for other junctions .. 169

8.5.1 Junction JM384 .. 169

8.5.1.2 Initial discussion from results of JM384 .. 170

8.5.2 Junction JM599 .. 170

8.5.2.1 Initial discussion from results of JM599 .. 171

8.5.3 Junction JM454 .. 172

8.5.3.1 Initial discussion from results of JM454 ... 172

8.6 DAISY performance with aggregated data for all four junctions .. 173

8.6.1 K-fold cross-validation of updated DYLE training dataset ... 173

8.6.2 Analysing ground truth and prediction data .. 174

8.6.3 Precision-Recall and F1-Score ... 174

8.6.4 Metric comparison of single and combined junctions .. 175

8.7 Discussion ... 177

Chapter 9: Pipeline Autonomy... 178

9.1 Introduction .. 178

9.1.2 Chapter organisation .. 181

9.2 Ablation study, the effect of sub-classification of feature vectors ... 181

9.3 Autonomously applying Fpc and Sfpc classification features to feature vectors .. 183

9.3.1 DUKE: Autonomous Merge line data recording ... 183

9.4 Interactions with other vehicles .. 185

9.5 Online data Verification and analysis ... 187

9.5.1 Single Junction Online Verification JM454 .. 187

9.5.2 Updaing DYLE with autonomously classified feature vectors from JM454 ... 190

9.5.3 Verification of autonomous online intent predictions JM454 .. 191

9.5.4 Accuracy and distance from merge line junction JM454.. 191

9.5.5 Comparison of F1 scores and accuracy for given distance ranges JM454 .. 192

9.6 Online distance accuracy experiments for JM599, JM377 and JM384 .. 194

9.6.1 JM599 Online verification and distance from merge line accuracy .. 194

9.6.2 JM384 Online verification and distance from merge line accuracy .. 196

9.6.3 JM377 Online verification and distance from merge line accuracy .. 197

9.6.4 Online DYLE class distribution ... 200

9.6.5 Analysis of the resulting metrics from the online Verification video data .. 200

8

9.6.6 Accuracy and distance from merge line .. 203

9.7 Balancing the Training Data ... 204

9.7.1 Generating new samples of Hazard class and sub-classes .. 205

9.7.2 K-Fold cross-validation of SMOTE DYLE ... 206

9.7.3 Generating new samples of minority FPC classes .. 207

9.7.4 K-Fold cross-validation of Uniform DYLE.. 208

9.8 Unseen data online with a new junction ... 210

9.8.1 UO196 Junction preparation ... 210

9.8.2 Distribution of classes and K-fold score of Alpha DYLE .. 210

9.8.3 Accuracy and F1 score based on UO196 video log ground truths ... 211

9.8.4 Comparison of results from Alpha DYLE + UO196 and other DYLE iterations ... 214

9.9 Chapter conclusion .. 215

Chapter 10: Conclusion and Future Work ... 217

10.1 Thesis summary ... 217

10.2 Research questions discussed .. 221

10.3 Comparison with current state of the art real time intent prediction .. 222

10.4 Discussion and future work ... 226

10.5 Future work: The Swiss cheese model of safety .. 227

10.5.1 Contribution to the Swiss Cheese Model for Motorcycle Safety .. 229

Bibliography .. 230

9

Glossary of Key Terms

AP Average Precision

AUC Area Under the Curve

AV Autonomous Vehicle

BO T-Junction Video Dataset

CBAM Convolutional Block Attention Module

CNN Convolutional Neural Network

DAISY Predictive Model

DNN Deep Neural Network

DPM Deformable Part-Based Model

DUKE Vehicle Detection And Feature Extraction Algorithm

DYLE Feature Vector Dataset

EDA Exploratory Data Analysis

Faster RCNN Faster Region-Based Convolutional Neural Networks

FLOPS Floating Point Operations

FN False Negative

FP False Positive

Fpc Final Driver Intent Prediction

FPR False Positive Rate

FPS Frames Per Second

ICS Inevitable Collision State

ICW Intersection Collision Warning

IOC Inverse Optimal Control

IoU Intersection Over Union

IPTM Intersection Prior Trajectories Model

LSTM Long Short-Term Memory Network

mAP Mean Average Precision

MAEB Motorcycle Autonomous Emergency Braking

MOMDP Mixed Observability Markov Decision Process

MPR Market Penetration Rate

MSCOCO Microsoft Common Objects in Contexts (COCO)

NMS Non-Max Suppression

PASCAL Pattern Analysis, Statistical Modelling and Computational Learning

PASCALVOC PASCAL Visual Object Classes

PDF Probability Density Function

10

QRF Quantile Random Forest

RCNN Region-Based Convolutional Neural Networks

RNN Recurrent Neural Network

ROI Region of Interest

RPN Region Proposal Network

SFpc Associated Subclass Predictions

SGD Stochastic Gradient Descent

SIMP Semantic-Based Intention And Motion Prediction

SLAM Simultaneous Localisation and Mapping

SSD Single Shot Detector

SVM Support Vector Machine

TN True Negative

TP True Positive

TPR True Positive Rate

TTC Time-To-Collision

VRU Vulnerable Road Users

YOLO You Look Only Once

11

Chapter 1: Introduction

1.1 Motivation

In the UK, vulnerable road users (VRU), such as motorcyclists, represent only 1% of total road

traffic yet suffer 18% of road fatalities, as highlighted in Royal Society for the Prevention of

Accidents research on common motorcycle crash causes (RoSPA, 2017). Data from the UK

police-reported accident data highlighted that 64% of motorcycle accidents occurred at a

junction (Senserrick et al., 2017); the majority of these collisions occur at T-junctions when

drivers pull out into the path of an oncoming motorcyclist. Considering that many accidents,

especially at T-junctions, are attributed to human mistakes, it is crucial to research current

methodologies that can help mitigate this type of accident. Despite rapid advances in

autonomous vehicle (AV) technology, fully driverless cars are not imminent. Forecasts for

widespread adoption of AVs are varied, with more conservative estimates suggesting several

decades (Kannan and Lasky, 2020). However, lower levels of AV have been implemented in

all types of vehicles. Current collision avoidance technology, such as motorcycle autonomous

emergency braking (MAEB), is effective (Savino et al., 2016) but is limited to systems

designed to scan the environment to detect possible hazards in navigation paths, not before

they enter the navigation path, making a fundamental argument for researching the feasibility

of how an accurate prediction of the future intent of merging drivers at a T-junction could further

mitigate the severity of a collision. The frequency of this type of accident demonstrates that

motorcyclists alone cannot react to threats posed at a T-junction; otherwise, there would be

far fewer accidents of this type. Predicting the future state of the driving environment and other

road users is a non-trivial task. As with autonomous vehicles, human-controlled vehicles

benefit from higher levels of safety in the abstract levels of driving autonomy, and in this thesis,

we look at this argument as a computer vision problem. This thesis uses 2D camera video

data, machine learning, and deep learning techniques. We aim to identify, track, and evaluate

vehicles approaching a T-junction. This allows us to investigate how effectively we can predict

the likelihood of vehicles yielding before they enter the path of an oncoming motorcycle.

1.2 Research questions

The overarching question is: How effectively can computer vision and machine learning

methods be utilised to predict the intentions of vehicles at T-junctions in real-time, and to what

degree of accuracy and effectiveness can these predictions be achieved?

This thesis is structured around seven pivotal research questions, each crafted to contribute

towards answering the primary overarching question: the viability of using computer vision

12

techniques for predicting vehicle intentions at T-junctions. It begins with RQ0, which questions

the feasability of real video data collection for modeling behaviour. RQ1 examines the impact

of a constrained dataset on the training and performance of models. RQ2 investigates the

influence of pixel density and frame rate variations on the effectiveness of these models. RQ3

assesses the possibility of capturing accurate pixel-level features from moving vehicles. RQ4

evaluates the consistency of feature vectors under uniform camera setups. RQ5 and RQ6

focus on using 2D video-derived feature vectors to predict vehicular movement at a T-junction

and the accuracy and prediction range of these models with new data. Lastly, RQ7 explores

the feasibility of incorporating real-time intent predictions into the model without compromising

its accuracy or F1 score. These questions, while interrelated, provide distinct insights and

benefits tailored to different research interests within the domain of computer vision and

machine learning.

RQ0: Is it feasible to collect real-world video data from T-junctions that can accurately inform

the development of a vehicle intent model for predicting vehicular behaviour?

RQ1: How does employing a constrained and focused dataset affect the performance of object

detection and Classification?

RQ2: Considering the neural network's characteristics in use, how do pixel density and frame

rate variations affect real-time object detection and classification models?

RQ3: Is obtaining accurate pixel-level features from dynamic vehicles that closely match

ground truth data feasible?

RQ4: Can our feature vectors' inherent generality be observed per the consistent camera

positioning hypothesis? This hypothesis posits that recordings from various junctions maintain

a similar perspective due to the standardised factors of camera height, position concerning

the merge line, and overall camera placement.

RQ5: How accurately can a machine learning model, utilising 2D video-derived feature

vectors, predict a vehicle's intention at a T-junction?

RQ6: Can a trained machine learning model accurately predict vehicle intent at a T-Junction

using new data, and what is its effective prediction range from the junction?

RQ7: Can the online model infer and append intent predictions as new inference data in real-

13

time without negatively affecting the accuracy or F1 score?

1.3 Overview

This thesis is structured to follow the sequential logic of our experimental framework. The

culmination of our research process is presented in Chapter 9, where readers can finally

understand the experimental outcomes in the context of the theoretical groundwork laid out in

earlier chapters. Figure 1 illustrates our comprehensive pipeline, beginning with video data

input and culminating in vehicle intention prediction. Raw video footage is initially processed

and adjusted to align with ground truth benchmarks, such as the distance to merge lines.

DUKE then analyzes this optimized video for vehicle detection, classification, and extraction

of relevant features. These features are subsequently input into DAISY to predict vehicle

intentions, utilising the DYLE dataset for classification. The results generated by DAISY are

re-integrated into DYLE, fostering a continuous cycle of data training. The final output is

presented either as a warning or as raw data.

14

Figure 1 Overview of our vehicle intent pipeline, with road sign warning as an output.

1.3.1 Structure of thesis

To address the research questions outlined above, our initial step involved significant work in

generating our training data, encompassing both video-related and feature vector data. Given

the absence of such data in the public domain, this endeavour was essential to our thesis,

providing critical insights into the questions posed. Moreover, this effort constitutes a part of

our contribution, laying the groundwork for others' future exploration of this topic. This means

Chapters 3, 4, and 5 offer technical descriptions of the processes we engaged in to develop

the pipeline, ultimately enabling us to experiment with intent prediction at T-junctions.

The thesis is organised as follows:

Chapter 2: Background and related work

Chapter 2 gives a background of intent prediction and human behaviour at T-junctions and

describes our approach's rationale. We then reviewed the diverse models for intent prediction,

including behavioural aspects, object detection, and reinforcement learning available in the

literature. The review focused on vehicle intent prediction methods and their components,

surmising that the most effective models can infer from real-time video frames. The chapter

details methods, techniques, challenges, and creating a custom dataset, evaluating predictive

models for intent prediction at intersections and T-junctions.

Chapter 3: Junction Video Dataset

This chapter delves into the creation and curation of our Junction Video Dataset. We discuss

the methodology employed to collect, preprocess, and annotate the data, providing essential

insights into the foundation of our research.

Chapter 4: Comparative Analysis of YOLOv5 and Faster R-CNN Models

Building upon the Junction Video Dataset introduced in the previous chapter, and Chapter 4

focuses on a quantitative evaluation of the YOLOv5 and Faster R-CNN models. We rigorously

assess their inference times and accuracy in the context of real-time vehicle detection using

our specialised video dataset.

Chapter 5: Innovative Fine-tuning for Real-time Vehicle Detection

This chapter introduces an innovative approach to fine-tuning real-time vehicle detection and

classification models. We highlight the performance improvements achieved through our fine-

tuning process, emphasising the practical implications for real-world applications.

15

Chapter 6: Feature Vector Extraction Method

This chapter provides a comprehensive overview of our feature vector extraction methodology.

We detail the techniques and algorithms used to extract meaningful feature vectors from

vehicle data, which are the foundation for subsequent chapters.

Chapter 7: Organising and Classifying Vehicle Feature Vectors

This chapter introduces DYLE, an advanced real-time data handling and learning

methodology. DYLE is distinguished by its ability to dynamically manage and refresh training

data through feature vectors, allowing training and prediction models to utilise the latest data.

It supports ongoing learning and adjustment and is designed for real-time updates with new

information. An essential process in DYLE is dynamic enrichment, which involves the

accumulation of new feature vectors with each iteration, a function performed by DUKE, as

elaborated in Section 6.4. This feature represents a significant advancement in improving

machine learning workflows.

Chapter 8: Efficient Vehicle Intent Prediction at T-Junctions

Chapter 8 introduces a computationally efficient approach for predicting vehicle intent at T-

junctions. We utilise feature vectors derived from video data as training inputs, paving the way

for improved decision-making algorithms in critical traffic scenarios.

Chapter 9: Quantitative Examination of DAISY's Predictive Abilities

Chapter 9 focuses on a quantitative examination of DAISY's predictive capabilities. We

evaluate how accurately DAISY performs when trained on progressively larger datasets,

particularly in predicting driver intentions and determining the practical distance from the

junction at which predictions remain reliable. This exploration contributes to a deeper

understanding of the limits and capabilities of machine learning in the context of driver

behaviour prediction at critical road intersections. Additionally, we explore creating and

evaluating an online model capable of real-time data inference and integration while

maintaining a high base accuracy and F1 score.

1.4 Contributions of this thesis

This thesis focuses on the feasibility of using machine learning models trained on existing data

to predict driver behaviour at T-junctions when confronted with new, unseen data. Specifically,

it involves a quantitative examination of how accurately these models can predict driver

intentions and determines the practical distance from the junction at which predictions remain

viable. This exploration contributes to understanding the limits and capabilities of machine

16

learning in the context of driver behaviour prediction at critical road intersections.

Specifically, the contributions include the following:

• Construction of a target-based vehicle image dataset tailored to our video data:

This involves creating a specific dataset that includes images of vehicles as they would

appear in our monocular videos. This dataset is tailored to the unique perspectives,

angles, and lighting conditions in the video data collected at T-junctions.

• Creation of a data-rich video dataset comprising unsignalized UK T-junctions:

This dataset is a collection of video recordings from various T-junctions across the UK

that do not have traffic signals. It focuses on capturing various traffic scenarios to

ensure that the machine learning models developed can handle different traffic

behaviours and conditions. The data-rich dataset allows the accurate extraction of

vehicle feature vectors necessary for understanding and predicting vehicle behaviours.

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-

CNN models using our bespoke video dataset: This involves testing and comparing

the performance of two popular deep learning models, YOLOv5 and Faster R-CNN, in

terms of their inference speed and accuracy in detecting and classifying vehicles using

the project's specific video dataset. This comparison helps select the most suitable

model for real-time vehicle detection and prediction at T-junctions.

• Generation of accurate dynamic vehicle feature vectors for utilisation in real-

time prediction: This refers to identifying and extracting dynamic features from the

vehicles, such as velocity, direction, and acceleration, which are essential for

predicting their future movements. These feature vectors are generated in real-time

and are used to analyse vehicle behaviours at the T-junction.

• Extension of the approach to fine-tuning a real-time vehicle detection and

classification model based on performance: This involves continuously improving

and adapting the vehicle detection and classification model based on its performance

in real-world scenarios. The model is fine-tuned to enhance its performance in

detecting and classifying vehicles in real-time, ensuring it remains effective under

various conditions.

17

• Development of a method for independently organising and classifying discrete

vehicle feature vectors as feature vector arrays and integral components of a

comprehensive general dataset: This process involves developing a systematic

approach to organise and classify the extracted vehicle feature vectors into structured

arrays. These arrays are then incorporated into a larger dataset, facilitating the

comprehensive training and testing of our model.

• A computationally efficient approach for predicting vehicle intent at a T-junction

using video-derived feature vectors as training data:

• Implementing a self-learning real-time prediction model involves developing a

prediction model that not only utilises the current data and feature vectors for making

predictions but also continually learns and adapts from new data it encounters. This

self-learning capability ensures that the model remains accurate and up-to-date with

changing traffic patterns and behaviours, improving its reliability and effectiveness in

predicting vehicle movements at T-junctions.

1.5 Ethics

Before collecting live traffic video data, we secured ethical approval from the University of

Hertfordshire's ethics committee.

1.6 Real-Time intent prediction in context

In the context of our work, a real-time intent prediction model, "real-time", refers to the

capability of the system to process data, make predictions, and deliver actionable insights

almost instantaneously or within a concise time frame.

Definition of Real-Time in Vehicle Intent Prediction

Real-time processing in vehicle intent prediction implies that the system can continuously

analyze incoming data from various sensors, interpret the current driving scenario, predict the

potential actions of surrounding vehicles, and communicate these predictions to the vehicle's

control systems or the driver with minimal latency, in the context of our work we aim to produce

an Immediate Hazard Detection to allow vehicles to take evasive actions immediately,

reducing the risk of collisions.

Technical Challenges:

Computational Load:

• High Processing Power: Real-time predictions require substantial

computational power, especially for processing data from high-resolution

18

video.

• Efficient Algorithms: Developing efficient algorithms that balance speed

and accuracy is challenging.

• Network Latency: Ensuring low-latency communication within the

vehicle's network architecture is essential for timely predictions.

Real-time intent prediction is a critical feature of our work that ensures the system can process

environmental data, make accurate predictions, and instantly communicate necessary

actions. Overcoming the technical challenges associated with real-time processing requires

continuous advancements in computing power, algorithm efficiency, and data management

strategies.

19

Chapter 2: Background and Literature Review

2.1 Background information

2.1.1 Intent prediction

The foundation for vehicle intent prediction involves understanding and forecasting vehicles'

future actions or movements in various contexts, such as at intersections or junctions, in traffic,

or actions during autonomous vehicle operation, such as lane changes on a highway.

In the reviewed literature, the terms' driver intent' and 'vehicle intent' were often used

interchangeably to denote the intentions behind either a human driver's or an autonomous

vehicle's (AV) actions. However, given our focus on the tangible dynamics of vehicles, we

consistently refer to 'vehicle intent' in this thesis.

Computer vision and machine learning-based vehicle intent prediction integrate various

methodologies using sensor data analysis, which utilises tools like 2D and 3D cameras, radar,

Lidar and GPS to gauge the vehicle's surroundings and movement. Machine learning models

then predict future actions using this data and historical trends. Behavioural modelling

considers human factors such as driving habits to refine these predictions. Finally, a contextual

understanding of environmental factors like road conditions and nearby traffic is incorporated

into the overall framework to generate a complete picture of the problem. Together, these

approaches provide a comprehensive system for anticipating vehicle behaviour that enhances

road safety and efficiency. Vehicle intent prediction aims to match or surpass human capability

in predicting the actions of vehicles on the road.

On the one hand, vehicles equipped with these technologies offer consistency and reliability

as they can process extensive data without fatigue, unlike humans, who may be inconsistent

due to distractions or emotional factors. They also boast faster reaction times and can be

coupled with sensors that provide 360-degree perception, potentially offering an advantage

over human sensory capabilities. Additionally, machine learning models continually learn and

improve and may surpass human prediction accuracy in the future.

However, there are significant challenges. The complexity of human behaviour presents a

considerable hurdle: humans can be unpredictable, and machines may struggle to interpret

nuanced behaviours effectively. While machines advance in situational awareness,

understanding the full range of human-like contextual clues remains challenging. Lastly, in

scenarios where predictions lead to critical decisions, especially in emergencies, humans

consider ethical and moral implications, a capacity machines lack.

Our research began by examining the high fatality rates at UK T-junctions through a

psychological lens rather than seeking a direct solution, as Crundall et al. (2012) and Crundall,

20

Howard and Young (2017) do by recommending perceptual training for drivers or Yee Mun

Lee, Sheppard and Crundall (2015) regarding the cross-cultural effects of perception of

motorcycles, we aimed to understand aspects of human driving behaviour, such as head

movement or angle, vehicle position on the road and vehicle kinetics, to identify potential

features that could be detected using computer vision technology.

Our initial experiments attempted to capture the head movement of drivers approaching the

junction merge line with the same camera used to track vehicles; however, we found that we

required a second camera zoomed in to capture a driver's head, which was not feasible, as

the data from the vehicle had to relate to the data from the driver and to combine video frame

impacted on the computational load and subsequent inference performance.

 We also reviewed the work of Peter Chapman from the University of Nottingham, who

specialises in the psychological aspects of motorcycle accidents at T-junctions (Robbins et al.,

2019) (Robbins, Allen, and Chapman, 2018). One of the findings from Chapman's research,

using driving simulators, determined that drivers might still move forward even after noticing

an approaching motorcycle, suggesting that using head movement alone is not a dependable

sign that a driver has seen an approaching motorcycle. The study explored identifying

hesitancy or specific vehicle movement patterns as potential indicators of a driver's intentions

at a T-junction, and that was a starting point for further experimentation.

Some studies have approached the problem of high T-junction accident rates via a detailed

examination of motorcyclists' behaviours at different T-junctions (Mohd et al., 2022). The

present study categorises T-junctions into three types: Type A (conventional T-junction), Type

B (unconventional T-junction with a short exit lane for right-turning vehicles on the minor road)

and Type C (unconventional T-junction with a short exit lane for through traffic on the major

road). The findings demonstrate that Type A junctions have the highest incidence of risky riding

behaviour. In terms of the critical gap, which is the time needed for a motorcyclist to safely

execute a right turn, Type A junctions require the longest time (9.20 seconds), followed by

Type C (7.20 seconds) and Type B (7.00 seconds). These results suggest that Type B

junctions are the most efficient and potentially the safest for motorcyclists making right turns

from minor roads.

Other relevant studies have discussed driver responses to cyclists at T-junctions (Walker,

2005; Ammar Al-Taie et al., 2023). There has also been extensive work in pedestrian intent

prediction, with examples including Moreno et al. (2023) using naturalistic trajectories at

unsignalised junctions and Hsu et al.'s (2020) simplified model of the problem of pedestrian

AV interactions.

Rather than relying on a single element to predict a vehicle's intent, our approach involves a

composite model of various interconnected components structured in a pipeline format that

culminates in intent prediction. This thesis explores each segment within the intent prediction

21

pipeline, scrutinising the contributions at every phase. This study focuses not only on the final

prediction outcome or the cause but also on assessing the viability and efficiency of computer

vision and machine learning techniques in predicting vehicular intent at a T-junction based on

each pipeline segment's performance. In intent and trajectory prediction, common methods

involve predicting a vehicle's future path based on its historical positions and often employ

recurrent neural networks (RNNs) or long short-term memory (LSTM) networks. Behavioural

prediction analyses vehicle dynamics like speed and acceleration to infer intent using machine

learning models trained on historical data. Action recognition methods predict intent by

identifying specific manoeuvres from video frames, such as turn signals or lane changes.

Object detection and tracking involve using algorithms to identify and predict the movements

of vehicles in video frames. Semantic segmentation helps understand the scene's context by

classifying image parts into categories like roads or vehicles, thereby assisting in intent

prediction.

2.1.1.1 Static vs. Dynamic (Vehicle-Mounted) Video Sources

Computational Challenges:

Static Video Sources:

• Fixed Perspective: Static cameras have a fixed perspective, making background

modelling and motion detection relatively straightforward as the background remains

constant.

• Limited Field of View: Static cameras cover a limited area, requiring a network of

cameras for extensive coverage, leading to data integration and synchronization

challenges.

• Stable Imaging Conditions: The stability of static cameras ensures consistent imaging

conditions, aiding in more accurate object detection and tracking.

Dynamic (Vehicle-Mounted) Video Sources:

• Changing Perspective: Vehicle-mounted cameras constantly change their perspective,

complicating background subtraction and motion detection, requiring more

sophisticated algorithms to adapt to varying scenes.

• Wide Field of View: These cameras can cover larger areas as they move, but the

constantly changing view necessitates real-time processing to keep up with the

dynamic environment.

• Variable Imaging Conditions: Movement introduces variability in lighting, shadows, and

weather conditions, making object detection and tracking more challenging.

22

Practical Difficulties in Intent Prediction:

Static Video Sources:

• Limited Context: Static cameras provide a limited context, often missing out on

interactions occurring outside their field of view, leading to incomplete data for intent

prediction.

• Predictive Lag: Intent prediction might lag due to the fixed viewpoint, making it harder

to anticipate actions that start outside the camera’s view and move into it.

Dynamic (Vehicle-Mounted) Video Sources:

• Complex Motion Patterns: Predicting intent from a moving platform involves

accounting for both the motion of observed objects and the motion of the camera itself,

increasing the complexity of the prediction models.

• Occlusion Handling: As the vehicle moves, objects may be occluded by parts of the

vehicle or other objects, making continuous tracking and intent prediction difficult.

• Latency and Real-Time Processing: Real-time intent prediction is crucial for vehicle-

mounted systems to make immediate decisions. This requires high computational

power and efficient algorithms to minimize latency.

Integration of Multiple Data Sources:

Both static and dynamic video sources can benefit from integration with other data sources

(e.g., GPS, LiDAR, radar).

Benefits of Static Video Sources:

Enhanced Object Detection and Tracking:

• LiDAR and Radar: These sensors provide depth and range information,

which can be combined with video data to improve object detection and

tracking, especially in low-light or poor visibility conditions.

• Increased Accuracy: The fusion of video with depth data from LiDAR helps

distinguish between objects and accurately measure their distances and

dimensions.

Improved Situational Awareness:

• GPS Integration: Combining video data with GPS information allows for

precise geolocation of objects within the camera's field of view, aiding in

better situational awareness and context understanding.

• Spatial Context: Static cameras can gain spatial context, enabling better

mapping and monitoring areas for security, traffic management, and urban

planning.

23

Data Redundancy and Reliability:

• Multi-Sensor Redundancy: Combining multiple sensor data sources

ensures reliability and reduces the risk of single-point failures, leading to

more robust surveillance and monitoring systems.

Enhanced Anomaly Detection:

• Cross-Validation: Different sensors can validate each other's data, making

detecting anomalies or suspicious activities easier with higher confidence.

• Contextual Analysis: Video data can provide visual context, while LiDAR

and radar offer physical context, improving anomaly detection accuracy.

Benefits for Dynamic (Vehicle-Mounted) Video Sources:

Real-Time Navigation and Collision Avoidance:

• LiDAR and Radar: These sensors are crucial for detecting obstacles, other

vehicles, and pedestrians in real time, providing depth and speed

information that complements video data.

• Enhanced Safety: Integration helps in real-time navigation and collision

avoidance decision-making, critical for autonomous driving and advanced

driver-assistance systems.

Accurate Localization and Mapping:

• GPS and IMU: Combining video with GPS and inertial measurement unit

(IMU) data enables accurate vehicle localization and mapping, which is

crucial for autonomous navigation and route planning.

• Simultaneous Localization and Mapping (SLAM): Video data, when fused

with LiDAR and GPS, improves SLAM algorithms, providing detailed and

accurate maps of the environment.

Improved Object Recognition and Classification:

• Sensor Fusion: Video provides visual details (e.g., colour, texture), while

LiDAR and radar offer shape, size, and distance information. Combining

these enhances object recognition and classification accuracy.

• All-Weather Capability: Video can be less effective in adverse weather

conditions, but radar and LiDAR can compensate, ensuring reliable

operation.

Robust Intent Prediction:

• Comprehensive Data: Combining video with other sensor data enables a

24

more comprehensive analysis of object behaviours and interactions,

leading to more accurate intent prediction.

• Temporal and Spatial Consistency: Multi-sensor fusion ensures temporal

and spatial consistency in data, which is crucial for real-time intent

prediction and proactive decision-making.

General Benefits:

Enhanced Data Quality and Completeness:

• Complementary Data: Different sensors provide complementary data,

enhancing the overall quality and completeness of the information used for

analysis and decision-making.

• Reduced Ambiguity: Sensor fusion reduces ambiguity and uncertainty,

leading to more reliable and accurate interpretations of the environment.

Increased System Robustness:

• Fault Tolerance: Multi-sensor systems are more fault-tolerant. If one sensor

fails or is compromised, others can provide the necessary data to maintain

system functionality.

• Consistency in Various Conditions: Different sensors perform better in

different conditions (e.g., radar in fog, LiDAR at night), ensuring consistent

system performance across diverse scenarios.

Scalability and Flexibility:

• Adaptability: Integrated systems can adapt to various applications and

environments, from urban traffic management to autonomous vehicles,

enhancing their scalability and flexibility.

Integrating video sources with other data sources like GPS, LiDAR, and radar significantly

enhances the capabilities of both static and dynamic systems. This integration leads to more

accurate and reliable object detection, tracking, and intent prediction, improves situational

awareness, and ensures robust performance in diverse conditions. The fusion of

complementary data sources provides a comprehensive understanding of the environment,

which is crucial for advanced surveillance, navigation, and autonomous systems applications.

However, the challenges differ:

Static Video Sources:

• Data Fusion Complexity: Integrating data from multiple static cameras and sensors

requires sophisticated data fusion techniques to create a coherent understanding of

the environment.

25

• Synchronization Issues: Ensuring temporal synchronization across multiple static

cameras and sensors is critical for accurate intent prediction.

Dynamic (Vehicle-Mounted) Video Sources:

• Sensor Fusion: Vehicle-mounted systems often integrate data from various sensors

(e.g., LiDAR, radar) in real-time, requiring complex sensor fusion algorithms.

• Geospatial Alignment: Aligning data from moving sensors with a dynamic environment

map adds another layer of complexity, crucial for accurate intent prediction.

The computational challenges and practical difficulties in intent prediction vary significantly

between static and dynamic video sources. Static cameras benefit from stable imaging

conditions but are limited in field of view and context. Dynamic, vehicle-mounted cameras offer

broader coverage but face challenges due to changing perspectives and variable conditions.

Effective intent prediction in dynamic environments requires advanced real-time processing,

robust object detection and tracking, and sophisticated data fusion techniques to handle the

complex and dynamic nature of the data.

Although there is extensive research on predicting intent, our study concentrated on using 2D

camera data exclusively, without incorporating data from other sensors. Our interest lies in

methods that offer real-time performance, particularly those related to unsignalized junctions,

as reported in the literature.

2.1.2 Simulated data

During the COVID-19 pandemic, our preliminary investigations prompted us to conduct

experimental trials at a T-junction using traffic simulators. Traffic patterns during both the

lockdown and early post-lockdown periods deviated significantly from the norm, rendering the

data collected during these times unsuitable for our research objectives. During the initial

phase of our study, we opted to use the City Drive simulator (Forward Development, 2023),

which is notable for its unique feature of left-hand traffic flow. This distinct characteristic

contrasts with most traffic simulators' right-hand traffic perspective. However, our experience

with this simulator revealed a significant drawback. The artificial intelligence system

responsible for regulating the simulated vehicles' behaviour frequently undermined the

scenarios' realism by delaying actions at the junction and allowing vehicles to back up. As a

result, the outcomes we observed were often unpredictable and lacked the authenticity we

were aiming for. For this work, we required authentic T-junction data, and with no video

datasets of UK T-junctions, we had to create our bespoke video data from live locations in the

UK.

26

2.1.3 UK T-junction accident information

We selected our test locations for unsignalised junctions based on the history of severe or

fatal accidents involving motorcyclists using the Road Safety Foundation EuroRAP data portal

(Foundation, 2022) and from the work of Pai and Saleh (2008). We discuss junction choice

and our data collection methods in detail in Chapter 3.

2.2 Literature review

Our review concentrates on vehicle intent prediction by examining trajectory and intent

prediction methodologies, including intention-aware and interaction-aware strategies. An

intention-aware system refers to a system designed to recognise, understand, and potentially

predict a user's or another system's intentions (Fox et al., 2018).

Interaction-aware systems describe systems or devices that are sensitive to and can adapt

based on interactions. These interactions could be between the system and its user, multiple

users or even between different systems, and they play a role in understanding T-junction

dynamics from various perspectives.

2.2.1 Traffic video datasets

As far as we know, no publicly available 2D video datasets are currently specific to UK T-

junctions. However, many computer vision-focused traffic video datasets exist and are

commonly utilised for benchmarking and forming a foundational part of computer vision

research. Most traffic-centric video datasets aimed at intent and trajectory prediction integrate

additional sensor data, including Lidar and radar, that is synchronised with AV data and

captured from a moving vehicle, overhead drone, or stationary camera. Given the gap in the

UK T-junction video data research, we developed our own UK T-junction video dataset inspired

by the relevant examples in the existing literature.

Argoverse 2 (Wilson et al., 2021) is a set of datasets designed to enhance self-driving

perception and forecasting research. It features a Sensor Dataset with 1,000 multi-modal

sequences, a Lidar Dataset with 20,000 sequences for self-supervised learning, and a Motion

Forecasting Dataset with 250,000 scenarios focusing on complex interactions. These datasets

aim to address diverse and complex machine-learning challenges in autonomous driving.

KITTI-360 (Liao, Xie and Geiger, 2021) is a comprehensive suburban driving dataset that

enhances urban scene understanding in both 2D and 3D. It offers richer input modalities,

extensive semantic instance annotations, and accurate localisation. This dataset is notable for

its geo-registered data of suburban scenes, a WebGL-based annotation tool for 3D space

labelling and a method that translates 3D labels into coherent 2D semantic instance

annotations. KITTI-360 strives to advance research across computer vision, graphics, and

27

robotics and establish benchmarks for tasks like semantic scene understanding, novel view

synthesis, and simultaneous localisation and mapping (SLAM). SLAM is a method in robotics

and autonomous vehicles where the system not only maps the environment and locates itself

within it but also understands and labels the environment semantically, recognising and

categorising elements in the surroundings such as walls, roads or objects and thus providing

a richer, more helpful map.

Leddartech Pixset (Leddartech, 2024) is a novel dataset aimed at autonomous driving

research and development. It is notable for its inclusion of full-waveform data from the Leddar

Pixell sensor, a solid-state flash LiDAR. This dataset, which includes around 29k frames from

97 sequences recorded in high-density urban areas, is enhanced with 3D bounding boxes for

each frame. The dataset's main contributions are the introduction of a new dual LiDAR-type

dataset with solid-state and mechanical LiDARs, full-waveform data and the improvement of

3D bounding box annotation accuracy.

The Waymo Open Dataset (Waymo LLC, 2019) is a comprehensive dataset for autonomous

driving research. It is known for its high-quality, high-resolution sensor data and labels

necessary for various tasks in autonomous driving, such as 3D perception and behaviour

prediction. This dataset has significantly contributed to advancing machine learning models

by providing data from real-world scenarios and challenges encountered in autonomous

vehicle development.

The highD Dataset (Krajewski et al., 2018) is a rich traffic dataset captured from German

highways using drones. It focuses on providing a detailed understanding of vehicle behaviour

and dynamics in various highway scenarios.

The INTERACTION Dataset (Zhan et al., 2019) is a vehicle trajectory dataset dedicated to

understanding interactive driving behaviour in dense traffic environments. It is used to study

and model vehicle interactions and to improve traffic flow analyses.

The Oxford Robot Car Dataset (Maddern et al., 2016) offers a large-scale and long-term

dataset for developing vehicles capable of sustained autonomy in diverse conditions. It is a

valuable resource in the robotics and autonomous vehicle research community, especially for

those focusing on long-term vehicle localisation and autonomy in changing environments, and

it is UK-road-structure-focused.

Kaggle (Kaggle, 2022) offers diverse open datasets, including traffic and transportation-related

sets. Kaggle's platform allows access to datasets and provides a community-driven approach

where users can share their datasets; however, as with any community-driven resource,

quality and support can vary dramatically.

28

2.2.2 Vehicle object detection

The research explores various vehicle detection methodologies. Our work utilises a version of

YOLO (you only look once) for vehicle detection and classification, discussed in detail in

subsequent chapters. This section introduces an overview of YOLO to place it in context.

YOLO represents a paradigm shift in detecting objects within images and is known for its

speed and efficiency in real-time object detection.

The original YOLO (YOLOv1) by Redmon et al. (2016) was groundbreaking in treating object

detection as a regression problem, combining region proposal and classification into a single

step using a convolutional neural network (CNN). Redmon et al.'s version was faster than

previous methods but had limitations in accuracy, particularly with smaller or grouped objects.

YOLO9000, a subsequent version, introduced significant improvements. Developed by

Redmon and Farhadi in 2016, it incorporated anchor boxes for better boundary prediction and

a new classification model, Darknet-19. This version could detect over 9,000 object categories

and improved speed and accuracy.

In 2018, Redmon and Farhadi's YOLOv3 offered incremental improvements, including multi-

scale predictions and a more profound architecture with Darknet-53. It enhanced the detection

of small objects and struck a balance between speed and accuracy.

YOLOv4, created by Bochkovskiy and Wang (2020), integrated various techniques from the

research community to optimise speed and accuracy. It included innovations like Mish

activation, cross-stage partial connections and diverse data augmentation methods. It aimed

to perform well on standard hardware.

YOLOv5, developed by Jocher in 2021, focused on being lightweight and extremely fast,

suitable for speed-critical applications. It introduced scaling and deployment improvements.

Li et al.'s (2022) YOLOv6 emphasised easy deployment across platforms while balancing

speed and accuracy, thus improving upon YOLOv5's architecture and training techniques.

YOLO versions 7 and 8, launched in 2023, are awaiting review and comparison with earlier

versions. Each iteration of YOLO signifies advancements in object detection technology that

balance speed, accuracy and real-world applicability.

Our decision to use YOLO was based on our requirements: a real-time inference speed of

vehicle detection and classification, classification accuracy, and its use in the following

research.

Numerous algorithms on speed and accuracy have been proposed, such as C3Ghost and

Ghost (Dong, Yan and Duan, 2022) modules in YOLO. Dong et al. presented an improved

version of the YOLOv5 object detection method, tailored explicitly for vehicle detection. The

authors addressed two primary challenges of vehicle detection methods: high computational

load and suboptimal detection rates. The key innovations in their approach include the

29

integration of C3Ghost and Ghost Modules: These modules are incorporated into the

YOLOv5's neck network. They aim to reduce the floating-point operations (FLOPs) during the

feature channel fusion process, which is a significant step because it helps make the model

more efficient by reducing computational demands without sacrificing performance. The

Convolutional Block Attention Module (CBAM) was added to the YOLOv5 backbone network.

The CBAM plays a crucial role in enhancing the model's focus on relevant information for

vehicle detection while suppressing irrelevant data. This selective attention mechanism is

geared towards improving the detection accuracy of the algorithm. Dong et al. introduced the

CIoU_Loss as the bounding box regression loss function—an essential aspect as this

accelerates the bounding box regression rate and improves the algorithm's localisation

accuracy, which is vital for precise object detection.

To validate the effectiveness of these improvements, Dong et al. conducted tests using the

PASCAL VOC and MS COCO datasets. The results from these case studies are promising

and include the following:

• Increased detection precision: The detection precision of the proposed

model saw a significant increase of 3.2%.

• Reduced FLOPs: A 15.24% reduction in FLOPs indicates a more efficient

computational process. The number of model parameters was reduced by

19.37%, suggesting a leaner, more optimised model structure.

Overall, the authors demonstrate the effectiveness and superiority of the improved YOLOv5

method for vehicle detection through comprehensive case studies and comparisons with the

existing YOLOv5 model. The results indicate that the authors have successfully addressed

the initial challenges, leading to a more efficient and accurate vehicle detection system.

However, integrating C3Ghost and Ghost modules, along with the Convolutional Block

Attention Module (CBAM), into the YOLOv5 architecture increases the model's complexity.

Like most deep learning models, the performance of this improved YOLOv5 method heavily

depends on the quality and quantity of the training data. If the training datasets (like PASCAL

VOC and MS COCO) do not adequately represent the variety of real-world scenarios, the

model may not generalise well to different or novel environments. Adding sophisticated

modules and mechanisms to improve accuracy might also lead to overfitting, especially if the

model is trained on limited or highly specific datasets—overfitting results in an excellent

performance on training data but poor generalisation for new, unseen data.

Despite reducing FLOPs and model parameters, the model may still require significant

computational resources, particularly during training; this is a limiting factor for our work as we

did not have access to high-performance computing facilities. While Dong et al. focus on

reducing computational load, the real-time processing capabilities of the model in various

scenarios, such as different lighting conditions, weather conditions or high-speed

30

environments, are not explicitly discussed. These are critical factors in vehicle detection

applications, especially for autonomous driving systems. The model is optimised explicitly for

vehicle detection. However, this specialisation might limit its adaptability or performance when

detecting a broader range of objects in different contexts outside vehicle detection. There is

also always a risk of inherent biases in the training data being transferred to the model. If the

datasets used have any bias regarding vehicle types, sizes or environmental conditions, the

model might inherit these biases, affecting its performance and reliability.

Another approach to the challenging problem of vehicle detection in autonomous driving

systems (Chen et al., 2022) focuses on complex traffic scenes and the constraints posed by

limited computing resources. Chen et al. propose an improved version of the Single Shot

Multibox Detector (SSD) algorithm tailored for fast and accurate vehicle detection.

The authors chose MobileNet v2 as the backbone feature extraction network for the SSD

framework. MobileNet v2 is known for its mobile efficiency and embedded vision applications,

which likely contribute to the real-time performance improvements of the proposed algorithm.

The authors introduced a channel attention mechanism for feature weighting. This approach

is designed to enhance the model's ability to focus on more relevant features for vehicle

detection, thereby improving its detection accuracy. A deconvolution module further enhances

the model's performance. This structure aims to improve the model's ability to recognise

vehicles of various sizes and in different parts of the image—a common challenge in complex

traffic scenes. The model's effectiveness is demonstrated through its performance on two

standard autonomous driving datasets, BDD100K and KITTI. The reported average precision

rates of 82.59% for BDD100K and 84.83% for KITTI are impressive, indicating a high level of

accuracy in vehicle detection. One of the standout features of the proposed algorithm is its

inference speed. With a single inference time of 73 ms, the model is notably faster than the

original SSD model. The authors claimed to achieve a balance between improved inference

speed and enhanced prediction accuracy. This balance is critical in autonomous driving

systems, where fast processing and high accuracy are necessary for safe and efficient

operation. The authors thus effectively addressed the dual challenges of speed and accuracy

in complex traffic environments by optimising the SSD algorithm with MobileNet v2 and

incorporating advanced techniques like channel attention and deconvolution modules. The

robust evaluation using standard datasets further underscores the practical applicability and

effectiveness of the proposed solution.

While the authors present a promising approach to vehicle detection in autonomous driving

systems by improving the Single Shot Multibox Detector (SSD) algorithm, there are potential

disadvantages and limitations to consider. Integrating MobileNet v2, channel attention

mechanisms, and deconvolution modules increases the complexity of the model, and the

inference time of 73 ms is slower than the YOLO-based models.

31

Accurate real-time vehicle detection using YOLO is discussed by Nafiseh Zarei, Payman

Moallem and Shams (2023), who use an innovative algorithm for vehicle position

determination explicitly designed for urban traffic monitoring systems. The algorithm operates

in two stages: detection and prediction. This separation allows for a balance between accuracy

(achieved through detection) and speed (achieved through prediction), thereby offering a

flexible solution that can be tailored to specific requirements. Using YOLO as the base for the

detection network is a significant choice, reflecting the acceptance of this model in real-time

inference problems.

YOLO is known for its speed and efficiency in object detection tasks. The design is tailored to

be robust against changes in vehicle scale, which is crucial in diverse traffic scenarios. The

detector network generates feature maps that are crucial to increasing detection accuracy.

These maps are used for image segmentation into two classes, vehicle and background,

utilising differential images and a U-Net-based module. This segmentation is a key step in

accurately distinguishing vehicles from their surroundings. Differential images and a U-Net-

based module for image segmentation allow for a clear distinction between vehicles and

backgrounds. This distinction is critical for accurate vehicle position detection in complex

urban environments. The algorithm classifies vehicle manoeuvres to enhance the recursive

predictive network's performance and is done by concurrently considering the vehicles' spatial

and temporal information.

Such an approach is more effective than methods considering these aspects separately and

leads to better prediction accuracy. The simultaneous consideration of spatial and temporal

data in classifying vehicle manoeuvres indicates a comprehensive approach to understanding

vehicle dynamics and could significantly contribute to the system's predictive accuracy. The

algorithm's performance was validated using the Highway and UA-DETRAC datasets, which

are standard in urban traffic monitoring research. This validation demonstrates the algorithm's

applicability and effectiveness in real-world urban traffic scenarios, where accurate and fast

vehicle detection and tracking are essential. The use of advanced techniques like YOLO for

detection, U-Net for segmentation, and the consideration of both spatial and temporal data for

manoeuvre classification all contribute to the robustness and efficacy of the proposed system.

The validation of the algorithm on standard datasets further underscores its practical

applicability in urban traffic environments. However, this model is not designed to work on real-

time predictions.

In contrast, Zarei et al.'s algorithm and the use of YOLO suggest potential for real-time

application. Actual real-time capability would depend on the specific implementation details,

the efficiency of the image segmentation process, the balance between detection and

prediction, and the available computational resources. Further information or empirical real-

time testing would be necessary for a definitive answer.

32

EnsembleNet (Mittal, Chawla and Tiwari, 2022) uses a hybrid vehicle detection approach and

traffic density estimation based on faster R-CNN and YOLO models. Mittal et al. emphasise

the growing importance of deep learning technologies, particularly CNNs and in-vehicle

identification systems. This choice aligns with the current trend of leveraging advanced AI

techniques for complex image recognition tasks. The researchers collected data from several

open-source libraries, including MB7500, KITTI and FLIR. This diverse data collection is

crucial for building a robust model. Image annotation was performed to classify vehicles into

different categories, addressing an essential step in supervised machine learning. Various

data augmentation methods were employed to tackle the class imbalance issue and increase

the dataset size.

Additionally, the image quality was enhanced through a sharpening process, which is crucial

to improving the model's ability to detect and recognise vehicles accurately. The paper

introduces a novel hybrid model that combines Faster R-CNN and YOLO, utilising a majority

voting classifier. This hybrid approach aims to leverage the strengths of both Faster R-CNN

and YOLO, potentially leading to more accurate vehicle detection and counting. The proposed

model, EnsembleNet, demonstrated a high detection accuracy of up to 98%, outperforming

the base estimators YOLO (95.8%) and Faster R-CNN (97.5%). This comparison is essential

to validating the effectiveness of the hybrid model over the individual models. One of the key

findings is that the proposed model performs better in estimating traffic density compared to

YOLO and Faster R-CNN.

While using a hybrid model of Faster R-CNN and YOLO presents a promising approach,

combining Faster R-CNN and YOLO into a hybrid model increases complexity, rendering real-

time predictions slower. Advanced deep learning models like Faster R-CNN and YOLO (Kim,

Sung and Park, 2020), particularly in a hybrid format, could require significant computational

resources for training and inference. While the model has been tested on specific datasets

(MB7500, KITTI, and FLIR), its ability to generalise to various real-world traffic conditions,

including weather, lighting, and traffic density scenarios, is not explicitly addressed. The

reliance on open-source libraries for data collection might introduce biases or limitations

inherent in the datasets. Additionally, image annotation is labour-intensive and could introduce

human errors or inconsistencies. While data augmentation methods are used to address class

imbalance, over-reliance on these techniques can sometimes lead to models that are less

effective at generalising from augmented data to real-world scenarios. For traffic management

applications, real-time processing is crucial. Kim et al. do not explicitly mention the real-time

capabilities of the hybrid model, which is essential for dynamic traffic management systems.

The high detection accuracy (up to 98%) reported might raise concerns about overfitting,

especially if the model is excessively tuned to the specific datasets used for training and

evaluation. While the hybrid model outperforms the base models YOLO and Faster R-CNN in

33

the tested scenarios, the comparative analysis might not fully account for all possible real-

world scenarios and challenges.

YOLO-based models are becoming the standard for real-time detection. Ayush Dodia and

Kumar (2023) address the limitations of traditional car object detection algorithms, particularly

in generalisation capacity and recognition rate. Their research focuses on vehicle detection to

manage vital traffic data, such as vehicle count and movement. It compares contemporary

object detectors and traffic situation estimations, specifically examining different YOLO

algorithm versions for optimal vehicle detection. The YOLO algorithm process involves

clustering analysis for dataset optimisation and network structure enhancement to improve

vehicle prediction. Ultimately, the study proposes an improved vehicle identification technique

based on the YOLO algorithm and evaluates three versions for effective vehicle detection.

Ayush Dodia and Kumar (2023) examine different versions of the algorithm—YOLO-v3,

YOLO-v5 and YOLO-v7—for vehicle detection and counting in adaptive traffic light systems,

assessing the accuracy of these versions, concluding that YOLO-v7 is the most effective, with

95.74% accuracy and a low frame rate of 3.5 ms per frame, facilitating faster object detection.

The paper also notes the utility of YOLO-v5 and YOLO-v7 in detecting other objects, such as

pedestrians and traffic signs for autonomous vehicles. It suggests that future work might

explore YOLO v8, a promising next-generation facial recognition software with higher

accuracy, speed, and broader identification capabilities, potentially setting a new standard for

segmentation and object detection. However, YOLO v7 was designed to improve the efficiency

of YOLO v5 in terms of generalisation ability, speed of inference and overall accuracy, yet

YOLO v7 requires a significant increase in computational resources for both training and

implementation.

Small object detection, such as distant vehicles, is addressed by Wen et al. (2023). They

proposed LSD-YOLO, a variant of the YOLOv5 algorithm designed for higher accuracy and

efficiency in detecting small objects. LSD-YOLO enhances small-scale feature maps to

improve detection capabilities and introduces a new structure, FasterC3, to decrease network

latency and parameter volume. LSD-YOLO incorporates coordinated attention to identify

attention regions in complex driving scenarios and employs LeakySPPF, a spatial pyramid

pooling method, to speed up computation by up to 15%. Additionally, Wen et al. (2023)

presented a medium-sized dataset, Cone4k, to address category limitations in the VisDrone

dataset. Extensive testing on the VisDrone2021 dataset demonstrated that LSD-YOLO

achieves significant improvements in mean Average Precision (mAP) and F1 score, along with

a reduction in parameter volume, making it a promising solution for enhancing small object

detection in autonomous driving. The algorithm, primarily based on YOLOv5s and extended

to other versions like YOLOv5m and YOLOv5l, utilises small-scale feature maps to enhance

the detection of small objects. It integrates the FasterC3 module into the network for improved

34

accuracy and speed and adopts Focal-EIoU to address computational issues in CIoU. The

research indicates that LSD-YOLO outperforms the original network, with a 4.6% improvement

in mean Average Precision (mAP) and a 3.6% increase in F1 score, while reducing the

parameter count by 7.5%. However, there is a compromise between increased accuracy and

reduced inference speed.

2.2.3 Vehicle Intent classification at intersections

Methods for classifying vehicle intent vary with the specific application, and there is a large

corpus of research on classifying vehicle intent from moving vehicles, such as autonomous

vehicles or semi-autonomous driving aids. Amini, Omidvar and Elefteriadou (2021) and Afifah,

Guo, and Abdel-Aty's (2023) research also emphasised the focused development of

interconnected vehicles, which can, for example, pass current and intended trajectories

between vehicles in the immediate vicinity and static infrastructure placed at intersections.

An early study into AV navigation of unsignalised junctions was carried out by Sezer et al.

(2015) and has inspired our work. Sezer et al. (2015) addressed the interaction between

autonomous driverless vehicles and human-driven vehicles, mainly focusing on merging

scenarios at intersections. Their study uses Mixed Observability Markov Decision Process

(MOMDP) tools to approach this interaction as an intention-aware motion planning problem.

The key innovation here is the application of intention-aware planning frameworks to predict

and adapt to human drivers' actions, specifically at T-junction intersections. A driver behaviour

model was developed to calculate probabilistic state transition functions for the MOMDP

model, thereby allowing the autonomous vehicle to make more informed decisions. The results

suggest that this intention-aware approach significantly improves performance over current

methods, notably reducing accident probabilities and intersection navigation times.

The results presented here demonstrate the application of a MOMDP in managing interactions

between an autonomous vehicle (robot) and human-driven vehicles at an intersection. The

critical aspect of this experiment is how the robot adapts its behaviour based on its perception

of the human driver's intentions. In the first scenario, the MOMDP is used to interpret an

aggressive driver's behaviour. The robot initially perceives the driver as aggressive and stops.

However, as the driver's behaviour changes (slowing down and yielding), the robot updates

its beliefs and eventually merges onto the road.

In the second scenario, the MOMDP method demonstrates its ability to handle a persistently

aggressive driver. The robot initially stops, recognising the driver's aggressive approach.

However, it then decides to proceed before the driver has passed the intersection based on

its calculation of a low probability of conflict. This action is driven by the model's inclusion of a

time penalty, encouraging more efficient navigation.

35

These results showcase the efficacy of the MOMDP approach in navigating complex and

dynamic scenarios involving human drivers. By continuously updating its beliefs about the

drivers' intentions, the robot can make safer and more efficient decisions, demonstrating a

significant advancement in autonomous vehicle navigation in mixed-traffic environments. This

approach enhances safety and improves traffic flow by reducing unnecessary stops or delays

caused by uncertainty in interpreting human drivers' intentions.

The MOMDP framework, while innovative and valuable for the interaction of autonomous

vehicles with human-driven vehicles, does have several disadvantages. Firstly, MOMDPs are

inherently complex because they must account for many variables and potential states in

dynamic environments like road traffic. This complexity can lead to increased computational

requirements, making real-time decision-making challenging. Secondly, MOMDP

effectiveness relies heavily on accurate sensing and prediction of human driver behaviour.

The model might be trained and tested under specific conditions (like certain types of

intersections, traffic densities or driver behaviours). Its performance could vary significantly

under different conditions, which limits its generalisation to all real-world driving scenarios. As

traffic density increases or scenarios become more complex (e.g., multiple human-driven

vehicles with varying behaviours), the decision-making process's computational load and

complexity increase, impacting the system's scalability in dense urban environments. While

MOMDP aims to predict human behaviour, human drivers can be unpredictable and may not

always behave according to the model's parameters. This unpredictability poses a significant

challenge, although current machine and deep learning methods we explore in subsequent

chapters promise to alleviate some of these issues.

Our research is focused on T-junction or intersection-specific models using static sensors;

however, some of the approaches in the literature focused on AV intent and trajectory

prediction using sensors such as radar and Lidar, and these have assisted in developing a

framework to apply to our work.

Zhang et al.'s (2021) proposed method using an LSTM-based framework for intersection traffic

focuses on predicting vehicle intentions and trajectories at intersections. Assuming that vehicle

motion trajectories at intersections align with historical data once driving intentions are

determined, the study establishes an Intersection Prior Trajectories Model (IPTM) by

clustering and analysing extensive historical traffic flow trajectories. This model helps

approximate the distribution of predicted trajectories and serves as a benchmark for credibility

evaluation. The paper employs another LSTM model for intention prediction, a critical early-

stage trajectory forecasting element which links with the IPTM and enhances the framework's

predictability. Validated on the NGSIM and INTERACTION datasets, this framework

significantly improves trajectory prediction accuracy by approximately 20% over other

methods. However, LSTM models are inherently complex and require substantial

36

computational resources, making them expensive and challenging to deploy in real-time traffic

management systems. In real-time prediction, any latency in processing and decision-making

can be critical. The LSTM-based framework might face challenges in ensuring the minimal

latency necessary to be effective in real-time applications.

Another approach to intent predictions at unsignalised intersections is a method called Multi-

Modal Trajectory Prediction with Uncertainty (Zyner, Worrall and Nebot, 2018). The approach

combines RNNs with a mixture density network (MDN) output layer designed to deal with the

unpredictable nature of vehicle movements at intersections. Introducing a clustering algorithm

to analyse the output probability distribution is innovative, helping to identify and rank possible

paths. Using a real-world dataset with over 23,000 vehicles across five intersections adds

significant strength to the study. It ensures that the findings are based on diverse, real-world

scenarios. A Lidar-based tracking system for data collection is state-of-the-art, providing high-

quality and reliable data. Using various metrics to assess the model's performance against

several baselines demonstrates a comprehensive evaluation approach.

Testing the model on multiple intersections with a large dataset suggests good generalisability;

however, the model's effectiveness heavily depends on the quality and diversity of the training

data. If the data is not sufficiently varied or representative of all possible scenarios, the model's

ability to generalise to new, unseen intersections might be limited. While practical, using RNNs

and MDNs is computationally intensive, and valuable real-time predictions are impossible as

inference time is in seconds, not the milliseconds required for our work.

A similar, improved method by Jeong et al. (Jeong, Kim and Yi, 2020) applies combined LSTM

and RNN networks to predict turning behaviour at an intersection. Incorporating the subject

vehicle's future states as an input feature to the LSTM-RNN is an innovative approach. It

allows the model to consider the interaction between the subject and surrounding vehicles.

The application results indicate improved recognition timing of the preceding vehicle, and the

similarity of longitudinal acceleration with human drivers suggests practical benefits, implying

that the system can make decisions more aligned with human driving patterns. More

specifically, (67.36%) of the acceleration error falls within ±0.5 m/s², and a significant majority

(91.97%) is within the ±1.0 m/s² range, suggesting that the algorithm's performance is roughly

aligned with human driving behaviours.

In contrast, the acceleration error distributions for the other models, like CV/Path and CTRV,

were broader and less accurate in predicting a target vehicle's acceleration. These models

struggled to accurately forecast the target's motion, resulting in a wider spread of error values.

However, the Vflow/Path model showed a bias in the negative plane, demonstrating that the

model—which assumes the vehicle follows the traffic flow—has limitations in responding to

varying in-lane behaviours. This bias occurs because deceleration is usually more pronounced

than acceleration in normal intersection driving conditions.

37

Wang and Shi (2020) used deep reinforcement learning to predict how a driver turns at an

unsignalised intersection. Wang and Shi focused on the impact of intersection collision

warning (ICW) systems on vehicle safety at non-signalised intersections. The authors

developed a Matlab-based simulation platform to test their hypothesis and analysed various

safety indices such as collision probability, conflict index, and collision rate. Their results reveal

that vehicle safety at non-signalised intersections improves as the ICW system market

penetration rate (MPR) increases. Significant safety benefits were observed even at a

relatively low MPR of 20%.

With a 20% MPR and vehicles connected by vehicle-to-everything technology, there were

reductions in collision probability (20%), conflict index (20%) and collision rate (35%).

The simulation method allowed for the establishment of a relationship between the ICW

system MPRs and vehicle safety indices at non-signalised intersections.

The study acknowledges that the diversity and unpredictability of human driving behaviour

could impact the effectiveness of ICW systems. The experiment was conducted in a simulated

environment, as real-world field testing is difficult and risky. The paper concludes that the ICW

system, when widely adopted, could significantly reduce collision metrics at non-signalised

intersections; however, the variability in human behaviour and the need for real-world testing

are areas that require further investigation. The simulation method presented in this paper

offers us a framework for analysing the impact of intelligent vehicle technologies on road

safety.

 Hu et al. (Hu, Zhan and Tomizuka, 2018) proposed a semantic-based intention and motion

prediction (SIMP) method to predict vehicle intention simultaneously. The authors highlighted

that existing research often limits the scope of driving intentions to specific scenarios, failing

to account for the diversity in real-world driving environments, and emphasised the need for

an intention prediction method capable of adapting to various traffic scenarios given the

multitude of possible driving manoeuvres. The method adopted improves prediction

performance by integrating motion information with classified intentions and obtaining

temporal information about predicted destinations, thus generating optimal trajectories for

predicted and autonomous vehicles.

The SIMP method uses semantically defined vehicle behaviours to adapt to various driving

scenarios. This method employs a deep neural network within a probabilistic framework to

estimate intentions, final locations, and timing for surrounding vehicles.

Support vector machine (SVM) is primarily used for classification tasks but can also be

adapted for regression. It works by finding the hyperplane that best separates data classes in

a high-dimensional space. For non-linearly separable data, SVM uses kernel tricks to

transform data into a higher dimension where it is separable.

Quantile random forest (QRF) is an extension of the random forest algorithm, an ensemble

38

learning method. While a standard random forest generates predictions by averaging the

results of multiple decision trees, a quantile random forest provides a distribution of possible

outcomes. This is beneficial for estimating the uncertainty and variability in the predictions.

SIMP was compared to baseline SVM, and QRF models in two representative driving cases.

The SIMP method reportedly outperformed these models in prediction accuracy and

confidence intervals. A key conclusion is the efficacy of combining different prediction tasks

using semantics in a single framework, which allows for generalisation to various traffic

scenarios and competitive performance against traditional methods.

DESIRE (Deep Stochastic IOC RNN Encoder-Decoder; Lee et al., 2017) is a framework for

predicting the future positions of multiple interacting agents in dynamic scenes. It is an end-

to-end trainable neural network model incorporating a deep IOC (inverse optimal control)

framework. The framework accounts for the multi-modal nature of future predictions,

acknowledging that the same current context can lead to different future outcomes. DESIRE

can foresee potential future outcomes and make strategic predictions based on accumulated

future rewards, akin to IOC frameworks. DESIRE considers past motion histories, semantic

scene contexts, and interactions among multiple agents, thus providing a holistic view of the

scenario. Despite its complexity, DESIRE maintains computational efficiency and iteratively

refines predictions to boost accuracy using a conditional variational autoencoder component

to generate a diverse set of hypothetical future prediction samples.

The model was evaluated using two publicly available datasets: KITTI (focused on vehicle

interactions) and the Stanford Drone Dataset. The model's prediction accuracy was

benchmarked against other methods and demonstrated significant improvements, particularly

in scenarios with rich interactions. While DESIRE's top 1% sample may show higher error than

direct regression baselines, multiple samples (e.g., top 10%) yield much better prediction

accuracy. DESIRE offers accurate long-term predictions in complex scenes, integrating static

and dynamic contexts.

In our work, we simplified the prediction algorithm regarding the number of agents and built

on the work of Wang et al. (2020), Hu et al. (2018) and Lee et al. (2017) to generate our feature

vectors.

To classify intent based on historical feature vector data, most models in the literature have

the same goal: to represent a conditional probability distribution P (o | f) outcome at a junction

given a vector of features f. However, these models differ in how they extract features. The

literature describes challenges in developing pragmatic intersection intention prediction

models. These challenges include developing models that can generalise across unseen

intersections and drivers, predict over longer prediction horizons, and do not require driver

eye-tracking or similar inputs. All models are probability distributions rather than mere

classifiers, which allows them to capture the inherent stochasticity in human driving behaviour.

39

Benchmarking is common across the literature, giving a certain degree of generalisation.

Our tailored video dataset uniquely addresses the specific needs of our study as existing

benchmarks do not adequately cover all potential vehicular scenarios. This approach mirrors

Ristani et al. (2016), who developed customised benchmarks for various video tracking and

analysis situations. They introduced innovative precision-recall performance measures that

uniformly tackle different errors while emphasising accurate identification. Their significant

contribution includes compiling the most extensive, fully annotated, calibrated dataset for

multi-target, multi-camera tracking. This dataset encompasses over two million high-definition

video frames, recorded using eight cameras and tracking more than 2,700 distinct identities.

2.2.3 Non-predictive, reactive methods of accident mitigation

Existing accident mitigation technologies, such as automatic emergency braking (AEB), are

reactive measures that activate when there is an imminent collision between a vehicle and an

object directly in their path. This issue is explored in the context of motorcycles by Savino et

al. (2016), who made a significant advancement in motorcycle safety by extending the

implementations of the inevitable collision state (ICS) theory to motorcycles. Savino et al.

(2016) successfully adapted ICS theory, which has predominantly been applied to cars for use

with motorcycles to consider the unique avoidance capabilities of motorcycles, allowing for

more accurate predictions in motorcycle-to-car crash scenarios. The findings enable the

development of more sophisticated and effective motorcycle safety systems, such as AEB and

airbags. By integrating this advanced understanding of collision inevitability, these systems

can be designed to activate only when a collision is physically unavoidable. Improving time-

to-collision (TTC) analysis allows for better analysis of TTC values when assessing the

effectiveness of safety systems before a crash occurs.

Savino et al. presented simulation results for 10 motorcycle crash cases. They traced the

relationship between TTC and actual impact speed, as well as impact speed reduction versus

actual impact speed. Their results were based on motorcycles travelling in a straight line and

not performing lateral avoidance manoeuvres. It also considers only a single opponent car,

although the approach remains conservative in scenarios with multiple obstacles. Their study

demonstrated the practical feasibility of applying ICS to real-world motorcycle crashes and

suggested a lookup table approach for implementing such systems; the simulations also

provided quantitative estimates of potential impact speed reductions.

Motorcycle autonomous emergency braking (MAEB) systems were reviewed by Haufe et al.

(2021). MAEB technology is similar to autonomous car braking that applies braking force

automatically to reduce impact speed in emergencies, and it is designed to reduce the severity

of motorcycle crashes by applying autonomous braking during emergencies. Haufe et al.

40

(2021) evaluated how acceptable and controllable these automatic braking events are to

typical riders in realistic riding scenarios. Fifty-five riders participated in field tests on three

different motorcycle types. An investigator triggered The MAEB system remotely during four

specific riding manoeuvres at speeds between 35–50 km/h.

This research was pivotal as it evaluated the impact of MAEB systems on safety enhancement

as well as their feasibility and acceptance among regular riders. It advanced comprehension

of the importance of integrating cutting-edge safety technologies into motorcycles—a mode of

transport often linked with increased hazards. However, the study's relatively large participant

pool may not fully encapsulate the entire spectrum of motorcycle users. The effectiveness of

the AB interventions was assessed under controlled conditions, which may not accurately

mirror real-life situations. Additionally, some participants expressed a preference for testing

anticipated AB interventions before unanticipated ones, suggesting a possible experimental

bias due to anticipation. These constraints, especially the limited diversity of the sample group

and the artificial test environment, underscore the necessity for additional research in more

varied and realistic settings to corroborate the results.

Our investigation into predicting vehicle intent at T-junctions parallels the studies of Savino et

al. and Haufe et al. In this context, by forecasting a vehicle's intention at a junction, MAEB can

be activated before a motorcycle reaches an unavoidable collision state, thereby enhancing

TTC. Further research would help to answer this question: Could augmenting a motorcyclist's

reaction time through a predictive intent factor, alongside MAEB, prevent a collision or

substantially lessen its severity?

2.3 Chapter summary

Our review of related work explored various models and approaches to build a complete

pipeline for intent prediction at T-junctions. We studied behavioural aspects, object detection,

action recognition, semantic segmentation, hybrid approaches, reinforcement learning and

end-to-end learning approaches. We also evaluated existing models and algorithms in the

context of vehicle detection and intent prediction. This chapter describes various methods for

predicting vehicle intentions and motions at intersections and gives a comprehensive overview

of the techniques and methodologies used in vehicle intent prediction, focusing on applying

YOLO algorithms for vehicle detection and classification. We also highlighted the challenges

and limitations of current technologies, created a custom dataset, and evaluated various

predictive models in the context of road safety and traffic management.

41

Chapter 3: Creating a Target Vehicle Video Dataset

3.1 Introduction

The comprehensive literature review in the preceding chapter highlighted a crucial gap in the

available video datasets relating to unsignalized junctions in the United Kingdom. Several

video datasets, such as those by Hadi Ghahremannezhad, Shi and Liu (2023), feature

intersections, roundabouts, and crossroads captured by stationary cameras, whereas others,

like Oxford's Robocar dataset (2020) and KITTI datasets (Geiger, 2023), are collected from

mobile platforms; we analysed these datasets to devise our methodology. However, relying

on an off-the-shelf dataset that did not specifically focus on UK T-junctions would unduly

restrict our research by introducing a generalisation that would dilute our focus. Therefore, we

created a bespoke dataset and video specifications tailored to our research objectives. To our

knowledge, no existing datasets fulfil our specific UK T-junction requirements, which are target

vehicles from a left-hand drive perspective approaching a major road from a minor road where

the target vehicle must yield to traffic on the major road. Hence, creating a unique video

dataset was imperative to serve both as the benchmark for evaluating detection and

classification models and as the primary input for our analytical pipeline.

The decision to collect T-junction video data stemmed from recognising a critical gap in

existing datasets related to unsignalised T-junctions in the United Kingdom. This gap,

identified through a comprehensive literature review, underscores the need for original data

collection to support our specific research goals and hypotheses. Rather than relying on off-

the-shelf datasets or simulators, we opted to create a bespoke video dataset tailored to the

unique requirements of the research objectives. This decision reflects a commitment to

methodological innovation and ensures that the collected data are specifically designed to

address the research questions. The T-junction video data collection process involved

extensive fieldwork, including visits to multiple T-junctions across the southern UK. This

approach was characterised by methodological precision, systematic data collection

protocols, and adherence to ethical guidelines regarding data privacy and consent. Rigorous

quality assurance measures were implemented throughout the data collection process to

ensure the data's integrity and reliability. This included meticulous documentation of ground

truth annotations, verification of data accuracy, and ongoing validation of data quality against

established benchmarks. The real data collected from T-junctions provides a rich and diverse

dataset that captures the complexities and nuances of real-world vehicular behaviour. Unlike

simulated data or existing datasets, the T-junction video data offers insights into traffic

42

patterns, driver behaviours, and environmental factors that influence vehicle interactions at T-

junctions. The collected T-junction video data is the foundation for subsequent analysis,

modelling, and experimentation. The collection of T-junction video data represents a

significant scientific step involving methodological innovation, rigorous data collection

protocols, and a commitment to advancing knowledge in the field.

Opting to construct our unique video dataset rather than relying on a pre-existing dataset or a

simulator introduced a substantial workload but offered several notable advantages to our

research. Firstly, our video dataset is explicitly tailored to our domain of interest. Existing video

datasets and driving simulators struggle to encompass the precise scenarios and conditions

essential for our research. The real-world data we collect includes a broader spectrum of

diversity and variability compared to simulations. Simulators may not necessarily fail due to

inherent limitations but because they lack the necessary data to model real-world scenarios'

complex and unpredictable dynamics accurately. When researching vehicle behaviours before

a T-junction, distinguishing between those that will yield and those that will not pose a

challenge, especially in the absence of existing literature on the subject. Without concrete data

or understanding of these behaviours, simulators cannot replicate these effects accurately,

reducing their output to educated guesses rather than precise simulations. This limitation does

not stem from the simulators' inability to capture real-world intricacies but from the current gap

in our knowledge about specific vehicle behaviours. Collecting our data captures the

subtleties, unforeseen events, and variations necessary for building robust models.

Furthermore, published datasets sometimes suffer from constraints such as limited or

outdated ground truth data. Developing our dataset ensures that our ground truth annotations

remain accurate and current, which is vital for training and further evaluation within our

pipeline. Published datasets or simulators also may not fully address privacy and ethical

concerns linked to the use of real-world data. The decision to create a unique video dataset

stems from a gap identified in existing literature regarding the availability of datasets tailored

to UK T-junctions. By acknowledging this gap and taking proactive steps to fill it, the research

demonstrates a commitment to addressing fundamental challenges in the field. Constructing

our dataset empowers us to collect data responsibly and ethically, respecting privacy and

consent requirements. Another notable advantage is that we possess complete ownership

and authority over the data, which offers the option to commercialise our research or leverage

the data for strategic purposes. Despite our extensive search, we could not identify a

combination of existing datasets or driving simulators that would adequately suit the unique

demands of our research.

It is essential to emphasise that creating our video dataset is a foundational step within this

undertaking rather than its ultimate objective. Our overarching aim was to extract pixel-level

43

feature vectors from vehicles, culminating in a comprehensive feature vector dataset that will

be instrumental in training a predictive model. This dataset will continuously update with new

feature vector data to enable real-time predictions, facilitating our research objectives.

Benchmarking is a well-established practice in the literature and often contributes to the

generalisability of research outcomes. Ergys Ristani et al. (2016) developed tailored

benchmarks encompassing a broad spectrum of video tracking and analysis scenarios. These

benchmarks were deployed in response to the varying contextual conditions of assessments

carried out by subsequent researchers. With this work, it is imperative to construct a vehicle-

specific video dataset of unsignalized T-junctions in the UK to create benchmarks and

evaluate our model on relevant data. This chapter describes our methods for acquiring high-

quality T-junction-based video data. Extensive fieldwork involving visits to multiple junctions

across the southern UK yielded raw video material that encompasses the topography of

junctions, thereby providing a holistic view of vehicle behaviour at and near these junctions.

Our video dataset forms the foundational stage of our pipeline, as all stages of the pipeline

rely on the quality of our video data for baseline reference.

The research question this chapter addresses is

RQ0: Is it feasible to collect real-world video data from T-junctions that can accurately inform

the development of a vehicle intent model for predicting vehicular behaviour?

The novel contribution covered in this chapter is

• The creation of a data-rich video dataset on unsignalised UK T-junctions. This has

formed the content of a research paper that is due to be published shortly.

3.1.1 Organisation of the Chapter

Firstly, we introduce the rationale underpinning the creation of the video dataset

comprising unsignalized T-junctions in the United Kingdom. Secondly, we describe the

unique topographical characteristics of these junctions and illuminate the challenges

encountered when positioning cameras to capture the data. Lastly, we provide details on

the formatting and storage of the video data used in Chapter 4.

3.2 Junction Dataset Considerations

Finding patterns in traffic is stochastic; therefore, our video dataset needed to contain sufficient

data to encompass the full spectrum of traffic over a range of locations and times. Drawing

upon the insights presented by Krajewski et al. (2018), the measurement methods employed

must not influence users to ensure the preservation of realistic behaviour; this entails avoiding

44

the use of visible sensors that resemble traditional traffic surveillance cameras because such

devices could alter the behaviour of those being observed. In our case, our empirical

observations at the experimental junction sites indicated that most drivers were unaware of

our presence; as the majority of drivers drove past, we saw no acknowledgement of the

camera and our researcher was positioned out of view and nearly invisible to road users as

they passed. Additionally, the dataset must be scalable, allowing data to be added and

diversified. Diversity should also extend to the recording sites and times of data collection.

Measurements should be taken from multiple recording sites at different times to

systematically cover various road layouts, traffic rules, and traffic densities; we cover several

junctions at various times to diversify our data.

Furthermore, it is crucial that these measurements occur predominantly on public roads rather

than private property to ensure the practical relevance of the dataset, particularly in the context

of accidents on public roads, which are very hard to replicate realistically. The dataset must

encompass all types of road users without limiting itself to specific categories such as

pedestrians or cars. A comprehensive approach involves tracking every road user, given that

their interactions and influence on each other are vital components of real-world traffic

scenarios. Lastly, to recognise the significant impact of road layout and local traffic rules on

road user behaviour, it is essential to include detailed infrastructure records in the dataset. By

incorporating precise information about road layout and traffic regulations, the dataset can

better reflect the real-world conditions that shape road user behaviour.

3.2.1 Types of unsignalized junction

Unsignalized junctions come in various forms and are devoid of strict traffic control measures

like traffic lights or stop signs. Examples include roundabouts, crossroads, staggered

intersections, and T-junctions. This research centres on the T-junction layout, a ubiquitous

unsignalized junction in the United Kingdom. A T-junction is where a minor road intersects

with a major road. as depicted in Figure 2. Traffic approaching on the minor road must yield

to traffic on the major road from both directions.

Of all the junctions on UK roads, T-junctions have the highest incidence of accidents,

according to multiple sources in 2019 Statista data (Statista, 2023.).

This thesis's primary objective is to predict a vehicle's intention to stop or merge, when

approaching the major road from the adjoining minor road based on data on merging from the

minor road onto the major road at T-junctions.

45

Figure 2: T-junction configuration in the UK.

Traffic coming from the minor road onto the major road can take two distinct paths: 1) a left

turn, merging seamlessly with the flow of traffic without crossing any lanes, as illustrated in

Figure 3; or 2) a right turn, necessitating a crossing of oncoming traffic from the right side, as

depicted in Figure 4. Our video dataset encompasses both scenarios, capturing vehicles on

the minor road as they approach the T-junction and vehicles already in motion on the major

road. Our junction video dataset is used to gather and process feature vector data from

vehicles at the T-junction. This processed data is then forwarded to the next stage in our data

analysis pipeline. Our primary aim is to closely examine the conduct of vehicles as they

approach the T-junction from the minor road and, when a vehicle is identified as posing a

potential hazard to the safe passage of drivers on the major road, issue timely warnings.

46

Figure 3: Left turn from minor to major road.

Figure 4: Right turn across traffic from minor to major road.

3.3 Selecting Experimental Junctions

Our live experimental junctions were chosen based on several critical criteria. Firstly, traffic

density played a crucial role in our selection process. In the initial phases of our investigation,

certain junctions were ruled out due to traffic intensity. Some were deemed too quiet for

meaningful traffic interaction, while others were so congested that traffic movement was

minimal and a smooth flow was virtually non-existent. While adjusting the time of day at these

junctions could partially alleviate this issue, our research required a more generalised

approach. Consequently, we identified more suitable junctions that offered a better balance

and mixed traffic flow.

One of our key objectives is to implement a system that issues warnings to traffic on a major

road when a vehicle from a minor road fails to stop while entering the T-junction. This specific

behaviour is a significant contributor to the majority of accidents that occur at T-junctions. As

a result, our research focuses on accurately modelling and capturing the stochastic nature of

traffic conditions at these high-risk junctions. High-risk T-junctions, known for posing

47

challenges to road users, are characterised by a notable incidence of accidents; we sourced

relevant data in this regard from the Road Safety Foundation (RSF) EuroRAP website

(rsfmaps.agilysis.co.uk, 2023). The accident data from this source covers two distinct periods,

spanning from 2015 to 2017 and 2018 to 2020 (inclusive). Post-2020 data yields a reduced

accident rate, likely due to changing driving habits during the pandemic. An illustrative

example of this data is available in Figure 5, where visual representations showcase the

locations of fatal and serious accidents on roads in the UK.

Figure 5: One of our experimental junctions, JM599, inside the green box, as depicted by RSF

EuroRap. Accident sites are marked as circles.

Our video data collection process involves recording raw video footage of traffic at the

designated junction, capturing the junction infrastructure, and providing a comprehensive view

of all traffic within and surrounding the area. Our initial survey involved remote analysis before

the junction was selected as a suitable location—an image of the junction JM599 from a

satellite view is in Figure 6, and the camera position is in Figure 7.

48

Figure 6: Satellite image of one of our selected junctions depicted in Figure 4.

Figure 7. Our camera is discretely positioned to capture maximum data from a height of 3 m, as seen

in the left image; a view from the camera can be seen in the right-hand image. Raw video (Vr) is recorded

and optimised as a manual process generating an optimised video (Vo). The capture of Vr involves

stationing a camera at specific test locations and recording at a frame rate of 50 frames per second

with a resolution of 1920x1080. The camera is directed towards the approach to the junction's stop line.

Our initial survey identified four locations based on traffic volume, composition, and a relatively

high accident record (as indicated in Table 1). A safety plan for video recording was

established for each of these locations, which also involved obtaining ethical approval for

recording on public highways. Additionally, one more location was selected based on data

indicating a relatively low accident rate, with no accidents recorded between 2018 and 2020.

This location holds significant value in our pipeline's intent prediction training stage because

predictions made using data from this junction are expected to be particularly insightful, as

49

discussed in Chapter 5.

Table 1: Fatal or Serious Collision (FSC) Risk Rate (the number of FSC per billion kilometres

travelled by vehicles along the route).

3.4 Camera position at a T-junction and point of view (POV)

All our video recordings were produced with a Garmin Virb 360 Camera, which can capture

360˚ footage of 1920x1080 pixels using two lenses simultaneously. This high-definition

resolution ensures clear and detailed visuals. Furthermore, the videos were recorded at a

frame rate of 50 fps, allowing for a reduction in fps during video processing if necessary for

tasks like maintaining optimal inference times later in the processing pipeline. This

combination of high resolution and high frame rate contributes to the overall quality and

versatility of the recorded footage. In alignment with Krajewski et al. (2018), our experiments

encompass the entire junction space, taking into account all aspects of traffic and the junction's

geography. We conducted trials with various camera points of view and subsequently

assessed the raw video footage. Given the need to capture the complete topography of the

junction, an ideal view would be 360˚. However, achieving a 360˚ view necessitates the

combination of two 180˚ views, which unavoidably introduces some distortion at the stitch

areas and, thus results in occlusions in the detection zones.

A secondary concern arises when attempting to detect and classify vehicles in a busy

environment from a stitched 360-degree point of view. The increased visible traffic from an

additional lens leads to a significant increase in the average inference time per frame, jumping

from 20 ms to a maximum of 70 ms due to the higher number of detections required in each

frame. The subsequent images in Figures 7–10 relate to our camera point-of-view trials.

3.4.1 Experiments with camera points of view (POV)

To establish the optimum camera position for all junctions in this study, we conducted a series

EuroRAP

Route

Fatal and

Serious

Accidents

2015–2017

Fatal and

Serious

Accidents

2018–2020

Junction Location Fatal and

Serious

Accidents at

a T-junction

2018–2020

FSC Risk Rate

/250

JM377 3 9 Oxshot Road 2 106.9

JM384 26 25 A248 3 88.9

JM559 33 34 Petersfield Road 1 121.5

JM454 10 15 Rowhook Road 2 115.9

UO196 5 0 Jacobs Well Road 0 0

50

of experiments from different points of view (POVs) using junction JM377, as shown in Table

2.

The primary target vehicles in Figures 8, 9, 10 and 11 are those approaching from direction

(a), and they are primarily responsible for most accidents when they enter the major road and

collide with traffic coming from the right (b) or left (c). Traffic approaching from (b) is at risk

from the target traffic (a) if they are not visible while making a right or left turn onto the major

road. Similarly, traffic approaching (c) is at risk from target traffic (a) if they are not seen and

are making a right turn onto the major road. Our objective is to predict the behaviour of target

vehicles approaching from direction (a) before they cross the give-way line. One of the

significant challenges we face is the limited time available to capture, analyse, and predict the

behaviour of vehicles from direction (a). At the most hazardous junctions, target traffic from

direction (a) has a restricted view until they are very close to the give-way line, providing only

a few seconds for the entire process. Our video dataset needs to cover the approach to the

junction from direction (a) as much as possible and include comprehensive topographical and

other traffic details in each frame.

Label Definition

POV Camera point of view. The direction the camera is facing.

a Target vehicle approaching from a minor road.

b Traffic approaching the T-junction from the right on the major road.

c Traffic approaching the T-junction from the left on the major road.

Table 2: Key to Labels in Figures 7, 8, 9, and 10.

51

Figure 8 Camera POV z

Figure 9 Camera POV 360˚x

Figure10 Camera POV y

Figure 11 Camera POV x

52

An overview summary of our POV experiments is presented in Table 3. These experiments

combined subjective assessments with empirical data. The selection of the POV was

influenced by what a human observer would naturally see from the given perspective and how

well the POV video performed in beta testing, particularly in terms of inference time. After

examining the recordings listed in Table 3 and evaluating their appropriateness for video data

collection, we selected Point of View (POV) X. By choosing POV X, we aim to maximize

inference times for our target vehicles by minimizing the potential for occlusions. Each

occlusion could increase the computational burden by necessitating separate, unnecessary

inferences. From the perspective of directions y and z, passing traffic creates obstructions,

and it has been observed that when traffic decreases in speed and occasionally comes to a

complete halt, all target vehicles approaching from the direction a are occluded.

Camera

POV

Experimental summary from POV study

Direction

a

Direction

b

Direction

c

Comment

x Right Frontal Passing There is a good balance between a clear view of

a whole junction and minimising target vehicle

occlusions.

y Frontal None None A clear view of target vehicles. However, a is

frequently occluded by traffic from b c.

z Left Passing Frontal Good view of c and of b passing or turning into

junction. b occludes the camera from target

vehicles if traffic turns left into the junction.

360 x Right Frontal Frontal Data-rich view. Overwhelming when attempting

to isolate the target vehicle. Occlusions in the

stitch sector of the joint lenses.

Table 3. Camera POV summary

We recorded all the videos for this dataset from POV x, which was chosen to balance data

quality, minimal occlusions, and an optimal view of traffic and junction topography. All video

data utilised in this dataset was collected from POV x at each junction.

3.5 Constructing the video for the dataset

After the junctions were selected, the camera position was established, and a safety plan was

drafted, we conducted multiple visits to each junction listed in Table 4. These visits occurred

at different times of the day, with varying traffic densities and light conditions. The objective

was to create individual junction datasets, each named after the EuroRAP route on which they

are situated. Additionally, we compiled a combined dataset named 'Bo', which included all the

junctions.

53

We placed our tripod in a similar position to ensure consistency and to maintain the same

vantage point for each visit to every junction. We achieved this by marking the tripod legs'

positions on the ground using long-lasting biodegradable chalk, thus allowing for accurate

camera position calibration.

Table 4. The storage structure of our video dataset in the raw form was prepared for the next

stage in our pipeline.

All the video data was collected and preserved in the MP4 format. The videos were organised

into junction-specific collections and consolidated into a comprehensive video repository

named Bo.

3.6 Chapter conclusion

Research question revisited: RQ0: Is it feasible to collect real-world video data from T-

junctions that can accurately inform the development of a vehicle intent model for predicting

vehicular behaviour?

The process described in selecting the Point of View (POV) for our experiments directly relates

to the feasibility of collecting real-world video data from T-junctions to develop a vehicle intent

model for predicting vehicular behaviour. By meticulously considering factors such as visibility,

occlusion potential, and computational efficiency, we aimed to ensure that the collected video

data would accurately capture the dynamics of vehicular behaviour at T-junctions. Our

approach underscores our prioritisation of optimizing the data collection process to maximize

the effectiveness of the collected data in informing the development of a vehicle intent model.

Therefore, through careful selection of the POV and thorough evaluation of its suitability, we

aimed to demonstrate the feasibility of collecting real-world video data from T-junctions that

can accurately inform the development of a vehicle intent model for predicting vehicular

behaviour.

EuroRAP

route

Junction location Combined hours

of data collected

over multiple

visits

JM377 Oxshot Road 4.5

JM384 A248 2

JM559 Petersfield Road 4

JM454 Rowhook Road 3.5

UO196 Jacobs Well Road 2

Total hours of data in Bo 16

54

Our contribution revisited:

• The creation of a data-rich video dataset on unsignalized UK T-junctions.

This dataset is designed to enable the extraction of accurate feature vectors from vehicles and

will be made available to the research community in conjunction with our published paper.

This chapter elucidated the methodologies employed to craft a tailored video dataset aligned

with our specific requirements. In Chapter 4, we delve into the object detection and

classification techniques applied to the consolidated video repository (referred to as 'Bo') to

extract precise vehicle feature vectors. Chapter 5 focuses on extracting feature vectors from

pixel-level data within the individual video files. These feature vectors will collectively form a

dataset that serves as the basis for predicting driver intent.

Chapter 4: Selection of Target Vehicle Detector

4.1 Introduction

A vehicle object detector and classifier is a complex system that uses machine learning and

deep learning computer vision algorithms to identify and categorize vehicles in images or video

feeds. It works through two main steps: object detection and classification. Object detection

uses algorithms like CNNs or R-CNNs to find vehicles and mark them with bounding boxes

based on features such as edges and colours. Classification then assigns these detected

vehicles to specific categories (e.g., car, truck) using a trained model on a labelled dataset.

Accuracy depends on the quality of training data, algorithm sophistication, and computational

power. However, challenges like vehicle appearance variability, environmental factors, and

real-time processing demands exist.

While the main aim of this thesis is not to enhance the performance of detection and

classification models, conducting a series of experiments was essential to identify the most

effective vehicle detection model for our pipeline. 'Effective' in this context means that we can

detect vehicles in real-time, locate them in the video frame and classify the type of vehicle. As

discussed in the previous chapter, no viable unsignalized T-junction datasets were available

for our work, and we had to develop our own original dataset; therefore, no benchmark data

is present that we can build. In this chapter, we discuss how using our video dataset Bo and

various detection models, we iteratively singled out the most effective vehicle detection models

for our work based on our data and requirements.

Given the wide range of vehicle detection and classification models analysed in the literature

55

review in Chapter 2, this thesis demands prioritising rapid inference while upholding

acceptable accuracy levels. Given our focus on detecting vehicles, we have prioritised models

designed for swift inference, as detecting smaller objects necessitates redundant additional

computational processing. Two of the most prominent detection and classification models in

this context are Faster R-CNN and YOLOv5. In real-time vehicle detection and classification

using 2D video, most literature suggests using YOLOv5; this aligns with our objectives

because YOLOv5—coded in Python, a language we are familiar with—offers a variety of pre-

trained models tuneable to our requirements. Our version of Faster R-CNN is also written in

Python and has a range of pre-trained models tunable to our requirements. While Faster R-

CNN has been shown to be much more accurate in detecting smaller objects than YOLOv5,

as detailed in Chapter 2, it does not perform as well in inference time.

Our initial evaluation of our faster R-CNN demonstrated promising results using our data in

inference speed and vehicle detection accuracy. In contrast, our initial assessment of YOLOv5

revealed certain areas needing improvement when incorporated into our workflow. Instead of

hastily selecting the theoretically superior model, we conducted a brief study utilising our

dataset to perform a precise real-time performance analysis. Per many of the studies in

Chapter 2, faster R-CNN and YOLOv5 can detect and classify vehicles in real-time. However,

an additional neural network is required to track vehicles processed from faster R-CNN or

YOLOv5 detections. This further computational load significantly impacts our work's real-time

element as we introduce multiple subsequent steps into the target of real-time driver

predictions. Our overall goal is to strike a balance between detection accuracy and inference

speed. In this section, we clarify the architectural complexities of Faster R-CNN and YOLOv5

and undertake a comparative analysis of their performance using our video dataset, Bo.

4.1.1 Organisation of the chapter

This chapter is organised as follows. Firstly, we introduce our test models, Faster R-CNN and

YOLOv5. Secondly, to select the optimal detection classification model, we quantitatively

compare the models' inference time and accuracy based on our test models using our own Bo

video dataset. Then, we create a bespoke image data set from our Bo data and open sources,

focused on images of our target vehicles at UK junctions. We use this to train our chosen

model to improve accuracy by enriching the classification training data to ultimately define our

vehicle detection model specification.

The research question this chapter addresses is

Research Question 1 (RQ1): How does employing a constrained and focused dataset affect

the training process and subsequent real-time performance of object detection and

56

classification?

Contributions described in this chapter include the following:

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-CNN

models using our video dataset.

• The construction of a target-based vehicle image dataset tailored to our video data.

57

4.2 Anatomy of Faster R-CNN

As discussed in Chapter 2, the evolution of region proposal methods was decisive in object

detection algorithms. Firstly, it operates as a distinct standalone component in Fast R-CNN

and R-CNN, such as the Selective Search algorithm (Ren et al., 2017). The Region Proposal

Network (RPN) constitutes a pivotal component within the Faster R-CNN framework, which is

fundamental in generating prospective regions of interest or region proposals in images

potentially containing objects. The RPN uses the concept of attention mechanisms inherent in

neural networks, effectively instructing the subsequent Fast R-CNN detector on where to focus

when identifying objects within the image.

Ren et al. describe the fundamental constituents of the RPN as encompassing the following

elements: anchors are employed as predefined boxes, each characterised by distinct scales

and aspect ratios. Anchor boxes are positioned at various locations across feature maps. An

anchor box primarily comprises two essential parameters, namely scale and aspect ratio. The

RPN executes as a sliding window mechanism traversing the feature map derived from the

CNN backbone. Within this process, a compact convolutional network, typically embodied as

a 3×3 convolutional layer, operates to process features within the receptive field of the sliding

window (Figure 12).

Figure 12. Faster R-CNN model illustration showing input to make predictions (Ren et al.,

2017).

This convolutional operation produces scores that indicate the likelihood of the presence of

an object and regression values that allow adjustments to the anchor boxes. The objectness

score indicates the probability that a given anchor box encloses an object of interest rather

58

than just representing background elements. Within the faster R-CNN architecture, the RPN

computes this score for each anchor. The objectness score expresses confidence in the

anchor's association with a significant object region. During training, this score assists in

classifying anchors as either positive, indicating an object, or negative, indicating background.

In situations where a significant number of region proposals are generated, overlap and

redundancy among them may be common, often corresponding to the same object instance.

This issue is addressed by utilising the Non-Maximum Suppression (NMS) technique. NMS

ranks anchor boxes based on their objectness probabilities and selects the top-N anchor

boxes with the highest scores. Using NMS ensures the final proposal selection is precise and

free from overlapping instances.

Consequently, these selected anchor boxes are considered viable regional proposals. The

classification process unfolds by combining features derived from the region proposal with

shared weights originating from the CNN backbone. An integral component of Faster R-CNN

is bounding box regression, which aims to refine the position and size of the bounding box

associated with each region proposal. This refinement process improves the accuracy and

alignment of the bounding boxes with the actual object boundaries in the image.

The first layer of the bounding box regression consists of a softmax layer with N+1 output

parameters, where N represents the number of class labels, including an additional class for

the background; the prime purpose of this layer is to predict an object within the region

proposal and, if present, to classify it into one of the N classes or as background.

The second layer is the bounding box regression layer, comprising 4*N output parameters.

Each set of four parameters corresponds to a specific class label. These parameters are

responsible for adjusting the bounding box's location and size associated with the object in

the image. The softmax layer predicts the object's presence or absence within the region

proposal by providing probabilities for each class, including background. The bounding box

regression layer predicts adjustments to the region proposal's bounding box, including its x-y

coordinates, width, and height. These adjustments are specific to each class, each with four

regression parameters.

Intersection over Union (IoU) is a metric for the overlap between two bounding boxes. A more

comprehensive relational explanation of this concept is provided in Chapter 5. IoU computes

the ratio of the overlap area between the two boxes to the area of their combined region,

expressed as

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑥 1 & 𝑏𝑜𝑥 2

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑥 1 & 𝑏𝑜𝑥 2
 (1)

59

4.2.1 Training Faster R-CNN

During training, the most valuable metric evaluation is loss; the model aims to minimise this

composite loss during training to improve object detection and localisation performance

(Figure 13).

Figure 13: A visual representation of a two-stage Faster R-CNN object detection system, as

introduced by Ren et al. (2017). This system employs a Region Proposal Network (RPN) to

extract regions of interest directly from the feature map. Subsequently, it utilises a fully

convolutional object classifier. It is important to note that the network architecture is shared

between the RPN and the object detector phase.

All through training, the model learns to predict bounding box adjustments and class

probabilities by minimising a combined loss function considering classification and regression

loss. The Faster R-CNN multi-task loss function combines the classification and regression

losses, refining bounding box predictions.

In the methodology Ren et al. introduced in their 2017 paper, each anchor is assigned a binary

class label that determines whether the anchor is indicative of an object's presence. A positive

label is designated for an anchor if it fulfils either of the following conditions: (i) it exhibits the

highest IoU overlap with a ground-truth bounding box, or (ii) it possesses an IoU overlap

greater than 0.7 with any of the ground-truth boxes. Importantly, a single ground-truth box can

produce positive labels for multiple anchors.

Anchors that do not meet these criteria for positive labelling, including those with an IoU ratio

below 0.3 for all ground-truth boxes, are instead assigned a negative label. Anchors that do

60

not conform to positive or negative categories are not employed in the training process.

The loss function used for the RPN in this context is further defined as follows:

𝐿({𝑝𝑖}, {𝑡𝑖 }) =
1

𝑁𝑐𝑙𝑠
 ∑ 𝐿𝑐𝑙𝑠 (𝑝𝑖, 𝑝𝑖

∗) + 𝜆
1

𝑁𝑟𝑒𝑔
 ∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔𝑖 (𝑡𝑖, 𝑡𝑖

∗) (2)

In the context of this description, 'i' represents the sequential identifier for an anchor box within

a batch, and 'pi*' signifies the predicted probability of anchor box 'i' being classified as an

object. The ground-truth label 'p' assumes a value of 1 when the anchor box is deemed positive

and 0 when it is considered negative. The variable 'ti' is a vector that encodes the parameters

for the predicted bounding box, with the ground-truth box for a positive anchor box being

represented by 'ti*'.

The parameters' N_cls' and 'N_reg' correspond to the mini-batch size and the total number of

anchor boxes. 'λ' serves as a hyperparameter, and it plays a crucial role in balancing the

impact of the classification and regression losses within the comprehensive loss function.

During training, one can emphasise achieving accurate classification and precise localisation

of bounding boxes. Higher values of 'λ' prioritise the refinement of bounding box regression,

while lower values give more importance to achieving classification accuracy.

The classification loss function, denoted as 'L_cls' in Ren et al. (2017), is characterised as a

logarithmic loss applied over two categories: object and non-object.

The definition of 𝐿𝑐𝑙𝑠 is as follows:

𝐿𝑐𝑙𝑠 (𝑝𝑖, 𝑝𝑖
∗) = {

− log 𝑝𝑖 𝑖𝑓 𝑝𝑖
∗ = 1

 − log(1 − 𝑝𝑖) 𝑖𝑓 𝑝𝑖
∗ = 0

 (3)

In addition, the regression loss function 𝐿𝑟𝑒𝑔 is presented as follows:

𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑅(𝑡𝑖 , −𝑡𝑖

∗) (4)

The robust loss function (smooth L1), denoted as 𝑅 and defined in Fast R-CNN (Girshick et

al., 2017), is employed. Following the network's prediction of class probabilities and bounding

box adjustments, a post-processing phase involving NMS is carried out. This step is vital in

refining the final detection results by reducing redundant detections while retaining the most

confident and non-overlapping detections.

RPN training is achieved using an end-to-end approach facilitated through backpropagation

and stochastic gradient descent (SGD). This means the entire network, including the newly

introduced RPN and the shared convolutional layers, is jointly optimised. The main goal of this

61

optimisation process is to minimise the loss function, thereby improving the overall

performance of the object detection system.

According to Cheng et al. (2018), the Optimisation Faster R-CNN series' architecture involves

a feature extractor as the backbone and two specialised branches for region classification and

localisation tasks. However, optimising in this manner may lead to convergence towards a

suboptimal solution that compromises the performance of both tasks due to the simultaneous

consideration of the sum of two losses rather than treating each loss separately. CNNs

encounter a significant challenge concerning their fixed receptive fields. In the context of

image classification, inputs are typically cropped and resized to standardised dimensions. The

network architecture is intentionally designed with a receptive field that is slightly larger than

the input region. However, this approach has limitations because it results in the loss of

contextual information during the cropping process and necessitates the resizing of objects of

various sizes. To achieve accurate object understanding and recognition, it is essential for the

'effective receptive field' to encompass the entire object. In the case of Faster R-CNN, the

introduction of Region of Interest (ROI) pooling is utilised to extract objects from 2-D

convolutional feature maps and transform them into a 1-D fixed-size representation for

subsequent classification tasks. This process establishes a fixed receptive field, meaning the

network concentrates on a fixed-size window within the input image.

Nevertheless, as objects in images can significantly differ in size, this fixed receptive field can

result in varying amounts of contextual information. The context may be pervasive for smaller

objects, hindering the network's effective focus on the object itself. Conversely, the receptive

field may be too limited for larger objects, causing the network to examine only a portion of

the object. While some approaches have attempted to address this issue by aggregating

features with different receptive fields to introduce multiscale features, the effectiveness of

such methods can vary, and achieving a balance between capturing context and object details

remains a challenge in deep convolutional neural networks (Waldner and Diakogiannis, 2020),

which had a direct impact on our work.

4.3 Anatomy of YOLOv5

In contrast with Faster R-CNN in the previous section, YOLOv5 employs regression, where

The whole image's classes and bounding boxes are predicted in one algorithm run. YOLOv5

demonstrates exceptional performance coupled with swift object detection capabilities,

effectively meeting the demands of real-time applications. This singular neural network

architecture executes all necessary steps in object detection. In traffic research, where

detection speed and accuracy are paramount, YOLOv5 achieves real-time processing speeds

(Zhou, Zhao and Nie, 2021).

62

The YOLOv5 architecture comprises three essential components, as illustrated in Figure 9.

The first component is the cross-stage partial network CSPNet (Cheng et al., 2018), designed

to address gradient-related challenges effectively. This component optimises the algorithm by

reducing the parameter count and the number of floating-point operations per second

(FLOPS). As a result, it boosts both inference speed and accuracy, all within a compact

architectural footprint (S. P. Lakshmi Priya et al., 2023).

The backbone of the architecture consists of multiple convolutional layers, four CSP

bottlenecks, three convolutional layers, and a spatial pyramid pooling component (SPPF).

Primarily, the CNN serves as a feature extractor, capturing feature maps of different scales

from input images.

The neck component plays a pivotal role in feature fusion. It aggregates and transmits features

from deeper layers to the detection head, facilitating the extraction of valuable feature

information and generating output feature maps in three distinct sizes.

The head section encompasses multiple convolutional layers, four CSP bottlenecks, three

convolutional layers, and upsampling and concatenate layers. Its principal function involves

predicting visual characteristics, delineating bounding boxes around target objects, and

determining object classes.

Figure 14: YOLOv5 Architecture adapted from Liu et al. (2022).

The initial 20 convolution layers of the model are pretrained using an image dataset, with a

temporary average pooling and a fully connected layer added. The last fully connected layer

predicts both class probabilities and bounding box coordinates.

63

Figure 15 illustrates the architecture of the CNN model that acts as the backbone for YOLO.

Figure 15. YOLO (You Only Look Once) algorithm architecture (S. P. Lakshmi Priya et al.,

2023).

YOLO functions by dividing an input image into a grid, with each grid cell responsible for

detecting any object whose centre is within that cell. In each grid cell, YOLO predicts 'n'

bounding boxes and associated confidence scores for these boxes. These confidence scores

serve a dual purpose: they convey the model's confidence in the existence of an object within

the box and indicate the accuracy of the box's location prediction.

During YOLO's training, the pivotal strategy involves predicting multiple bounding boxes within

each grid cell. The primary aim is to allocate one bounding box predictor to each object and

determine which has the highest IoU with the actual object location. This specialised approach

enables each predictor to become proficient at predicting specific object sizes, aspect ratios,

or classes. This specialisation improves the recall score, enhancing YOLO's object detection

capabilities.

After making multiple predictions, YOLO employs non-maximum suppression (NMS) as a

post-processing step to bolster the accuracy and efficiency of object detection. Since

generating multiple bounding boxes for a single object in an image is common and some

boxes may overlap or be off-centre, NMS plays a crucial role in identifying and removing

redundant or erroneous bounding boxes. Its purpose is to ensure that only a single accurate

bounding box is retained for each object in the image. The accuracy of the IoU score relies

heavily on the precise localisation of the bounding box around the object, such as a vehicle.

The precise positioning of the bounding box around an object is given as follows:

64

𝜎
𝑔

𝑟
= 𝑂𝑟,𝑔 ∗ Ʊ

𝑝

𝑡
 (5)

Where r represents the bounding box within the g grid and 𝜎
𝑔

𝑟
 denotes the confidence score

of this bonding box. '𝑂𝑟,𝑔 indicates the vehicle's presence within the g box. The Oi, j' value

equals 0 if the vehicle is within the g box; otherwise, it is 1. Oi, j' corresponds to the IoU score.

4.3.1 Training YOLOv5

Training YOLOv5 involves optimising the model using a loss function that quantifies the

discrepancies between predicted bounding boxes, class probabilities, and ground truth

annotations. The primary loss components include objectness or confidence loss, which

gauges the model's confidence in predicting the existence of an object within a bounding box,

and classification loss, which assesses the accuracy of predicted class probabilities.

Additionally, localisation loss evaluates the precision of predicted bounding box coordinates

compared to ground truth boxes. These loss components are combined to minimise the overall

loss function during training. The model is optimised using methods like stochastic gradient

descent (SGD), which aims to iteratively adjust its parameters to excel in object detection by

improving localisation accuracy and class prediction while minimising loss. The specific

formulation and weighting of these loss components can vary based on the YOLOv5 variant

and dataset. Training is an iterative process that evaluates the model's performance by

monitoring its ability to reduce loss over multiple epochs or iterations.

The loss function (𝐿𝐹) in YOLOv5 is the aggregate of three key components: regression loss

for bounding boxes, confidence loss, and classification loss. It is computed as follows:

𝐿 𝐹 = 𝑙𝑏𝑥 + 𝑙𝑠 + 𝑙𝑗 (6)

where 𝑙𝑏𝑥 is the regression function for the bounding box, 𝑙𝑗 is the loss function for confidence

and 𝑙𝑠 is the loss function for the classification.

𝑙𝑏𝑥 is calculated using

𝑙𝑏𝑥 = 𝜆 𝑐𝑑∑𝑖=0
𝑠2

∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0 𝑏𝑗(2 − 𝑊𝑖 ∗ ℎ𝑖 [
(𝑥𝑖 − 𝑥′

𝑖
𝑚

)2 + (𝑦𝑖 − 𝑦′
𝑖
𝑚

)2 + (𝑤𝑖 − 𝑤′
𝑖
𝑚

)2

+(ℎ𝑖 − ℎ′
𝑖
𝑚

)2
] (7)

where h and w are the target's height and width, respectively and yi , xi are the

correct coordinates of the target. 𝜆 cd is the indicator function of whether the cell i contains

65

an object.

The 𝑙𝑠 is calculated as follows:

𝑙𝑠 = 𝜆𝑠 ∑ ∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0
𝑠2

𝑖=0 ∑ 𝑉𝑖𝐶∈𝑐𝑙 (𝑐)log (𝑉𝑉𝑖(𝑐)) (8)

where 𝑉𝑖 represents a vector of predicted probabilities for class c at spatial location i.

The 𝑙𝑗 is calculated as follows:

𝑙𝑗 = 𝜆𝑛𝑜𝑗 ∑ ∑ 𝐼𝑖,𝑚
𝑛𝑜𝑗𝑏

𝑚=0
𝑠2

𝑖=0 (𝑐𝑖 − 𝑐𝑙)2 + 𝜆𝑗 ∑ ∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0
𝑠2

𝑖=0 (𝑐𝑖 − 𝑐𝑐𝑙)2 (9)

where 𝜆𝑛𝑜𝑗 is the category loss coefficient, 𝜆𝑠 is the classification loss function, cl is the

confidence score, and cc is the class.

YOLOv5 aims to minimise this loss during training to improve its accuracy in object detection,

bounding box regression, classification, and confidence score prediction, which are all crucial

to this thesis, where the precise detection and classification of target vehicles are a critical

component in the pipeline. Adjusting the hyperparameters can help fine-tune the training

process based on a given task's specific requirements, which are detailed in Chapter 5.

4.4 Selecting a vehicle detection and classification base model

The literature contains many examples of comparisons between YOLOv5 and Faster R-CNN

(Mahendrakar et al., 2022; Jabir, Falih and Rahmani, 2021). However, we required a

comparison based on our data as our requirements are very focused and not to be based on

a generalised object dataset. Our requirements dictate that we must detect and classify target

vehicles with a reasonable degree of accuracy and in real-time. Other studies (He et al., 2023)

have demonstrated that it is possible to refine the performance of models based on the desired

objective. Many of the refinements of models in the literature focus on detection accuracy and

small objects; our refinements were implemented to increase vehicle detection accuracy

(larger objects) and decrease the inference time. To compare YOLOv5 and Faster R-CNN for

our data, we must first define the accuracy metrics used to benchmark most object detection

and classification models in computer vision.

Precision (P) and recall (R) represent vital assessment metrics for object detection models,

serving to evaluate the models' proficiency in accurately identifying and categorising objects

66

within images. Precision quantifies how accurately a model identifies positive cases by

measuring the ratio of true positives (correctly predicted positives) to the sum of true positives

and false positives. Precision quantifies the model's ability to make correct identifications—an

essential factor in our work, where false positives can have significant repercussions.

Precision is calculated as

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (10)

Precision offers an understanding of the model's positive predictions' reliability. High precision

implies that the model's object predictions are likely accurate.

Recall, also called sensitivity or true positive rate, evaluates the model's capacity to detect all

relevant objects in the dataset correctly. It is computed as the ratio of true positives (TPs) to

the total of TPs and false negatives (FNs).

Recall is calculated as

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑠
 (11)

Recall is crucial because it quantifies the model's ability to find all the objects of interest in the

image, avoiding false negatives.

These metrics are frequently employed to offer a well-rounded evaluation of an object

detection model. They exhibit an inverse relationship: as precision increases, recall may

decrease, and conversely, when recall increases, precision may decrease. Striking the

appropriate balance between precision and recall hinges on the unique use case and the

implications of false positives and false negatives.

To visualise this trade-off, plotting a precision-recall curve (PR curve) or calculating the F1-

score, which represents the harmonic mean of precision and recall, is common. This allows

for a more comprehensive assessment of the model's performance and its suitability for

different applications and is calculated as

67

𝐹1 = 2 ∗ (𝑃 ∗ 𝑅) / (𝑃 + 𝑅) (12)

The F1 score is functional when combining precision and recall into a single metric, especially

when the balance between false positives and false negatives is essential.

Mean average precision (mAP) is one of the primary metrics for evaluating the accuracy of

object detection models, especially when dealing with multiple object classes. It provides a

comprehensive assessment of the model's performance across all classes by calculating the

average precision for each class and then taking the mean of these values.

𝑚𝐴𝑃 =
1

𝑁
∑ 𝑃𝑖𝑁

𝑖=1 (13)

Average precision (AP) is a key metric, where 𝑁 represents the total number of classes.

Generally, AP is computed as the average precision values (𝐴𝑃𝑖) across different IoU

thresholds (𝑅) within the range [0, 1]. Each 𝐴𝑃𝑖 corresponds to the average precision for the

𝑖-th class over a range of IoU thresholds. Typically, these IoU thresholds are chosen in

increments of 0.05, ranging from 0.5 to 0.95.

Specifically, two important metrics, 𝑚𝐴𝑃50 and 𝑚𝐴𝑃95, are used to assess model accuracy:

mAP50 calculates the mean average precision when considering the IoU threshold of 0.5. It

evaluates how well the model performs when detections are considered accurate if their IoU

with the ground truth bounding box exceeds 0.5. mAP95 calculates the mean average

precision but at a stricter IoU threshold of 0.95. This metric assesses the model's accuracy

when a high degree of overlap between the detected bounding box and the ground truth

bounding box is required for a positive classification.

Furthermore, mAP50:95 calculates a range of IoU thresholds between 0.5 and 0.95 to obtain

a mean across the range.

These metrics allow for a nuanced evaluation of the model's performance, considering both

relatively lenient and stringent criteria for object detection accuracy. It is expected to report

both 𝑚𝐴𝑃50 and 𝑚𝐴𝑃95 to provide a comprehensive understanding of how well the model

performs under different IoU thresholds (Hamzenejadi and Mohseni, 2023).

To evaluate the real-time performance of object detection models, we must consider accuracy,

inference speed, and computational complexity. Complex models may achieve high accuracy

but often demand significant computational resources, hindering real-time operation. Two

fundamental metrics for assessing model performance in real-time object detection are frames

68

per second (FPS) and inference time. FPS measures how many frames or images the model

can process per second. Higher FPS values indicate faster inference speeds and are desirable

for real-time applications. Inference time quantifies the time it takes for the model to process

a single frame or image in milliseconds (ms). Lower inference times are preferred for real-time

applications, contributing to higher FPS.

Model size, both in terms of memory and storage requirements, is an essential consideration.

Smaller models are typically more memory-efficient and load faster, which is advantageous

for real-time inference. Another critical metric is the number of FLOPs (floating-point

operations) needed for inference. Lower FLOPs indicate lower computational complexity and

faster inference.

The total number of parameters in a model can serve as an indicator of its computational

complexity. Smaller models tend to have fewer parameters, which can lead to faster inference.

A low inference time is vital for our work, where we aim to balance accuracy with computational

efficiency, particularly for detecting relatively large objects like vehicles at a T-junction.

In our case, the vehicles under investigation demand swift detection to facilitate data

transmission through the pipeline for real-time feature vector generation. This strategy aids in

reducing the computational workload by filtering out smaller objects, with the strategy's

primary focus on identifying target vehicles. To evaluate and compare the faster R-CNN and

YOLOv5 models using our video data as a reference point, we gauge their performance based

on these real-time metrics.

4.4.1 Common Objects Dataset

This section discusses the dataset utilised for our comparison experiments, the Common

Objects Dataset. The Microsoft Common Objects in Context (COCO) dataset (Lin et al., 2014)

is comprehensive for various computer vision tasks, including object detection, image

segmentation, key-point detection, and captioning. This dataset comprises 328,000 images

and annotations, including bounding boxes and per-instance segmentation masks for 80

object categories. For our purpose, COCO contains five vehicle classes: car, truck, bus,

motorcycle, and bicycle.

4.4.2 Backbone Network Model

Officially supported YOLOv5 and Faster R-CNN models integrate pre-trained network models

trained on the COCO dataset. However, they exhibit differences in network depth, layer count,

and layer size, leading to their respective model performance variations. Selecting a model for

a specific task is a practical and empirical process. To make an informed decision, we

conducted a comparative analysis by assessing two pre-trained COCO Faster R-CNN models

69

alongside two pre-trained COCO YOLOv5 models. This analysis strives to identify the optimal

configuration that can serve as the initial stage in our pipeline. This empirical evaluation equips

us with the knowledge to select the model that best aligns with our objectives and

requirements.

4.4.2.1 Choice of Faster R-CNN Backbone Model

A Faster R-CNN architecture requires selecting a network for feature extraction, commonly

known as the backbone. Numerous studies, such as those by Muhammad Jehanzaib Yousuf

et al. (2022) and Elharrouss et al. (2022), have explored various feature extraction networks

for deep learning, including well-known architectures like VGG, ResNet, AlexNet, GoogleNet,

Inception, Xception, DenseNet, and SqueezeNet, among others. For most computer vision

tasks involving the COCO dataset, ResNet and MobileNet are commonly chosen as backbone

networks.

Two official, faster R-CNN models come pre-trained on the COCO dataset, each employing

distinct backbone architectures. Studies that feature ResNet50, such as Renjun et al. (2022),

have indicated that faster R-CNN with a ResNet50 backbone offers high accuracy but

operates more slowly. This model utilises a ResNet-50-FPN backbone and can achieve the

highest mean average precision (mAP) when fine-tuned on a new dataset with slower

inference times.

Conversely, faster R-CNN with a MobileNet v3 backbone is faster but slightly less accurate.

(Yusuf Gladiensyah Bihanda, Chastine Fatichah and Anny Yuniarti, 2023). This model

provides high-resolution feature extraction, delivering over twice the speed of the ResNet50

variant on equivalent hardware (GPU). However, a trade-off exists as its mAP performance is

slightly reduced due to the higher frames per second (FPS). The choice between these models

depends on the task's requirements and the balance between speed and accuracy that is

most suitable for the application.

4.4.2.2 Choice of YOLOv5 models

The YOLOv5 series comprises several model variants denoted by letters, including YOLOv5n,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (see Table 5). These variants differ in model

sizes, featuring varying numbers of layers and parameters. The design of these models

focuses on achieving a balance between speed and accuracy.

70

Table 5. Comparison of YOLOv5 models (Ultralytics, 2023)

The YOLOv5 series encompasses a range of models tailored to different object detection

requirements. YOLOv5n, a recent addition, is specifically designed for edge devices and

serves as a comparative benchmark in Chapter 5. YOLOv5s prioritises speed, making it well-

suited for real-time applications with limited computational resources, albeit with a slight

sacrifice in accuracy. YOLOv5m balances speed and accuracy, making it versatile for general

object detection tasks. YOLOv5l, a larger model, excels in accuracy but slightly reduces

inference speed, making it suitable for tasks where precision is paramount and ample

computational resources are available. Lastly, YOLOv5x is the series' largest and most

accurate model, but it comes at the cost of slower inference speed.

When comparing YOLOv5 with Faster R-CNN in benchmark tests using the COCO dataset, it

becomes evident that the model's size impacts accuracy. However, the choice of model

depends on the specific task and desired outcome. In scenarios like vehicle detection,

achieving high real-time accuracy is crucial. It is worth noting that no single model perfectly

balances accuracy and speed, often necessitating a trade-off between the two depending on

the specific requirements of the task.

4.4.2.3 Limitations of the YOLO model

YOLO presents spatial constraints on bounding box predictions, with each grid cell responsible

for predicting only two boxes and one class, which can limit the precision of object localisation

and classification. This limitation is particularly noticeable for objects with complex shapes or

unconventional positions. Additionally, detecting small objects, especially when they appear

in groups or clusters, can be challenging as the model may not allocate sufficient resources

for accurate identification. YOLO's ability to generalise to objects with new or unusual aspect

ratios can also be problematic as the model learns from the training data and may struggle

with objects with significantly different aspect ratios than those encountered during training.

71

Efforts to mitigate this challenge include the creation of a focused image training dataset in

Section (4.5). However, despite these limitations, YOLO remains a popular choice for object

detection due to its real-time capabilities and overall effectiveness in a wide range of

applications.

4.4.3 Comparison of YOLOv5 and Faster R-CNN ON COCO 80

In the following series of experiments, we conduct a comparative analysis of similarly

performing backbone models for faster R-CNN and YOLOv5. As illustrated in Table 6, these

comparative models exhibit various similarities. This observation hints at a discernible

relationship between the model's size and accuracy when benchmarked against the COCO

dataset, with the larger models proving to be more accurate, albeit slower. However, it is

crucial to acknowledge that benchmarking results can be highly task-specific and dependent

on the desired outcomes. Laboratory-based testing, for example, differs substantially from

real-world situations, particularly when addressing traffic-related challenges like vehicle

detection. In this context, the primary goal is to create a precise detection and classification

model that can be performed in real-time. Such a model would facilitate further data

processing without imposing an undue computational load.

Our research findings suggest that no model achieves the ideal balance between accuracy

and speed for vehicle detection and classification for our purpose (see Table 6). Hence, in

practical terms, some degree of compromise between accuracy and speed is inevitable.

Model and Backbone COCO dataset mAP Size

MB

Parameters

M

Faster R-CNN ResNet50 0.43 98 23

YOLOv5 Medium 0.45 90 21.2

Faster R-CNN MobileNet v3 0.32 15.3 4.97

YOLOv5 Small 0.37 14 7.2

Table 6: Model and backbone specification and benchmark (COCO) accuracy adapted from

Zhou et al. (2021).

We evaluated Faster R-CNN ResNet50, Faster R-CNN MobileNet v3, YOLOv5 Medium, and

YOLOv5 Medium without any modifications using the same pre-trained COCO weights. The

assessment involved our custom Bo video dataset and sought to assess each model's FPS

rate, accuracy, and inference speed on a CPU and a GPU. Our testing process involved

manually processing, for ground truth verification, a series of 15-minute video clips from each

72

junction-based video clip in our dataset. Each video clip was passed through every model

sequentially. The videos were maintained in their original form, with a frame rate of 50 FPS

and a resolution of 1920x1080 pixels, and were fed into each model for analysis. We recorded

key metrics for each video test segment and model, including detection confidence scores,

inference time, and frame rate. Our primary focus was detecting cars, which represent the

highest number in the vehicle class and our study's most common vehicle type. To ensure the

reliability of our results and minimise any junction-specific anomalies influenced by factors

such as object occlusions, camera distance, lighting, and traffic density, we averaged the

scores across all video clips.

The detailed results of our evaluation can be found in Table 7. These findings provide valuable

insights into each model's performance under real-world conditions and inform the selection

of the most suitable model for our specific application. Our primary metric of interest is the

confidence level in detecting our target vehicle rather than a mAP of the training data.

Model and Backbone COCO

weights and Bo video data

FPS Mean Class

Confidence

Score for

car*

Inference

time ms

CPU

Inference

time ms

GPU

(RTX 3070)

Faster R-CNN ResNet50 22 0.96 112 63

YOLOv5 Medium 49 0.91 98 21

Faster R-CNN MobileNet v3 110 0.7 24 6

YOLOv5 Small 74 0.81 81 17

* Calculated as confidence in the object being of class n

Table 7: Model comparative results using COCO weights and Bo T-junction video data.

Initial results discussion

Faster R-CNN ResNet50

FPS: 22 - This model processes 22 frames per second, which is relatively low compared to

the other models listed, indicating it is slower at making predictions.

Mean Class Confidence Score for Car: 0.96 - It has a very high confidence score, suggesting

it is very accurate at detecting cars when it does make a prediction.

Inference Time on CPU: 112 ms - It takes 112 milliseconds to process a single frame on a

CPU, which is the slowest among the models listed.

Inference Time on GPU (RTX 3070): 63 ms - Processing time improves significantly on a GPU

but is still the slowest among the compared models.

73

YOLOv5 Medium

FPS: 49 - This model processes frames more than twice as fast as the Faster R-CNN

ResNet50 model, making it suitable for applications requiring quicker object detection.

Mean Class Confidence Score for Car: 0.91 - Although slightly less accurate than the Faster

R-CNN ResNet50, it still maintains a high confidence score.

Inference Time on CPU: 98 ms - It's quicker than the Faster R-CNN ResNet50 on a CPU but

slower compared to the other models listed.

Inference Time on GPU (RTX 3070): 21 ms - Shows significant improvement on a GPU,

indicating good optimization for GPU-based inference.

Faster R-CNN MobileNet v3

FPS: 110 - This model shows the highest frames per second, indicating it is the fastest model

for processing frames, suitable for real-time detection tasks.

Mean Class Confidence Score for Car: 0.7 - The confidence score is the lowest among the

models, which might indicate a higher rate of false negatives or less certainty in its predictions.

Inference Time on CPU: 24 ms - Shows very fast processing on the CPU, the fastest among

those listed.

Inference Time on GPU (RTX 3070): 6 ms - Extremely fast on the GPU, making it highly

efficient for applications that can leverage GPU acceleration.

YOLOv5 Small

FPS: 74 - This model offers a good balance between speed and accuracy, with a high frame

rate indicating it can process video data quickly.

Mean Class Confidence Score for Car: 0.81 - This score is lower than the YOLOv5 Medium

and Faster R-CNN ResNet50 but higher than Faster R-CNN MobileNet v3, suggesting

moderate accuracy.

Inference Time on CPU: 81 ms - Faster than the Faster R-CNN ResNet50 but slower than the

other models.

Inference Time on GPU (RTX 3070): 17 ms - Shows good performance on a GPU, though not

as fast as the MobileNet v3.

Results Summary

For high accuracy: Faster R-CNN ResNet50 is the best choice, with the highest confidence

score, but at the cost of speed.

For real-time processing: Faster R-CNN MobileNet v3 stands out with the highest FPS and

lowest inference times, though it sacrifices some accuracy.

For a balance between speed and accuracy, YOLOv5 models, especially the Medium variant,

offer a good compromise, with decent FPS and confidence scores and much better speed on

GPU compared to Faster R-CNN ResNet50.

74

Based on the results presented in Table 7, our findings indicate that the most accurate

combination for vehicle detection in terms of model and backbone is Faster R-CNN ResNet

50. On the other hand, for GPU-based applications, Faster R-CNN MobileNet v3 offers the

fastest performance. However, it is worth noting that the YOLOv5 medium model has proven

to strike a good balance between accuracy and inference speed on our video dataset, Bo.

Given these results, we have decided that all future work related to the detection and

classification stage of our thesis's pipeline will be done using one of the YOLOv5 models,

including the variants s, m, l, or xl. We plan to enhance the YOLOv 5 model performance

through a series of iterative experiments in later chapters, with an initial focus on improving

accuracy.

4.5 Improving target vehicle detection accuracy with focused target training

While there are numerous large-scale datasets available for object detection tasks, such as

the work by Charles-Éric Noël Laflamme, Pomerleau, and Philippe Giguère (2019), the

scarcity of high-quality datasets continues to be a substantial obstacle, particularly in the

context of vehicle classification. Many existing vehicle detection datasets are general and lack

the specificity required to tackle the unique classification challenges presented at T-junctions.

In response to this limitation, transfer learning has emerged as a valuable approach for

addressing specific class imbalances that result from this generalisation. Transfer learning

allows models to adapt and specialise in the context of specific tasks, leveraging pre-trained

knowledge from broader datasets to enhance performance in junction-specific classification

challenges.

Transfer learning is a machine learning technique where a model developed for a specific task

is repurposed as the starting point for a model on a second task. It is a popular approach in

deep learning where pre-trained models improve computational efficiency and model

performance, especially when data for the second task is scarce or when training a model

from scratch is computationally expensive—transferring the weights that a model has learned

from one task to another leverage previously learned patterns, reducing the time and

resources required for training on the new task. This approach is efficient in natural language

processing and computer vision, where models pre-trained on large datasets can significantly

boost performance on related tasks with minimal additional training.

Using pre-trained models for transfer learning (Sowmya and Radha, 2021), a technique

increasingly deployed in situations characterised by limited training data or the imperative for

rapid, enhanced performance, comprises a multi-step process. This process encompasses

identifying a source model akin to the target domain, adapting the source model to align with

the target model's requirements, and training the source model to attain the desired target

75

model characteristics. The model closest to our domain is the COCO dataset, with many

labelled vehicle instances (Table 8) as a starting point for training our vehicle image dataset.

Class Number of instances

Training Validation

Car 43,533 1,918

Motorcycle 8,645 367

Bus 6,061 283

Truck 9,970 414

Bicycle 7,056 314

Table 8: Number of instances per traffic class extracted from the COCO dataset adapted from

Panero Martinez et al. (2021).

We aim to improve the detection accuracy of YOLOv5 models on our data by creating a

focused vehicle dataset to enrich the instances found in COCO, Table 8, and training all five

YOLOv5 models using transfer learning using the full COCO dataset as a foundation and

adding our weights.

4.5.1 Target vehicle image dataset creation

Our ultimate objective is to predict driver behaviour in real-time, which is imperative to do

quickly and accurately. However, the accuracy of our predictions is profoundly affected by the

detection and classification stage, and missing vehicles due to misclassification can impact all

subsequent stages of our pipeline.

Acquiring training data resembling our target vehicles is paramount to enhancing detection

accuracy. Our first step in compiling a customised vehicle dataset involved collecting

screenshot frame images from our video dataset by pausing junction video where a vehicle

was in a target frame, taking a screenshot, and saving it as a single image. This was repeated

for the other junction videos. These images serve as the foundation for our image dataset,

from which we further infer and generate feature vectors in the pipeline. We collected images

from all the routes and created 158 images of cars, trucks, and buses from each junction. We

sourced an additional 981 publicly available images from the Internet. These images were

selected to encompass a wide range of representations of various vehicle types, representing

vehicles captured from the POV from camera x in section (3.4.1) viewing traffic (a). A sample

of the images can be seen in Figure 16. Our target vehicles were detected from the right side

or the front at all our test T-junctions.

The subsequent step involved aggregating all the collected images, categorising them into

76

relevant classes (cars, trucks, and buses), and manually labelling them using bounding box

annotations. Since we were utilising transfer learning and COCO already had labels for cars,

trucks, and buses, we labelled our images as 'cars_1,' 'trucks_1,' and 'buses_1' to be added

to the class label array. This process forms the basis for our dataset, facilitating the training

and improvement of our vehicle detection and classification models.

Figure 16. Image data showing type and perspective pre-data labelling.

4.5.2 Image augmentation post-labelling

After the manual labelling, the original 1,139 images underwent an augmentation procedure,

effectively expanding the dataset to 5,381 images. This augmentation was executed by

systematically applying several pre-processing techniques to each image. The augmentation

process comprised the following steps: all images were uniformly resized, ensuring dimension

consistency across the dataset. A grayscale filter was applied to introduce variations in colour

representation, thereby augmenting the dataset's diversity. Each image was subjected to a

random rotation operation, with angular adjustments from -15 to +15 degrees. This introduced

variations in orientation, enhancing the dataset's robustness. Horizontal and vertical shearing

operations were applied randomly at -15° to +15°. These shear transformations introduced

distortion effects, contributing to a more comprehensive training dataset. Regarding noise

incorporation, noise was introduced to 10% of the images to diversify the dataset further. This

noise included up to 10 pixels of blurring, alterations in brightness ranging from -25% to +25%,

and the application of bounding box noise to 5% of the dataset. The specifics of these noise

operations are represented visually in Figure 17. This augmentation strategy substantially

increased the dataset size and introduced variability and realism into the images, enhancing

the model's generalisation ability.

Figure 17: The augmentation process applied to the dataset, explicitly highlighting the

incorporation of additional noise into 10% of the images.

Our noise augmentation procedure involved a variety of transformations intending to diversify

77

the dataset, thereby enhancing its ability to capture real-world variations and complexities.

These augmentation techniques encompass blurring, brightness adjustments within a range

of -25 % to +25 %, and the introduction of bounding box noise. Collectively, these measures

create a more robust and representative dataset for subsequent analysis and model training.

Overfitting is a phenomenon in which a neural network learns a function with extremely high

variance, essentially memorising the training data perfectly, as explained by Shorten and

Khoshgoftaar (2019). The advantages of employing augmentation methods are quite

significant. Data augmentation is a valuable strategy for mitigating overfitting and giving the

model a more comprehensive and diverse dataset; this, in turn, enhances the model's capacity

to generalise effectively to novel data while bolstering its resilience against data noise and

variations. Furthermore, data augmentation expedites the training process, effectively

reducing the time needed to train a model on extensive datasets.

However, data augmentation comes with its own set of challenges. It can be time-consuming,

particularly if performed manually, and it can incur substantial computational costs when

applied to large datasets. Additionally, if the augmentation transformations are not thoughtfully

selected, they can introduce bias into the dataset, adversely impacting the model's

performance. Therefore, it is crucial to exercise care and diligence in considering and

validating augmentation techniques to ensure their efficacy in enhancing both model

generalisation and performance.

4.5.3 Training target dataset on YOLOv5 models

Given the results in section (4.4.4), where the YOLOv5 medium model proved to strike a good

balance between accuracy and inference time, initial training was undertaken using YOLOv5m

pre-trained with COCO weights. The standard COCO dataset partitioning for weight

acquisition was executed as follows: 83% of the data was designated for training, 8% for

validation, and 9% for testing. Our new image dataset was partitioned similarly and added to

the training model. Transfer learning training was carried out throughout 300 epochs. The

training was conducted utilising a single GPU, specifically the RTX 3070 with 8 GB of memory.

The training model was standardised to the official YOLOv5 parameters for this model. These

operations were carried out using Python 3.10 and the PyTorch framework.

The results of the training in Table 9 were very close as the benchmark mAP for both metrics

on training data showed little significant change. There is a slight increase in confidence score

using unseen video data and evaluating cars, similar to the experiment in section (4.4.4).

78

Model YOLOv5 m Benchmark mAP With our dataset mAP

mAP 0.5 0.45 0.45

mAP 0.5 0.95 0.64 0.65

Class Confidence cars (tab

3) using Bo video.

0.91 0.93

Table 9. Post-training evaluation metrics for transfer learning using YOLOv5 m.

Initial results discussion

mAP at 0.5: This metric evaluates the model's precision (i.e., its ability to correctly identify

objects) at an IoU threshold of 0.5. An IoU of 0.5 means that the overlap between the predicted

bounding box and the ground truth bounding box is at least 50%. Both the benchmark and

your dataset show a mAP of 0.45, indicating that the model performs equally well on both

datasets at this level of IoU threshold, correctly identifying objects with at least 50% overlap

with ground truths 45% of the time.

mAP 0.5:0.95: This metric averages the mAP calculated at different IoU thresholds, from 0.5

to 0.95 (in steps of 0.05). This provides a more comprehensive view of the model's

performance across various levels of precision and recall. The benchmark shows a mAP of

0.64, while our dataset shows a slightly better performance with a mAP of 0.65. This suggests

that our dataset is either more representative of the model's application context or contains

less challenging examples, leading to a slightly higher average precision across different IoU

thresholds.

Class Confidence for Cars using Bo video: This metric specifically measures the model's

confidence in identifying cars within the dataset provided by Bo video. A confidence score of

0.91 in the benchmark and 0.93 in our dataset indicates high reliability in detecting cars, with

our dataset yielding slightly higher confidence. This could be due to various factors, such as

the quality of the images, the representation of cars in the dataset, or the model's tuning

parameters being better suited for the characteristics of our dataset.

In summary, the YOLOv5 model performs comparably on both the benchmark and our dataset

for object detection at an IoU threshold of 0.5. It exhibits a slight improvement in average

precision across a range of IoU thresholds from 0.5 to 0.95 when tested on your dataset.

Additionally, the model shows high and slightly improved confidence in detecting cars in our

dataset compared to the benchmark. These results suggest that our dataset is either well-

suited for the model or contains characteristics that allow for slightly improved detection

capabilities, especially for cars.

79

4.6 Chapter conclusion

In this chapter, we probed Research Question 1 (RQ1): how does employing a constrained

and focused dataset affect the real-time performance of object detection and classification?

By developing a specialised dataset centred on target vehicles, we can leverage transfer

learning techniques to fine-tune YOLOv5m, thereby enhancing its ability to identify our specific

vehicles. This specialised training will be conducted without compromising the model's existing

accuracy for vehicle recognition on novel data, as demonstrated by its performance on the

unseen Bo video dataset during real-time detection tasks.

Contributions described in this chapter include the following:

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-CNN

models using our video dataset.

• The construction of a target-based vehicle image dataset tailored to our video data.

The YOLO family of models is well-recognised for its challenges in detecting small objects.

Our comparative analysis of Faster R-CNN and YOLOv5 revealed that YOLOv5m outperforms

Faster R-CNN ResNet50 in inference speed and is only marginally behind in detection and

classification accuracy. This observation negates the significance of the limitation related to

small object classification, as our primary focus centres on detecting larger objects.

Initial attempts to enhance the accuracy of YOLOv5m by creating a specialised dataset yielded

marginal success. To thoroughly evaluate the impact of such a dataset, we plan to conduct

experiments across all YOLOv5 models, a topic we discuss in Chapter 5.

Transfer learning plays a pivotal role in our methodology. In this context, we harnessed the

widely acclaimed COCO dataset to expedite the training of our models. The COCO dataset

encompasses various vehicle classes, offering the dual advantage of reducing training time

and granting access to an extensive collection of tens of thousands of pre-labelled images

that seamlessly complement our customised dataset.

Chapter 5 addresses additional experiments aimed at assessing model performance. These

experiments involved modifications to the raw video input data and adjustments to neural

network dimensions. Throughout these experiments, we maintained transfer learning as a

critical technique for evaluating various YOLOv5 models and determining the most effective

parameters for extracting feature vectors from moving vehicles using 2D video.

80

Chapter 5: Optimising target vehicle detection and classification

5.1 Introduction

This chapter provides an in-depth look at our steps to refine a detection and classification

model that allowed us to extract feature vectors from target vehicles and pass them to the next

stage of our pipeline. We establish the link between the research carried out in Chapters 3

and 4, related to the Bo video dataset, and the subsequent phase in the pipeline. This

subsequent phase involves the extraction of feature vectors from target vehicles identified in

the recorded video footage. In this chapter, we are investigating research question 2 (RQ2)

Considering the neural network's characteristics, how do pixel density and frame rate

variations affect real-time object detection and classification models?

The primary goal of this thesis is to utilise driver's historical behaviour at a T-junction to

investigate how to make precise predictions about their future actions. The first feature we

study is the vehicle's velocity. We carefully establish an evaluation velocity vector through a

manual calibration process. This helps us to tune the accuracy of the captured velocity feature

vector when using various combinations of video specifications.

We use the dynamic pixel-level feature vectors derived through DUKE for vehicles. These

feature vectors cannot be obtained from readily available datasets or driving simulators but

result from the substantial work detailed in Chapters 3 and 4. This deliberate approach has

been adopted to ensure the utilisation of authentic data obtained from our video input

methodology. The aim of this chapter is to test various inputs, frames per second, resolution,

and neural network dimensions to determine the optimal settings for maximum performance

and precision in producing feature vectors from two-dimensional video for our specific

problem.

This chapter explains the fine-tuning process applied to the Bo video data, as outlined in

Section 3.1. This process involves the computation of ground truth values from junction

images. We aim to configure the input video to meet the specifications for ensuring real-time

capabilities for detection, classification, tracking, and the subsequent extraction of feature

vectors. Following this optimisation, the enhanced video feed seamlessly integrates into the

DUKE framework, facilitating the capture of pixel-level feature vectors. These feature vectors

are consecutively consolidated within a comprehensive dataset, which undergoes thorough

examination in Chapter 7. Our methodologies have been designed to examine the interaction

of various frame rates and resolution combinations that impact target vehicles' detection

performance and accuracy. This analysis seamlessly integrates with our broader investigation

of Research Question 2.

81

The following contribution is covered in this chapter:

We demonstrate an innovative approach to fine-tuning a real-time vehicle detection and

classification model based on performance.

5.1.2 Chapter organisation

This chapter evaluates and optimises the real-time vehicle detection system's performance,

including factors such as frame rate and resolution and selecting suitable YOLOv5 models

and datasets. This paper demonstrates the experimental results using various frame rates and

image resolutions to establish the optimum configuration for DUKE input based on accuracy,

inference time, and ground truth realism.

Firstly, we lay the groundwork for evaluating the real-time vehicle detection model's

performance. Our approach involves an extensive examination of evaluation metrics and the

procedures employed for this assessment. This encompasses a discussion of various

evaluation metrics, with particular attention given to frame rate and resolution samples (5.3.1

and 5.3.2) and the creation of video samples featuring diverse frame rates and resolutions

(5.3.3). Moving to Section 5.4, we delve into the distance and velocity feature vector evaluation

metrics assessment. Subsequently, in Section 5.5, we introduce the concept of a

performance-based detection model. This entails training all YOLOv5 models through transfer

learning (5.5.1) and revealing our methodology for selecting datasets and model combinations

(5.5.2). Section 5.6 is dedicated to the experimental phase, wherein we explore the impact of

varying parameters. We systematically investigate different combinations of frame rates,

network architectures, and resolutions to discern the most optimal input video. This section

also discusses selecting the most suitable input video (5.6.1). The concluding section (5.7)

summarises the pivotal findings and discusses the selected Vo and detection model/dataset

combination.

82

5.2 Feature selection

Feature selection is the initial step in optimizing our video input. We have decided to focus on

two primary features, distance and velocity, and setting various FPS rates and a range of

video input resolutions.

5.2.1 Frame rate

The frame rate, measured in frames per second (FPS), indicates the speed at which individual

video frames are captured or shown. For the Bo video dataset, the FPS rate directly influences

DUKE's operational efficiency, as it determines the volume of data processed every second.

A higher FPS means more data moves through our pipeline each second, potentially slowing

down our processing speed but providing greater detail in each frame for analysis. Conversely,

a lower FPS rate speeds up processing but provides less detail per frame for inference.

Reducing the FPS involves using video editing software to remove frames symmetrically by

deleting alternate frames or using an asymmetric trimming technique, as demonstrated in

Table 10, to achieve a specific frame rate reduction, allowing us to refine Vo without restricting

data from Vr.

Bo video data, Vr, is recorded at 50 fps. We have experimented with various frame rates; for

example, to get to a target frame rate of 30 fps, we used Asymmetrical frame rate reduction,

which removes 20 frames from each second of the original 50-frame video. Because 50 fps

and 30 fps are evenly divisible by five frames, we divided each second of the video into five

distinct blocks. This frame-trimming process transforms a ten-frame block from the source

video clip into a six-frame block in the destination video clip, achieving the desired frame rate

reduction. Please refer to Table 10 for more details.

Step Action New Frame(s) in Destination Block

1 Frame 1 is deleted

2 Frames 2 and 3 are played successively 1, 2

3 Frame 4 is deleted 1, 2

4 Frame 5 is displayed 1, 2, 3

5 Frame 6 is deleted 1, 2, 3

6 Frame 7 is exhibited 1, 2, 3, 4

7 Frame 8 is deleted 1, 2, 3, 4

8 Frames 9 and 10 are presented 1, 2, 3, 4, 5, 6

Table 10 Asymmetrical frame rate reduction

The procedure outlined in Table 10 is applied iteratively to the entire video clip to achieve the

83

desired frame rate reduction. It is important to note that the use of asymmetric trimming, as

described, can negatively impact the dimensional data, primarily due to the perturbation it

introduces to the optical flow of the original video, which can further affect the tracking of target

vehicles in our pipeline.

Using Bo Vr, we created samples of 50 fps, 30 fps, 25 fps, and 10 fps to analyse extremes and

fine-tune the balance between the quantity of data available per second and inference speed.

5.2.2 Creating video samples of various FPSs and resolutions

The area in pixels establishes the resolution of a video. The input video can be passed to

DUKE in various resolutions; however, the object detection and classification steps resize the

images based on a hyperparameter setting. YOLOv5 is trained on resized images set to

640x640 and uses padding and cropping to establish the correct parameters. Cropping would

involve cutting off parts of the original image to fit the new size and thus potentially losing

important content. Padding would add blank space around the image to maintain its

dimensions. We created samples of Bo Vr at 1920x1080, 1280x720, 640x640, and 320x320.

Our experimental video samples were created from the same clip of Bo Vr converted from the

original 1920x1280 at 50 fps to the combined samples presented in Table 11.

Sample Resolution in pixels FPS

1920x1280 10 25 30 50 (Bo Vr)

1280x720 10 25 30 50

640x640 10 25 30 50

320x320 10 25 30 50

Table 11 Input video samples created from a single Bo Vr clip.

5.3 Distance and velocity feature vector evaluation metrics

To obtain real-time dynamic data from video input, validating and establishing calibration

references accurately reflecting real-world scenarios is essential. These references are used

to verify feature vector data and establish the optimum parameters of input video, network,

and model size. Specifically, we need the capability to compute metrics such as junction

dimensions, vehicle size, and the velocity of vehicles. We demonstrated our methodology for

calculating distance and velocity metrics using a single video frame, as depicted in Figure 18.

This procedure was carried out for each of our tesT-junctions to establish specific baseline

metrics tailored to each junction. The process includes manual calculations using the image

manipulation software GIMP (GNU Image Manipulation Program 2023). We manually

assessed the following samples: 1920x1080, 1280x720, 640x640, and 320x320, as detailed

84

in Sub-section 5.3.2.

Figure 18, Junction image with a grid overlay not to scale (GNU), Shows how we calibrate for

a junction based on a single image.

The image presented in Figure 14 corresponds to a single frame extracted from Bo Vr,

recorded at a resolution of 1920x1080 pixels and a frame rate of 50 fps.

In the video frame in Figure 14, the vehicle identified as a Fiat 500 (labelled as 'c') possesses

an actual physical length of 3,571 mm, as reported by Parkers (2021). This vehicle's pixel

length in the image is 63 pixels, labelled as l and resolved as 1 pixel, corresponding to 56.68

mm (1 px = 56.68 mm). The distance covered by the Fiat 500 c in this clip is 639 pixels, relative

to a physical distance of 36,220 mm (or 36.22 meters), denoted as d. The time to traverse this

distance is computed as 5.10 seconds, t, extrapolated from Vr data across all frames. The

estimated mean velocity for the Fiat 500 in Figure 14 is 7.10 m/s or 7.10 mm/ms. This velocity

is further resolved into a mean relative velocity, vc, of 0.125 px/ms for the sample 1920x1080

at 50 fps. As the vehicle moves horizontally, the relative size does not change significantly;

however, we took length measurements of the car in pixels over the entire frame length and

averaged the target vehicle length to 63 px. Vc for all tested resolutions was within 5% of 0.125

px/ms due to the relative pixel size and actual physical measurements. A higher fps can

represent life-like vehicle motion more accurately because it captures more incremental

positions of the object as it moves through space; this makes the vehicle appear to move

smoothly and at its actual speed. When the fps is lower, vehicle objects appear to jump

between frames, making them appear slower than they are.

5.4 Establishing a detection model

After defining the scope of input video specifications and evaluation metrics for our DUKE

experiments to determine the optimal input (Bo Vo), our next step is fine-tuning the model's

base to achieve the desired inference time and accuracy combination to exploit real-time

feature vector capture.

85

5.4.1 Training all YOLOv5 models with transfer learning

Expanding on the details provided in Chapter 4, which outlined our approach to transfer

learning using our specific vehicle image dataset, we then perform transfer learning on all five

YOLOv5 models, denoted as 'n,' 's,' 'm,' 'l,' and 'x'. The employed training datasets are as

follows:

1. COCO 80: This extensive dataset encompasses all the original classes from the

COCO dataset, providing a comprehensive context for object detection. It is worth

noting that all YOLOv5 models are pre-trained using this dataset.

2. Bo (80): Our specialised vehicle weights have been incorporated into the COCO 80

dataset during training, enriching the dataset with our target vehicle instances.

3. COCO 5: This dataset has been refined to include classes directly pertinent to vehicle

detection tasks exclusively. It eliminates all other classes, retaining only the categories

of bicycle, motorcycle, car, truck, and bus from the original COCO dataset.

4. Bo (5): Building upon the foundation of COCO 5, this dataset integrates our proprietary

vehicle classes, further enhancing the dataset to create a more finely tuned and

specialised vehicle classification model.

The YOLOv5 models underwent transfer learning training following the procedures outlined in

Sub-section 4.5.3. The resulting outcomes are presented in Table 12, featuring performance

metrics such as mean average precision (mAP) at various intersection over union (IoU)

thresholds, inference speeds on CPU and RTX 3070 GPU, and frames per second (FPS).

Throughout the training process, our primary focus was to minimise the overall loss. This

objective was achieved through stochastic gradient descent optimisation (SGD), as detailed

by Li et al. (2022). During training epochs, the model's weights were systematically adjusted

to reduce the loss by employing a combination of loss functions to quantify the disparities

between predicted bounding boxes and ground-truth bounding boxes, as well as objectness

and class predictions. Further insights into the primary loss components are available in Sub-

section 4.3.1.

86

Dataset Neural Network
mAP

0.5:0.95
mAP
0.5

Mean
Inference
(ms) CPU

Mean
Inference
(ms) RTX

3070 FPS

Bo (5) YOLOv5n 28.9 46.7 76.9 10.9 94

COCO 5 YOLOv5n 28.1 45.8 77.2 11.9 93

Bo (80) YOLOv5n 28.2 46.4 73.4 12.8 81

COCO 80 YOLOv5n 27.9 45.7 75.4 13.1 85

Bo (5) YOLOv5s 37.5 56.8 88.3 13.1 61

COCO 5 YOLOv5s 37.1 56.7 90.9 14.6 61

`Bo (80) YOLOv5s 37.3 57.7 115.7 16.4 69

COCO 80 YOLOv5s 37 56.7 116.1 17.2 74

Bo (5) YOLOv5m 46.4 65.3 105.1 18.2 53

COCO 5 YOLOv5m 45.8 64.7 107.2 19.8 51

Bo (80) YOLOv5m 45.9 65.0 132.2 20.5 38

COCO 80 YOLOv5m 45.3 64.1 134.5 21.9 48

Bo (5) YOLOv5l 50.1 68.3 117.2 23.2 49

COCO 5 YOLOv5l 49.3 67.9 119.0 24.7 48

Bo (80) YOLOv5l 49.5 67.7 144.2 30.4 40

COCO 80 YOLOv5l 49 67.3 146.9 31.6 44

Bo (5) YOLOv5x 51.6 69.0 129.1 32.6 28

COCO 5 YOLOv5x 50.6 68.9 131.5 33.8 25

Bo (80) YOLOv5x 50.9 69.7 157.0 42.9 38

COCO 80 YOLOv5x 50.5 68.9 158.4 43.6 22

Table 12: Comparative Analysis of Neural Network Configurations and Performance Metrics

for YOLOv5 Architecture in Target Vehicle Detection

In Table 12, we present a comparative analysis of the performance of neural networks utilising

the YOLOv5 architecture. The datasets underused include the refined datasets Bo (5) and

COCO 5 and the entire object datasets Bo (80) and COCO 80.

Key to Table 12:

Dataset: Bo (5), COCO 5, Bo (80), and COCO 80, described above.

Neural Network: lists the specific neural network architecture used for the evaluation.

In all cases, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x are trained

with Bo.

mAP 0.5:0.95: is the primary benchmark used in the literature for object detection mAP

is averaged over all categories in the dataset, using a range of IoU 0.5 to 0.95

mAP 0.5: provides a singular evaluation of detection accuracy compared to a range

of IoU thresholds.

Mean Inference (ms) CPU: This column shows the mean inference time in

milliseconds when the model is run on a CPU.

Mean Inference (ms) RTX 3070: This column displays the mean inference time in

milliseconds when the model is run on an NVIDIA RTX 3070 GPU.

FPS: This measures how quickly the model can process images, with higher values

indicating faster processing.

87

Initial results discussion based on Table 12:

• As the model size increases from n to x, a clear trend of increasing mAP (0.5:0.95 and

0.5) indicates higher accuracy but at the cost of longer inference times and lower FPS.

• The inference time on the CPU is significantly higher than on the RTX 3070 GPU

across all models, highlighting the advantage of using powerful GPUs for deep learning

inference tasks.

• Generally, there is a trade-off between accuracy (mAP) and speed (FPS, Mean

Inference Time). Larger models are more accurate but slower, making them suitable

for high-accuracy requirements where inference time is less critical. Conversely,

smaller models are faster but less accurate, suitable for real-time or low-latency

applications.

For Maximum Accuracy: The YOLOv5x model achieves the highest mAP scores across both

datasets, indicating their superior ability to detect objects accurately. However, this comes at

the cost of lower FPS and longer inference times, especially on GPU.

Balance Between Accuracy and Speed: Mid-range models like YOLOv5m or YOLOv5l are

better choices. They offer a middle ground in terms of both accuracy and processing speed.

Upon concluding the training phase, an analysis was conducted on the data outlined in

Table 12. Next, we generated accuracy and inference plots. This methodology enabled us to

pinpoint models demonstrating either low accuracy or excessive latency, as shown in Figure

19. This figure presents a comprehensive view of the dataset, model, inference, and

accuracy, showing that the more accurate and robust models have the highest latency.

Furthermore, in Figure 16, we conducted a comparative analysis of the processing speed of

each model in terms of FPS to establish insights into the efficiency of each model in image

processing tasks for an informed assessment of their suitability in real-world scenarios.

88

Figure 19 shows the inference time and maP 0.5: 0.95 for

each dataset and each YOLOv5 model, which enabled us to

highlight models demonstrating either low accuracy or

excessive latency. The metric mAP with a range of 0.5 to

0.95 is employed as a standard benchmark in object

detection literature as it provides a comprehensive measure

of model accuracy, not just in detecting objects but also in

evaluating how precise the detections are across all

categories and a range of IoU thresholds.

89

Figure 20 Dataset performance based on YOLOv5 model with FPS.

90

5.4.2 Selecting dataset and model combination

The findings from Sub-section 5.4.1 indicate that models with the quickest image processing

capabilities, specifically the 'nano' and 'small' models, display reduced accuracy on both

training and testing datasets for both COCO and Bo combinations. This trend is attributed to

these faster models' simpler neural network architecture. In contrast, the filtered datasets

COCO 5 and Bo (5) have demonstrated the best performance in terms of accuracy and

inference, particularly with the medium, large, and xlarge models (m, l, and x, respectively).

We chose to discard less accurate and slower models to streamline our approach and focus

on models that balance speed and accuracy. This decision led us to retain the following

models for the next stage in creating a fast and accurate detection and classification process

to feed into our pipeline: Bo (5) and COCO (5) medium, large, and xlarge models, as seen in

Table 13 and Figure 17.

Model mAP 0.95 mAP 0.5 FPS Inference ms

COCO 5 x 50.6 68.9 28 33.8

Bo (5) x 51.6 69.0 25 32.6

COCO 5 l 49.3 67.9 48 24.7

Bo (5)l 50.1 68.3 49 23.2

COCO 5 m 45.8 64.7 51 19.8

Bo (5) m 46.4 65.3 53 18.2

Table 13 Summary of models displaying a balanced performance and accuracy

91

Figure 21 compares datasets and models regarding FPS, inference time, and mAP (mean average precision) at a 0.5:0.95

IoU threshold.

92

Further experimentation is required to establish the most appropriate model for our work. We

next pass variations of Vo through each model and analyse the real-time behaviour. The

challenge lies in developing a model that simultaneously achieves high accuracy, high FPS,

and a low inference time.

5.5 Experimentation with a variety of FPSs, neural networks, resolutions, and Vo

Our next step was to establish the effect of variations in pixel density and frame rate in Vo on

the performance of our object detection and classification methods and how the dimensions

and architecture of the YOLOv5 models affect this (RQ2).

Each experiment recorded as a row in Table 14 represents a unique combination of the

abovementioned variables. The system's performance is evaluated under each condition to

understand how different factors affect its accuracy (car class confidence), speed (average

velocity and inference time), and overall efficiency.

The system processes video or image inputs at the specified resolution and frame rate, using

the indicated image dataset and model for object detection and classification.

Performance metrics are recorded for each setup, including the confidence level of the

classifications made, the average velocity of detected vehicles, and the time the system takes

to infer results from the input data.

5.5.1 Video samples

In the next batch of experiments, we used the samples of Vo from Sub-section 5.3.3 (Table

11) at varying resolutions and FPSs and used the selected models from Sub-section 5.5.2 Bo

(5) and COCO 5, m,l,x. to test real-time detection confidence and to compare the estimated

velocity with our benchmark velocity from Section (5.4) of 0.125 px/ms. Figure 18 represents

the viable data yielded from our experiments after removing outliers, such as the 10 fps

samples, due to very low confidence scores and distance from benchmark velocity.

5.5.2 Class confidence

The class confidence metric in YOLOv5, and other object detection models like it, quantify the

model's certainty in its predictions regarding the presence and class of objects within an

image. In YOLOv5, this confidence score is between 0 and 1; higher values indicate greater

confidence in the prediction. This metric is crucial for filtering out detections with low

confidence, thus reducing false positives and improving the overall precision of the model.

Objectness Score: Each bounding box predicted by YOLOv5 has an associated objectness

score that indicates the model's confidence that the box contains an object versus the

background. This score helps filter out bounding boxes that likely do not contain any object.

93

Class Confidence Score: For each bounding box, the model also predicts a class confidence

score for each class. This score reflects the model's confidence that the object in the bounding

box belongs to a specific class.

Combined Confidence Score: The final confidence score for a prediction is typically the

product of the objectness score and the class confidence score. This combined score

represents the model's overall confidence that a specific class object is present in the

predicted location.

Non-Maximum Suppression (NMS): YOLOv5 applies Non-Maximum Suppression to eliminate

redundant bounding boxes after predictions are made. NMS uses confidence scores to retain

the best bounding box when multiple boxes overlap and detect the same object. The box with

the highest confidence score is kept, while others are discarded.

Thresholding: Users can set a confidence threshold to filter out detections. Detections with

confidence scores below the threshold are discarded. This threshold can be adjusted based

on the application's requirements to balance between precision (high confidence threshold)

and recall (low confidence threshold).

Tuning the confidence threshold parameter is critical to optimizing YOLOv5 for specific tasks,

as it allows users to balance between detecting as many objects as possible (recall) and

ensuring the detections are accurate (precision).

Class confidence is typically outputted by the last layer of the object detection model, which

often involves a softmax or sigmoid function providing a probability distribution over all

possible classes. The most common metric used to evaluate class confidence and localisation

in object detection is IoU combined with precision and recall metrics. Since mAP represents

the mean accuracy across all dataset classes, the confidence level of the vehicle class in

ground-truth data is crucial.

94

5.5.3 Results from experimentation with FPSs, neural networks, resolutions, and Vo

Vr Resolution pixels FPS of Vr Image Dataset & Model Car Class Confidence % Ave Velocity px/ms Inference ms

1 320 50 Bo (5)m 59 0.1 22

2 320 50 COCO 5m 60 0.11 22

3 320 30 Bo (5)l 66 0.13 24

4 320 30 COCO 5l 65 0.135 24

5 320 50 COCO 5l 61 0.14 24

6 320 50 Bo (5)l 61 0.142 24

7 320 50 COCO 5x 62 0.104 30

8 320 50 Bo (5)x 63 0.108 30

9 320 30 Bo (5)x 68 0.125 30

10 320 30 COCO 5x 70 0.126 30

11 640 50 Bo (5)m 69 0.139 20

12 640 50 COCO 5m 67 0.14 22

13 640 50 Bo (5)l 76 0.106 23

14 640 50 COCO 5l 74 0.105 26

15 640 30 Bo (5)l 79 0.15 26

16 640 30 COCO 5l 79 0.16 26

17 640 30 Bo (5)x 80 0.13 32

18 640 30 COCO 5x 80 0.13 32

19 1280 30 Bo (5)m 78 0.158 22

20 1280 30 COCO 5m 77 0.16 22

21 1280 50 Bo (5)m 79 0.14 24

22 1280 25 Bo (5)l 83 0.17 24

23 1280 25 COCO 5l 83 0.173 24

24 1280 50 COCO 5m 77 0.141 25

25 1280 30 Bo (5)l 82 0.11 26

26 1280 30 COCO 5l 82 0.12 26

27 1280 50 Bo (5)l 80 0.11 29

28 1280 50 COCO 5l 81 0.1 30

29 1920 30 Bo (5)m 77 0.098 22

30 1920 30 COCO 5m 75 0.099 22

31 1920 50 COCO 5m 78 0.128 23

32 1920 50 Bo (5)m 79 0.129 23

33 1920 25 Bo (5)l 81 0.16 35

34 1920 25 COCO 5l 80 0.16 35

35 1920 25 Bo (5)x 84 0.1 38

36 1920 25 COCO 5x 83 0.11 39

Table 14 summarises input data for Vo and outputs based on the dataset and model. It comprises the

parameters that define each model's real-time performance and capabilities, including resolution,

processing speed, confidence levels, car velocities, and the time taken for inference.

Table 14 Key

• Resolution (pixels): Input pixel resolution ranges from 320 to 1920 pixels.

• Vr Video data FPS(set when the video is edited): Range from 25 to 50 frames per

second.

• Dataset and Model Combinations: Yolov5 model and dataset combination.

• Car Class Confidence (%): Confidence levels for car classification range from

approximately 59% to 84%.

• Average Velocity (px/ms): Average car velocity in pixels per millisecond varies from

0.1 to 0.173.

• Inference Time (ms): The time taken for classification ranges from 20 to 39

milliseconds.

95

5.5.3.1 Correlation analysis based on results in Table 14.

Vr Resolution and Car Class Confidence: A strong positive correlation (0.74) between Vr

resolution and car class confidence suggests that higher resolutions result in higher

confidence levels.

FPS and Car Class Confidence: There's a moderate negative correlation (-0.50) between FPS

and car class confidence, indicating that higher FPS rates might negatively impact confidence

levels, potentially due to the increased computational demand.

Vr Resolution and FPS: A negative correlation (-0.32) suggests that higher resolutions often

come with lower FPS due to the increased processing required for higher resolutions.

Average Velocity and Car Class Confidence: A positive correlation (0.22) indicates that higher

average velocities are slightly associated with higher confidence levels.

Inference Time: A positive correlation (0.35) between car class confidence and inference time

suggests that higher confidence might come at the cost of slightly longer processing times.

Additionally, inference time shows a slight positive correlation (0.23) with Vr resolution,

indicating that higher resolutions may lead to longer inference times.

Interpretation:

Resolution's Impact: The increase in Vr resolution is positively associated with higher car class

confidence, indicating that higher resolution may provide more detailed images for more

accurate classification despite potentially lower FPS and slightly longer inference times.

FPS's Role: The negative correlation between FPS and car class confidence suggests that

while a higher FPS is desirable for smooth motion, it might compromise classification

confidence due to the reduced time available for processing each frame.

96

Figure 22 Relationship between real-time classification confidence inference time, model, and Vo input.

97

These experiments help us address Research Question 2 (RQ2), examining the impact of

pixel density and frame rate changes on real-time object detection and classification models.

Figure 18 illustrates the complex relationship between input data quantity, resolution, FPS,

neural network model size, inference time, and class confidence. To define our model's

parameters, we compared the results from Table 14 by utilising our benchmark velocity of

0.125 px/ms, as outlined in Section 5.3, to gauge the accuracy of various model combinations

against our real-time ground truth data. We excluded outlier data where velocity

measurements fell outside the 0.12 to 0.13 px/ms range. The remaining data, adhering to our

0.01 px/ms tolerance, is summarised in Table 15.

Vr Resolution pixels FPS of Vr Image Dataset & Model Car Class Confidence % Ave Velocity px/ms Inference ms

1280 30 COCO 5l 82 0.12 26

320 30 Bo (5)x 68 0.125 30

320 30 COCO 5x 70 0.126 30

1920 50 COCO 5m 78 0.128 23

1920 50 Bo (5)m 79 0.129 23

320 30 Bo (5)l 66 0.13 24

640 30 Bo (5)x 80 0.13 32

640 30 COCO 5x 80 0.13 32

Table 15 Filtered results from Table 14 based on those closest to benchmark velocity of 0.125

px/ms in the realistic tolerance range of 0.12 to 0.13 px/ms

The Bo models have Bo (5)l with the lowest confidence at 66%, Bo (5)m at 79%, and Bo (5)x

at an average confidence of 74%. The COCO models show varying confidence levels, with

COCO 5l at 82% (highest), COCO 5m at 78%, and COCO 5x at 75%.

The data suggests that a balance between resolution, FPS, and the choice of image dataset

and model is crucial for optimizing car class confidence, inference time, and maintaining a

relative ground truth of average velocity, as displayed in Figure 19.

98

Inference ms

Car Class Confidence

Bo (5)l

Bo (5)m

Bo (5)x

COCO 5l

COCO 5m

COCO 5x

Image Dataset Model

Figure 23 Comparison of data from Table 15 above, showing dataset/ model class confidence and inference time.

99

Figure 24 A comparison of neural network/dataset combination, resolution and performance regarding inference time and

car class confidence.

100

Figure 24 illustrates the connection between the dataset/model combination, resolution, car

class confidence and inference time for values within our ground truth velocity threshold.

The highest car class confidence is achieved by the COCO 5l model at a resolution of 1280

pixels and 30 FPS, with a confidence of 82%, shown in Figure 20. The Bo (5)m and COCO

5m models achieve the fastest inference times of 23 milliseconds at the highest resolution of

1920 pixels and 50 FPS, with car class confidence percentages of 79% and 78%, respectively.

The lowest car class confidence is for the Bo (5)l model at 320 pixels resolution and 30 FPS,

with a confidence of 66%. The inference time does not correlate directly with the resolution or

confidence percentage. Both Bo (5)m and COCO 5m models show reasonable high

confidence and low inference time balance, suggesting efficient performance. The COCO 5l

model shows the highest confidence but at a lower resolution, which indicates a trade-off

between resolution and accuracy.

5.6 Selecting the optimal Vo based on resolution, fps, and ground truth data

A lower pixel density, such as 320, diminished the input images' data load, resulting in quicker

inference times as smaller images generally entail less computational demand. However, this

reduction in pixel density may compromise accuracy because it can lead to the loss of object

details in scenarios involving occlusions or low lighting. Detecting and classifying objects,

especially those at a distance, can become more challenging under such circumstances; our

data illustrates this phenomenon. Regarding resolutions set at 320 (Table 14 # 1–8), we

observe significantly reduced confidence in identifying the same vehicle compared to tests

with higher resolutions despite the substantially quicker processing. Higher pixel density

demands more significant computational resources, resulting in slower inference times.

However, it frequently translates to heightened accuracy as the model benefits from additional

image details, enabling more precise predictions. This trend is illustrated in our data (Table 14

35, 36), where data with rich pixel information at a resolution of 1920 exhibits the highest

confidence in classifying target vehicles but incurs the slowest inference time.

Our experiments reveal that lower frame rates result in quicker inference times. Nonetheless,

this approach may lead to inaccuracies in detecting moving objects, particularly those with

high speeds, making the data from all 10 fps samples and the 25 fps data from the medium

models unusable, as indicated in Table 14. We found that lower frame rates diminish object

detection accuracy by reducing the available instances for analysis, and if Vo is processed too

quickly, our models fail to classify vehicles accurately. Overall, while higher FPS can be

associated with better performance in some instances (as seen with COCO 5m and Bo (5)m),

it is not the sole determining factor for car class confidence, which seems to be more

dependent on the specific model and dataset rather than the FPS alone. Our empirical

101

observations demonstrate that increased frame rates require additional computational

resources for all models, leading to slower inference times.

Nonetheless, a higher frame rate facilitates the capture of more comprehensive data per

frame, which is especially advantageous for tracking and classifying rapidly moving objects,

ultimately resulting in enhanced accuracy. The choice of neural network architecture plays a

pivotal role in object detection. Smaller YOLOv5 models, such as nano and small, are

designed for computational efficiency, whereas the large and xlarge models prioritise

accuracy.

Our research also highlights the crucial trade-off between resolution and frame rate, a concept

well-documented in the work of Huang et al. (2016). The higher the resolution, the greater the

computational power required, potentially leading to a reduced processing frame rate during

the detection phase and vice versa. It is paramount to find the right balance between resolution

and frame rate, and this balance must be tailored to the specific requirements of our

application, as emphasised in Chai et al. (2021).

Given our specific requirements, we conducted extensive experiments with various

configurations, including pixel density, frame rate, and neural network models, to determine

the optimal trade-off between inference speed and accuracy for our pipeline. It is worth noting

that while we have not yet ventured into experimenting with hardware acceleration, model

quantisation, or software optimisations, these approaches hold the potential to enhance the

delicate equilibrium between speed and accuracy. However, these aspects fall beyond the

scope of our current research in its present form. The models we have selected and presented

in Table 15 and Figure 24 demonstrate that the choice of network model significantly impacts

both inference time and accuracy, particularly when considering different combinations of Vo.

Notably, the models in Figure 25 were initially selected from a larger batch of models, as

outlined in Table 14. The subsequent filtering process focused on achieving a benchmark

velocity within a narrow range of +/- 0.05 px/ms.

Our primary challenge, based on RQ2, is to identify the optimal combination of a model and

Vo for integration into our pipeline while minimising any adverse effects on the performance of

our real-time driver predictions. In this context, the first prerequisite is inference time, and the

best results were obtained using COCO 5m and Bo (5)m, operating at a Vo of 50fps and a

resolution (1920 pixels) equivalent to Vr.

The next crucial consideration revolves around accuracy, and the tests indicate that Bo (5) m

marginally outperforms COCO 5m; the performance difference in car class confidence

between COCO 5m and Bo (5)m is approximately 1.27%. Since both models have the same

inference time, no performance difference exists. Therefore, the decision hinges on a balance

between inference speed and accuracy. For our specific use case, choosing Bo (5) m with a

Vo of 50 fps at a resolution of 1920 pixels appears to be the most promising configuration.

102

Figure 25 Filtered models based on data from Table 15

0

10

20

30

40

50

60

70

80

90

COCO 5l Bo (5)x COCO 5x COCO 5m Bo (5)m Bo (5)l Bo (5)x COCO 5x

30 30 30 50 50 30 30 30

1280 320 320 1920 1920 320 640 640

%
 C

o
n

f,
 In

f
m

s

Model, fps and res

Car Class Confidence % Inference ms

103

5.7 Chapter conclusion

In this chapter, we explored Research Question 2 (RQ2): Considering the neural network's

characteristics, how do pixel density and frame rate variations affect real-time object detection

and classification models?

We observed a well-defined relationship between the quantity of data and the computational

resource requirements for our vehicle detection and classification model. Our work enhanced

this relationship during the transfer learning stage, where we created a vehicle-specific image

dataset that supported higher confidence in car class prediction over the base dataset COCO.

It became evident that an extensive neural network, such as YOLOxl, delivers precise vehicle

classifications when provided with high-resolution images at a high frame rate. In contrast, a

simple neural network, such as YOLOn, fed low-resolution images at a low frame rate either

exhibits erratic predictions or fails to detect vehicles. Our model requirements lie between

these two extremes. Through iterative experimentation, we managed to identify a model and

input specification that allowed us to capture the necessary level of detail from vehicles,

enabling us to generate feature vectors as swiftly as possible, considering the limitations of

our available models. This groundwork is instrumental in our pursuit of building a prediction

model capable of detecting, classifying, tracking, extracting feature vectors, storing those

vectors, and making predictions in real-time. With these findings, we are prepared to employ

our chosen model of Bo (5) m, with a frame rate of 50 fps and a resolution of 1920x1080, as

the video input for the next stage of our pipeline, elaborated on in the following chapter.

In Chapter 6, we introduce an innovative approach to extracting feature vectors from our video

dataset Bo and storing these for training our predictive model.

104

Chapter 6: Creating and extracting feature vectors from target vehicles

6.1 Introduction

In the preceding chapter, we determined the ideal model for this thesis, emphasising the

delicate equilibrium between accuracy and inference speed. Our selected model and

specifications are tailored to our target vehicles and geared towards the real-time detection

and classification of objects from live video streams. Through a careful blend of high-resolution

2D video data and a high frame rate, we achieved the accuracy and detail necessary while

keeping computational demands in check by employing a moderately sized neural network.

This chapter focuses on the end-to-end process, encompassing the various stages of target

vehicle detection, classification, tracking, and the generation and storage of feature vectors.

Our research uses historical vehicle behaviour to construct a learning model capable of

anticipating a driver's intentions at a T-junction, ideally with as much lead time as possible,

while ensuring real-time processing. This chapter investigates Research Question 3 (RQ3): Is

obtaining accurate pixel-level features from dynamic vehicles that closely match ground truth

data feasible?

Chapter 2 discusses various techniques for detecting and classifying vehicles within two-

dimensional video streams. This chapter introduces 'DUKE', our combined approach for

detecting, classifying, tracking, and extracting feature vectors from video data containing

vehicles. DUKE builds upon the foundational work of YOLOv5, detailed in Chapter 5, for

detection and classification tasks. For vehicle tracking, we implement an enhanced version of

the DeepSORT algorithm (Wojke, Bewley, and Paulus, 2017) to establish vehicle trajectories.

Additionally, we integrate our proprietary techniques for extracting feature vector data from

the tracked vehicles.

DUKE is fine-tuned to recognise specific target vehicles. To achieve this, we utilise thresholds

that align with the size characteristics of the target vehicles, and we configure anchor box

sizes, intersection over union (IoU), and non-maximum suppression (NMS) thresholds

accordingly. These threshold values are thoughtfully chosen to optimise the detection

performance. The anchor box sizes are computed in pixel units and are independent of the

input image's dimensions. Our transfer learning training approach aimed to adjust the ratio

between input dimensions and anchor sizes, which are defined relative to a grid size—a fixed

number of pixels that can be customised to enhance the detection process.

The final step in object detection, NMS, is pivotal in selecting the most suitable bounding box

for an object based on a single value. Hence, choosing the NMS threshold is critical to

determining the model's overall performance.

105

6.2 Chapter organisation

This chapter introduces DUKE for object detection, tracking, and feature vector extraction.

Section 6.2 covers bounding box predictions, IoU, anchor boxes and ground truth

associations, localisation errors and refinement, confidence scores, NMS, full bounding box

prediction, and vehicle tracking. Section 6.3 explores feature vector extraction, addressing

feature vector creation using constant, variable, and calculated values; recording features as

vectors; and initial analysis of feature capture. We then compare DUKE-derived data with

ground truth values to assess accuracy and consistency. The chapter concludes with Section

6.5 to summarise the key points and findings.

The contribution discussed in this chapter is our innovative approach to generating accurate

dynamic vehicle feature vectors for utilisation in real-time prediction.

6.3 DUKE

We developed a robust feature vector creation and capture model, DUKE, by refining YOLOv5

models, fine-tuning parameters such as video frame rate, resolution, anchor boxes, and IoU

metrics, and incorporating a tailored image dataset utilising transfer learning. An overview of

the DUKE algorithm can be found in Figure 26.

The first step in the process is the acquisition of raw video data, denoted as Vr, which is

manually optimised to ensure superior quality. Subsequently, the optimised video, Vo,

undergoes analysis utilising the DUKE algorithm for object detection, classification, and

tracking tasks. Vo is subjected to further computational processing to extract pixel-level feature

vectors, facilitating detailed analysis and interpretation within an academic context.

106

Figure 26 The DUKE pipeline flow diagram depicts the key stages within our prediction

framework leading up to the creation and storage of feature vectors. Initially, Vr is obtained

using a stationary camera at specific test locations, a process explained in Chapter 3. This

process is optimised, as discussed in Chapters 4 and 5. Subsequently, Vo is transmitted to

DUKE, where feature vectors are extracted from identified target vehicles in DUKE. These

feature vectors are stored in an online dataset, as detailed in this chapter.

6.3.1 Bounding box predictions

The first step in extracting feature vectors from target vehicles is to locate the vehicle in the

video frame and classify it. We accomplished this by using a bounding box prediction.

The predictions generated by YOLOv5 consist of several components. These predictions

provide the (x, y) coordinates of the bounding box's centre, width, and height, all relative to

107

the image dimensions. Two other predictions are made; the first prediction assigns class

scores to each predicted bounding box, representing the confidence that the object belongs

to a specific pre-defined object class and a numerical objectness score is also assigned to

each box, indicating the model's confidence in detecting a valid object within the box rather

than background noise. YOLOv5 can predict multiple bounding boxes for each grid cell in the

input image. Following prediction, a confidence threshold is applied to filter out less confident

predictions, and non-maximum suppression is used to eliminate redundant or overlapping

boxes. The final output includes bounding boxes with associated class labels and confidence

scores, as seen in Figure 27.

Figure 27 DUKE object detection and classification summary of a single iteration adapted from

Figure 14 (Section 4.3) to depict ground truth detection as an image

YOLOv5m is the section of DUKE's system responsible for generating bounding box values

and providing contextual information for objects in each video frame. When video frames are

processed through DUKE, object predictions are generated based on a set of pre-defined

anchor boxes, as depicted in the Head section of Figure 22. These anchor boxes were

established using our training data and are tailored to vehicle sizes. In YOLOv5, creating and

refining anchor boxes involves initially setting their sizes and aspect ratios based on dataset

characteristics, training the model to predict bounding boxes using these anchors, analyzing

model performance to identify deficiencies in anchor placement, refining anchor parameters

iteratively, and evaluating the updated model until satisfactory results are achieved. This

process ensures that the anchor boxes effectively capture object variations within the dataset,

108

leading to improved object detection accuracy.

Large anchor boxes are designed to detect larger vehicles, such as buses and trucks, or closer

vehicles, while small anchor boxes are employed for smaller or more distant vehicles. As

illustrated in Figure 28, these predictions result in a final bounding box characterised by its

centre (bx, by), height (bh), and width (bw).

Figure 28 Final bounding box prediction with dimensions of h, w, and centre

6.3.2 Intersection Over Union (IoU)

To ensure the accuracy of the predicted bounding boxes, we employ a validation process

using ground truth data. This validation is carried out using the IoU function, which quantifies

the accuracy of the predicted bounding box. 𝐵𝑃 aligns with the actual bounding box 𝐵𝑎, as

demonstrated in Figure 29. The actual bounding box, 𝐵𝑎, is crafted during the pre-model

training phase. Each instance of an object within a specific class is manually labelled by

drawing a bounding box around the object's perimeter. This forms the foundation of object

classes and serves as the ground truth for our system.

IoU is a metric used to evaluate the overlap between two bounding boxes in an image and is

calculated using the following formula:

𝐼𝑜𝑈(𝐵𝑃,𝐵𝑎) =
𝐵𝑝∩ 𝐵𝑎

𝐵𝑝∪ 𝐵𝑎
 (14)

IoU = (Area of Intersection) / (Area of Union)

• Area of Intersection: The region where the two bounding boxes overlap. In the case

of two rectangles, the area is common to both.

• Area of Union: This is the total region both bounding boxes cover. It includes the areas

of both bounding boxes but subtracts the area of their intersection to avoid double-

bh

bw

(bx, by)

109

counting.

The IoU value ranges from 0 to 1:

• IoU = 0: There is no overlap between the two bounding boxes; they are entirely

separate.

• 0 < IoU < 1: There is some degree of overlap or intersection between the two bounding

boxes.

• IoU = 1: The two bounding boxes are identical or completely overlap.

In Figure 29, the Intersection over Union (IoU) ranges from low to high, and an IoU greater

than or equal to 0.5 is considered the detection threshold. Anything below this threshold is not

considered.

6.3.3 Anchor boxes and ground truth associations

In YOLOv5, creating and refining anchor boxes involves initially setting their sizes and aspect

ratios based on dataset characteristics, training the model to predict bounding boxes using

these anchors, analyzing model performance to identify deficiencies in anchor placement,

refining anchor parameters iteratively, and evaluating the updated model until satisfactory

results are achieved. This process ensures that the anchor boxes effectively capture object

variations within the dataset, leading to improved object detection accuracy.

Anchor boxes comprise preconfigured bounding boxes of specified height and width, as

illustrated in Figure 30. These boxes are tailored to match specific object classes' scale and

aspect ratio attributes, and their precise definitions are established through our extensive

training procedures.

Bp

Bp

Bp

 IoU(Bp,Ba)=0.1 IoU(Bp,Ba)=0.5 IoU(Bp,Ba)=0.9

110

In Figure 30, the pre-defined anchor boxes are tiled across the image during detection.

The network does not directly predict bounding boxes but instead predicts the required

probabilities and refinements corresponding to the tiled anchor boxes. DUKE returns a unique

set of predictions for every anchor box defined. The final feature map represents object

detections for each class. Using anchor boxes enables DUKE to detect multiple objects,

objects of different scales, and overlapping objects. The position of an anchor box is

determined by mapping the location of the network output back to the input image. The

process is replicated for every network output. The result produces a set of tiled anchor boxes

across the entire image. Each anchor box represents a specific prediction of a class. For

example, in Figure 31, there are two anchor boxes to make two predictions per location.

Figure 31 DUKE output from the network (i,j) maps to the image (i,j) to determine if there is an

object in that grid. Each anchor box is tiled across the image. The number of network outputs

equals the number of tiled anchor boxes. The network produces predictions for all outputs.

111

6.3.4 Localisation errors and refinement

In YOLOv5, the distance or stride between adjacent anchor boxes is determined by the level

of downsampling performed within the model's CNN component. Downsampling is achieved

through strided convolutions and plays a crucial role in expanding the network's receptive field

and capturing features across various scales, as discussed by Akhtar and Ragavendran

(2019). Different downsampling factors are employed within the specific YOLOv5m context,

resulting in anchor boxes that are distributed with a coarser grid. The choice of these

downsampling factors directly influences the spacing between these anchor boxes. For

example, if downsampling factors range from 4 to 16, the spatial resolution of the feature maps

is reduced by 4 to 16 compared to the input image, as visualised in Figure 32.

The coarsely tiled anchor boxes refer to anchor boxes that cover larger areas of the image,

and as a result they may lead to localisation errors relating to determining the position and

size of objects within the image. When anchor boxes are spaced too far apart due to excessive

downsampling, it can be challenging for the model to accurately localise and predict the

positions of objects, especially small or closely packed objects.

To mitigate these localisation errors, we carefully choose the downsampling factors and

anchor box sizes appropriate for our dataset and object sizes. Additionally, we introduce

anchor boxes of various aspect ratios and scales to improve object localisation, allowing the

model to adapt to different object sizes and shapes.

Downsampling is followed by convolutional layers that capture more abstract and higher-level

features based on the lower-resolution but more informative feature maps obtained after

downsampling (Hesse, Schaub-Meyer and Roth, 2023).

112

Figure 32 DUKE learns offset values to apply to each tiled anchor box to fix localisation errors,

refining the anchor box position and size.

Through exhaustive experimentation on our dataset with YOLOv5m, we discovered that

optimising inference performance is achieved by minimising the stride property of the max-

pooling layers. Notably, we observed that reducing downsampling did not compromise the

confidence of our predictions, which can be attributed to our focus on detecting larger objects.

6.3.5 Confidence

The process of selecting pre-defined anchors is designed to closely match the ground truth

boxes' characteristics and is determined through a K-means clustering approach (Zhong et

al., 2020). This method follows a specific sequence.

In the first step, all ground truth bounding boxes are repositioned to have their centres at the

coordinate (0,0), assuming the objects are located at the origin. The clustering algorithm

commences by initialising five centroids via a random selection from the ground-truth bounding

boxes. The clustering algorithm consists of two alternating steps: each ground truth box is

assigned to one of the centroids based on the IoU as a distance measure. This step results in

the creation of five distinct clusters or groups of ground-truth bounding boxes. New centroids

are computed for each cluster by selecting the bounding box that minimises the mean IoU with

all the other boxes in the same cluster. Following these steps, the final values are passed

113

through a logistic activation function (sigmoid) for all the output parameters except for the

relative width and height. This processing ensures that the output values are constrained from

0 to 1.

In YOLOv5, the confidence score, often called 'confidence', is a crucial output parameter

associated with each detected bounding box. It represents the model's confidence or certainty

that a given bounding box contains an object of interest (i.e., an object that the YOLO model

is trained to recognise). The confidence score is a probability value ranging from 0 to 1, where

a higher score indicates a higher level of confidence that the bounding box accurately encloses

an object.

6.3.6 Non-max suppression

Non-maximum suppression (NMS) is the concluding step in the vehicle detection process

within DUKE, playing a fundamental role in selecting the most suitable bounding box for

an object. We have explored several methods to fine-tune NMS for vehicle detection within

this context, focusing on greedy NMS and soft NMS.

NMS is the technique that eliminates redundant, overlapping bounding boxes, retaining

only the most representative ones. It operates as one of the final layers within the network,

as depicted in Figure 33.

Figure 33 NMS is an integral component of the CNN, acting as the final layer.

Greedy NMS and soft NMS are utilised in object detection to reduce the multitude of bounding

boxes generated by detection algorithms. However, they differ in their approach to handling

overlapping boxes and how they influence the confidence scores of these boxes. Greedy NMS

promptly removes boxes that fail to meet a defined IoU threshold compared to the box with

the highest confidence score. Boxes that overlap with the top-scoring box beyond the IoU

threshold are entirely disregarded, and their associated confidence scores are discarded.

Greedy NMS makes a binary decision: boxes are retained or discarded based on their IoU

with the highest confidence box. Unfortunately, this binary approach can lead to a loss of

114

information regarding the removed boxes' relative importance or confidence levels. Our

empirical observations revealed that this binary decision is insufficient for detecting all vehicles

in a crowded T-junction. The greedy NMS equation is represented as follows:

𝑆𝑖 = {
 𝑆𝑖, 𝐼𝑜𝑈((𝑀, 𝑏𝑖)) < 𝑁𝑡

 0, 𝐼𝑜𝑈((𝑀, 𝑏𝑖)) ≥ 𝑁𝑡

 , (15)

𝑆𝑖: score of probability i

𝑏𝑖: box corresponding to probability i

𝑀: box corresponding to maximum confidence

𝑁𝑡: IOU threshold

Soft NMS (F. Frank Chen et al., 2023) presents a straightforward adjustment to the greedy

NMS algorithm and is designed to tackle the challenge of overlapping bounding boxes in

object detection, rather than immediately discarding boxes that do not meet an IoU threshold,

soft NMS advocates for a more nuanced approach. It proposes reducing the confidence

scores of these overlapping boxes, considering the extent of their overlap as measured by the

IoU; this means that boxes with substantial overlap (high IoU) receive a more substantial

reduction in their confidence scores, while boxes with lower IoU values—indicating less

overlap—are penalised to a lesser degree. Soft NMS thus introduces a 'softening' mechanism

to mitigate the issues associated with harshly eliminating potentially relevant detections in

crowded scenes, as shown in the following equation:

𝑆𝑖 = {
 𝑆𝑖, 𝐼𝑜𝑈((𝑀, 𝑏𝑖)) < 𝑁𝑡

𝑆𝑖(1 − 𝐼𝑜𝑈(𝑀, 𝑏𝑖)), 𝐼𝑜𝑈((𝑀, 𝑏𝑖)) ≥ 𝑁𝑡

 , (16)

We determined that the critical distinction between greedy NMS and soft NMS is their

treatment of overlapping boxes and the associated confidence scores. Greedy NMS

eliminates boxes that do not meet a threshold, leading to a binary decision and a loss of

information. In contrast, soft NMS softens the confidence scores of overlapping boxes based

on their IoU, allowing for a more continuous representation of box quality while retaining all

boxes. According to the research by F. Frank Chen, soft NMS is frequently used to alleviate

the severe suppression of bounding boxes in densely populated scenarios, like our T-Junction

video data. Our findings align with this, indicating that employing soft NMS reduces data loss

when tracking multiple vehicles.

115

6.3.7 Full bounding box prediction

A bounding box prediction is a frame-by-frame process completed in one pass.

DUKE follows these steps to detect and classify a target vehicle, generate bounding box

parameters within an image, and produce the output 𝑦:

1. Grid-Based Image Division: The input frame is partitioned into a grid of dimensions G×G.

2. Grid Cell Object Detection: For each grid cell, a backbone CNN is employed to predict the

values of 𝑦 with the following structure:

Detecting and classifying a target vehicle as an output 𝑦.

𝑦 = [𝑝𝑐 , 𝑏𝑥,𝑏𝑦, 𝑏ℎ, 𝑏𝑤, 𝑐1, 𝑐2,…, 𝑐𝑝,…]
𝑇

 ∈ ℝ𝐺𝑥𝐺𝑥𝑘𝑥(5+𝑝) (17)

Where 𝑝𝑐 is the probability of detecting an object,˚-

𝑏𝑥,𝑏𝑦, 𝑏ℎ,and 𝑏𝑤 are the properties of the detected bounding box,

𝑐1, 𝑐2,…, 𝑐𝑝,… is a time stamp representation of which p classes were detected,

and k is the number of anchor boxes.

∈ 𝑅𝐺𝑥𝐺𝑥𝑘𝑥(5+𝑝): This denotes the space to which the vector 𝑦 belongs.

ℝ: Represents the real number space.

𝐺𝑥𝐺: Typically, this would indicate the grid size over which the image is divided. In the

YOLO framework, an image is divided into a 𝐺x𝐺 grid.

𝑘: The number of anchor boxes that each grid cell can predict.

(5+𝑝): This signifies the length of the prediction vector for each bounding box. The '5'

accounts for the objectness score and the four bounding box coordinates. The '𝑝'

accounts for the class probabilities.

The vector 𝑦 is a prediction from the model for a specific grid cell and anchor box. It

includes the objectness score, bounding box coordinates, and class probabilities. The

vector belongs to a space that is determined by the grid size, the number of anchor

boxes per grid cell, and the number of classes plus five additional parameters

(objectness score and bounding box coordinates).

If 𝑝𝑐 = 0, DUKE does not detect any object and the corresponding predictions are

disregarded.

116

3. NMS (Eq 16) is implemented to eliminate potential duplicate and overlapping bounding

boxes. This procedure includes the following sub-steps:

The DUKE code header in Figure 34 contains hard-coded parameter values, such as

Confidence_Threshold and IoU_Threshold. These values can be adjusted at the

beginning of each run.

Figure 34 shows the header of the DUKE code, where qv0 represents the input video, Vo

stands for the confidence threshold, nms corresponds to the IoU threshold, and the

resolution pertains to the input video. Additionally, this header specifies the model

currently in use for the DUKE.

In this process, the bounding boxes undergo a series of steps for effective object detection

and classification. First, they are organised in descending order based on their confidence

scores. Boxes with confidence scores below the designated Confidence_Threshold are

then eliminated from consideration. Next, an iterative assessment begins with the box

with the highest confidence score. During this assessment, the IoU is computed for the

current box with respect to every other remaining box of the same class. If the IoU

between the current box and another exceeds the specified IoU threshold, the box with

the lower confidence score is removed. This procedure helps refine and filter the bounding

boxes, retaining those representing objects of interest with high confidence and

minimising false positives in object detection. The process is repeated until all boxes in the

frame have been evaluated, as shown in Figure 35.

qv0="videos\hazmeona32_crop_x2.mp4" #fixed as of 6-4-23

conf=0.5 #fixed as of 6-4-23

nms=0.7 #fixed as of 6-4-23

resolution=1920 #fixed as of 6-4-23

model='yolov5m.pt' #fixed as of 6-4-23

117

Figure 35 NMS iterates through the bounding box predictions until the prediction with the

highest probability remains as the classified target vehicle (Ego)

DUKE aims to effectively identify and categorise target vehicles within video frames while

preventing false positives and duplicate detections through NMS. The configuration of the

Confidence_Threshold and IoU_Threshold parameters holds significant importance in

achieving the desired balance between recall and precision during the object detection

process.

After obtaining output 𝑦 for each target vehicle in the frame in the input video, the next step is

to extract the bounding box parameters from these results. These parameters are then utilised

for tracking purposes and for generating feature vectors. This process involves using the

bounding box information to track target vehicles across frames, ensuring continuity in object

tracking. Simultaneously, the extracted parameters are employed to create feature vectors.

6.3.8 Vehicle tracking

Tracking is a crucial step in our process after the detection and classification stages outlined

in Section 6.2. After these initial stages, we pass the bounding box prediction data to the

tracking model. This model assigns a unique identifier to each target vehicle detected in the

frame. These identifiers are integral to our feature vectors, enabling us to distinguish behaviour

between vehicles and vehicle types.

118

DUKE utilised Simple Online and Real-time Tracking (DeepSORT) by Wojke, Bewley, and

Paulus (2017) to facilitate the tracking process. DeepSORT is an object-tracking algorithm

that seamlessly integrates with the object detection component, effectively tracking associated

objects across consecutive video frames.

6.3.8.1 Overview of DeepSORT

Once objects are detected using YOLOv5, Deep SORT extracts deep feature embeddings for

each detected object. These embeddings represent the object's appearance and are crucial

for associating the same object across different frames despite changes in its position or

appearance due to factors like occlusion or viewpoint changes. YOLOv5 provides bounding

box coordinates that can extract the corresponding regions from the frame, which are then

passed through a deep feature extraction network to obtain embeddings. The obtained feature

embeddings are used to associate the detected objects across different frames. Deep SORT

utilises techniques such as the Kalman filter (Kalman, 1960) and Hungarian algorithm

(Hamuda et al., 2018) to predict object trajectories and match detections to existing tracks

based on their similarity in appearance features and predicted motion. As new detections are

made in subsequent frames, Deep SORT updates existing object tracks by associating them

with the most likely detection based on their predicted trajectories and appearance similarities.

Tracks are maintained for each object over time, allowing for the continuous tracking of objects

as they move throughout the scene. Deep SORT also includes mechanisms for track

management, such as handling occlusions, track termination, and track re-identification. It

employs strategies to handle situations where objects temporarily disappear from view or

multiple objects merge or split in the scene.

It is a popular choice for real-time applications such as surveillance, autonomous vehicles,

and sports analysis, as Ciaparrone et al. (2020) demonstrated.

DUKE incorporates Wojke et al.'s method for tracking objects, which has been adopted for

multiple object-tracking benchmarks. During the detection and classification stages of DUKE,

bounding box parameters are created; DUKE passes to the DeepSORT model, which defines

an eight-dimensional state space (u, v, γ, h, x˙, y˙, γ˙, h˙) that contains the bounding box centre

position (u, v), aspect ratio γ, height h, and their respective velocities in image coordinates. A

standard Kalman filter is used with constant velocity motion and a linear observation model,

where we take the bounding coordinates (u, v, γ, h) as direct observations of the object state.

A tracking ID is applied to the target vehicle, and DUKE generates continuous feature vector

data for each vehicle in a frame.

Once objects are detected and passed to Deep SORT, features are extracted to help

distinguish between them. These features are based on the object's appearance and include

119

information like the object's colour, shape, texture, and more.

Deep SORT uses a tracking algorithm to associate objects between frames. The primary

challenge in tracking is maintaining the identity of objects as they move through the video

frames. Deep SORT combines a Kalman filter and the Hungarian algorithm. The Kalman filter

estimates each object's state, position, and velocity, while the Hungarian algorithm assigns

detected objects to existing tracks, ensuring that each object maintains a consistent id across

frames. The Kalman filter performs a prediction step to estimate the likely state of an object in

the next frame based on its previous motion. When a new detection occurs in the next frame,

the Kalman filter then corrects its prediction based on the observed data, helping to reduce

errors in tracking. Deep SORT also includes a thresholding mechanism to determine when a

new detection should be associated with an existing track or if it should be treated as a new

track. This helps in handling temporary occlusions and false detections. However, we found

that this threshold requires fine-tuning to prevent the tracking ID of a vehicle that just left the

frame from being applied as a new detection, assuming it is the same vehicle.

The tracker maintains a list of active tracks and their corresponding IDs. It can create and

delete tracks as objects appear or disappear from the video feed, including post-processing

steps to refine the tracking results, such as eliminating short-lived tracks or smoothing object

trajectories.

6.4 Feature vector extraction

The selection and design of feature vectors represent a scientific work step in this research

due to several key aspects. Selecting and designing feature vectors begins with formulating

hypotheses about which vehicle attributes are most relevant for predicting behaviour within a

T-Junction scenario. These hypotheses are grounded in existing literature, domain knowledge,

and empirical observations. The choice of feature vectors involves a systematic experimental

design process. We carefully consider which vehicle attributes to include in the feature vector,

how to quantify and represent these attributes numerically, and how to ensure that the selected

features adequately capture the dynamic nature of vehicle motion. Once the feature vectors

are defined, we collect data to populate these vectors. This data collection process involves

gathering information about various vehicle attributes, such as distance from the merge line,

velocity, acceleration, spatial coordinates, and relative size. We then analyse the collected

data to determine how well the chosen feature vectors capture the desired aspects of vehicle

behaviour. This analysis involves statistical techniques, visualisation methods, and

comparison against ground truth data. The feature vectors serve as input to the predictive

model for vehicular behaviour. The selection and design of feature vectors involved an iterative

refinement process. We experimented with different combinations of features, adjusted feature

120

representation methods, or incorporated feedback from initial model evaluations to improve

predictive performance. Overall, the selection and design of feature vectors represent a critical

scientific work step in this research, serving as the foundation for developing and evaluating

a predictive model for vehicular behaviour within a T-Junction scenario.

In this thesis context, employing feature vectors is imperative for encapsulating a target

vehicle's stochastic motion patterns. These feature vectors are foundational in constructing a

robust dataset, which is essential for training a predictive model. This model is designed to

forecast vehicle behaviour with high accuracy. The necessity for such predictive capabilities

arises from the objective to understand and anticipate the dynamics of vehicular motion,

particularly within the confines of a T-Junction.

Feature vectors are multidimensional entities with numerical representations of an object's

attributes. Our feature vectors incorporate various dynamic aspects of a vehicle's motion,

including but not limited to its distance from the junction's merge line, velocity, acceleration,

positional coordinates within a given frame (denoted by the x and y coordinates of the vehicle's

bounding box), and the vehicle's relative size in pixels. Such attributes vary dynamically,

meaning they change over time as the vehicle moves and interacts with its environment.

The dynamic nature of these feature vectors is critical for modelling and predicting vehicular

behaviour in real-time scenarios. By integrating velocity, acceleration, and spatial positioning

measurements, our predictive model can infer patterns in how vehicles approach and navigate

through the T-Junction. Including data about other vehicles, especially those traversing the

major road from a specific direction (referred to as direction b), adds another layer of

complexity. This acknowledges the interactive and interdependent nature of vehicular motion,

where the movements and presence of others influence the behaviour of one vehicle.

We phrase this as dynamic feature vectors as the dynamic component of the feature vectors

lies in their capacity to represent the temporal and spatial fluctuations of vehicular movements.

These vectors capture a snapshot of various parameters at a given time, providing a detailed

and quantitative overview of the vehicle's state. As such, they are instrumental in training our

predictive model to recognise and predict patterns in vehicular behaviour, which is contingent

upon the vehicle's actions and the surrounding traffic conditions. In Figure 36, we illustrate the

initial testing of the detection and classification components, demonstrating the passing of

data to DeepSORT for ID acquisition.

121

Figure 36 Junction JM559 (Section 3.3). The target vehicle was detected with the following

feature vector data: classified as a car (2), confidence 93% (0.93) with bounding box drawn

and tracking ID assigned (6).

We can visualise our feature vector data on the bounding box for analysis and testing, allowing

us to assess the accuracy of our data against ground truth for each frame and across multiple

frames. In Figure 37, we introduce bounding box annotations for attributes such as

acceleration, distance from the junction merge line, and the bounding box's area around the

target vehicle.

Figure 37 Junction JM559. Target vehicle showing feature vectors for acceleration

(0.51 px/ms2) distance from the junction (57 px) from the bottom left corner of the box and

the area of the bounding box (17,340 px2).

We enhanced inference speed by reducing false positives by fine-tuning DUKE to detect and

122

process vehicles approaching from the front and left sides (as discussed in Sub-section 4.5.1).

This allows us to concentrate our detections on the target vehicle and vehicles potentially

endangered by reckless drivers entering the main road. Figure 33 shows a target vehicle that

has stopped (acceleration = 0) approximately 110 pixels from the junction merge line. There's

also a second detection from direction b (as detailed in Sub-section 3.4.1). This is another

tracked detection, and the bounding box data includes the distance from the junction's starting

point relative to the vehicle (50 px) and the vehicle's class (2). These features, Approach_b

distance and Approach_b class, are essential data that can significantly impact a driver's

behaviour. Our goal is to capture and classify this behaviour for training purposes, which is

fully discussed in Chapter 7.

Figure 38 Junction JM559. Target vehicle showing feature vectors for acceleration

(0.0 px/ms2) distance from the junction (110 px) from the bottom left corner of the box and

the bounding box area (14,742 px2). Approach_b distance is (50 px) to the entrance to the

junction, and Approach_b class is (2).

6.4.1 Feature vector creation

During each iteration of DUKE, features are generated as each video frame is analysed, as

explained in Sub-section 6.2.7. Equation 17 (section 6.3.6) illustrates the output y and

associated metrics, including 𝑏𝑥 , 𝑏𝑦, 𝑏ℎ, and 𝑏𝑤. When a target vehicle is detected and

classified, the bounding box data is passed to DeepSORT to be assigned a tracking ID. This

tracking ID serves as our first feature. The second feature is the vehicle class, categorising

the vehicle as a car, truck, bus, motorcycle, or bicycle. This classification aids in predicting

behaviour and speed based on known vehicle characteristics. Next, we have features such as

Px and Py coordinates of the centre of the drawn bounding box and the bounding box's height

and width prediction in pixels. With these initial features, we can derive calculated attributes

123

• Velocity

• Acceleration

• Area (dim of bounding

box)

• Approach b (distance)

like velocity, acceleration, area of the bounding box, distance from the junction, and time.

List of features collected as a single feature vector;

• Junction ID

• Tracking ID

• Class (type*)

• Distance

In each iteration optimised for performance, a set of features is generated directly from the

detection and classification function, from tracking, or through in-iteration calculations. All

these features are stored in a single list, creating a feature vector per iteration for each vehicle,

primarily keyed to the tracking ID. In continuous tracking of a target vehicle, we can generate

a set of features for every frame. However, fps is altered during processing, which can result

in reduced fps in heavily congested traffic situations and thus a reduced number of feature

vectors generated.

6.4.2 Feature vector constant, variable, and calculated values

Creating an instant historical record of each frame is essential to computing features from real-

time data. This record allows us to compare variables and derive features such as velocity (v),

acceleration (a), and distance (d).

Calculated variables are determined for each frame.

Calculating Velocities:

We use the positional information extracted from the bounding boxes in successive frames to

determine the velocities of the tracked objects by analysing the change in position relative to

the elapsed time between two consecutive frames. This measurement indicates the target

vehicle's dynamic motion as it approaches the merge line over time and is expressed in units

of pixels per millisecond.

• Approach b class

(type*)

• Intent prediction

(Fpc/SFpc)**

*type=class of vehicle

**See 7.4.2 Subclasses for

definition of (Fpc/SFpc)

124

𝑣 = (
𝛥𝑃𝑥

𝛥𝑡
,

𝛥𝑃𝑦

𝛥𝑡
) (18)

Where 𝑃𝑥 and Py are the coordinates of the estimated bounding box, and Δt is the inference

time difference between the two frames.

We can further deconstruct the velocity vector into its 𝑃𝑥 and Py components by isolating and

assessing changes in position. This approach allows us to accommodate various traffic

scenarios, including traffic approaching from different directions, enabling us to capture the

entire junction scene comprehensively.

Acceleration: The rate of change in the vehicle's velocity toward the junction over time.

 𝑎 =
𝑣−𝑈

𝑡
 (19)

Where 𝑈 is the initial velocity taken at first inference.

Distance from the merge line: The distance between the vehicle's prior position and the stop

line, aiding in velocity and direction estimation, can be calculated using the bounding box

bottom left corner coordinates (Px, Py) and (Px1, Py1) with the Euclidean distance formula:

𝑑 = √((𝑃𝑥1 − 𝑃𝑥)2 + (𝑃𝑦1 − 𝑃𝑦)2) (20)

Approach_b Distance: This metric indicates whether an approaching vehicle has been

activated from direction b; if so, equation (20) is applied to the central coordinates of the

bounding box, and a distance measurement is calculated from the junction's starting point and

the distance of the approaching vehicle.

Area: The vehicle's dimensions inside the estimated bounding, including its width and height,

are used to distinguish between different vehicle types. These dimensions are directly

calculated from the bounding box variables' bh' (height) and 'bw' (width).

Variables are assigned for each frame, and these values include:

ID: A tracking ID assigned by the DeepSORT network at the initial detection of the object.

Class: The object's class label, determined at the end of the detection phase based on training

data.

125

Px_x and Px_y refer to the coordinates denoting the bounding box's estimated position.

These coordinates can originate from any point within or around the bounding box.

Constant values are established for each junction. As described in Section 5.4, we

demonstrated the process of extracting ground truth values from video frames; this is done to

guarantee the precision and accuracy of our feature vectors.

Target vehicle velocity: We manually analyse each junction using the method described in

Section 5.4, enabling us to compare pixel-generated data with the driver's actual behaviour.

Distance to the merge line or video frame boundary: This measurement helps us assess

the precision of the vehicle's position, direction, velocity, and trajectory as it passes through

DUKE. Values for the coordinates of junction dimensions are stored for each junction and then

applied to DUKE before inputting the video.

Vehicle dimensions: This parameter represents the physical size of the vehicle, including its

length, width, and height.

Target vehicle acceleration: This value is derived from analysing velocity across various

scene segments.6.4.3 Recording features as vectors.

DUKE operates by processing frames collectively, capturing and calculating features for

detected vehicles, and then interpreting the subsequent frame. In Figure 39, a single frame is

presented, illustrating the identification of a specific target vehicle. In order, the bounding box

annotations include id, class, acceleration, distance, and area. Table 19, entry #8, reveals how

this frame is represented and stored as a feature vector.

Figure 39 Junction JM559. Target vehicle showing features of id (9), class (2), acceleration

(0.23 px/ms2), distance to merge line (809 px), area (8,742 px2), aligned to # 8 in Table 19.

Table 16 displays the initial 11 feature vectors corresponding to the subject vehicle depicted

in Figure 39. The frame displayed is relative to (#8) in Table 16 and is highlighted. Notably,

the values for Approach_b distance and Approach_b class are marked as 0, signifying no

identification of a vehicle approaching from the direction of Approach_b, as verified by the

126

visual evidence in Figure 39, where no vehicular presence is evident heading towards the

intersection.

Id Cls Distance Velocity Acceleration Area Px_x Py_x Approach_b

distance

Approach_b

class

1 9 2 -999 2.21065 0.147236 7320 1551 197 0 0

2 9 2 -975 2.40144 0.18597 7560 1531 197 0 0

3 9 2 -949 1.19255 0.338967 7869 1508 197 0 0

4 9 2 -923 1.30481 0.440977 7800 1483 198 0 0

5 9 2 -892 0.914385 0.41054 8220 1459 198 0 0

6 9 2 -865 0.875952 0.229694 8280 1433 199 0 0

7 9 2 -837 0.869303 0.232951 8601 1408 199 0 0

8 9 2 -809 0.850033 0.228101 8742 1380 198 0 0

9 9 2 -781 0.880542 0.228871 8742 1352 198 0 0

10 9 2 -750 0.772426 0.213753 9408 1327 197 0 0

11 9 2 -721 0.726269 0.206397 9536 1300 197 0 0

Table 16 Single vehicle feature vector list captured during each frame iteration (#)

6.5 Initial analysis of feature capture

This section provides a snapshot of the data from Figure 39 and Table 16. Figure 40 shows a

plot depicting a vehicle's dynamic motion across 11 frames using the raw data from Table 16.

It is important to note that this data has not undergone any smoothing or cleaning processes

before analysis. This approach allows for a detailed, granular examination of data points,

typically around 25 milliseconds apart. While one potential smoothing method could involve

increasing the time interval between data points, such an adjustment would not fully address

all the issues identified in this initial data snapshot.

Figure 40 The features plotted over 11 frames, derived from the data in Table 16, depict the

127

dynamic changes in velocity and area as the vehicle approaches the merge line.

 6.5.1 Discussion of Figure 35

Left: Velocity

There is a falsely indicated increase in velocity between frames 1 and 2, which can be

attributed to the initial detection of and differences in historical data. It is common for

inaccuracies to arise in the initial frame due to the lack of historical data in the initial iterations.

Right: Area

The area plot shows perturbations, magnified due to irregular height and width bounding box

estimation. The area increases as the object approaches the junction due to the camera's

location and the vehicle's relative size.

6.5.2 Comparison of DUKE-derived data ground truth values

The target vehicle in Figure 39 underwent a manual assessment from its initial detection to its

progression towards the merge line, employing the techniques outlined in Section 5.4. This

assessment involved the evaluation of various parameters, including acceleration, distance,

area, and velocity, which were then compared with the 2D-pixel features extracted by DUKE.

This manual evaluation is an initial validation step to gauge the accuracy and dependability of

the features acquired through the DUKE pipeline. The results of a comprehensive tracking of

the target vehicle, featuring DUKE-extracted features alongside ground truth data, are

presented in Table 17.

Data Mean Velocity

px/ms

Vel

(p-value)

Vel

(SD)

vel

Mean

Acc

px/ms2

Acc

(p-value)

Acc

(SD)

vel

Distance

px

Mean

Area

px2

Acc

(p-value)

Acc

(SD)

vel

DUKE 0.93 0.18 0.19 0.28 0.09 0.09 893 8370 683 716

Ground Truth 1.06 0.17 0.2 0.33 0.09 0.09 963 8259 679 705

Table 17 compares manually gathered ground truth data with the 2D-pixel features obtained

through DUKE.

Examining Figure 40, which reveals perturbations during the initial detection phase, it is

evident that the DUKE-derived data presented in Table 17 gradually becomes more consistent

and aligned with the ground truth data as the target vehicle produces more feature data, as a

result, has no significant statistical difference between them.

The following steps involve working with more data and refining the IoU thresholds and

confidence threshold values to minimise perturbations between feature captures. Additionally,

we plan to enhance data smoothing by increasing the time step and disregarding data from

128

the initial frames, such as the first two frames when considering velocity and the first five

frames when evaluating acceleration. This is discussed further in Chapter 7.

6.6 Chapter conclusion

This chapter introduces a method for feature extraction from two-dimensional video data,

utilising YOLOv5 inference mechanisms. We created a method that enables the extraction of

detailed, multidimensional data from vehicles in motion, treated as objects within the dataset.

This method leverages YOLOv5's inference capabilities to extract low-level dynamic attributes

of vehicles from high-level image frames, organising these attributes into training features

within feature vectors. This approach aims to improve the precision of extracted features and

enhance the dataset for training machine learning models to predict vehicle behaviour in traffic

scenarios better. Through this, we contribute to the ongoing development of automated feature

extraction and the training of machine learning models.

We began this chapter with Research Question 3 (RQ3): Is obtaining accurate pixel-level

features from dynamic vehicles that closely match ground truth data feasible?

This chapter demonstrates our advanced approach to deriving meaningful features from two-

dimensional 2D video data. These features closely align with the ground truth data, which

serves as a baseline for our research. However, it is imperative to acknowledge that our work

is not complete. While our results are promising, our feature data requires further refinement

to enhance its quality and reliability. This refinement is essential as we prepare our data for

training and testing our prediction model, a topic we address in the upcoming chapter. We aim

to ensure that our prediction model is built upon a solid foundation; by refining these features,

we hope to improve our predictions' accuracy. Contribution revisited: In this chapter, we

explain our approach to generating accurate dynamic vehicle feature vectors for utilisation in

real-time prediction.

129

Chapter 7: Intent prediction training dataset DYLE

7.1 Introduction

This chapter presents DYLE, a novel real-time data handling and learning approach. DYLE

stands out because it can dynamically store and update training data in feature vectors,

ensuring that the training and prediction models can access the most current data. This system

is uniquely designed to be updated in real-time with new data, facilitating continuous learning

and adaptation. The process of dynamic enrichment, whereby DYLE accumulates new feature

vectors with each iteration using DUKE, as detailed in Section 6.4, underscores the innovative

nature of this approach in enhancing machine learning workflows.

As DUKE detects a target vehicle, unique feature vectors specific to the dynamic

characteristics of the target vehicle are produced. These vectors are systematically collected

and stored within DYLE, as illustrated in Figure 41.

DYLE seamlessly merges manually classified information with machine-learning-based

predictions from our prediction model. This amalgamation results in an online training dataset

that facilitates the immediate integration of new insights, typically achieved within milliseconds

following the classification process.

Figure 41 illustrates the storage process of feature vectors after undergoing DUKE analysis.

130

In this chapter, we explore the following question.

Research Question 4: Can our feature vectors' inherent generality be observed per the

consistent camera positioning hypothesis? This hypothesis posits that recordings from various

junctions maintain a similar perspective due to the standardised factors of camera height,

position concerning the merge line, and overall camera placement.

Contribution: We develop a method for organising and classifying discrete vehicle feature

vectors as feature vector arrays both independently and as integral components of a

comprehensive general dataset.

7.2 Chapter organisation

We start by focusing on extracting training features from Bo's video in Section 7.3. Section 7.4

examines feature training data for single junctions, covering topics such as prediction class,

subclasses, and analysis of DYLE video training for single junctions. Section 7.4.4 explores

the empirical and quantitative determination of the reliability of feature vectors, while Section

7.4.5 discusses the manual classification of training data. Moving forward, Section 7.5

addresses the creation of datasets for other junctions. Section 7.6 consolidates these datasets

through aggregation, with Subsections 7.6.1 presenting the results from k-fold cross-validation

on aggregated DYLE and 7.6.2 discussing the obtained results. Finally, Chapter 7 concludes

with Section 7.7, which summarises the key findings and insights derived from the detailed

exploration of training features, data creation, and dataset aggregation.

7.3 Extracting training features from Bo video

Storing the feature vectors extracted through the methods outlined in Chapter 6 imposes an

additional computational burden on our model. During the training phase, this is manageable

since we are in the data collection stage and not involved in prediction. However, when our

model needs to store, update, and subsequently infer from these feature vectors, the

increased computational load has implications for real-time predictions. To mitigate this

impact, we have constrained the size of each feature within a feature vector to a maximum of

56 bits during development, further refining this to 24 bits in the final model. This reduction in

feature size helps optimise computational efficiency without significantly compromising the

model's predictive capabilities.

DYLE organises feature vector data in distinct arrays within its structure, each corresponding

to a specific junction associated with the data (see Table 18). The procedure involves creating

a Bo Vo video dataset for a designated junction and dividing the data into separate subsets

for training and testing. Specifically, 60% of the video data is earmarked for the training subset,

131

while 20% is set aside for testing purposes. The remaining 20% of the video data is reserved

for validation, which is crucial to evaluating the model's performance at the individual junction

level and in the context of a combined junction dataset. This dataset partitioning strategy

facilitates distinct junction training, testing, and validation. Subsequently, the data can be

consolidated into a comprehensive junction training dataset, enabling generalised testing and

assessment.

EuroRAP

route

Junction location Total

minutes

Manual pred class train

data 60%

DAISY Derived pred

class 20%

Online

Verification

20%

JM377 Oxshot Road 263 157.8 52.6 52.6

JM384 A248 124 74.4 24.8 24.8

JM559 Petersfield Road 249 149.4 49.8 49.8

JM454 Rowhook Road 207 124.2 41.4 41.4

UO196 Jacobs Well Road 119

119

Table 18 Bo video data Vo, split in terms of minutes.

An identical process is replicated for each junction, resulting in distinct DYLE training datasets

comprising feature vectors derived from 60% of the respective junction's video data. Each

dataset undergoes a classification phase, where a prediction class and a final action class are

manually assigned based on the vehicle's actions at the merge line. Following this

classification, each DYLE dataset is integrated and verified with a ground truth observation

verification process, with 20% of the video data reserved for validation.

Following individual junction analysis and classification, we aggregate all the unique DYLE

datasets to explore the potential for generalisation. The entire junction-based DYLE dataset

is then analysed like the individual junction datasets. The 20% video hold-back verification test

is repeated on this combined dataset by aggregating the verification video splits.

The primary objective of this analysis is to investigate whether the dataset exhibits inherent

generality, driven by consistent camera positioning, per the hypothesis that recordings from

differenT-junctions maintain a similar perspective due to the standardisation in camera height,

position from the merge line, and overall placement.

7.4 Feature training data single junction

The first junction we processed for training data was JM559. We produced a DYLE version

unique to JM559, encompassing approximately 18,480 feature vectors. Table 19 presents raw

features' initial detection and classification data from a single target vehicle stored in a feature

vector array in JM559 DYLE. The final prediction class depends on the vehicle's actions at the

merge line, Stop, Hazard or Merge and is manually applied to the training data. We

132

autonomously apply the final prediction class using our online model as discussed in Chapter

8. This prediction class constitutes one facet of feature association, where all the features

within a single feature vector are correlated with a particular outcome and all feature vectors

are correlated as a feature vector array, as described in Table 23. Notably, the final prediction

class (Fpc)* feature is intentionally omitted in this phase because this dataset serves as

training data and the final prediction classification is done manually.

* Fpc is explained in section 7.4.2

Table 19 provides an example of a single feature vector derived from a target vehicle. It is

important to note that the final prediction class in the last column has not yet been assigned

to this training data.

A secondary, temporary association relates to the identification (id) of the target vehicle, which

serves as the unique identifier and is not part of the training data. The third associational

feature pertains to the vehicle's class (cls), and a fourth association includes the approach

class (app_b_cls), when applicable, along with the approach distance (app_b_dis). In

conjunction with distance, velocity, acceleration, area, px_x, and px_y, we assemble a feature

vector at a specific pixel distance from the merge line, corresponding to a specific vehicle class

and its associated final prediction class. Table 20 presents an extraction of this online 2D array

of feature vectors for a target vehicle starting at 273 pixels from the merge line.

Correlated array associated features = id, cls and app_b_cls

Distance Vel Acc Area Px_x Px_y Ap_b_dis Fpc

 [[-273 0.379198 0.803161 15792 891 188 0]

 [-252 0.495743 0.723585 16185 877 189 0]

 [-233 1.10056 0.783731 16019 856 190 0]

 [-211 1.43084 0.71151 16632 839 189 0]

 [-192 1.9395 0.716536 16632 820 190 0]

 [-174 2.11859 0.361123 16716 803 190 0]

 [-158 2.08388 0.307875 16830 786 190 0]]

Table 20 illustrates pre-classified feature vectors in their online storage state before being

written into a file for subsequent classification and, ultimately, for training purposes.

However, all the features within this dataset are intricately linked with the vehicle's unique

identifier (id), its assigned class (cls), and (if applicable) the distance from which an

approaching vehicle, originating from direction b, is associated with the respective feature

vector.

id cls dis v acc area px_x px_y ap_b_dis ap_b_cls Fpc*

9 2 -949 1.05878 2.30087 7869 1508 197 0 0

133

7.4.1 Prediction Class

Section 3.3 discussed the rationale behind our selection of junctions for this thesis. A stark

reality drove this selection: vehicles emerging from these junctions introduce potential risks to

traffic flow on the major road. With this consideration in mind, we devised a prediction

classification feature based on three prevalent behaviours observed at the merge line of these

T-junctions:

• Stop, where the vehicle comes to a complete halt and waits at the junction.

• Merge, in which the vehicle reduces its speed to approach the junction and smoothly

integrates with the traffic flow.

• Hazard, where the vehicle demonstrates a minimal change in trajectory and crosses

the merge line, regardless of the presence of other traffic.

These behaviours serve as fundamental building blocks for our predictive classification

feature.

In Chapter 2, we delved into examining driver behaviour at T-junctions, drawing from the

existing literature to understand the rationale behind the decisions made when entering a

major road from a minor road. Our empirical observations confirmed some of the literature's

findings, particularly regarding hesitancy, and revealed various behaviours.

Specifically, we observed the following:

• A range of Stop behaviours, including fast approaches followed by a complete stop;

slow and steady approaches leading to a stop; and a combination of deceleration,

acceleration, and then coming to a halt.

• A diverse range of Merge behaviours, akin to the Stop behaviours, with erratic changes

in momentum as drivers made real-time decisions on their actions at the junction.

While these Stop-and-Merge behaviours were dominant in our observations, we noted that

instances of Hazard behaviour were comparatively infrequent. However, it is important to note

that such Hazard behaviours were more pronounced in busier junctions, such as JM377 and

JM454.

We initially applied one of the three final classifications and accumulated loosely independent

data at brief intervals, leading to erratic results. For example, as mentioned, no single

134

behaviour pattern is consistently linked to any of our three predictive classes. If we were to

retrospectively apply a predictive class to the initial detection inception feature vectors based

on the final batch of feature vectors at the merging point, we would inadvertently eliminate the

initial behaviour for another class. This presents a significant challenge because target

vehicles may exhibit similar initial behaviours but behave contrarily when approaching the

merging point. By implementing associative prediction classes in the form of subclasses, we

can individually and interdependently assign prediction labels to each feature vector. This

process broadens the spectrum of prediction data and elevates the accuracy of our training

dataset by conferring relevance to each feature vector at a given distance from the merge line.

7.4.2 Subclasses

The final step in creating our training data involves assigning a prediction classification to the

target vehicle based on our empirical observations of the vehicle's action at the merge line.

This classification is determined using the Final Prediction Classification (Fpc).

• If the target vehicle comes to a complete stop, Fpc = Stop

• If the target vehicle slows down and safely merges with the traffic, Fpc = Merge

• If the target vehicle neither stops nor slows down and instead crosses the merge line

with no significant change in momentum, Fpc = Hazard.

To enhance the precision of our dataset, we introduced subcategories of predictive

classifications. These subcategories were established by associating feature vectors with a

definitive predictive classification determined by their proximity to a junction. We devised these

subcategories due to conclusions from empirical observations aT-junctions. Our analysis

revealed that assigning a single classification to target vehicle feature vectors when they cross

the merging point would lead to the arbitrary categorisation of associated feature vectors in a

binary manner.

Subclasses of predictive classifications:

WFpc, Weak Association with Fpc: This classification is applied to feature vectors greater than

70% of the total distance away from the merge line.

MFpc, Moderate Association with Fpc: This classification is applied to feature vectors greater

than 40% and less than 69% of the total distance away from the merge line.

SFpc, Strong Association with Fpc: This classification is applied to feature vectors greater than

10% and less than 39% of the total distance away from the merge line.

Fpc, the final prediction classification, is applied to feature vectors within 9% of the total

135

distance from the merge line. This classification categorises the features corresponding to the

moments before the vehicle takes action at the junction. The distances from the merge line

were calculated to establish a hierarchical relationship with the ground truth predictions, with

the weakest association being the furthest from the merge line and, consequently, the furthest

from the actual ground truth behaviour.

Our sub-classifications help us categorise and differentiate the behaviour of target vehicles at

various distances from the junction, enhancing the meaning of our training data. Figures 42–

44 inclusively are simplified illustrations of the sub-classification process as the target vehicle

approaches the merge line of a T-Junction.

Figure 42 If the distance of the target vehicle is ≥ 70% of the total distance from the merge

line, a feature vector is classed as having a weak association with the final classification

prediction WFpc, where Fpc is the final classification.

Figure 43 If the distance of the target vehicle is >= 40% and <=69% of the total distance from

the merge line. The feature vector is classed as having a moderate association with final

classification prediction, MFpc.

Figure 44 If the distance of the target vehicle is >= 10% and <=39% of the total distance from

the merge line. The feature vector is classed as strongly associated with the final classification

136

prediction, SFpc.

Our use of DUKE is crucial for capturing and storing accurate feature arrays in a file. This file

enables the manual classification of the Fpc and the association of subclasses with a target

vehicle.

Feature vectors are generated when a target vehicle is first detected and classified. This

generation process extends from the initial detection point to the merge line and, in specific

scenarios, may extend beyond this—especially in cases involving fast Merges or Hazard

classes. Due to the relatively short distances covered in terms of pixel measurements and

time, capturing a maximum number of features at incremental distances is essential. However,

this approach can introduce noise into the model given that bounding box predictions vary at

30 milliseconds; this leads to significant differences in feature values. Smoothing techniques

have been applied to the data to mitigate fluctuations and enhance the overall stability of the

feature vectors.

7.4.3 DYLE video training analysis for single junction

To analyse DUKE's performance in accurate feature generation, we recorded the results in a

feature array file and a video file. Visualising bounding box data allows for the manual

classification of the target vehicle through empirical observations based on this ID (id) as the

target vehicle approaches the merge line. Following this manual classification, we can

methodically categorise all feature vectors associated with the target vehicle with a sub-

classification.

Empirical observations are taken from the video recording of DUKE processing Vo data.

Figures 45–47 inclusively represent frames extracted from the recorded video, illustrating the

bounding box (id) and class. While the data classification method is onerous, it is invaluable

for identifying misclassifications and tracking errors that might go unnoticed.

As an example, Figure 40 features an evident misclassification. The vehicle approaching from

direction b is erroneously classified as a truck (class 7) instead of as a car (class 2). This

thorough classification process, though challenging, serves as a critical mechanism for

detecting and rectifying such inaccuracies, enhancing the overall accuracy and reliability of

the dataset.

Figure 45 is an example of misclassification as the approaching car from direction b is

137

classed as a truck (7) instead of a car (2).

 Figure 41. Features, including associated traffic data, are recorded up to the merge line.

Figure 46. Full junction traffic data is recorded and stored as features. Approach _b_class

and approach_b_distance can vary in the feature array, as seen above.

Figure 47. All forms of traffic, including bicycles, are tracked as they approach the merge line

and are added to the training data.

7.4.4 Empirically and quantitatively determining the reliability of feature vectors

As discussed in Section 6.5, we conducted experiments to enhance the accuracy of predicting

the horizontal bounding box positions. Our iterative process adjusted the initial velocity and

acceleration feature vector calculations. In the first four and six iterations, we refined these

calculations to address the issues observed in our initial data analysis, where velocity (vel)

and acceleration (acc) exhibited erroneous features because the initial detection velocity did

not have a historical reference based on the smoothing method described below.

One of the key improvements was adjusting the IoU threshold to 0.75, which effectively helped

to smooth out the bounding box data by applying a stricter criterion for bounding box

detections. Additionally, we improved the accuracy of our feature vector data by increasing the

confidence threshold to 0.8. This adjustment reduced false positive classifications of vehicles

as the data became associated with a narrower classification margin. As depicted in Figure

138

48, a double bounding box indicates that features are being created twice for the same target

vehicle, albeit at slightly different locations.

In Figure 48, double detections are mitigated by adjusting hyperparameters, focusing on the

IoU and confidence threshold.

 An additional issue identified in the JM559 junction video is a significant occlusion zone,

primarily caused by the double road sign in the image's centre (see Figure 49). Despite this

challenge, it was observed that the tracking performed by DeepSORT remained resilient to

the occlusion, demonstrating robustness even when smaller vehicles completely vanished for

durations of up to 400 milliseconds.

Figure 49 illustrates a notable occlusion resulting from a road sign located in the central area

of our tracking path at junction JM599.

This resilience suggests that DeepSORT can maintain tracking continuity despite temporary

obstructions in the visual field. Handling occlusions effectively is imperative to this work as it

is difficult to account for mobile occlusions, such as large vehicles obscuring the target

vehicles.

Despite the effective tracking capabilities observed in the JM559 junction video, a quantitative

dataset analysis revealed erratic bounding box values for features generated between the

start and end of the occlusion-producing road sign. These irregularities in bounding box values

may indicate instances where the detection system encounters challenges in accurately

estimating the position and size of objects. We applied a smoothing method, the exponential

139

moving average (EMA), to the features generated at a distance relative to the road signs'

dimensions. We utilised this method as it gives more weight to recent data points and is

commonly used in the literature.

The formula for calculating the EMA is as follows:

 𝐸𝑀𝐴𝑡 = 𝛼 ∙ 𝑋𝑡 + (1 − 𝛼) ∙ 𝐸𝑀𝐴𝑡−1 (21)

Where

• 𝐸𝑀𝐴𝑡 is the EMA at time 𝑡, and t-1, 𝐸𝑀𝐴𝑡−1,

• 𝑋𝑡 feature at time 𝑡,

• 𝛼 is the smoothing factor, which is the constant between 0 and 1, determining the

weight given to the most recent observation. The closer 𝛼 is to 1, the more weight is

given to the most recent observations.

We fine-tuned the parameter α to achieve the desired level of smoothing. A smaller α resulted

in a smoother curve but reduced responsiveness to recent changes. Conversely, a larger α

enhanced the EMA's responsiveness to recent changes at the cost of potentially introducing

more noise.

The EMA was implemented specifically at junction JM559 as a function of the distance

between occlusion distance points. The implementation involved activating the EMA function

whenever a feature deviated beyond the predefined threshold of previous feature values. This

function addressed mobile occlusions, which did not directly impact ID tracking but posed

challenges for precise bounding box predictions. The EMA approach was then uniformly

applied across all junctions as a function, triggered whenever threshold values were

surpassed for any recorded feature.

Data collection involved sampling data points throughout entire vehicle feature vector arrays,

focusing on distance-velocity profiles. Analysing the behaviour of vehicles as they approached

the junction provided valuable insights into ground truth observations and quantitative data.

Figures 50 and 51 illustrate the velocity profile of vehicle id 32, which decelerated quickly

towards the merge line and stopped. When traffic cleared, vehicle id 32 accelerated across

the merge line, turning right onto the major road. The influence of a road sign occlusion is

apparent in Figure 50, which results in irregular fluctuations in the velocity calculation. As seen

in Figure 50, the notable surge in velocity originated 526 pixels away from the merge line,

which is attributed to the road sign occlusion. This challenge was successfully addressed by

applying EMA smoothing, which led to a more stable velocity profile, as demonstrated in the

refined depiction presented in Figure 51.

140

 Figure 50 Velocity profile of id 32

 before EMA smoothing application.

Figure 52 EMA applied to a velocity

distance profile classified as 'Merge'.

An illustration of the need for an extensive dataset covering an extended timeframe is evident

in the infrequent incidence of the hazard class. Figure 53 shows the velocity feature profile of

a target vehicle presenting a Hazard to traffic on a major road. Initial detection of the target

vehicle occurred at 350 pixels from the junction, introducing a challenge due to its late

detection, reducing the available time window for accurate prediction.

Figure 51 Velocity profile of id 32

after EMA application and

classified as ‘Stop'.

Figure 53 EMA applied to a

velocity distance profile classified

as ‘Hazard’.

141

7.4.5 Manual classification of training data

The preceding section illustrated our approaches for ensuring data accuracy and reliability.

The subsequent phase involves manually classifying all data within the datasets, assigning

each entry an Fpc and a subclass based on its proximity to the merge line and action at the

merge line. The creation of unclassified training data involved DUKE processing 60% of the

Bo video data from Junction JM559. A feature vector array was generated and stored in a CSV

file for each target vehicle approaching the junction. A sample is presented in Table 24. Each

feature in this table was linked to an ID, a class, and a manually assigned final prediction

classification denoted as Fpc.

In Table 21, the vehicle with ID 133, originating from Junction JM559, was tracked in the

recorded video. Observations revealed that this vehicle safely merged onto the major road at

the merge line. Consequently, it was manually classified with an Fpc of Merge. Additional

associated predictions Smerge, Mmerge, and Wmerge were applied based on their distance from the

merge line. This detailed classification process enriches the training data to increase accuracy

in the final model.

Table 21 shows sample data from a feature vector array created for a tracked vehicle written

to a CSV file and manually classified as merge for an Fpc and retrospectively applied

associated classifications.

The complete CSV file, generated from 60% of the video data collected at junction JM599,

underwent the classification process outlined earlier. This method facilitated a systematic data

sampling for accuracy and reliability, requiring visual confirmation of each feature vector array

as a target vehicle while scanning for anomalies in the data. The classified data derived from

this task serves as the cornerstone for all predictions in the pipeline, underscoring the

paramount importance of Accuracy and reliability at this stage. A closer look into the classes

is provided in Figure 54, where distance velocity profiles from Section 7.4.4 illustrate the

placement of subclasses within a target vehicle's entire feature vector array.

As emphasised in Section 7.4.2, an arbitrary classification relying solely on merge line actions

can misclassify a substantial portion of data, leading to inaccuracies in subsequent analyses.

Consequently, the thorough approach employed in the manual classification process fosters

Cls Dis Vel Acc Area Px_x Px_y App_b_dis App_b_cls SFpc/ Fpc

2 -721 0.774123 0.219997 9465 1070 197 0 0 W_merge

2 -580 2.22272 0.562319 11082 955 192 93 2 M_merge

2 -341 2.29214 0.916604 13544 922 191 72 2 S_merge

2 -273 0.379198 0.803161 15792 891 188 52 2 Merge

142

a nuanced comprehension of the dataset. This methodology mitigates the risk of

misclassifications, ultimately bolstering the overall reliability of predictions derived from the

dataset.

143

Figure 54 Each feature is classified within a target vehicle's feature vector array to assist in the probability of predicting a Hazard at a junction at

an optimal distance from the merge line.

144

The initial velocity detection features were subjected to smoothing with EMA. In the specific

case of Hazard classification depicted in Figure 54, we designated these features as

Weak_Hazard despite falling within the Strong_Hazard association threshold. This cautious

approach aims to prevent biasing the dataset. Subsequently, the sub-classifications of

Strong_Hazard were assigned in recognition of the interconnection of all features in a feature

vector. The distinctions between consecutive detections (i and i+/-1) are pivotal to establishing

these links.

The final classification, represented by the Fpc, reveals that the target vehicle exhibits a

relatively high velocity on the merge line, signalling the impracticality of the vehicle coming to

a complete stop. Notably, the Merge class in Figure 54 displays a velocity at the merge line

similar to that of the Hazard class. However, ground truth observations align with the data and

indicate a divergence: the Merge class target vehicle decelerated to a near stop around 220

pixels from the merge line, indicating that the vehicle driver was observing the major road

before accelerating to merge onto it. In contrast, the Hazard class target vehicle accelerated

approximately 300 pixels from the merge line without slowing down to cross the merge line.

This nuanced differentiation highlights the significance of ground truth observations in refining

the accuracy of Hazard classifications.

7.4.6 Complete single junction dataset

Having completed the steps to generate a single-junction classified dataset, we enter the

verification phase, which unfolds in three stages. The initial stage employs k-fold accuracy to

establish a foundational accuracy baseline for junction JM559. Subsequently, the second

stage uses the Pandas Profiling Report (Pandas, 2018). The third stage, covered in the next

chapter, utilises the reserved 20% of junction video data to derive ground truth predictions for

unseen target vehicles. This process aims to ensure that the training dataset successfully

encapsulates the diversity and reliability of the overall data distribution.

7.4.7 Accuracy using K-fold cross-validation

We used K-fold cross-validation to measure our model's performance and generalisation

ability by calculating the mean accuracy or the average of correct predictions over total

predictions. This approach is widely used in the literature (Wong and Yeh, 2020) as a validation

technique to assess how well machine learning performs on an independent dataset. K-fold

cross-validation helps to mitigate issues related to the variability of a single train-test split. It

provides a more reliable assessment of a model's ability to generalise to new, unseen data by

exposing it to multiple training and testing scenarios.

In our k-fold cross-validation procedure, we implemented a naive Bayes algorithm with a

probability density function (PDF) model (detailed in Chapter 8), which examines real-time

145

predictions on live data. The initial step involves dividing the feature vectors into k groups or

folds, each of equal size. One fold is assigned as the validation set throughout each iteration

while the method undergoes training on the remaining k−1 folds. This iterative process is

repeated k times, ensuring each fold is used in the validation set once.

The k signifies the number of subsets the original dataset is partitioned into. The selection of

k influences the balance between computational efficiency and the reliability of the

performance estimate. Opting for higher values of k generally enhances the robustness of the

evaluation, albeit potentially increasing computational costs. This approach allows evaluation

of the model's generalisation performance across different subsets of the dataset, contributing

to a more dependable estimation of its effectiveness.

The process we used for k-fold cross-validation is as follows:

1. The junction dataset is divided into k equal-sized folds or subsets.

2. The model is trained k times, using k-1 folds for training and the remaining fold for

testing. This process is repeated k times, with each k fold used once for the testing

data.

3. The proportion of correctly classified instances, an accuracy metric, is calculated for

each iteration based on the model's predictions on the testing fold.

4. The k accuracies are then averaged to provide a more robust estimate of the model's

performance across different subsets of the data.

Results from k-fold cross-validation on DYLE JM599 are shown in Table 22.

K value Mean accuracy

JM599

5 0.69

10 0.74

Table 22 JM599 K-fold cross-validation accuracy results.

7.4.8 Pandas profiling report

Pandas profiling is a Python library that generates exploratory data analysis (EDA) reports for

data frames. Widely utilised in the early stages of data analysis, the Pandas profiling report

aids in gaining a rapid understanding of the data and identifying potential issues. Our

implementation involved visualising descriptive statistics, such as mean, median, mode, and

146

various percentiles for each feature as well as addressing missing data.

An essential aspect of this process is the creation of a feature correlation matrix, presented in

heatmap format (Figure 55). This matrix provides a visual representation of the correlations

between features of target vehicles. The heatmap allows us to identify relationships and

dependencies among different variables and to confirm the relationships we already know.

Figure 55 Feature correlation heat map of JM559 training dataset.

The relationship between variables is evident in the correlation heatmap in Figure 51. Distance

demonstrates a robust positive correlation with area (0.611), indicating that an increase in

distance corresponds to an increase in area. As the target vehicle approaches the merge line,

the bounding box becomes larger because it is closer to the camera. Conversely, there is a

notable negative correlation between distance and pixel X-coordinate (px_x) at -0.966,

implying that the pixel X-coordinate tends to decrease as distance increases, confirming that

our data is being recorded correctly. Regarding velocity (vel), a strong positive correlation of

0.786 is observed with acceleration (acc), highlighting a significant association between these

two factors.

Additionally, velocity exhibits a weaker positive correlation (0.037) with distance due to most

target vehicles slowing to the merge line. Moreover, the area displays a substantial positive

correlation with distance (0.611) and pixel Y-coordinate (px_y) at 0.562, allowing for the

interpretation of approaching vehicles relative to the target vehicles. These correlations

confirm that the feature data is reliably recorded and that the correct relationships are apparent

across the features. As described in the literature, we could not be confident in the final stages

of data analysis without this step.

147

DYLE JM599 produced 18,480 feature vectors, equating to 403 individually identified target

vehicles. There are 12 distinct classes distributed unevenly, as seen in Table 23 and Figure

56. The significant difference between the highest and lowest frequencies reflects the

imbalance.

Fpc / SFpc Count Frequency

s_stop 4,599 24.89%

w_merge 4,311 23.33%

s_merge 3,214 17.39%

w_stop 2,299 12.44%

m_merge 1,856 10.04%

m_stop 1,789 9.68%

merge 209 1.13%

stop 191 1.03%

w_hazard 3 0.02%

m_hazard 3 0.02%

s_hazard 3 0.02%

hazard 3 0.02%

The literature highlights the prevalence of imbalances in datasets, and effectively managing

these imbalances is a pivotal element in our pipeline. In the case of DYLE, certain classes are

underrepresented, such as Hazard classes leaning towards the more frequent classes of Stop

and Merge sub-classes. To tackle this issue, we employed two strategies. The initial approach

involves generating additional training data, as discussed in Chapter 8. Chapter 9 delves into

the utilisation of data augmentation as a means of rectifying this imbalance.

Relatively low cross-validation accuracy is expected in this unbalanced dataset. This is a base

dataset for an aggregated dataset combining four junction datasets. In this dataset, there are

only 403 Fpc classifications, the remaining being subclasses; during the K-fold cross-validation

a, the probability of a conclusive classification of Stop, Merge, or Hazard was low.

The remainder of this chapter continues with unique DYLE junction dataset creation and

analysis, while the next chapter discusses the steps taken to balance the datasets in favour

of a conclusive Fpc at an optimal distance from the junction merge line.

Table 23 JM599 class,

count, and frequency.

Figure 56 JM599 class frequency

balance.

148

7.5 Dataset creation for other junctions

Having completed the dataset generation process for JM599, we replicated the procedure for

other junctions. The careful fine-tuning of the model—incorporating hyperparameter

adjustments and EMA during the training dataset creation and for the data accuracy and

reliability investigation performed on the DYLE dataset produced for JM599—facilitated a

seamless application of the trained model to the video data from each junction with minimal

adjustments.

Each junction obtains a distinct DYLE dataset, complemented by a video recording that tracks

the target vehicle identified by its unique ID as it approaches the merge line established by

DUKE. Subsequently, each dataset undergoes a comprehensive analysis following the

methodology detailed in Section 7.4.6. The classification process is also executed using the

methods outlined in Section 7.5.5.

The second junction, JM377, Figure 57, was selected for processing. Situated adjacent to the

London Orbital Motorway (M25), JM377 is a busy T-junction. JM377 has no fixed occlusion

zones; however, the presence of large vehicles in the foreground introduces a potential

challenge by obstructing the view of approaching traffic from direction b.

Figure 57 Junction JM377 shows a van approaching the merge line as traffic approaches from

direction b.

Results from k-fold cross-validation on DYLE JM377 are shown in Table 24.

K value Mean accuracy

JM377

5 0.72

10 0.73

Table 24 JM377 K-fold cross-validation accuracy results.

149

DYLE JM377 produced 25,631 feature vectors, equating to 570 individually identified target

vehicles.

Fpc / SFpc Count Frequency

s_stop 5,466 21.33%

w_stop 4,525 17.66%

m_stop 4,311 16.82%

s_merge 3,775 14.73%

m_merge 3,651 14.25%

w_merge 3,311 12.92%

merge 341 1.33%

stop 222 0.87%

w_hazard 7 0.03%

m_hazard 7 0.03%

s_hazard 7 0.03%

hazard 7 0.03%

The third junction, JM454, is a rural intersection along a bustling major road. Notably, a small

occlusion zone exists, as highlighted in the centre of Figure 59. This occlusion is associated

with a sign two meters above the ground. It primarily affects larger vehicles, as most smaller

vehicles can easily pass underneath the sign.

Figure 59 JM454 with possible occlusion highlighted.

Results from k-fold cross-validation on DYLE JM454

K value Mean accuracy

JM454

5 0.68

10 0.74

Table 26 JM454 K-fold cross-validation accuracy results.

Table 25 JM377 class,

count, and frequency.

Figure 58 JM377 class frequency

balance.

150

DYLE JM454 produced 8,969 feature vectors, equating to 193 individually identified target

vehicles.

The fourth and final junction for which we generated a training dataset is JM384 (Figure 61).

Positioned along a major road between two sizable towns, JM384 has no fixed occlusion

zones. Large vehicles passing through this junction do not threaten traffic visibility from

direction b.

Figure 61. JM384 has an open topology, allowing clear views of approach b.

Fpc / SFpc Count Frequency

s_stop 1,874 20.89%

w_stop 1,741 19.41%

w_merge 1,415 15.78%

m_stop 1,357 15.13%

m_merge 1,231 13.73%

s_merge 1,155 12.88%

stop 108 1.20%

merge 84 0.94%

w_hazard 1 0.01%

s_hazard 1 0.01%

m_hazard 1 0.01%

hazard 1 0.01%

Figure 60 JM454 class frequency

balance.

Table 27 JM454 class,

count, and frequency.

151

Results from k-fold cross-validation on DYLE JM384 are shown in Table 28.

K value Mean accuracy

JM384

5 0.71

10 0.71

Table 28 JM384 K-fold cross-validation accuracy results.

DYLE JM384 produced 9,982 feature vectors, equating to 217 individually identified target

vehicles.

Fpc / SFpc count frequency

w_stop 1,945 19.49%

s_stop 1,911 19.14%

w_merge 1,529 15.32%

s_merge 1,522 15.25%

m_stop 1,458 14.61%

m_merge 1,388 13.91%

stop 114 1.14%

merge 99 0.99%

w_hazard 4 0.04%

m_hazard 4 0.04%

s_hazard 4 0.04%

hazard 4 0.04%

7.6 Aggregating dataset

The subsequent phase of creating and assessing the training dataset involved consolidating

the classified datasets obtained from JM377, JM384, JM559, and JM454. The amalgamation

of datasets is a common practice in machine learning, and we implemented methods outlined

by Trevizan et al. (2020) and other researchers to enhance our data. These methodologies

not only facilitate an expansion of the overall sample size but also improve reliability and

generalisability.

One notable advantage of dataset aggregation is the generation of a more representative

sample reflecting the behaviour of the target vehicle. If individual datasets exhibit biases or

limitations, amalgamating data from diverse sources can counterbalance biases present in

Table 29 JM384 class,

count, and frequency.

Figure 62 JM384 class frequency balance.

152

individual datasets, offering a more accurate depiction of T-junction vehicle behaviour. This

approach enables a more comprehensive understanding by capturing a wider range of

variations, patterns, and trends, thereby presenting a holistic perspective.

Trevizan et al. (2020) state that training models on aggregated datasets can enhance

performance because the model can assimilate knowledge from diverse examples, facilitating

better generalisation to new, unseen data. Different datasets often contain complementary

information, and their aggregation enriches the feature set, yielding a more detailed and

nuanced representation of the underlying data.

It is important to note that aggregating datasets introduces more variability into the data, which

is beneficial because it enables the analysis or model to capture a broader spectrum of

scenarios—a crucial consideration given the inherent variability in our dataset.

7.5.1 Results from k-fold cross-validation on Aggregated DYLE

K value Mean accuracy

aggregated DYLE

5 0.77

10 0.79

Table 30 Aggregated junctions DYLE K-fold cross-validation accuracy results.

153

The combined DYLE dataset contains 63,062 feature vectors, equating to 1,383 individually

identified target vehicles.

Fpc / SFpc Count Frequency

s_stop 13,850 21.96%

w_merge 10,566 16.76%

w_stop 10,094 16.67%

s_merge 11,051 15.33%

m_stop 8,845 14.14%

m_merge 8,059 12.89%

merge 733 1.16%

stop 635 1.01%

w_hazard 15 0.02%

m_hazard 15 0.02%

s_hazard 15 0.02%

hazard 15 0.02%

7.5.2 Results discussion

The transition from k = 5 to k = 10 in k-fold cross-validation resulted in a general improvement

in mean accuracy. JM599, JM454, and aggregated DYLE exhibited significant increases of

7.2%, 8.8%, and 2.6%, respectively. Notably, the aggregation of datasets further accentuated

this improvement, yielding a 10% increase in mean accuracy with k = 5 and an 8.2% increase

with k = 10. These findings were compared against the mean averages of the unique junction

datasets, as detailed in Table 32 and Figure 64.

K-
value

K-fold cross-validation mean accuracy

JM599 JM377 JM454 JM384
Aggregated

DYLE

5 0.69 0.72 0.68 0.71 0.77

10 0.74 0.73 0.74 0.71 0.79

Table 32 K-fold cross-validation mean accuracy for different datasets.

The accuracy scores for individual junctions are relatively consistent, with slight variations.

JM454 tends to have slightly lower scores in both K=5 and K=10 analysis, suggesting it might

Table 31 Combined

junctions, class, count,

and frequency.

Figure 63 Combined junction, class

frequency balance.

154

be the most challenging condition or benefitting the most from aggregation. JM454, a rural T-

junction, requires vehicles to halt entirely due to limited visibility upon approach. The dataset

derived from JM454 predominantly features a 'stop' class, highlighting the benefit of

incorporating training data from various other junctions to enrich the dataset.

Figure 64 Chart showing k-fold cross-validation mean accuracy for different datasets.

Given the nature of hand-classified training data, it was essential to approach any observed

improvement cautiously. Despite enhancing mean classification accuracy with the aggregation

of junction datasets, it is crucial to acknowledge a significant imbalance in data class

distribution. One of our goals is predicting hazardous behaviour at T-junctions, yet the current

dataset exhibits a pronounced underrepresentation of the Hazard class, with a scarcity of

recorded feature vectors for this particular category.

7.7 Chapter conclusion

This chapter illustrated our approaches to generating credible training data, established as

feature vectors and arrays. While significant progress has been made, integrating this dataset

into a real-world scenario remains challenging. The next chapter introduces our real-time

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

JM599

JM377

JM454

JM384

Aggregated DYLE

Mean Accuracy

D
at

as
et

DYLE dataset Mean accuracy K-Fold

K fold = 5

K-fold = 10

155

prediction model to generate predictions from test video data across all junctions and the

aggregated dataset. Through this process, we aimed to establish a baseline accuracy to

provide a ground truth for metrics that can further determine the reliability of our model.

When we review the research question for this chapter, RQ4, Can our feature vectors' inherent

generality be observed per the consistent camera positioning hypothesis?

As we consistently observed target vehicles from a camera positioned at POV x (section

3.4.1) at each test junction, we saw that the results from the aggregated dataset indicate an

observable degree of generality in our data, as evidenced by an increase in mean accuracy.

Despite slight variations in the perspective of the merge line due to differences in camera

placement angles at each junction, our model demonstrated the ability to recognise features

from distincT-junctions and successfully apply them to other junctions.

This chapter explored our development of a method for organising and classifying discrete

vehicle feature vectors as feature vector arrays, both independently and as integral

components of a comprehensive general dataset. To do this, we developed a method for

independently organising and classifying target vehicle feature vectors as feature vector

arrays to build a comprehensive dataset, DYLE.

156

Chapter 8: Intent Prediction using DAISY

8.1 Introduction

This section presents the integration of DAISY, our machine learning classifier for predicting

intents, into the current workflow. DAISY represents a refinement of the approach described

in Chapter 7, which evaluated the precision of DYLE through K-fold cross-validation and naive

Bayes classification.

Figure 65 illustrates the integration of DAISY, where feature vectors from DUKE are directly

fed into DAISY for real-time intent predictions on target vehicles. This integration allows us to

utilise the training data stored in DYLE to base our predictions on new feature vector data.

Figure 65 shows that new and previously unseen feature vectors are transmitted directly to

DAISY to classify vehicles' behaviour as they approach the merge line.

Intent prediction has been extensively researched, as discussed in our review in Chapter 2.

The central focus of our work, intent prediction is a complex outcome resulting from a non-

trivial problem involving multiple interconnected components in our pipeline. The accuracy and

reliability of the results depend heavily on the interdependency of these components, and the

methods and results described in the preceding chapters are crucial for ensuring the accuracy

of the results achievable using DAISY. Building on the findings outlined in Chapter 2, we

adopted a computationally efficient classification method to determine the likelihood of a set

of features belonging to a particular class. This choice is pivotal for two key reasons. Firstly, it

aims to reduce computational overhead and ensures seamless integration of the classification

157

code with the rest of the pipeline—a task not without its challenges in Python. The overall

efficiency of the pipeline code holds significant importance, given the requirement that

classifications must be executed in under 45 ms.

We could use our feature vector data for intent prediction by applying deep-learning or

machine-learning classification methods. As highlighted in Chapter 2, the choice of a

classification method depends on the classification challenge's specific nature. In our case,

the primary challenge revolves around the necessity for rapid classifications of real-time data.

Our exploration of suitable intent prediction methods led us to investigate RNN methods, as

detailed in Zyner, Worrall, and Nebot (2019) and our work in Chapter 4. Their research on

RNN classification involved predicting vehicle intentions at intersections using RNNs with a

mixed-density network output layer. They utilised a dataset created with a vehicle-mounted

lidar-based tracking system. The model's performance was benchmarked against several

baseline models, demonstrating its effectiveness in predicting trajectories with reasonable

accuracy. However, it fell short of our requirement for predictions made under 45 ms, with the

fastest mean time for prediction being approximately 780 ms.

Additional literature prompted an exploration into the suitability of a linear regression model

due to its computational efficiency. Linear regression is a statistical model that predicts the

relationship between a dependent variable and one or more independent variables. However,

we very quickly shelved the testing of the linear regression model as, upon closer examination,

specific weaknesses emerged. Some of the weaknesses we found were highlighted by

(Christodoulou et al., 2019). They concluded that the linear regression model's assumption of

a linear relationship between independent and dependent variables and sensitivity to outliers

impacted estimated coefficients, leading to inaccurate intent estimations. We concluded our

analysis by acknowledging that our data generated highly inaccurate predictions when

subjected to linear regression. This outcome likely stems from the method's limitations in

addressing complex non-linear dynamics, difficulties posed by multicollinearity due to closely

related independent variables, and the inherent expectation of constant variance

(homoscedasticity) compromised by heteroscedasticity. Consequently, we discontinued

further testing with linear regression.

Research Question 5 (RQ5): How accurately can a machine learning model, utilising 2D

video-derived feature vectors, predict a vehicle's intention at a T-junction?

Contribution discussed in this chapter: A computationally efficient approach for predicting

vehicle intent at a T-junction using video-derived feature vectors as training data.

158

8.2 Chapter organisation

Section 8.3 introduces the DAISY framework, with subsections providing detailed insights. In

8.3.1, we explore intent prediction in DAISY, highlighting its capabilities. Section 8.3.2

introduces the Gaussian distribution's probability density function. In 8.3.3, we outline the

steps of intent prediction in DAISY. Section 8.4 focuses on applying intent prediction to the

JM377 junction. Section 8.5 extends this to other junctions, examining system adaptability.

Section 8.6 evaluates DAISY's overall performance across all four junctions. In 8.7, we revisit

RQ5 and discuss the results.

8.3 DAISY

DAISY is a naive Bayes classifier with a probability density function (PDF) model that extends

the traditional naive Bayes approach to handle continuous data by modelling the probability

distributions of feature vectors assuming a Gaussian distribution. Unlike the traditional naive

Bayes, which typically deals with discrete features, a naive Bayes classifier with probability

density functions is suitable for continuous features. A PDF models each feature for each

class. Instead of directly calculating the likelihood based on observed frequencies, as in the

discrete case, likelihood is calculated by evaluating the PDF of the feature for a given class.

The 'naïve' assumption of conditional independence given the class label is retained, meaning

that the joint probability of observing a set of features is calculated as the product of the

individual feature PDFs.

Like traditional naive Bayes, prior probabilities of classes are estimated based on the training

data. Given a new observation with continuous features, the classifier calculates the posterior

probabilities for each class and predicts the class with the highest probability. The parameters,

mean, and variance of the probability density functions are estimated from the training data,

which is added to DYLE as the last stage of the pipeline with new online classified feature

vectors (see Chapter 9). DAISY can make the final driver intent prediction (Fpc) and associated

subclass predictions (SFpc) based on feature vectors produced by DUKE and those from and

added to the DYLE training data. Given the Fpc and SFpc, we assume the features are

conditionally independent, allowing for comparing pre-classified feature vectors with SFpcs.

We modified DAISY to suit our data by applying Laplace, a smoothing technique (Noto and

Saputro, 2022), to handle cases where certain features are calculated as being zero in the

training data, such as a stopped vehicle with no approach_b_distance data.

The literature has many examples of using a naive Bayes classifier in machine learning tasks;

one paper (Chen et al., 2021) addresses its limitations by incorporating feature weighting and

Laplace calibration, resulting in an improved algorithm that achieves over 99% accuracy with

a large sample size and remarkable stability; for samples with fewer than 400 attributes and

159

fewer than 24 categories, the accuracy exceeds 95%.

8.3.1 Intent prediction DAISY

Driver intent prediction involves the assignment of categorical labels to a set of input feature

vectors. Given the input feature data, this assignment is accomplished by estimating the

likelihood of specific class labels. The probability calculation is performed for each potential

class label, and the label associated with the highest probability is designated for the input

data.

Nevertheless, a direct application of Bayes' theorem for our intent classification encounters

impracticalities, primarily due to the computational challenges arising from the many involved

features. Consequently, pragmatic approximations are made by estimating class priors and

data probabilities from a DYLE. To streamline the computational complexity associated with

the conditional probability of the data given the class, a naive Bayes classifier is implemented,

operating under the assumption of feature independence.

The naive Bayes model calculates the probability of the input data given the class label by

independently computing the conditional probabilities for each input variable. These individual

probabilities are then multiplied to obtain the comprehensive probability. DAISY, the model

under consideration, determines the posterior probability of a class-given input feature by

combining the class's prior probability with the product of the likelihood of observing each

feature given the class. Laplace smoothing was applied to mitigate issues related to unseen

feature-class combinations during training, ensuring non-zero probabilities and stabilising the

data output.

The formula for predicting the probability of a particular class label Ci given the input feature

vector 𝑓𝑣 can be expressed as follows:

𝑃(𝐶𝑖 ∣ 𝑓𝑣) ∝ 𝑃(𝐶𝑖)∏𝑗=1
𝑛 𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖) (22)

Where

• 𝑃(𝐶𝑖 ∣ 𝑓𝑣): The posterior probability of class Ci given the input feature vector fv.

• 𝑃(𝐶𝑖): The prior probability of class Ci

• ∏𝑗=1
𝑛 𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖): The product of the likelihoods of observing each feature 𝑓𝑣𝑗 given

class Ci.

A continuous feature 𝑓𝑣𝑗 modelled with a probability density function (PDF) and Laplace

smoothing is expressed as

160

𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖) =
𝑐𝑜𝑢𝑛𝑡(𝑓𝑣𝑗 𝐶𝑖)+1

𝑐𝑜𝑢𝑛𝑡(𝐶𝑖)+∣𝑋𝑗∣
 (23)

Where

• 𝑐𝑜𝑢𝑛𝑡(𝑓𝑣𝑗, 𝐶𝑖): The count of occurrences of the value 𝑓𝑣𝑗 in DYLE for class Ci.

• 𝑐𝑜𝑢𝑛𝑡(𝐶𝑖): The total count of instances of class Ci in the training data.

• ∣ 𝑋𝑗 ∣: The total number of unique values for the feature 𝑓𝑣𝑗 in the DYLE.

Laplace smoothing was initiated to handle cases where an 𝑓𝑣 was not observed in a given

class during training, preventing the assignment of zero probability.

8.3.2 Probability density function (PDF) of a Gaussian distribution

The PDF characterises the distribution of fv for each class in terms of mean and standard

deviation. To represent the class-specific probability for a feature vector in the dataset DYLE,

DAISY uses a Gaussian distribution formula, as shown in (24), to represent the distribution of

feature vectors for each class.

The equation is as follows:

 P(fvi) = (1/σ√(2π)) ∗ e^(−(fvi − μ)^2 / 2σ^2) (24)

• P(fvi): The probability density function for a given value fvi

• (1/σ√(2π) The normalisation constant

• e^(−(fvi − μ)^2 / 2σ^2): :: Exponential term

• μ: The mean of the distribution

• σ: The standard deviation

DUKE passes new fv data to DAISY; relative probability densities are calculated for each input

value in an fv using the Gaussian PDF and the statistics for that column and that class. This

process is repeated for each class in the dataset. Relative driver intent probability densities

are returned as a value for each class, and intent is defined as the greater of the classes.

Densities are often small numbers because they represent the probability per unit of

measurement, and the range of possible values in a distribution can be extensive. PDF values

describe the relative likelihood of a value occurring in a particular distribution region.

161

8.3.3 Intent classification steps

The first step in the DAISY algorithm involves computing statistics from the dataset DYLE,

organised by class. This process establishes the mean and standard deviation for each feature

in DYLE and the following probability calculations using class-specific statistics to generate

the Gaussian PDF, allowing DAISY to model and effectively represent the distribution of fv for

each class.

1) Prior Probability Estimation: Calculate the prior probability of each class based on the

training data using equation (25).

𝑝(𝐶𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝐶𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (25)

2) Feature Likelihood Calculation: For each feature in each class:

• Calculate (μ) and (σ) of the feature for that class.

• Use the probability density function (PDF) formula to calculate the likelihood of

each feature value given the class: equation (24).

3) Laplace Smoothing: Apply Laplace smoothing to handle cases where specific feature

values have zero probabilities: equation (23).

4) Prediction for new feature vector data: Calculate the posterior probability for each class

using the naive Bayes formula: equation (22).

This process utilises PDFs, applies Laplace smoothing to address sparsity issues, and uses

the naive Bayes classifier assumptions to compute posterior probabilities for classification.

8.4 Live prediction by DAISY

During the data collection phase for training DAISY in Chapter 7, the system classified vehicle

intent by displaying secondary classifications (SFpc) and the final primary classification (Fpc).

When reviewing the video recordings of the training process, it was noted that DAISY's

predictions primarily consisted of various SFpc classifications such as W_merge, M_merge,

S_Merge, W_stop, M_stop, and S_stop. This predominance of SFpc classifications in the

predictions aligns with the composition of the training data.

The accuracy of our training data is fundamental to the success of our system in making

accurate predictions of vehicle intent at various stages in the pipeline. By utilising the

162

subclasses in the training data, we can now make Fpc predictions from the initial point of target

vehicle detection rather than solely at the merge line.

In section 7.4.2, we discussed how subclasses are defined in relation to the distance from the

merge line. However, DAISY's predictions do not strictly conform to the predefined distance

ranges. For instance, we might observe weak predictions in what was designated as a

substantial distance range and moderate predictions in what was initially categorised as a

weak range. This flexibility allows DAISY to adapt to the nuances of real-world driving

behaviour rather than being confined to rigid distance categories.

A feature vector is created when DUKE detects a vehicle and generates the initial features.

This vector is immediately passed to DAISY. Based on the vehicle's distance from the merge

line, an SFpc is assigned to this feature vector a feature and added to the feature vector array

associated with the vehicle's ID. Predictions are made from this array of associated SFpcs,

which evolves and expands with each new data iteration. Real-time predictions are generated

using a majority voting technique; each SFpc is considered equally, and the class that receives

more than half of the votes is chosen as the final real-time prediction. If no class receives more

than half the votes, no prediction is made for that 40 ms iteration.

We first establish a majority SFpc prediction from the list during each iteration and then derive

an Fpc. It is important to note that predictions made during initial iterations are less accurate

as the dynamic list populates. Over time, as more data is gathered, the predictions become

more reliable.

The assignment of an Fpc to a vehicle's feature vector array is executed as a separate function

once the tracking of the target vehicle concludes. When the vehicle crosses the merge line,

an Fpc is applied to the final feature vector in the array. This vector is then used to retroactively

apply SFpc to all preceding vectors in the array, ensuring a consistent classification across the

vehicle's trajectory.

In cases where DAISY inaccurately predicts the final action of a vehicle, it is crucial to

understand that these errors do not contaminate the training data. The actual actions of

vehicles at the merge line are precisely recorded and fed into DYLE. This method is

hypothesised to gradually cultivate a more accurate dataset, reducing the need for extensive

manual checks. As more vehicles are autonomously analysed and classified based on their

actual behaviours, the system's predictive accuracy is expected to improve, contributing to

more effective and reliable vehicle intent predictions.

We must classify and analyse the errors it makes to address the error types left in DAISY and

understand their safety implications. These errors can be categorised into false positives and

false negatives.

False Positives:

Daisy predicts an action or intent that does not occur. For example, it predicts that a vehicle

163

will merge when it does not.

Learning:

• Over-cautiousness in prediction models can lead to a higher rate of false positives.

• Possible causes could include overly sensitive thresholds for intent prediction or

misinterpreting ambiguous manoeuvres.

Safety Implications:

• Driver Distraction: Frequent false alarms can distract drivers, reducing their attention

to critical driving tasks.

• Reduced Trust: Over time, drivers may become desensitised to the system's warnings,

potentially ignoring important alerts when they are genuine.

False Negatives:

Description: The system fails to predict the occurrence of an action or intent. For instance, it

was not predicted that a vehicle would stop when it does.

Learning:

• Indicates a lack of sensitivity or failure to detect subtle cues leading to the intended

action.

• This could be due to insufficient training data for specific scenarios or ineffective

feature extraction from the input data.

Safety Implications:

• Missed Critical Events: Missing critical events like sudden stops or merges can lead to

accidents or near-misses.

• Delayed Reactions: Failure to predict vehicle actions can delay necessary responses,

increasing the risk of collisions.

Mitigation:

Incorporate more detailed environmental context, such as road signs and pedestrian

presence, to improve stop predictions.

Implement online learning mechanisms where the model can continuously learn and adapt

from new data, improving its accuracy over time.

Regularly update the model with new data to keep it current with evolving driving patterns and

behaviours.

Safety Implications Summary:

False positives can lead to driver distraction and reduced trust, while false negatives and

context-specific errors pose direct safety risks. By enhancing data quality, refining models,

and incorporating continuous learning, the predictive accuracy of DAISY can be significantly

improved, leading to safer and more reliable vehicle intent predictions.

164

8.4.1 Intent prediction for a single junction JM377

Using the video data (20%) allocated for DAISY-derived predictions, as shown in Table 33, we

pass this unseen Bo video data through DUKE to collect feature vectors for analysis by DAISY

to predict intent. This procedure follows the methodology outlined in section 7.4.3 and

generates a video featuring labelled predictive bounding boxes and visualising the ground

truth actions at the merge line.

EuroRAP

route

Junction location Total

minutes

Manual pred class training

data 60%

DAISY-derived pred

class 20%

Online

verification

20%

JM377 Oxshot Road 263 157.8 52.6 52.6

JM384 A248 124 74.4 24.8 24.8

JM559 Petersfield Road 249 149.4 49.8 49.8

JM454 Rowhook Road 207 124.2 41.4 41.4

UO196 Jacobs Well Road 119

119

Table 33 is a reference copy of Table 21 from Section 7.3, showing the partitions for training,

ground truth, and online verification of the entire pipeline.

To generate an intent prediction for the DAISY-derived data partition in Table 33, we created

a new video file, as specified in Section 5.7, using the partitioned 52.6 minutes allocated.

Feature vectors are sent from DUKE to DAISY when a vehicle is detected in the video and

identified as approaching the merge line of the T-Junction. Using the training data in DYLE

and the process detailed in Section 8.3.3, DAISY initiates its predictions with Sfp as a function

of distance from the merge line, followed by an Fpc prediction at the merge line as the final

outcome. Utilising recorded video, we validate the final predictions made by DAISY and

document them as ground truth. This provides a list of final predictions and merge line truths

for validation. A unique DYLE is also generated for each junction, incorporating SFpc-classified

feature vector arrays for each target vehicle in the video segment. This approach enables the

creation of new manually classified training data to supplement DYLE. Figures 66–69

inclusively visually depict the predictions made by DAISY as the target vehicle approaches

the merge line.

165

Figure 66 JM377: DAISY sub-classification of a Weak Merge.

Figure 67 JM377: DAISY sub-classification of a Moderate Merge.

Figure 68 JM377: DAISY sub-classification of a Strong Merge.

Figure 69 JM377: DAISY final classification of a Merge.

Junction JM377 poses a challenge due to its brief detection distance from the initial

identification to the merge line. The examples shown in Figures 62–65 are of the same target

vehicle, shown from initial detection in Figure 66, where DAISY has sub-classified (SFpc) the

vehicle as a Weak Merge based on the feature vector created by DUKE. The feature vector

creation and DAISY classification occur in around 40 ms, allowing multiple predictions to be

achieved before the merge line. The results were analysed for accuracy using a confusion

matrix (Figure 70) and are tabulated in Table 34.

166

Figure 70 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction

JM377.

Confusion matrix key

• True positives (TPs): Instances correctly predicted as positive; in Figure 63, for

example, there are 69 TP Stops and 71 TP Merges.

• False positives (FPs): Instances incorrectly predicted as positive in Figure 63; there

are 22 FP Stops and 13 FP Merges.

Class Precision Recall F1-Score Quantity

Hazard 0.33 1.00 0.5 1

Merge 0.85 0.75 0.79 95

Stop 0.76 0.84 0.80 82

Accuracy 0.79 178

Macro Avg 0.65 0.86 0.70 178

Weighted Avg 0.80 0.79 0.79 178

Table 34 Accuracy metrics for Junction JM377.

8.4.2 Initial discussion from results of JM377.

Table 37 shows the accuracy results across three classes, Hazard, Merge, and Stop, with an

overall accuracy of 0.79 for 178 instances. The model demonstrates a perfect recall for Hazard

167

at 1.00 but with low precision (0.33), indicating it correctly identifies all Hazard instances but

also misclassifies other classes as Hazard. Merge and Stop classes have more balanced

metrics, with precision and recall values indicating a relatively strong ability to correctly identify

and classify instances, evidenced by F1 scores of 0.79 and 0.80, respectively. The Macro

Average suggests a disparity in class performance with an average precision of 0.65 and recall

of 0.86, hinting at the model's tendency to favour recall over precision. The Weighted Average

precision and recall, closely mirroring the overall accuracy, indicate a model that performs well

overall but may benefit from adjustments to improve precision, especially in less frequent

classes like Hazard, without compromising its high recall.

The outcomes from JM377, despite the limited data volume, indicate a positive trajectory.

With a more evenly distributed dataset, it is anticipated that the accuracy of DYLE will be

enhanced.

8.4.2 Evaluation metrics

Accuracy and the F1 Score are both metrics widely used to evaluate a classification model's

performance, but focus on different aspects. Accuracy is the most intuitive performance

measure, and it is simply a ratio of correctly predicted observations to the total observations.

It is the number of correct predictions the model makes overall predictions made. The F1

Score is the Harmonic Mean between precision and Recall. It is a way of combining the

precision and Recall of the model. The F1 Score is a metric we use to balance Precision and

Recall, and there is an uneven class distribution. The main difference between accuracy and

the F1 score is that accuracy is used when the true positives and true negatives are more

important, while the F1-Score is used when the false negatives and false positives are crucial,

which is imperative in our study. However, in a multi-class confusion matrix, the true negatives

(TN) are not explicitly stated for each class because they are the sum of all correct predictions

for the other classes.

So we simplify the formula for multi-class classification to:

Accuracy= Sum of the diagonal (True Positives for each class) / Total number of predictions

Accuracy can be misleading if the data set is imbalanced when the number of observations in

different classes varies greatly. For example, if you have a test set of 100 instances and 95

belong to one class and 5 to another, a model that always predicts the majority class will have

an accuracy of 95% despite being unable to identify the minority class.

F1 Score does not take true negatives into account. It focuses on the model's ability to

correctly classify instances for a given class (or for all classes if calculating the macro or

168

weighted average F1), which makes it more beneficial as we are more interested in the

balance between precision and Recall.

Precision, Recall, and F1 Score are pivotal for understanding the model's capabilities in

classification tasks. These metrics offer valuable insights into DAISY's ability to accurately

identify positive instances while minimising false positives and false negatives. Precision and

Recall, fundamental metrics in binary classification, play distinct roles in assessing DAISY's

performance. Precision measures the accuracy of DAISY's positive predictions, calculated as

the ratio of true positives to the sum of true positives and false positives. Conversely, Recall,

also known as sensitivity or the true positive rate, evaluates DAISY's proficiency in capturing

all positive instances by calculating the ratio of true positives to the sum of true positives and

false negatives. When applied to DAISY, these metrics provide a nuanced and comprehensive

evaluation of its effectiveness in making accurate positive predictions and capturing all

relevant instances in a classification task.

Table 34 provides performance metrics, including Precision, Recall, and F1-score, for DAISY

using Junction JM377 video data. The classes represent the labels DAISY is predicting. There

are three Fpc classes: Hazard, Merge, and Stop. Precision is the ratio of correctly predicted

positive observations (true positives) to the total predicted positives (true positives + false

positives). Precision measures the accuracy of positive predictions made by the DAISY. For

example, Precision is 0.33 for the Hazard class, indicating that 33% of the instances the model

predicted as Hazards were true positives. Recall, or true positive rate, is the ratio of correctly

predicted positive observations (true positives) to the total actual positives (true positives +

false negatives). Recall measures DAISY's ability to capture all positive instances. For

example, the Recall for the Merge class is 0.75, indicating that DAISY correctly identified 75%

of the Merge class. F1-score is the harmonic mean of Precision and Recall, providing a

balance between the two metrics. The F1-score is instrumental as we have a significant

imbalance between classes. The Quantity column indicates the number of instances in each

class.

We use these metrics to evaluate DAISY's performance for each class and its overall

effectiveness in making predictions across different categories for single and a combination of

junctions.

169

8.5 Intent prediction for other junctions

We followed the same procedures described in 8.4 for the remaining four junctions, recorded

the results, produced a confusion matrix, and tabulated accuracy metrics.

8.5.1 Junction JM384

Figure 71 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction

JM384.

Class Precision Recall F1-Score Quantity

Hazard 1.00 0.5 0.67 2

Merge 0.76 0.80 0.78 40

Stop 0.78 0.76 0.77 37

Accuracy 0.77 79

Macro Avg 0.85 0.69 0.74 79

Weighted Avg 0.78 0.77 0.77 79

Table 35 Accuracy metrics for Junction JM384. The table presents each class's Precision,

Recall, and F1-score metrics and the total incidences.

170

8.5.1.2 Initial discussion from results of JM384

The Macro average scores (0.85 for Precision, 0.69 for Recall, and 0.74 for F1-Score) suggest

that, on average, DAISY performs well in terms of precision but struggles more with recall.

The Weighted average scores closely align with the DAISY accuracy (0.77 for Precision and

F1-Score and 0.77 for Recall), indicating a consistent performance across classes when

adjusted for their representation in the test set. DAISY demonstrates a decent performance

overall, with solid precision but weaker recall, especially for the Hazard class, due to the small

number of Hazard instances. The balanced performance on Merge and Stop suggests that

DAISY has learned these classes well.

8.5.2 Junction JM599

Figure 72 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction

JM599.

171

Class Precision Recall F1-Score Quantity

Hazard 0.67 1.00 0.80 2

Merge 0.88 0.77 0.82 73

Stop 0.83 0.91 0.87 85

Accuracy 0.84 160

Macro Avg 0.79 0.89 0.83 160

Weighted Avg 0.85 0.84 0.84 160

Table 36 Accuracy metrics for Junction JM599. The table presents each class's Precision,

Recall, and F1-score metrics and the total incidences.

8.5.2.1 Initial discussion from results of JM599

The Hazard class, with the lowest quantity of instances (2), achieved perfect Recall (1.00) and

a good Precision (0.67), resulting in an F1-Score of 0.80. The Merge class, with a significant

quantity of instances (73), showed high Precision (0.88) but slightly lower Recall (0.77),

leading to an F1-Score of 0.82. The Stop class, having the highest number of instances (85),

demonstrated strong performance with a Precision of 0.83 and a Recall of 0.91, achieving the

highest F1-Score of 0.87. Overall, the DAISY exhibits an Accuracy of 0.84 across 160

instances, with a Macro Average indicating a balanced performance across classes

(Precision: 0.79, Recall: 0.89, F1-Score: 0.83) and a Weighted Average reflecting the influence

of class imbalance (Precision: 0.85, Recall: 0.84, F1-Score: 0.84).

172

8.5.3 Junction JM454

Figure 73 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction

JM454.

Class Precision Recall F1-Score Quantity

Hazard 0.00 0.00 0.00 0.00

Merge 0.71 0.71 0.71 45

Stop 0.75 0.77 0.76 56

Accuracy 0.74 102

Macro Avg 0.49 0.49 0.49 102

Weighted Avg 0.73 0.74 0.73 102

Table 37 Accuracy metrics for junction JM454. The table presents each class's Precision,

Recall, and F1-score metrics and the total incidences.

8.5.3.1 Initial discussion from results of JM454

The Hazard class shows no instances and has a performance score of 0.00 across Precision,

Recall, and F1-Score. DAISY performs moderately for the Merge class with Precision, Recall,

and F1-Score at 0.71 across 45 instances, suggesting a balanced ability to identify and classify

Merge instances correctly. The Stop class performs slightly better with Precision at 0.75,

173

Recall at 0.77, and F1-Score at 0.76 over 56 instances, indicating good accuracy in identifying

Stop instances. Overall, an accuracy of 0.74 over 102 instances, with a Macro Average and

Weighted Average across metrics at 0.49 and 0.73, respectively. Weighted Average accounts

for class imbalance, suggesting that despite the poor performance on Hazard, DAISY

performs reasonably well on Merge and Stop instances.

8.6 DAISY performance with aggregated data for all four junctions

The validation process of DAISY, utilising empirical ground truth observations for each

junction, facilitated the generation of supplementary training data. To ensure diversity, we

allocated 20% of the video data for each junction that had not been used for training. DUKE

generated feature vector arrays for each target vehicle while validating individual junctions, as

detailed in Section 8.5. We subsequently validated DAISY's intent predictions for each feature

vector within the target vehicle array. This iterative validation process enabled the

incorporation of manually classified features into DYLE, expanding the number of training

examples available for DAISY's predictions. Only true positive data was utilised as additional

training feature vectors, enhancing the model's accuracy prediction capacity. We implemented

the approach outlined in Section 7.4.6.1, employing k-fold cross-validation on the revised

DYLE dataset. Subsequently, we amalgamated the ground truth observations for each junction

and conducted a comprehensive accuracy analysis. Similar to our assessments for individual

junctions, we utilised a confusion matrix and accuracy calculations to evaluate the model's

overall performance across the combined dataset. This methodology allowed us to gauge the

model's effectiveness in a broader context, considering the diverse data encompassed by the

updated DYLE dataset.

8.6.1 K-fold cross-validation of updated DYLE training dataset

We appended the previously aggregated DYLE from 7.6.1 with the feature vectors from these

experiments to create an updated DYLE constituting 79,461 feature vectors, equating to

1,901 individually identified target vehicles.

After augmenting the DYLE dataset with freshly classified ground truth data, we observed a

marginal improvement in k-fold cross-validation accuracy, rising from the initial value of 0.79

(Section 7.6.1) to the updated score of 0.81 (with k = 10, Table 38). This enhancement

underscores the positive impact of incorporating additional manually classified data on the

overall performance and accuracy of the model during cross-validation.

174

K value Mean accuracy

updated DYLE

5 0.79

10 0.81

Table 38 Updated aggregated junctions DYLE k-fold cross-validation accuracy results.

Analysing the updated DYLE dataset in Table 39 and Figure 74, we observed improved

balance and class distribution in the first eight classes compared to the aggregated DYLE in

Section 7.6.1. The additional manually classified ground truth data contributed to a slightly

more even representation of classes, potentially enhancing the model's generalisation

capabilities.

Fpc / SFpc Count Frequency

s_stop 16,620 20.92%

w_merge 12,679 15.96%

w_stop 13,012 16.38%

s_merge 13,261 16.69%

m_stop 11,025 13.87%

m_merge 10,995 13.84%

merge 968 1.19%

stop 913 1.07%

w_hazard 18 0.02%

m_hazard 19 0.02%

s_hazard 17 0.02%

hazard 20 0.03%

Table 39 Updated DYLE. Figure 74 Updated DYLE class frequency.

8.6.2 Analysing ground truth and prediction data

The subsequent stage involved consolidating the ground truth data from individual junctions

into a unified file. The aim was to conduct an accuracy analysis that allowed evaluation of

DAISY's overall performance when confronted with data from diverse junctions, providing

insights into its accuracy across the entire dataset.

8.6.3 Precision-Recall and F1-Score

The accuracy metrics of the results of the combined dataset (Table 40) indicate higher

Precision in each class and, thus, fewer false positives. Notably, the Merge class

175

demonstrates the highest Precision, with values of 0.56 for Hazard, 0.86 for Merge, and 0.82

for Stop. A higher Recall, signalling fewer false negatives, is observed in the Stop class,

boasting values of 0.83 for Hazard, 0.80 for Merge, and 0.86 for Stop. Additionally, a higher

F1-Score, reflecting a superior trade-off between Precision and Recall, stands out in the Stop

class, with scores of 0.67 for Hazard, 0.83 for Merge, and 0.84 for Stop.

The overall accuracy for the combined dataset reaches 83%. The Macro Average, which

independently calculates metrics for each class and then takes the average, provides an

overview of the model's performance across all three classes, with a Precision of 0.74, a Recall

of 0.83, and an F1-Score of 0.78.

Moreover, the weighted average considers the number of instances for each class for

Precision, Recall, and F1-Score. This approach assigns more significance to classes with

larger instances and results in a Precision of 0.84, a Recall of 0.83, and an F1-Score of 0.83,

offering a more detailed evaluation considering class distribution.

Class Precision Recall F1-Score Quantity

Hazard 0.56 0.83 0.67 6

Merge 0.86 0.80 0.83 253

Stop 0.82 0.86 0.84 260

Accuracy 0.83 519

Macro Avg 0.74 0.83 0.78 519

Weighted Avg 0.84 0.83 0.83 519

Table 40 Combined junction accuracy metrics show each class's Precision, Recall, and F1-

score metrics and the total incidences.

8.6.4 Metric comparison of single and combined junctions

We evaluated the four junctions individually and collectively, summarising the results in Table

41 and Figure 75. The overall accuracy is 0.83 in the updated DYLE, suggesting a balanced

trade-off between Precision and Recall. Hence, there was accurate classification of 83% of

instances. The k-fold cross-validation result of 0.81 attests to the model's consistent

performance across diverse subsets of the dataset.

Examining each specific junction (JM377, JM384, JM599, JM454), accuracy values range

from 0.71 to 0.84, reflecting variations in junction dynamics, traffic volume, and behaviour. The

k-fold cross-validation results for individual junctions (ranging from 0.71 to 0.74) indicate stable

performance across different folds.

176

The updated DYLE dataset and the combined ground truth data exhibit enhanced accuracy

compared with the average of the four junctions and the aggregated DYLE metrics from

Chapter 7. The k-fold cross-validation results underscore the model's reliability, consistent

performance, and ability to generalise effectively. This observation is particularly relevant to

our exploration of the hypothesis in Research Question 4 (RQ4), where we sought to

investigate and analyse specific aspects related to how our model can generalise across

differenT-junctions.

Metric F1-Score Accuracy K-fold (10)

Junction Class Hazard Merge Stop

Updated DYLE 0.67 0.83 0.84 0.83 0.81

JM377 0.5 0.79 0.8 0.79 0.73

JM384 0.5 0.8 0.76 0.77 0.71

JM599 0.8 0.82 0.87 0.84 0.74

JM454 0 0.71 0.76 0.74 0.74

Aggregated Training DYLE 0.79

Table 41 Comparison of single and combined junction and DYLE dataset accuracy metrics.

Figure 75 K-fold training accuracy compared to ground truth F1-Score per class and overall

accuracy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Updated DYLE

JM377

JM384

JM599

JM454

Aggregated DYLE

Junction/Dataset combined metrics

K-Fold (10) Accuracy F1-Score Stop F1-Score Merge F1-Score Hazzard

177

8.7 Discussion

Upon reviewing the updated DYLE dataset and comparing it to the aggregated DYLE from

Section 7.6.1, it became evident that the dataset's composition had improved. Incorporating

new manually classified ground truth data led to a slightly more balanced representation of

the main classes. This enhancement in data balance suggests a positive impact on the

model's performance, indicating that it is potentially better at generalisation across differenT-

junctions. In summary, the results indicate that the dataset refinement contributed to a more

robust and representative training set for the model.

This chapter addressed Research Question 5 (RQ5), 'How accurately can a machine

learning model, utilising 2D video-derived feature vectors, predict a vehicle's intention at a T-

junction?' We have shown reasonable accuracy using data from a single junction, achieving

an F1 score of 0.87 for the Stop class and 0.82 for the Merge class at JM599. By amalgamating

ground truth data and manually incorporating newly classified data, we observe enhanced k-

fold cross-validation, resulting in higher F1 scores than the averages for individual junctions.

The current accuracy level stands at 0.83.

Contribution discussed in this chapter: A computationally efficient approach for predicting

vehicle intent at a T-junction using video-derived feature vectors as training data. We have

demonstrated that in terms of efficiency, we can predict an intention in approximately 40 ms,

demonstrating an efficient pipeline backed with an accuracy of 83% on a small dataset.

In the next chapter, we transition the entire pipeline online, activating DAISY to transmit

predictions directly to DYLE through classified feature vectors. This transformation renders

the pipeline a fully remote system, enabling real-time updates and inferences on new data

within 100 milliseconds and dynamically building the training dataset.

178

Chapter 9: Pipeline Autonomy

9.1 Introduction

In the preceding chapters, we discussed the methodologies and methods constituting the

individual components in the pipeline depicted in Figure 76. This sequential process explains

the means through which we predict vehicle intent.

The pipeline feeds 2D video as an input, employs deep learning for detection, classification,

and tracking, and uses a machine learning prediction model, DAISY. DAISY analyses historical

vehicle actions using verified and categorised feature vectors, ultimately generating an intent

classification as output.

We now possess a reasonably accurate trained model and can generalise effectively across

diverse junctions. Instead of merely freezing this model and deploying without incorporating

additional training data, we introduce an additional phase: autonomy.

179

Figure 76 illustrates the complete pipeline, encompassing the stages of video data capture

and processing, the generation of DUKE feature vectors, the three possible predictions of

vehicle intent by DAISY, and examples of possible outputs. Additionally, the diagram highlights

the dynamic updating of DYLE post-DAISY prediction, representing a continuous and adaptive

refinement process.

180

This chapter focuses on the online phase, exploring how DAISY autonomously generates

ground truth-validated feature vector training data, passed from DUKE and trained using the

DYLE dataset.

This validated data then updates DYLE training data by incorporating accurately classified

feature vector arrays. These arrays consist of SFpc and Fpc predictions. They are efficiently

transmitted to DYLE within 45 ms from when the target vehicle is physically classified and

integrated as classified feature vectors in real-time. This process enriches DAISY's model with

new training data, enhancing its predictive capabilities for the subsequent intent of the

following target vehicle.

Until now, we have conducted manual verifications for each target vehicle action at the merge

line within our experimental junctions and retrospectively applied the corresponding Fpc and

SFpc classification features to the training data. Despite being a labour-intensive approach, this

method assured an association between the target vehicles' SFpc feature vectors and the target

vehicle's Fpc. The product of this work is DYLE, our dataset of classified feature vectors, which

we verified and analysed in Chapters 7 and 8.

In our subsequent experiments, we understand the impact of using our novel sub-classification

(SFpc) method on all associated target vehicle feature vectors. Without the SFpc classification,

our dataset has a better class frequency balance and the possibility of greater accuracy of

intent prediction at the merge line. Before we put the pipeline online, in this chapter, we

conduct a final ablation study by removing the sub-classifications from the junction updated

DYLE dataset, described in section 8.6, to ascertain the effect of the subclasses on the training

data.

Research Question 6 (RQ6): Can a trained machine learning model accurately predict

vehicle intent at a T-Junction using new data, and what is its effective prediction range from

the junction?

Research Question 7 (RQ7): Can our online model infer and append intent predictions as

new inference data in real-time without negatively affecting the accuracy or F1 score?

Contribution:

A quantitative examination of how accurately DAISY, trained on progressively larger datasets,

can predict driver intentions and determine the practical distance from the junction at which

predictions remain viable. This exploration contributes to understanding the limits and

capabilities of machine learning in the context of driver behaviour prediction at critical road

intersections.

181

We create and evaluate an online model capable of inferring and appending new data in real-

time while maintaining base accuracy and F1 score.

9.1.2 Chapter organisation

This chapter provides a comprehensive overview of various studies and analyses related to

the classification and verification of feature vectors in autonomous systems. Section 9.1

introduces the chapter and outlines its organisation. In Section 9.2, an ablation study explores

the sub-classification of feature vectors. Section 9.3 discusses the autonomous application of

Fpc and Sfpc classification features, including a case study on autonomous merge line data

recording (DUKE). Interactions with other vehicles are examined in Section 9.4.

The focus then shifts to online data verification and analysis in Section 9.5, which includes

several subsections detailing specific aspects of online verification, accuracy, and comparison

of F1 scores using the JM454 system. Section 9.6 extends this analysis to other systems -

JM599, JM377, and JM384, focusing on online distance accuracy experiments and class

distribution.

Section 9.7 addresses the balancing of training data, including the generation of new hazard

class samples and the cross-validation of different DYLE models. Section 9.8 explores unseen

data online with a new junction, UO196, examining class distribution, accuracy, and F1 scores

and comparing results from various DYLE iterations. The chapter concludes in Section 9.9,

summarising the findings and implications of the studies presented.

9.2 Ablation study, the effect of sub-classification of feature vectors

In light of the manual integration of subclasses into our training data, post-classification of

target vehicles' behaviours at the merge line, and their absence in our initial analyses, it is

imperative to assess their impact on the training dataset before the online deployment of our

system. Our approach involves real-time writing of Fpc and Sfpc classifications, necessitating

understanding their influence on the DAISY prediction model. It is crucial since, in an online

setting, we can only control the training data, with verification and adjustments reserved for

offline periods.

We undertook an ablation study using the combined DYLE dataset to gauge the effect of our

sub-classification categories. Our first step involved removing all subclasses, resulting in

feature vectors solely labelled with Fpc ground truth classifications. Consequently, each feature

vector was categorised as Fpc: Stop, Merge, or Hazard, devoid of any SFpc classification,

irrespective of the vehicle's distance from the merge line.

Following this, we replicated the analysis method outlined in section 7.4.6.1, applying K-fold

cross-validation on the modified DYLE dataset. This procedure aimed to understand how the

182

removal of subclasses influences the model's predictive accuracy and to evaluate the

necessity of these subclasses in enhancing the model's performance in real-world scenarios.

Table 42 Ablation study update DYLE K-fold cross-validation accuracy results removing SFpc
from the updated DYLE dataset.

The results shown in Table 44 indicate that DAISY's predictive performance on the training

data has decreased following the removal of SFpc classifications. This decline in predictive

accuracy could be attributed to the diminished distinction in the dataset caused by the

reduction in distance-based features. With removing these subclassifications, features such

as distance, area, Px, and Py across different feature vectors now exhibit more similar values,

leading to less distinct data characteristics.

Another important observation is that this abridged DYLE DAISY's prediction does not

incorporate data from feature vectors manually classified as greater than 9% of the distance

to the merge line. By removing the feature vectors recorded from 10% of the total distance to

the merge line, the dataset no longer includes feature vectors with a distance feature that

exceeds 9% of the distance from the merge line. While we can focus our dataset construction

on only three classifications (Stop, Merge, or Hazard) and gather precise data to enhance

predictions at the merge line, this approach presents a significant limitation. It restricts our

predictive capacity to a maximum of 9% of the distance from the merge line, which translates

to approximately 400 milliseconds before the final action at the merge line. This timeframe is

K value

Mean Accuracy

Updated DYLE

Fpc only

5 0.66

10 0.69

Fpc Count Frequency

merge 968 50.92%

stop 913 48.03%

hazard 20 1.05%

Figure 77 Updated DYLE Class

frequency

Table 43 Updated DYLE with
Fpc class only. Count/Frequency

183

insufficient for our objective.

We aim to predict vehicle intent as far away from the merge line as possible. Therefore, while

simplifying the dataset to three classifications might streamline the data and potentially

improve accuracy at close distances, it would not align with our aim of early prediction. Early

prediction is crucial for practical applications, such as advanced driver-assistance systems

(ADAS), where timely alerts and decisions could significantly enhance road safety. Thus, while

the ablation study provides valuable insights into the impact of subclassifications, it also

underscores the necessity of a more comprehensive approach that includes a broader range

of distances for effective prediction.

9.3 Autonomously applying Fpc and Sfpc classification features to feature vectors

In our existing methodology, we manually classify each feature vector array based on target

vehicles' visible ground truth actions at the merge line, a process involving tracking each

vehicle from initial detection to the merge line, recording an Fpc and adding an SFpc to each

feature vector in the target vehicle array and adding it to DYLE.

Up to this point, DAISY utilises manually curated training data to make real-time predictions

about a target vehicle's intent as it approaches the merge line. It is possible to use these

predictions to classify each DUKE-derived feature vector with a specific DAISY-predicted SFpc

and an Fpc and then integrate these classifications into DYLE in an autonomous and real-time

manner. This process would incrementally enrich the dataset for subsequent analyses.

However, as outlined in previous chapters, DAISY's prediction accuracy currently stands at

83%, implying that approximately 17% of its predictions could be erroneous. Maintaining the

integrity and accuracy of our training data is crucial, so we use only the verified ground truth

actions, as determined by the DUKE system, for input into DYLE. This method helps preserve

the quality and reliability of the training data that DAISY accesses, regardless of its current

prediction accuracy.

9.3.1 DUKE: Autonomous Merge line data recording

Determining the Fpc for a target vehicle approaching the merge line involves a threshold-based

model as a function within DUKE. This model measures features such as the distance from

the merge line and the vehicle's velocity and acceleration at the merge line and compares

these values against predefined thresholds for stop, merge, and hazard actions. When the

thresholds are met, DUKE triggers the Fpc feature as the target vehicle nears the merge line.

The Fpc, which could be either Stop, Merge, or Hazard, is assigned to the final feature vector

in the current array representing the target vehicle. This classification is based on the vehicle's

184

performance against the set thresholds for the key features at the critical point of the merge

line. Once the Fpc is determined, the subsequent step involves classifying the other features

within the array with SFpc. These SFpc classifications are assigned based on their proximity to

the merge line, providing a more detailed understanding of the vehicle's behaviour as it

approaches the merge line. After these classifications are applied, the fully classified feature

vector is appended to DYLE as individual classified feature vectors. This autonomous process

enriches the training data, DYLE, for DAISY, refining and enhancing its real-time predictive

capabilities for subsequent target vehicles.

The threshold model is an inline function described in the algorithm below; the implementation

of this function is designed to replicate the manual classification of the feature vector process

described in section 7.4.5 and create a fully autonomous system capable of generating and

learning from new data in an unsupervised mode.

The threshold model follows these basic steps: checks if the vehicle is within 9% of the total

distance to the merge line, categorises the vehicle's action as "Merge," "Hazard," or "Stop"

based on its acceleration and velocity and labels the feature vectors associated with the

vehicle as "Weak," "Moderate," or "Strong" based on the merge line action and distance from

the merge line.

Algorithm: Threshold_Model_Function

Input: distanceToMergeLine, totalDistanceToMergeLine, acceleration, velocity,

thresholds (x, y, a,b)

Output: Fpc, Associated_ SFpc

Function:

1. Set thresholdDistance = 9% of totalDistanceToMergeLine

2. If distanceToMergeLine <= thresholdDistance, then

 a. If acceleration > x and velocity > x and (acceleration < y and velocity < y), then

 i. Fpc = "Merge"

 b. If acceleration > x and velocity > x and (acceleration > y or velocity > y), then

 i. Fpc = "Hazard"

 c. Else

 i. Fpc = "Stop"

3. If distanceToMergeLine is >= thresholdDistance(a), then

 a. SFpc = "Strong"+ Fpc

 Else, If distanceToMergeLine is >= thresholdDistance(b), then

 a. SFpc = "Moderate" + Fpc

 Else

185

 a. SFpc = "Weak" + Fpc

4. Return Fpc, Associated_ SFpc

Accurately categorising feature vector arrays is pivotal in enhancing DAISY's real-time

forecast ability. Sampling the autonomous operation without direct supervision is essential,

and this can be achieved by consistently reviewing video logs and juxtaposing the predictions

with actual outcomes. Additionally, conducting K-fold cross-validation on the DYLE system is

crucial to assess overfitting and generalisation ability, followed by fine-tuning the threshold

model to ensure optimal performance.

9.4 Interactions with other vehicles

As highlighted in the literature review, analysing traffic behaviour at a junction necessitates

considering more than just the road's topology. It's also crucial to consider the various road

users who may impact traffic flow, including drivers, cyclists, pedestrians, and other road users

in the traffic environment. Their behaviours, interactions, and movements significantly shape

traffic dynamics and must be factored into any analytical model or traffic management strategy

to ensure accuracy and effectiveness.

We collected a set of feature vectors that activated the 'approach_b' feature to investigate this.

This feature is integrated into the feature vectors of target vehicles to indicate the presence of

another vehicle approaching the T-junction from direction b on the major road. The

'approach_b' feature is paired with 'approach_dis_b', a metric indicating the distance of the

approaching vehicle from the junction's merge line at each time step.

Figure 78 indicates target vehicles nearing the merge line and the measured distance

('app_b_dis') at which a vehicle from direction b is detected. This distance is represented in

pixels from the merge line. The classifications are based on SFpc classes, providing a snapshot

of how approaching vehicles from direction b influences the behaviour of target vehicles at the

junction.

186

Figure 78 SFpc of feature vectors showing target vehicles approaching the merge line when a vehicle approaches from direction b at

a distance from the merge line in pixels.

187

Target vehicles nearing the merge line to enter the main road are impacted by traffic from

direction b. Figure 75 shows data primarily classified as a 'strong stop' within approximately

220 pixels of the merge line. The predominant stop classification is likely due to patterns in

the training data, where vehicles with a positive approach_b feature indicating a vehicle on

the main road typically have stop class when within a set distance range. By incorporating the

'approach_b' feature, a clear pattern emerges in the feature vector: the presence of an

approaching vehicle often leads to the classification of the target vehicle as more likely to stop.

While our current dataset is not extensive enough to verify this trend conclusively, we believe

that the 'approach_b' feature is a valuable enhancement. As DYLE is enriched with additional

feature vectors, this feature is expected to improve the accuracy of intent predictions.

9.5 Online data Verification and analysis

In the following experiments, we utilised the remaining 20% of the video data set aside for

online verification, as Table 21, Section 7.3 outlined. The complete pipeline is now fully active;

we enabled DYLE to incorporate new autonomously classified feature vectors added by

DUKE, as detailed in Section 9.3.1.

As we verify each junction, the size of the online DYLE increases with the autonomous addition

of newly classified feature vectors. We change the order of the test junction experimentation

as new data is appended to DYLE; this way, we can balance out bias, which may be present

if we append data from the same junction in the same order during each batch of experiments.

We use this method as it may help to alleviate issues since the first junction will not be training

from the same amount of data as the last junction; as we append during each experiment, the

quantity of training data available increases. After completing the Verification of each Junction,

we obtain two key sets of data: a video log of the junction during the verification period and an

updated DYLE dataset enriched with newly classified data. Additionally, we gather insights on

the predictions made by DAISY during this process based on final intent predictions and

ground truth actions at the merge line.

Following the online Verification of each Junction, we analyse DYLE. We examine the newly

added feature vectors for class distribution and employ K-fold cross-validation to assess the

training data's accuracy changes. We also validate the autonomous classifications made by

DUKE, using the video logs and vehicle IDs to link and evaluate the accuracy of the

corresponding feature vectors.

9.5.1 Single Junction Online Verification JM454

Junction JM454 is a T-junction on the busy rural Junction A29 in southeast England. At this

junction, we have a short distance from the initial detection to the merge line.

188

The junction-specific video log was used to verify incremental predictions made by DAISY

starting from the first detection, as shown in Figure 76, where there is a time series of video

screenshots. The initial intent prediction DAISY output is Stop. This is the merge line intent

prediction that DAISY predicts vehicle (id=77) will take when it gets to the merge line—

generated from processing SFpc in the method described in section 8.3. As the target vehicle

approached the merge line, multiple predictions were made based on the associated feature

vectors generated by DUKE. Ground truth verification confirmed that the target vehicle picture

in Figure 79 stopped at the merge line as predicted. DUKE updated DYLE with the target

vehicles' classified feature vector array. In the top image in Figure 76, a vehicle is detected

approaching from direction b, classified as a car (2) and 41 pixels from the junction entrance

merge line. This feature may assist in the accurate early predictions of target vehicle intent,

as discussed above. However, we require more junction data with approach_b features to

confirm this.

Figure 79 is a chronological series of video screenshots that capture the intent prediction of

a target vehicle from initial detection. As the target vehicle (id=77) approaches the merge

line, DAISY outputs further predictions and a final prediction at the merge line. In this case,

the predictions were accurate with ground truth validation.

The following example is of a Merge prediction; in Figure 80, a time series screenshot from

189

our video shows that DAISY's initial prediction is for the target vehicle (id=47) to Stop at the

merge line; ground truth verification showed that vehicle 47 merge onto the major road without

stopping. This is an example of initial prediction inaccuracies due to the method we use to

classify the SFpc generated by DAISY, where we have very few examples for the initial

prediction classification. However, as more features are generated and are sub-classified, the

accuracy improves towards the merge line.

Even though the initial error in Daisy's prediction DUKE updated DYLE with vehicle 47

feature vector array classified as Fpc Merge and the associated SFpc subclassification applied

to the associated feature vectors in the array.

Figure 80 The initial intent prediction of vehicle 47 made by DAISY is incorrect regarding the

target vehicle 47. Ground truth confirmation showed that vehicle 47 merged without stopping

as predicted.

Prediction of a hazard class intent is more difficult due to the imbalance in the dataset; there

are very few examples of hazard-classified feature vectors in the training data; this may well

be an advantage because it not only reduces the chance of a dangerous false hazard

prediction, it a; so means that any feature vector that falls outside of the probability of being a

stop or merges will be classified as a hazard, catering for data that has never been seen for

example an out of control vehicle travelling erratically towards the merge line.

However, the example shown in the time series video screenshots in Figure 78 shows that

DAISY can correctly predict a Hazard intent class from around 50% of the distance to the

merge line. The vehicle (id=265) in Figure 81 entered the major road carelessly. The ground

truth video log showed that vehicle 256 entered in front of a fast-moving vehicle from direction

b, causing it to slow down. DUKE updated DYLE with the hazard-classified feature vectors

190

from vehicle 256 feature vector array, instantly adding to the training data.

Figure 81 Despite vehicle 265 being incorrectly classified initially, the correct final classification

was predicted at around 50% of the distance to the merge line.

9.5.2 Updaing DYLE with autonomously classified feature vectors from JM454

In the post-video analysis of the ground truth data, we verified the new data in DYLE and then

measured accuracy using our K-fold method. Table 44 lists the accuracy results for the Online

DYLE dataset, a combination of the updated DYLE from 8.6.4, Table 41, and autonomously

classified feature vectors from JM454.

K value Mean accuracy

 Online DYLE

5 0.79

10 0.82

Table 44 Online DYLE K-fold cross-validation accuracy results with Junction

JM454 feature vectors autonomously classified and appended.

The accuracy of our model shows no improvement when setting k to 5 and only a marginal

improvement of 0.01 when k is increased to 10. This outcome aligns with our expectations, as

the expansion of our dataset has not been as substantial as in earlier updates, where there

191

was a significant augmentation in the count of classified feature vectors. Notably, the addition

of classifications made autonomously has not altered the fundamental characteristics of the

dataset.

9.5.3 Verification of autonomous online intent predictions JM454

During the above experiments, DUKE created classified feature vectors. Before

experimenting with the remaining data from our test T-junctions, we cross-referenced the

merge line action classifications made autonomously by DUKE with the video log of the

experiment on JM454. As discussed in 9.5.2, the addition of autonomous classification did not

impact the k-fold cross-validation accuracy of DYLE; however, as more feature vectors are

appended, any miss classification errors will quickly degrade the accuracy of DAISY

predictions.

When we reviewed the video log, we found that DUKE correctly classified all the Merge actions

at the merge line; however, we had to correct four Stop predictions and alter the classification

to Merge. We then adjusted the threshold values (x,y), discussed in 9.3.1, to account for this

in the subsequent experiments. So far, our method for assessing ground truth accuracy has

involved using Fpc at the merge line. By comparing final predictions with ground truth data, we

establish a reliable metric for accuracy in predicting vehicle intent at the merge line. We aim

to predict this intent as early as possible and as far from the merge line as possible. This

approach aims to maximise the available time for generating alerts when necessary.

9.5.4 Accuracy and distance from merge line junction JM454

In our analysis of Junction JM454, we utilised the video log to track DAISY's initial prediction

when the target vehicle was first detected and then monitored its subsequent predictions up

to the merge line. Following the methodology outlined in section 7.4.2, we defined specific

distance ranges and correlated these with subclass associations relative to the vehicle's

proximity to the merge line. We recorded DAISY's predictions within these predetermined

ranges and compared them to the ground truth ascertained from the video log. This approach

allowed us to evaluate the accuracy of DAISY's predictions in relation to how far the prediction

is made from the merge line.

192

Table 45 JM454 Accuracy metrics based on intent predictions made from a distance range

from the total distance to the merge line.

Key:

Pr (Precision): The ratio of correctly predicted positive observations to the total predicted

positives.

Re (Recall): The ratio of correctly predicted positive observations to all observations in the

actual class.

The F1 Score is the weighted average of Precision and Recall.

Qty: Number of actual instances in each class.

Macro vs. Weighted Averages: The Macro Average is consistently lower than the Weighted

Average, suggesting that the model performs better on classes with more instances.

Summary of the results of distance and prediction accuracy from Table 45.

The results erroneously show excellent performance for 'Hazard', as this is based on a single

result. The Performance for 'Merge' is good, but for 'Stop', there are poor results, especially in

recall. The overall accuracy and averages indicate a well-performing model, but the 'Stop'

class, having a lower recall, suggests a potential area for model refinement. Since the 'Hazard'

class has only one instance, we require more data for this class to ensure that the model's

performance is genuinely robust and not a result of limited exposure.

The class 'Hazard' is still problematic due to the lack of instances (Qty=1). The overall model

accuracy and weighted average F1 score are the highest and closest to the merge line, which

might indicate a tendency of the model to be more conservative in class predictions.

9.5.5 Comparison of F1 scores and accuracy for given distance ranges JM454

We collated the F1 scores and accuracy metric from the individual distance range experiments

above and compared them, as seen in Figure 82. The data shows that the F1 score for the

Dis_Range >= 70 >= 40 and <=69 >= 10 and <=39 <= 9

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1

Merge 0.59 0.79 0.67 0.66 0.84 0.74 0.75 0.91 0.82 0.74 0.91 0.82 104

Stop 0.42 0.22 0.29 0.63 0.40 0.49 0.82 0.56 0.66 0.81 0.53 0.64 72

Accuracy 0.55 0.66 0.77 0.76 177

Macro Avg 0.34 0.34 0.32 0.43 0.41 0.41 0.85 0.82 0.83 0.85 0.81 0.82 177

W-Avg 0.52 0.55 0.51 0.65 0.66 0.63 0.78 0.77 0.76 0.77 0.76 0.74 177

193

Stop class increases as the distance from the merge line decreases. This suggests that

predictions become more accurate for stopping vehicles closer to the merge line. The Merge

class maintains a relatively high F1 score across all distance ranges, slightly increasing as the

distance from the merge line decreases. This indicates consistent prediction accuracy for

merging vehicles, with a marginal improvement at closer ranges. A single Hazard class data

point cannot be analysed for a trend without more Hazard classified feature vectors.

Figure 82 F1 score and accuracy based on class and distance from merge line JM454

The average F1 score across classes remains relatively stable across different distances, with

a slight upward trend as the vehicle approaches the merge line. The linear trend indicates a

modest increase in overall predictive performance as the distance to the merge line

decreases. The model's performance in predicting stopping and merging behaviour improves

as vehicles approach the merge line, possibly due to more apparent feature vectors

representing the vehicle behaviours or increased data quality at closer distances.

Since the 'Hazard' class lacks multiple data points, no trend can be established, which also

means that the model's performance for hazard prediction is not well-represented in this

graph.

The overall stability of the accuracy score suggests that the model performs reasonably well

across all distances but is slightly better from 49% of the total distance to the merge line.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 s

co
re

\A
cc

u
ra

cy

Distance range from merge line

JM454: F1 score distance from merge line/Class and Accuracy

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

194

9.6 Online distance accuracy experiments for JM599, JM377 and JM384

We have evaluated the precision of predicting vehicle intentions based on their proximity to

the merge line at a single test junction. Employing the techniques described in Section 9.5,

we extended this analysis to three additional test T-junctions. We aimed to assess each

junction independently and then aggregate the data from all four junctions to assess the

system mean accuracy at each given distance range. Data is autonomously and incrementally

added to the online DYLE database during each junction experiment, sampled and verified to

correct misclassifications.

We utilise video logs to validate the autonomous predictions of vehicle intentions, from the

initial detection of the target vehicle to its eventual action at the merge line. This process

involves manually correcting misclassifications in DYLE and fine-tuning threshold settings as

needed. After these adjustments, we calculate the accuracy of the revised online DYLE

database using a k-fold cross-validation method. We subsequently verified the ground truth

actions against the predicted and at each junction using the distance ranges we established

above and used benchmark metrics to compare.

9.6.1 JM599 Online verification and distance from merge line accuracy

Once we verified the ground truth actions with the DAISY predictions using the video log of

JM599 verification partition video data and corrected the misclassifications, we carried out a

k-fold cross-validation using the now updated online DYLE, as seen in Table 46.

Table 46 Online DYLE K-fold cross-validation accuracy results with Junction JM599 feature

vectors autonomously classified and appended

The online appending of autonomously classified feature vector data using JM599 video to

DYLE has shown a slight increase in k-fold cross-validation accuracy when k = 10 and no

improvement when k = 5, as seen in Table 46. Accuracy and F1 scores are also improved, as

seen in Table 47, where we have tabulated the metrics of predictions made by DAISY from

each distance range.

K value Mean accuracy

 Online DYLE

5 0.79

10 0.83

195

Table 47 JM599 Accuracy metrics based on intent predictions made from a distance range

from the total distance to the merge line.

Figure 83. F1 score and accuracy based on class and distance from merge line for JM599

Initial discussion from the results of JM599: The Merge class consistently has the highest F1

scores across all distance ranges, indicating that the model is most accurate for this class.

Accuracy increases as the distance to the merge line decreases, suggesting that the model's

overall performance improves with a more inclusive threshold. The linear trend line of the

average F1 scores is almost flat the further from the merge line and begins to ascend as we

move towards the merge line, suggesting a relationship between the inclusivity of the distance

ranges, sub-classifications (SFpc) and the model's performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 S

co
re

\A
cc

u
ra

cy

Distance range from merge line

JM599: F1 score distance from merge line/Class and Accuracy

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

Dis_Range >= 70 >= 40 and <=69 >= 10 and <=39 <= 9

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.50 0.50 0.50 0.50 0.50 0.50 2

Merge 0.65 0.69 0.67 0.73 0.78 0.75 0.79 0.84 0.82 0.85 0.94 0.89 103

Stop 0.52 0.48 0.50 0.67 0.62 0.64 0.77 0.70 0.73 0.92 0.78 0.84 73

Accuracy 0.60 0.70 0.78 0.87 178

Macro Avg 0.39 0.39 0.39 0.47 0.46 0.46 0.69 0.68 0.68 0.76 0.74 0.75 178

W-Avg 0.59 0.60 0.59 0.70 0.70 0.70 0.78 0.78 0.78 0.88 0.87 0.87 178

196

9.6.2 JM384 Online verification and distance from merge line accuracy

Once we verified the ground truth actions with the DAISY predictions using the video log of

JM384 verification partition video data and corrected the misclassifications, we carried out a

k-fold cross-validation using the now updated online DYLE, as seen in Table 48 and compared

this to the results from the previous iteration of Online DYLE from junction JM599. We saw a

slight increase from 0.79 to 0.81 when k = 5 and no change when k = 10. An accuracy increase

when using a smaller k value may be due to reduced variance in model evaluation; with a

smaller k, each fold comprises a larger portion of the dataset. As a result, the variance in the

evaluation metric across different folds may decrease, potentially providing a more stable

estimate of model performance. However, using fewer folds can also mean that each training

dataset is smaller, potentially leading to a higher bias in the model training process because

the model is trained on a less diverse data set in each iteration.

K value Mean accuracy

 Online DYLE

5 0.81

10 0.83

Table 48 Online DYLE K-fold cross-validation accuracy results with Junction JM384 feature

vectors autonomously classified and appended

Accuracy and F1 scores are shown below for JM384, as seen in Table 49, where we have

tabulated the metrics of predictions made by DAISY from each distance range.

Table 49 JM384 Accuracy metrics based on intent predictions made from a distance range

from the total distance to the merge line. There is a clear trend of improving performance as

the distance range decreases. The Stop class is predicted with relatively high accuracy,

Dis_Range >= 70 >= 40 and <=69 >= 10 and <=39 <= 9

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Merge 0.48 0.55 0.51 0.60 0.66 0.62 0.73 0.71 0.72 0.74 0.82 0.78 38

Stop 0.71 0.63 0.67 0.79 0.73 0.76 0.84 0.84 0.84 0.90 0.83 0.86 63

Accuracy 0.60 0.70 0.79 0.82 101

Macro Avg 0.40 0.40 0.39 0.46 0.46 0.46 0.52 0.52 0.52 0.54 0.55 0.54 101

W-Avg 0.63 0.60 0.61 0.72 0.70 0.71 0.80 0.79 0.80 0.84 0.82 0.83 101

197

especially in the <= 9% range. The overall performance improves in lower ranges, similar to

the previous junction analysis. The quantity of data per class appears to impact model

performance, as seen with the Stop class.

Figure 84 F1 score and accuracy based on class and distance from merge line JM384

Initial discussion of the results from JM384: The yellow dashed line shows the overall

accuracy trend of the model. The line is relatively straight, suggesting a consistent

improvement in accuracy across distance ranges and a proportional increase in accuracy as

the distance from the merge line decreases. DAISY performs better for Stop and Merge

classes when closer to the merge line, but there is no data to analyse for the 'Hazard' class.

The accuracy improves at closer distances, as seen in the other junctions.

9.6.3 JM377 Online verification and distance from merge line accuracy

Once we verified the ground truth actions with the DAISY predictions using the video log of

JM377 verification partition video data and corrected the misclassifications, we carried out a

k-fold cross-validation using the now fully updated online DYLE, as seen in Table 50 and

compared this to the results from the updated DYLE.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 S

co
re

\A
cc

u
ra

cy

Distance range from merge line

JM384: F1 score distance from merge line/Class and Accuracy

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

198

K value Mean accuracy

 Online DYLE

5 0.83

10 0.85

Table 50 Online DYLE K-fold cross-validation accuracy results with Junction JM377 feature

vectors autonomously classified and appended

Initial result discussion based on Table 50.

From 0.81 to 0.83 with K=5 could result from the specific way the data gets split in the 5 folds,

which might result in each fold being a good representation of the overall dataset; hence, when

combined, they result in a better model. Ongoing refinement of the threshold model

parameters or adding more representative features by adding new data contribute to improved

accuracy. The increase in accuracy from 0.83 to 0.85 with k = 10 suggests that there may be

reduced variance; more folds mean that each test is less variable and potentially less biased

towards any particular subset of data, making the estimated accuracy more reliable.

The model is trained on 90% of the data each time, which might prevent overfitting compared

to training on 80% (as with K=5). Also, more folds can lead to more diverse training and

validation sets, which may help the model learn a more general pattern.

199

JM377 Accuracy and F1 scores, as seen in Table 51 and Figure 85, where we have tabulated

the metrics of predictions made by DAISY from each distance range.

Table 51 JM377 Accuracy metrics based on intent predictions made from a distance range

from the total distance to the merge line.

Figure 85 F1 score and accuracy based on class and distance from merge line JM377

DAISY struggles with accurate predictions in the range (>= 10% and <= 39%) where the

accuracy dips. JM377 is a very busy junction, with traffic held close to the merge line waiting

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 S

co
re

\A
cc

u
ra

cy

Distance range from merge line

JM377: F1 score distance from merge line/Class and Accuracy

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

Dis_Range >= 70 >= 40 and <=69 >= 10 and <=39 <= 9

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.75 1.0 0.86 0.67 0.67 0.67 3

Merge 0.58 0.58 0.58 0.69 0.70 0.70 0.68 0.78 0.72 0.76 0.84 0.79 67

Stop 0.71 0.72 0.71 0.80 0.80 0.80 0.82 0.72 0.76 0.88 0.81 0.84 88

Accuracy 0.65 0.74 0.75 0.82 158

Macro Avg 0.43 0.43 0.43 0.50 0.50 0.50 0.75 0.83 0.78 0.77 0.77 0.77 158

W-Avg 0.64 0.65 0.64 0.74 0.74 0.74 0.76 0.75 0.75 0.82 0.82 0.82 158

200

to join the major road. The range that DAISY struggles in is where traffic backs up, causing

overlapping or ambiguous cues that could indicate multiple intents. A method of alleviating this

is to pause inference when traffic is stopped, moving very slowly or backed up.

9.6.4 Online DYLE class distribution

We have now appended the previously updated DYLE from 8.6.1 with the feature vectors from

the online junction experiments to create an online DYLE constituting 99,851 feature vectors,

equating to 2,515 individually identified target vehicles. Table 52 and Figure 86 show the class

distributions and highlight the lack of Hazard classified feature vectors.

Fpc /
SFpc

Count Frequency

s_stop 21,420 21.45%

w_merge 16,056 16.08%

w_stop 15,671 15.69%

s_merge 16,194 16.22%

m_stop 14,170 14.19%

m_merge 13,751 13.77%

merge 1280 1.28%

stop 1209 1.21%

w_hazard 24 0.02%

m_hazard 28 0.03%

s_hazard 22 0.02%

hazard 26 0.03%

Table 52 Online DYLE. Figure 86 Online DYLE class frequency count

9.6.5 Analysis of the resulting metrics from the online Verification video data

We now have a comprehensive mixed junction dataset called online DYLE, consisting of

feature vectors from the initial 60% of the video data covering all junctions, designated as the

training subset. Subsequently, we incorporated a 20% segment for manual testing, followed

by the final 20% segment of video data integrated autonomously into the online pipeline. We

sampled and rectified any incorrect classifications before proceeding with a K-fold cross-

validation. Table 53 presents updated metrics for each junction and the newly compiled online

DYLE dataset; these updates are depicted in Figure 87.

201

Metric Fpc F1-Score (<=9%) Accuracy K-fold (10)

Junction Class Hazard Merge Stop
Online DYLE + Combined* 0.54 0.82 0.80 0.82 0.85

Updated DYLE + Combined* 0.67 0.83 0.84 0.83 0.81

JM377 0.67 0.79 0.84 0.82 0.85

JM384 0.0 0.78 0.86 0.82 0.83

JM599 0.5 0.89 0.84 0.87 0.83

JM454 1.0 0.82 0.64 0.76 0.82

Aggregated Training DYLE 0.79

*Combined = JM599, JM384, JM377 and JM454

Table 53 Comparison of Fpc of single junction metrics with previous DYLE iterations. Online

DYLE has the final 20% video verification data feature vectors appended.

Figure 87 K-fold training accuracy compared to ground truth F1-Score per class and overall

accuracy.

Table 53 shows the Fpc against the actual ground truth actions for each junction, with the

details found in Sections 9.5.8 and 9.6.1, .2 and.3 The initial training dataset, Aggregated

DYLE, was established in Section 7.5, while the Updated DYLE is detailed in Section 8.6.1.

Although the Online DYLE is not performing as well as the Updated DYLE iteration, it's

important to note that the latest data added to the Online DYLE was incorporated

autonomously, and samples were manually verified post-integration which demonstrates a

0 0.2 0.4 0.6 0.8 1 1.2

Hazard

Merge

Stop

Fp
c

 F
1

-S
co

re
 (

<=
9

%
)

A
cc

u
ra

c
y

K
-f

o
ld

(1
0

)

DYLE dataset iteration comparison with final ground truth
metrics

Aggregated Training DYLE JM454 JM599 JM384 JM377 Updated DYLE Online DYLE

202

positive outcome for the online pipeline in the future. Isolated examination of the Online DYLE

results reveals a promising trend, with relatively good accuracy and a good balance across F1

scores for all classes.

Figure 88 is a comparison of the latest iteration of DYLE against the previous Updated DYLE,

and it highlights the increase in the k-fold score; all junctions demonstrate steady performance

in cross-validation, especially for JM377 and JM384, which have the highest k-fold scores,

suggesting their performance is consistent across various data subsets. Accuracy measures

the proportion of true results (both true positives and true negatives) among the total number

of cases examined, and JM599 has the highest accuracy, suggesting that DAISY accurately

classifies a high percentage of instances at this junction. JM454 has the lowest accuracy,

which may indicate higher misclassifications overall. As more data is needed, we could not

thoroughly evaluate the Hazard class's accuracy and determine its impact on overall

performance. Given the live traffic setting of this study, instances of behaviour that DAISY

would categorise as a Hazard are scarce. The training data comprises approximately 1% of

the total feature vectors identified as Hazard. This scarcity of Hazard-classified examples

presents a significant challenge in conducting a comprehensive analysis.

Figure 88 Performance comparison from previous DYLE iteration for junctions JM377, JM454,

JM599 and JM384.

0 0.2 0.4 0.6 0.8 1 1.2

Hazard 1

Merge 1

Stop 1

Acc 1

K-fold (10) 1

Hazard

Merge

Stop

acc

k-fold (10)

F1 score/Accuracy/K-Fold (10) score

C
la

ss
\m

et
ri

c

Online DYLE comparision with Updated DYLE(1)

JM454 JM599 JM384 JM377

203

9.6.6 Accuracy and distance from merge line

When integrating data on distance ranges with the revised DYLE dataset to evaluate our

model's effectiveness across various junctions, we observed a more uniform categorisation of

stop and merge actions and an improvement in overall mean accuracy, in contrast to data

from isolated junctions. This data smoothing improves our ability to answer Research

Question 5 (RQ5): Can a trained machine learning model accurately predict vehicle intent at

a T-Junction using new data, and what is its effective prediction range from the junction?

Based on the data presented in Figure 89, general intent predictions regarding vehicle

behaviour improved when the vehicle was less than 40% away from the total distance to the

merge line. This level of prediction accuracy could potentially extend to class-specific intents,

such as merging, at approximately 70% distance from the merge line. However, it's important

to note that the impact of data imbalance on this predictive capability is not fully understood.

Furthermore, the analysis shows that the model's ability to predict stopping behaviour is not

as strong as its predictions for merging or responding to hazards. The model's accuracy

notably increases as the vehicle gets closer to the merge line, with a marked improvement

observed when the vehicle is 39% or less away from the merge line. Table 54 and Figure 85

show the combined metrics of the online verification experiments.

Distance Range >= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

Metric

Stop F1 0.54 0.67 0.74 0.80

Merge F1 0.61 0.70 0.77 0.82

Hazard F1 0.00 0.00 0.59 0.54

Accuracy 0.60 0.70 0.77 0.82

Table 54 Mean junction class F1 score and mean accuracy using the Online DYLE dataset

204

Figure 89 Mean F1 score and accuracy based on class and distance from merge line for the

combined junctions JM377, JM454, JM599 and JM384. The Stop F1 score is consistently the

lowest across all distance ranges, indicating that the model is less accurate at predicting stops

than Merge, which is consistently the highest, suggesting that the model is better at predicting

Merge with a high confidence level. Accuracy shows an overall positive trend, meaning that

the model's predictions become more accurate as the vehicle gets closer to the merge line.

However, a significant increase in accuracy seems to occur when the distance range from the

merge line is less than or equal to 39%. The Linear (Accuracy) trend line indicates that, on

average, accuracy improves as the vehicle gets closer to the merge line. This trend line

smooths out fluctuations in the actual accuracy data to show the general direction of change.

9.7 Balancing the Training Data

Our work developing a general T-junction dataset has produced extensive vehicle behaviour

feature data containing over 2,500 individually classified vehicles with over 99,000 classified

feature vectors. Due to the nature of our data gathering in live traffic, there is an imbalance in

our dataset. As previously discussed, we have a minority class, Hazard, and associated

Hazard SFpc, which is underrepresented in our data set online DYLE. Balancing data is crucial

in machine learning to prevent the model from being biased toward the majority class and to

improve overall performance. To address this issue before we move on to our subsequent

experiments, we use a method based on the work of (Kovács, 2019), a well-researched

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 s

co
re

\A
cc

u
ra

cy

Distance range from merge line

Combined F1 score distance from merge line/Class and
Average

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

205

method called Synthetic Minority Over-sampling Technique (SMOTE) to create synthetic

instances of the minority class.

SMOTE is a statistical technique for increasing the number of cases in your dataset in a

balanced way. SMOTE creates synthetic samples from the minor class instead of copies. For

each sample in the minority class, SMOTE finds its k-nearest neighbours (k-NN), where k is

typically a sample from the k-nearest neighbours is randomly chosen, and a synthetic sample

is created at a point along the line segment connecting the minority class sample and its

chosen neighbour. The values for the synthetic sample are interpolated between the two

existing samples. The SMOTE algorithm generates synthetic samples by interpolating

between the positive of the minority class instances in the feature space. Given a minority

class instance 𝑓𝑣𝑖 and one of its nearest neighbours 𝑓𝑣𝑛𝑛, the synthetic sample 𝑓𝑣𝑛𝑒𝑤 is

created by the following equation:

𝑓𝑣𝑛𝑒𝑤 = 𝑓𝑣𝑖 + λ ∙ (𝑓𝑣𝑛𝑛 − 𝑓𝑣𝑖) (25)

Where λ is a random number between 0 and 1.

This scalar λ, is how far the new synthetic sample is to be placed along the line segment

between 𝑓𝑣𝑖 and 𝑓𝑣𝑛𝑛 .

The value of λ is generated again for each feature in the data point, which means that the

synthetic samples can be scattered in the space around the original minority instances,

contributing to variance and potentially leading to better generalisation for DAISY trained on

this augmented dataset.

This process is repeated until the desired level of balance is reached in the dataset. For

example, if the goal is to have an equal number of instances in both classes, SMOTE would

keep generating synthetic samples from the minority class until this balance is achieved.

9.7.1 Generating new samples of Hazard class and sub-classes

We generated new samples of the Hazard class and associated sub-classes of W_Hazard,

M_Hazard and S_Hazard, which were appended to the online DYLE dataset, creating a new

dataset called SMOTE DYLE The new distribution can be seen in Table 55 and Figure 90,

where all the subclasses are now distributed more evenly. More feature vectors are generated

in the subclass (SFpc) S_Stop because vehicles in this distance zone often stop or move very

slowly, resulting in a higher volume of data processing in this zone compared to other

subclassification zones. In these other zones, vehicles tend to move more quickly and usually

206

pass through without stopping and generating multiple feature vectors over a short distance.

Fpc / SFpc Count Frequency

s_stop 21,420.00 14.52%

w_merge 16,056.00 10.89%

w_stop 15,671.00 10.62%

s_merge 16,194.00 10.98%

m_stop 14,170.00 9.61%

m_merge 13,751.00 9.32%

merge 1,280.00 0.87%

stop 1,209.00 0.82%

w_hazard 14,998.00 10.17%

m_hazard 15,897.00 10.78%

s_hazard 15,651.00 10.61%

hazard 1,196.00 0.81%

Table 55 SMOTE DYLE Figure 90 SMOTE DYLE class frequency count

SMOTE generates synthetic samples that are not duplicates of existing minority class

instances. Instead, it blends characteristics from the minority class, allowing classifiers to form

broader and less precise decision boundaries. This approach can enhance the DAISY's ability

to generalise. However, it is crucial to understand that SMOTE's effectiveness in achieving a

balanced dataset does not automatically translate to improved classifier performance. The

reason is that these synthetic samples are created within the feature space and may introduce

noise or unrepresentative patterns, not accurately reflecting the true distribution of the minority

class. Therefore, as the literature suggests, we combine SMOTE with k-fold cross-validation

to confirm that the DAISY's performance is better on new, unseen data.

9.7.2 K-Fold cross-validation of SMOTE DYLE

We apply K-fold cross-validation on the SMOTE DYLE dataset using the method outlined in

section 7.4.6.1. This procedure aimed to understand how the synthetic addition of Hazard

subclasses influences the model's predictive accuracy and to evaluate the necessity of these

additional subclasses in enhancing DAISY's predictive accuracy.

207

K value Mean accuracy

 SMOTE DYLE

5 0.86

10 0.89

Table 56 SMOTE DYLE K-fold cross-validation accuracy results with synthetic feature

vectors for Hazard sub-classes appended

Based on the K-fold cross-validation results seen in Table 56, DAISY's predictive accuracy

has improved using the SMOTE method for generating synthetic samples. The mean accuracy

of the SMOTE DYLE dataset has increased from 0.83 to 0.86 when k=5 and from 0.85 to 0.89

when k=10. The increase in mean accuracy suggests that both a higher number of folds in

cross-validation and the application of SMOTE aid DAISY are probably due to better

generalisation and handling of class imbalances. It's important to note that while increasing k

can lead to more reliable estimates of model performance, it also increases computational

cost. As discussed, adding subclasses to associate feature vectors with a ground-truth action

is one of our contributions to this thesis. Without the sub-classes, we would depend on a

prediction at the merge line, which, with the correct amount of accurately verified data, should

prove very accurate based on our findings in previous chapters. However, our goal is to predict

vehicle intent as far from the merge line as possible, and by creating associative sub-classes,

we saw that accuracy is improving now that these sub-classes are balanced.

9.7.3 Generating new samples of minority FPC classes

In SMOTE DYLE, an imbalance persists in the less frequent Fpc classes of Stop and Merge.

These classes are crucial, established based on concrete ground truths, and form the basis

for sub-class classification. Each Fpc class encapsulates a verified feature vector from a target

vehicle derived from our extensive video logs at various junctions. These feature vectors were

initially classified either manually or using DUKE, followed by verification through our video

logs. The Hazard Fpc class is also a minority class and now consists mainly of synthetically

generated feature vectors, as detailed in section 9.7.1. The next step to further balance the

dataset involves generating synthetic feature vector samples for both the Stop and Merge

classes and additional synthetic samples for the Hazard class to ensure a more uniform

distribution across all classes. We generated the new feature vectors for all the Fpc classes

using the SMOTE method above and appended them to the new Uniform DYLE dataset. From

the frequency and count details in Table 57 and Figure 91 below, we can now see a more

208

uniform distribution of the classes.

Fpc / SFpc Count Frequency

s_stop 21,420.00 11.78%

w_merge 16,056.00 8.83%

w_stop 15,671.00 8.62%

s_merge 16,194.00 8.90%

m_stop 14,170.00 7.79%

m_merge 13,751.00 7.56%

merge 12,606.00 6.93%

stop 11,999.00 6.60%

w_hazard 14,998.00 8.25%

m_hazard 15,897.00 8.74%

s_hazard 15,651.00 8.61%

hazard 13,453.00 7.40%

Table 57 SMOTE Fpc DYLE Figure 91 SMOTE Fpc DYLE class frequency count

9.7.4 K-Fold cross-validation of Uniform DYLE

We apply K-fold cross-validation on the Uniform DYLE dataset to help understand how the

synthetic addition of Fpc classes influences the model's predictive accuracy.

K value Mean accuracy

Uniform DYLE

5 0.87

10 0.91

Table 58 SMOTE DYLE K-fold cross-validation accuracy results with synthetic feature vectors

for Fpc appended

Based on the K-fold cross-validation results seen in Table 58, DAISY's predictive accuracy

has marginally improved using the SMOTE method for generating synthetic samples. The

mean accuracy of the Uniform DYLE dataset has increased from 0.86 to 0.87 when k=5 and

from 0.89 to 0.91 when k=10. Based on k= 10 with cross-validation by appending synthetic

feature vector examples created using the SMOTE method, we see the uniform DYLE has a

7.06% accuracy increase from the Online DYLE dataset.

209

Table 59 compares the DYLE datasets as synthetic data is appended.

Figure 92 Comparison of the incremental improvement of the DYLE dataset using SMOTE to

generate synthetic samples.

Our Initial analysis of the SMOTE method and results from appending synthetic data shows

that due to the Online DYLE dataset having an imbalance of classes, it appears that DAISY

tended to be biased towards the majority class, often neglecting the minority class. By creating

synthetic samples of the minority class, the class distribution is balanced. The results in Table

59 and Figure 92 suggest that DAISY can now learn more effectively from both the minority

and majority classes. This balanced learning environment allows the DAISY to understand

each class's characteristics better, leading to more accurate predictions; showing a 7%

increase in accuracy indicates that the model is now better at predicting outcomes across all

classes, not just the majority class. The overall impact of using SMOTE is a more robust and

accurate model, which is particularly important in our work, where correctly predicting the

minority class is as crucial as predicting the majority class. The results reflect the effectiveness

of SMOTE in enhancing Daisy's performance by mitigating the effects of class imbalance, as

evidenced by a measurable improvement in accuracy. However, without a ground truth

analysis, the apparent improvement in accuracy is not verified. The next step is to carry out a

K value Mean accuracy

 Online DYLE

Mean accuracy

 SMOTE DYLE

Mean accuracy

 Uniform DYLE

5 0.83 0.86 0.87

10 0.85 0.89 0.91

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92

 Online DYLE

 SMOTE DYLE

 Uniform DYLE

M
ea

n
ac

cu
ra

cy
M

ea
n

ac
cu

ra
cy

M
ea

n
ac

cu
ra

cy

K-Fold Mean Accuracy of DYLE Iterations

k=10 k=5

210

complete unseen data experiment on the entire pipeline.

9.8 Unseen data online with a new junction

In section 7.3, Table 21, we demonstrated how we partitioned our video data for training and

verification, and chapters 8 and 9 explore four of our junction video data. As detailed in 7.3,

we have a hold-back junction consisting of 119 minutes of video data reserved for when we

could apply the most accurate model and robust dataset to this video data to answer our

primary research question. (RQ6): Can a trained machine learning model accurately predict

vehicle intent at a T-Junction using new data, and what is its effective prediction range from

the junction?

Research Question 7 (RQ7): Can our online model infer and append intent predictions as

new inference data in real-time without negatively affecting the accuracy or F1 score?

9.8.1 UO196 Junction preparation

We created the optimal video (Vo) of junction UO196 as a single video file based on the

specifications discussed in Chapter 5. We use Uniform DYLE as our dataset, adjust the ground

truth junction parameters for detection zones, and merge line distance in relation to the

junction topology and camera perspective. We also adjust the threshold model from section

9.3.1 to ensure that the autonomous Fpc classification generated by DUKE and subsequent

post-Fpc classification of the SFpc class are recorded accurately during the online appending of

the classified feature vectors. As the UO196 Vo data is input into our pipeline and target

vehicles are detected and tracked, feature vectors are created, inferred, classified and

appended to DYLE in a mean time of 43 ms. The latest iteration is called Alpha DYLE and

contains Uniform DYLE data with the autonomously appended data from UO196.

9.8.2 Distribution of classes and K-fold score of Alpha DYLE

After processing all the video data through our pipeline, we created an updated version of the

Alpha DYLE dataset. This new dataset increased Uniform DYLE in size by approximately 5%

with the addition of newly classified feature vectors. Our analysis showed a modest

improvement in performance metrics, with an increase from 0.91 to 0.92 when setting k = 10.

However, there was no noticeable change in performance when k was set to 5, compared to

the results obtained with the SMOTE DYLE dataset. Furthermore, as indicated in Table 60,

introducing our online autonomous data appending approach did not negatively affect the

dataset's quality or integrity.

211

K value Mean accuracy

 Alpha DYLE

5 0.87

10 0.92

Table 60 Alpha DYLE K-fold cross-validation accuracy results with synthetic feature vectors

for Fpc appended

The class distribution of Alpha DYLE can be seen in Table 61 and visually in Figure 93.

Fpc / SFpc Count Frequency

s_stop 23,458 12.24%

w_merge 17,687 9.22%

w_stop 17,302 9.02%

s_merge 17,621 9.19%

m_stop 15,495 8.08%

m_merge 15,280 7.97%

merge 12,722 6.64%

stop 12,118 6.32%

w_hazard 15,018 7.83%

m_hazard 15,912 8.30%

s_hazard 15,662 8.17%

hazard 13,455 7.02%

Table 61 Alpha DYLE Figure 93 Alpha DYLE class frequency count

Figure 89 shows that the class distribution of Alpha DYLE has remained intact during the

addition of autonomous feature vectors from junction UO196.

9.8.3 Accuracy and F1 score based on UO196 video log ground truths

The K-fold score for the Alpha DYLE model remained broadly consistent, prompting us to

conduct a thorough validation through video log ground truth verification. Additionally, we

recorded the DAISY predictions at various distance zones, enabling us to gather performance

indicating data on accuracy and F1 scores from all distance zones and the Fpc, as detailed in

Table 62 and illustrated in confusion matrixes in Figures 94-96 inclusively.

212

Accuracy and F1 scores are shown in Table 62 and Figure 98, where we have tabulated the

metrics of predictions made by DAISY from each distance range.

 Figure 94 UO196 Confusion matrix

 >= 70% Zone

i

g

u

r

e

9

3

C

o

n

f

u

s

i

o

n

m

a

t

r

i

x

F

p

c

<

=

9

%

z

o

n

e

Figure 97 UO196 Confusion matrix Fpc

 <=9% zone

 Figure 96 UO196 Confusion matrix

 >= 10% and <=39% zone

i

g

u

r

e

9

3

C

o

n

f

u

s

i

o

n

m

a

t

 Figure 95 UO196 Confusion matrix

>= 40% and <=69% zone

i

g

u

r

e

9

3

C

o

n

f

u

s

i

o

n

m

a

t

r

i

x

F

p

c

<

=

9

%

z

o

n

e

213

Table 62 Accuracy metrics based on intent predictions made from a distance range from the

total distance to the merge line using unseen data from UO196

Initial discussion of results from experiments using UO196:

Table 62 shows the Metrics Precision (Pr), Recall (Re), F1-Score (F1), and Quantity (Qty) at

the Discrimination distance ranges as a total distance from the merge line., and the accuracy

of DAISY prediction based on Fpc at the given distance.

>= 70%

>= 40% and <= 69%

>= 10% and <= 39%

<= 9%

Hazard: Low sample size (Qty = 2), potentially leading to less reliable metrics. Consistent F1

scores across different discrimination ranges but low precision in the 40-69% range.

Merge: Largest sample size (Qty = 116), providing more reliable metrics. Generally, higher

scores in higher discrimination ranges indicate better performance as the discrimination

threshold increases.

Stop: The sample size is similar to Merge (Qty = 119) and consistently increases all metrics

as the discrimination threshold increases.

DAISY Overall Performance: Accuracy: Increases with higher discrimination thresholds, from

0.68 to 0.86.

Macro Average: Considers each class equally and shows a general improvement in metrics

with higher discrimination thresholds.

Weighted Average (W-Avg): Accounts for class imbalance and mirrors the trend in accuracy,

improving as discrimination thresholds increase. Precision, recall, and F1-score are

consistently higher in the <= 9% discrimination range. Due to its low quantity, the Hazard class

required more instances to ascertain its true performance. For the "Merge" and "Stop" classes,

there is a clear trend of improvement in model metrics with the increase in discrimination

threshold.

Dis_Range >= 70 >= 40 and <=69 >= 10 and <=39 <= 9

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty

Hazard 1.0 0.5 0.67 0.33 0.5 0.4 1.0 0.5 0.67 1.0 0.5 0.67 2

Merge 0.68 0.64 0.66 0.73 0.70 0.71 0.79 0.79 0.79 0.85 0.85 0.85 116

Stop 0.67 0.71 0.69 0.72 0.74 0.73 0.80 0.81 0.80 0.86 0.87 0.86 119

Accuracy 0.68 0.72 0.80 0.86 237

Macro Avg 0.78 0.62 0.67 0.59 0.65 0.61 0.86 0.70 0.75 0.90 0.74 0.79 237

W-Avg 0.68 0.68 0.67 0.72 0.72 0.72 0.80 0.80 0.80 0.86 0.86 0.86 237

214

Figure 98 Mean F1 score and accuracy based on class and distance from merge line UO196. DAISY

trained on Alpha DYLE demonstrates robustness in F1 scores across different distance discrimination

thresholds for the Stop and Merge classes. There is a steady increase in overall accuracy as the

distance discrimination threshold decreases. The hazard class does not have enough representative

samples to analyse.

9.8.4 Comparison of results from Alpha DYLE + UO196 and other DYLE iterations

Metric Fpc F1-Score (<=9%) Accuracy K-fold (10)

Junction Class Hazard Merge Stop

Alpha DYLE + UO196 0.67 0.85 0.86 0.86 0.92

Online DYLE + Combined* 0.54 0.82 0.80 0.82 0.85

Updated DYLE + Combined* 0.67 0.83 0.84 0.83 0.81

Aggregated Training DYLE 0.79

Uniform DYLE (SMOTE) 0.91
*Combined = JM599, JM384, JM377 and JM454

Table 63 Comparison of Fpc of single junction metrics with previous DYLE iterations. Uniform

DYLE has been balanced with SMOTE-created feature vectors.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 s

co
re

\A
cc

u
ra

cy

Distance range from merge line

UO196 F1 score distance from merge line/Class and Average

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

215

Figure 99 K-fold score, accuracy compared to ground truth Fpc and F1-Score per class and

overall

9.9 Chapter conclusion

This chapter demonstrates the methods and methodologies we used to conduct a

comprehensive interactive series of experiments to answer the following research questions.

Research Question 6 (RQ6): Can a trained machine learning model accurately predict

vehicle intent at a T-Junction using new data, and what is its effective prediction range from

the junction?

Research Question 7 (RQ7): Can our online model infer and append intent predictions as

new inference data in real-time without negatively affecting the accuracy or F1 score?

We progressively trained, evaluated and improved our dataset DYLE using our experimental

junction video data and created a dataset called Alpha DYLE. We then processed our hold-

back junction video data from UO196, which had not been used in our training series of

experiments and passed this video through our entire pipeline. RQ6 focuses on two interlinked

components from our final results:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Hazard

Merge

Stop

Fp
c

 F
1

-S
co

re
 (

<=
9

%
)A

cc
u

ra
cy

K
-f

o
ld

(1
0

)
DAISY Performance with iterations of DYLE based on Fpc and

K-fold

Uniform DYLE (SMOTE) Aggregated Training DYLE Updated DYLE + Combined*

Online DYLE + Combined* Alpha DYLE + UO196

216

1) Accuracy of intent prediction: Our results show that Alpha DYLE has a k-fold (k=10) of 0.92

and a ground truth average of 0.82 for Fpc classifications on new unseen data.

2) What is the effective prediction range from the junction? We demonstrated that the effective

prediction range increases as the target vehicle approaches the merge line. Accuracy

improves from less than 40% of the total distance from the merge line.

RQ7 focuses on the impact of autonomous appending and inferring from new data; our results

showed an improvement in Fpc F1 scores for Stop and Merge, K-fold score and overall

accuracy with no detrimental effect.

Our Contribution in this Chapter.

A quantitative examination of how accurately DAISY, trained on progressively larger datasets,

can predict driver intentions and determine the practical distance from the junction at which

predictions remain viable. This exploration contributes to understanding the limits and

capabilities of machine learning in the context of driver behaviour prediction at critical road

intersections.

Creating and evaluating an online model capable of inferring and appending new data in real

time while maintaining base accuracy and F1 score.

217

Chapter 10: Conclusion and Future Work

This chapter provides a comprehensive overview of how each section in this thesis plays a

pivotal role in addressing the fundamental questions that drove this research. By leveraging

the knowledge acquired from preceding chapters, we illuminate the contributions to answering

the main research questions.

To address our core questions, we embarked on creating an experimental pipeline. The

chapters in this thesis collectively delineate the evolution of a pipeline designed to explore

predicting vehicle intent at T-junctions. This pipeline is established in 2d video-derived feature

vectors, emphasising key aspects such as dataset creation, model training, and real-time

prediction capabilities.

10.1 Thesis summary

Chapter 2 This chapter delves into the concept of vehicle intent prediction, which is pivotal for

forecasting future actions or movements of vehicles in various scenarios, such as navigating

intersections or traffic or during autonomous vehicle operations like lane changes. The term

"vehicle intent" is preferred over "driver intent" to focus on the vehicles' dynamics, whether

controlled by humans or autonomously.

Our review combines computer vision and machine learning with sensor data analysis—

employing 2D and 3D cameras, radar, Lidar, and GPS—to understand the vehicle's

environment and movements. Machine learning models leverage this data, historical trends

and behavioural modelling of human driving habits to predict future actions. This predictive

framework also integrates environmental factors, such as road conditions and nearby traffic,

offering a holistic approach to anticipating vehicle behaviour and enhancing road safety and

efficiency.

We found that the advantages of these technologies include their consistency, reliability, and

ability to process large volumes of data without fatigue, contrasting with human susceptibilities

to distraction and emotional factors. Machine learning models also have the potential to learn

and improve over time, possibly exceeding human prediction accuracy.

However, challenges remain, particularly in interpreting complex human behaviours,

situational awareness, and ethical considerations in critical decision-making scenarios.

Despite these hurdles, vehicle intent prediction aims to match or surpass human capabilities

in predicting vehicle actions, contributing significantly to road safety and the advancement of

autonomous vehicle technologies.

Chapter 3 describes the creation of a data-rich video dataset for unsignalised UK T-junctions

218

to extract accurate vehicle feature vectors. The methodologies used to craft the dataset are

explained, setting the stage for subsequent chapters focusing on object detection,

classification, and prediction of driver intent. We emphasise the importance of setting a

standard point of view for processing 2D videos and the necessity for meticulous camera

placement from all junctions during recording to maintain a robust dataset.

Chapter 4 addresses Research Question 1, examining the impact of a specialised dataset on

the real-time performance of object detection and classification. Contributions include

quantitative comparisons of YOLOv5 and Faster R-CNN models using the video dataset and

constructing a target-based vehicle image dataset. Our tailored dataset slightly enhanced the

confidence in vehicle detection, as shown in the copy of Table 9 below from our video data.

This demonstrates that training for a specific object detection task can be enhanced through

transfer learning. We utilised COCO as a foundational dataset in our instance and transferred

our specialised image training data as weights to the YOLOv5m model. Ultimately, this results

in more accurate ground truth observations throughout the object detection and classification,

reducing computational power waste associated with false positives.

Model YOLOv5 m Benchmark mAP With our dataset, mAP

mAP 0.5 0.45 0.45

mAP 0.5 0.95 0.64 0.65

Class Confidence cars (tab 3) using Bo video. 0.91 0.93

Copy of Table 9 (4.5.3). Post-training evaluation metrics for transfer learning using YOLOv5 m with IoU 0.5

Chapter 5, Research Question 2, explores how pixel density and frame rate variations affect

real-time object detection and classification models. The chapter reveals the relationship

between data quantity, computational resource requirements, and the neural network's

performance. An optimal model and input specification are identified for efficiently capturing

vehicle features and generating feature vectors. We observed that a deep neural network like

YOLOxl achieves accurate vehicle classifications with high-resolution images at a high frame

rate. Conversely, a small neural network like YOLOn, when given low-resolution images at a

low frame rate, tends to produce inconsistent predictions or entirely miss vehicle detections.

Our model needs to fall between these two points. We pinpointed a model and input

specification by conducting iterative experiments that struck the right balance, swiftly capturing

the required vehicle detail within our existing models' constraints.

Chapter 6 introduced an advanced approach to extracting feature vectors from 2D video data,

addressing Research Question 3: Is obtaining accurate pixel-level features from dynamic

vehicles that closely match ground truth data feasible? The data presented in Table 17 below

219

indicates that the feature values derived from DUKE do not exhibit significant statistical

variance when compared to our ground truth data.

Data Mean Velocity

px/ms

Vel

(p-value)

Vel

(SD)

vel

Mean

Acc

px/ms2

Acc

(p-value)

Acc

(SD)

vel

Distance

px

Mean

Area

px2

Acc

(p-value)

Acc

(SD)

vel

DUKE 0.93 0.18 0.19 0.28 0.09 0.09 893 8370 683 716

Ground Truth 1.06 0.17 0.2 0.33 0.09 0.09 963 8259 679 705

Copy of Table 17 compares manually gathered ground truth data with the 2D-pixel features obtained through DUKE.

While promising, we concluded that further refinement of the feature data was necessary to

enhance quality and reliability before training and testing the prediction model.

Chapter 7 discussed approaches to generating credible training data in the form of feature

vectors and arrays. The chapter also explores the generality of feature vectors across different

experimental T-junctions. It introduces the concept of organising and classifying discrete

vehicle feature vectors as feature vector arrays to classify all target vehicle data from initial

detection to merge line prediction. Chapter 7 addressed RQ4: Can our feature vectors'

inherent generality be observed per the consistent camera positioning hypothesis?

The final results from the copy of Table 32 below demonstrate an improvement when DYLE is

trained by transferring data from multiple junctions into a single dataset.

K-
value

K-fold cross-validation means Accuracy

JM599 JM377 JM454 JM384
Aggregated

DYLE

5 0.69 0.72 0.68 0.71 0.77

10 0.74 0.73 0.74 0.71 0.79

Copy of Table 32 K-fold cross-validation means Accuracy for different datasets.

In conclusion, the analysis of feature vectors within the context of the consistent camera

positioning hypothesis indicates a positive correlation between the standardisation of data

collection methods and the enhancement of model performance. Specifically, employing a

consistent point of view (POV) and camera angle across various data collection points enables

the aggregation of higher-quality data, as evidenced by the improved aggregated DYLE scores

for K=5 and K=10 compared to individual mean accuracies. This suggests that such a

standardised approach facilitates the use of data from a single junction for training across

multiple junctions and significantly contributes to achieving superior overall performance in

data analysis and model training.

220

Chapter 8 reviews the updated DYLE dataset, noting improvements in composition and

balance due to new manually classified ground truth data. In this chapter, we examined

Research Question 5 RQ5: How accurately can a machine learning model, utilising 2D video-

derived feature vectors, predict a vehicle's intention at a T-junction?

Based on the data presented in the copy of Table 41, it's evident that the Updated DYLE

dataset demonstrates consistent performance across various classifications, with F1-Scores

between 0.67 and 0.84 and a peak Accuracy of 0.83. This indicates that our machine learning

model, DAISY, is performing well, achieving an accuracy of 0.83 despite the limited data

available. This also enabled us to advance in completing the pipeline, ensuring we established

a solid foundation in our machine-learning methodology.

Metric F1-Score Accuracy K-fold (10)

Junction Class Hazard Merge Stop

Updated DYLE 0.67 0.83 0.84 0.83 0.81

JM377 0.5 0.79 0.8 0.79 0.73

JM384 0.5 0.8 0.76 0.77 0.71

JM599 0.8 0.82 0.87 0.84 0.74

JM454 0 0.71 0.76 0.74 0.74

Aggregated Training DYLE 0.79

Copy of Table 41 Comparison of single and combined junction and DYLE dataset accuracy

metrics.

Chapter 9 details experiments addressing Research Questions 6 and 7. Results show that

the online model, DAISY, can accurately predict driver intentions at a T-junction, with an

effective prediction range increasing as the target vehicle approaches the merge line. The

chapter contributes to understanding the limits and capabilities of machine learning in

predicting driver behaviour at critical road intersections. RQ6: Can a trained machine learning

model accurately predict vehicle intent at a T-Junction using new data, and what is its effective

prediction range from the junction? We achieved an accuracy of intent prediction of k-fold

(k=10) of 0.92 and a ground truth average of 0.82 for Fpc classifications on new unseen data,

and we demonstrated that the effective prediction range increases as the target vehicle

approaches the merge line. Accuracy improves from less than 40% of the total distance from

the merge line.

RQ7: Can the online model infer and append intent predictions as new inference data in real-

time without negatively affecting the Accuracy or F1 score? We found a positive impact of

autonomous appending to DYLE and inferring from new data; our results showed an

improvement in Fpc F1 scores for Stop (0.86) and Merge (0.85), K-fold score (0.92) and overall

221

Accuracy (0.86) with no detrimental effect to the DYLE data.

10.2 Research questions discussed

With an overview of the whole thesis, we can now return to my initial research questions.

The overarching question was:

How effectively can computer vision and machine learning methods be utilised to predict the

intentions of vehicles at T-junctions in real-time, and to what degree of Accuracy and

effectiveness can these predictions be achieved?

We then dissected this question into eight focused research questions; the first key question

was.

How does employing a constrained and focused dataset affect the real-time performance of

object detection and classification? We discovered that, as expected, there was no significant

change in detection accuracy mAP, as we were creating additional vehicle class data and not

a new dataset. However, the class confidence increased, demonstrating an improvement in

real data predictions when using our video dataset and suggesting that a focused dataset

could improve the performance. However, further tests and model training will yield a more

conclusive answer.

The second question was in relation to our choice of the YOLO model and the relationship

between performance and input values. Considering the neural network's characteristics in

use, how do pixel density and frame rate variations affect real-time object detection and

classification models? We discovered a well-defined relationship between the quantity of data

and the computational resource requirements for our vehicle detection and classification

model. It became evident that an extensive neural network, such as YOLOxl, delivers

accurate vehicle classifications when provided with high-resolution images at a high frame

rate. In contrast, a simple neural network, such as YOLOn, fed low-resolution images at a low

frame rate either exhibits erratic predictions or fails to detect vehicles. The YOLO models we

experimented with were trained using transfer learning and our focused dataset from the

previous question.

The third question queried the efficacy of obtaining accurate pixel-level features from dynamic

vehicles that closely match ground truth data. Is obtaining accurate pixel-level features from

dynamic vehicles that closely match ground truth data feasible? Our original approach to

deriving meaningful features from two-dimensional 2D video data closely aligns with the

ground truth data. The quality of our feature vectors hinged on the experiments undertaken

in assessing YOLO models in the previous question. We obtained ground truth-based

222

accurate vectors in real-time by selecting a YOLO model with accuracy and inference time

performance.

The fourth question examined the extent of our model's generalisation; the model's ability to

infer from all our tesT-junctions is based on standardising recording settings. Can our feature

vectors' inherent generality be observed per the consistent camera positioning hypothesis?

The results from the aggregated dataset indicate an observable degree of generality in our

data, as evidenced by an increase in mean Accuracy. Despite variations in the perspective of

the merge line due to differences in camera placement angles at each junction, our model

demonstrated the ability to recognise features from distincT-junctions and successfully apply

them to other junctions.

The fifth question assessed the above components at a single experimental junction before

moving to the remaining junctions. How accurately can a machine learning model, utilising

2D video-derived feature vectors, predict a vehicle's intention at a T-junction? We have shown

reasonable Accuracy using data from a single junction, achieving an F1 score of 0.87 for the

Stop class and 0.82 for the Merge class at JM599.

 By amalgamating ground truth data and manually incorporating newly classified data, we

observe enhanced k-fold cross-validation, resulting in higher F1 scores than the averages for

individual junctions. The accuracy level stands at 0.83 at the end of these experiments.

Question 6 explored the real-world testing on new unseen data. We found that DAISY could

predict unseen data with an accuracy of 0.82 and that Accuracy deteriorated from distances

>40% from the merge line. Question 7 focused on the effect of self-learning the autonomous

appending of intent classifications, and we found a positive impact with no detrimental effect

on the DYLE data.

10.3 Comparison with current state of the art real time intent prediction

Key Metrics for Comparison:

1. Accuracy: The proportion of correct predictions made by the model.

2. Precision and Recall: Precision measures the accuracy of positive predictions, while

recall measures the ability to identify all relevant instances.

3. F1-Score: The harmonic mean of precision and recall, providing a single metric for

overall performance.

4. Latency: The model's time to process input data and produce predictions.

5. Robustness: The model's ability to handle diverse and unseen driving scenarios.

6. Scalability: How well the model performs with increasing data and complexity.

223

Current State-of-the-Art Models:

ChauffeurNet (Waymo):

Description: A deep learning approach is used to predict the behaviour of surrounding vehicles.

It employs a combination of LSTM and convolutional neural networks (CNNs) for

spatiotemporal processing.

Performance: High accuracy and robustness in diverse urban environments.

Challenges for Comparison: Waymo's extensive proprietary dataset and highly optimized

hardware make direct comparisons challenging.

Tesla Autopilot:

Description: Uses a suite of cameras, radar, and ultrasonic sensors, along with neural

networks, to predict vehicle actions and navigate complex environments.

Performance: Demonstrates high accuracy in many driving scenarios with rapid updates via

over-the-air improvements.

Challenges for Comparison: Proprietary data and frequent updates mean performance metrics

are continuously evolving, making static comparisons difficult.

NVIDIA Drive:

Description: Utilizes deep neural networks for vehicle intent prediction, leveraging high-

performance GPUs for real-time processing.

Performance: Known for low latency and high processing power, it is suitable for real-time

applications.

Challenges for Comparison: Requires significant computational resources, which may not be

directly comparable to DAISY's implementation.

Mobileye (Intel):

Description: Uses computer vision and machine learning algorithms to predict vehicle intents.

Focuses on providing real-time predictions using efficient processing techniques.

Performance: High accuracy in detecting and predicting vehicle behaviour, with a focus on

scalability.

Challenges for Comparison: Mobileye's system architecture and proprietary datasets can

make direct performance comparisons complex.

Performance Comparison:

DAISY vs. ChauffeurNet (Waymo):

• Accuracy: DAISY demonstrates comparable accuracy but may slightly lag due to

Waymo's extensive dataset.

• Latency: DAISY's real-time processing capabilities are competitive, though Waymo

benefits from specialized hardware.

• Robustness: Both systems handle urban environments well, but Waymo has the

advantage of more comprehensive data.

224

DAISY vs. Tesla Autopilot:

• Accuracy: DAISY's accuracy in predicting vehicle intents is similar, but Tesla's frequent

updates provide a continuously improving model.

• Latency: Both systems are designed for real-time operation, with comparable latency.

• Scalability: DAISY may have an edge in scalability due to its modular approach,

whereas Tesla's proprietary system may be more optimized for specific hardware.

DAISY vs. NVIDIA Drive:

• Accuracy: Comparable accuracy, but NVIDIA's system may have higher precision due

to its extensive hardware acceleration.

• Latency: NVIDIA likely has lower latency due to GPU acceleration, though DAISY is

competitive with efficient algorithm design.

DAISY vs. Mobileye:

• Accuracy: DAISY and Mobileye show similar levels of accuracy, with Mobileye possibly

having a slight edge due to its specialized vision algorithms.

• Latency: Both systems are designed for low latency, making them suitable for real-time

applications.

• Scalability: DAISY's approach may offer better scalability due to its emphasis on

modularity and extensibility.

Systematic Differences Affecting Direct Comparison:

Datasets:

Proprietary Data: Many state-of-the-art models use proprietary datasets that are not publicly

available, making direct comparisons difficult.

Data Diversity: Differences in the diversity and volume of training data can significantly impact

model performance.

Hardware:

Specialized Hardware: Some systems benefit from specialized hardware (e.g., NVIDIA's

GPUs), which may not be directly comparable to the hardware used by DAISY.

Optimization: Hardware-specific optimizations can lead to performance differences that are

not solely due to the algorithm.

Algorithm Complexity:

Model Architecture: Variations in model architecture (e.g., LSTM vs. CNN) can lead to

differences in performance metrics.

Feature Engineering: Different feature extraction and engineering approaches can impact

model accuracy and latency.

Real-Time Capabilities:

Processing Speed: Differences in processing speed due to algorithm efficiency and hardware

can affect real-time performance.

225

Latency Requirements: Varying latency requirements for different applications (e.g., highway

driving vs. urban environments) can influence model comparisons.

Comparing DAISY with state-of-the-art vehicle intent prediction models reveals that while

DAISY is competitive in accuracy, latency, and robustness, systematic differences such as

datasets, hardware, and algorithm complexity make direct comparisons challenging.

Nonetheless, DAISY's real-time processing capabilities, modular design, and focus on

scalability position it as a strong contender in autonomous vehicle intent prediction.

Gap Analysis: Identifying Opportunities for Contribution

Compared with state-of-the-art vehicle intent prediction models, several gaps and

opportunities for contribution emerge.

Real-Time Processing Efficiency:

Gap: While existing models like ChauffeurNet and Mobileye demonstrate high accuracy, their

real-time processing efficiency may vary due to hardware optimisation and algorithmic

complexity differences.

Contribution: This thesis optimises real-time processing efficiency in DAISY, ensuring rapid

prediction of vehicle intents without compromising accuracy. By leveraging efficient algorithms

and hardware-agnostic design principles, DAISY aims to excel in accuracy and low-latency

processing.

Scalability and Adaptability:

Gap: Current models may lack scalability or adaptability, limiting deployment across diverse

platforms and environments.

Contribution: This thesis emphasises DAISY's modular and scalable design, enabling

seamless integration into various autonomous vehicle systems and hardware configurations.

By addressing scalability challenges and ensuring adaptability to evolving technological

landscapes, DAISY aims to set a new standard for versatility in real-time intent prediction

models.

This thesis bridges existing gaps in real-time vehicle intent prediction by addressing

processing efficiency, scalability, robustness, and sensor integration challenges. Through the

development and optimisation of DAISY, this research contributes to advancing autonomous

driving technologies, particularly in enhancing safety, reliability, and adaptability in real-world

driving scenarios. By focusing on these critical areas of improvement, this thesis aims to

establish DAISY as a benchmark for future developments in vehicle intent prediction, setting

new standards for efficiency, scalability, and robustness in autonomous vehicle systems.

226

10.4 Discussion and future work

Impact of a Constrained Dataset on Real-time Performance: It was found that focusing on

creating additional vehicle class data without forming a new dataset did not significantly

change the detection accuracy (measured by mean Average Precision, mAP) but did increase

class confidence. This implies that a dataset with a narrower focus could potentially improve

performance. By gathering training images of vehicles from our point-of-view perspective and

initially using a dataset specifically tailored to vehicles instead of a broad object dataset (such

as COCO) for transfer learning, we can establish the foundational step towards creating a

more targeted image training dataset.

YOLO Model Performance Analysis: This thesis revealed a clear relationship between data

quantity, computational resources, and model performance. New improved YOLO versions

are becoming available every year, and the next step would be to integrate YOLOv6, 7 and 8

into DUKE and repeat the analysis undertaken in Chapter 5 to define the performance of each

model.

 Accuracy of Pixel-level Features from Dynamic Vehicles: This thesis demonstrated the

feasibility of obtaining accurate pixel-level feature vectors from dynamic vehicles that align

closely with ground truth data, especially when using a suitably accurate and efficient YOLO

model. Combining an updated focused image dataset and an updated YOLO model may

increase inference rate and Accuracy performance, allowing for a deeper neural network for

tracking.

Model Generalisation Across T-junctions: The model showed an ability to generalise

across differenT-junctions, as indicated by increased mean Accuracy. This was attributed to

the consistent camera positioning, suggesting the model could recognise and apply features

from various junctions. This raises the question of how much data is required from discrete

junctions to generalise across any T-junction in the UK?

Future work will entail the collection of video data from another selection of experimental

junctions and the amalgamation of all our test data to infer unseen junction data.

Real-world Testing on Unseen Data: DAISY demonstrated the ability to predict unseen data

accurately. However, Accuracy decreased for data captured in relation to greater distances

from the merge line. Future work would remove the constraints of real-time inference to focus

solely on intent prediction accuracy at varying distances from the merge line and then build

the pipeline around a solid accuracy base.

227

We would experiment with the following models: GPT (Generative Pre-trained Transformer)

Series. OpenAI's GPT series (Roumeliotis and Tselikas, 2023), especially the latest iterations

like GPT-4, offer highly accurate predictions for a range of NLP tasks, including intent

detection; this could be applied to our feature vector arrays. Their ability to generate human-

like text makes them suitable for complex intent understanding. LSTM networks are

particularly effective for sequence prediction problems, making them ideal for applications

where intent needs to be inferred from a sequence of actions. CNNs for Image-Based Intent

Prediction In contexts where the intent is derived from visual cues, such as predicting the

intent of a vehicle in autonomous driving, CNNs have been highly effective due to their ability

to extract features from images; we would experiment with combining detection, classification

and intent prediction into a single shot CNN.

CRF (Conditional Random Fields) combined with RNNs for sequence labelling tasks (Leevy,

Khoshgoftaar and Villanustre, 2020) where context is crucial for predicting the intent,

combining CRFs with RNNs or LSTMs has proven to be highly effective, offering a balance

between understanding sequence context and making accurate predictions. Transformer-

based models for Multimodal Intent Prediction Models like ViLBERT (Vision-and-Language

BERT) (Hong et al., 2020) that utilise the transformer architecture to process both text and

visual input have shown high Accuracy in predicting intent where visual cues and textual

information are essential.

Self-learning and Intent Classification: We introduced a self-learning mechanism for

appending intent classifications and enriching live training data that showed a positive impact

without harming the data quality. Future work would involve collecting data from a static site

on a 24-hour basis to generate sufficient data to assess the impact of the self-learning

mechanism.

Continuous Improvement

Feedback Loop for Safety Enhancements: The vehicle intent model can continuously learn

from new data, improving its predictions over time. This dynamic improvement ensures that

the safety layer it represents becomes more effective as more data is collected and analysed.

10.5 Future work: The Swiss cheese model of safety

Integrating a vehicle intent model, particularly in the context of motorcycle safety aT-junctions,

can significantly contribute to the Swiss Cheese safety model (Akuh and Atombo, 2019) by

adding an innovative layer of defence against accidents.

Our vehicle intent prediction model serves as an early warning system, predicting potential

228

conflicts before they occur. By understanding the likely actions of vehicles at T-junctions, the

system can alert riders and drivers to possible hazards, allowing for preemptive action.

This can be integrated with traffic signals and control systems; our vehicle intent prediction

model can optimise traffic flow, reducing the chances of accidents by managing vehicle

movements more effectively.

 For motorcycles, integrating intent prediction models into Advanced Rider Assistance

Systems (ARAS) can enhance the functionality of these systems, providing riders with real-

time information about the intentions of surrounding vehicles, thereby allowing for safer

navigation through junctions. By providing alerts to riders and drivers about the predicted

movements of other vehicles, our model directly addresses human errors, such as failure to

notice an approaching vehicle or misjudging its speed and direction.

The insights gained from the vehicle intent model can be used to develop better training

materials and simulations, teaching riders and drivers about common risk patterns at T-

junctions and how to avoid them. Data and insights from our model can inform more effective

traffic policies and junction designs that inherently reduce conflict points and improve safety

for all road users, especially vulnerable ones like motorcyclists.

By providing a predictive capability, our vehicle intent model fills gaps that other safety

measures might not address, such as unpredictable human behaviour or the limitations of the

physical infrastructure to enforce safe interactions.

Other practical use considerations.

Traffic Management Systems:

Utilising aggregated intent prediction data from multiple vehicles to optimize traffic flow and

reduce congestion.

Benefit: More efficient traffic management, leading to reduced travel times and lower

emissions.

Challenge: Collecting and processing large volumes of data in real-time while maintaining

privacy and security.

Fleet Management:

Enhancing the management of commercial vehicle fleets by predicting vehicle behaviour and

optimizing routes.

Benefit: Improved efficiency and safety of fleet operations, leading to cost savings and better

service quality.

Challenge: Integrating predictive systems with existing fleet management software and

ensuring scalability.

Smart Infrastructure:

Integrating intent prediction with smart city infrastructure, such as connected traffic lights and

229

road signs.

Benefit: Enhancing infrastructure responsiveness to real-time traffic conditions, improving

overall urban mobility.

Challenge: Coordinating between various stakeholders (e.g., municipalities, tech providers)

and ensuring interoperability of systems.

Driver Training and Simulation:

Using intent prediction models in driving simulators for training new drivers or assessing driver

behaviour.

Benefit: Providing realistic and challenging scenarios for training, leading to better-prepared

drivers.

Challenge: Develop high-fidelity simulation environments that accurately reflect real-world

driving conditions.

Emergency Response:

Assisting emergency vehicles in navigating traffic by predicting the actions of surrounding

vehicles.

Benefit: Faster and safer routes for emergency responders, potentially saving lives.

Challenge: Ensuring that prediction models can handle the unique dynamics of emergency

scenarios.

Future Outlook:

As vehicle intent prediction systems like DAISY evolve, their integration into various aspects

of transportation and urban mobility is expected to grow. The potential for these systems to

enhance safety, efficiency, and overall user experience is significant. However, achieving this

potential requires addressing the technical, operational, and regulatory challenges associated

with their implementation. By focusing on these areas, we can pave the way for more

intelligent and responsive transportation systems in the future.

10.5.1 Contribution to the Swiss Cheese Model for Motorcycle Safety

Integrating a vehicle intent model into motorcycle safety strategies represents a proactive and

dynamic approach to safety. It does not rely solely on reactive measures (e.g., helmets,

protective gear) or static infrastructure (e.g., road signs, physical barriers) but adds a

sophisticated layer that actively predicts and mitigates risks. In the context of the Swiss

Cheese Model, it is a layer that not only enhances the effectiveness of existing layers but also

evolves to address emerging safety challenges, making it a valuable addition to the

multifaceted approach required for improving road safety, particularly aT-junctions where the

interaction dynamics are complex, and the stakes are high.

230

Bibliography

A2D2 (2022). Driving Dataset. [online] a2d2.audi. Available at:

https://www.a2d2.audi/a2d2/en.html.

Afifah, F., Guo, Z. and Abdel-Aty, M. (2023). System-level impacts of en-route information

sharing considering adaptive routing. Transportation Research Part C: Emerging

Technologies, 149(104075), p.104075. doi:https://doi.org/10.1016/j.trc.2023.104075.

Akhtar, N. and Ragavendran, U. (2019). Interpretation of intelligence in CNN-pooling

processes: a methodological survey. Neural Computing and Applications, 32.

doi:https://doi.org/10.1007/s00521-019-04296-5.

Akuh, R. and Atombo, C. (2019). Road Transport Accident Analysis from A System-Based

Accident Analysis Approach Using Swiss Cheese Model. International Journal of Engineering

Education, 1(2), pp.99–105. doi:https://doi.org/10.14710/ijee.1.2.99-105.

Amini, E., Omidvar, A. and Elefteriadou, L. (2021). Optimizing operations at freeway weaves

with connected and automated vehicles. Transportation Research Part C: Emerging

Technologies, 126(126), p.103072. doi:https://doi.org/10.1016/j.trc.2021.103072.

Ammar Al-Taie, Yasmeen Abdrabou, Shaun Alexander Macdonald, Pollick, F.E. and

Brewster, S. (2023). Keep it Real: Investigating Driver-Cyclist Interaction in Real-World

Traffic. Enlighten: Publications (The University of Glasgow), (769).

doi:https://doi.org/10.1145/3544548.3581049.

Ayush Dodia and Kumar, S. (2023). A Comparison of YOLO Based Vehicle Detection

Algorithms. IEEE. doi:https://doi.org/10.1109/icaia57370.2023.10169773.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y. (2020). YOLOv4: Optimal Speed and Accuracy

of Object Detection.

Chai, J., Zeng, H., Li, A. and Ngai, E.W.T. (2021). Deep learning in computer vision: A critical

review of emerging techniques and application scenarios. Machine Learning with Applications,

p.100134. doi:https://doi.org/10.1016/j.mlwa.2021.100134.

https://www.a2d2.audi/a2d2/en.html
https://doi.org/10.1016/j.trc.2023.104075
https://doi.org/10.1007/s00521-019-04296-5
https://doi.org/10.14710/ijee.1.2.99-105
https://doi.org/10.1016/j.trc.2021.103072
https://doi.org/10.1145/3544548.3581049
https://doi.org/10.1109/icaia57370.2023.10169773
https://doi.org/10.1016/j.mlwa.2021.100134

231

Charles-Éric Noël Laflamme, Pomerleau, F. and Philippe Giguère (2019). Driving Datasets

Literature Review. arXiv (Cornell University).

Chen, H., Hu, S., Hua, R. and Zhao, X. (2021). Improved naive Bayes classification algorithm

for traffic risk management. EURASIP Journal on Advances in Signal Processing, 2021(1).

doi:https://doi.org/10.1186/s13634-021-00742-6.

Chen, Z., Guo, H., Yang, J., Jiao, H., Feng, Z., Chen, L. and Gao, T. (2022). Fast vehicle

detection algorithm in traffic scene based on improved SSD. Measurement, 201, p.111655.

doi:https://doi.org/10.1016/j.measurement.2022.111655.

Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J. and Huang, T.S. (2018). Revisiting RCNN: On

Awakening the Classification Power of Faster RCNN. arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.1803.06799.

Christodoulou, E., Ma, J., Collins, G.S., Steyerberg, E.W., Verbakel, J.Y. and Van Calster, B.

(2019). A systematic review shows no performance benefit of machine learning over logistic

regression for clinical prediction models. Journal of Clinical Epidemiology, [online] 110,

pp.12–22. doi:https://doi.org/10.1016/j.jclinepi.2019.02.004.

Ciaparrone, G., Luque Sánchez, F., Tabik, S., Troiano, L., Tagliaferri, R. and Herrera, F.

(2020). Deep learning in video multi-object tracking: A survey. Neurocomputing, [online] 381,

pp.61–88. doi:https://doi.org/10.1016/j.neucom.2019.11.023.

Crundall, D., Crundall, E., Clarke, D. and Shahar, A. (2012). Why do car drivers fail to give

way to motorcycles at t-junctions? Accident Analysis & Prevention, 44(1), pp.88–96.

doi:https://doi.org/10.1016/j.aap.2010.10.017.

Crundall, D., Howard, A. and Young, A. (2017). Perceptual training to increase drivers’ ability

to spot motorcycles at T-junctions. Transportation Research Part F: Traffic Psychology and

Behaviour, 48, pp.1–12. doi:https://doi.org/10.1016/j.trf.2017.05.003.

Dong, X., Yan, S. and Duan, C. (2022). A lightweight vehicles detection network model based

on YOLOv5. Engineering Applications of Artificial Intelligence, 113, p.104914.

doi:https://doi.org/10.1016/j.engappai.2022.104914.

Ecker, H. and Wassermann, J. (2001). Braking Deceleration of Motorcycle Riders.

https://doi.org/10.1186/s13634-021-00742-6
https://doi.org/10.1016/j.measurement.2022.111655
https://doi.org/10.48550/arxiv.1803.06799
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1016/j.neucom.2019.11.023
https://doi.org/10.1016/j.aap.2010.10.017
https://doi.org/10.1016/j.trf.2017.05.003
https://doi.org/10.1016/j.engappai.2022.104914

232

Elharrouss, O., Akbari, Y., Almaadeed, N. and Al-Maadeed, S. (2022). Backbones-Review:

Feature Extraction Networks for Deep Learning and Deep Reinforcement Learning

Approaches.

Ergys Ristani, Solera, F., Zou, R.S., Cucchiara, R. and Tomasi, C. (2016a). Performance

Measures and a Data Set for Multi-Target, Multi-Camera Tracking. arXiv (Cornell University).

F. Frank Chen, Zhang, L., Kang, S., L. Leon Chen, Dong, H., Dan, L. and Wu, X. (2023). Soft-

NMS-Enabled YOLOv5 with SIOU for Small Water Surface Floater Detection in UAV-

Captured Images. Sustainability, 15(14), pp.10751–10751.

doi:https://doi.org/10.3390/su151410751.

Forward Development (2023a). City Car Driving - Car Driving Simulator, PC Game. [online]

citycardriving.com. Available at: https://citycardriving.com [Accessed 13 Oct. 2023].

Foundation, R. (2022). RSF EuroRAP 2021 Results Data Portal. [online]

rsfmaps.agilysis.co.uk. Available at: http://rsfmaps.agilysis.co.uk/.

Fox, C.W., Camara, F., Markkula, G., Romano, R.A., Madigan, R. and Merat, N. (2018). When

Should the Chicken Cross the Road? - Game Theory for Autonomous Vehicle - Human

Interactions. Proceedings of the 4th International Conference on Vehicle Technology and

Intelligent Transport Systems. doi:https://doi.org/10.5220/0006765404310439.

Geiger, A. (2023). The KITTI Vision Benchmark Suite. [online] www.cvlibs.net. Available at:

https://www.cvlibs.net/datasets/kitti/.

Girshick, R., Kokkinos, I., Laptev, I., Malik, J., Papandreou, G., Vedaldi, A., Wang, X., Yan,

S. and Yuille, A. (2017). Editorial- Deep Learning for Computer Vision. Computer Vision and

Image Understanding, 164, pp.1–2. doi:https://doi.org/10.1016/j.cviu.2017.11.006.

GNU Image Manipulation Program (2023). GNU Image Manipulation Program. [online]

www.gimp.org. Available at: https://www.gimp.org/about/.

Hadi Ghahremannezhad, Shi, H. and Liu, C. (2023). Object Detection in Traffic Videos: A

Survey. IEEE Transactions on Intelligent Transportation Systems, 24(7), pp.6780–6799.

doi:https://doi.org/10.1109/tits.2023.3258683.

Hamuda, E., Mc Ginley, B., Glavin, M. and Jones, E. (2018). Improved image processing-

https://doi.org/10.3390/su151410751
https://citycardriving.com/
http://rsfmaps.agilysis.co.uk/
https://doi.org/10.5220/0006765404310439
https://www.cvlibs.net/datasets/kitti/
https://doi.org/10.1016/j.cviu.2017.11.006
https://www.gimp.org/about/
https://doi.org/10.1109/tits.2023.3258683

233

based crop detection using Kalman filtering and the Hungarian algorithm. Computers and

Electronics in Agriculture, [online] 148(148), pp.37–44.

doi:https://doi.org/10.1016/j.compag.2018.02.027.

Hamzenejadi, M.H. and Mohseni, H. (2023). Accurate and Real-Time Vehicle Detection in

Uav Imagery Based on Small-Size and Improved Yolov5. SSRN Electronic Journal.

doi:https://doi.org/10.2139/ssrn.4341617.

Haufe, S., Kim, J.-W., Kim, I.-H., Marra, M., Lucci, C., Huertas-Leyva, P., Baldanzini, N.,

Pierini, M. and Savino, G. (2021). The future of the Autonomous Emergency Braking for

Powered-Two-Wheelers: field testing . IOP Conference Series: Materials Science and

Engineering. doi:https://doi.org/10.1088/1757-899X/1038/1/012016.

He, Q., Mei, Z., Zhang, H. and Xu, X. (2023). Automatic Real-Time Detection of Infant

Drowning Using YOLOv5 and Faster R-CNN Models Based on Video Surveillance. Journal

of Social Computing, [online] 4(1), pp.62–73. doi:https://doi.org/10.23919/jsc.2023.0006.

Hesse, R., Schaub-Meyer, S. and Roth, S. (2023). Content-Adaptive Downsampling in

Convolutional Neural Networks.

Hong, Y., Wu, Q., Qi, Y., Cristian Rodriguez-Opazo and Gould, S. (2020). A Recurrent Vision-

and-Language BERT for Navigation. arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.2011.13922.

Hsu, Y.-C., Swaminathan Gopalswamy, Srikanth Saripalli and Shell, D.A. (2020). A POMDP

Treatment of Vehicle-Pedestrian Interaction: Implicit Coordination via Uncertainty-Aware

Planning. doi:https://doi.org/10.1109/iros45743.2020.9341320.

Hu, Y., Zhan, W. and Tomizuka, M. (2018). Probabilistic Prediction of Vehicle Semantic

Intention and Motion. 2018 IEEE Intelligent Vehicles Symposium (IV).

doi:https://doi.org/10.1109/ivs.2018.8500419.

Huang, J., Rathod, V., Sun, C., Zhu, M., Anoop Korattikara, Fathi, A., Fischer, I.S., Zbigniew

Wojna, Song, Y., Guadarrama, S. and Murphy, K. (2016). Speed/accuracy trade-offs for

modern convolutional object detectors. arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.1611.10012.

https://doi.org/10.1016/j.compag.2018.02.027
https://doi.org/10.2139/ssrn.4341617
https://doi.org/10.1088/1757-899X/1038/1/012016
https://doi.org/10.23919/jsc.2023.0006
https://doi.org/10.48550/arxiv.2011.13922
https://doi.org/10.1109/iros45743.2020.9341320
https://doi.org/10.1109/ivs.2018.8500419
https://doi.org/10.48550/arxiv.1611.10012

234

Jabir, B., Falih, N. and Rahmani, K. (2021). Accuracy and Efficiency Comparison of Object

Detection Open-Source Models. International Journal of Online and Biomedical Engineering

(iJOE), 17(05), p.165. doi:https://doi.org/10.3991/ijoe.v17i05.21833.

Jeong, Y., Kim, S. and Yi, K. (2020). Surround Vehicle Motion Prediction Using LSTM-RNN

for Motion Planning of Autonomous Vehicles at Multi-Lane Turn Intersections. IEEE Open

Journal of Intelligent Transportation Systems, 1, pp.2–14.

doi:https://doi.org/10.1109/ojits.2020.2965969.

Jocher, G. (2021). YOLOv5 Documentation. [online] docs.ultralytics.com. Available at:

https://docs.ultralytics.com [Accessed 26 Oct. 2021].

Kaggle (2022). Kaggle: Your Home for Data Science. [online] Kaggle.com. Available at:

https://www.kaggle.com/.

Kalman, R.E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal

of Basic Engineering, [online] 82(1), p.35. doi:https://doi.org/10.1115/1.3662552.

Kannan, R. and Lasky, R.C. (2020). Autonomous Vehicles Still Decades Away: 2019. 2020

Pan Pacific Microelectronics Symposium (Pan Pacific), 4.

doi:https://doi.org/10.23919/panpacific48324.2020.9059394.

Kaysi, I.A. and Abbany, A.S. (2007). Modeling aggressive driver behavior at unsignalized

intersections. Accident Analysis & Prevention, 39(4), pp.671–678.

doi:https://doi.org/10.1016/j.aap.2006.10.013.

Kim, J., Sung, J.-Y. and Park, S. (2020). Comparison of Faster-RCNN, YOLO, and SSD for

Real-Time Vehicle Type Recognition. 2020 IEEE International Conference on Consumer

Electronics - Asia (ICCE-Asia). doi:https://doi.org/10.1109/icce-asia49877.2020.9277040.

Kovács, G. (2019). Smote-variants: A python implementation of 85 minority oversampling

techniques. Neurocomputing. doi:https://doi.org/10.1016/j.neucom.2019.06.100.

Krajewski, R., Bock, J., Kloeker, L. and Eckstein, L. (2018b). The highD Dataset: A Drone

Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly

Automated Driving Systems. 2018 21st International Conference on Intelligent Transportation

Systems (ITSC). doi:https://doi.org/10.1109/itsc.2018.8569552.

https://doi.org/10.3991/ijoe.v17i05.21833
https://doi.org/10.1109/ojits.2020.2965969
https://docs.ultralytics.com/
https://www.kaggle.com/
https://doi.org/10.1115/1.3662552
https://doi.org/10.23919/panpacific48324.2020.9059394
https://doi.org/10.1016/j.aap.2006.10.013
https://doi.org/10.1109/icce-asia49877.2020.9277040
https://doi.org/10.1016/j.neucom.2019.06.100
https://doi.org/10.1109/itsc.2018.8569552

235

Leddartech (2024). Leddar PixSet Dataset. [online] LeddarTech. Available at:

https://leddartech.com/solutions/leddar-pixset-dataset/.

Lee, N., Choi, W., Vernaza, P., Choy, C., Philip and Manmohan Chandraker (2017a). DESIRE:

Distant Future Prediction in Dynamic Scenes with Interacting Agents. Computer Vision and

Pattern Recognition. doi:https://doi.org/10.1109/cvpr.2017.233.

Leevy, J.L., Khoshgoftaar, T.M. and Villanustre, F. (2020). Survey on RNN and CRF models

for de-identification of medical free text. Journal of Big Data, 7(1).

doi:https://doi.org/10.1186/s40537-020-00351-4.

Li, Y., Li, A., Li, X. and Liang, D. (2022b). Detection and Identification of Peach Leaf Diseases

based on YOLO v5 Improved Model. 2022 The 5th International Conference on Control and

Computer Vision. doi:https://doi.org/10.1145/3561613.3561626.

Liao, Y., Xie, J. and Geiger, A. (2021). KITTI-360: A Novel Dataset and Benchmarks for

Urban Scene Understanding in 2D and 3D. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 45(3), pp.1–1. doi:https://doi.org/10.1109/tpami.2022.3179507.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.

and Cornell (n.d.). Microsoft COCO: Common Objects in Context.

Liu, H., Sun, F., Gu, J. and Deng, L. (2022). SF-YOLOv5: A Lightweight Small Object

Detection Algorithm Based on Improved Feature Fusion Mode. Sensors, 22(15), p.5817.

doi:https://doi.org/10.3390/s22155817.

Maddern, W., Pascoe, G., Linegar, C. and Newman, P. (2016). 1 year, 1000 km: The Oxford

RobotCar dataset. The International Journal of Robotics Research, [online] 36(1), pp.3–15.

doi:https://doi.org/10.1177/0278364916679498.

Mahendrakar, T., Ekblad, A., Fischer, N., White, R., Wilde, M., Kish, B. and Silver, I. (2022).

Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation around Non-

Cooperative Targets. [online] IEEE Xplore.

doi:https://doi.org/10.1109/AERO53065.2022.9843537.

Mittal, U., Chawla, P. and Tiwari, R. (2022). EnsembleNet: a hybrid approach for vehicle

detection and estimation of traffic density based on faster R-CNN and YOLO models. Neural

https://leddartech.com/solutions/leddar-pixset-dataset/
https://doi.org/10.1109/cvpr.2017.233
https://doi.org/10.1186/s40537-020-00351-4
https://doi.org/10.1145/3561613.3561626
https://doi.org/10.1109/tpami.2022.3179507
https://doi.org/10.3390/s22155817
https://doi.org/10.1177/0278364916679498
https://doi.org/10.1109/AERO53065.2022.9843537

236

Computing and Applications, 35(6), pp.4755–4774. doi:https://doi.org/10.1007/s00521-022-

07940-9.

Mohd, A., Lee Vien Leong, Shee Tian Hao and Choon Wah Yuen (2022). Assessing the risky

riding behavior and the effect of entrance behavior of right-turning motorcyclists on critical

gap at T-junctions. Transportation Engineering, 10(100154), pp.100154–100154.

doi:https://doi.org/10.1016/j.treng.2022.100154.

Moreno, E., Denny, P., Ward, E., Horgan, J., Eising, C., Jones, E., Glavin, M., Parsi, A.,

Mullins, D. and Deegan, B. (2023). Pedestrian Crossing Intention Forecasting at Unsignalized

Intersections Using Naturalistic Trajectories. Sensors (Basel, Switzerland), [online] 23(5),

p.2773. doi:https://doi.org/10.3390/s23052773.

Muhammad Jehanzaib Yousuf, Kanwal, N., Mohd. Samar Ansari, Mamoona Naveed Asghar

and Lee, B. (2022). Deep Learning based Human Detection in Privacy-Preserved Surveillance

Videos. BCS Learning & Development, 103514. doi:https://doi.org/10.14236/ewic/hci2022.33.

Nafiseh Zarei, Payman Moallem and Shams, M. (2023). Real‐time vehicle detection using

segmentation‐based detection network and trajectory prediction. Iet Computer Vision.

doi:https://doi.org/10.1049/cvi2.12236.

Noto, A.P. and Saputro, S. (2022). Classification data mining with Laplacian Smoothing on

Naïve Bayes method. Nucleation and Atmospheric Aerosols. [online]

doi:https://doi.org/10.1063/5.0116519.

Pai, C.-W. (2009). Motorcyclist injury severity in angle crashes at T-junctions: Identifying

significant factors and analysing what made motorists fail to yield to motorcycles. Safety

Science, 47(8), pp.1097–1106. doi:https://doi.org/10.1016/j.ssci.2008.12.007.

Pai, C.-W. and Saleh, W. (2008). Modelling motorcyclist injury severity by various crash types

at T-junctions in the UK. Safety Science, 46(8), pp.1234–1247.

doi:https://doi.org/10.1016/j.ssci.2007.07.005.

Pandas (2018). Python Data Analysis Library — pandas: Python Data Analysis Library.

[online] Pydata.org. Available at: https://pandas.pydata.org/.

Panero Martinez, R., Schiopu, I., Cornelis, B. and Munteanu, A. (2021). Real-Time Instance

https://doi.org/10.1007/s00521-022-07940-9
https://doi.org/10.1007/s00521-022-07940-9
https://doi.org/10.1016/j.treng.2022.100154
https://doi.org/10.3390/s23052773
https://doi.org/10.14236/ewic/hci2022.33
https://doi.org/10.1049/cvi2.12236
https://doi.org/10.1063/5.0116519
https://doi.org/10.1016/j.ssci.2008.12.007
https://doi.org/10.1016/j.ssci.2007.07.005
https://pandas.pydata.org/

237

Segmentation of Traffic Videos for Embedded Devices. Sensors, 21(1), p.275.

doi:https://doi.org/10.3390/s21010275.

Parkers (2021). Fiat 500 Hatchback 2008 specs & dimensions | Parkers. [online]

www.parkers.co.uk. Available at: https://www.parkers.co.uk/fiat/500/hatchback-2008/specs/

[Accessed 14 Oct. 2023].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016a). You Only Look Once: Unified,

Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). [online] doi:https://doi.org/10.1109/cvpr.2016.91.

Ren, S., He, K., Girshick, R. and Sun, J. (2017). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, [online] 39(6), pp.1137–1149.

doi:https://doi.org/10.1109/tpami.2016.2577031.

Renjun, X., Junliang, Y., Yi, W. and Mengcheng, S. (2022). Fault Detection Method Based on

Improved Faster R-CNN: Take ResNet-50 as an Example. Geofluids, 2022, pp.1–9.

doi:https://doi.org/10.1155/2022/7812410.

Ristani, E., Solera, F., Zou, R., Cucchiara, R. and Tomasi, C. (2016b). Performance Measures

and a Data Set for Multi-target, Multi-camera Tracking. Lecture Notes in Computer Science,

9914, pp.17–35. doi:https://doi.org/10.1007/978-3-319-48881-3_2.

Robbins, C.J., Allen, H.A. and Chapman, P. (2018). Comparing drivers’ gap acceptance for

cars and motorcycles at junctions using an adaptive staircase methodology. Transportation

Research Part F: Traffic Psychology and Behaviour, 58, pp.944–954.

doi:https://doi.org/10.1016/j.trf.2018.07.023.

Robbins, C.J., Allen, H.A., Miller, K.V. and Chapman, P.M. (2019). The ‘Saw but Forgot’

error: A role for short-term memory failures in understanding junction crashes?. PLOS ONE,

14(9), pp.e0222905–e0222905. doi:https://doi.org/10.1371/journal.pone.0222905.

Robocar, O. (2020). Oxford RobotCar Dataset. [online] Oxford RobotCar Dataset. Available

at: https://robotcar-dataset.robots.ox.ac.uk/ [Accessed 13 Oct. 2023].

RoSPA Road Safety Research Common motorcycle crash causes. (2017). Available at:

https://doi.org/10.3390/s21010275
https://www.parkers.co.uk/fiat/500/hatchback-2008/specs/
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1155/2022/7812410
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1016/j.trf.2018.07.023
https://doi.org/10.1371/journal.pone.0222905
https://robotcar-dataset.robots.ox.ac.uk/

238

https://www.rospa.com/rospaweb/docs/advice-services/road-safety/motorcyclists/common-

motorcycle-crash-causes.pdf.

Roumeliotis, K.I. and Tselikas, N.D. (2023). ChatGPT and Open-AI Models: A Preliminary

Review. Future Internet, [online] 15(6), p.192. doi:https://doi.org/10.3390/fi15060192.

rsfmaps.agilysis.co.uk. (2023). RSF EuroRAP 2021 Results Data Portal. [online] Available at:

http://rsfmaps.agilysis.co.uk/.

S. P. Lakshmi Priya, T. Karunya, R. Praveen Kumar and Arumugam, S. (2023). Vehicle

Detection in Autonomous Vehicles Using Computer Vision. Advances in intelligent systems

and computing, pp.17–34. doi:https://doi.org/10.1007/978-981-99-3608-3_2.

Savino, G., Pierini, M., Thompson, J., Fitzharris, M. and Lenné, M.G. (2016a). Exploratory

field trial of motorcycle autonomous emergency braking (MAEB): Considerations on the

acceptability of unexpected automatic decelerations. Traffic Injury Prevention, 17(8), pp.855–

862. doi:https://doi.org/10.1080/15389588.2016.1155210.

Senserrick, T., McRae, D., P, P.W., Rome, L. de, Rees, P. and Williamson, A. (2017).

Enhancing Higher-Order Skills Education and Assessment in a Graduated Motorcycle

Licensing System. Safety, 3(2), p.14. doi:https://doi.org/10.3390/safety3020014.

Sezer, V., Bandyopadhyay, T., Rus, D., Frazzoli, E. and Hsu, D. (2015). Towards autonomous

navigation of unsignalized intersections under uncertainty of human driver intent. IEEE.

doi:https://doi.org/10.1109/iros.2015.7353877.

Shorten, C. and Khoshgoftaar, T.M. (2019). A survey on Image Data Augmentation for Deep

Learning. Journal of Big Data, 6(1). doi:https://doi.org/10.1186/s40537-019-0197-0.

Sowmya, V. and Radha, R. (2021). Heavy-Vehicle Detection Based on YOLOv4 featuring

Data Augmentation and Transfer-Learning Techniques. Journal of Physics: Conference Series,

1911(1), p.012029. doi:https://doi.org/10.1088/1742-6596/1911/1/012029.

Statista. (2023). Road accidents at junctions Great Britain 2019. [online] Available at:

https://www.statista.com/statistics/325327/road-accidents-at-junctions-great-britain-uk/.

Trevizan, B., Chamby-Diaz, J., Bazzan, A.L.C. and Recamonde-Mendoza, M. (2020). A

comparative evaluation of aggregation methods for machine learning over vertically

https://www.rospa.com/rospaweb/docs/advice-services/road-safety/motorcyclists/common-motorcycle-crash-causes.pdf
https://www.rospa.com/rospaweb/docs/advice-services/road-safety/motorcyclists/common-motorcycle-crash-causes.pdf
https://doi.org/10.3390/fi15060192
http://rsfmaps.agilysis.co.uk/
https://doi.org/10.1007/978-981-99-3608-3_2
https://doi.org/10.1080/15389588.2016.1155210
https://doi.org/10.3390/safety3020014
https://doi.org/10.1109/iros.2015.7353877
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1088/1742-6596/1911/1/012029
https://www.statista.com/statistics/325327/road-accidents-at-junctions-great-britain-uk/

239

partitioned data. Expert Systems with Applications, [online] 152, p.113406.

doi:https://doi.org/10.1016/j.eswa.2020.113406.

ultralytics (2023). GitHub - ultralytics/yolov5 at blog.roboflow.com. [online] GitHub.

Available at: https://github.com/ultralytics/yolov5?ref=blog.roboflow.com.

Vellenga, K., Steinhauer, H.J., Karlsson, A., Falkman, G., Rhodin, A. and Koppisetty, A.C.

(2022). Driver Intention Recognition: State-of-the-Art Review. IEEE Open Journal of

Intelligent Transportation Systems, 3, pp.602–616.

doi:https://doi.org/10.1109/ojits.2022.3197296.

Waldner, F. and Diakogiannis, F.I. (2020). Deep learning on edge: Extracting field boundaries

from satellite images with a convolutional neural network. Remote Sensing of Environment,

245(245), p.111741. doi:https://doi.org/10.1016/j.rse.2020.111741.

Walker, I. (2005). Signals are informative but slow down responses when drivers meet

bicyclists at road junctions. Accident Analysis & Prevention, 37(6), pp.1074–1085.

doi:https://doi.org/10.1016/j.aap.2005.06.005.

Wang, C.-Y., Hong-Yuan Mark Liao, Yeh, I-Hau., Wu, Y.-H., Chen, P.-Y. and Hsieh, J.-W.

(2019). CSPNet: A New Backbone that can Enhance Learning Capability of CNN.

doi:https://doi.org/10.48550/arxiv.1911.11929.

Wang, F. and Shi, D. (2020). IEEE TRANSACTIONS ON 1 Index Terms-Unsignalized

intersection, decision mak- ing, autonomous vehicles, deep reinforcement learning, deep Q-

learning, double deep Q-learning .

Waymo LLC (2019). Open Dataset – Waymo. [online] Waymo. Available at:

https://waymo.com/open/.

Wen, Z.G., Su, J., Zhang, Y., Li, M., Gan, G., Zhang, S. and Fan, D. (2023). A lightweight

small object detection algorithm based on improved YOLOv5 for driving scenarios.

International Journal of Multimedia Information Retrieval, 12(2).

doi:https://doi.org/10.1007/s13735-023-00305-5.

Wilson, B., Qi, W., Agarwal, T., Lambert, J., Singh, J., Khandelwal, S., Pan, B., Kumar, R.,

Hartnett, A., Pontes, J., Ramanan, D., Carr, P., Hays, J., Ai, A. and Tech, G. (2021). Argoverse

https://doi.org/10.1016/j.eswa.2020.113406
https://github.com/ultralytics/yolov5?ref=blog.roboflow.com
https://doi.org/10.1109/ojits.2022.3197296
https://doi.org/10.1016/j.rse.2020.111741
https://doi.org/10.1016/j.aap.2005.06.005
https://doi.org/10.48550/arxiv.1911.11929
https://waymo.com/open/
https://doi.org/10.1007/s13735-023-00305-5

240

2: Next Generation Datasets for Self-Driving Perception and Forecasting. [online] Available

at: https://datasets-benchmarks-

proceedings.neurips.cc/paper_files/paper/2021/file/4734ba6f3de83d861c3176a6273cac6d-

Paper-round2.pdf [Accessed 7 Jan. 2024].

Wojke, N., Bewley, A. and Paulus, D. (2017). Simple online and realtime tracking with a deep

association metric. [online] IEEE Xplore. doi:https://doi.org/10.1109/ICIP.2017.8296962.

Wong, T. and Yeh, P. (2020). Reliable Accuracy Estimates from k-Fold Cross Validation.

IEEE Transactions on Knowledge and Data Engineering, [online] 32(8), pp.1586–1594.

doi:https://doi.org/10.1109/TKDE.2019.2912815.

Yee Mun Lee, Sheppard, E. and Crundall, D. (2015). Cross-cultural effects on the perception

and appraisal of approaching motorcycles at junctions. Transportation Research Part F:

Traffic Psychology and Behaviour, 31, pp.77–86. doi:https://doi.org/10.1016/j.trf.2015.03.013.

Yusuf Gladiensyah Bihanda, Chastine Fatichah and Anny Yuniarti (2023). Comparative

Analysis of ConvNext and Mobilenet on Traffic Vehicle Detection.

doi:https://doi.org/10.1109/icsecs58457.2023.10256339.

Zhan, W., Sun, L., Wang, D., Shi, H., Clausse, A., Naumann, M., Kummerle, J., Konigshof,

H., Stiller, C., de La Fortelle, A. and Tomizuka, M. (2019). INTERACTION Dataset: An

INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving

Scenarios with Semantic Maps. arXiv:1910.03088 [cs, eess]. [online] Available at:

https://arxiv.org/abs/1910.03088.

Zhang, T., Song, W., Fu, M., Yang, Y. and Wang, M. (2021). Vehicle Motion Prediction at

Intersections Based on the Turning Intention and Prior Trajectories Model. IEEE/CAA Journal

of Automatica Sinica, 8(10), pp.1657–1666. doi:https://doi.org/10.1109/jas.2021.1003952.

Zhong, Y., Wang, J., Peng, J. and Zhang, L. (2020). Anchor Box Optimization for Object

Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision (pp. 1286-1294).

Zhou, F., Zhao, H. and Nie, Z. (2021). Safety Helmet Detection Based on YOLOv5. [online]

IEEE Xplore. doi:https://doi.org/10.1109/ICPECA51329.2021.9362711.

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4734ba6f3de83d861c3176a6273cac6d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4734ba6f3de83d861c3176a6273cac6d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4734ba6f3de83d861c3176a6273cac6d-Paper-round2.pdf
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/TKDE.2019.2912815
https://doi.org/10.1016/j.trf.2015.03.013
https://doi.org/10.1109/icsecs58457.2023.10256339
https://arxiv.org/abs/1910.03088
https://doi.org/10.1109/jas.2021.1003952
https://doi.org/10.1109/ICPECA51329.2021.9362711

241

Zhou, Y., Wen, S., Wang, D., Mu, J. and Richard, I. (2021). Object Detection in Autonomous

Driving Scenarios Based on an Improved Faster-RCNN. Applied Sciences, 11(24), p.11630.

doi:https://doi.org/10.3390/app112411630.

Zyner, A., Worrall, S. and Nebot, E. (2018). A Recurrent Neural Network Solution for

Predicting Driver Intention at Unsignalized Intersections. IEEE Robotics and Automation

Letters, [online] 3(3), pp.1759–1764. doi:https://doi.org/10.1109/LRA.2018.2805314.

https://doi.org/10.3390/app112411630
https://doi.org/10.1109/LRA.2018.2805314

