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Abstract 

 

This thesis introduces a systematic approach to devising and evaluating advanced methods 

for predicting vehicle intent at unsignalised UK T-junctions. The primary focus of this thesis 

revolves around exploring the application of machine learning and computer vision techniques 

for the real-time prediction of vehicle intentions, emphasising increasing the prediction 

distance from the merge line at T-junctions to improve prediction efficacy. 

This thesis addresses the sparsity of publicly available data on vehicle behaviour and feature 

vector data at UK T-junctions by demonstrating methods to create a unique Junction Video 

Dataset as a foundational contribution to the field. The methodology encompasses collecting, 

preprocessing, and annotating video data to develop video data input for a pipeline for vehicle 

intent prediction. The thesis presents a comparative analysis of YOLOv5 and Faster R-CNN 

models, focusing on their performance in vehicle detection using the curated Junction dataset. 

It then introduces an innovative fine-tuning process that enhances real-time detection 

capabilities.  

This thesis uses an advanced feature extraction method to extract the stochastic nature of 

vehicle behaviour exhibited at T-junctions. This approach employs a sophisticated data 

processing and learning strategy incorporating extracted features. It continuously updates the 

training dataset with new feature vectors, enabling perpetual learning and the capability to 

make intent predictions on newly acquired data in real-time. 

This thesis evaluates DAISY, a real-time vehicle intent prediction model, by comparing its 

performance with state-of-the-art systems such as Waymo's ChauffeurNet, Tesla Autopilot, 

NVIDIA Drive, and Mobileye. Key metrics for comparison include accuracy, latency, 

robustness, and scalability. DAISY demonstrates competitive accuracy and latency, which are 

crucial for real-time applications. It also benefits from a modular design that enhances 

scalability. However, direct comparisons are challenged by systematic differences like 

proprietary datasets, specialised hardware, and varied algorithm complexities.  

This thesis revealed that integrating machine learning and computer vision techniques with 

high-quality data can accurately predict vehicle intent at T-junctions. Such an approach has 

the potential to serve as a crucial element within a safety model, functioning as an early 

warning system or activating driver assistance features.   
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Chapter 1: Introduction 

 

1.1 Motivation 

In the UK, vulnerable road users (VRU), such as motorcyclists, represent only 1% of total road 

traffic yet suffer 18% of road fatalities, as highlighted in  Royal Society for the Prevention of 

Accidents research on common motorcycle crash causes (RoSPA, 2017). Data from the UK 

police-reported accident data highlighted that 64% of motorcycle accidents occurred at a 

junction (Senserrick et al., 2017); the majority of these collisions occur at T-junctions when 

drivers pull out into the path of an oncoming motorcyclist. Considering that many accidents, 

especially at T-junctions, are attributed to human mistakes, it is crucial to research current 

methodologies that can help mitigate this type of accident. Despite rapid advances in 

autonomous vehicle (AV) technology, fully driverless cars are not imminent. Forecasts for 

widespread adoption of AVs are varied, with more conservative estimates suggesting several 

decades (Kannan and Lasky, 2020). However, lower levels of AV have been implemented in 

all types of vehicles. Current collision avoidance technology, such as motorcycle autonomous 

emergency braking  (MAEB), is effective (Savino et al., 2016) but is limited to systems 

designed to scan the environment to detect possible hazards in navigation paths, not before 

they enter the navigation path,  making a fundamental argument for researching the feasibility 

of how an accurate prediction of the future intent of merging drivers at a T-junction could further 

mitigate the severity of a collision. The frequency of this type of accident demonstrates that 

motorcyclists alone cannot react to threats posed at a T-junction; otherwise, there would be 

far fewer accidents of this type. Predicting the future state of the driving environment and other 

road users is a non-trivial task. As with autonomous vehicles, human-controlled vehicles 

benefit from higher levels of safety in the abstract levels of driving autonomy, and in this thesis, 

we look at this argument as a computer vision problem. This thesis uses 2D camera video 

data, machine learning, and deep learning techniques. We aim to identify, track, and evaluate 

vehicles approaching a T-junction. This allows us to investigate how effectively we can predict 

the likelihood of vehicles yielding before they enter the path of an oncoming motorcycle. 

 

1.2 Research questions 

The overarching question is: How effectively can computer vision and machine learning 

methods be utilised to predict the intentions of vehicles at T-junctions in real-time, and to what 

degree of accuracy and effectiveness can these predictions be achieved? 

This thesis is structured around seven pivotal research questions, each crafted to contribute 

towards answering the primary overarching question: the viability of using computer vision 
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techniques for predicting vehicle intentions at T-junctions. It begins with RQ0, which questions 

the feasability of real video data collection for modeling behaviour.  RQ1 examines the impact 

of a constrained dataset on the training and performance of models. RQ2 investigates the 

influence of pixel density and frame rate variations on the effectiveness of these models. RQ3 

assesses the possibility of capturing accurate pixel-level features from moving vehicles. RQ4 

evaluates the consistency of feature vectors under uniform camera setups. RQ5 and RQ6 

focus on using 2D video-derived feature vectors to predict vehicular movement at a T-junction 

and the accuracy and prediction range of these models with new data. Lastly, RQ7 explores 

the feasibility of incorporating real-time intent predictions into the model without compromising 

its accuracy or F1 score. These questions, while interrelated, provide distinct insights and 

benefits tailored to different research interests within the domain of computer vision and 

machine learning. 

 

RQ0: Is it feasible to collect real-world video data from T-junctions that can accurately inform 

the development of a vehicle intent model for predicting vehicular behaviour? 

 

RQ1: How does employing a constrained and focused dataset affect the performance of object 

detection and Classification?    

 

RQ2: Considering the neural network's characteristics in use, how do pixel density and frame 

rate variations affect real-time object detection and classification models? 

 

RQ3: Is obtaining accurate pixel-level features from dynamic vehicles that closely match 

ground truth data feasible? 

 

RQ4: Can our feature vectors' inherent generality be observed per the consistent camera 

positioning hypothesis? This hypothesis posits that recordings from various junctions maintain 

a similar perspective due to the standardised factors of camera height, position concerning 

the merge line, and overall camera placement. 

 

RQ5: How accurately can a machine learning model, utilising 2D video-derived feature 

vectors, predict a vehicle's intention at a T-junction?  

 

RQ6: Can a trained machine learning model accurately predict vehicle intent at a T-Junction 

using new data, and what is its effective prediction range from the junction? 

 

RQ7: Can the online model infer and append intent predictions as new inference data in real-
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time without negatively affecting the accuracy or F1 score?  

 

1.3 Overview  

This thesis is structured to follow the sequential logic of our experimental framework. The 

culmination of our research process is presented in Chapter 9, where readers can finally 

understand the experimental outcomes in the context of the theoretical groundwork laid out in 

earlier chapters. Figure 1 illustrates our comprehensive pipeline, beginning with video data 

input and culminating in vehicle intention prediction. Raw video footage is initially processed 

and adjusted to align with ground truth benchmarks, such as the distance to merge lines. 

DUKE then analyzes this optimized video for vehicle detection, classification, and extraction 

of relevant features. These features are subsequently input into DAISY to predict vehicle 

intentions, utilising the DYLE dataset for classification. The results generated by DAISY are 

re-integrated into DYLE, fostering a continuous cycle of data training. The final output is 

presented either as a warning or as raw data. 
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Figure 1 Overview of our vehicle intent pipeline, with road sign warning as an output.  

1.3.1 Structure of thesis 

To address the research questions outlined above, our initial step involved significant work in 

generating our training data, encompassing both video-related and feature vector data. Given 

the absence of such data in the public domain, this endeavour was essential to our thesis, 

providing critical insights into the questions posed. Moreover, this effort constitutes a part of 

our contribution, laying the groundwork for others' future exploration of this topic. This means 

Chapters 3, 4, and 5 offer technical descriptions of the processes we engaged in to develop 

the pipeline, ultimately enabling us to experiment with intent prediction at T-junctions.  

 

The  thesis is organised as  follows: 

Chapter 2: Background and related work 

Chapter 2 gives a background of intent prediction and human behaviour at T-junctions and 

describes our approach's rationale. We then reviewed the diverse models for intent prediction, 

including behavioural aspects, object detection, and reinforcement learning available in the 

literature. The review focused on vehicle intent prediction methods and their components, 

surmising that the most effective models can infer from real-time video frames. The chapter 

details methods, techniques, challenges, and creating a custom dataset, evaluating predictive 

models for intent prediction at intersections and T-junctions. 

 

Chapter 3: Junction Video Dataset 

This chapter delves into the creation and curation of our Junction Video Dataset. We discuss 

the methodology employed to collect, preprocess, and annotate the data, providing essential 

insights into the foundation of our research. 

 

Chapter 4: Comparative Analysis of YOLOv5 and Faster R-CNN Models 

Building upon the Junction Video Dataset introduced in the previous chapter, and Chapter 4 

focuses on a quantitative evaluation of the YOLOv5 and Faster R-CNN models. We rigorously 

assess their inference times and accuracy in the context of real-time vehicle detection using 

our specialised video dataset. 

 

Chapter 5: Innovative Fine-tuning for Real-time Vehicle Detection 

This chapter introduces an innovative approach to fine-tuning real-time vehicle detection and 

classification models. We highlight the performance improvements achieved through our fine-

tuning process, emphasising the practical implications for real-world applications. 
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Chapter 6: Feature Vector Extraction Method 

This chapter provides a comprehensive overview of our feature vector extraction methodology. 

We detail the techniques and algorithms used to extract meaningful feature vectors from 

vehicle data, which are the foundation for subsequent chapters. 

 

Chapter 7: Organising and Classifying Vehicle Feature Vectors 

This chapter introduces DYLE, an advanced real-time data handling and learning 

methodology. DYLE is distinguished by its ability to dynamically manage and refresh training 

data through feature vectors, allowing training and prediction models to utilise the latest data. 

It supports ongoing learning and adjustment and is designed for real-time updates with new 

information. An essential process in DYLE is dynamic enrichment, which involves the 

accumulation of new feature vectors with each iteration, a function performed by DUKE, as 

elaborated in Section 6.4. This feature represents a significant advancement in improving 

machine learning workflows. 

 

Chapter 8: Efficient Vehicle Intent Prediction at T-Junctions 

Chapter 8 introduces a computationally efficient approach for predicting vehicle intent at T-

junctions. We utilise feature vectors derived from video data as training inputs, paving the way 

for improved decision-making algorithms in critical traffic scenarios. 

 

Chapter 9: Quantitative Examination of DAISY's Predictive Abilities 

Chapter 9 focuses on a quantitative examination of DAISY's predictive capabilities. We 

evaluate how accurately DAISY performs when trained on progressively larger datasets, 

particularly in predicting driver intentions and determining the practical distance from the 

junction at which predictions remain reliable. This exploration contributes to a deeper 

understanding of the limits and capabilities of machine learning in the context of driver 

behaviour prediction at critical road intersections. Additionally, we explore creating and 

evaluating an online model capable of real-time data inference and integration while 

maintaining a high base accuracy and F1 score. 

 

1.4 Contributions of this thesis 

This thesis focuses on the feasibility of using machine learning models trained on existing data 

to predict driver behaviour at T-junctions when confronted with new, unseen data. Specifically, 

it involves a quantitative examination of how accurately these models can predict driver 

intentions and determines the practical distance from the junction at which predictions remain 

viable. This exploration contributes to understanding the limits and capabilities of machine 
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learning in the context of driver behaviour prediction at critical road intersections. 

 

Specifically, the contributions include the following: 

 

• Construction of a target-based vehicle image dataset tailored to our video data: 

This involves creating a specific dataset that includes images of vehicles as they would 

appear in our monocular videos. This dataset is tailored to the unique perspectives, 

angles, and lighting conditions in the video data collected at T-junctions. 

 

• Creation of a data-rich video dataset comprising unsignalized UK T-junctions: 

This dataset is a collection of video recordings from various T-junctions across the UK 

that do not have traffic signals. It focuses on capturing various traffic scenarios to 

ensure that the machine learning models developed can handle different traffic 

behaviours and conditions. The data-rich dataset allows the accurate extraction of 

vehicle feature vectors necessary for understanding and predicting vehicle behaviours. 

 

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-

CNN models using our bespoke video dataset: This involves testing and comparing 

the performance of two popular deep learning models, YOLOv5 and Faster R-CNN, in 

terms of their inference speed and accuracy in detecting and classifying vehicles using 

the project's specific video dataset. This comparison helps select the most suitable 

model for real-time vehicle detection and prediction at T-junctions. 

 

• Generation of accurate dynamic vehicle feature vectors for utilisation in real-

time prediction: This refers to identifying and extracting dynamic features from the 

vehicles, such as velocity, direction, and acceleration, which are essential for 

predicting their future movements. These feature vectors are generated in real-time 

and are used to analyse vehicle behaviours at the T-junction. 

 

• Extension of the approach to fine-tuning a real-time vehicle detection and 

classification model based on performance: This involves continuously improving 

and adapting the vehicle detection and classification model based on its performance 

in real-world scenarios. The model is fine-tuned to enhance its performance in 

detecting and classifying vehicles in real-time, ensuring it remains effective under 

various conditions. 
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• Development of a method for independently organising and classifying discrete 

vehicle feature vectors as feature vector arrays and integral components of a 

comprehensive general dataset: This process involves developing a systematic 

approach to organise and classify the extracted vehicle feature vectors into structured 

arrays. These arrays are then incorporated into a larger dataset, facilitating the 

comprehensive training and testing of our model. 

 

• A computationally efficient approach for predicting vehicle intent at a T-junction 

using video-derived feature vectors as training data:  

 

• Implementing a self-learning real-time prediction model involves developing a 

prediction model that not only utilises the current data and feature vectors for making 

predictions but also continually learns and adapts from new data it encounters. This 

self-learning capability ensures that the model remains accurate and up-to-date with 

changing traffic patterns and behaviours, improving its reliability and effectiveness in 

predicting vehicle movements at T-junctions. 

 

1.5 Ethics 

Before collecting live traffic video data, we secured ethical approval from the University of 

Hertfordshire's ethics committee.  

 

1.6 Real-Time intent prediction in context 

In the context of our work, a real-time intent prediction model, "real-time", refers to the 

capability of the system to process data, make predictions, and deliver actionable insights 

almost instantaneously or within a concise time frame.  

Definition of Real-Time in Vehicle Intent Prediction 

Real-time processing in vehicle intent prediction implies that the system can continuously 

analyze incoming data from various sensors, interpret the current driving scenario, predict the 

potential actions of surrounding vehicles, and communicate these predictions to the vehicle's 

control systems or the driver with minimal latency, in the context of our work we aim to produce 

an Immediate Hazard Detection to allow vehicles to take evasive actions immediately, 

reducing the risk of collisions. 

Technical Challenges: 

Computational Load: 

• High Processing Power: Real-time predictions require substantial 

computational power, especially for processing data from high-resolution 
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video. 

• Efficient Algorithms: Developing efficient algorithms that balance speed 

and accuracy is challenging. 

• Network Latency: Ensuring low-latency communication within the 

vehicle's network architecture is essential for timely predictions. 

 

Real-time intent prediction is a critical feature of our work that ensures the system can process 

environmental data, make accurate predictions, and instantly communicate necessary 

actions. Overcoming the technical challenges associated with real-time processing requires 

continuous advancements in computing power, algorithm efficiency, and data management 

strategies. 
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Chapter 2: Background and Literature Review 

 

2.1 Background information 

2.1.1 Intent prediction 

The foundation for vehicle intent prediction involves understanding and forecasting vehicles' 

future actions or movements in various contexts, such as at intersections or junctions, in traffic, 

or actions during autonomous vehicle operation, such as lane changes on a highway. 

In the reviewed literature, the terms' driver intent' and 'vehicle intent' were often used 

interchangeably to denote the intentions behind either a human driver's or an autonomous 

vehicle's (AV) actions. However, given our focus on the tangible dynamics of vehicles, we 

consistently refer to 'vehicle intent' in this thesis.  

Computer vision and machine learning-based vehicle intent prediction integrate various 

methodologies using sensor data analysis, which utilises tools like 2D and 3D cameras, radar, 

Lidar and GPS to gauge the vehicle's surroundings and movement. Machine learning models 

then predict future actions using this data and historical trends. Behavioural modelling 

considers human factors such as driving habits to refine these predictions. Finally, a contextual 

understanding of environmental factors like road conditions and nearby traffic is incorporated 

into the overall framework to generate a complete picture of the problem. Together, these 

approaches provide a comprehensive system for anticipating vehicle behaviour that enhances 

road safety and efficiency. Vehicle intent prediction aims to match or surpass human capability 

in predicting the actions of vehicles on the road.  

On the one hand, vehicles equipped with these technologies offer consistency and reliability 

as they can process extensive data without fatigue, unlike humans, who may be inconsistent 

due to distractions or emotional factors. They also boast faster reaction times and can be 

coupled with sensors that provide 360-degree perception, potentially offering an advantage 

over human sensory capabilities. Additionally, machine learning models continually learn and 

improve and may surpass human prediction accuracy in the future.  

However, there are significant challenges. The complexity of human behaviour presents a 

considerable hurdle: humans can be unpredictable, and machines may struggle to interpret 

nuanced behaviours effectively. While machines advance in situational awareness, 

understanding the full range of human-like contextual clues remains challenging. Lastly, in 

scenarios where predictions lead to critical decisions, especially in emergencies, humans 

consider ethical and moral implications, a capacity machines lack.  

Our research began by examining the high fatality rates at UK T-junctions through a 

psychological lens rather than seeking a direct solution, as Crundall et al. (2012) and Crundall, 
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Howard and Young (2017) do by recommending perceptual training for drivers or Yee Mun 

Lee, Sheppard and Crundall (2015) regarding the cross-cultural effects of perception of 

motorcycles, we aimed to understand aspects of human driving behaviour, such as head 

movement or angle, vehicle position on the road and vehicle kinetics, to identify potential 

features that could be detected using computer vision technology.  

Our initial experiments attempted to capture the head movement of drivers approaching the 

junction merge line with the same camera used to track vehicles; however, we found that we 

required a second camera zoomed in to capture a driver's head, which was not feasible, as 

the data from the vehicle had to relate to the data from the driver and to combine video frame 

impacted on the computational load and subsequent inference performance.  

 We also reviewed the work of  Peter Chapman from the University of Nottingham, who 

specialises in the psychological aspects of motorcycle accidents at T-junctions (Robbins et al., 

2019) (Robbins, Allen, and Chapman, 2018). One of the findings from Chapman's research, 

using driving simulators, determined that drivers might still move forward even after noticing 

an approaching motorcycle, suggesting that using head movement alone is not a dependable 

sign that a driver has seen an approaching motorcycle. The study explored identifying 

hesitancy or specific vehicle movement patterns as potential indicators of a driver's intentions 

at a T-junction, and that was a starting point for further experimentation. 

Some studies have approached the problem of high T-junction accident rates via a detailed 

examination of motorcyclists' behaviours at different T-junctions (Mohd et al., 2022). The 

present study categorises T-junctions into three types: Type A (conventional T-junction), Type 

B (unconventional T-junction with a short exit lane for right-turning vehicles on the minor road) 

and Type C (unconventional T-junction with a short exit lane for through traffic on the major 

road). The findings demonstrate that Type A junctions have the highest incidence of risky riding 

behaviour. In terms of the critical gap, which is the time needed for a motorcyclist to safely 

execute a right turn, Type A junctions require the longest time (9.20 seconds), followed by 

Type C (7.20 seconds) and Type B (7.00 seconds). These results suggest that Type B 

junctions are the most efficient and potentially the safest for motorcyclists making right turns 

from minor roads.  

Other relevant studies have discussed driver responses to cyclists at T-junctions (Walker, 

2005; Ammar Al-Taie et al., 2023). There has also been extensive work in pedestrian intent 

prediction, with examples including Moreno et al. (2023) using naturalistic trajectories at 

unsignalised junctions and Hsu et al.'s (2020) simplified model of the problem of pedestrian 

AV interactions. 

Rather than relying on a single element to predict a vehicle's intent, our approach involves a 

composite model of various interconnected components structured in a pipeline format that 

culminates in intent prediction. This thesis explores each segment within the intent prediction 
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pipeline, scrutinising the contributions at every phase. This study focuses not only on the final 

prediction outcome or the cause but also on assessing the viability and efficiency of computer 

vision and machine learning techniques in predicting vehicular intent at a T-junction based on 

each pipeline segment's performance. In intent and trajectory prediction, common methods 

involve predicting a vehicle's future path based on its historical positions and often employ 

recurrent neural networks (RNNs) or long short-term memory (LSTM) networks. Behavioural 

prediction analyses vehicle dynamics like speed and acceleration to infer intent using machine 

learning models trained on historical data. Action recognition methods predict intent by 

identifying specific manoeuvres from video frames, such as turn signals or lane changes. 

Object detection and tracking involve using algorithms to identify and predict the movements 

of vehicles in video frames. Semantic segmentation helps understand the scene's context by 

classifying image parts into categories like roads or vehicles, thereby assisting in intent 

prediction. 

 

2.1.1.1 Static vs. Dynamic (Vehicle-Mounted) Video Sources 

Computational Challenges: 

Static Video Sources: 

• Fixed Perspective: Static cameras have a fixed perspective, making background 

modelling and motion detection relatively straightforward as the background remains 

constant. 

• Limited Field of View: Static cameras cover a limited area, requiring a network of 

cameras for extensive coverage, leading to data integration and synchronization 

challenges. 

• Stable Imaging Conditions: The stability of static cameras ensures consistent imaging 

conditions, aiding in more accurate object detection and tracking. 

 

Dynamic (Vehicle-Mounted) Video Sources: 

• Changing Perspective: Vehicle-mounted cameras constantly change their perspective, 

complicating background subtraction and motion detection, requiring more 

sophisticated algorithms to adapt to varying scenes. 

• Wide Field of View: These cameras can cover larger areas as they move, but the 

constantly changing view necessitates real-time processing to keep up with the 

dynamic environment. 

• Variable Imaging Conditions: Movement introduces variability in lighting, shadows, and 

weather conditions, making object detection and tracking more challenging. 
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Practical Difficulties in Intent Prediction: 

Static Video Sources: 

• Limited Context: Static cameras provide a limited context, often missing out on 

interactions occurring outside their field of view, leading to incomplete data for intent 

prediction. 

• Predictive Lag: Intent prediction might lag due to the fixed viewpoint, making it harder 

to anticipate actions that start outside the camera’s view and move into it. 

Dynamic (Vehicle-Mounted) Video Sources: 

• Complex Motion Patterns: Predicting intent from a moving platform involves 

accounting for both the motion of observed objects and the motion of the camera itself, 

increasing the complexity of the prediction models. 

• Occlusion Handling: As the vehicle moves, objects may be occluded by parts of the 

vehicle or other objects, making continuous tracking and intent prediction difficult. 

• Latency and Real-Time Processing: Real-time intent prediction is crucial for vehicle-

mounted systems to make immediate decisions. This requires high computational 

power and efficient algorithms to minimize latency. 

 

Integration of Multiple Data Sources: 

Both static and dynamic video sources can benefit from integration with other data sources 

(e.g., GPS, LiDAR, radar).  

 

Benefits of Static Video Sources: 

Enhanced Object Detection and Tracking: 

• LiDAR and Radar: These sensors provide depth and range information, 

which can be combined with video data to improve object detection and 

tracking, especially in low-light or poor visibility conditions. 

• Increased Accuracy: The fusion of video with depth data from LiDAR helps 

distinguish between objects and accurately measure their distances and 

dimensions. 

Improved Situational Awareness: 

• GPS Integration: Combining video data with GPS information allows for 

precise geolocation of objects within the camera's field of view, aiding in 

better situational awareness and context understanding. 

• Spatial Context: Static cameras can gain spatial context, enabling better 

mapping and monitoring areas for security, traffic management, and urban 

planning. 
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Data Redundancy and Reliability: 

• Multi-Sensor Redundancy: Combining multiple sensor data sources 

ensures reliability and reduces the risk of single-point failures, leading to 

more robust surveillance and monitoring systems. 

Enhanced Anomaly Detection: 

• Cross-Validation: Different sensors can validate each other's data, making 

detecting anomalies or suspicious activities easier with higher confidence. 

• Contextual Analysis: Video data can provide visual context, while LiDAR 

and radar offer physical context, improving anomaly detection accuracy. 

 

Benefits for Dynamic (Vehicle-Mounted) Video Sources: 

 

Real-Time Navigation and Collision Avoidance: 

• LiDAR and Radar: These sensors are crucial for detecting obstacles, other 

vehicles, and pedestrians in real time, providing depth and speed 

information that complements video data. 

• Enhanced Safety: Integration helps in real-time navigation and collision 

avoidance decision-making, critical for autonomous driving and advanced 

driver-assistance systems. 

Accurate Localization and Mapping: 

• GPS and IMU: Combining video with GPS and inertial measurement unit 

(IMU) data enables accurate vehicle localization and mapping, which is 

crucial for autonomous navigation and route planning. 

• Simultaneous Localization and Mapping (SLAM): Video data, when fused 

with LiDAR and GPS, improves SLAM algorithms, providing detailed and 

accurate maps of the environment. 

Improved Object Recognition and Classification: 

• Sensor Fusion: Video provides visual details (e.g., colour, texture), while 

LiDAR and radar offer shape, size, and distance information. Combining 

these enhances object recognition and classification accuracy. 

• All-Weather Capability: Video can be less effective in adverse weather 

conditions, but radar and LiDAR can compensate, ensuring reliable 

operation. 

 

Robust Intent Prediction: 

• Comprehensive Data: Combining video with other sensor data enables a 
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more comprehensive analysis of object behaviours and interactions, 

leading to more accurate intent prediction. 

• Temporal and Spatial Consistency: Multi-sensor fusion ensures temporal 

and spatial consistency in data, which is crucial for real-time intent 

prediction and proactive decision-making. 

General Benefits: 

Enhanced Data Quality and Completeness: 

• Complementary Data: Different sensors provide complementary data, 

enhancing the overall quality and completeness of the information used for 

analysis and decision-making. 

• Reduced Ambiguity: Sensor fusion reduces ambiguity and uncertainty, 

leading to more reliable and accurate interpretations of the environment. 

Increased System Robustness: 

• Fault Tolerance: Multi-sensor systems are more fault-tolerant. If one sensor 

fails or is compromised, others can provide the necessary data to maintain 

system functionality. 

• Consistency in Various Conditions: Different sensors perform better in 

different conditions (e.g., radar in fog, LiDAR at night), ensuring consistent 

system performance across diverse scenarios. 

Scalability and Flexibility: 

• Adaptability: Integrated systems can adapt to various applications and 

environments, from urban traffic management to autonomous vehicles, 

enhancing their scalability and flexibility. 

 

Integrating video sources with other data sources like GPS, LiDAR, and radar significantly 

enhances the capabilities of both static and dynamic systems. This integration leads to more 

accurate and reliable object detection, tracking, and intent prediction, improves situational 

awareness, and ensures robust performance in diverse conditions. The fusion of 

complementary data sources provides a comprehensive understanding of the environment, 

which is crucial for advanced surveillance, navigation, and autonomous systems applications. 

 

However, the challenges differ: 

Static Video Sources: 

• Data Fusion Complexity: Integrating data from multiple static cameras and sensors 

requires sophisticated data fusion techniques to create a coherent understanding of 

the environment. 
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• Synchronization Issues: Ensuring temporal synchronization across multiple static 

cameras and sensors is critical for accurate intent prediction. 

Dynamic (Vehicle-Mounted) Video Sources: 

• Sensor Fusion: Vehicle-mounted systems often integrate data from various sensors 

(e.g., LiDAR, radar) in real-time, requiring complex sensor fusion algorithms. 

• Geospatial Alignment: Aligning data from moving sensors with a dynamic environment 

map adds another layer of complexity, crucial for accurate intent prediction. 

 

The computational challenges and practical difficulties in intent prediction vary significantly 

between static and dynamic video sources. Static cameras benefit from stable imaging 

conditions but are limited in field of view and context. Dynamic, vehicle-mounted cameras offer 

broader coverage but face challenges due to changing perspectives and variable conditions. 

Effective intent prediction in dynamic environments requires advanced real-time processing, 

robust object detection and tracking, and sophisticated data fusion techniques to handle the 

complex and dynamic nature of the data. 

 

Although there is extensive research on predicting intent, our study concentrated on using 2D 

camera data exclusively, without incorporating data from other sensors. Our interest lies in 

methods that offer real-time performance, particularly those related to unsignalized junctions, 

as reported in the literature. 

 

2.1.2 Simulated data 

During the COVID-19 pandemic, our preliminary investigations prompted us to conduct 

experimental trials at a T-junction using traffic simulators. Traffic patterns during both the 

lockdown and early post-lockdown periods deviated significantly from the norm, rendering the 

data collected during these times unsuitable for our research objectives. During the initial 

phase of our study, we opted to use the City Drive simulator (Forward Development, 2023), 

which is notable for its unique feature of left-hand traffic flow. This distinct characteristic 

contrasts with most traffic simulators' right-hand traffic perspective. However, our experience 

with this simulator revealed a significant drawback. The artificial intelligence system 

responsible for regulating the simulated vehicles' behaviour frequently undermined the 

scenarios' realism by delaying actions at the junction and allowing vehicles to back up. As a 

result, the outcomes we observed were often unpredictable and lacked the authenticity we 

were aiming for. For this work, we required authentic T-junction data, and with no video 

datasets of UK T-junctions, we had to create our bespoke video data from live locations in the 

UK. 
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2.1.3 UK T-junction accident information 

We selected our test locations for unsignalised junctions based on the history of severe or 

fatal accidents involving motorcyclists using the Road Safety Foundation EuroRAP data portal 

(Foundation, 2022) and from the work of Pai and Saleh (2008). We discuss junction choice 

and our data collection methods in detail in Chapter 3.  

 

2.2 Literature review 

Our review concentrates on vehicle intent prediction by examining trajectory and intent 

prediction methodologies, including intention-aware and interaction-aware strategies. An 

intention-aware system refers to a system designed to recognise, understand, and potentially 

predict a user's or another system's intentions (Fox et al., 2018). 

Interaction-aware systems describe systems or devices that are sensitive to and can adapt 

based on interactions. These interactions could be between the system and its user, multiple 

users or even between different systems, and they play a role in understanding T-junction 

dynamics from various perspectives.  

 

2.2.1 Traffic video datasets 

As far as we know, no publicly available 2D video datasets are currently specific to UK T-

junctions. However, many computer vision-focused traffic video datasets exist and are 

commonly utilised for benchmarking and forming a foundational part of computer vision 

research. Most traffic-centric video datasets aimed at intent and trajectory prediction integrate 

additional sensor data, including Lidar and radar, that is synchronised with AV data and 

captured from a moving vehicle, overhead drone, or stationary camera. Given the gap in the 

UK T-junction video data research, we developed our own UK T-junction video dataset inspired 

by the relevant examples in the existing literature. 

Argoverse 2 (Wilson et al., 2021) is a set of datasets designed to enhance self-driving 

perception and forecasting research. It features a Sensor Dataset with 1,000 multi-modal 

sequences, a Lidar Dataset with 20,000 sequences for self-supervised learning, and a Motion 

Forecasting Dataset with 250,000 scenarios focusing on complex interactions. These datasets 

aim to address diverse and complex machine-learning challenges in autonomous driving.  

KITTI-360  (Liao, Xie and Geiger, 2021) is a comprehensive suburban driving dataset that 

enhances urban scene understanding in both 2D and 3D. It offers richer input modalities, 

extensive semantic instance annotations, and accurate localisation. This dataset is notable for 

its geo-registered data of suburban scenes, a WebGL-based annotation tool for 3D space 

labelling and a method that translates 3D labels into coherent 2D semantic instance 

annotations. KITTI-360 strives to advance research across computer vision, graphics, and 
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robotics and establish benchmarks for tasks like semantic scene understanding, novel view 

synthesis, and simultaneous localisation and mapping (SLAM). SLAM is a method in robotics 

and autonomous vehicles where the system not only maps the environment and locates itself 

within it but also understands and labels the environment semantically, recognising and 

categorising elements in the surroundings such as walls, roads or objects and thus providing 

a richer, more helpful map. 

Leddartech Pixset (Leddartech, 2024)  is a novel dataset aimed at autonomous driving 

research and development. It is notable for its inclusion of full-waveform data from the Leddar 

Pixell sensor, a solid-state flash LiDAR. This dataset, which includes around 29k frames from 

97 sequences recorded in high-density urban areas, is enhanced with 3D bounding boxes for 

each frame. The dataset's main contributions are the introduction of a new dual LiDAR-type 

dataset with solid-state and mechanical LiDARs, full-waveform data and the improvement of 

3D bounding box annotation accuracy. 

The Waymo Open Dataset (Waymo LLC, 2019) is a comprehensive dataset for autonomous 

driving research. It is known for its high-quality, high-resolution sensor data and labels 

necessary for various tasks in autonomous driving, such as 3D perception and behaviour 

prediction. This dataset has significantly contributed to advancing machine learning models 

by providing data from real-world scenarios and challenges encountered in autonomous 

vehicle development. 

The highD Dataset (Krajewski et al., 2018) is a rich traffic dataset captured from German 

highways using drones. It focuses on providing a detailed understanding of vehicle behaviour 

and dynamics in various highway scenarios. 

The INTERACTION Dataset (Zhan et al., 2019) is a vehicle trajectory dataset dedicated to 

understanding interactive driving behaviour in dense traffic environments. It is used to study 

and model vehicle interactions and to improve traffic flow analyses. 

The Oxford Robot Car Dataset (Maddern et al., 2016) offers a large-scale and long-term 

dataset for developing vehicles capable of sustained autonomy in diverse conditions. It is a 

valuable resource in the robotics and autonomous vehicle research community, especially for 

those focusing on long-term vehicle localisation and autonomy in changing environments, and 

it is UK-road-structure-focused.  

Kaggle (Kaggle, 2022) offers diverse open datasets, including traffic and transportation-related 

sets. Kaggle's platform allows access to datasets and provides a community-driven approach 

where users can share their datasets; however, as with any community-driven resource, 

quality and support can vary dramatically. 
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2.2.2 Vehicle object detection 

The research explores various vehicle detection methodologies. Our work utilises a version of 

YOLO (you only look once) for vehicle detection and classification, discussed in detail in 

subsequent chapters. This section introduces an overview of YOLO to place it in context. 

YOLO represents a paradigm shift in detecting objects within images and is known for its 

speed and efficiency in real-time object detection. 

The original YOLO (YOLOv1) by Redmon et al. (2016) was groundbreaking in treating object 

detection as a regression problem, combining region proposal and classification into a single 

step using a convolutional neural network (CNN). Redmon et al.'s version was faster than 

previous methods but had limitations in accuracy, particularly with smaller or grouped objects. 

YOLO9000, a subsequent version, introduced significant improvements. Developed by 

Redmon and Farhadi in 2016, it incorporated anchor boxes for better boundary prediction and 

a new classification model, Darknet-19. This version could detect over 9,000 object categories 

and improved speed and accuracy. 

In 2018, Redmon and Farhadi's YOLOv3 offered incremental improvements, including multi-

scale predictions and a more profound architecture with Darknet-53. It enhanced the detection 

of small objects and struck a balance between speed and accuracy. 

YOLOv4, created by Bochkovskiy and Wang (2020), integrated various techniques from the 

research community to optimise speed and accuracy. It included innovations like Mish 

activation, cross-stage partial connections and diverse data augmentation methods. It aimed 

to perform well on standard hardware. 

YOLOv5, developed by Jocher in 2021, focused on being lightweight and extremely fast, 

suitable for speed-critical applications. It introduced scaling and deployment improvements. 

Li et al.'s (2022) YOLOv6 emphasised easy deployment across platforms while balancing 

speed and accuracy, thus improving upon YOLOv5's architecture and training techniques. 

YOLO versions 7 and 8, launched in 2023, are awaiting review and comparison with earlier 

versions. Each iteration of YOLO signifies advancements in object detection technology that 

balance speed, accuracy and real-world applicability. 

Our decision to use YOLO was based on our requirements: a real-time inference speed of 

vehicle detection and classification, classification accuracy, and its use in the following 

research. 

Numerous algorithms on speed and accuracy have been proposed, such as C3Ghost and 

Ghost (Dong, Yan and Duan, 2022) modules in YOLO. Dong et al. presented an improved 

version of the YOLOv5 object detection method, tailored explicitly for vehicle detection. The 

authors addressed two primary challenges of vehicle detection methods: high computational 

load and suboptimal detection rates. The key innovations in their approach include the 
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integration of C3Ghost and Ghost Modules: These modules are incorporated into the 

YOLOv5's neck network. They aim to reduce the floating-point operations (FLOPs) during the 

feature channel fusion process, which is a significant step because it helps make the model 

more efficient by reducing computational demands without sacrificing performance. The 

Convolutional Block Attention Module (CBAM) was added to the YOLOv5 backbone network. 

The CBAM plays a crucial role in enhancing the model's focus on relevant information for 

vehicle detection while suppressing irrelevant data. This selective attention mechanism is 

geared towards improving the detection accuracy of the algorithm. Dong et al. introduced the 

CIoU_Loss as the bounding box regression loss function—an essential aspect as this 

accelerates the bounding box regression rate and improves the algorithm's localisation 

accuracy, which is vital for precise object detection.  

To validate the effectiveness of these improvements, Dong et al. conducted tests using the 

PASCAL VOC and MS COCO datasets. The results from these case studies are promising 

and include the following:  

• Increased detection precision: The detection precision of the proposed 

model saw a significant increase of 3.2%.  

• Reduced FLOPs: A 15.24% reduction in FLOPs indicates a more efficient 

computational process. The number of model parameters was reduced by 

19.37%, suggesting a leaner, more optimised model structure.  

Overall, the authors demonstrate the effectiveness and superiority of the improved YOLOv5 

method for vehicle detection through comprehensive case studies and comparisons with the 

existing YOLOv5 model. The results indicate that the authors have successfully addressed 

the initial challenges, leading to a more efficient and accurate vehicle detection system.  

However, integrating C3Ghost and Ghost modules, along with the Convolutional Block 

Attention Module (CBAM), into the YOLOv5 architecture increases the model's complexity. 

Like most deep learning models, the performance of this improved YOLOv5 method heavily 

depends on the quality and quantity of the training data. If the training datasets (like PASCAL 

VOC and MS COCO) do not adequately represent the variety of real-world scenarios, the 

model may not generalise well to different or novel environments. Adding sophisticated 

modules and mechanisms to improve accuracy might also lead to overfitting, especially if the 

model is trained on limited or highly specific datasets—overfitting results in an excellent 

performance on training data but poor generalisation for new, unseen data.  

Despite reducing FLOPs and model parameters, the model may still require significant 

computational resources, particularly during training; this is a limiting factor for our work as we 

did not have access to high-performance computing facilities. While  Dong et al. focus on 

reducing computational load, the real-time processing capabilities of the model in various 

scenarios, such as different lighting conditions, weather conditions or high-speed 
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environments, are not explicitly discussed. These are critical factors in vehicle detection 

applications, especially for autonomous driving systems. The model is optimised explicitly for 

vehicle detection. However, this specialisation might limit its adaptability or performance when 

detecting a broader range of objects in different contexts outside vehicle detection. There is 

also always a risk of inherent biases in the training data being transferred to the model. If the 

datasets used have any bias regarding vehicle types, sizes or environmental conditions, the 

model might inherit these biases, affecting its performance and reliability. 

Another approach to the challenging problem of vehicle detection in autonomous driving 

systems (Chen et al., 2022) focuses on complex traffic scenes and the constraints posed by 

limited computing resources. Chen et al. propose an improved version of the Single Shot 

Multibox Detector (SSD) algorithm tailored for fast and accurate vehicle detection.  

The authors chose MobileNet v2 as the backbone feature extraction network for the SSD 

framework. MobileNet v2 is known for its mobile efficiency and embedded vision applications, 

which likely contribute to the real-time performance improvements of the proposed algorithm. 

The authors introduced a channel attention mechanism for feature weighting. This approach 

is designed to enhance the model's ability to focus on more relevant features for vehicle 

detection, thereby improving its detection accuracy. A deconvolution module further enhances 

the model's performance. This structure aims to improve the model's ability to recognise 

vehicles of various sizes and in different parts of the image—a common challenge in complex 

traffic scenes. The model's effectiveness is demonstrated through its performance on two 

standard autonomous driving datasets, BDD100K and KITTI. The reported average precision 

rates of 82.59% for BDD100K and 84.83% for KITTI are impressive, indicating a high level of 

accuracy in vehicle detection. One of the standout features of the proposed algorithm is its 

inference speed. With a single inference time of 73 ms, the model is notably faster than the 

original SSD model. The authors claimed to achieve a balance between improved inference 

speed and enhanced prediction accuracy. This balance is critical in autonomous driving 

systems, where fast processing and high accuracy are necessary for safe and efficient 

operation. The authors thus effectively addressed the dual challenges of speed and accuracy 

in complex traffic environments by optimising the SSD algorithm with MobileNet v2 and 

incorporating advanced techniques like channel attention and deconvolution modules. The 

robust evaluation using standard datasets further underscores the practical applicability and 

effectiveness of the proposed solution.  

While the authors present a promising approach to vehicle detection in autonomous driving 

systems by improving the Single Shot Multibox Detector (SSD) algorithm, there are potential 

disadvantages and limitations to consider. Integrating MobileNet v2, channel attention 

mechanisms, and deconvolution modules increases the complexity of the model, and the 

inference time of 73 ms is slower than the YOLO-based models.  
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Accurate real-time vehicle detection using YOLO is discussed by Nafiseh Zarei, Payman 

Moallem and Shams (2023), who use an innovative algorithm for vehicle position 

determination explicitly designed for urban traffic monitoring systems. The algorithm operates 

in two stages: detection and prediction. This separation allows for a balance between accuracy 

(achieved through detection) and speed (achieved through prediction), thereby offering a 

flexible solution that can be tailored to specific requirements. Using YOLO as the base for the 

detection network is a significant choice, reflecting the acceptance of this model in real-time 

inference problems. 

YOLO is known for its speed and efficiency in object detection tasks. The design is tailored to 

be robust against changes in vehicle scale, which is crucial in diverse traffic scenarios. The 

detector network generates feature maps that are crucial to increasing detection accuracy. 

These maps are used for image segmentation into two classes, vehicle and background, 

utilising differential images and a U-Net-based module. This segmentation is a key step in 

accurately distinguishing vehicles from their surroundings. Differential images and a U-Net-

based module for image segmentation allow for a clear distinction between vehicles and 

backgrounds. This distinction is critical for accurate vehicle position detection in complex 

urban environments. The algorithm classifies vehicle manoeuvres to enhance the recursive 

predictive network's performance and is done by concurrently considering the vehicles' spatial 

and temporal information. 

Such an approach is more effective than methods considering these aspects separately and 

leads to better prediction accuracy. The simultaneous consideration of spatial and temporal 

data in classifying vehicle manoeuvres indicates a comprehensive approach to understanding 

vehicle dynamics and could significantly contribute to the system's predictive accuracy. The 

algorithm's performance was validated using the Highway and UA-DETRAC datasets, which 

are standard in urban traffic monitoring research. This validation demonstrates the algorithm's 

applicability and effectiveness in real-world urban traffic scenarios, where accurate and fast 

vehicle detection and tracking are essential. The use of advanced techniques like YOLO for 

detection, U-Net for segmentation, and the consideration of both spatial and temporal data for 

manoeuvre classification all contribute to the robustness and efficacy of the proposed system. 

The validation of the algorithm on standard datasets further underscores its practical 

applicability in urban traffic environments. However, this model is not designed to work on real-

time predictions. 

In contrast, Zarei et al.'s algorithm and the use of YOLO suggest potential for real-time 

application. Actual real-time capability would depend on the specific implementation details, 

the efficiency of the image segmentation process, the balance between detection and 

prediction, and the available computational resources. Further information or empirical real-

time testing would be necessary for a definitive answer. 
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EnsembleNet (Mittal, Chawla and Tiwari, 2022) uses a hybrid vehicle detection approach and 

traffic density estimation based on faster R-CNN and YOLO models. Mittal et al. emphasise 

the growing importance of deep learning technologies, particularly CNNs and in-vehicle 

identification systems. This choice aligns with the current trend of leveraging advanced AI 

techniques for complex image recognition tasks. The researchers collected data from several 

open-source libraries, including MB7500, KITTI and FLIR. This diverse data collection is 

crucial for building a robust model. Image annotation was performed to classify vehicles into 

different categories, addressing an essential step in supervised machine learning. Various 

data augmentation methods were employed to tackle the class imbalance issue and increase 

the dataset size. 

Additionally, the image quality was enhanced through a sharpening process, which is crucial 

to improving the model's ability to detect and recognise vehicles accurately. The paper 

introduces a novel hybrid model that combines Faster R-CNN and YOLO, utilising a majority 

voting classifier. This hybrid approach aims to leverage the strengths of both Faster R-CNN 

and YOLO, potentially leading to more accurate vehicle detection and counting. The proposed 

model, EnsembleNet, demonstrated a high detection accuracy of up to 98%, outperforming 

the base estimators YOLO (95.8%) and Faster R-CNN (97.5%). This comparison is essential 

to validating the effectiveness of the hybrid model over the individual models. One of the key 

findings is that the proposed model performs better in estimating traffic density compared to 

YOLO and Faster R-CNN.  

While using a hybrid model of Faster R-CNN and YOLO presents a promising approach, 

combining Faster R-CNN and YOLO into a hybrid model increases complexity, rendering real-

time predictions slower. Advanced deep learning models like Faster R-CNN and YOLO (Kim, 

Sung and Park, 2020), particularly in a hybrid format, could require significant computational 

resources for training and inference. While the model has been tested on specific datasets 

(MB7500, KITTI, and FLIR), its ability to generalise to various real-world traffic conditions, 

including weather, lighting, and traffic density scenarios, is not explicitly addressed. The 

reliance on open-source libraries for data collection might introduce biases or limitations 

inherent in the datasets. Additionally, image annotation is labour-intensive and could introduce 

human errors or inconsistencies. While data augmentation methods are used to address class 

imbalance, over-reliance on these techniques can sometimes lead to models that are less 

effective at generalising from augmented data to real-world scenarios. For traffic management 

applications, real-time processing is crucial. Kim et al. do not explicitly mention the real-time 

capabilities of the hybrid model, which is essential for dynamic traffic management systems. 

The high detection accuracy (up to 98%) reported might raise concerns about overfitting, 

especially if the model is excessively tuned to the specific datasets used for training and 

evaluation. While the hybrid model outperforms the base models YOLO and Faster R-CNN in 
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the tested scenarios, the comparative analysis might not fully account for all possible real-

world scenarios and challenges.  

YOLO-based models are becoming the standard for real-time detection. Ayush Dodia and 

Kumar (2023) address the limitations of traditional car object detection algorithms, particularly 

in generalisation capacity and recognition rate. Their research focuses on vehicle detection to 

manage vital traffic data, such as vehicle count and movement. It compares contemporary 

object detectors and traffic situation estimations, specifically examining different YOLO 

algorithm versions for optimal vehicle detection. The YOLO algorithm process involves 

clustering analysis for dataset optimisation and network structure enhancement to improve 

vehicle prediction. Ultimately, the study proposes an improved vehicle identification technique 

based on the YOLO algorithm and evaluates three versions for effective vehicle detection. 

Ayush Dodia and Kumar (2023) examine different versions of the algorithm—YOLO-v3, 

YOLO-v5 and YOLO-v7—for vehicle detection and counting in adaptive traffic light systems, 

assessing the accuracy of these versions, concluding that YOLO-v7 is the most effective, with 

95.74% accuracy and a low frame rate of 3.5 ms per frame, facilitating faster object detection. 

The paper also notes the utility of YOLO-v5 and YOLO-v7 in detecting other objects, such as 

pedestrians and traffic signs for autonomous vehicles. It suggests that future work might 

explore YOLO v8, a promising next-generation facial recognition software with higher 

accuracy, speed, and broader identification capabilities, potentially setting a new standard for 

segmentation and object detection. However, YOLO v7 was designed to improve the efficiency 

of  YOLO v5 in terms of generalisation ability, speed of inference and overall accuracy, yet 

YOLO v7 requires a significant increase in computational resources for both training and 

implementation. 

Small object detection, such as distant vehicles, is addressed by Wen et al. (2023). They 

proposed LSD-YOLO, a variant of the YOLOv5 algorithm designed for higher accuracy and 

efficiency in detecting small objects. LSD-YOLO enhances small-scale feature maps to 

improve detection capabilities and introduces a new structure, FasterC3, to decrease network 

latency and parameter volume. LSD-YOLO incorporates coordinated attention to identify 

attention regions in complex driving scenarios and employs LeakySPPF, a spatial pyramid 

pooling method, to speed up computation by up to 15%. Additionally, Wen et al. (2023) 

presented a medium-sized dataset, Cone4k, to address category limitations in the VisDrone 

dataset. Extensive testing on the VisDrone2021 dataset demonstrated that LSD-YOLO 

achieves significant improvements in mean Average Precision (mAP) and F1 score, along with 

a reduction in parameter volume, making it a promising solution for enhancing small object 

detection in autonomous driving. The algorithm, primarily based on YOLOv5s and extended 

to other versions like YOLOv5m and YOLOv5l, utilises small-scale feature maps to enhance 

the detection of small objects. It integrates the FasterC3 module into the network for improved 
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accuracy and speed and adopts Focal-EIoU to address computational issues in CIoU. The 

research indicates that LSD-YOLO outperforms the original network, with a 4.6% improvement 

in mean Average Precision (mAP) and a 3.6% increase in F1 score, while reducing the 

parameter count by 7.5%. However, there is a compromise between increased accuracy and 

reduced inference speed.  

 

2.2.3 Vehicle Intent classification at intersections 

Methods for classifying vehicle intent vary with the specific application, and there is a large 

corpus of research on classifying vehicle intent from moving vehicles, such as autonomous 

vehicles or semi-autonomous driving aids. Amini, Omidvar and Elefteriadou (2021) and Afifah, 

Guo, and Abdel-Aty's (2023) research also emphasised the focused development of 

interconnected vehicles, which can, for example, pass current and intended trajectories 

between vehicles in the immediate vicinity and static infrastructure placed at intersections.   

An early study into AV navigation of unsignalised junctions was carried out by Sezer et al. 

(2015) and has inspired our work. Sezer et al. (2015) addressed the interaction between 

autonomous driverless vehicles and human-driven vehicles, mainly focusing on merging 

scenarios at intersections. Their study uses Mixed Observability Markov Decision Process 

(MOMDP) tools to approach this interaction as an intention-aware motion planning problem. 

The key innovation here is the application of intention-aware planning frameworks to predict 

and adapt to human drivers' actions, specifically at T-junction intersections. A driver behaviour 

model was developed to calculate probabilistic state transition functions for the MOMDP 

model, thereby allowing the autonomous vehicle to make more informed decisions. The results 

suggest that this intention-aware approach significantly improves performance over current 

methods, notably reducing accident probabilities and intersection navigation times.  

The results presented here demonstrate the application of a MOMDP in managing interactions 

between an autonomous vehicle (robot) and human-driven vehicles at an intersection. The 

critical aspect of this experiment is how the robot adapts its behaviour based on its perception 

of the human driver's intentions. In the first scenario, the MOMDP is used to interpret an 

aggressive driver's behaviour. The robot initially perceives the driver as aggressive and stops. 

However, as the driver's behaviour changes (slowing down and yielding), the robot updates 

its beliefs and eventually merges onto the road. 

In the second scenario, the MOMDP method demonstrates its ability to handle a persistently 

aggressive driver. The robot initially stops, recognising the driver's aggressive approach. 

However, it then decides to proceed before the driver has passed the intersection based on 

its calculation of a low probability of conflict. This action is driven by the model's inclusion of a 

time penalty, encouraging more efficient navigation.  
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These results showcase the efficacy of the MOMDP approach in navigating complex and 

dynamic scenarios involving human drivers. By continuously updating its beliefs about the 

drivers' intentions, the robot can make safer and more efficient decisions, demonstrating a 

significant advancement in autonomous vehicle navigation in mixed-traffic environments. This 

approach enhances safety and improves traffic flow by reducing unnecessary stops or delays 

caused by uncertainty in interpreting human drivers' intentions.    

The MOMDP framework, while innovative and valuable for the interaction of autonomous 

vehicles with human-driven vehicles, does have several disadvantages. Firstly, MOMDPs are 

inherently complex because they must account for many variables and potential states in 

dynamic environments like road traffic. This complexity can lead to increased computational 

requirements, making real-time decision-making challenging. Secondly, MOMDP 

effectiveness relies heavily on accurate sensing and prediction of human driver behaviour. 

The model might be trained and tested under specific conditions (like certain types of 

intersections, traffic densities or driver behaviours). Its performance could vary significantly 

under different conditions, which limits its generalisation to all real-world driving scenarios. As 

traffic density increases or scenarios become more complex (e.g., multiple human-driven 

vehicles with varying behaviours), the decision-making process's computational load and 

complexity increase, impacting the system's scalability in dense urban environments. While 

MOMDP aims to predict human behaviour, human drivers can be unpredictable and may not 

always behave according to the model's parameters. This unpredictability poses a significant 

challenge, although current machine and deep learning methods we explore in subsequent 

chapters promise to alleviate some of these issues.  

Our research is focused on T-junction or intersection-specific models using static sensors; 

however, some of the approaches in the literature focused on AV intent and trajectory 

prediction using sensors such as radar and Lidar, and these have assisted in developing a 

framework to apply to our work. 

Zhang et al.'s (2021) proposed method using an LSTM-based framework for intersection traffic 

focuses on predicting vehicle intentions and trajectories at intersections. Assuming that vehicle 

motion trajectories at intersections align with historical data once driving intentions are 

determined, the study establishes an Intersection Prior Trajectories Model (IPTM) by 

clustering and analysing extensive historical traffic flow trajectories. This model helps 

approximate the distribution of predicted trajectories and serves as a benchmark for credibility 

evaluation. The paper employs another LSTM model for intention prediction, a critical early-

stage trajectory forecasting element which links with the IPTM and enhances the framework's 

predictability. Validated on the NGSIM and INTERACTION datasets, this framework 

significantly improves trajectory prediction accuracy by approximately 20% over other 

methods. However, LSTM models are inherently complex and require substantial 



36 
 

computational resources, making them expensive and challenging to deploy in real-time traffic 

management systems. In real-time prediction, any latency in processing and decision-making 

can be critical. The LSTM-based framework might face challenges in ensuring the minimal 

latency necessary to be effective in real-time applications. 

Another approach to intent predictions at unsignalised intersections is a method called Multi-

Modal Trajectory Prediction with Uncertainty (Zyner, Worrall and Nebot, 2018). The approach 

combines RNNs with a mixture density network (MDN) output layer designed to deal with the 

unpredictable nature of vehicle movements at intersections. Introducing a clustering algorithm 

to analyse the output probability distribution is innovative, helping to identify and rank possible 

paths. Using a real-world dataset with over 23,000 vehicles across five intersections adds 

significant strength to the study. It ensures that the findings are based on diverse, real-world 

scenarios. A Lidar-based tracking system for data collection is state-of-the-art, providing high-

quality and reliable data. Using various metrics to assess the model's performance against 

several baselines demonstrates a comprehensive evaluation approach.  

Testing the model on multiple intersections with a large dataset suggests good generalisability; 

however, the model's effectiveness heavily depends on the quality and diversity of the training 

data. If the data is not sufficiently varied or representative of all possible scenarios, the model's 

ability to generalise to new, unseen intersections might be limited. While practical, using RNNs 

and MDNs is computationally intensive, and valuable real-time predictions are impossible as 

inference time is in seconds, not the milliseconds required for our work. 

A similar, improved method by Jeong et al. (Jeong, Kim and Yi, 2020) applies combined LSTM 

and RNN networks to predict turning behaviour at an intersection. Incorporating the subject 

vehicle's future states as an input feature to the LSTM-RNN is an innovative approach. It 

allows the model to consider the interaction between the subject and surrounding vehicles. 

The application results indicate improved recognition timing of the preceding vehicle, and the 

similarity of longitudinal acceleration with human drivers suggests practical benefits, implying 

that the system can make decisions more aligned with human driving patterns. More 

specifically,  (67.36%) of the acceleration error falls within ±0.5 m/s², and a significant majority 

(91.97%) is within the ±1.0 m/s² range, suggesting that the algorithm's performance is roughly 

aligned with human driving behaviours. 

In contrast, the acceleration error distributions for the other models, like CV/Path and CTRV, 

were broader and less accurate in predicting a target vehicle's acceleration. These models 

struggled to accurately forecast the target's motion, resulting in a wider spread of error values. 

However, the Vflow/Path model showed a bias in the negative plane, demonstrating that the 

model—which assumes the vehicle follows the traffic flow—has limitations in responding to 

varying in-lane behaviours. This bias occurs because deceleration is usually more pronounced 

than acceleration in normal intersection driving conditions. 
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Wang and Shi (2020) used deep reinforcement learning to predict how a driver turns at an 

unsignalised intersection. Wang and Shi focused on the impact of intersection collision 

warning (ICW) systems on vehicle safety at non-signalised intersections. The authors 

developed a Matlab-based simulation platform to test their hypothesis and analysed various 

safety indices such as collision probability, conflict index, and collision rate. Their results reveal 

that vehicle safety at non-signalised intersections improves as the ICW system market 

penetration rate (MPR) increases. Significant safety benefits were observed even at a 

relatively low MPR of 20%. 

With a 20% MPR and vehicles connected by vehicle-to-everything technology, there were 

reductions in collision probability (20%), conflict index (20%) and collision rate (35%). 

The simulation method allowed for the establishment of a relationship between the ICW 

system MPRs and vehicle safety indices at non-signalised intersections.  

The study acknowledges that the diversity and unpredictability of human driving behaviour 

could impact the effectiveness of ICW systems. The experiment was conducted in a simulated 

environment, as real-world field testing is difficult and risky. The paper concludes that the ICW 

system, when widely adopted, could significantly reduce collision metrics at non-signalised 

intersections; however, the variability in human behaviour and the need for real-world testing 

are areas that require further investigation. The simulation method presented in this paper 

offers us a framework for analysing the impact of intelligent vehicle technologies on road 

safety.  

 Hu et al. (Hu, Zhan and Tomizuka, 2018) proposed a semantic-based intention and motion 

prediction (SIMP) method to predict vehicle intention simultaneously. The authors highlighted 

that existing research often limits the scope of driving intentions to specific scenarios, failing 

to account for the diversity in real-world driving environments, and emphasised the need for 

an intention prediction method capable of adapting to various traffic scenarios given the 

multitude of possible driving manoeuvres. The method adopted improves prediction 

performance by integrating motion information with classified intentions and obtaining 

temporal information about predicted destinations, thus generating optimal trajectories for 

predicted and autonomous vehicles.  

The SIMP method uses semantically defined vehicle behaviours to adapt to various driving 

scenarios. This method employs a deep neural network within a probabilistic framework to 

estimate intentions, final locations, and timing for surrounding vehicles. 

Support vector machine (SVM) is primarily used for classification tasks but can also be 

adapted for regression. It works by finding the hyperplane that best separates data classes in 

a high-dimensional space. For non-linearly separable data, SVM uses kernel tricks to 

transform data into a higher dimension where it is separable. 

Quantile random forest (QRF) is an extension of the random forest algorithm, an ensemble 
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learning method. While a standard random forest generates predictions by averaging the 

results of multiple decision trees, a quantile random forest provides a distribution of possible 

outcomes. This is beneficial for estimating the uncertainty and variability in the predictions. 

SIMP was compared to baseline SVM, and QRF models in two representative driving cases. 

The SIMP method reportedly outperformed these models in prediction accuracy and 

confidence intervals. A key conclusion is the efficacy of combining different prediction tasks 

using semantics in a single framework, which allows for generalisation to various traffic 

scenarios and competitive performance against traditional methods. 

DESIRE (Deep Stochastic IOC RNN Encoder-Decoder; Lee et al., 2017) is a framework for 

predicting the future positions of multiple interacting agents in dynamic scenes. It is an end-

to-end trainable neural network model incorporating a deep IOC (inverse optimal control) 

framework. The framework accounts for the multi-modal nature of future predictions, 

acknowledging that the same current context can lead to different future outcomes. DESIRE 

can foresee potential future outcomes and make strategic predictions based on accumulated 

future rewards, akin to IOC frameworks. DESIRE considers past motion histories, semantic 

scene contexts, and interactions among multiple agents, thus providing a holistic view of the 

scenario. Despite its complexity, DESIRE maintains computational efficiency and iteratively 

refines predictions to boost accuracy using a conditional variational autoencoder component 

to generate a diverse set of hypothetical future prediction samples. 

The model was evaluated using two publicly available datasets: KITTI (focused on vehicle 

interactions) and the Stanford Drone Dataset. The model's prediction accuracy was 

benchmarked against other methods and demonstrated significant improvements, particularly 

in scenarios with rich interactions. While DESIRE's top 1% sample may show higher error than 

direct regression baselines, multiple samples (e.g., top 10%) yield much better prediction 

accuracy. DESIRE offers accurate long-term predictions in complex scenes, integrating static 

and dynamic contexts.  

In our work, we simplified the prediction algorithm regarding the number of agents and built 

on the work of Wang et al. (2020), Hu et al. (2018) and Lee et al. (2017) to generate our feature 

vectors. 

To classify intent based on historical feature vector data, most models in the literature have 

the same goal: to represent a conditional probability distribution P (o | f ) outcome at a junction 

given a vector of features f. However, these models differ in how they extract features. The 

literature describes challenges in developing pragmatic intersection intention prediction 

models. These challenges include developing models that can generalise across unseen 

intersections and drivers, predict over longer prediction horizons, and do not require driver 

eye-tracking or similar inputs. All models are probability distributions rather than mere 

classifiers, which allows them to capture the inherent stochasticity in human driving behaviour. 
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Benchmarking is common across the literature, giving a certain degree of generalisation.  

Our tailored video dataset uniquely addresses the specific needs of our study as existing 

benchmarks do not adequately cover all potential vehicular scenarios. This approach mirrors 

Ristani et al. (2016), who developed customised benchmarks for various video tracking and 

analysis situations. They introduced innovative precision-recall performance measures that 

uniformly tackle different errors while emphasising accurate identification. Their significant 

contribution includes compiling the most extensive, fully annotated, calibrated dataset for 

multi-target, multi-camera tracking. This dataset encompasses over two million high-definition 

video frames, recorded using eight cameras and tracking more than 2,700 distinct identities.  

 

2.2.3 Non-predictive, reactive methods of accident mitigation 

Existing accident mitigation technologies, such as automatic emergency braking (AEB), are 

reactive measures that activate when there is an imminent collision between a vehicle and an 

object directly in their path. This issue is explored in the context of motorcycles by Savino et 

al. (2016), who made a significant advancement in motorcycle safety by extending the 

implementations of the inevitable collision state (ICS) theory to motorcycles. Savino et al. 

(2016) successfully adapted ICS theory, which has predominantly been applied to cars for use 

with motorcycles to consider the unique avoidance capabilities of motorcycles, allowing for 

more accurate predictions in motorcycle-to-car crash scenarios. The findings enable the 

development of more sophisticated and effective motorcycle safety systems, such as AEB and 

airbags. By integrating this advanced understanding of collision inevitability, these systems 

can be designed to activate only when a collision is physically unavoidable. Improving time-

to-collision (TTC) analysis allows for better analysis of TTC values when assessing the 

effectiveness of safety systems before a crash occurs. 

Savino et al. presented simulation results for 10 motorcycle crash cases. They traced the 

relationship between TTC and actual impact speed, as well as impact speed reduction versus 

actual impact speed. Their results were based on motorcycles travelling in a straight line and 

not performing lateral avoidance manoeuvres. It also considers only a single opponent car, 

although the approach remains conservative in scenarios with multiple obstacles. Their study 

demonstrated the practical feasibility of applying ICS to real-world motorcycle crashes and 

suggested a lookup table approach for implementing such systems; the simulations also 

provided quantitative estimates of potential impact speed reductions. 

Motorcycle autonomous emergency braking (MAEB) systems were reviewed by Haufe et al. 

(2021). MAEB technology is similar to autonomous car braking that applies braking force 

automatically to reduce impact speed in emergencies, and it is designed to reduce the severity 

of motorcycle crashes by applying autonomous braking during emergencies. Haufe et al. 
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(2021) evaluated how acceptable and controllable these automatic braking events are to 

typical riders in realistic riding scenarios. Fifty-five riders participated in field tests on three 

different motorcycle types. An investigator triggered The MAEB system remotely during four 

specific riding manoeuvres at speeds between 35–50 km/h. 

This research was pivotal as it evaluated the impact of MAEB systems on safety enhancement 

as well as their feasibility and acceptance among regular riders. It advanced comprehension 

of the importance of integrating cutting-edge safety technologies into motorcycles—a mode of 

transport often linked with increased hazards. However, the study's relatively large participant 

pool may not fully encapsulate the entire spectrum of motorcycle users. The effectiveness of 

the AB interventions was assessed under controlled conditions, which may not accurately 

mirror real-life situations. Additionally, some participants expressed a preference for testing 

anticipated AB interventions before unanticipated ones, suggesting a possible experimental 

bias due to anticipation. These constraints, especially the limited diversity of the sample group 

and the artificial test environment, underscore the necessity for additional research in more 

varied and realistic settings to corroborate the results. 

Our investigation into predicting vehicle intent at T-junctions parallels the studies of Savino et 

al. and Haufe et al. In this context, by forecasting a vehicle's intention at a junction, MAEB can 

be activated before a motorcycle reaches an unavoidable collision state, thereby enhancing 

TTC. Further research would help to answer this question: Could augmenting a motorcyclist's 

reaction time through a predictive intent factor, alongside MAEB, prevent a collision or 

substantially lessen its severity? 

 

2.3 Chapter summary 

Our review of related work explored various models and approaches to build a complete 

pipeline for intent prediction at T-junctions. We studied behavioural aspects, object detection, 

action recognition, semantic segmentation, hybrid approaches, reinforcement learning and 

end-to-end learning approaches. We also evaluated existing models and algorithms in the 

context of vehicle detection and intent prediction. This chapter describes various methods for 

predicting vehicle intentions and motions at intersections and gives a comprehensive overview 

of the techniques and methodologies used in vehicle intent prediction, focusing on applying 

YOLO algorithms for vehicle detection and classification. We also highlighted the challenges 

and limitations of current technologies, created a custom dataset, and evaluated various 

predictive models in the context of road safety and traffic management. 
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Chapter   3:  Creating a Target Vehicle Video Dataset 

 

3.1 Introduction  

The comprehensive literature review in the preceding chapter highlighted a crucial gap in the 

available video datasets relating to unsignalized junctions in the United Kingdom. Several 

video datasets, such as those by Hadi Ghahremannezhad, Shi and Liu (2023), feature 

intersections, roundabouts, and crossroads captured by stationary cameras, whereas others, 

like Oxford's Robocar dataset (2020) and KITTI datasets (Geiger, 2023), are collected from 

mobile platforms; we analysed these datasets to devise our methodology. However, relying 

on an off-the-shelf dataset that did not specifically focus on UK T-junctions would unduly 

restrict our research by introducing a generalisation that would dilute our focus. Therefore, we 

created a bespoke dataset and video specifications tailored to our research objectives. To our 

knowledge, no existing datasets fulfil our specific UK T-junction requirements, which are target 

vehicles from a left-hand drive perspective approaching a major road from a minor road where 

the target vehicle must yield to traffic on the major road. Hence, creating a unique video 

dataset was imperative to serve both as the benchmark for evaluating detection and 

classification models and as the primary input for our analytical pipeline.  

 

The decision to collect T-junction video data stemmed from recognising a critical gap in 

existing datasets related to unsignalised T-junctions in the United Kingdom. This gap, 

identified through a comprehensive literature review, underscores the need for original data 

collection to support our specific research goals and hypotheses. Rather than relying on off-

the-shelf datasets or simulators, we opted to create a bespoke video dataset tailored to the 

unique requirements of the research objectives. This decision reflects a commitment to 

methodological innovation and ensures that the collected data are specifically designed to 

address the research questions. The T-junction video data collection process involved 

extensive fieldwork, including visits to multiple T-junctions across the southern UK. This 

approach was characterised by methodological precision, systematic data collection 

protocols, and adherence to ethical guidelines regarding data privacy and consent. Rigorous 

quality assurance measures were implemented throughout the data collection process to 

ensure the data's integrity and reliability. This included meticulous documentation of ground 

truth annotations, verification of data accuracy, and ongoing validation of data quality against 

established benchmarks. The real data collected from T-junctions provides a rich and diverse 

dataset that captures the complexities and nuances of real-world vehicular behaviour. Unlike 

simulated data or existing datasets, the T-junction video data offers insights into traffic 
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patterns, driver behaviours, and environmental factors that influence vehicle interactions at T-

junctions. The collected T-junction video data is the foundation for subsequent analysis, 

modelling, and experimentation. The collection of T-junction video data represents a 

significant scientific step involving methodological innovation, rigorous data collection 

protocols, and a commitment to advancing knowledge in the field.  

 

Opting to construct our unique video dataset rather than relying on a pre-existing dataset or a 

simulator introduced a substantial workload but offered several notable advantages to our 

research. Firstly, our video dataset is explicitly tailored to our domain of interest. Existing video 

datasets and driving simulators struggle to encompass the precise scenarios and conditions 

essential for our research. The real-world data we collect includes a broader spectrum of 

diversity and variability compared to simulations. Simulators may not necessarily fail due to 

inherent limitations but because they lack the necessary data to model real-world scenarios' 

complex and unpredictable dynamics accurately. When researching vehicle behaviours before 

a T-junction, distinguishing between those that will yield and those that will not pose a 

challenge, especially in the absence of existing literature on the subject. Without concrete data 

or understanding of these behaviours, simulators cannot replicate these effects accurately, 

reducing their output to educated guesses rather than precise simulations. This limitation does 

not stem from the simulators' inability to capture real-world intricacies but from the current gap 

in our knowledge about specific vehicle behaviours. Collecting our data captures the 

subtleties, unforeseen events, and variations necessary for building robust models. 

Furthermore, published datasets sometimes suffer from constraints such as limited or 

outdated ground truth data. Developing our dataset ensures that our ground truth annotations 

remain accurate and current, which is vital for training and further evaluation within our 

pipeline. Published datasets or simulators also may not fully address privacy and ethical 

concerns linked to the use of real-world data. The decision to create a unique video dataset 

stems from a gap identified in existing literature regarding the availability of datasets tailored 

to UK T-junctions. By acknowledging this gap and taking proactive steps to fill it, the research 

demonstrates a commitment to addressing fundamental challenges in the field. Constructing 

our dataset empowers us to collect data responsibly and ethically, respecting privacy and 

consent requirements. Another notable advantage is that we possess complete ownership 

and authority over the data, which offers the option to commercialise our research or leverage 

the data for strategic purposes. Despite our extensive search, we could not identify a 

combination of existing datasets or driving simulators that would adequately suit the unique 

demands of our research. 

It is essential to emphasise that creating our video dataset is a foundational step within this 

undertaking rather than its ultimate objective. Our overarching aim was to extract pixel-level 
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feature vectors from vehicles, culminating in a comprehensive feature vector dataset that will 

be instrumental in training a predictive model. This dataset will continuously update with new 

feature vector data to enable real-time predictions, facilitating our research objectives. 

Benchmarking is a well-established practice in the literature and often contributes to the 

generalisability of research outcomes. Ergys Ristani et al. (2016) developed tailored 

benchmarks encompassing a broad spectrum of video tracking and analysis scenarios. These 

benchmarks were deployed in response to the varying contextual conditions of assessments 

carried out by subsequent researchers. With this work, it is imperative to construct a vehicle-

specific video dataset of unsignalized T-junctions in the UK to create benchmarks and 

evaluate our model on relevant data. This chapter describes our methods for acquiring high-

quality T-junction-based video data. Extensive fieldwork involving visits to multiple junctions 

across the southern UK yielded raw video material that encompasses the topography of 

junctions, thereby providing a holistic view of vehicle behaviour at and near these junctions. 

Our video dataset forms the foundational stage of our pipeline, as all stages of the pipeline 

rely on the quality of our video data for baseline reference.  

 

The research question this chapter addresses is  

RQ0: Is it feasible to collect real-world video data from T-junctions that can accurately inform 

the development of a vehicle intent model for predicting vehicular behaviour? 

 

The novel contribution covered in this chapter is  

• The creation of a data-rich video dataset on unsignalised UK T-junctions. This has 

formed the content of a research paper that is due to be published shortly.    

 

 

3.1.1 Organisation of the Chapter 

Firstly, we introduce the rationale underpinning the creation of the video dataset 

comprising unsignalized T-junctions in the United Kingdom. Secondly, we describe the 

unique topographical characteristics of these junctions and illuminate the challenges 

encountered when positioning cameras to capture the data. Lastly, we provide details on 

the formatting and storage of the video data used in Chapter 4. 

3.2 Junction Dataset Considerations 

Finding patterns in traffic is stochastic; therefore, our video dataset needed to contain sufficient 

data to encompass the full spectrum of traffic over a range of locations and times. Drawing 

upon the insights presented by Krajewski et al. (2018), the measurement methods employed 

must not influence users to ensure the preservation of realistic behaviour; this entails avoiding 
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the use of visible sensors that resemble traditional traffic surveillance cameras because such 

devices could alter the behaviour of those being observed. In our case, our empirical 

observations at the experimental junction sites indicated that most drivers were unaware of 

our presence; as the majority of drivers drove past, we saw no acknowledgement of the 

camera and our researcher was positioned out of view and nearly invisible to road users as 

they passed. Additionally, the dataset must be scalable, allowing data to be added and 

diversified. Diversity should also extend to the recording sites and times of data collection. 

Measurements should be taken from multiple recording sites at different times to 

systematically cover various road layouts, traffic rules, and traffic densities; we cover several 

junctions at various times to diversify our data. 

Furthermore, it is crucial that these measurements occur predominantly on public roads rather 

than private property to ensure the practical relevance of the dataset, particularly in the context 

of accidents on public roads, which are very hard to replicate realistically. The dataset must 

encompass all types of road users without limiting itself to specific categories such as 

pedestrians or cars. A comprehensive approach involves tracking every road user, given that 

their interactions and influence on each other are vital components of real-world traffic 

scenarios. Lastly, to recognise the significant impact of road layout and local traffic rules on 

road user behaviour, it is essential to include detailed infrastructure records in the dataset. By 

incorporating precise information about road layout and traffic regulations, the dataset can 

better reflect the real-world conditions that shape road user behaviour. 

 

3.2.1 Types of unsignalized junction 

Unsignalized junctions come in various forms and are devoid of strict traffic control measures 

like traffic lights or stop signs. Examples include roundabouts, crossroads, staggered 

intersections, and T-junctions. This research centres on the T-junction layout, a ubiquitous 

unsignalized junction in the United Kingdom. A T-junction is where a minor road intersects 

with a major road. as depicted in Figure 2. Traffic approaching on the minor road must yield 

to traffic on the major road from both directions.  

Of all the junctions on UK roads, T-junctions have the highest incidence of accidents, 

according to multiple sources in 2019 Statista data (Statista, 2023.).   

This thesis's primary objective is to predict a vehicle's intention to stop or merge, when 

approaching the major road from the adjoining minor road based on data on merging from the 

minor road onto the major road at T-junctions. 
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Figure 2: T-junction configuration in the UK. 

 

Traffic coming from the minor road onto the major road can take two distinct paths: 1) a left 

turn, merging seamlessly with the flow of traffic without crossing any lanes, as illustrated in 

Figure 3; or 2) a right turn, necessitating a crossing of oncoming traffic from the right side, as 

depicted in Figure 4. Our video dataset encompasses both scenarios, capturing vehicles on 

the minor road as they approach the T-junction and vehicles already in motion on the major 

road. Our junction video dataset is used to gather and process feature vector data from 

vehicles at the T-junction. This processed data is then forwarded to the next stage in our data 

analysis pipeline. Our primary aim is to closely examine the conduct of vehicles as they 

approach the T-junction from the minor road and, when a vehicle is identified as posing a 

potential hazard to the safe passage of drivers on the major road, issue timely warnings. 
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Figure 3: Left turn from minor to major road. 

 

 

 

 

Figure 4: Right turn across traffic from minor to major road. 

 

3.3 Selecting Experimental Junctions 

Our live experimental junctions were chosen based on several critical criteria. Firstly, traffic 

density played a crucial role in our selection process. In the initial phases of our investigation, 

certain junctions were ruled out due to traffic intensity. Some were deemed too quiet for 

meaningful traffic interaction, while others were so congested that traffic movement was 

minimal and a smooth flow was virtually non-existent. While adjusting the time of day at these 

junctions could partially alleviate this issue, our research required a more generalised 

approach. Consequently, we identified more suitable junctions that offered a better balance 

and mixed traffic flow. 

One of our key objectives is to implement a system that issues warnings to traffic on a major 

road when a vehicle from a minor road fails to stop while entering the T-junction. This specific 

behaviour is a significant contributor to the majority of accidents that occur at T-junctions. As 

a result, our research focuses on accurately modelling and capturing the stochastic nature of 

traffic conditions at these high-risk junctions. High-risk T-junctions, known for posing 
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challenges to road users, are characterised by a notable incidence of accidents; we sourced 

relevant data in this regard from the Road Safety Foundation (RSF) EuroRAP website 

(rsfmaps.agilysis.co.uk, 2023). The accident data from this source covers two distinct periods, 

spanning from 2015 to 2017 and 2018 to 2020 (inclusive). Post-2020 data yields a reduced 

accident rate, likely due to changing driving habits during the pandemic. An illustrative 

example of this data is available in Figure 5, where visual representations showcase the 

locations of fatal and serious accidents on roads in the UK. 

 

  

Figure 5: One of our experimental junctions, JM599, inside the green box, as depicted by RSF 

EuroRap. Accident sites are marked as circles.  

Our video data collection process involves recording raw video footage of traffic at the 

designated junction, capturing the junction infrastructure, and providing a comprehensive view 

of all traffic within and surrounding the area. Our initial survey involved remote analysis before 

the junction was selected as a suitable location—an image of the junction JM599 from a 

satellite view is in Figure 6, and the camera position is in Figure 7. 
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Figure 6: Satellite image of one of our selected junctions depicted in Figure 4. 

 

 

 

Figure 7. Our camera is discretely positioned to capture maximum data from a height of 3 m, as seen 

in the left image; a view from the camera can be seen in the right-hand image. Raw video (Vr) is recorded 

and optimised as a manual process generating an optimised video (Vo). The capture of Vr involves 

stationing a camera at specific test locations and recording at a frame rate of 50 frames per second 

with a resolution of 1920x1080. The camera is directed towards the approach to the junction's stop line.  

Our initial survey identified four locations based on traffic volume, composition, and a relatively 

high accident record (as indicated in Table 1). A safety plan for video recording was 

established for each of these locations, which also involved obtaining ethical approval for 

recording on public highways. Additionally, one more location was selected based on data 

indicating a relatively low accident rate, with no accidents recorded between 2018 and 2020. 

This location holds significant value in our pipeline's intent prediction training stage because 

predictions made using data from this junction are expected to be particularly insightful, as 
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discussed in Chapter 5. 

 

 

Table 1: Fatal or Serious Collision (FSC) Risk Rate (the number of FSC per billion kilometres 

travelled by vehicles along the route). 

 

3.4  Camera position at a T-junction and point of view (POV) 

All our video recordings were produced with a Garmin Virb 360 Camera, which can capture 

360˚ footage of 1920x1080 pixels using two lenses simultaneously. This high-definition 

resolution ensures clear and detailed visuals. Furthermore, the videos were recorded at a 

frame rate of 50 fps, allowing for a reduction in fps during video processing if necessary for 

tasks like maintaining optimal inference times later in the processing pipeline. This 

combination of high resolution and high frame rate contributes to the overall quality and 

versatility of the recorded footage. In alignment with Krajewski et al. (2018), our experiments 

encompass the entire junction space, taking into account all aspects of traffic and the junction's 

geography. We conducted trials with various camera points of view and subsequently 

assessed the raw video footage. Given the need to capture the complete topography of the 

junction, an ideal view would be 360˚. However, achieving a 360˚ view necessitates the 

combination of two 180˚ views, which unavoidably introduces some distortion at the stitch 

areas and, thus results in occlusions in the detection zones. 

A secondary concern arises when attempting to detect and classify vehicles in a busy 

environment from a stitched 360-degree point of view. The increased visible traffic from an 

additional lens leads to a significant increase in the average inference time per frame, jumping 

from 20 ms to a maximum of 70 ms due to the higher number of detections required in each 

frame. The subsequent images in Figures 7–10 relate to our camera point-of-view trials. 

 

3.4.1 Experiments with camera points of view (POV) 

To establish the optimum camera position for all junctions in this study, we conducted a series 

EuroRAP 

Route   

Fatal and 

Serious 

Accidents 

2015–2017 

Fatal and 

Serious 

Accidents 

2018–2020 

Junction Location Fatal and 

Serious 

Accidents at 

a T-junction 

2018–2020 

FSC Risk Rate 

/250 

JM377 3 9 Oxshot Road 2 106.9 

JM384 26 25 A248 3 88.9 

JM559 33 34 Petersfield Road 1 121.5 

JM454 10 15 Rowhook Road 2 115.9 

UO196 5 0 Jacobs Well Road 0 0 
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of experiments from different points of view (POVs) using junction JM377, as shown in Table 

2. 

The primary target vehicles in Figures  8, 9, 10 and 11 are those approaching from direction 

(a), and they are primarily responsible for most accidents when they enter the major road and 

collide with traffic coming from the right (b) or left (c). Traffic approaching from (b) is at risk 

from the target traffic (a) if they are not visible while making a right or left turn onto the major 

road. Similarly, traffic approaching (c) is at risk from target traffic (a) if they are not seen and 

are making a right turn onto the major road. Our objective is to predict the behaviour of target 

vehicles approaching from direction (a) before they cross the give-way line. One of the 

significant challenges we face is the limited time available to capture, analyse, and predict the 

behaviour of vehicles from direction (a). At the most hazardous junctions, target traffic from 

direction (a) has a restricted view until they are very close to the give-way line, providing only 

a few seconds for the entire process. Our video dataset needs to cover the approach to the 

junction from direction (a) as much as possible and include comprehensive topographical and 

other traffic details in each frame. 

 

Label Definition 

POV Camera point of view. The direction the camera is facing.  

a Target vehicle approaching from a minor road. 

b Traffic approaching the T-junction from the right on the major road. 

c Traffic approaching the T-junction from the left on the major road. 

 

Table 2: Key to Labels in Figures 7, 8, 9, and 10. 
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Figure 8 Camera POV z 

 

Figure 9 Camera POV 360˚x 

 

Figure10 Camera POV y 

 

Figure 11 Camera POV x 
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An overview summary of our POV experiments is presented in Table 3. These experiments 

combined subjective assessments with empirical data. The selection of the POV was 

influenced by what a human observer would naturally see from the given perspective and how 

well the POV video performed in beta testing, particularly in terms of inference time. After 

examining the recordings listed in Table 3 and evaluating their appropriateness for video data 

collection, we selected Point of View (POV) X. By choosing POV X, we aim to maximize 

inference times for our target vehicles by minimizing the potential for occlusions. Each 

occlusion could increase the computational burden by necessitating separate, unnecessary 

inferences. From the perspective of directions y and z, passing traffic creates obstructions, 

and it has been observed that when traffic decreases in speed and occasionally comes to a 

complete halt, all target vehicles approaching from the direction a are occluded. 

 

Camera 

POV 

Experimental summary from POV study  

Direction 

a 

Direction 

b 

Direction 

c 

Comment 

x Right Frontal Passing There is a good balance between a clear view of 

a whole junction and minimising target vehicle 

occlusions. 

y Frontal None None A clear view of target vehicles. However, a is 

frequently occluded by traffic from b c. 

z Left Passing Frontal Good view of c and of b passing or turning into 

junction. b occludes the camera from target 

vehicles if traffic turns left into the junction. 

360 x Right Frontal Frontal Data-rich view. Overwhelming when attempting 

to isolate the target vehicle. Occlusions in the 

stitch sector of the joint lenses. 

Table 3. Camera POV summary  

We recorded all the videos for this dataset from POV x, which was chosen to balance data 

quality, minimal occlusions, and an optimal view of traffic and junction topography. All video 

data utilised in this dataset was collected from POV x at each junction. 

 

3.5 Constructing the video for the dataset 

After the junctions were selected, the camera position was established, and a safety plan was 

drafted, we conducted multiple visits to each junction listed in Table 4. These visits occurred 

at different times of the day, with varying traffic densities and light conditions. The objective 

was to create individual junction datasets, each named after the EuroRAP route on which they 

are situated. Additionally, we compiled a combined dataset named 'Bo', which included all the 

junctions. 
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We placed our tripod in a similar position to ensure consistency and to maintain the same 

vantage point for each visit to every junction. We achieved this by marking the tripod legs' 

positions on the ground using long-lasting biodegradable chalk, thus allowing for accurate 

camera position calibration. 

 

 

 

 

 

 

 

 

 

Table 4. The storage structure of our video dataset in the raw form was prepared for the next 

stage in our pipeline.  

 

All the video data was collected and preserved in the MP4 format. The videos were organised 

into junction-specific collections and consolidated into a comprehensive video repository 

named Bo. 

 

3.6 Chapter conclusion 

Research question revisited: RQ0: Is it feasible to collect real-world video data from T-

junctions that can accurately inform the development of a vehicle intent model for predicting 

vehicular behaviour? 

The process described in selecting the Point of View (POV) for our experiments directly relates 

to the feasibility of collecting real-world video data from T-junctions to develop a vehicle intent 

model for predicting vehicular behaviour. By meticulously considering factors such as visibility, 

occlusion potential, and computational efficiency, we aimed to ensure that the collected video 

data would accurately capture the dynamics of vehicular behaviour at T-junctions. Our 

approach underscores our prioritisation of optimizing the data collection process to maximize 

the effectiveness of the collected data in informing the development of a vehicle intent model. 

Therefore, through careful selection of the POV and thorough evaluation of its suitability, we 

aimed to demonstrate the feasibility of collecting real-world video data from T-junctions that 

can accurately inform the development of a vehicle intent model for predicting vehicular 

behaviour. 

EuroRAP 

route   

Junction location Combined hours 

of data collected 

over multiple 

visits 

JM377 Oxshot Road 4.5 

JM384 A248 2 

JM559 Petersfield Road 4 

JM454 Rowhook Road 3.5 

UO196 Jacobs Well Road 2 

Total hours of data in Bo 16 
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Our contribution revisited: 

• The creation of a data-rich video dataset on unsignalized UK T-junctions.   

 

This dataset is designed to enable the extraction of accurate feature vectors from vehicles and 

will be made available to the research community in conjunction with our published paper. 

 

This chapter elucidated the methodologies employed to craft a tailored video dataset aligned 

with our specific requirements. In Chapter 4, we delve into the object detection and 

classification techniques applied to the consolidated video repository (referred to as 'Bo') to 

extract precise vehicle feature vectors. Chapter 5 focuses on extracting feature vectors from 

pixel-level data within the individual video files. These feature vectors will collectively form a 

dataset that serves as the basis for predicting driver intent. 

 

 

Chapter   4: Selection of Target Vehicle Detector  

4.1 Introduction 

A vehicle object detector and classifier is a complex system that uses machine learning and 

deep learning computer vision algorithms to identify and categorize vehicles in images or video 

feeds. It works through two main steps: object detection and classification. Object detection 

uses algorithms like CNNs or R-CNNs to find vehicles and mark them with bounding boxes 

based on features such as edges and colours. Classification then assigns these detected 

vehicles to specific categories (e.g., car, truck) using a trained model on a labelled dataset. 

Accuracy depends on the quality of training data, algorithm sophistication, and computational 

power. However, challenges like vehicle appearance variability, environmental factors, and 

real-time processing demands exist.  

While the main aim of this thesis is not to enhance the performance of detection and 

classification models, conducting a series of experiments was essential to identify the most 

effective vehicle detection model for our pipeline. 'Effective' in this context means that we can 

detect vehicles in real-time, locate them in the video frame and classify the type of vehicle.  As 

discussed in the previous chapter, no viable unsignalized T-junction datasets were available 

for our work, and we had to develop our own original dataset; therefore, no benchmark data 

is present that we can build. In this chapter, we discuss how using our video dataset Bo and 

various detection models, we iteratively singled out the most effective vehicle detection models 

for our work based on our data and requirements.  

Given the wide range of vehicle detection and classification models analysed in the literature 
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review in Chapter 2, this thesis demands prioritising rapid inference while upholding 

acceptable accuracy levels. Given our focus on detecting vehicles, we have prioritised models 

designed for swift inference, as detecting smaller objects necessitates redundant additional 

computational processing. Two of the most prominent detection and classification models in 

this context are Faster R-CNN and YOLOv5. In real-time vehicle detection and classification 

using 2D video, most literature suggests using YOLOv5; this aligns with our objectives 

because YOLOv5—coded in Python, a language we are familiar with—offers a variety of pre-

trained models tuneable to our requirements. Our version of Faster R-CNN is also written in 

Python and has a range of pre-trained models tunable to our requirements. While Faster R-

CNN has been shown to be much more accurate in detecting smaller objects than YOLOv5, 

as detailed in Chapter 2, it does not perform as well in inference time. 

Our initial evaluation of our faster R-CNN demonstrated promising results using our data in 

inference speed and vehicle detection accuracy. In contrast, our initial assessment of YOLOv5 

revealed certain areas needing improvement when incorporated into our workflow. Instead of 

hastily selecting the theoretically superior model, we conducted a brief study utilising our 

dataset to perform a precise real-time performance analysis. Per many of the studies in 

Chapter 2, faster R-CNN and YOLOv5 can detect and classify vehicles in real-time. However, 

an additional neural network is required to track vehicles processed from faster R-CNN or 

YOLOv5 detections. This further computational load significantly impacts our work's real-time 

element as we introduce multiple subsequent steps into the target of real-time driver 

predictions. Our overall goal is to strike a balance between detection accuracy and inference 

speed. In this section, we clarify the architectural complexities of Faster R-CNN and YOLOv5 

and undertake a comparative analysis of their performance using our video dataset, Bo. 

 

4.1.1 Organisation of the chapter 

This chapter is organised as follows. Firstly, we introduce our test models, Faster R-CNN and 

YOLOv5. Secondly, to select the optimal detection classification model, we quantitatively 

compare the models' inference time and accuracy based on our test models using our own Bo 

video dataset. Then, we create a bespoke image data set from our Bo data and open sources, 

focused on images of our target vehicles at UK junctions. We use this to train our chosen 

model to improve accuracy by enriching the classification training data to ultimately define our 

vehicle detection model specification. 

 

The research question this chapter addresses is  

Research Question 1 (RQ1): How does employing a constrained and focused dataset affect 

the training process and subsequent real-time performance of object detection and 
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classification?    

 

Contributions described in this chapter include the following: 

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-CNN 

models using our video dataset. 

 

• The construction of a target-based vehicle image dataset tailored to our video data. 
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4.2  Anatomy of  Faster R-CNN 

As discussed in Chapter 2, the evolution of region proposal methods was decisive in object 

detection algorithms. Firstly, it operates as a distinct standalone component in Fast R-CNN 

and R-CNN, such as the Selective Search algorithm (Ren et al., 2017). The Region Proposal 

Network (RPN) constitutes a pivotal component within the Faster R-CNN framework, which is 

fundamental in generating prospective regions of interest or region proposals in images 

potentially containing objects. The RPN uses the concept of attention mechanisms inherent in 

neural networks, effectively instructing the subsequent Fast R-CNN detector on where to focus 

when identifying objects within the image.  

Ren et al. describe the fundamental constituents of the RPN as encompassing the following 

elements: anchors are employed as predefined boxes, each characterised by distinct scales 

and aspect ratios. Anchor boxes are positioned at various locations across feature maps. An 

anchor box primarily comprises two essential parameters, namely scale and aspect ratio. The 

RPN executes as a sliding window mechanism traversing the feature map derived from the 

CNN backbone. Within this process, a compact convolutional network, typically embodied as 

a 3×3 convolutional layer, operates to process features within the receptive field of the sliding 

window (Figure 12).  

 

 

 

Figure 12. Faster R-CNN model illustration showing input to make predictions (Ren et al., 

2017). 

 

This convolutional operation produces scores that indicate the likelihood of the presence of 

an object and regression values that allow adjustments to the anchor boxes. The objectness 

score indicates the probability that a given anchor box encloses an object of interest rather 
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than just representing background elements. Within the faster R-CNN architecture, the RPN 

computes this score for each anchor. The objectness score expresses confidence in the 

anchor's association with a significant object region. During training, this score assists in 

classifying anchors as either positive, indicating an object, or negative, indicating background. 

In situations where a significant number of region proposals are generated, overlap and 

redundancy among them may be common, often corresponding to the same object instance. 

This issue is addressed by utilising the Non-Maximum Suppression (NMS) technique. NMS 

ranks anchor boxes based on their objectness probabilities and selects the top-N anchor 

boxes with the highest scores. Using NMS ensures the final proposal selection is precise and 

free from overlapping instances. 

Consequently, these selected anchor boxes are considered viable regional proposals. The 

classification process unfolds by combining features derived from the region proposal with 

shared weights originating from the CNN backbone. An integral component of Faster R-CNN 

is bounding box regression, which aims to refine the position and size of the bounding box 

associated with each region proposal. This refinement process improves the accuracy and 

alignment of the bounding boxes with the actual object boundaries in the image. 

The first layer of the bounding box regression consists of a softmax layer with N+1 output 

parameters, where N represents the number of class labels, including an additional class for 

the background; the prime purpose of this layer is to predict an object within the region 

proposal and, if present, to classify it into one of the N classes or as background. 

The second layer is the bounding box regression layer, comprising 4*N output parameters. 

Each set of four parameters corresponds to a specific class label. These parameters are 

responsible for adjusting the bounding box's location and size associated with the object in 

the image. The softmax layer predicts the object's presence or absence within the region 

proposal by providing probabilities for each class, including background. The bounding box 

regression layer predicts adjustments to the region proposal's bounding box, including its x-y 

coordinates, width, and height. These adjustments are specific to each class, each with four 

regression parameters.  

Intersection over Union (IoU) is a metric for the overlap between two bounding boxes. A more 

comprehensive relational explanation of this concept is provided in Chapter 5. IoU  computes 

the ratio of the overlap area between the two boxes to the area of their combined region, 

expressed as 

 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑥 1 & 𝑏𝑜𝑥 2

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑏𝑜𝑥 1 & 𝑏𝑜𝑥 2
                                          (1) 
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4.2.1 Training Faster R-CNN 

During training, the most valuable metric evaluation is loss; the model aims to minimise this 

composite loss during training to improve object detection and localisation performance 

(Figure 13).  

 

Figure 13: A visual representation of a two-stage Faster R-CNN object detection system, as 

introduced by Ren et al. (2017). This system employs a Region Proposal Network (RPN) to 

extract regions of interest directly from the feature map. Subsequently, it utilises a fully 

convolutional object classifier. It is important to note that the network architecture is shared 

between the RPN and the object detector phase. 

 

All through training, the model learns to predict bounding box adjustments and class 

probabilities by minimising a combined loss function considering classification and regression 

loss. The Faster R-CNN multi-task loss function combines the classification and regression 

losses, refining bounding box predictions.  

In the methodology Ren et al. introduced in their 2017 paper, each anchor is assigned a binary 

class label that determines whether the anchor is indicative of an object's presence. A positive 

label is designated for an anchor if it fulfils either of the following conditions: (i) it exhibits the 

highest IoU overlap with a ground-truth bounding box, or (ii) it possesses an IoU overlap 

greater than 0.7 with any of the ground-truth boxes. Importantly, a single ground-truth box can 

produce positive labels for multiple anchors. 

Anchors that do not meet these criteria for positive labelling, including those with an IoU ratio 

below 0.3 for all ground-truth boxes, are instead assigned a negative label. Anchors that do 
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not conform to positive or negative categories are not employed in the training process. 

 

The loss function used for the RPN in this context is further defined as follows: 

𝐿({𝑝𝑖}, {𝑡𝑖 }) =
1

𝑁𝑐𝑙𝑠 
 ∑ 𝐿𝑐𝑙𝑠  (𝑝𝑖, 𝑝𝑖

∗)  +   𝜆 
1

𝑁𝑟𝑒𝑔
 ∑ 𝑝𝑖

∗
𝑖  𝐿𝑟𝑒𝑔𝑖 (𝑡𝑖, 𝑡𝑖

∗)                       (2) 

 

In the context of this description, 'i' represents the sequential identifier for an anchor box within 

a batch, and 'pi*' signifies the predicted probability of anchor box 'i' being classified as an 

object. The ground-truth label 'p' assumes a value of 1 when the anchor box is deemed positive 

and 0 when it is considered negative. The variable 'ti' is a vector that encodes the parameters 

for the predicted bounding box, with the ground-truth box for a positive anchor box being 

represented by 'ti*'. 

The parameters' N_cls' and 'N_reg' correspond to the mini-batch size and the total number of 

anchor boxes. 'λ' serves as a hyperparameter, and it plays a crucial role in balancing the 

impact of the classification and regression losses within the comprehensive loss function. 

During training, one can emphasise achieving accurate classification and precise localisation 

of bounding boxes. Higher values of  'λ' prioritise the refinement of bounding box regression, 

while lower values give more importance to achieving classification accuracy. 

The classification loss function, denoted as 'L_cls' in Ren et al. (2017), is characterised as a 

logarithmic loss applied over two categories: object and non-object. 

The definition of 𝐿𝑐𝑙𝑠 is as follows: 

 

𝐿𝑐𝑙𝑠 (𝑝𝑖, 𝑝𝑖
∗) = {

− log 𝑝𝑖                           𝑖𝑓 𝑝𝑖
∗ = 1

                     − log(1 − 𝑝𝑖)                 𝑖𝑓 𝑝𝑖
∗ = 0                    

       (3) 

 

In addition, the regression loss function 𝐿𝑟𝑒𝑔 is presented as follows: 

 

𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗) = 𝑅(𝑡𝑖 , −𝑡𝑖

∗)                                                                           (4) 

 

The robust loss function (smooth L1), denoted as 𝑅 and defined in Fast R-CNN (Girshick et 

al., 2017), is employed. Following the network's prediction of class probabilities and bounding 

box adjustments, a post-processing phase involving NMS is carried out. This step is vital in 

refining the final detection results by reducing redundant detections while retaining the most 

confident and non-overlapping detections. 

RPN training is achieved using an end-to-end approach facilitated through backpropagation 

and stochastic gradient descent (SGD). This means the entire network, including the newly 

introduced RPN and the shared convolutional layers, is jointly optimised. The main goal of this 
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optimisation process is to minimise the loss function, thereby improving the overall 

performance of the object detection system.  

According to Cheng et al. (2018), the Optimisation Faster R-CNN series' architecture involves 

a feature extractor as the backbone and two specialised branches for region classification and 

localisation tasks. However, optimising in this manner may lead to convergence towards a 

suboptimal solution that compromises the performance of both tasks due to the simultaneous 

consideration of the sum of two losses rather than treating each loss separately. CNNs 

encounter a significant challenge concerning their fixed receptive fields. In the context of 

image classification, inputs are typically cropped and resized to standardised dimensions. The 

network architecture is intentionally designed with a receptive field that is slightly larger than 

the input region. However, this approach has limitations because it results in the loss of 

contextual information during the cropping process and necessitates the resizing of objects of 

various sizes. To achieve accurate object understanding and recognition, it is essential for the 

'effective receptive field' to encompass the entire object. In the case of Faster R-CNN, the 

introduction of Region of Interest (ROI) pooling is utilised to extract objects from 2-D 

convolutional feature maps and transform them into a 1-D fixed-size representation for 

subsequent classification tasks. This process establishes a fixed receptive field, meaning the 

network concentrates on a fixed-size window within the input image. 

Nevertheless, as objects in images can significantly differ in size, this fixed receptive field can 

result in varying amounts of contextual information. The context may be pervasive for smaller 

objects, hindering the network's effective focus on the object itself. Conversely, the receptive 

field may be too limited for larger objects, causing the network to examine only a portion of 

the object. While some approaches have attempted to address this issue by aggregating 

features with different receptive fields to introduce multiscale features, the effectiveness of 

such methods can vary, and achieving a balance between capturing context and object details 

remains a challenge in deep convolutional neural networks (Waldner and Diakogiannis, 2020), 

which had a direct impact on our work.  

 

4.3 Anatomy of  YOLOv5 

In contrast with Faster R-CNN in the previous section, YOLOv5 employs regression, where  

The whole image's classes and bounding boxes are predicted in one algorithm run. YOLOv5 

demonstrates exceptional performance coupled with swift object detection capabilities, 

effectively meeting the demands of real-time applications. This singular neural network 

architecture executes all necessary steps in object detection. In traffic research, where 

detection speed and accuracy are paramount, YOLOv5 achieves real-time processing speeds 

(Zhou, Zhao and Nie, 2021). 
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The YOLOv5 architecture comprises three essential components, as illustrated in Figure 9. 

The first component is the cross-stage partial network CSPNet (Cheng et al., 2018), designed 

to address gradient-related challenges effectively. This component optimises the algorithm by 

reducing the parameter count and the number of floating-point operations per second 

(FLOPS). As a result, it boosts both inference speed and accuracy, all within a compact 

architectural footprint (S. P. Lakshmi Priya et al., 2023). 

The backbone of the architecture consists of multiple convolutional layers, four CSP 

bottlenecks, three convolutional layers, and a spatial pyramid pooling component (SPPF). 

Primarily, the CNN serves as a feature extractor, capturing feature maps of different scales 

from input images. 

The neck component plays a pivotal role in feature fusion. It aggregates and transmits features 

from deeper layers to the detection head, facilitating the extraction of valuable feature 

information and generating output feature maps in three distinct sizes. 

The head section encompasses multiple convolutional layers, four CSP bottlenecks, three 

convolutional layers, and upsampling and concatenate layers. Its principal function involves 

predicting visual characteristics, delineating bounding boxes around target objects, and 

determining object classes. 

 

 

 

Figure 14: YOLOv5 Architecture adapted from Liu et al. (2022). 

 

The initial 20 convolution layers of the model are pretrained using an image dataset, with a 

temporary average pooling and a fully connected layer added. The last fully connected layer 

predicts both class probabilities and bounding box coordinates. 
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Figure 15 illustrates the architecture of the CNN model that acts as the backbone for YOLO. 

 

 

Figure 15. YOLO  (You Only Look Once) algorithm architecture (S. P. Lakshmi Priya et al., 

2023). 

 

YOLO functions by dividing an input image into a grid, with each grid cell responsible for 

detecting any object whose centre is within that cell. In each grid cell, YOLO predicts 'n' 

bounding boxes and associated confidence scores for these boxes. These confidence scores 

serve a dual purpose: they convey the model's confidence in the existence of an object within 

the box and indicate the accuracy of the box's location prediction. 

During YOLO's training, the pivotal strategy involves predicting multiple bounding boxes within 

each grid cell. The primary aim is to allocate one bounding box predictor to each object and 

determine which has the highest IoU with the actual object location. This specialised approach 

enables each predictor to become proficient at predicting specific object sizes, aspect ratios, 

or classes. This specialisation improves the recall score, enhancing YOLO's object detection 

capabilities. 

After making multiple predictions, YOLO employs non-maximum suppression (NMS) as a 

post-processing step to bolster the accuracy and efficiency of object detection. Since 

generating multiple bounding boxes for a single object in an image is common and some 

boxes may overlap or be off-centre, NMS plays a crucial role in identifying and removing 

redundant or erroneous bounding boxes. Its purpose is to ensure that only a single accurate 

bounding box is retained for each object in the image. The accuracy of the IoU score relies 

heavily on the precise localisation of the bounding box around the object, such as a vehicle. 

The precise positioning of the bounding box around an object is given as follows: 
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𝜎
𝑔

𝑟
=  𝑂𝑟,𝑔  ∗  Ʊ

𝑝

𝑡
        (5) 

 

Where r represents the bounding box within the g grid and 𝜎
𝑔

𝑟
 denotes the confidence score 

of this bonding box. '𝑂𝑟,𝑔   indicates the vehicle's presence within the g box. The Oi, j'  value 

equals 0 if the vehicle is within the g box; otherwise, it is 1. Oi, j'  corresponds to the IoU score.   

 

4.3.1 Training YOLOv5 

Training YOLOv5 involves optimising the model using a loss function that quantifies the 

discrepancies between predicted bounding boxes, class probabilities, and ground truth 

annotations. The primary loss components include objectness or confidence loss, which 

gauges the model's confidence in predicting the existence of an object within a bounding box, 

and classification loss, which assesses the accuracy of predicted class probabilities. 

Additionally, localisation loss evaluates the precision of predicted bounding box coordinates 

compared to ground truth boxes. These loss components are combined to minimise the overall 

loss function during training. The model is optimised using methods like stochastic gradient 

descent (SGD), which aims to iteratively adjust its parameters to excel in object detection by 

improving localisation accuracy and class prediction while minimising loss. The specific 

formulation and weighting of these loss components can vary based on the YOLOv5 variant 

and dataset. Training is an iterative process that evaluates the model's performance by 

monitoring its ability to reduce loss over multiple epochs or iterations. 

The  loss function  (𝐿𝐹) in YOLOv5 is the aggregate of three key components: regression loss 

for bounding boxes, confidence loss, and classification loss. It is computed as follows: 

 

𝐿 𝐹  = 𝑙𝑏𝑥   + 𝑙𝑠   +  𝑙𝑗                                                                          (6) 

 

 

where 𝑙𝑏𝑥 is the regression function for the bounding box, 𝑙𝑗 is  the  loss  function for  confidence 

and 𝑙𝑠 is the loss function for the classification. 

𝑙𝑏𝑥 is calculated using 

 

𝑙𝑏𝑥 = 𝜆 𝑐𝑑∑𝑖=0
𝑠2

∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0 𝑏𝑗(2 − 𝑊𝑖 ∗  ℎ𝑖 [
(𝑥𝑖 − 𝑥′

𝑖
𝑚

 )2 + (𝑦𝑖 − 𝑦′
𝑖
𝑚

 )2 + (𝑤𝑖 − 𝑤′
𝑖
𝑚

 )2

+(ℎ𝑖 − ℎ′
𝑖
𝑚

 )2    
]         (7)    

   

where h and w are the target's height and width, respectively and yi , xi are the  

correct coordinates of the target. 𝜆 cd is the indicator function of whether the cell i contains  
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an object. 

 

The 𝑙𝑠 is calculated as follows: 

 

𝑙𝑠 = 𝜆𝑠 ∑  ∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0
𝑠2

𝑖=0  ∑ 𝑉𝑖𝐶∈𝑐𝑙 (𝑐)log (𝑉𝑉𝑖(𝑐))      (8) 

 

where     𝑉𝑖   represents a vector of predicted probabilities for class c at spatial location i. 

 

The 𝑙𝑗 is calculated as follows: 

 

𝑙𝑗 = 𝜆𝑛𝑜𝑗 ∑  ∑ 𝐼𝑖,𝑚
𝑛𝑜𝑗𝑏

𝑚=0
𝑠2

𝑖=0  (𝑐𝑖 − 𝑐𝑙)2 + 𝜆𝑗 ∑  ∑ 𝐼𝑖,𝑚
𝑗𝑏

𝑚=0
𝑠2

𝑖=0 (𝑐𝑖 − 𝑐𝑐𝑙)2                                     (9)              

 

where 𝜆𝑛𝑜𝑗 is the category loss coefficient, 𝜆𝑠 is the classification loss function, cl is the 

confidence score, and cc is the class. 

 

YOLOv5 aims to minimise this loss during training to improve its accuracy in object detection, 

bounding box regression, classification, and confidence score prediction, which are all crucial 

to this thesis, where the precise detection and classification of target vehicles are a critical 

component in the pipeline. Adjusting the hyperparameters can help fine-tune the training 

process based on a given task's specific requirements, which are detailed in Chapter 5.  

 

4.4  Selecting a vehicle detection and classification base model 

The literature contains many examples of comparisons between YOLOv5 and Faster R-CNN  

(Mahendrakar et al., 2022; Jabir, Falih and Rahmani, 2021). However, we required a 

comparison based on our data as our requirements are very focused and not to be based on 

a generalised object dataset. Our requirements dictate that we must detect and classify target 

vehicles with a reasonable degree of accuracy and in real-time. Other studies (He et al., 2023) 

have demonstrated that it is possible to refine the performance of models based on the desired 

objective. Many of the refinements of models in the literature focus on detection accuracy and 

small objects; our refinements were implemented to increase vehicle detection accuracy 

(larger objects) and decrease the inference time. To compare YOLOv5 and Faster R-CNN for 

our data, we must first define the accuracy metrics used to benchmark most object detection 

and classification models in computer vision.  

 

Precision (P) and recall (R) represent vital assessment metrics for object detection models, 

serving to evaluate the models' proficiency in accurately identifying and categorising objects 
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within images. Precision quantifies how accurately a model identifies positive cases by 

measuring the ratio of true positives (correctly predicted positives) to the sum of true positives 

and false positives. Precision quantifies the model's ability to make correct identifications—an 

essential factor in our work, where false positives can have significant repercussions. 

Precision is calculated as 

 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                                                                (10) 

 

 

 

Precision offers an understanding of the model's positive predictions' reliability. High precision 

implies that the model's object predictions are likely accurate. 

 

Recall, also called sensitivity or true positive rate, evaluates the model's capacity to detect all 

relevant objects in the dataset correctly. It is computed as the ratio of true positives (TPs) to 

the total of TPs and false negatives (FNs). 

Recall is calculated as 

 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑠
                        (11)  

 

 

Recall is crucial because it quantifies the model's ability to find all the objects of interest in the 

image, avoiding false negatives. 

 

These metrics are frequently employed to offer a well-rounded evaluation of an object 

detection model. They exhibit an inverse relationship: as precision increases, recall may 

decrease, and conversely, when recall increases, precision may decrease. Striking the 

appropriate balance between precision and recall hinges on the unique use case and the 

implications of false positives and false negatives. 

 

To visualise this trade-off, plotting a precision-recall curve (PR curve) or calculating the F1-

score, which represents the harmonic mean of precision and recall, is common. This allows 

for a more comprehensive assessment of the model's performance and its suitability for 

different applications and is calculated as 
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𝐹1 =  2 ∗  (𝑃 ∗  𝑅) / (𝑃 +  𝑅)     (12) 

 

The F1 score is functional when combining precision and recall into a single metric, especially 

when the balance between false positives and false negatives is essential. 

 

Mean average precision (mAP) is one of the primary metrics for evaluating the accuracy of 

object detection models, especially when dealing with multiple object classes. It provides a 

comprehensive assessment of the model's performance across all classes by calculating the 

average precision for each class and then taking the mean of these values.  

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝑃𝑖𝑁

𝑖=1                          (13) 

 

Average precision (AP) is a key metric, where 𝑁 represents the total number of classes. 

Generally, AP is computed as the average precision values (𝐴𝑃𝑖) across different IoU 

thresholds (𝑅) within the range [0, 1]. Each 𝐴𝑃𝑖 corresponds to the average precision for the 

𝑖-th class over a range of IoU thresholds. Typically, these IoU thresholds are chosen in 

increments of 0.05, ranging from 0.5 to 0.95. 

 

Specifically, two important metrics, 𝑚𝐴𝑃50 and 𝑚𝐴𝑃95, are used to assess model accuracy: 

 

mAP50 calculates the mean average precision when considering the IoU threshold of 0.5. It 

evaluates how well the model performs when detections are considered accurate if their IoU 

with the ground truth bounding box exceeds 0.5. mAP95 calculates the mean average 

precision but at a stricter IoU threshold of 0.95. This metric assesses the model's accuracy 

when a high degree of overlap between the detected bounding box and the ground truth 

bounding box is required for a positive classification.   

Furthermore, mAP50:95 calculates a range of IoU thresholds between 0.5 and 0.95 to obtain 

a mean across the range.  

These metrics allow for a nuanced evaluation of the model's performance, considering both 

relatively lenient and stringent criteria for object detection accuracy. It is expected to report 

both 𝑚𝐴𝑃50 and 𝑚𝐴𝑃95 to provide a comprehensive understanding of how well the model 

performs under different IoU thresholds (Hamzenejadi and Mohseni, 2023). 

To evaluate the real-time performance of object detection models, we must consider accuracy, 

inference speed, and computational complexity. Complex models may achieve high accuracy 

but often demand significant computational resources, hindering real-time operation. Two 

fundamental metrics for assessing model performance in real-time object detection are frames 
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per second (FPS) and inference time. FPS measures how many frames or images the model 

can process per second. Higher FPS values indicate faster inference speeds and are desirable 

for real-time applications. Inference time quantifies the time it takes for the model to process 

a single frame or image in milliseconds (ms). Lower inference times are preferred for real-time 

applications, contributing to higher FPS. 

Model size, both in terms of memory and storage requirements, is an essential consideration. 

Smaller models are typically more memory-efficient and load faster, which is advantageous 

for real-time inference. Another critical metric is the number of FLOPs (floating-point 

operations) needed for inference. Lower FLOPs indicate lower computational complexity and 

faster inference. 

The total number of parameters in a model can serve as an indicator of its computational 

complexity. Smaller models tend to have fewer parameters, which can lead to faster inference. 

A low inference time is vital for our work, where we aim to balance accuracy with computational 

efficiency, particularly for detecting relatively large objects like vehicles at a T-junction. 

In our case, the vehicles under investigation demand swift detection to facilitate data 

transmission through the pipeline for real-time feature vector generation. This strategy aids in 

reducing the computational workload by filtering out smaller objects, with the strategy's 

primary focus on identifying target vehicles. To evaluate and compare the faster R-CNN and 

YOLOv5 models using our video data as a reference point, we gauge their performance based 

on these real-time metrics. 

 

4.4.1 Common Objects Dataset 

This section discusses the dataset utilised for our comparison experiments, the Common 

Objects Dataset. The Microsoft Common Objects in Context (COCO) dataset (Lin et al., 2014) 

is comprehensive for various computer vision tasks, including object detection, image 

segmentation, key-point detection, and captioning. This dataset comprises 328,000 images 

and annotations, including bounding boxes and per-instance segmentation masks for 80 

object categories. For our purpose, COCO contains five vehicle classes: car, truck, bus, 

motorcycle, and bicycle.  

 

4.4.2 Backbone Network Model  

Officially supported YOLOv5 and Faster R-CNN models integrate pre-trained network models 

trained on the COCO dataset. However, they exhibit differences in network depth, layer count, 

and layer size, leading to their respective model performance variations. Selecting a model for 

a specific task is a practical and empirical process. To make an informed decision, we 

conducted a comparative analysis by assessing two pre-trained COCO Faster R-CNN models 
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alongside two pre-trained COCO YOLOv5 models. This analysis strives to identify the optimal 

configuration that can serve as the initial stage in our pipeline. This empirical evaluation equips 

us with the knowledge to select the model that best aligns with our objectives and 

requirements. 

 

4.4.2.1 Choice of Faster R-CNN Backbone Model 

A Faster R-CNN architecture requires selecting a network for feature extraction, commonly 

known as the backbone. Numerous studies, such as those by Muhammad Jehanzaib Yousuf 

et al. (2022) and Elharrouss et al. (2022), have explored various feature extraction networks 

for deep learning, including well-known architectures like VGG, ResNet, AlexNet, GoogleNet, 

Inception, Xception, DenseNet, and SqueezeNet, among others. For most computer vision 

tasks involving the COCO dataset, ResNet and MobileNet are commonly chosen as backbone 

networks. 

Two official, faster R-CNN models come pre-trained on the COCO dataset, each employing 

distinct backbone architectures. Studies that feature ResNet50, such as Renjun et al. (2022), 

have indicated that faster R-CNN with a ResNet50 backbone offers high accuracy but 

operates more slowly. This model utilises a ResNet-50-FPN backbone and can achieve the 

highest mean average precision (mAP) when fine-tuned on a new dataset with slower 

inference times. 

Conversely, faster R-CNN with a MobileNet v3 backbone is faster but slightly less accurate. 

(Yusuf Gladiensyah Bihanda, Chastine Fatichah and Anny Yuniarti, 2023). This model 

provides high-resolution feature extraction, delivering over twice the speed of the ResNet50 

variant on equivalent hardware (GPU). However, a trade-off exists as its mAP performance is 

slightly reduced due to the higher frames per second (FPS). The choice between these models 

depends on the task's requirements and the balance between speed and accuracy that is 

most suitable for the application. 

 

4.4.2.2  Choice of YOLOv5 models 

The YOLOv5 series comprises several model variants denoted by letters, including YOLOv5n, 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (see Table 5). These variants differ in model 

sizes, featuring varying numbers of layers and parameters. The design of these models 

focuses on achieving a balance between speed and accuracy. 
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Table 5. Comparison of YOLOv5 models (Ultralytics, 2023) 

 

The YOLOv5 series encompasses a range of models tailored to different object detection 

requirements. YOLOv5n, a recent addition, is specifically designed for edge devices and 

serves as a comparative benchmark in Chapter 5. YOLOv5s prioritises speed, making it well-

suited for real-time applications with limited computational resources, albeit with a slight 

sacrifice in accuracy. YOLOv5m balances speed and accuracy, making it versatile for general 

object detection tasks. YOLOv5l, a larger model, excels in accuracy but slightly reduces 

inference speed, making it suitable for tasks where precision is paramount and ample 

computational resources are available. Lastly, YOLOv5x is the series' largest and most 

accurate model, but it comes at the cost of slower inference speed. 

When comparing YOLOv5 with Faster R-CNN in benchmark tests using the COCO dataset, it 

becomes evident that the model's size impacts accuracy. However, the choice of model 

depends on the specific task and desired outcome. In scenarios like vehicle detection, 

achieving high real-time accuracy is crucial. It is worth noting that no single model perfectly 

balances accuracy and speed, often necessitating a trade-off between the two depending on 

the specific requirements of the task. 

 

4.4.2.3 Limitations of the YOLO model 

YOLO presents spatial constraints on bounding box predictions, with each grid cell responsible 

for predicting only two boxes and one class, which can limit the precision of object localisation 

and classification. This limitation is particularly noticeable for objects with complex shapes or 

unconventional positions. Additionally, detecting small objects, especially when they appear 

in groups or clusters, can be challenging as the model may not allocate sufficient resources 

for accurate identification. YOLO's ability to generalise to objects with new or unusual aspect 

ratios can also be problematic as the model learns from the training data and may struggle 

with objects with significantly different aspect ratios than those encountered during training. 
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Efforts to mitigate this challenge include the creation of a focused image training dataset in 

Section (4.5). However, despite these limitations, YOLO remains a popular choice for object 

detection due to its real-time capabilities and overall effectiveness in a wide range of 

applications. 

 

4.4.3 Comparison of YOLOv5 and Faster R-CNN ON COCO 80  

In the following series of experiments, we conduct a comparative analysis of similarly 

performing backbone models for faster R-CNN and YOLOv5. As illustrated in Table 6, these 

comparative models exhibit various similarities. This observation hints at a discernible 

relationship between the model's size and accuracy when benchmarked against the COCO 

dataset, with the larger models proving to be more accurate, albeit slower. However, it is 

crucial to acknowledge that benchmarking results can be highly task-specific and dependent 

on the desired outcomes. Laboratory-based testing, for example, differs substantially from 

real-world situations, particularly when addressing traffic-related challenges like vehicle 

detection. In this context, the primary goal is to create a precise detection and classification 

model that can be performed in real-time. Such a model would facilitate further data 

processing without imposing an undue computational load.  

Our research findings suggest that no model achieves the ideal balance between accuracy 

and speed for vehicle detection and classification for our purpose (see Table 6). Hence, in 

practical terms, some degree of compromise between accuracy and speed is inevitable. 

 

Model and Backbone COCO dataset mAP Size 

MB 

Parameters 

M 

Faster R-CNN ResNet50 0.43 98 23 

YOLOv5 Medium 0.45 90 21.2 

Faster R-CNN MobileNet v3 0.32 15.3 4.97 

YOLOv5 Small 0.37 14 7.2 

 

Table 6: Model and backbone specification and benchmark (COCO) accuracy adapted from 

Zhou et al. (2021). 

 

We evaluated Faster R-CNN ResNet50, Faster R-CNN MobileNet v3, YOLOv5 Medium, and 

YOLOv5 Medium without any modifications using the same pre-trained COCO weights. The 

assessment involved our custom Bo video dataset and sought to assess each model's FPS 

rate, accuracy, and inference speed on a CPU and a GPU. Our testing process involved 

manually processing, for ground truth verification,  a series of 15-minute video clips from each 
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junction-based video clip in our dataset. Each video clip was passed through every model 

sequentially. The videos were maintained in their original form, with a frame rate of 50 FPS 

and a resolution of 1920x1080 pixels, and were fed into each model for analysis. We recorded 

key metrics for each video test segment and model, including detection confidence scores, 

inference time, and frame rate. Our primary focus was detecting cars, which represent the 

highest number in the vehicle class and our study's most common vehicle type. To ensure the 

reliability of our results and minimise any junction-specific anomalies influenced by factors 

such as object occlusions, camera distance, lighting, and traffic density, we averaged the 

scores across all video clips. 

The detailed results of our evaluation can be found in Table 7. These findings provide valuable 

insights into each model's performance under real-world conditions and inform the selection 

of the most suitable model for our specific application. Our primary metric of interest is the 

confidence level in detecting our target vehicle rather than a mAP of the training data.  

 

Model and Backbone COCO 

weights and Bo video data 

FPS Mean Class 

Confidence 

Score for 

car* 

Inference 

time ms 

CPU 

Inference 

time ms 

GPU  

(RTX 3070) 

Faster R-CNN ResNet50 22 0.96 112 63 

YOLOv5 Medium 49 0.91 98 21 

Faster R-CNN MobileNet v3 110 0.7 24 6 

YOLOv5 Small 74 0.81 81 17 

* Calculated as confidence in the object being of class n 

Table 7: Model comparative results using COCO weights and Bo T-junction video data. 

 

Initial results discussion 

 

Faster R-CNN ResNet50 

FPS: 22 - This model processes 22 frames per second, which is relatively low compared to 

the other models listed, indicating it is slower at making predictions. 

Mean Class Confidence Score for Car: 0.96 - It has a very high confidence score, suggesting 

it is very accurate at detecting cars when it does make a prediction. 

Inference Time on CPU: 112 ms - It takes 112 milliseconds to process a single frame on a 

CPU, which is the slowest among the models listed. 

Inference Time on GPU (RTX 3070): 63 ms - Processing time improves significantly on a GPU 

but is still the slowest among the compared models. 



73 
 

YOLOv5 Medium 

FPS: 49 - This model processes frames more than twice as fast as the Faster R-CNN 

ResNet50 model, making it suitable for applications requiring quicker object detection. 

Mean Class Confidence Score for Car: 0.91 - Although slightly less accurate than the Faster 

R-CNN ResNet50, it still maintains a high confidence score. 

Inference Time on CPU: 98 ms - It's quicker than the Faster R-CNN ResNet50 on a CPU but 

slower compared to the other models listed. 

Inference Time on GPU (RTX 3070): 21 ms - Shows significant improvement on a GPU, 

indicating good optimization for GPU-based inference. 

Faster R-CNN MobileNet v3 

FPS: 110 - This model shows the highest frames per second, indicating it is the fastest model 

for processing frames, suitable for real-time detection tasks. 

Mean Class Confidence Score for Car: 0.7 - The confidence score is the lowest among the 

models, which might indicate a higher rate of false negatives or less certainty in its predictions. 

Inference Time on CPU: 24 ms - Shows very fast processing on the CPU, the fastest among 

those listed. 

Inference Time on GPU (RTX 3070): 6 ms - Extremely fast on the GPU, making it highly 

efficient for applications that can leverage GPU acceleration. 

YOLOv5 Small 

FPS: 74 - This model offers a good balance between speed and accuracy, with a high frame 

rate indicating it can process video data quickly. 

Mean Class Confidence Score for Car: 0.81 - This score is lower than the YOLOv5 Medium 

and Faster R-CNN ResNet50 but higher than Faster R-CNN MobileNet v3, suggesting 

moderate accuracy. 

Inference Time on CPU: 81 ms - Faster than the Faster R-CNN ResNet50 but slower than the 

other models. 

Inference Time on GPU (RTX 3070): 17 ms - Shows good performance on a GPU, though not 

as fast as the MobileNet v3. 

Results Summary 

For high accuracy: Faster R-CNN ResNet50 is the best choice, with the highest confidence 

score, but at the cost of speed. 

For real-time processing: Faster R-CNN MobileNet v3 stands out with the highest FPS and 

lowest inference times, though it sacrifices some accuracy. 

For a balance between speed and accuracy, YOLOv5 models, especially the Medium variant, 

offer a good compromise, with decent FPS and confidence scores and much better speed on 

GPU compared to Faster R-CNN ResNet50. 
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Based on the results presented in Table 7, our findings indicate that the most accurate 

combination for vehicle detection in terms of model and backbone is Faster R-CNN ResNet 

50. On the other hand, for GPU-based applications, Faster R-CNN MobileNet v3 offers the 

fastest performance. However, it is worth noting that the YOLOv5 medium model has proven 

to strike a good balance between accuracy and inference speed on our video dataset, Bo. 

Given these results, we have decided that all future work related to the detection and 

classification stage of our thesis's pipeline will be done using one of the YOLOv5 models, 

including the variants s, m, l, or xl. We plan to enhance the YOLOv 5 model performance 

through a series of iterative experiments in later chapters, with an initial focus on improving 

accuracy. 

 

4.5 Improving target vehicle detection accuracy with focused target training 

While there are numerous large-scale datasets available for object detection tasks, such as 

the work by Charles-Éric Noël Laflamme, Pomerleau, and Philippe Giguère (2019), the 

scarcity of high-quality datasets continues to be a substantial obstacle, particularly in the 

context of vehicle classification. Many existing vehicle detection datasets are general and lack 

the specificity required to tackle the unique classification challenges presented at T-junctions. 

In response to this limitation, transfer learning has emerged as a valuable approach for 

addressing specific class imbalances that result from this generalisation. Transfer learning 

allows models to adapt and specialise in the context of specific tasks, leveraging pre-trained 

knowledge from broader datasets to enhance performance in junction-specific classification 

challenges.  

Transfer learning is a machine learning technique where a model developed for a specific task 

is repurposed as the starting point for a model on a second task. It is a popular approach in 

deep learning where pre-trained models improve computational efficiency and model 

performance, especially when data for the second task is scarce or when training a model 

from scratch is computationally expensive—transferring the weights that a model has learned 

from one task to another leverage previously learned patterns, reducing the time and 

resources required for training on the new task. This approach is efficient in natural language 

processing and computer vision, where models pre-trained on large datasets can significantly 

boost performance on related tasks with minimal additional training. 

Using pre-trained models for transfer learning (Sowmya and Radha, 2021), a technique 

increasingly deployed in situations characterised by limited training data or the imperative for 

rapid, enhanced performance, comprises a multi-step process. This process encompasses 

identifying a source model akin to the target domain, adapting the source model to align with 

the target model's requirements, and training the source model to attain the desired target 
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model characteristics. The model closest to our domain is the COCO dataset, with many 

labelled vehicle instances (Table 8) as a starting point for training our vehicle image dataset.  

 

Class Number of instances 

Training Validation 

Car 43,533 1,918 

Motorcycle 8,645 367 

Bus 6,061 283 

Truck 9,970 414 

Bicycle 7,056 314 

Table 8: Number of instances per traffic class extracted from the COCO dataset adapted from 

Panero Martinez et al. (2021). 

 

We aim to improve the detection accuracy of YOLOv5 models on our data by creating a 

focused vehicle dataset to enrich the instances found in COCO, Table 8, and training all five 

YOLOv5 models using transfer learning using the full COCO dataset as a foundation and 

adding our weights. 

 

4.5.1 Target vehicle image dataset creation 

Our ultimate objective is to predict driver behaviour in real-time, which is imperative to do 

quickly and accurately. However, the accuracy of our predictions is profoundly affected by the 

detection and classification stage, and missing vehicles due to misclassification can impact all 

subsequent stages of our pipeline. 

Acquiring training data resembling our target vehicles is paramount to enhancing detection 

accuracy. Our first step in compiling a customised vehicle dataset involved collecting 

screenshot frame images from our video dataset by pausing junction video where a vehicle 

was in a target frame, taking a screenshot, and saving it as a single image. This was repeated 

for the other junction videos. These images serve as the foundation for our image dataset, 

from which we further infer and generate feature vectors in the pipeline. We collected images 

from all the routes and created 158 images of cars, trucks, and buses from each junction. We 

sourced an additional 981 publicly available images from the Internet. These images were 

selected to encompass a wide range of representations of various vehicle types, representing 

vehicles captured from the POV from camera x in section (3.4.1) viewing traffic (a). A sample 

of the images can be seen in  Figure 16. Our target vehicles were detected from the right side 

or the front at all our test T-junctions. 

The subsequent step involved aggregating all the collected images, categorising them into 
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relevant classes (cars, trucks, and buses), and manually labelling them using bounding box 

annotations. Since we were utilising transfer learning and COCO already had labels for cars, 

trucks, and buses, we labelled our images as  'cars_1,' 'trucks_1,' and 'buses_1' to be added 

to the class label array. This process forms the basis for our dataset, facilitating the training 

and improvement of our vehicle detection and classification models. 

 

 

 

Figure 16. Image data showing type and perspective pre-data labelling.  

 

4.5.2 Image augmentation post-labelling 

After the manual labelling, the original 1,139 images underwent an augmentation procedure, 

effectively expanding the dataset to 5,381 images. This augmentation was executed by 

systematically applying several pre-processing techniques to each image. The augmentation 

process comprised the following steps: all images were uniformly resized, ensuring dimension 

consistency across the dataset. A grayscale filter was applied to introduce variations in colour 

representation, thereby augmenting the dataset's diversity. Each image was subjected to a 

random rotation operation, with angular adjustments from -15 to +15 degrees. This introduced 

variations in orientation, enhancing the dataset's robustness. Horizontal and vertical shearing 

operations were applied randomly at -15° to +15°. These shear transformations introduced 

distortion effects, contributing to a more comprehensive training dataset. Regarding noise 

incorporation, noise was introduced to 10% of the images to diversify the dataset further. This 

noise included up to 10 pixels of blurring, alterations in brightness ranging from -25% to +25%, 

and the application of bounding box noise to 5% of the dataset. The specifics of these noise 

operations are represented visually in Figure 17. This augmentation strategy substantially 

increased the dataset size and introduced variability and realism into the images, enhancing 

the model's generalisation ability. 

 

 

Figure 17: The augmentation process applied to the dataset, explicitly highlighting the 

incorporation of additional noise into 10% of the images.   

 

Our noise augmentation procedure involved a variety of transformations intending to diversify 
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the dataset, thereby enhancing its ability to capture real-world variations and complexities. 

These augmentation techniques encompass blurring, brightness adjustments within a range 

of -25 % to +25 %, and the introduction of bounding box noise. Collectively, these measures 

create a more robust and representative dataset for subsequent analysis and model training. 

Overfitting is a phenomenon in which a neural network learns a function with extremely high 

variance, essentially memorising the training data perfectly, as explained by Shorten and 

Khoshgoftaar (2019). The advantages of employing augmentation methods are quite 

significant. Data augmentation is a valuable strategy for mitigating overfitting and giving the 

model a more comprehensive and diverse dataset; this, in turn, enhances the model's capacity 

to generalise effectively to novel data while bolstering its resilience against data noise and 

variations. Furthermore, data augmentation expedites the training process, effectively 

reducing the time needed to train a model on extensive datasets. 

However, data augmentation comes with its own set of challenges. It can be time-consuming, 

particularly if performed manually, and it can incur substantial computational costs when 

applied to large datasets. Additionally, if the augmentation transformations are not thoughtfully 

selected, they can introduce bias into the dataset, adversely impacting the model's 

performance. Therefore, it is crucial to exercise care and diligence in considering and 

validating augmentation techniques to ensure their efficacy in enhancing both model 

generalisation and performance. 

 

4.5.3 Training target dataset on YOLOv5 models 

Given the results in section (4.4.4), where the YOLOv5 medium model proved to strike a good 

balance between accuracy and inference time, initial training was undertaken using YOLOv5m 

pre-trained with COCO weights. The standard COCO dataset partitioning for weight 

acquisition was executed as follows: 83% of the data was designated for training, 8% for 

validation, and 9% for testing. Our new image dataset was partitioned similarly and added to 

the training model. Transfer learning training was carried out throughout 300 epochs. The 

training was conducted utilising a single GPU, specifically the RTX 3070 with 8 GB of memory. 

The training model was standardised to the official YOLOv5 parameters for this model. These 

operations were carried out using Python 3.10 and the PyTorch framework. 

The results of the training in Table 9 were very close as the benchmark mAP for both metrics 

on training data showed little significant change. There is a slight increase in confidence score 

using unseen video data and evaluating cars, similar to the experiment in section (4.4.4). 
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Model YOLOv5 m Benchmark mAP With our dataset mAP 

mAP 0.5 0.45 0.45 

mAP 0.5  0.95 0.64 0.65 

Class Confidence cars (tab 

3) using Bo video. 

0.91 0.93 

Table 9. Post-training evaluation metrics for transfer learning using YOLOv5 m. 

 

Initial results discussion 

mAP at 0.5: This metric evaluates the model's precision (i.e., its ability to correctly identify 

objects) at an IoU threshold of 0.5. An IoU of 0.5 means that the overlap between the predicted 

bounding box and the ground truth bounding box is at least 50%. Both the benchmark and 

your dataset show a mAP of 0.45, indicating that the model performs equally well on both 

datasets at this level of IoU threshold, correctly identifying objects with at least 50% overlap 

with ground truths 45% of the time. 

 

mAP 0.5:0.95: This metric averages the mAP calculated at different IoU thresholds, from 0.5 

to 0.95 (in steps of 0.05). This provides a more comprehensive view of the model's 

performance across various levels of precision and recall. The benchmark shows a mAP of 

0.64, while our dataset shows a slightly better performance with a mAP of 0.65. This suggests 

that our dataset is either more representative of the model's application context or contains 

less challenging examples, leading to a slightly higher average precision across different IoU 

thresholds. 

 

Class Confidence for Cars using Bo video: This metric specifically measures the model's 

confidence in identifying cars within the dataset provided by Bo video. A confidence score of 

0.91 in the benchmark and 0.93 in our dataset indicates high reliability in detecting cars, with 

our dataset yielding slightly higher confidence. This could be due to various factors, such as 

the quality of the images, the representation of cars in the dataset, or the model's tuning 

parameters being better suited for the characteristics of our dataset. 

In summary, the YOLOv5 model performs comparably on both the benchmark and our dataset 

for object detection at an IoU threshold of 0.5. It exhibits a slight improvement in average 

precision across a range of IoU thresholds from 0.5 to 0.95 when tested on your dataset. 

Additionally, the model shows high and slightly improved confidence in detecting cars in our 

dataset compared to the benchmark. These results suggest that our dataset is either well-

suited for the model or contains characteristics that allow for slightly improved detection 

capabilities, especially for cars.  
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4.6  Chapter conclusion 

In this chapter, we probed Research Question 1 (RQ1): how does employing a constrained 

and focused dataset affect the real-time performance of object detection and classification? 

By developing a specialised dataset centred on target vehicles, we can leverage transfer 

learning techniques to fine-tune YOLOv5m, thereby enhancing its ability to identify our specific 

vehicles. This specialised training will be conducted without compromising the model's existing 

accuracy for vehicle recognition on novel data, as demonstrated by its performance on the 

unseen Bo video dataset during real-time detection tasks. 

 

Contributions described in this chapter include the following: 

• Inference time and accuracy quantitative comparison of YOLOv5 and Faster R-CNN 

models using our video dataset. 

 

• The construction of a target-based vehicle image dataset tailored to our video data. 

 

The YOLO family of models is well-recognised for its challenges in detecting small objects. 

Our comparative analysis of Faster R-CNN and YOLOv5 revealed that YOLOv5m outperforms 

Faster R-CNN ResNet50 in inference speed and is only marginally behind in detection and 

classification accuracy. This observation negates the significance of the limitation related to 

small object classification, as our primary focus centres on detecting larger objects. 

Initial attempts to enhance the accuracy of YOLOv5m by creating a specialised dataset yielded 

marginal success. To thoroughly evaluate the impact of such a dataset, we plan to conduct 

experiments across all YOLOv5 models, a topic we discuss in Chapter 5. 

Transfer learning plays a pivotal role in our methodology. In this context, we harnessed the 

widely acclaimed COCO dataset to expedite the training of our models. The COCO dataset 

encompasses various vehicle classes, offering the dual advantage of reducing training time 

and granting access to an extensive collection of tens of thousands of pre-labelled images 

that seamlessly complement our customised dataset. 

Chapter 5 addresses additional experiments aimed at assessing model performance. These 

experiments involved modifications to the raw video input data and adjustments to neural 

network dimensions. Throughout these experiments, we maintained transfer learning as a 

critical technique for evaluating various YOLOv5 models and determining the most effective 

parameters for extracting feature vectors from moving vehicles using 2D video.  
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Chapter   5:    Optimising target vehicle detection and classification   

5.1 Introduction 

This chapter provides an in-depth look at our steps to refine a detection and classification 

model that allowed us to extract feature vectors from target vehicles and pass them to the next 

stage of our pipeline. We establish the link between the research carried out in Chapters 3 

and 4, related to the Bo video dataset, and the subsequent phase in the pipeline. This 

subsequent phase involves the extraction of feature vectors from target vehicles identified in 

the recorded video footage. In this chapter, we are investigating research question 2 (RQ2) 

Considering the neural network's characteristics, how do pixel density and frame rate 

variations affect real-time object detection and classification models? 

The primary goal of this thesis is to utilise driver's historical behaviour at a T-junction to 

investigate how to make precise predictions about their future actions. The first feature we 

study is the vehicle's velocity. We carefully establish an evaluation velocity vector through a 

manual calibration process. This helps us to tune the accuracy of the captured velocity feature 

vector when using various combinations of video specifications. 

We use the dynamic pixel-level feature vectors derived through DUKE for vehicles. These 

feature vectors cannot be obtained from readily available datasets or driving simulators but 

result from the substantial work detailed in Chapters 3 and 4. This deliberate approach has 

been adopted to ensure the utilisation of authentic data obtained from our video input 

methodology. The aim of this chapter is to test various inputs, frames per second, resolution, 

and neural network dimensions to determine the optimal settings for maximum performance 

and precision in producing feature vectors from two-dimensional video for our specific 

problem.  

 

This chapter explains the fine-tuning process applied to the Bo video data, as outlined in 

Section 3.1. This process involves the computation of ground truth values from junction 

images. We aim to configure the input video to meet the specifications for ensuring real-time 

capabilities for detection, classification, tracking, and the subsequent extraction of feature 

vectors. Following this optimisation, the enhanced video feed seamlessly integrates into the 

DUKE framework, facilitating the capture of pixel-level feature vectors. These feature vectors 

are consecutively consolidated within a comprehensive dataset, which undergoes thorough 

examination in Chapter 7. Our methodologies have been designed to examine the interaction 

of various frame rates and resolution combinations that impact target vehicles' detection 

performance and accuracy. This analysis seamlessly integrates with our broader investigation 

of Research Question 2. 
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The following contribution is covered in this chapter: 

We demonstrate an innovative approach to fine-tuning a real-time vehicle detection and 

classification model based on performance. 

 

5.1.2 Chapter organisation 

This chapter evaluates and optimises the real-time vehicle detection system's performance, 

including factors such as frame rate and resolution and selecting suitable YOLOv5 models 

and datasets. This paper demonstrates the experimental results using various frame rates and 

image resolutions to establish the optimum configuration for DUKE input based on accuracy, 

inference time, and ground truth realism.  

Firstly, we lay the groundwork for evaluating the real-time vehicle detection model's 

performance. Our approach involves an extensive examination of evaluation metrics and the 

procedures employed for this assessment. This encompasses a discussion of various 

evaluation metrics, with particular attention given to frame rate and resolution samples (5.3.1 

and 5.3.2) and the creation of video samples featuring diverse frame rates and resolutions 

(5.3.3). Moving to Section 5.4, we delve into the distance and velocity feature vector evaluation 

metrics assessment. Subsequently, in Section 5.5, we introduce the concept of a 

performance-based detection model. This entails training all YOLOv5 models through transfer 

learning (5.5.1) and revealing our methodology for selecting datasets and model combinations 

(5.5.2). Section 5.6 is dedicated to the experimental phase, wherein we explore the impact of 

varying parameters. We systematically investigate different combinations of frame rates, 

network architectures, and resolutions to discern the most optimal input video. This section 

also discusses selecting the most suitable input video (5.6.1). The concluding section (5.7) 

summarises the pivotal findings and discusses the selected Vo and detection model/dataset 

combination.  
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5.2 Feature selection 

Feature selection is the initial step in optimizing our video input. We have decided to focus on 

two primary features, distance and velocity, and setting various FPS rates and a range of 

video input resolutions. 

 

5.2.1 Frame rate 

The frame rate, measured in frames per second (FPS), indicates the speed at which individual 

video frames are captured or shown. For the Bo video dataset, the FPS rate directly influences 

DUKE's operational efficiency, as it determines the volume of data processed every second. 

A higher FPS means more data moves through our pipeline each second, potentially slowing 

down our processing speed but providing greater detail in each frame for analysis. Conversely, 

a lower FPS rate speeds up processing but provides less detail per frame for inference. 

Reducing the FPS involves using video editing software to remove frames symmetrically by 

deleting alternate frames or using an asymmetric trimming technique, as demonstrated in 

Table 10, to achieve a specific frame rate reduction, allowing us to refine Vo without restricting 

data from Vr. 

Bo video data, Vr, is recorded at 50 fps. We have experimented with various frame rates; for 

example, to get to a target frame rate of 30 fps, we used Asymmetrical frame rate reduction, 

which removes 20 frames from each second of the original 50-frame video. Because 50 fps 

and 30 fps are evenly divisible by five frames, we divided each second of the video into five 

distinct blocks. This frame-trimming process transforms a ten-frame block from the source 

video clip into a six-frame block in the destination video clip, achieving the desired frame rate 

reduction. Please refer to Table 10 for more details. 

 

Step Action New Frame(s) in Destination Block 

1 Frame 1 is deleted 
 

2 Frames 2 and 3 are played successively 1, 2 

3 Frame 4 is deleted 1, 2 

4 Frame 5 is displayed 1, 2, 3 

5 Frame 6 is deleted 1, 2, 3 

6 Frame 7 is exhibited 1, 2, 3, 4 

7 Frame 8 is deleted 1, 2, 3, 4 

8 Frames 9 and 10 are presented 1, 2, 3, 4, 5, 6 

 

Table 10 Asymmetrical frame rate reduction 

 

The procedure outlined in Table 10 is applied iteratively to the entire video clip to achieve the 
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desired frame rate reduction. It is important to note that the use of asymmetric trimming, as 

described, can negatively impact the dimensional data, primarily due to the perturbation it 

introduces to the optical flow of the original video, which can further affect the tracking of target 

vehicles in our pipeline.  

Using Bo Vr, we created samples of 50 fps, 30 fps, 25 fps, and 10 fps to analyse extremes and 

fine-tune the balance between the quantity of data available per second and inference speed.  

 

5.2.2 Creating video samples of various FPSs and resolutions 

The area in pixels establishes the resolution of a video. The input video can be passed to 

DUKE in various resolutions; however, the object detection and classification steps resize the 

images based on a hyperparameter setting. YOLOv5 is trained on resized images set to 

640x640 and uses padding and cropping to establish the correct parameters. Cropping would 

involve cutting off parts of the original image to fit the new size and thus potentially losing 

important content. Padding would add blank space around the image to maintain its 

dimensions. We created samples of Bo Vr at 1920x1080, 1280x720, 640x640, and 320x320. 

Our experimental video samples were created from the same clip of Bo Vr converted from the 

original 1920x1280 at 50 fps to the combined samples presented in Table 11.  

 

Sample Resolution in pixels FPS 

1920x1280 10 25 30 50 (Bo Vr) 

1280x720 10 25 30 50 

640x640 10 25 30 50 

320x320 10 25 30 50 

 

Table 11 Input video samples created from a single Bo Vr clip.  

 

5.3 Distance and velocity feature vector evaluation metrics 

To obtain real-time dynamic data from video input, validating and establishing calibration 

references accurately reflecting real-world scenarios is essential. These references are used 

to verify feature vector data and establish the optimum parameters of input video, network, 

and model size. Specifically, we need the capability to compute metrics such as junction 

dimensions, vehicle size, and the velocity of vehicles. We demonstrated our methodology for 

calculating distance and velocity metrics using a single video frame, as depicted in Figure 18. 

This procedure was carried out for each of our tesT-junctions to establish specific baseline 

metrics tailored to each junction. The process includes manual calculations using the image 

manipulation software GIMP (GNU Image Manipulation Program 2023). We manually 

assessed the following samples: 1920x1080, 1280x720, 640x640, and 320x320, as detailed 
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in Sub-section 5.3.2.   

 

Figure 18, Junction image with a grid overlay not to scale (GNU), Shows how we calibrate for 

a junction based on a single image. 

 

The image presented in Figure 14 corresponds to a single frame extracted from Bo Vr, 

recorded at a resolution of 1920x1080 pixels and a frame rate of 50 fps.  

In the video frame in Figure 14, the vehicle identified as a Fiat 500 (labelled as 'c') possesses 

an actual physical length of 3,571 mm, as reported by Parkers (2021). This vehicle's pixel 

length in the image is 63 pixels, labelled as l and resolved as 1 pixel, corresponding to 56.68 

mm (1 px = 56.68 mm). The distance covered by the Fiat 500 c in this clip is 639 pixels, relative 

to a physical distance of 36,220 mm (or 36.22 meters), denoted as d. The time to traverse this 

distance is computed as 5.10 seconds, t, extrapolated from Vr data across all frames. The 

estimated mean velocity for the Fiat 500 in Figure 14 is 7.10 m/s or 7.10 mm/ms. This velocity 

is further resolved into a mean relative velocity, vc, of 0.125 px/ms for the sample 1920x1080 

at 50 fps. As the vehicle moves horizontally, the relative size does not change significantly; 

however, we took length measurements of the car in pixels over the entire frame length and 

averaged the target vehicle length to 63 px. Vc for all tested resolutions was within 5% of 0.125 

px/ms due to the relative pixel size and actual physical measurements. A higher fps can 

represent life-like vehicle motion more accurately because it captures more incremental 

positions of the object as it moves through space; this makes the vehicle appear to move 

smoothly and at its actual speed. When the fps is lower, vehicle objects appear to jump 

between frames, making them appear slower than they are.   

 

5.4 Establishing a detection model  

After defining the scope of input video specifications and evaluation metrics for our DUKE 

experiments to determine the optimal input (Bo Vo), our next step is fine-tuning the model's 

base to achieve the desired inference time and accuracy combination to exploit real-time 

feature vector capture.  
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5.4.1 Training all YOLOv5 models with transfer learning  

Expanding on the details provided in Chapter 4, which outlined our approach to transfer 

learning using our specific vehicle image dataset, we then perform transfer learning on all five 

YOLOv5 models, denoted as 'n,' 's,' 'm,' 'l,' and 'x'. The employed training datasets are as 

follows: 

1. COCO 80: This extensive dataset encompasses all the original classes from the 

COCO dataset, providing a comprehensive context for object detection. It is worth 

noting that all YOLOv5 models are pre-trained using this dataset. 

2. Bo (80): Our specialised vehicle weights have been incorporated into the COCO 80 

dataset during training, enriching the dataset with our target vehicle instances. 

3. COCO 5: This dataset has been refined to include classes directly pertinent to vehicle 

detection tasks exclusively. It eliminates all other classes, retaining only the categories 

of bicycle, motorcycle, car, truck, and bus from the original COCO dataset. 

4. Bo (5): Building upon the foundation of COCO 5, this dataset integrates our proprietary 

vehicle classes, further enhancing the dataset to create a more finely tuned and 

specialised vehicle classification model. 

 

The YOLOv5 models underwent transfer learning training following the procedures outlined in 

Sub-section 4.5.3. The resulting outcomes are presented in Table 12, featuring performance 

metrics such as mean average precision (mAP) at various intersection over union (IoU) 

thresholds, inference speeds on CPU and RTX 3070 GPU, and frames per second (FPS). 

Throughout the training process, our primary focus was to minimise the overall loss. This 

objective was achieved through stochastic gradient descent optimisation (SGD), as detailed 

by Li et al. (2022). During training epochs, the model's weights were systematically adjusted 

to reduce the loss by employing a combination of loss functions to quantify the disparities 

between predicted bounding boxes and ground-truth bounding boxes, as well as objectness 

and class predictions. Further insights into the primary loss components are available in Sub-

section 4.3.1. 
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Dataset Neural Network 
mAP 

0.5:0.95 
mAP 
0.5 

Mean 
Inference 
(ms) CPU 

Mean 
Inference 
(ms) RTX 

3070 FPS 

Bo (5) YOLOv5n 28.9 46.7 76.9 10.9 94 

COCO 5 YOLOv5n 28.1 45.8 77.2 11.9 93 

Bo (80) YOLOv5n 28.2 46.4 73.4 12.8 81 

COCO 80 YOLOv5n 27.9 45.7 75.4 13.1 85 

Bo (5) YOLOv5s 37.5 56.8 88.3 13.1 61 

COCO 5 YOLOv5s 37.1 56.7 90.9 14.6 61 

`Bo (80) YOLOv5s 37.3 57.7 115.7 16.4 69 

COCO 80 YOLOv5s 37 56.7 116.1 17.2 74 

Bo (5) YOLOv5m 46.4 65.3 105.1 18.2 53 

COCO 5 YOLOv5m 45.8 64.7 107.2 19.8 51 

Bo (80) YOLOv5m 45.9 65.0 132.2 20.5 38 

COCO 80 YOLOv5m 45.3 64.1 134.5 21.9 48 

Bo (5) YOLOv5l 50.1 68.3 117.2 23.2 49 

COCO 5 YOLOv5l 49.3 67.9 119.0 24.7 48 

Bo (80) YOLOv5l 49.5 67.7 144.2 30.4 40 

COCO 80 YOLOv5l 49 67.3 146.9 31.6 44 

Bo (5) YOLOv5x 51.6 69.0 129.1 32.6 28 

COCO 5 YOLOv5x 50.6 68.9 131.5 33.8 25 

Bo (80) YOLOv5x 50.9 69.7 157.0 42.9 38 

COCO 80 YOLOv5x 50.5 68.9 158.4 43.6 22 

 

Table 12: Comparative Analysis of Neural Network Configurations and Performance Metrics 

for YOLOv5 Architecture in Target Vehicle Detection  

 

In Table 12, we present a comparative analysis of the performance of neural networks utilising 

the YOLOv5 architecture. The datasets underused include the refined datasets Bo (5) and 

COCO 5 and the entire object datasets Bo (80) and COCO 80. 

 

Key to Table 12: 

Dataset: Bo (5), COCO 5, Bo (80), and COCO 80, described above. 

Neural Network: lists the specific neural network architecture used for the evaluation. 

In all cases, YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x are trained 

with Bo. 

mAP 0.5:0.95: is the primary benchmark used in the literature for object detection mAP 

is averaged over all categories in the dataset, using a range of IoU 0.5 to 0.95 

mAP 0.5:  provides a singular evaluation of detection accuracy compared to a range 

of IoU thresholds. 

Mean Inference (ms) CPU: This column shows the mean inference time in 

milliseconds when the model is run on a CPU.  

Mean Inference (ms) RTX 3070: This column displays the mean inference time in 

milliseconds when the model is run on an NVIDIA RTX 3070 GPU.  

FPS: This measures how quickly the model can process images, with higher values 

indicating faster processing. 
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Initial results discussion based on Table 12: 

• As the model size increases from n to x, a clear trend of increasing mAP (0.5:0.95 and 

0.5) indicates higher accuracy but at the cost of longer inference times and lower FPS. 

• The inference time on the CPU is significantly higher than on the RTX 3070 GPU 

across all models, highlighting the advantage of using powerful GPUs for deep learning 

inference tasks. 

• Generally, there is a trade-off between accuracy (mAP) and speed (FPS, Mean 

Inference Time). Larger models are more accurate but slower, making them suitable 

for high-accuracy requirements where inference time is less critical. Conversely, 

smaller models are faster but less accurate, suitable for real-time or low-latency 

applications. 

For Maximum Accuracy: The YOLOv5x model achieves the highest mAP scores across both 

datasets, indicating their superior ability to detect objects accurately. However, this comes at 

the cost of lower FPS and longer inference times, especially on GPU. 

Balance Between Accuracy and Speed: Mid-range models like YOLOv5m or YOLOv5l are 

better choices. They offer a middle ground in terms of both accuracy and processing speed. 

Upon concluding the training phase, an analysis was conducted on the data outlined in 

Table 12. Next, we generated accuracy and inference plots. This methodology enabled us to 

pinpoint models demonstrating either low accuracy or excessive latency, as shown in Figure 

19. This figure presents a comprehensive view of the dataset, model, inference, and 

accuracy, showing that the more accurate and robust models have the highest latency. 

Furthermore, in Figure 16, we conducted a comparative analysis of the processing speed of 

each model in terms of FPS to establish insights into the efficiency of each model in image 

processing tasks for an informed assessment of their suitability in real-world scenarios. 
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Figure 19 shows the inference time and maP 0.5: 0.95 for 

each dataset and each YOLOv5 model, which enabled us to 

highlight models demonstrating either low accuracy or 

excessive latency. The metric mAP with a range of 0.5 to 

0.95 is employed as a standard benchmark in object 

detection literature as it provides a comprehensive measure 

of model accuracy, not just in detecting objects but also in 

evaluating how precise the detections are across all 

categories and a range of IoU thresholds.  
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Figure 20 Dataset performance based on YOLOv5 model with FPS. 
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5.4.2 Selecting dataset and  model combination 

The findings from Sub-section 5.4.1 indicate that models with the quickest image processing 

capabilities, specifically the 'nano' and 'small' models, display reduced accuracy on both 

training and testing datasets for both COCO and Bo combinations. This trend is attributed to 

these faster models' simpler neural network architecture. In contrast, the filtered datasets 

COCO 5 and Bo (5) have demonstrated the best performance in terms of accuracy and 

inference, particularly with the medium, large, and xlarge models ( m, l, and x, respectively). 

We chose to discard less accurate and slower models to streamline our approach and focus 

on models that balance speed and accuracy. This decision led us to retain the following 

models for the next stage in creating a fast and accurate detection and classification process 

to feed into our pipeline: Bo (5) and COCO (5) medium, large, and xlarge models, as seen in 

Table 13 and Figure 17. 

 

 

 

 

 

 

Model mAP 0.95 mAP 0.5 FPS Inference ms 

COCO 5 x 50.6 68.9 28 33.8 

Bo (5) x 51.6 69.0 25 32.6 

COCO 5 l 49.3 67.9 48 24.7 

Bo (5)l 50.1 68.3 49 23.2 

COCO 5 m 45.8 64.7 51 19.8 

Bo (5) m 46.4 65.3 53 18.2 

 

Table 13 Summary of models displaying a balanced performance and accuracy 
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Figure 21 compares datasets and models regarding FPS, inference time, and mAP (mean average precision) at a 0.5:0.95 

IoU threshold.  
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Further experimentation is required to establish the most appropriate model for our work. We 

next pass variations of Vo through each model and analyse the real-time behaviour. The 

challenge lies in developing a model that simultaneously achieves high accuracy, high FPS, 

and a low inference time. 

 

5.5 Experimentation with a variety of FPSs,  neural networks, resolutions, and Vo 

Our next step was to establish the effect of variations in pixel density and frame rate in Vo on 

the performance of our object detection and classification methods and how the dimensions 

and architecture of the YOLOv5 models affect this (RQ2).  

Each experiment recorded as a row in Table 14 represents a unique combination of the 

abovementioned variables. The system's performance is evaluated under each condition to 

understand how different factors affect its accuracy (car class confidence), speed (average 

velocity and inference time), and overall efficiency. 

The system processes video or image inputs at the specified resolution and frame rate, using 

the indicated image dataset and model for object detection and classification. 

Performance metrics are recorded for each setup, including the confidence level of the 

classifications made, the average velocity of detected vehicles, and the time the system takes 

to infer results from the input data. 

 

5.5.1 Video samples 

In the next batch of experiments, we used the samples of Vo from Sub-section 5.3.3 (Table 

11) at varying resolutions and FPSs and used the selected models from Sub-section 5.5.2 Bo 

(5) and COCO 5, m,l,x. to test real-time detection confidence and to compare the estimated 

velocity with our benchmark velocity from Section (5.4) of 0.125 px/ms. Figure 18 represents 

the viable data yielded from our experiments after removing outliers, such as the 10 fps 

samples, due to very low confidence scores and distance from benchmark velocity.  

 

5.5.2 Class confidence 

The class confidence metric in YOLOv5, and other object detection models like it, quantify the 

model's certainty in its predictions regarding the presence and class of objects within an 

image. In YOLOv5, this confidence score is between 0 and 1; higher values indicate greater 

confidence in the prediction. This metric is crucial for filtering out detections with low 

confidence, thus reducing false positives and improving the overall precision of the model. 

Objectness Score: Each bounding box predicted by YOLOv5 has an associated objectness 

score that indicates the model's confidence that the box contains an object versus the 

background. This score helps filter out bounding boxes that likely do not contain any object. 
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Class Confidence Score: For each bounding box, the model also predicts a class confidence 

score for each class. This score reflects the model's confidence that the object in the bounding 

box belongs to a specific class. 

Combined Confidence Score: The final confidence score for a prediction is typically the 

product of the objectness score and the class confidence score. This combined score 

represents the model's overall confidence that a specific class object is present in the 

predicted location. 

Non-Maximum Suppression (NMS): YOLOv5 applies Non-Maximum Suppression to eliminate 

redundant bounding boxes after predictions are made. NMS uses confidence scores to retain 

the best bounding box when multiple boxes overlap and detect the same object. The box with 

the highest confidence score is kept, while others are discarded. 

Thresholding: Users can set a confidence threshold to filter out detections. Detections with 

confidence scores below the threshold are discarded. This threshold can be adjusted based 

on the application's requirements to balance between precision (high confidence threshold) 

and recall (low confidence threshold). 

Tuning the confidence threshold parameter is critical to optimizing YOLOv5 for specific tasks, 

as it allows users to balance between detecting as many objects as possible (recall) and 

ensuring the detections are accurate (precision). 

Class confidence is typically outputted by the last layer of the object detection model, which 

often involves a softmax or sigmoid function providing a probability distribution over all 

possible classes. The most common metric used to evaluate class confidence and localisation 

in object detection is IoU combined with precision and recall metrics. Since mAP represents 

the mean accuracy across all dataset classes, the confidence level of the vehicle class in 

ground-truth data is crucial.  
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5.5.3 Results from experimentation with  FPSs,  neural networks, resolutions, and Vo 

# Vr Resolution pixels FPS of Vr Image Dataset & Model Car Class Confidence % Ave Velocity px/ms Inference ms 

1 320 50 Bo (5)m 59 0.1 22 

2 320 50 COCO 5m 60 0.11 22 

3 320 30 Bo (5)l 66 0.13 24 

4 320 30 COCO 5l 65 0.135 24 

5 320 50 COCO 5l 61 0.14 24 

6 320 50 Bo (5)l 61 0.142 24 

7 320 50 COCO 5x 62 0.104 30 

8 320 50 Bo (5)x 63 0.108 30 

9 320 30 Bo (5)x 68 0.125 30 

10 320 30 COCO 5x 70 0.126 30 

11 640 50 Bo (5)m 69 0.139 20 

12 640 50 COCO 5m 67 0.14 22 

13 640 50 Bo (5)l 76 0.106 23 

14 640 50 COCO 5l 74 0.105 26 

15 640 30 Bo (5)l 79 0.15 26 

16 640 30 COCO 5l 79 0.16 26 

17 640 30 Bo (5)x 80 0.13 32 

18 640 30 COCO 5x 80 0.13 32 

19 1280 30 Bo (5)m 78 0.158 22 

20 1280 30 COCO 5m 77 0.16 22 

21 1280 50 Bo (5)m 79 0.14 24 

22 1280 25 Bo (5)l 83 0.17 24 

23 1280 25 COCO 5l 83 0.173 24 

24 1280 50 COCO 5m 77 0.141 25 

25 1280 30 Bo (5)l 82 0.11 26 

26 1280 30 COCO 5l 82 0.12 26 

27 1280 50 Bo (5)l 80 0.11 29 

28 1280 50 COCO 5l 81 0.1 30 

29 1920 30 Bo (5)m 77 0.098 22 

30 1920 30 COCO 5m 75 0.099 22 

31 1920 50 COCO 5m 78 0.128 23 

32 1920 50 Bo (5)m 79 0.129 23 

33 1920 25 Bo (5)l 81 0.16 35 

34 1920 25 COCO 5l 80 0.16 35 

35 1920 25 Bo (5)x 84 0.1 38 

36 1920 25 COCO 5x 83 0.11 39 

 

Table 14 summarises input data for Vo and outputs based on the dataset and model. It comprises the 

parameters that define each model's real-time performance and capabilities, including resolution, 

processing speed, confidence levels, car velocities, and the time taken for inference. 

 

 

Table 14 Key 

• Resolution (pixels): Input pixel resolution ranges from 320 to 1920 pixels. 

• Vr Video data FPS(set when the video is edited): Range from 25 to 50 frames per 

second. 

• Dataset and Model Combinations: Yolov5 model and dataset combination. 

• Car Class Confidence (%): Confidence levels for car classification range from 

approximately 59% to 84%. 

• Average Velocity (px/ms): Average car velocity in pixels per millisecond varies from 

0.1 to 0.173. 

• Inference Time (ms): The time taken for classification ranges from 20 to 39 

milliseconds. 
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5.5.3.1 Correlation analysis based on results in Table 14. 

Vr Resolution and Car Class Confidence: A strong positive correlation (0.74) between Vr 

resolution and car class confidence suggests that higher resolutions result in higher 

confidence levels. 

FPS and Car Class Confidence: There's a moderate negative correlation (-0.50) between FPS 

and car class confidence, indicating that higher FPS rates might negatively impact confidence 

levels, potentially due to the increased computational demand. 

Vr Resolution and FPS: A negative correlation (-0.32) suggests that higher resolutions often 

come with lower FPS due to the increased processing required for higher resolutions. 

Average Velocity and Car Class Confidence: A positive correlation (0.22) indicates that higher 

average velocities are slightly associated with higher confidence levels. 

Inference Time: A positive correlation (0.35) between car class confidence and inference time 

suggests that higher confidence might come at the cost of slightly longer processing times. 

Additionally, inference time shows a slight positive correlation (0.23) with Vr resolution, 

indicating that higher resolutions may lead to longer inference times. 

Interpretation: 

Resolution's Impact: The increase in Vr resolution is positively associated with higher car class 

confidence, indicating that higher resolution may provide more detailed images for more 

accurate classification despite potentially lower FPS and slightly longer inference times. 

FPS's Role: The negative correlation between FPS and car class confidence suggests that 

while a higher FPS is desirable for smooth motion, it might compromise classification 

confidence due to the reduced time available for processing each frame. 
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Figure 22 Relationship between real-time classification confidence inference time, model, and Vo input.  
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These experiments help us address Research Question 2 (RQ2), examining the impact of 

pixel density and frame rate changes on real-time object detection and classification models. 

Figure 18 illustrates the complex relationship between input data quantity, resolution, FPS, 

neural network model size, inference time, and class confidence. To define our model's 

parameters, we compared the results from Table 14 by utilising our benchmark velocity of 

0.125 px/ms, as outlined in Section 5.3, to gauge the accuracy of various model combinations 

against our real-time ground truth data. We excluded outlier data where velocity 

measurements fell outside the 0.12 to 0.13 px/ms range. The remaining data, adhering to our 

0.01 px/ms tolerance, is summarised in Table 15. 

 

Vr Resolution pixels FPS of Vr Image Dataset & Model Car Class Confidence % Ave Velocity px/ms Inference ms 

1280 30 COCO 5l 82 0.12 26 

320 30 Bo (5)x 68 0.125 30 

320 30 COCO 5x 70 0.126 30 

1920 50 COCO 5m 78 0.128 23 

1920 50 Bo (5)m 79 0.129 23 

320 30 Bo (5)l 66 0.13 24 

640 30 Bo (5)x 80 0.13 32 

640 30 COCO 5x 80 0.13 32 

 

Table 15 Filtered results from Table 14 based on those closest to benchmark velocity of 0.125 

px/ms in the realistic tolerance range of 0.12 to 0.13 px/ms 

The Bo models have Bo (5)l with the lowest confidence at 66%, Bo (5)m at 79%, and Bo (5)x 

at an average confidence of 74%. The COCO models show varying confidence levels, with 

COCO 5l at 82% (highest), COCO 5m at 78%, and COCO 5x at 75%. 

The data suggests that a balance between resolution, FPS, and the choice of image dataset 

and model is crucial for optimizing car class confidence, inference time, and maintaining a 

relative ground truth of average velocity, as displayed in Figure 19. 
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Inference ms

Car Class Confidence  

Bo (5)l

Bo (5)m

Bo (5)x

COCO 5l

COCO 5m

COCO 5x

Image Dataset   Model

Figure 23 Comparison of data from Table 15 above, showing dataset/ model class confidence and inference time. 
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Figure 24 A comparison of neural network/dataset combination, resolution and performance regarding inference time and 

car class confidence. 
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Figure 24 illustrates the connection between the dataset/model combination, resolution, car 

class confidence and inference time for values within our ground truth velocity threshold. 

The highest car class confidence is achieved by the COCO 5l model at a resolution of 1280 

pixels and 30 FPS, with a confidence of 82%, shown in Figure 20. The Bo (5)m and COCO 

5m models achieve the fastest inference times of 23 milliseconds at the highest resolution of 

1920 pixels and 50 FPS, with car class confidence percentages of 79% and 78%, respectively. 

The lowest car class confidence is for the Bo (5)l model at 320 pixels resolution and 30 FPS, 

with a confidence of 66%. The inference time does not correlate directly with the resolution or 

confidence percentage. Both Bo (5)m and COCO 5m models show reasonable high 

confidence and low inference time balance, suggesting efficient performance. The COCO 5l 

model shows the highest confidence but at a lower resolution, which indicates a trade-off 

between resolution and accuracy. 

 

5.6 Selecting the optimal Vo based on resolution, fps, and ground truth data 

A lower pixel density, such as 320, diminished the input images' data load, resulting in quicker 

inference times as smaller images generally entail less computational demand. However, this 

reduction in pixel density may compromise accuracy because it can lead to the loss of object 

details in scenarios involving occlusions or low lighting. Detecting and classifying objects, 

especially those at a distance, can become more challenging under such circumstances; our 

data illustrates this phenomenon. Regarding resolutions set at 320 (Table 14 # 1–8), we 

observe significantly reduced confidence in identifying the same vehicle compared to tests 

with higher resolutions despite the substantially quicker processing. Higher pixel density 

demands more significant computational resources, resulting in slower inference times. 

However, it frequently translates to heightened accuracy as the model benefits from additional 

image details, enabling more precise predictions. This trend is illustrated in our data (Table 14 

# 35, 36), where data with rich pixel information at a resolution of 1920 exhibits the highest 

confidence in classifying target vehicles but incurs the slowest inference time.   

Our experiments reveal that lower frame rates result in quicker inference times. Nonetheless, 

this approach may lead to inaccuracies in detecting moving objects, particularly those with 

high speeds, making the data from all 10 fps samples and the 25 fps data from the medium 

models unusable, as indicated in Table 14. We found that lower frame rates diminish object 

detection accuracy by reducing the available instances for analysis, and if Vo is processed too 

quickly, our models fail to classify vehicles accurately. Overall, while higher FPS can be 

associated with better performance in some instances (as seen with COCO 5m and Bo (5)m), 

it is not the sole determining factor for car class confidence, which seems to be more 

dependent on the specific model and dataset rather than the FPS alone. Our empirical 
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observations demonstrate that increased frame rates require additional computational 

resources for all models, leading to slower inference times. 

Nonetheless, a higher frame rate facilitates the capture of more comprehensive data per 

frame, which is especially advantageous for tracking and classifying rapidly moving objects, 

ultimately resulting in enhanced accuracy. The choice of neural network architecture plays a 

pivotal role in object detection. Smaller YOLOv5 models, such as nano and small, are 

designed for computational efficiency, whereas the large and xlarge models prioritise 

accuracy.  

Our research also highlights the crucial trade-off between resolution and frame rate, a concept 

well-documented in the work of Huang et al. (2016). The higher the resolution, the greater the 

computational power required, potentially leading to a reduced processing frame rate during 

the detection phase and vice versa. It is paramount to find the right balance between resolution 

and frame rate, and this balance must be tailored to the specific requirements of our 

application, as emphasised in Chai et al. (2021). 

Given our specific requirements, we conducted extensive experiments with various 

configurations, including pixel density, frame rate, and neural network models, to determine 

the optimal trade-off between inference speed and accuracy for our pipeline. It is worth noting 

that while we have not yet ventured into experimenting with hardware acceleration, model 

quantisation, or software optimisations, these approaches hold the potential to enhance the 

delicate equilibrium between speed and accuracy. However, these aspects fall beyond the 

scope of our current research in its present form. The models we have selected and presented 

in Table 15 and Figure 24 demonstrate that the choice of network model significantly impacts 

both inference time and accuracy, particularly when considering different combinations of Vo. 

Notably, the models in Figure 25 were initially selected from a larger batch of models, as 

outlined in Table 14. The subsequent filtering process focused on achieving a benchmark 

velocity within a narrow range of +/- 0.05 px/ms. 

Our primary challenge, based on RQ2,  is to identify the optimal combination of a model and 

Vo for integration into our pipeline while minimising any adverse effects on the performance of 

our real-time driver predictions. In this context, the first prerequisite is inference time, and the 

best results were obtained using COCO 5m and Bo (5)m, operating at a Vo of 50fps and a 

resolution (1920 pixels) equivalent to Vr. 

The next crucial consideration revolves around accuracy, and the tests indicate that Bo (5) m 

marginally outperforms COCO 5m; the performance difference in car class confidence 

between COCO 5m and Bo (5)m is approximately 1.27%. Since both models have the same 

inference time, no performance difference exists. Therefore, the decision hinges on a balance 

between inference speed and accuracy. For our specific use case, choosing Bo (5) m with a 

Vo of 50 fps at a resolution of 1920 pixels appears to be the most promising configuration. 
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Figure 25 Filtered models based on data from Table 15 
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5.7 Chapter conclusion 

In this chapter, we explored Research Question 2 (RQ2): Considering the neural network's 

characteristics, how do pixel density and frame rate variations affect real-time object detection 

and classification models? 

We observed a well-defined relationship between the quantity of data and the computational 

resource requirements for our vehicle detection and classification model. Our work enhanced 

this relationship during the transfer learning stage, where we created a vehicle-specific image 

dataset that supported higher confidence in car class prediction over the base dataset COCO. 

It became evident that an extensive neural network, such as YOLOxl, delivers precise vehicle 

classifications when provided with high-resolution images at a high frame rate. In contrast, a 

simple neural network, such as YOLOn, fed low-resolution images at a low frame rate either 

exhibits erratic predictions or fails to detect vehicles. Our model requirements lie between 

these two extremes. Through iterative experimentation, we managed to identify a model and 

input specification that allowed us to capture the necessary level of detail from vehicles, 

enabling us to generate feature vectors as swiftly as possible, considering the limitations of 

our available models. This groundwork is instrumental in our pursuit of building a prediction 

model capable of detecting, classifying, tracking, extracting feature vectors, storing those 

vectors, and making predictions in real-time. With these findings, we are prepared to employ 

our chosen model of Bo (5) m, with a frame rate of 50 fps and a resolution of 1920x1080, as 

the video input for the next stage of our pipeline, elaborated on in the following chapter. 

In Chapter 6, we introduce an innovative approach to extracting feature vectors from our video 

dataset Bo and storing these for training our predictive model.  
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Chapter 6: Creating and extracting feature vectors from target vehicles 

 

6.1 Introduction 

In the preceding chapter, we determined the ideal model for this thesis, emphasising the 

delicate equilibrium between accuracy and inference speed. Our selected model and 

specifications are tailored to our target vehicles and geared towards the real-time detection 

and classification of objects from live video streams. Through a careful blend of high-resolution 

2D video data and a high frame rate, we achieved the accuracy and detail necessary while 

keeping computational demands in check by employing a moderately sized neural network. 

This chapter focuses on the end-to-end process, encompassing the various stages of target 

vehicle detection, classification, tracking, and the generation and storage of feature vectors. 

Our research uses historical vehicle behaviour to construct a learning model capable of 

anticipating a driver's intentions at a T-junction, ideally with as much lead time as possible, 

while ensuring real-time processing. This chapter investigates Research Question 3 (RQ3): Is 

obtaining accurate pixel-level features from dynamic vehicles that closely match ground truth 

data feasible? 

Chapter 2 discusses various techniques for detecting and classifying vehicles within two-

dimensional video streams. This chapter introduces 'DUKE', our combined approach for 

detecting, classifying, tracking, and extracting feature vectors from video data containing 

vehicles. DUKE builds upon the foundational work of YOLOv5, detailed in Chapter 5, for 

detection and classification tasks. For vehicle tracking, we implement an enhanced version of 

the DeepSORT algorithm (Wojke, Bewley, and Paulus, 2017) to establish vehicle trajectories. 

Additionally, we integrate our proprietary techniques for extracting feature vector data from 

the tracked vehicles. 

DUKE is fine-tuned to recognise specific target vehicles. To achieve this, we utilise thresholds 

that align with the size characteristics of the target vehicles, and we configure anchor box 

sizes, intersection over union (IoU), and non-maximum suppression (NMS) thresholds 

accordingly. These threshold values are thoughtfully chosen to optimise the detection 

performance. The anchor box sizes are computed in pixel units and are independent of the 

input image's dimensions. Our transfer learning training approach aimed to adjust the ratio 

between input dimensions and anchor sizes, which are defined relative to a grid size—a fixed 

number of pixels that can be customised to enhance the detection process.  

The final step in object detection, NMS, is pivotal in selecting the most suitable bounding box 

for an object based on a single value. Hence, choosing the NMS threshold is critical to 

determining the model's overall performance.  
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6.2 Chapter organisation 

This chapter introduces DUKE for object detection, tracking, and feature vector extraction. 

Section 6.2 covers bounding box predictions, IoU, anchor boxes and ground truth 

associations, localisation errors and refinement, confidence scores, NMS, full bounding box 

prediction, and vehicle tracking. Section 6.3 explores feature vector extraction, addressing 

feature vector creation using constant, variable, and calculated values; recording features as 

vectors; and initial analysis of feature capture. We then compare DUKE-derived data with 

ground truth values to assess accuracy and consistency. The chapter concludes with Section 

6.5 to summarise the key points and findings. 

 

 

The contribution discussed in this chapter is our innovative approach to generating accurate 

dynamic vehicle feature vectors for utilisation in real-time prediction. 

 

6.3 DUKE 

We developed a robust feature vector creation and capture model, DUKE, by refining YOLOv5 

models, fine-tuning parameters such as video frame rate, resolution, anchor boxes, and IoU 

metrics, and incorporating a tailored image dataset utilising transfer learning. An overview of 

the DUKE algorithm can be found in Figure 26. 

The first step in the process is the acquisition of raw video data, denoted as Vr, which is 

manually optimised to ensure superior quality. Subsequently, the optimised video, Vo, 

undergoes analysis utilising the DUKE algorithm for object detection, classification, and 

tracking tasks. Vo is subjected to further computational processing to extract pixel-level feature 

vectors, facilitating detailed analysis and interpretation within an academic context. 
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Figure 26 The DUKE pipeline flow diagram depicts the key stages within our prediction 

framework leading up to the creation and storage of feature vectors. Initially, Vr is obtained 

using a stationary camera at specific test locations, a process explained in Chapter 3. This 

process is optimised, as discussed in Chapters 4 and 5. Subsequently, Vo is transmitted to 

DUKE, where feature vectors are extracted from identified target vehicles in DUKE. These 

feature vectors are stored in an online dataset, as detailed in this chapter. 

 

6.3.1 Bounding box predictions 

The first step in extracting feature vectors from target vehicles is to locate the vehicle in the 

video frame and classify it. We accomplished this by using a bounding box prediction.  

The predictions generated by YOLOv5 consist of several components. These predictions 

provide the (x, y) coordinates of the bounding box's centre, width, and height, all relative to 
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the image dimensions. Two other predictions are made; the first prediction assigns class 

scores to each predicted bounding box, representing the confidence that the object belongs 

to a specific pre-defined object class and a numerical objectness score is also assigned to 

each box, indicating the model's confidence in detecting a valid object within the box rather 

than background noise. YOLOv5 can predict multiple bounding boxes for each grid cell in the 

input image. Following prediction, a confidence threshold is applied to filter out less confident 

predictions, and non-maximum suppression is used to eliminate redundant or overlapping 

boxes. The final output includes bounding boxes with associated class labels and confidence 

scores, as seen in Figure 27. 

 

 

 

Figure 27 DUKE object detection and classification summary of a single iteration adapted from 

Figure 14  (Section 4.3) to depict ground truth detection as an image  

 

YOLOv5m is the section of DUKE's system responsible for generating bounding box values 

and providing contextual information for objects in each video frame. When video frames are 

processed through DUKE, object predictions are generated based on a set of pre-defined 

anchor boxes, as depicted in the Head section of Figure 22. These anchor boxes were 

established using our training data and are tailored to vehicle sizes. In YOLOv5, creating and 

refining anchor boxes involves initially setting their sizes and aspect ratios based on dataset 

characteristics, training the model to predict bounding boxes using these anchors, analyzing 

model performance to identify deficiencies in anchor placement, refining anchor parameters 

iteratively, and evaluating the updated model until satisfactory results are achieved. This 

process ensures that the anchor boxes effectively capture object variations within the dataset, 
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leading to improved object detection accuracy. 

Large anchor boxes are designed to detect larger vehicles, such as buses and trucks, or closer 

vehicles, while small anchor boxes are employed for smaller or more distant vehicles. As 

illustrated in Figure 28, these predictions result in a final bounding box characterised by its 

centre (bx, by), height (bh), and width (bw). 

 

 

Figure 28 Final bounding box prediction with dimensions of h, w, and centre 

 

6.3.2 Intersection Over Union (IoU)  

To ensure the accuracy of the predicted bounding boxes, we employ a validation process 

using ground truth data. This validation is carried out using the IoU function, which quantifies 

the accuracy of the predicted bounding box. 𝐵𝑃 aligns with the actual bounding box 𝐵𝑎, as 

demonstrated in Figure 29. The actual bounding box, 𝐵𝑎, is crafted during the pre-model 

training phase. Each instance of an object within a specific class is manually labelled by 

drawing a bounding box around the object's perimeter. This forms the foundation of object 

classes and serves as the ground truth for our system. 

 

IoU is a metric used to evaluate the overlap between two bounding boxes in an image and is 

calculated using the following formula: 

 

𝐼𝑜𝑈(𝐵𝑃,𝐵𝑎) =
𝐵𝑝∩ 𝐵𝑎

𝐵𝑝∪ 𝐵𝑎
         (14) 

 

IoU = (Area of Intersection) / (Area of Union) 

• Area of Intersection: The region where the two bounding boxes overlap. In the case 

of two rectangles, the area is common to both. 

• Area of Union: This is the total region both bounding boxes cover. It includes the areas 

of both bounding boxes but subtracts the area of their intersection to avoid double-

bh 

bw 

(bx, by) 
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counting. 

The IoU value ranges from 0 to 1: 

• IoU = 0: There is no overlap between the two bounding boxes; they are entirely 

separate. 

• 0 < IoU < 1: There is some degree of overlap or intersection between the two bounding 

boxes. 

• IoU = 1: The two bounding boxes are identical or completely overlap. 

 

 

 

 

 

 

In Figure 29, the Intersection over Union (IoU) ranges from low to high, and an IoU greater 

than or equal to 0.5 is considered the detection threshold. Anything below this threshold is not 

considered. 

 

6.3.3 Anchor boxes and ground truth associations 

In YOLOv5, creating and refining anchor boxes involves initially setting their sizes and aspect 

ratios based on dataset characteristics, training the model to predict bounding boxes using 

these anchors, analyzing model performance to identify deficiencies in anchor placement, 

refining anchor parameters iteratively, and evaluating the updated model until satisfactory 

results are achieved. This process ensures that the anchor boxes effectively capture object 

variations within the dataset, leading to improved object detection accuracy. 

 

Anchor boxes comprise preconfigured bounding boxes of specified height and width, as 

illustrated in Figure 30. These boxes are tailored to match specific object classes' scale and 

aspect ratio attributes, and their precise definitions are established through our extensive 

training procedures. 

 

Bp 

Bp 

Bp 

           IoU(Bp,Ba)=0.1            IoU(Bp,Ba)=0.5          IoU(Bp,Ba)=0.9 
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In Figure 30, the pre-defined anchor boxes are tiled across the image during detection. 

 

The network does not directly predict bounding boxes but instead predicts the required 

probabilities and refinements corresponding to the tiled anchor boxes. DUKE returns a unique 

set of predictions for every anchor box defined. The final feature map represents object 

detections for each class. Using anchor boxes enables DUKE to detect multiple objects, 

objects of different scales, and overlapping objects. The position of an anchor box is 

determined by mapping the location of the network output back to the input image. The 

process is replicated for every network output. The result produces a set of tiled anchor boxes 

across the entire image. Each anchor box represents a specific prediction of a class. For 

example, in Figure 31, there are two anchor boxes to make two predictions per location. 

 

Figure 31 DUKE output from the network (i,j) maps to the image (i,j) to determine if there is an 

object in that grid. Each anchor box is tiled across the image. The number of network outputs 

equals the number of tiled anchor boxes. The network produces predictions for all outputs. 
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6.3.4 Localisation errors and refinement 

In YOLOv5, the distance or stride between adjacent anchor boxes is determined by the level 

of downsampling performed within the model's CNN component. Downsampling is achieved 

through strided convolutions and plays a crucial role in expanding the network's receptive field 

and capturing features across various scales, as discussed by Akhtar and Ragavendran 

(2019). Different downsampling factors are employed within the specific YOLOv5m context, 

resulting in anchor boxes that are distributed with a coarser grid. The choice of these 

downsampling factors directly influences the spacing between these anchor boxes. For 

example, if downsampling factors range from 4 to 16, the spatial resolution of the feature maps 

is reduced by 4 to 16 compared to the input image, as visualised in Figure 32. 

The coarsely tiled anchor boxes refer to anchor boxes that cover larger areas of the image, 

and as a result they may lead to localisation errors relating to determining the position and 

size of objects within the image. When anchor boxes are spaced too far apart due to excessive 

downsampling, it can be challenging for the model to accurately localise and predict the 

positions of objects, especially small or closely packed objects. 

 

To mitigate these localisation errors, we carefully choose the downsampling factors and 

anchor box sizes appropriate for our dataset and object sizes. Additionally, we introduce 

anchor boxes of various aspect ratios and scales to improve object localisation, allowing the 

model to adapt to different object sizes and shapes. 

Downsampling is followed by convolutional layers that capture more abstract and higher-level 

features based on the lower-resolution but more informative feature maps obtained after 

downsampling (Hesse, Schaub-Meyer and Roth, 2023). 
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Figure 32  DUKE learns offset values to apply to each tiled anchor box to fix localisation errors, 

refining the anchor box position and size. 

 

Through exhaustive experimentation on our dataset with YOLOv5m, we discovered that 

optimising inference performance is achieved by minimising the stride property of the max-

pooling layers. Notably, we observed that reducing downsampling did not compromise the 

confidence of our predictions, which can be attributed to our focus on detecting larger objects. 

 

6.3.5 Confidence 

The process of selecting pre-defined anchors is designed to closely match the ground truth 

boxes' characteristics and is determined through a K-means clustering approach (Zhong et 

al., 2020). This method follows a specific sequence. 

 

In the first step, all ground truth bounding boxes are repositioned to have their centres at the 

coordinate (0,0), assuming the objects are located at the origin. The clustering algorithm 

commences by initialising five centroids via a random selection from the ground-truth bounding 

boxes. The clustering algorithm consists of two alternating steps: each ground truth box is 

assigned to one of the centroids based on the IoU as a distance measure. This step results in 

the creation of five distinct clusters or groups of ground-truth bounding boxes. New centroids 

are computed for each cluster by selecting the bounding box that minimises the mean IoU with 

all the other boxes in the same cluster. Following these steps, the final values are passed 
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through a logistic activation function (sigmoid) for all the output parameters except for the 

relative width and height. This processing ensures that the output values are constrained from 

0 to 1.  

 

In YOLOv5, the confidence score, often called 'confidence', is a crucial output parameter 

associated with each detected bounding box. It represents the model's confidence or certainty 

that a given bounding box contains an object of interest (i.e., an object that the YOLO model 

is trained to recognise). The confidence score is a probability value ranging from 0 to 1, where 

a higher score indicates a higher level of confidence that the bounding box accurately encloses 

an object. 

 

6.3.6 Non-max suppression 

Non-maximum suppression (NMS) is the concluding step in the vehicle detection process 

within DUKE, playing a fundamental role in selecting the most suitable bounding box for 

an object. We have explored several methods to fine-tune NMS for vehicle detection within 

this context, focusing on greedy NMS and soft NMS. 

 

NMS is the technique that eliminates redundant, overlapping bounding boxes, retaining 

only the most representative ones. It operates as one of the final layers within the network, 

as depicted in Figure 33. 

 

 

Figure 33 NMS is an integral component of the CNN, acting as the final layer. 

Greedy NMS and soft NMS are utilised in object detection to reduce the multitude of bounding 

boxes generated by detection algorithms. However, they differ in their approach to handling 

overlapping boxes and how they influence the confidence scores of these boxes. Greedy NMS 

promptly removes boxes that fail to meet a defined IoU threshold compared to the box with 

the highest confidence score. Boxes that overlap with the top-scoring box beyond the IoU 

threshold are entirely disregarded, and their associated confidence scores are discarded. 

Greedy NMS makes a binary decision: boxes are retained or discarded based on their IoU 

with the highest confidence box. Unfortunately, this binary approach can lead to a loss of 
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information regarding the removed boxes' relative importance or confidence levels. Our 

empirical observations revealed that this binary decision is insufficient for detecting all vehicles 

in a crowded T-junction. The greedy NMS equation is represented as follows: 

 

𝑆𝑖 = {
 𝑆𝑖,                           𝐼𝑜𝑈((𝑀, 𝑏𝑖)) < 𝑁𝑡

 0,                            𝐼𝑜𝑈((𝑀, 𝑏𝑖))  ≥ 𝑁𝑡

  ,       (15) 

 

𝑆𝑖: score of probability i 

𝑏𝑖: box corresponding to probability i 

𝑀: box corresponding to maximum confidence 

𝑁𝑡: IOU threshold 

 

Soft NMS (F. Frank Chen et al., 2023) presents a straightforward adjustment to the greedy 

NMS algorithm and is designed to tackle the challenge of overlapping bounding boxes in 

object detection, rather than immediately discarding boxes that do not meet an IoU threshold, 

soft NMS advocates for a more nuanced approach. It proposes reducing the confidence 

scores of these overlapping boxes, considering the extent of their overlap as measured by the 

IoU; this means that boxes with substantial overlap (high IoU) receive a more substantial 

reduction in their confidence scores, while boxes with lower IoU values—indicating less 

overlap—are penalised to a lesser degree. Soft NMS thus introduces a 'softening' mechanism 

to mitigate the issues associated with harshly eliminating potentially relevant detections in 

crowded scenes, as shown in the following equation: 

 

𝑆𝑖 = {
 𝑆𝑖,                                   𝐼𝑜𝑈((𝑀, 𝑏𝑖)) < 𝑁𝑡

𝑆𝑖(1 − 𝐼𝑜𝑈(𝑀, 𝑏𝑖)), 𝐼𝑜𝑈((𝑀, 𝑏𝑖))  ≥ 𝑁𝑡

       ,      (16) 

 

 

We determined that the critical distinction between greedy NMS and soft NMS is their 

treatment of overlapping boxes and the associated confidence scores. Greedy NMS 

eliminates boxes that do not meet a threshold, leading to a binary decision and a loss of 

information. In contrast, soft NMS softens the confidence scores of overlapping boxes based 

on their IoU, allowing for a more continuous representation of box quality while retaining all 

boxes. According to the research by F. Frank Chen, soft NMS is frequently used to alleviate 

the severe suppression of bounding boxes in densely populated scenarios, like our T-Junction 

video data. Our findings align with this, indicating that employing soft NMS reduces data loss 

when tracking multiple vehicles. 
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6.3.7 Full bounding box prediction  

A bounding box prediction is a frame-by-frame process completed in one pass.  

DUKE follows these steps to detect and classify a target vehicle, generate bounding box 

parameters within an image, and produce the output 𝑦: 

 

1. Grid-Based Image Division: The input frame is partitioned into a grid of dimensions G×G. 

2. Grid Cell Object Detection: For each grid cell, a backbone CNN is employed to predict the 

values of 𝑦 with the following structure: 

 

Detecting and classifying a target vehicle as an output 𝑦. 

 

𝑦 = [𝑝𝑐 , 𝑏𝑥,𝑏𝑦, 𝑏ℎ, 𝑏𝑤, 𝑐1, 𝑐2,…, 𝑐𝑝,…]
𝑇

  ∈ ℝ𝐺𝑥𝐺𝑥𝑘𝑥(5+𝑝)                      (17) 

 

 

Where 𝑝𝑐 is the probability of detecting an object,˚- 

𝑏𝑥,𝑏𝑦, 𝑏ℎ,and 𝑏𝑤 are the properties of the detected bounding box,  

𝑐1, 𝑐2,…, 𝑐𝑝,… is a time stamp representation of which p classes were detected,   

and k is the number of anchor boxes.  

∈ 𝑅𝐺𝑥𝐺𝑥𝑘𝑥(5+𝑝): This denotes the space to which the vector 𝑦 belongs. 

ℝ: Represents the real number space. 

𝐺𝑥𝐺: Typically, this would indicate the grid size over which the image is divided. In the 

YOLO framework, an image is divided into a 𝐺x𝐺 grid. 

𝑘: The number of anchor boxes that each grid cell can predict. 

(5+𝑝): This signifies the length of the prediction vector for each bounding box. The '5' 

accounts for the objectness score and the four bounding box coordinates. The '𝑝' 

accounts for the class probabilities. 

 

The vector 𝑦 is a prediction from the model for a specific grid cell and anchor box. It 

includes the objectness score, bounding box coordinates, and class probabilities. The 

vector belongs to a space that is determined by the grid size, the number of anchor 

boxes per grid cell, and the number of classes plus five additional parameters 

(objectness score and bounding box coordinates). 

 

If 𝑝𝑐 = 0, DUKE does not detect any object and the corresponding predictions are 

disregarded. 

 



116 
 

3. NMS (Eq 16) is implemented to eliminate potential duplicate and overlapping bounding 

boxes. This procedure includes the following sub-steps: 

 

The DUKE code header in Figure 34 contains hard-coded parameter values, such as 

Confidence_Threshold and IoU_Threshold. These values can be adjusted at the 

beginning of each run.  

 

 

 

 

 

 

 

Figure 34 shows the header of the DUKE code, where qv0 represents the input video, Vo 

stands for the confidence threshold, nms corresponds to the IoU threshold, and the 

resolution pertains to the input video. Additionally, this header specifies the model 

currently in use for the DUKE. 

 

In this process, the bounding boxes undergo a series of steps for effective object detection 

and classification. First, they are organised in descending order based on their confidence 

scores. Boxes with confidence scores below the designated Confidence_Threshold are 

then eliminated from consideration. Next, an iterative assessment begins with the box 

with the highest confidence score. During this assessment, the IoU is computed for the 

current box with respect to every other remaining box of the same class. If the IoU 

between the current box and another exceeds the specified IoU threshold, the box with 

the lower confidence score is removed. This procedure helps refine and filter the bounding 

boxes, retaining those representing objects of interest with high confidence and 

minimising false positives in object detection. The process is repeated until all boxes in the 

frame have been evaluated, as shown in Figure 35. 

qv0="videos\hazmeona32_crop_x2.mp4" #fixed as of 6-4-23 

conf=0.5 #fixed as of 6-4-23 

nms=0.7 #fixed as of 6-4-23 

resolution=1920 #fixed as of 6-4-23 

model='yolov5m.pt' #fixed as of 6-4-23 
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Figure 35 NMS iterates through the bounding box predictions until the prediction with the 

highest probability remains as the classified target vehicle (Ego) 

 

DUKE aims to effectively identify and categorise target vehicles within video frames while 

preventing false positives and duplicate detections through NMS. The configuration of the 

Confidence_Threshold and IoU_Threshold parameters holds significant importance in 

achieving the desired balance between recall and precision during the object detection 

process. 

After obtaining output 𝑦 for each target vehicle in the frame in the input video, the next step is 

to extract the bounding box parameters from these results. These parameters are then utilised 

for tracking purposes and for generating feature vectors. This process involves using the 

bounding box information to track target vehicles across frames, ensuring continuity in object 

tracking. Simultaneously, the extracted parameters are employed to create feature vectors. 

 

6.3.8  Vehicle tracking 

Tracking is a crucial step in our process after the detection and classification stages outlined 

in Section 6.2. After these initial stages, we pass the bounding box prediction data to the 

tracking model. This model assigns a unique identifier to each target vehicle detected in the 

frame. These identifiers are integral to our feature vectors, enabling us to distinguish behaviour 

between vehicles and vehicle types. 
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DUKE utilised Simple Online and Real-time Tracking (DeepSORT) by Wojke, Bewley, and 

Paulus (2017) to facilitate the tracking process. DeepSORT is an object-tracking algorithm 

that seamlessly integrates with the object detection component, effectively tracking associated 

objects across consecutive video frames.  

 

6.3.8.1 Overview of DeepSORT 

Once objects are detected using YOLOv5, Deep SORT extracts deep feature embeddings for 

each detected object. These embeddings represent the object's appearance and are crucial 

for associating the same object across different frames despite changes in its position or 

appearance due to factors like occlusion or viewpoint changes. YOLOv5 provides bounding 

box coordinates that can extract the corresponding regions from the frame, which are then 

passed through a deep feature extraction network to obtain embeddings. The obtained feature 

embeddings are used to associate the detected objects across different frames. Deep SORT 

utilises techniques such as the Kalman filter (Kalman, 1960)  and Hungarian algorithm 

(Hamuda et al., 2018) to predict object trajectories and match detections to existing tracks 

based on their similarity in appearance features and predicted motion. As new detections are 

made in subsequent frames, Deep SORT updates existing object tracks by associating them 

with the most likely detection based on their predicted trajectories and appearance similarities. 

Tracks are maintained for each object over time, allowing for the continuous tracking of objects 

as they move throughout the scene. Deep SORT also includes mechanisms for track 

management, such as handling occlusions, track termination, and track re-identification. It 

employs strategies to handle situations where objects temporarily disappear from view or 

multiple objects merge or split in the scene.   

It is a popular choice for real-time applications such as surveillance, autonomous vehicles, 

and sports analysis, as Ciaparrone et al. (2020) demonstrated. 

DUKE incorporates Wojke et al.'s method for tracking objects, which has been adopted for 

multiple object-tracking benchmarks. During the detection and classification stages of DUKE, 

bounding box parameters are created; DUKE passes to the DeepSORT model, which defines 

an eight-dimensional state space (u, v, γ, h, x˙, y˙, γ˙, h˙) that contains the bounding box centre 

position (u, v), aspect ratio γ, height h, and their respective velocities in image coordinates. A 

standard Kalman filter is used with constant velocity motion and a linear observation model, 

where we take the bounding coordinates (u, v, γ, h) as direct observations of the object state. 

A tracking ID is applied to the target vehicle, and DUKE generates continuous feature vector 

data for each vehicle in a frame.  

Once objects are detected and passed to Deep SORT, features are extracted to help 

distinguish between them. These features are based on the object's appearance and include 
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information like the object's colour, shape, texture, and more.  

Deep SORT uses a tracking algorithm to associate objects between frames. The primary 

challenge in tracking is maintaining the identity of objects as they move through the video 

frames. Deep SORT combines a Kalman filter and the Hungarian algorithm. The Kalman filter 

estimates each object's state, position, and velocity, while the Hungarian algorithm assigns 

detected objects to existing tracks, ensuring that each object maintains a consistent id across 

frames. The Kalman filter performs a prediction step to estimate the likely state of an object in 

the next frame based on its previous motion. When a new detection occurs in the next frame, 

the Kalman filter then corrects its prediction based on the observed data, helping to reduce 

errors in tracking. Deep SORT also includes a thresholding mechanism to determine when a 

new detection should be associated with an existing track or if it should be treated as a new 

track. This helps in handling temporary occlusions and false detections. However, we found 

that this threshold requires fine-tuning to prevent the tracking ID of a vehicle that just left the 

frame from being applied as a new detection, assuming it is the same vehicle. 

The tracker maintains a list of active tracks and their corresponding IDs. It can create and 

delete tracks as objects appear or disappear from the video feed, including post-processing 

steps to refine the tracking results, such as eliminating short-lived tracks or smoothing object 

trajectories.  

 

6.4 Feature vector extraction 

The selection and design of feature vectors represent a scientific work step in this research 

due to several key aspects. Selecting and designing feature vectors begins with formulating 

hypotheses about which vehicle attributes are most relevant for predicting behaviour within a 

T-Junction scenario. These hypotheses are grounded in existing literature, domain knowledge, 

and empirical observations. The choice of feature vectors involves a systematic experimental 

design process. We carefully consider which vehicle attributes to include in the feature vector, 

how to quantify and represent these attributes numerically, and how to ensure that the selected 

features adequately capture the dynamic nature of vehicle motion. Once the feature vectors 

are defined, we collect data to populate these vectors. This data collection process involves 

gathering information about various vehicle attributes, such as distance from the merge line, 

velocity, acceleration, spatial coordinates, and relative size. We then analyse the collected 

data to determine how well the chosen feature vectors capture the desired aspects of vehicle 

behaviour. This analysis involves statistical techniques, visualisation methods, and 

comparison against ground truth data. The feature vectors serve as input to the predictive 

model for vehicular behaviour. The selection and design of feature vectors involved an iterative 

refinement process. We experimented with different combinations of features, adjusted feature 
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representation methods, or incorporated feedback from initial model evaluations to improve 

predictive performance. Overall, the selection and design of feature vectors represent a critical 

scientific work step in this research, serving as the foundation for developing and evaluating 

a predictive model for vehicular behaviour within a T-Junction scenario. 

In this thesis context, employing feature vectors is imperative for encapsulating a target 

vehicle's stochastic motion patterns. These feature vectors are foundational in constructing a 

robust dataset, which is essential for training a predictive model. This model is designed to 

forecast vehicle behaviour with high accuracy. The necessity for such predictive capabilities 

arises from the objective to understand and anticipate the dynamics of vehicular motion, 

particularly within the confines of a T-Junction. 

Feature vectors are multidimensional entities with numerical representations of an object's 

attributes.  Our feature vectors incorporate various dynamic aspects of a vehicle's motion, 

including but not limited to its distance from the junction's merge line, velocity, acceleration, 

positional coordinates within a given frame (denoted by the x and y coordinates of the vehicle's 

bounding box), and the vehicle's relative size in pixels. Such attributes vary dynamically, 

meaning they change over time as the vehicle moves and interacts with its environment. 

The dynamic nature of these feature vectors is critical for modelling and predicting vehicular 

behaviour in real-time scenarios. By integrating velocity, acceleration, and spatial positioning 

measurements, our predictive model can infer patterns in how vehicles approach and navigate 

through the T-Junction. Including data about other vehicles, especially those traversing the 

major road from a specific direction (referred to as direction b), adds another layer of 

complexity. This acknowledges the interactive and interdependent nature of vehicular motion, 

where the movements and presence of others influence the behaviour of one vehicle. 

We phrase this as dynamic feature vectors as the dynamic component of the feature vectors 

lies in their capacity to represent the temporal and spatial fluctuations of vehicular movements. 

These vectors capture a snapshot of various parameters at a given time, providing a detailed  

and quantitative overview of the vehicle's state. As such, they are instrumental in training our 

predictive model to recognise and predict patterns in vehicular behaviour, which is contingent 

upon the vehicle's actions and the surrounding traffic conditions. In Figure 36, we illustrate the 

initial testing of the detection and classification components, demonstrating the passing of 

data to DeepSORT for ID acquisition.  

 



121 
 

 

Figure 36 Junction JM559 (Section 3.3). The target vehicle was detected with the following 

feature vector data: classified as a car (2), confidence 93% (0.93) with bounding box drawn 

and tracking ID assigned (6). 

 

We can visualise our feature vector data on the bounding box for analysis and testing, allowing 

us to assess the accuracy of our data against ground truth for each frame and across multiple 

frames. In Figure 37, we introduce bounding box annotations for attributes such as 

acceleration, distance from the junction merge line, and the bounding box's area around the 

target vehicle. 

 

 

 

 

Figure 37 Junction JM559. Target vehicle showing feature vectors for acceleration  

(0.51 px/ms2) distance from the junction (57 px) from the bottom left corner of the box and 

the area of the bounding box (17,340 px2). 

 

We enhanced inference speed by reducing false positives by fine-tuning DUKE to detect and 
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process vehicles approaching from the front and left sides (as discussed in Sub-section 4.5.1). 

This allows us to concentrate our detections on the target vehicle and vehicles potentially 

endangered by reckless drivers entering the main road. Figure 33 shows a target vehicle that 

has stopped (acceleration = 0) approximately 110 pixels from the junction merge line. There's 

also a second detection from direction b (as detailed in Sub-section 3.4.1). This is another 

tracked detection, and the bounding box data includes the distance from the junction's starting 

point relative to the vehicle (50 px) and the vehicle's class (2). These features, Approach_b 

distance and Approach_b class, are essential data that can significantly impact a driver's 

behaviour. Our goal is to capture and classify this behaviour for training purposes, which is 

fully discussed in Chapter 7.  

 

 

Figure 38 Junction JM559. Target vehicle showing feature vectors for acceleration  

(0.0 px/ms2) distance from the junction (110 px) from the bottom left corner of the box and 

the bounding box area (14,742 px2). Approach_b distance is (50 px) to the entrance to the 

junction, and Approach_b class is (2).  

 

6.4.1 Feature vector creation  

During each iteration of DUKE, features are generated as each video frame is analysed, as 

explained in Sub-section 6.2.7. Equation 17 (section 6.3.6 ) illustrates the output y and 

associated metrics, including 𝑏𝑥 , 𝑏𝑦, 𝑏ℎ, and 𝑏𝑤. When a target vehicle is detected and 

classified, the bounding box data is passed to DeepSORT to be assigned a tracking ID. This 

tracking ID serves as our first feature. The second feature is the vehicle class, categorising 

the vehicle as a car, truck, bus, motorcycle, or bicycle. This classification aids in predicting 

behaviour and speed based on known vehicle characteristics. Next, we have features such as 

Px and Py coordinates of the centre of the drawn bounding box and the bounding box's height 

and width prediction in pixels. With these initial features, we can derive calculated attributes 
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• Velocity 

• Acceleration 

• Area (dim of bounding 

box) 

• Approach b (distance) 

like velocity, acceleration, area of the bounding box, distance from the junction, and time. 

List of features collected as a single feature vector; 

 

 

 

• Junction ID 

• Tracking ID 

• Class (type*) 

• Distance  

 

 

 

 

In each iteration optimised for performance, a set of features is generated directly from the 

detection and classification function, from tracking, or through in-iteration calculations. All 

these features are stored in a single list, creating a feature vector per iteration for each vehicle, 

primarily keyed to the tracking ID. In continuous tracking of a target vehicle, we can generate 

a set of features for every frame. However, fps is altered during processing, which can result 

in reduced fps in heavily congested traffic situations and thus a reduced number of feature 

vectors generated.  

 

6.4.2 Feature vector constant, variable, and calculated values 

Creating an instant historical record of each frame is essential to computing features from real-

time data. This record allows us to compare variables and derive features such as velocity (v), 

acceleration (a), and distance (d).  

 

Calculated variables are determined for each frame. 

 

Calculating Velocities: 

We use the positional information extracted from the bounding boxes in successive frames to 

determine the velocities of the tracked objects by analysing the change in position relative to 

the elapsed time between two consecutive frames. This measurement indicates the target 

vehicle's dynamic motion as it approaches the merge line over time and is expressed in units 

of pixels per millisecond. 

 

 

• Approach b class 

(type*) 

• Intent prediction 

(Fpc/SFpc)** 

*type=class of vehicle 

**See 7.4.2 Subclasses for 

definition of (Fpc/SFpc) 
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𝑣 = ( 
𝛥𝑃𝑥

𝛥𝑡
,

𝛥𝑃𝑦

𝛥𝑡
 )       (18) 

 

Where 𝑃𝑥  and Py are the coordinates of the estimated bounding box, and Δt is the inference 

time difference between the two frames. 

 

We can further deconstruct the velocity vector into its 𝑃𝑥  and Py components by isolating and 

assessing changes in position. This approach allows us to accommodate various traffic 

scenarios, including traffic approaching from different directions, enabling us to capture the 

entire junction scene comprehensively.  

 

Acceleration: The rate of change in the vehicle's velocity toward the junction over time. 

 

 𝑎 =
𝑣−𝑈

𝑡
             (19) 

 

Where 𝑈 is the initial velocity taken at first inference. 

Distance from the merge line: The distance between the vehicle's prior position and the stop 

line, aiding in velocity and direction estimation, can be calculated using the bounding box 

bottom left corner coordinates (Px, Py) and (Px1, Py1) with the Euclidean distance formula: 

 

𝑑 = √((𝑃𝑥1 − 𝑃𝑥)2 + (𝑃𝑦1 − 𝑃𝑦)2)      (20) 

 

Approach_b Distance: This metric indicates whether an approaching vehicle has been 

activated from direction b; if so, equation (20) is applied to the central coordinates of the 

bounding box, and a distance measurement is calculated from the junction's starting point and 

the distance of the approaching vehicle. 

 

Area: The vehicle's dimensions inside the estimated bounding, including its width and height, 

are used to distinguish between different vehicle types. These dimensions are directly 

calculated from the bounding box variables' bh' (height) and 'bw' (width). 

Variables are assigned for each frame, and these values include: 

 

ID: A tracking ID assigned by the DeepSORT network at the initial detection of the object. 

 

Class: The object's class label, determined at the end of the detection phase based on training 

data. 
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Px_x and Px_y refer to the coordinates denoting the bounding box's estimated position. 

These coordinates can originate from any point within or around the bounding box. 

Constant values are established for each junction. As described in Section 5.4, we 

demonstrated the process of extracting ground truth values from video frames; this is done to 

guarantee the precision and accuracy of our feature vectors. 

 

Target vehicle velocity: We manually analyse each junction using the method described in 

Section 5.4, enabling us to compare pixel-generated data with the driver's actual behaviour. 

 

Distance to the merge line or video frame boundary: This measurement helps us assess 

the precision of the vehicle's position, direction, velocity, and trajectory as it passes through 

DUKE. Values for the coordinates of junction dimensions are stored for each junction and then 

applied to DUKE before inputting the video. 

 

Vehicle dimensions: This parameter represents the physical size of the vehicle, including its 

length, width, and height. 

Target vehicle acceleration: This value is derived from analysing velocity across various 

scene segments.6.4.3 Recording features as vectors. 

DUKE operates by processing frames collectively, capturing and calculating features for 

detected vehicles, and then interpreting the subsequent frame. In Figure 39, a single frame is 

presented, illustrating the identification of a specific target vehicle. In order, the bounding box 

annotations include id, class, acceleration, distance, and area. Table 19, entry #8, reveals how 

this frame is represented and stored as a feature vector. 

 

 

Figure 39 Junction JM559. Target vehicle showing features of id (9), class (2), acceleration 

(0.23 px/ms2), distance to merge line (809 px), area (8,742 px2), aligned to # 8 in Table 19. 

 

Table 16 displays the initial 11 feature vectors corresponding to the subject vehicle depicted 

in Figure 39. The frame displayed is relative to (#8) in Table 16 and is highlighted. Notably, 

the values for Approach_b distance and Approach_b class are marked as 0, signifying no 

identification of a vehicle approaching from the direction of Approach_b, as verified by the 
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visual evidence in Figure 39, where no vehicular presence is evident heading towards the 

intersection. 

 

# Id Cls Distance Velocity Acceleration Area Px_x Py_x Approach_b 

distance 

Approach_b 

class 

1 9 2 -999 2.21065 0.147236 7320 1551 197 0 0 

2 9 2 -975 2.40144 0.18597 7560 1531 197 0 0 

3 9 2 -949 1.19255 0.338967 7869 1508 197 0 0 

4 9 2 -923 1.30481 0.440977 7800 1483 198 0 0 

5 9 2 -892 0.914385 0.41054 8220 1459 198 0 0 

6 9 2 -865 0.875952 0.229694 8280 1433 199 0 0 

7 9 2 -837 0.869303 0.232951 8601 1408 199 0 0 

8 9 2 -809 0.850033 0.228101 8742 1380 198 0 0 

9 9 2 -781 0.880542 0.228871 8742 1352 198 0 0 

10 9 2 -750 0.772426 0.213753 9408 1327 197 0 0 

11 9 2 -721 0.726269 0.206397 9536 1300 197 0 0 

 

Table 16 Single vehicle feature vector list captured during each frame iteration (#) 

6.5 Initial analysis of feature capture 

This section provides a snapshot of the data from Figure 39 and Table 16. Figure 40 shows a 

plot depicting a vehicle's dynamic motion across 11 frames using the raw data from Table 16. 

It is important to note that this data has not undergone any smoothing or cleaning processes 

before analysis. This approach allows for a detailed, granular examination of data points, 

typically around 25 milliseconds apart. While one potential smoothing method could involve 

increasing the time interval between data points, such an adjustment would not fully address 

all the issues identified in this initial data snapshot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 40 The features plotted over 11 frames, derived from the data in Table 16, depict the 
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dynamic changes in velocity and area as the vehicle approaches the merge line.  

 

 6.5.1 Discussion of  Figure 35 

Left: Velocity 

There is a falsely indicated increase in velocity between frames 1 and 2, which can be 

attributed to the initial detection of and differences in historical data. It is common for 

inaccuracies to arise in the initial frame due to the lack of historical data in the initial iterations. 

Right: Area 

The area plot shows perturbations, magnified due to irregular height and width bounding box 

estimation. The area increases as the object approaches the junction due to the camera's 

location and the vehicle's relative size. 

 

6.5.2 Comparison of DUKE-derived data ground truth values 

The target vehicle in Figure 39 underwent a manual assessment from its initial detection to its 

progression towards the merge line, employing the techniques outlined in Section 5.4. This 

assessment involved the evaluation of various parameters, including acceleration, distance, 

area, and velocity, which were then compared with the 2D-pixel features extracted by DUKE. 

This manual evaluation is an initial validation step to gauge the accuracy and dependability of 

the features acquired through the DUKE pipeline. The results of a comprehensive tracking of 

the target vehicle, featuring DUKE-extracted features alongside ground truth data, are 

presented in Table 17. 

 

Data Mean Velocity 

px/ms 

Vel 

(p-value) 

Vel 

(SD) 

vel 

Mean 

Acc 

px/ms2 

Acc 

(p-value) 

Acc 

(SD) 

vel 

Distance 

px 

Mean 

Area 

px2 

Acc 

(p-value) 

Acc 

(SD) 

vel 

DUKE 0.93 0.18 0.19 0.28 0.09 0.09 893 8370 683 716 

Ground Truth 1.06 0.17 0.2 0.33 0.09 0.09 963 8259 679 705 

 

Table 17 compares manually gathered ground truth data with the 2D-pixel features obtained 

through DUKE. 

Examining Figure 40, which reveals perturbations during the initial detection phase, it is 

evident that the DUKE-derived data presented in Table 17 gradually becomes more consistent 

and aligned with the ground truth data as the target vehicle produces more feature data, as a 

result, has no significant statistical difference between them. 

The following steps involve working with more data and refining the IoU thresholds and 

confidence threshold values to minimise perturbations between feature captures. Additionally, 

we plan to enhance data smoothing by increasing the time step and disregarding data from 
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the initial frames, such as the first two frames when considering velocity and the first five 

frames when evaluating acceleration. This is discussed further in Chapter 7. 

 

6.6 Chapter conclusion 

This chapter introduces a method for feature extraction from two-dimensional video data, 

utilising YOLOv5 inference mechanisms. We created a method that enables the extraction of 

detailed, multidimensional data from vehicles in motion, treated as objects within the dataset. 

This method leverages YOLOv5's inference capabilities to extract low-level dynamic attributes 

of vehicles from high-level image frames, organising these attributes into training features 

within feature vectors. This approach aims to improve the precision of extracted features and 

enhance the dataset for training machine learning models to predict vehicle behaviour in traffic 

scenarios better. Through this, we contribute to the ongoing development of automated feature 

extraction and the training of machine learning models. 

 

We began this chapter with Research Question 3 (RQ3): Is obtaining accurate pixel-level 

features from dynamic vehicles that closely match ground truth data feasible? 

This chapter demonstrates our advanced approach to deriving meaningful features from two-

dimensional 2D video data. These features closely align with the ground truth data, which 

serves as a baseline for our research. However, it is imperative to acknowledge that our work 

is not complete. While our results are promising, our feature data requires further refinement 

to enhance its quality and reliability. This refinement is essential as we prepare our data for 

training and testing our prediction model, a topic we address in the upcoming chapter. We aim 

to ensure that our prediction model is built upon a solid foundation; by refining these features, 

we hope to improve our predictions' accuracy. Contribution revisited: In this chapter, we 

explain our approach to generating accurate dynamic vehicle feature vectors for utilisation in 

real-time prediction. 
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Chapter 7: Intent prediction training dataset DYLE 

7.1 Introduction 

This chapter presents DYLE, a novel real-time data handling and learning approach. DYLE 

stands out because it can dynamically store and update training data in feature vectors, 

ensuring that the training and prediction models can access the most current data. This system 

is uniquely designed to be updated in real-time with new data, facilitating continuous learning 

and adaptation. The process of dynamic enrichment, whereby DYLE accumulates new feature 

vectors with each iteration using DUKE, as detailed in Section 6.4, underscores the innovative 

nature of this approach in enhancing machine learning workflows. 

As DUKE detects a target vehicle, unique feature vectors specific to the dynamic 

characteristics of the target vehicle are produced. These vectors are systematically collected 

and stored within DYLE, as illustrated in Figure 41. 

DYLE seamlessly merges manually classified information with machine-learning-based 

predictions from our prediction model. This amalgamation results in an online training dataset 

that facilitates the immediate integration of new insights, typically achieved within milliseconds 

following the classification process. 

 

 

Figure 41 illustrates the storage process of feature vectors after undergoing DUKE analysis. 
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In this chapter, we explore the following question.  

Research Question 4: Can our feature vectors' inherent generality be observed per the 

consistent camera positioning hypothesis? This hypothesis posits that recordings from various 

junctions maintain a similar perspective due to the standardised factors of camera height, 

position concerning the merge line, and overall camera placement. 

 

Contribution: We develop a method for organising and classifying discrete vehicle feature 

vectors as feature vector arrays both independently and as integral components of a 

comprehensive general dataset. 

 

7.2 Chapter organisation 

We start by focusing on extracting training features from Bo's video in Section 7.3. Section 7.4 

examines feature training data for single junctions, covering topics such as prediction class, 

subclasses, and analysis of DYLE video training for single junctions. Section 7.4.4 explores 

the empirical and quantitative determination of the reliability of feature vectors, while Section 

7.4.5 discusses the manual classification of training data. Moving forward, Section 7.5 

addresses the creation of datasets for other junctions. Section 7.6 consolidates these datasets 

through aggregation, with Subsections 7.6.1 presenting the results from k-fold cross-validation 

on aggregated DYLE and 7.6.2 discussing the obtained results. Finally, Chapter 7 concludes 

with Section 7.7, which summarises the key findings and insights derived from the detailed 

exploration of training features, data creation, and dataset aggregation. 

 

7.3 Extracting training features from Bo video  

Storing the feature vectors extracted through the methods outlined in Chapter 6 imposes an 

additional computational burden on our model. During the training phase, this is manageable 

since we are in the data collection stage and not involved in prediction. However, when our 

model needs to store, update, and subsequently infer from these feature vectors, the 

increased computational load has implications for real-time predictions. To mitigate this 

impact, we have constrained the size of each feature within a feature vector to a maximum of 

56 bits during development, further refining this to 24 bits in the final model. This reduction in 

feature size helps optimise computational efficiency without significantly compromising the 

model's predictive capabilities. 

DYLE organises feature vector data in distinct arrays within its structure, each corresponding 

to a specific junction associated with the data (see Table 18). The procedure involves creating 

a Bo Vo video dataset for a designated junction and dividing the data into separate subsets 

for training and testing. Specifically, 60% of the video data is earmarked for the training subset, 
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while 20% is set aside for testing purposes. The remaining 20% of the video data is reserved 

for validation, which is crucial to evaluating the model's performance at the individual junction 

level and in the context of a combined junction dataset. This dataset partitioning strategy 

facilitates distinct junction training, testing, and validation. Subsequently, the data can be 

consolidated into a comprehensive junction training dataset, enabling generalised testing and 

assessment. 

 

EuroRAP 

route 

Junction location Total 

minutes 

Manual pred class train 

data 60% 

DAISY Derived pred 

class 20% 

Online 

Verification 

20% 

JM377 Oxshot Road 263 157.8 52.6 52.6 

JM384 A248 124 74.4 24.8 24.8 

JM559 Petersfield Road 249 149.4 49.8 49.8 

JM454 Rowhook Road 207 124.2 41.4 41.4 

UO196 Jacobs Well Road 119 
  

119 

Table 18  Bo video data Vo, split in terms of minutes. 

 

An identical process is replicated for each junction, resulting in distinct DYLE training datasets 

comprising feature vectors derived from 60% of the respective junction's video data. Each 

dataset undergoes a classification phase, where a prediction class and a final action class are 

manually assigned based on the vehicle's actions at the merge line. Following this 

classification, each DYLE dataset is integrated and verified with a ground truth observation 

verification process, with 20% of the video data reserved for validation. 

Following individual junction analysis and classification, we aggregate all the unique DYLE 

datasets to explore the potential for generalisation. The entire junction-based DYLE dataset 

is then analysed like the individual junction datasets. The 20% video hold-back verification test 

is repeated on this combined dataset by aggregating the verification video splits. 

The primary objective of this analysis is to investigate whether the dataset exhibits inherent 

generality, driven by consistent camera positioning, per the hypothesis that recordings from 

differenT-junctions maintain a similar perspective due to the standardisation in camera height, 

position from the merge line, and overall placement. 

 

7.4 Feature training data single junction 

The first junction we processed for training data was JM559. We produced a DYLE version 

unique to JM559, encompassing approximately 18,480 feature vectors. Table 19 presents raw 

features' initial detection and classification data from a single target vehicle stored in a feature 

vector array in JM559 DYLE. The final prediction class depends on the vehicle's actions at the 

merge line, Stop, Hazard or Merge and is manually applied to the training data. We 
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autonomously apply the final prediction class using our online model as discussed in Chapter 

8. This prediction class constitutes one facet of feature association, where all the features 

within a single feature vector are correlated with a particular outcome and all feature vectors 

are correlated as a feature vector array, as described in Table 23. Notably, the final prediction 

class (Fpc)*  feature is intentionally omitted in this phase because this dataset serves as 

training data and the final prediction classification is done manually.   

 

* Fpc is explained in section 7.4.2 

Table 19 provides an example of a single feature vector derived from a target vehicle. It is 

important to note that the final prediction class in the last column has not yet been assigned 

to this training data. 

 

A secondary, temporary association relates to the identification (id) of the target vehicle, which 

serves as the unique identifier and is not part of the training data. The third associational 

feature pertains to the vehicle's class (cls), and a fourth association includes the approach 

class (app_b_cls), when applicable, along with the approach distance (app_b_dis). In 

conjunction with distance, velocity, acceleration, area, px_x, and px_y, we assemble a feature 

vector at a specific pixel distance from the merge line, corresponding to a specific vehicle class 

and its associated final prediction class. Table 20 presents an extraction of this online 2D array 

of feature vectors for a target vehicle starting at 273 pixels from the merge line. 

 

Correlated array associated features = id, cls and app_b_cls 

Distance Vel Acc Area Px_x Px_y Ap_b_dis Fpc 

 [[-273 0.379198 0.803161 15792 891 188 0]  

 [-252 0.495743 0.723585 16185 877 189 0]  

 [-233 1.10056 0.783731 16019 856 190 0]  

 [-211 1.43084 0.71151 16632 839 189 0]  

 [-192 1.9395 0.716536 16632 820 190 0]  

 [-174 2.11859 0.361123 16716 803 190 0]  

 [-158 2.08388 0.307875 16830 786 190 0]]  

 

Table 20 illustrates pre-classified feature vectors in their online storage state before being 

written into a file for subsequent classification and, ultimately, for training purposes. 

However, all the features within this dataset are intricately linked with the vehicle's unique 

identifier (id), its assigned class (cls), and (if applicable) the distance from which an 

approaching vehicle, originating from direction b, is associated with the respective feature 

vector.   

id cls dis v acc area px_x px_y ap_b_dis ap_b_cls Fpc* 

9 2 -949 1.05878 2.30087 7869 1508 197 0 0 
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7.4.1 Prediction Class 

Section 3.3 discussed the rationale behind our selection of junctions for this thesis. A stark 

reality drove this selection: vehicles emerging from these junctions introduce potential risks to 

traffic flow on the major road. With this consideration in mind, we devised a prediction 

classification feature based on three prevalent behaviours observed at the merge line of these 

T-junctions: 

 

• Stop, where the vehicle comes to a complete halt and waits at the junction. 

 

• Merge, in which the vehicle reduces its speed to approach the junction and smoothly 

integrates with the traffic flow. 

 

• Hazard, where the vehicle demonstrates a minimal change in trajectory and crosses 

the merge line, regardless of the presence of other traffic. 

 

These behaviours serve as fundamental building blocks for our predictive classification 

feature. 

In Chapter 2, we delved into examining driver behaviour at T-junctions, drawing from the 

existing literature to understand the rationale behind the decisions made when entering a 

major road from a minor road. Our empirical observations confirmed some of the literature's 

findings, particularly regarding hesitancy, and revealed various behaviours.  

 

Specifically, we observed the following: 

• A range of Stop behaviours, including fast approaches followed by a complete stop; 

slow and steady approaches leading to a stop; and a combination of deceleration, 

acceleration, and then coming to a halt. 

 

• A diverse range of Merge behaviours, akin to the Stop behaviours, with erratic changes 

in momentum as drivers made real-time decisions on their actions at the junction. 

 

While these Stop-and-Merge behaviours were dominant in our observations, we noted that 

instances of Hazard behaviour were comparatively infrequent. However, it is important to note 

that such Hazard behaviours were more pronounced in busier junctions, such as JM377 and 

JM454. 

We initially applied one of the three final classifications and accumulated loosely independent 

data at brief intervals, leading to erratic results. For example, as mentioned, no single 
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behaviour pattern is consistently linked to any of our three predictive classes. If we were to 

retrospectively apply a predictive class to the initial detection inception feature vectors based 

on the final batch of feature vectors at the merging point, we would inadvertently eliminate the 

initial behaviour for another class. This presents a significant challenge because target 

vehicles may exhibit similar initial behaviours but behave contrarily when approaching the 

merging point. By implementing associative prediction classes in the form of subclasses, we 

can individually and interdependently assign prediction labels to each feature vector. This 

process broadens the spectrum of prediction data and elevates the accuracy of our training 

dataset by conferring relevance to each feature vector at a given distance from the merge line.  

 

7.4.2 Subclasses 

The final step in creating our training data involves assigning a prediction classification to the 

target vehicle based on our empirical observations of the vehicle's action at the merge line. 

This classification is determined using the Final Prediction Classification (Fpc). 

• If the target vehicle comes to a complete stop, Fpc = Stop 

 

• If the target vehicle slows down and safely merges with the traffic, Fpc = Merge 

 

• If the target vehicle neither stops nor slows down and instead crosses the merge line 

with no significant change in momentum, Fpc = Hazard. 

 

To enhance the precision of our dataset, we introduced subcategories of predictive 

classifications. These subcategories were established by associating feature vectors with a 

definitive predictive classification determined by their proximity to a junction. We devised these 

subcategories due to conclusions from empirical observations aT-junctions. Our analysis 

revealed that assigning a single classification to target vehicle feature vectors when they cross 

the merging point would lead to the arbitrary categorisation of associated feature vectors in a 

binary manner. 

Subclasses of predictive classifications: 

WFpc, Weak Association with Fpc: This classification is applied to feature vectors greater than 

70% of the total distance away from the merge line. 

MFpc, Moderate Association with Fpc: This classification is applied to feature vectors greater 

than 40% and less than 69% of the total distance away from the merge line. 

SFpc, Strong Association with Fpc: This classification is applied to feature vectors greater than 

10% and less than 39% of the total distance away from the merge line. 

Fpc, the final prediction classification, is applied to feature vectors within 9% of the total 
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distance from the merge line. This classification categorises the features corresponding to the 

moments before the vehicle takes action at the junction.  The distances from the merge line 

were calculated to establish a hierarchical relationship with the ground truth predictions, with 

the weakest association being the furthest from the merge line and, consequently, the furthest 

from the actual ground truth behaviour. 

Our sub-classifications help us categorise and differentiate the behaviour of target vehicles at 

various distances from the junction, enhancing the meaning of our training data. Figures 42–

44 inclusively are simplified illustrations of the sub-classification process as the target vehicle 

approaches the merge line of a T-Junction.  

 

 

Figure 42 If the distance of the target vehicle is  ≥ 70% of the total distance from the merge 

line, a feature vector is classed as having a weak association with the final classification 

prediction WFpc, where Fpc is the final classification.  

 

 

 

Figure 43 If the distance of the target vehicle is  >= 40% and <=69% of the total distance from 

the merge line. The feature vector is classed as having a moderate association with final 

classification prediction, MFpc. 

 

 

 

Figure 44 If the distance of the target vehicle is  >= 10% and <=39% of the total distance from 

the merge line. The feature vector is classed as strongly associated with the final classification 
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prediction, SFpc. 

Our use of DUKE is crucial for capturing and storing accurate feature arrays in a file. This file 

enables the manual classification of the Fpc and the association of subclasses with a target 

vehicle.   

Feature vectors are generated when a target vehicle is first detected and classified. This 

generation process extends from the initial detection point to the merge line and, in specific 

scenarios, may extend beyond this—especially in cases involving fast Merges or Hazard 

classes. Due to the relatively short distances covered in terms of pixel measurements and 

time, capturing a maximum number of features at incremental distances is essential. However, 

this approach can introduce noise into the model given that bounding box predictions vary at 

30 milliseconds; this leads to significant differences in feature values. Smoothing techniques 

have been applied to the data to mitigate fluctuations and enhance the overall stability of the 

feature vectors. 

  

7.4.3 DYLE video training analysis for single junction  

To analyse DUKE's performance in accurate feature generation, we recorded the results in a 

feature array file and a video file. Visualising bounding box data allows for the manual 

classification of the target vehicle through empirical observations based on this ID (id) as the 

target vehicle approaches the merge line. Following this manual classification, we can 

methodically categorise all feature vectors associated with the target vehicle with a sub-

classification. 

Empirical observations are taken from the video recording of DUKE processing Vo data. 

Figures 45–47 inclusively represent frames extracted from the recorded video, illustrating the 

bounding box (id) and class. While the data classification method is onerous, it is invaluable 

for identifying misclassifications and tracking errors that might go unnoticed. 

As an example, Figure 40 features an evident misclassification. The vehicle approaching from 

direction b is erroneously classified as a truck (class 7) instead of as a car (class 2). This 

thorough classification process, though challenging, serves as a critical mechanism for 

detecting and rectifying such inaccuracies, enhancing the overall accuracy and reliability of 

the dataset. 

 

 

Figure 45 is an example of misclassification as the approaching car from direction b is 
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classed as a truck (7) instead of a car (2). 

 

 

 Figure 41. Features, including associated traffic data, are recorded up to the merge line. 

 

 

Figure 46. Full junction traffic data is recorded and stored as features. Approach _b_class 

and approach_b_distance can vary in the feature array, as seen above. 

 

 

Figure 47. All forms of traffic, including bicycles, are tracked as they approach the merge line 

and are added to the training data. 

 

7.4.4 Empirically and quantitatively determining the reliability of feature vectors  

As discussed in Section 6.5, we conducted experiments to enhance the accuracy of predicting 

the horizontal bounding box positions. Our iterative process adjusted the initial velocity and 

acceleration feature vector calculations. In the first four and six iterations, we refined these 

calculations to address the issues observed in our initial data analysis, where velocity (vel) 

and acceleration (acc) exhibited erroneous features because the initial detection velocity did 

not have a historical reference based on the smoothing method described below. 

One of the key improvements was adjusting the IoU threshold to 0.75, which effectively helped 

to smooth out the bounding box data by applying a stricter criterion for bounding box 

detections. Additionally, we improved the accuracy of our feature vector data by increasing the 

confidence threshold to 0.8. This adjustment reduced false positive classifications of vehicles 

as the data became associated with a narrower classification margin. As depicted in Figure 
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48, a double bounding box indicates that features are being created twice for the same target 

vehicle, albeit at slightly different locations. 

 

 

 

In Figure 48, double detections are mitigated by adjusting hyperparameters, focusing on the 

IoU and confidence threshold. 

 

 An additional issue identified in the JM559 junction video is a significant occlusion zone, 

primarily caused by the double road sign in the image's centre (see Figure 49). Despite this 

challenge, it was observed that the tracking performed by DeepSORT remained resilient to 

the occlusion, demonstrating robustness even when smaller vehicles completely vanished for 

durations of up to 400 milliseconds. 

 

 

Figure 49 illustrates a notable occlusion resulting from a road sign located in the central area 

of our tracking path at junction JM599. 

 

This resilience suggests that DeepSORT can maintain tracking continuity despite temporary 

obstructions in the visual field. Handling occlusions effectively is imperative to this work as it 

is difficult to account for mobile occlusions, such as large vehicles obscuring the target 

vehicles.  

Despite the effective tracking capabilities observed in the JM559 junction video, a quantitative 

dataset analysis revealed erratic bounding box values for features generated between the 

start and end of the occlusion-producing road sign. These irregularities in bounding box values 

may indicate instances where the detection system encounters challenges in accurately 

estimating the position and size of objects. We applied a smoothing method, the exponential 
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moving average (EMA), to the features generated at a distance relative to the road signs' 

dimensions. We utilised this method as it gives more weight to recent data points and is 

commonly used in the literature.  

The formula for calculating the EMA is as follows: 

 

        𝐸𝑀𝐴𝑡 = 𝛼 ∙ 𝑋𝑡 + (1 − 𝛼) ∙ 𝐸𝑀𝐴𝑡−1                      (21) 

 

Where 

• 𝐸𝑀𝐴𝑡 is the EMA at time 𝑡, and t-1, 𝐸𝑀𝐴𝑡−1,   

• 𝑋𝑡 feature at time 𝑡, 

• 𝛼 is the smoothing factor, which is the constant between 0 and 1, determining the 

weight given to the most recent observation. The closer 𝛼 is to 1, the more weight is 

given to the most recent observations. 

 

We fine-tuned the parameter α to achieve the desired level of smoothing. A smaller α resulted 

in a smoother curve but reduced responsiveness to recent changes. Conversely, a larger α 

enhanced the EMA's responsiveness to recent changes at the cost of potentially introducing 

more noise. 

The EMA was implemented specifically at junction JM559 as a function of the distance 

between occlusion distance points. The implementation involved activating the EMA function 

whenever a feature deviated beyond the predefined threshold of previous feature values. This 

function addressed mobile occlusions, which did not directly impact ID tracking but posed 

challenges for precise bounding box predictions. The EMA approach was then uniformly 

applied across all junctions as a function, triggered whenever threshold values were 

surpassed for any recorded feature.   

Data collection involved sampling data points throughout entire vehicle feature vector arrays, 

focusing on distance-velocity profiles. Analysing the behaviour of vehicles as they approached 

the junction provided valuable insights into ground truth observations and quantitative data. 

Figures 50 and 51 illustrate the velocity profile of vehicle id 32, which decelerated quickly 

towards the merge line and stopped. When traffic cleared, vehicle id 32 accelerated across 

the merge line, turning right onto the major road. The influence of a road sign occlusion is 

apparent in Figure 50, which results in irregular fluctuations in the velocity calculation. As seen 

in Figure 50, the notable surge in velocity originated 526 pixels away from the merge line, 

which is attributed to the road sign occlusion. This challenge was successfully addressed by 

applying EMA smoothing, which led to a more stable velocity profile, as demonstrated in the 

refined depiction presented in Figure 51.  
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 Figure 50 Velocity profile of id 32  

 before EMA smoothing application. 

  

 

 

 

 

 

 

 

 

Figure 52 EMA applied to a velocity  

distance profile classified as 'Merge'. 

  

An illustration of the need for an extensive dataset covering an extended timeframe is evident 

in the infrequent incidence of the hazard class. Figure 53 shows the velocity feature profile of 

a target vehicle presenting a Hazard to traffic on a major road. Initial detection of the target 

vehicle occurred at 350 pixels from the junction, introducing a challenge due to its late 

detection, reducing the available time window for accurate prediction. 

Figure 51 Velocity profile of id 32 

after EMA application and 

classified as ‘Stop'.   

 

 

 

 

 

 

 

Figure 53 EMA applied to a 

velocity distance profile classified 

as ‘Hazard’. 
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7.4.5 Manual classification of training data 

The preceding section illustrated our approaches for ensuring data accuracy and reliability. 

The subsequent phase involves manually classifying all data within the datasets, assigning 

each entry an Fpc and a subclass based on its proximity to the merge line and action at the 

merge line. The creation of unclassified training data involved DUKE processing 60% of the 

Bo video data from Junction JM559. A feature vector array was generated and stored in a CSV 

file for each target vehicle approaching the junction. A sample is presented in Table 24. Each 

feature in this table was linked to an ID, a class, and a manually assigned final prediction 

classification denoted as Fpc. 

In Table 21, the vehicle with ID 133, originating from Junction JM559, was tracked in the 

recorded video. Observations revealed that this vehicle safely merged onto the major road at 

the merge line. Consequently, it was manually classified with an Fpc of Merge. Additional 

associated predictions Smerge, Mmerge, and Wmerge were applied based on their distance from the 

merge line. This detailed classification process enriches the training data to increase accuracy 

in the final model.  

 

 

Table 21 shows sample data from a feature vector array created for a tracked vehicle written 

to a CSV file and manually classified as merge for an Fpc and retrospectively applied 

associated classifications.  

The complete CSV file, generated from 60% of the video data collected at junction JM599, 

underwent the classification process outlined earlier. This method facilitated a systematic data 

sampling for accuracy and reliability, requiring visual confirmation of each feature vector array 

as a target vehicle while scanning for anomalies in the data. The classified data derived from 

this task serves as the cornerstone for all predictions in the pipeline, underscoring the 

paramount importance of Accuracy and reliability at this stage. A closer look into the classes 

is provided in Figure 54, where distance velocity profiles from Section 7.4.4 illustrate the 

placement of subclasses within a target vehicle's entire feature vector array. 

As emphasised in Section 7.4.2, an arbitrary classification relying solely on merge line actions 

can misclassify a substantial portion of data, leading to inaccuracies in subsequent analyses. 

Consequently, the thorough approach employed in the manual classification process fosters 

Cls Dis Vel Acc Area Px_x Px_y App_b_dis App_b_cls SFpc/ Fpc 

2 -721 0.774123 0.219997 9465 1070 197 0 0 W_merge 

2 -580 2.22272 0.562319 11082 955 192 93 2 M_merge 

2 -341 2.29214 0.916604 13544 922 191 72 2 S_merge 

2 -273 0.379198 0.803161 15792 891 188 52 2 Merge 
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a nuanced comprehension of the dataset. This methodology mitigates the risk of 

misclassifications, ultimately bolstering the overall reliability of predictions derived from the 

dataset.
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Figure 54 Each feature is classified within a target vehicle's feature vector array to assist in the probability of predicting a Hazard at a junction at 

an optimal distance from the merge line.  
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The initial velocity detection features were subjected to smoothing with EMA. In the specific 

case of Hazard classification depicted in Figure 54, we designated these features as 

Weak_Hazard despite falling within the Strong_Hazard association threshold. This cautious 

approach aims to prevent biasing the dataset. Subsequently, the sub-classifications of 

Strong_Hazard were assigned in recognition of the interconnection of all features in a feature 

vector. The distinctions between consecutive detections (i and i+/-1) are pivotal to establishing 

these links. 

The final classification, represented by the Fpc, reveals that the target vehicle exhibits a 

relatively high velocity on the merge line, signalling the impracticality of the vehicle coming to 

a complete stop. Notably, the Merge class in Figure 54 displays a velocity at the merge line 

similar to that of the Hazard class. However, ground truth observations align with the data and 

indicate a divergence: the Merge class target vehicle decelerated to a near stop around 220 

pixels from the merge line, indicating that the vehicle driver was observing the major road 

before accelerating to merge onto it. In contrast, the Hazard class target vehicle accelerated 

approximately 300 pixels from the merge line without slowing down to cross the merge line. 

This nuanced differentiation highlights the significance of ground truth observations in refining 

the accuracy of Hazard classifications. 

7.4.6 Complete single junction dataset  

Having completed the steps to generate a single-junction classified dataset, we enter the 

verification phase, which unfolds in three stages. The initial stage employs k-fold accuracy to 

establish a foundational accuracy baseline for junction JM559. Subsequently, the second 

stage uses the Pandas Profiling Report (Pandas, 2018). The third stage, covered in the next 

chapter, utilises the reserved 20% of junction video data to derive ground truth predictions for 

unseen target vehicles. This process aims to ensure that the training dataset successfully 

encapsulates the diversity and reliability of the overall data distribution. 

 

7.4.7 Accuracy using K-fold cross-validation 

We used K-fold cross-validation to measure our model's performance and generalisation 

ability by calculating the mean accuracy or the average of correct predictions over total 

predictions. This approach is widely used in the literature (Wong and Yeh, 2020) as a validation 

technique to assess how well machine learning performs on an independent dataset. K-fold 

cross-validation helps to mitigate issues related to the variability of a single train-test split. It 

provides a more reliable assessment of a model's ability to generalise to new, unseen data by 

exposing it to multiple training and testing scenarios. 

In our k-fold cross-validation procedure, we implemented a naive Bayes algorithm with a 

probability density function (PDF) model (detailed in Chapter 8), which examines real-time 



145 
 

predictions on live data. The initial step involves dividing the feature vectors into k groups or 

folds, each of equal size. One fold is assigned as the validation set throughout each iteration 

while the method undergoes training on the remaining k−1 folds. This iterative process is 

repeated k times, ensuring each fold is used in the validation set once. 

The k signifies the number of subsets the original dataset is partitioned into. The selection of 

k influences the balance between computational efficiency and the reliability of the 

performance estimate. Opting for higher values of k generally enhances the robustness of the 

evaluation, albeit potentially increasing computational costs. This approach allows evaluation 

of the model's generalisation performance across different subsets of the dataset, contributing 

to a more dependable estimation of its effectiveness. 

 

 

The process we used for k-fold cross-validation is as follows: 

1. The junction dataset is divided into k equal-sized folds or subsets. 

2. The model is trained k times, using k-1 folds for training and the remaining fold for 

testing. This process is repeated k times, with each k fold used once for the testing 

data. 

3. The proportion of correctly classified instances, an accuracy metric, is calculated for 

each iteration based on the model's predictions on the testing fold. 

4. The k accuracies are then averaged to provide a more robust estimate of the model's 

performance across different subsets of the data. 

 

Results from k-fold cross-validation on DYLE JM599 are shown in Table 22. 

 

K value Mean accuracy 

JM599 

5 0.69 

10 0.74 

 

Table 22 JM599 K-fold cross-validation accuracy results. 

 

7.4.8 Pandas profiling report 

Pandas profiling is a Python library that generates exploratory data analysis (EDA) reports for 

data frames. Widely utilised in the early stages of data analysis, the Pandas profiling report 

aids in gaining a rapid understanding of the data and identifying potential issues. Our 

implementation involved visualising descriptive statistics, such as mean, median, mode, and 
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various percentiles for each feature as well as addressing missing data. 

An essential aspect of this process is the creation of a feature correlation matrix, presented in 

heatmap format (Figure 55). This matrix provides a visual representation of the correlations 

between features of target vehicles. The heatmap allows us to identify relationships and 

dependencies among different variables and to confirm the relationships we already know.  

 

 

Figure 55 Feature correlation heat map of JM559 training dataset. 

The relationship between variables is evident in the correlation heatmap in Figure 51. Distance 

demonstrates a robust positive correlation with area (0.611), indicating that an increase in 

distance corresponds to an increase in area. As the target vehicle approaches the merge line, 

the bounding box becomes larger because it is closer to the camera. Conversely, there is a 

notable negative correlation between distance and pixel X-coordinate (px_x) at -0.966, 

implying that the pixel X-coordinate tends to decrease as distance increases, confirming that 

our data is being recorded correctly. Regarding velocity (vel), a strong positive correlation of 

0.786 is observed with acceleration (acc), highlighting a significant association between these 

two factors. 

Additionally, velocity exhibits a weaker positive correlation (0.037) with distance due to most 

target vehicles slowing to the merge line. Moreover, the area displays a substantial positive 

correlation with distance (0.611) and pixel Y-coordinate (px_y) at 0.562, allowing for the 

interpretation of approaching vehicles relative to the target vehicles. These correlations 

confirm that the feature data is reliably recorded and that the correct relationships are apparent 

across the features. As described in the literature, we could not be confident in the final stages 

of data analysis without this step.  
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DYLE JM599 produced 18,480 feature vectors, equating to 403 individually identified target 

vehicles. There are 12 distinct classes distributed unevenly, as seen in Table 23 and Figure 

56. The significant difference between the highest and lowest frequencies reflects the 

imbalance.  

 

 

 

Fpc / SFpc Count Frequency 

s_stop 4,599 24.89% 

w_merge 4,311 23.33% 

s_merge 3,214 17.39% 

w_stop 2,299 12.44% 

m_merge 1,856 10.04% 

m_stop 1,789 9.68% 

merge 209 1.13% 

stop 191 1.03% 

w_hazard 3 0.02% 

m_hazard 3 0.02% 

s_hazard 3 0.02% 

hazard 3 0.02% 

      

 

The literature highlights the prevalence of imbalances in datasets, and effectively managing 

these imbalances is a pivotal element in our pipeline. In the case of DYLE, certain classes are 

underrepresented, such as Hazard classes leaning towards the more frequent classes of Stop 

and Merge sub-classes. To tackle this issue, we employed two strategies. The initial approach 

involves generating additional training data, as discussed in Chapter 8. Chapter 9 delves into 

the utilisation of data augmentation as a means of rectifying this imbalance.  

Relatively low cross-validation accuracy is expected in this unbalanced dataset. This is a base 

dataset for an aggregated dataset combining four junction datasets. In this dataset, there are 

only 403 Fpc classifications, the remaining being subclasses; during the K-fold cross-validation 

a, the probability of a conclusive classification of Stop, Merge, or Hazard was low.  

The remainder of this chapter continues with unique DYLE junction dataset creation and 

analysis, while the next chapter discusses the steps taken to balance the datasets in favour 

of a conclusive Fpc at an optimal distance from the junction merge line.  

 

Table 23 JM599 class, 

count, and frequency. 

Figure 56 JM599 class frequency 

balance. 
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7.5 Dataset creation for other junctions 

Having completed the dataset generation process for JM599, we replicated the procedure for 

other junctions. The careful fine-tuning of the model—incorporating hyperparameter 

adjustments and EMA during the training dataset creation and for the data accuracy and 

reliability investigation performed on the DYLE dataset produced for JM599—facilitated a 

seamless application of the trained model to the video data from each junction with minimal 

adjustments. 

Each junction obtains a distinct DYLE dataset, complemented by a video recording that tracks 

the target vehicle identified by its unique ID as it approaches the merge line established by 

DUKE. Subsequently, each dataset undergoes a comprehensive analysis following the 

methodology detailed in Section 7.4.6. The classification process is also executed using the 

methods outlined in Section 7.5.5. 

The second junction, JM377, Figure 57,  was selected for processing. Situated adjacent to the 

London Orbital Motorway (M25), JM377 is a busy T-junction. JM377 has no fixed occlusion 

zones; however, the presence of large vehicles in the foreground introduces a potential 

challenge by obstructing the view of approaching traffic from direction b. 

 

 

Figure 57 Junction JM377 shows a van approaching the merge line as traffic approaches from 

direction b. 

Results from k-fold cross-validation on DYLE JM377 are shown in Table 24. 

 

K value Mean accuracy 

JM377 

5 0.72 

10 0.73 

Table 24 JM377 K-fold cross-validation accuracy results. 
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DYLE JM377 produced 25,631 feature vectors, equating to 570 individually identified target 

vehicles. 

 

Fpc / SFpc Count Frequency 

s_stop 5,466 21.33% 

w_stop 4,525 17.66% 

m_stop 4,311 16.82% 

s_merge 3,775 14.73% 

m_merge 3,651 14.25% 

w_merge 3,311 12.92% 

merge 341 1.33% 

stop 222 0.87% 

w_hazard 7 0.03% 

m_hazard 7 0.03% 

s_hazard 7 0.03% 

hazard 7 0.03% 

     

 

 

The third junction, JM454, is a rural intersection along a bustling major road. Notably, a small 

occlusion zone exists, as highlighted in the centre of Figure 59. This occlusion is associated 

with a sign two meters above the ground. It primarily affects larger vehicles, as most smaller 

vehicles can easily pass underneath the sign.  

 

 

 

 

 

 

 

Figure 59 JM454 with possible occlusion highlighted. 

Results from k-fold cross-validation on DYLE JM454 

 

K value Mean accuracy 

JM454 

5 0.68 

10 0.74 

Table 26 JM454 K-fold cross-validation accuracy results.  

 

Table 25 JM377 class, 

count, and frequency. 

Figure 58 JM377 class frequency 

balance. 
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DYLE JM454 produced 8,969 feature vectors, equating to 193 individually identified target 

vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

The fourth and final junction for which we generated a training dataset is JM384 (Figure 61). 

Positioned along a major road between two sizable towns, JM384 has no fixed occlusion 

zones. Large vehicles passing through this junction do not threaten traffic visibility from 

direction b. 

 

 

Figure 61. JM384 has an open topology, allowing clear views of approach b. 

 

 

Fpc / SFpc Count Frequency 

s_stop 1,874 20.89% 

w_stop 1,741 19.41% 

w_merge 1,415 15.78% 

m_stop 1,357 15.13% 

m_merge 1,231 13.73% 

s_merge 1,155 12.88% 

stop 108 1.20% 

merge 84 0.94% 

w_hazard 1 0.01% 

s_hazard 1 0.01% 

m_hazard 1 0.01% 

hazard 1 0.01% 

Figure 60 JM454 class frequency 

balance. 

Table 27 JM454 class, 

count, and frequency. 
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Results from k-fold cross-validation on DYLE JM384 are shown in Table 28. 

 

K value Mean accuracy 

JM384 

5 0.71 

10 0.71 

 

Table 28 JM384 K-fold cross-validation accuracy results. 

 

DYLE JM384 produced 9,982 feature vectors, equating to 217 individually identified target 

vehicles. 

 

Fpc / SFpc count frequency 

w_stop 1,945 19.49% 

s_stop 1,911 19.14% 

w_merge 1,529 15.32% 

s_merge 1,522 15.25% 

m_stop 1,458 14.61% 

m_merge 1,388 13.91% 

stop 114 1.14% 

merge 99 0.99% 

w_hazard 4 0.04% 

m_hazard 4 0.04% 

s_hazard 4 0.04% 

hazard 4 0.04% 

      

7.6 Aggregating dataset  

 

 

The subsequent phase of creating and assessing the training dataset involved consolidating 

the classified datasets obtained from JM377, JM384, JM559, and JM454. The amalgamation 

of datasets is a common practice in machine learning, and we implemented methods outlined 

by Trevizan et al. (2020) and other researchers to enhance our data. These methodologies 

not only facilitate an expansion of the overall sample size but also improve reliability and 

generalisability. 

One notable advantage of dataset aggregation is the generation of a more representative 

sample reflecting the behaviour of the target vehicle. If individual datasets exhibit biases or 

limitations, amalgamating data from diverse sources can counterbalance biases present in 

Table 29 JM384 class, 

count, and frequency. 

Figure 62 JM384 class frequency balance. 
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individual datasets, offering a more accurate depiction of T-junction vehicle behaviour. This 

approach enables a more comprehensive understanding by capturing a wider range of 

variations, patterns, and trends, thereby presenting a holistic perspective. 

Trevizan et al. (2020) state that training models on aggregated datasets can enhance 

performance because the model can assimilate knowledge from diverse examples, facilitating 

better generalisation to new, unseen data. Different datasets often contain complementary 

information, and their aggregation enriches the feature set, yielding a more detailed and 

nuanced representation of the underlying data. 

It is important to note that aggregating datasets introduces more variability into the data, which 

is beneficial because it enables the analysis or model to capture a broader spectrum of 

scenarios—a crucial consideration given the inherent variability in our dataset. 

 

7.5.1 Results from k-fold cross-validation on Aggregated DYLE  

 

K value Mean accuracy 

aggregated DYLE 

5 0.77 

10 0.79 

 

Table 30 Aggregated junctions DYLE K-fold cross-validation accuracy results. 
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The combined DYLE dataset contains 63,062 feature vectors, equating to 1,383 individually 

identified target vehicles. 

 

Fpc / SFpc Count Frequency 

s_stop 13,850 21.96% 

w_merge 10,566 16.76% 

w_stop 10,094 16.67% 

s_merge 11,051 15.33% 

m_stop 8,845 14.14% 

m_merge 8,059 12.89% 

merge 733 1.16% 

stop 635 1.01% 

w_hazard 15 0.02% 

m_hazard 15 0.02% 

s_hazard 15 0.02% 

hazard 15 0.02% 

 

 

 

 

7.5.2 Results discussion 

The transition from k = 5 to k = 10 in k-fold cross-validation resulted in a general improvement 

in mean accuracy. JM599, JM454, and aggregated DYLE exhibited significant increases of 

7.2%, 8.8%, and 2.6%, respectively. Notably, the aggregation of datasets further accentuated 

this improvement, yielding a 10% increase in mean accuracy with k = 5 and an 8.2% increase 

with k = 10. These findings were compared against the mean averages of the unique junction 

datasets, as detailed in Table 32 and Figure 64. 

 

 

K- 
value 

K-fold cross-validation mean accuracy  

JM599 JM377 JM454 JM384 
Aggregated 

DYLE 

5 0.69 0.72 0.68 0.71 0.77 

10 0.74 0.73 0.74 0.71 0.79 

 

Table 32 K-fold cross-validation mean accuracy for different datasets. 

 

The accuracy scores for individual junctions are relatively consistent, with slight variations. 

JM454 tends to have slightly lower scores in both K=5 and K=10 analysis, suggesting it might 

Table 31 Combined 

junctions, class, count, 

and frequency. 

Figure 63 Combined junction, class 

frequency balance. 
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be the most challenging condition or benefitting the most from aggregation. JM454, a rural T-

junction, requires vehicles to halt entirely due to limited visibility upon approach. The dataset 

derived from JM454 predominantly features a 'stop' class, highlighting the benefit of 

incorporating training data from various other junctions to enrich the dataset.  

 

 

 

 

Figure 64 Chart showing k-fold cross-validation mean accuracy for different datasets. 

 

Given the nature of hand-classified training data, it was essential to approach any observed 

improvement cautiously. Despite enhancing mean classification accuracy with the aggregation 

of junction datasets, it is crucial to acknowledge a significant imbalance in data class 

distribution. One of our goals is predicting hazardous behaviour at T-junctions, yet the current 

dataset exhibits a pronounced underrepresentation of the Hazard class, with a scarcity of 

recorded feature vectors for this particular category. 

 

7.7 Chapter conclusion 

This chapter illustrated our approaches to generating credible training data, established as 

feature vectors and arrays. While significant progress has been made, integrating this dataset 

into a real-world scenario remains challenging. The next chapter introduces our real-time 

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
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prediction model to generate predictions from test video data across all junctions and the 

aggregated dataset. Through this process, we aimed to establish a baseline accuracy to 

provide a ground truth for metrics that can further determine the reliability of our model. 

 

When we review the research question for this chapter, RQ4, Can our feature vectors' inherent 

generality be observed per the consistent camera positioning hypothesis?  

As we consistently observed target vehicles from a camera positioned at  POV x (section 

3.4.1) at each test junction, we saw that the results from the aggregated dataset indicate an 

observable degree of generality in our data, as evidenced by an increase in mean accuracy. 

Despite slight variations in the perspective of the merge line due to differences in camera 

placement angles at each junction, our model demonstrated the ability to recognise features 

from distincT-junctions and successfully apply them to other junctions.  

This chapter explored our development of a method for organising and classifying discrete 

vehicle feature vectors as feature vector arrays, both independently and as integral 

components of a comprehensive general dataset. To do this, we developed a method for 

independently organising and classifying target vehicle feature vectors as feature vector 

arrays to build a comprehensive dataset, DYLE. 
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Chapter 8: Intent Prediction using DAISY 

 

8.1 Introduction 

This section presents the integration of DAISY, our machine learning classifier for predicting 

intents, into the current workflow. DAISY represents a refinement of the approach described 

in Chapter 7, which evaluated the precision of DYLE through K-fold cross-validation and naive 

Bayes classification. 

Figure 65 illustrates the integration of DAISY, where feature vectors from DUKE are directly 

fed into DAISY for real-time intent predictions on target vehicles. This integration allows us to 

utilise the training data stored in DYLE to base our predictions on new feature vector data. 

 

 

 

Figure 65 shows that new and previously unseen feature vectors are transmitted directly to 

DAISY to classify vehicles' behaviour as they approach the merge line. 

 

Intent prediction has been extensively researched, as discussed in our review in Chapter 2. 

The central focus of our work, intent prediction is a complex outcome resulting from a non-

trivial problem involving multiple interconnected components in our pipeline. The accuracy and 

reliability of the results depend heavily on the interdependency of these components, and the 

methods and results described in the preceding chapters are crucial for ensuring the accuracy 

of the results achievable using DAISY. Building on the findings outlined in Chapter 2, we 

adopted a computationally efficient classification method to determine the likelihood of a set 

of features belonging to a particular class. This choice is pivotal for two key reasons. Firstly, it 

aims to reduce computational overhead and ensures seamless integration of the classification 
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code with the rest of the pipeline—a task not without its challenges in Python. The overall 

efficiency of the pipeline code holds significant importance, given the requirement that 

classifications must be executed in under 45 ms.   

We could use our feature vector data for intent prediction by applying deep-learning or 

machine-learning classification methods. As highlighted in Chapter 2, the choice of a 

classification method depends on the classification challenge's specific nature. In our case, 

the primary challenge revolves around the necessity for rapid classifications of real-time data. 

Our exploration of suitable intent prediction methods led us to investigate RNN methods, as 

detailed in Zyner, Worrall, and Nebot (2019) and our work in Chapter 4. Their research on 

RNN classification involved predicting vehicle intentions at intersections using RNNs with a 

mixed-density network output layer. They utilised a dataset created with a vehicle-mounted 

lidar-based tracking system. The model's performance was benchmarked against several 

baseline models, demonstrating its effectiveness in predicting trajectories with reasonable 

accuracy. However, it fell short of our requirement for predictions made under 45 ms, with the 

fastest mean time for prediction being approximately 780 ms.  

Additional literature prompted an exploration into the suitability of a linear regression model 

due to its computational efficiency. Linear regression is a statistical model that predicts the 

relationship between a dependent variable and one or more independent variables. However, 

we very quickly shelved the testing of the linear regression model as, upon closer examination, 

specific weaknesses emerged. Some of the weaknesses we found were highlighted by 

(Christodoulou et al., 2019). They concluded that the linear regression model's assumption of 

a linear relationship between independent and dependent variables and sensitivity to outliers 

impacted estimated coefficients, leading to inaccurate intent estimations. We concluded our 

analysis by acknowledging that our data generated highly inaccurate predictions when 

subjected to linear regression. This outcome likely stems from the method's limitations in 

addressing complex non-linear dynamics, difficulties posed by multicollinearity due to closely 

related independent variables, and the inherent expectation of constant variance 

(homoscedasticity) compromised by heteroscedasticity. Consequently, we discontinued 

further testing with linear regression. 

 

Research Question 5 (RQ5): How accurately can a machine learning model, utilising 2D 

video-derived feature vectors, predict a vehicle's intention at a T-junction?  

 

Contribution discussed in this chapter:  A computationally efficient approach for predicting 

vehicle intent at a T-junction using video-derived feature vectors as training data.  
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8.2 Chapter organisation 

Section 8.3 introduces the DAISY framework, with subsections providing detailed insights. In 

8.3.1, we explore intent prediction in DAISY, highlighting its capabilities. Section 8.3.2 

introduces the Gaussian distribution's probability density function. In 8.3.3, we outline the 

steps of intent prediction in DAISY. Section 8.4 focuses on applying intent prediction to the 

JM377 junction. Section 8.5 extends this to other junctions, examining system adaptability. 

Section 8.6 evaluates DAISY's overall performance across all four junctions. In 8.7, we revisit 

RQ5 and discuss the results. 

 

8.3 DAISY 

DAISY is a naive Bayes classifier with a probability density function (PDF) model that extends 

the traditional naive Bayes approach to handle continuous data by modelling the probability 

distributions of feature vectors assuming a Gaussian distribution. Unlike the traditional naive 

Bayes, which typically deals with discrete features, a naive Bayes classifier with probability 

density functions is suitable for continuous features. A PDF models each feature for each 

class. Instead of directly calculating the likelihood based on observed frequencies, as in the 

discrete case, likelihood is calculated by evaluating the PDF of the feature for a given class. 

The 'naïve' assumption of conditional independence given the class label is retained, meaning 

that the joint probability of observing a set of features is calculated as the product of the 

individual feature PDFs. 

Like traditional naive Bayes, prior probabilities of classes are estimated based on the training 

data. Given a new observation with continuous features, the classifier calculates the posterior 

probabilities for each class and predicts the class with the highest probability. The parameters, 

mean, and variance of the probability density functions are estimated from the training data, 

which is added to DYLE as the last stage of the pipeline with new online classified feature 

vectors (see Chapter 9). DAISY can make the final driver intent prediction (Fpc) and associated 

subclass predictions (SFpc) based on feature vectors produced by DUKE and those from and 

added to the DYLE training data. Given the Fpc and SFpc, we assume the features are 

conditionally independent, allowing for comparing pre-classified feature vectors with SFpcs.  

We modified DAISY to suit our data by applying Laplace, a smoothing technique (Noto and 

Saputro, 2022), to handle cases where certain features are calculated as being zero in the 

training data, such as a stopped vehicle with no approach_b_distance data.  

The literature has many examples of using a naive Bayes classifier in machine learning tasks; 

one paper (Chen et al., 2021)  addresses its limitations by incorporating feature weighting and 

Laplace calibration, resulting in an improved algorithm that achieves over 99% accuracy with 

a large sample size and remarkable stability; for samples with fewer than 400 attributes and 
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fewer than 24 categories, the accuracy exceeds 95%.  

 

8.3.1 Intent prediction DAISY 

Driver intent prediction involves the assignment of categorical labels to a set of input feature 

vectors. Given the input feature data, this assignment is accomplished by estimating the 

likelihood of specific class labels. The probability calculation is performed for each potential 

class label, and the label associated with the highest probability is designated for the input 

data. 

Nevertheless, a direct application of Bayes' theorem for our intent classification encounters 

impracticalities, primarily due to the computational challenges arising from the many involved 

features. Consequently, pragmatic approximations are made by estimating class priors and 

data probabilities from a DYLE. To streamline the computational complexity associated with 

the conditional probability of the data given the class, a naive Bayes classifier is implemented, 

operating under the assumption of feature independence. 

The naive Bayes model calculates the probability of the input data given the class label by 

independently computing the conditional probabilities for each input variable. These individual 

probabilities are then multiplied to obtain the comprehensive probability. DAISY, the model 

under consideration, determines the posterior probability of a class-given input feature by 

combining the class's prior probability with the product of the likelihood of observing each 

feature given the class. Laplace smoothing was applied to mitigate issues related to unseen 

feature-class combinations during training, ensuring non-zero probabilities and stabilising the 

data output.  

 

The formula for predicting the probability of a particular class label Ci given the input feature 

vector 𝑓𝑣 can be expressed as follows: 

 

𝑃(𝐶𝑖 ∣ 𝑓𝑣) ∝ 𝑃(𝐶𝑖)∏𝑗=1
𝑛 𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖)   (22) 

 

 

Where 

• 𝑃(𝐶𝑖 ∣ 𝑓𝑣): The posterior probability of class Ci given the input feature vector fv. 

• 𝑃(𝐶𝑖): The prior probability of class Ci   

• ∏𝑗=1
𝑛 𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖): The product of the likelihoods of observing each feature 𝑓𝑣𝑗 given 

class Ci. 

A continuous feature 𝑓𝑣𝑗 modelled with a probability density function (PDF) and Laplace 

smoothing is expressed as 
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𝑃(𝑓𝑣𝑗 ∣ 𝐶𝑖) =
𝑐𝑜𝑢𝑛𝑡(𝑓𝑣𝑗 𝐶𝑖)+1

𝑐𝑜𝑢𝑛𝑡(𝐶𝑖)+∣𝑋𝑗∣
    (23) 

 

Where 

• 𝑐𝑜𝑢𝑛𝑡(𝑓𝑣𝑗, 𝐶𝑖): The count of occurrences of the value 𝑓𝑣𝑗 in DYLE for class Ci. 

• 𝑐𝑜𝑢𝑛𝑡(𝐶𝑖): The total count of instances of class Ci in the training data. 

• ∣ 𝑋𝑗 ∣: The total number of unique values for the feature 𝑓𝑣𝑗 in the DYLE. 

 

Laplace smoothing was initiated to handle cases where an 𝑓𝑣 was not observed in a given 

class during training, preventing the assignment of zero probability. 

 

8.3.2  Probability density function (PDF) of a Gaussian distribution 

The PDF characterises the distribution of fv for each class in terms of mean and standard 

deviation. To represent the class-specific probability for a feature vector in the dataset DYLE, 

DAISY uses a Gaussian distribution formula, as shown in (24), to represent the distribution of 

feature vectors for each class.  

 

The equation is as follows: 

 

        P(fvi)  =  (1/σ√(2π))  ∗  e^(−(fvi − μ)^2 / 2σ^2)    (24) 

 

• P(fvi): The probability density function for a given value fvi 

• (1/σ√(2π) The normalisation constant  

•  e^(−(fvi − μ)^2 / 2σ^2): :: Exponential term  

• μ: The mean of the distribution 

• σ: The standard deviation 

 

DUKE passes new fv data to DAISY; relative probability densities are calculated for each input 

value in an fv using the Gaussian PDF and the statistics for that column and that class. This 

process is repeated for each class in the dataset. Relative driver intent probability densities 

are returned as a value for each class, and intent is defined as the greater of the classes. 

Densities are often small numbers because they represent the probability per unit of 

measurement, and the range of possible values in a distribution can be extensive. PDF values 

describe the relative likelihood of a value occurring in a particular distribution region. 
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8.3.3 Intent classification steps 

The first step in the DAISY algorithm involves computing statistics from the dataset DYLE, 

organised by class. This process establishes the mean and standard deviation for each feature 

in DYLE and the following probability calculations using class-specific statistics to generate 

the Gaussian PDF, allowing DAISY to model and effectively represent the distribution of fv for 

each class.  

 

1) Prior Probability Estimation: Calculate the prior probability of each class based on the 

training data using equation (25). 

 

𝑝(𝐶𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝐶𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
       (25) 

 

2) Feature Likelihood Calculation: For each feature in each class: 

• Calculate (μ) and (σ) of the feature for that class. 

• Use the probability density function (PDF) formula to calculate the likelihood of 

each feature value given the class: equation (24). 

 

3) Laplace Smoothing: Apply Laplace smoothing to handle cases where specific feature 

values have zero probabilities: equation ( 23). 

 

4) Prediction for new feature vector data: Calculate the posterior probability for each class 

using the naive Bayes formula: equation (22). 

 

This process utilises PDFs, applies Laplace smoothing to address sparsity issues, and uses 

the naive Bayes classifier assumptions to compute posterior probabilities for classification. 

 

8.4 Live prediction by DAISY   

During the data collection phase for training DAISY in Chapter 7,  the system classified vehicle 

intent by displaying secondary classifications (SFpc) and the final primary classification (Fpc). 

When reviewing the video recordings of the training process, it was noted that DAISY's 

predictions primarily consisted of various SFpc classifications such as W_merge, M_merge, 

S_Merge, W_stop, M_stop, and S_stop. This predominance of SFpc classifications in the 

predictions aligns with the composition of the training data. 

The accuracy of our training data is fundamental to the success of our system in making 

accurate predictions of vehicle intent at various stages in the pipeline. By utilising the 
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subclasses in the training data, we can now make Fpc predictions from the initial point of target 

vehicle detection rather than solely at the merge line.  

In section 7.4.2, we discussed how subclasses are defined in relation to the distance from the 

merge line. However, DAISY's predictions do not strictly conform to the predefined distance 

ranges. For instance, we might observe weak predictions in what was designated as a 

substantial distance range and moderate predictions in what was initially categorised as a 

weak range. This flexibility allows DAISY to adapt to the nuances of real-world driving 

behaviour rather than being confined to rigid distance categories. 

A feature vector is created when DUKE detects a vehicle and generates the initial features. 

This vector is immediately passed to DAISY. Based on the vehicle's distance from the merge 

line, an SFpc is assigned to this feature vector a feature and added to the feature vector array 

associated with the vehicle's ID. Predictions are made from this array of associated SFpcs, 

which evolves and expands with each new data iteration. Real-time predictions are generated 

using a majority voting technique; each SFpc is considered equally, and the class that receives 

more than half of the votes is chosen as the final real-time prediction. If no class receives more 

than half the votes, no prediction is made for that 40 ms iteration.  

We first establish a majority SFpc prediction from the list during each iteration and then derive 

an Fpc. It is important to note that predictions made during initial iterations are less accurate 

as the dynamic list populates. Over time, as more data is gathered, the predictions become 

more reliable. 

The assignment of an Fpc to a vehicle's feature vector array is executed as a separate function 

once the tracking of the target vehicle concludes. When the vehicle crosses the merge line, 

an Fpc is applied to the final feature vector in the array. This vector is then used to retroactively 

apply SFpc to all preceding vectors in the array, ensuring a consistent classification across the 

vehicle's trajectory. 

In cases where DAISY inaccurately predicts the final action of a vehicle, it is crucial to 

understand that these errors do not contaminate the training data. The actual actions of 

vehicles at the merge line are precisely recorded and fed into DYLE. This method is 

hypothesised to gradually cultivate a more accurate dataset, reducing the need for extensive 

manual checks. As more vehicles are autonomously analysed and classified based on their 

actual behaviours, the system's predictive accuracy is expected to improve, contributing to 

more effective and reliable vehicle intent predictions. 

We must classify and analyse the errors it makes to address the error types left in DAISY  and 

understand their safety implications. These errors can be categorised into false positives and 

false negatives.  

False Positives: 

Daisy predicts an action or intent that does not occur. For example, it predicts that a vehicle 
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will merge when it does not. 

Learning: 

• Over-cautiousness in prediction models can lead to a higher rate of false positives. 

• Possible causes could include overly sensitive thresholds for intent prediction or 

misinterpreting ambiguous manoeuvres. 

Safety Implications: 

• Driver Distraction: Frequent false alarms can distract drivers, reducing their attention 

to critical driving tasks. 

• Reduced Trust: Over time, drivers may become desensitised to the system's warnings, 

potentially ignoring important alerts when they are genuine. 

False Negatives: 

Description: The system fails to predict the occurrence of an action or intent. For instance, it 

was not predicted that a vehicle would stop when it does. 

Learning: 

• Indicates a lack of sensitivity or failure to detect subtle cues leading to the intended 

action. 

• This could be due to insufficient training data for specific scenarios or ineffective 

feature extraction from the input data. 

Safety Implications: 

• Missed Critical Events: Missing critical events like sudden stops or merges can lead to 

accidents or near-misses. 

• Delayed Reactions: Failure to predict vehicle actions can delay necessary responses, 

increasing the risk of collisions. 

Mitigation: 

Incorporate more detailed environmental context, such as road signs and pedestrian 

presence, to improve stop predictions. 

Implement online learning mechanisms where the model can continuously learn and adapt 

from new data, improving its accuracy over time. 

Regularly update the model with new data to keep it current with evolving driving patterns and 

behaviours. 

Safety Implications Summary: 

False positives can lead to driver distraction and reduced trust, while false negatives and 

context-specific errors pose direct safety risks. By enhancing data quality, refining models, 

and incorporating continuous learning, the predictive accuracy of DAISY can be significantly 

improved, leading to safer and more reliable vehicle intent predictions. 
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8.4.1 Intent prediction for a single junction JM377 

Using the video data (20%) allocated for DAISY-derived predictions, as shown in Table 33,  we 

pass this unseen Bo video data through DUKE to collect feature vectors for analysis by DAISY 

to predict intent. This procedure follows the methodology outlined in section 7.4.3 and 

generates a video featuring labelled predictive bounding boxes and visualising the ground 

truth actions at the merge line. 

 

EuroRAP 

route 

Junction location Total 

minutes 

Manual pred class training 

data 60% 

DAISY-derived pred 

class 20% 

Online 

verification 

20% 

JM377 Oxshot Road 263 157.8 52.6 52.6 

JM384 A248 124 74.4 24.8 24.8 

JM559 Petersfield Road 249 149.4 49.8 49.8 

JM454 Rowhook Road 207 124.2 41.4 41.4 

UO196 Jacobs Well Road 119 
  

119 

 

Table 33 is a reference copy of Table 21 from Section 7.3, showing the partitions for training, 

ground truth, and online verification of the entire pipeline.  

 

To generate an intent prediction for the DAISY-derived data partition in Table 33, we created 

a new video file, as specified in Section 5.7, using the partitioned 52.6 minutes allocated. 

Feature vectors are sent from DUKE to DAISY when a vehicle is detected in the video and 

identified as approaching the merge line of the T-Junction. Using the training data in DYLE 

and the process detailed in Section 8.3.3, DAISY initiates its predictions with Sfp as a function 

of distance from the merge line, followed by an Fpc prediction at the merge line as the final 

outcome. Utilising recorded video, we validate the final predictions made by DAISY and 

document them as ground truth. This provides a list of final predictions and merge line truths 

for validation. A unique DYLE is also generated for each junction, incorporating SFpc-classified 

feature vector arrays for each target vehicle in the video segment. This approach enables the 

creation of new manually classified training data to supplement DYLE. Figures 66–69 

inclusively visually depict the predictions made by DAISY as the target vehicle approaches 

the merge line.  
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Figure 66 JM377: DAISY sub-classification of a Weak Merge. 

 

 

Figure 67 JM377: DAISY sub-classification of a Moderate Merge. 

 

 

Figure 68 JM377: DAISY sub-classification of a Strong Merge. 

 

 

Figure 69 JM377: DAISY final classification of a Merge. 

 

Junction JM377 poses a challenge due to its brief detection distance from the initial 

identification to the merge line. The examples shown in Figures 62–65 are of the same target 

vehicle, shown from initial detection in Figure 66, where DAISY has sub-classified (SFpc) the 

vehicle as a Weak Merge based on the feature vector created by DUKE. The feature vector 

creation and DAISY classification occur in around 40 ms, allowing multiple predictions to be 

achieved before the merge line. The results were analysed for accuracy using a confusion 

matrix (Figure 70) and are tabulated in Table 34. 
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Figure 70 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction 

JM377. 

Confusion matrix key 

• True positives (TPs): Instances correctly predicted as positive; in Figure 63, for 

example, there are 69 TP Stops and 71 TP Merges. 

• False positives (FPs): Instances incorrectly predicted as positive in Figure 63; there 

are 22 FP Stops and 13 FP Merges.  

 

Class Precision Recall F1-Score Quantity 

Hazard 0.33 1.00 0.5 1 

Merge 0.85 0.75 0.79 95 

Stop 0.76 0.84 0.80 82 

     

Accuracy   0.79 178 

Macro Avg 0.65 0.86 0.70 178 

Weighted Avg 0.80 0.79 0.79 178 

  

Table 34 Accuracy metrics for Junction JM377. 

 

8.4.2 Initial discussion from results of JM377. 

Table 37 shows the accuracy results across three classes, Hazard, Merge, and Stop, with an 

overall accuracy of 0.79 for 178 instances. The model demonstrates a perfect recall for Hazard 
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at 1.00 but with low precision (0.33), indicating it correctly identifies all Hazard instances but 

also misclassifies other classes as Hazard. Merge and Stop classes have more balanced 

metrics, with precision and recall values indicating a relatively strong ability to correctly identify 

and classify instances, evidenced by F1 scores of 0.79 and 0.80, respectively. The Macro 

Average suggests a disparity in class performance with an average precision of 0.65 and recall 

of 0.86, hinting at the model's tendency to favour recall over precision. The Weighted Average 

precision and recall, closely mirroring the overall accuracy, indicate a model that performs well 

overall but may benefit from adjustments to improve precision, especially in less frequent 

classes like Hazard, without compromising its high recall. 

The outcomes from JM377, despite the limited data volume, indicate a positive trajectory. 

With a more evenly distributed dataset, it is anticipated that the accuracy of DYLE will be 

enhanced. 

 

8.4.2 Evaluation metrics 

Accuracy and the F1 Score are both metrics widely used to evaluate a classification model's 

performance, but focus on different aspects. Accuracy is the most intuitive performance 

measure, and it is simply a ratio of correctly predicted observations to the total observations. 

It is the number of correct predictions the model makes overall predictions made. The F1 

Score is the Harmonic Mean between precision and Recall. It is a way of combining the 

precision and Recall of the model. The F1 Score is a metric we use to balance Precision and 

Recall, and there is an uneven class distribution. The main difference between accuracy and 

the F1 score is that accuracy is used when the true positives and true negatives are more 

important, while the F1-Score is used when the false negatives and false positives are crucial, 

which is imperative in our study. However, in a multi-class confusion matrix, the true negatives 

(TN) are not explicitly stated for each class because they are the sum of all correct predictions 

for the other classes.  

So we simplify the formula for multi-class classification to: 

 

Accuracy= Sum of the diagonal (True Positives for each class) / Total number of predictions 

 

Accuracy can be misleading if the data set is imbalanced when the number of observations in 

different classes varies greatly. For example, if you have a test set of 100 instances and 95 

belong to one class and 5 to another, a model that always predicts the majority class will have 

an accuracy of 95% despite being unable to identify the minority class. 

F1 Score does not take true negatives into account. It focuses on the model's ability to 

correctly classify instances for a given class (or for all classes if calculating the macro or 
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weighted average F1), which makes it more beneficial as we are more interested in the 

balance between precision and Recall.  

Precision, Recall, and F1 Score are pivotal for understanding the model's capabilities in 

classification tasks. These metrics offer valuable insights into DAISY's ability to accurately 

identify positive instances while minimising false positives and false negatives. Precision and 

Recall, fundamental metrics in binary classification, play distinct roles in assessing DAISY's 

performance. Precision measures the accuracy of DAISY's positive predictions, calculated as 

the ratio of true positives to the sum of true positives and false positives. Conversely, Recall, 

also known as sensitivity or the true positive rate, evaluates DAISY's proficiency in capturing 

all positive instances by calculating the ratio of true positives to the sum of true positives and 

false negatives. When applied to DAISY, these metrics provide a nuanced and comprehensive 

evaluation of its effectiveness in making accurate positive predictions and capturing all 

relevant instances in a classification task. 

Table 34 provides performance metrics, including Precision, Recall, and F1-score, for DAISY 

using Junction JM377 video data. The classes represent the labels DAISY is predicting. There 

are three Fpc classes: Hazard, Merge, and Stop. Precision is the ratio of correctly predicted 

positive observations (true positives) to the total predicted positives (true positives + false 

positives). Precision measures the accuracy of positive predictions made by the DAISY. For 

example, Precision is 0.33 for the Hazard class, indicating that 33% of the instances the model 

predicted as Hazards were true positives. Recall, or true positive rate, is the ratio of correctly 

predicted positive observations (true positives) to the total actual positives (true positives + 

false negatives). Recall measures DAISY's ability to capture all positive instances. For 

example, the Recall for the Merge class is 0.75, indicating that DAISY correctly identified 75% 

of the Merge class. F1-score is the harmonic mean of Precision and Recall, providing a 

balance between the two metrics. The F1-score is instrumental as we have a significant 

imbalance between classes. The Quantity column indicates the number of instances in each 

class.  

We use these metrics to evaluate DAISY's performance for each class and its overall 

effectiveness in making predictions across different categories for single and a combination of 

junctions. 
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8.5 Intent prediction for other junctions 

We followed the same procedures described in 8.4 for the remaining four junctions, recorded 

the results, produced a confusion matrix, and tabulated accuracy metrics.  

 

8.5.1 Junction JM384 

 

 

 

Figure 71 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction 

JM384. 

 

Class Precision Recall F1-Score Quantity 

Hazard 1.00 0.5 0.67 2 

Merge 0.76 0.80 0.78 40 

Stop 0.78 0.76 0.77 37 

     

Accuracy   0.77 79 

Macro Avg 0.85 0.69 0.74 79 

Weighted Avg 0.78 0.77 0.77 79 

 

Table 35 Accuracy metrics for Junction JM384. The table presents each class's Precision, 

Recall, and F1-score metrics and the total incidences. 
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8.5.1.2 Initial discussion from results of JM384 

The Macro average scores (0.85 for Precision, 0.69 for Recall, and 0.74 for F1-Score) suggest 

that, on average, DAISY performs well in terms of precision but struggles more with recall.  

The Weighted average scores closely align with the DAISY accuracy (0.77 for Precision and 

F1-Score and 0.77 for Recall), indicating a consistent performance across classes when 

adjusted for their representation in the test set. DAISY demonstrates a decent performance 

overall, with solid precision but weaker recall, especially for the Hazard class, due to the small 

number of Hazard instances. The balanced performance on Merge and Stop suggests that 

DAISY has learned these classes well.  

 

8.5.2 Junction JM599 

 

Figure 72 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction 

JM599. 
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Class Precision Recall F1-Score Quantity 

Hazard 0.67 1.00 0.80 2 

Merge 0.88 0.77 0.82 73 

Stop 0.83 0.91 0.87 85 

     

Accuracy   0.84 160 

Macro Avg 0.79 0.89 0.83 160 

Weighted Avg 0.85 0.84 0.84 160 

 

Table 36 Accuracy metrics for Junction JM599. The table presents each class's Precision, 

Recall, and F1-score metrics and the total incidences. 

 

8.5.2.1 Initial discussion from results of JM599 

The Hazard class, with the lowest quantity of instances (2), achieved perfect Recall (1.00) and 

a good Precision (0.67), resulting in an F1-Score of 0.80. The Merge class, with a significant 

quantity of instances (73), showed high Precision (0.88) but slightly lower Recall (0.77), 

leading to an F1-Score of 0.82. The Stop class, having the highest number of instances (85), 

demonstrated strong performance with a Precision of 0.83 and a Recall of 0.91, achieving the 

highest F1-Score of 0.87. Overall, the DAISY exhibits an Accuracy of 0.84 across 160 

instances, with a Macro Average indicating a balanced performance across classes 

(Precision: 0.79, Recall: 0.89, F1-Score: 0.83) and a Weighted Average reflecting the influence 

of class imbalance (Precision: 0.85, Recall: 0.84, F1-Score: 0.84). 
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8.5.3 Junction JM454 

 

 

Figure 73 Confusion matrix of ground truth results against DAISY predictions for Fpc in junction 

JM454. 

 

 

Class Precision Recall F1-Score Quantity 

Hazard 0.00 0.00 0.00 0.00 

Merge 0.71 0.71 0.71 45 

Stop 0.75 0.77 0.76 56 

     

Accuracy   0.74 102 

Macro Avg 0.49 0.49 0.49 102 

Weighted Avg 0.73 0.74 0.73 102 

 

Table 37 Accuracy metrics for junction JM454. The table presents each class's Precision, 

Recall, and F1-score metrics and the total incidences.   

 

8.5.3.1 Initial discussion from results of JM454 

The Hazard class shows no instances and has a performance score of 0.00 across Precision, 

Recall, and F1-Score. DAISY performs moderately for the Merge class with Precision, Recall, 

and F1-Score at 0.71 across 45 instances, suggesting a balanced ability to identify and classify 

Merge instances correctly. The Stop class performs slightly better with Precision at 0.75, 
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Recall at 0.77, and F1-Score at 0.76 over 56 instances, indicating good accuracy in identifying 

Stop instances. Overall, an accuracy of 0.74 over 102 instances, with a Macro Average and 

Weighted Average across metrics at 0.49 and 0.73, respectively. Weighted Average accounts 

for class imbalance, suggesting that despite the poor performance on Hazard, DAISY 

performs reasonably well on Merge and Stop instances. 

 

8.6 DAISY performance with aggregated data for all four junctions 

The validation process of DAISY, utilising empirical ground truth observations for each 

junction, facilitated the generation of supplementary training data. To ensure diversity, we 

allocated 20% of the video data for each junction that had not been used for training. DUKE 

generated feature vector arrays for each target vehicle while validating individual junctions, as 

detailed in Section 8.5. We subsequently validated DAISY's intent predictions for each feature 

vector within the target vehicle array. This iterative validation process enabled the 

incorporation of manually classified features into DYLE, expanding the number of training 

examples available for DAISY's predictions. Only true positive data was utilised as additional 

training feature vectors, enhancing the model's accuracy prediction capacity. We implemented 

the approach outlined in Section 7.4.6.1, employing k-fold cross-validation on the revised 

DYLE dataset. Subsequently, we amalgamated the ground truth observations for each junction 

and conducted a comprehensive accuracy analysis. Similar to our assessments for individual 

junctions, we utilised a confusion matrix and accuracy calculations to evaluate the model's 

overall performance across the combined dataset. This methodology allowed us to gauge the 

model's effectiveness in a broader context, considering the diverse data encompassed by the 

updated DYLE dataset. 

 

8.6.1 K-fold cross-validation of updated DYLE training dataset 

We appended the previously aggregated DYLE from 7.6.1 with the feature vectors from these 

experiments to create an updated DYLE  constituting  79,461 feature vectors, equating to 

1,901 individually identified target vehicles. 

After augmenting the DYLE dataset with freshly classified ground truth data, we observed a 

marginal improvement in k-fold cross-validation accuracy, rising from the initial value of 0.79 

(Section 7.6.1) to the updated score of 0.81 (with k = 10, Table 38). This enhancement 

underscores the positive impact of incorporating additional manually classified data on the 

overall performance and accuracy of the model during cross-validation. 
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K value Mean accuracy 

updated DYLE 

5 0.79 

10 0.81 

 

Table 38 Updated aggregated junctions DYLE k-fold cross-validation accuracy results. 

Analysing the updated DYLE dataset in Table 39 and Figure 74, we observed improved 

balance and class distribution in the first eight classes compared to the aggregated DYLE in 

Section 7.6.1. The additional manually classified ground truth data contributed to a slightly 

more even representation of classes, potentially enhancing the model's generalisation 

capabilities. 

 

 

Fpc / SFpc Count Frequency 

s_stop 16,620 20.92% 

w_merge 12,679 15.96% 

w_stop 13,012 16.38% 

s_merge 13,261 16.69% 

m_stop 11,025 13.87% 

m_merge 10,995 13.84% 

merge 968 1.19% 

stop 913 1.07% 

w_hazard 18 0.02% 

m_hazard 19 0.02% 

s_hazard 17 0.02% 

hazard 20 0.03% 

 

Table 39 Updated DYLE.         Figure 74 Updated DYLE class frequency. 

 

8.6.2 Analysing  ground truth and prediction data  

The subsequent stage involved consolidating the ground truth data from individual junctions 

into a unified file. The aim was to conduct an accuracy analysis that allowed evaluation of 

DAISY's overall performance when confronted with data from diverse junctions, providing 

insights into its accuracy across the entire dataset. 

 

8.6.3 Precision-Recall and F1-Score 

The accuracy metrics of the results of the combined dataset (Table 40) indicate higher 

Precision in each class and, thus, fewer false positives. Notably, the Merge class 
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demonstrates the highest Precision, with values of 0.56 for Hazard, 0.86 for Merge, and 0.82 

for Stop. A higher Recall, signalling fewer false negatives, is observed in the Stop class, 

boasting values of 0.83 for Hazard, 0.80 for Merge, and 0.86 for Stop. Additionally, a higher 

F1-Score, reflecting a superior trade-off between Precision and Recall, stands out in the Stop 

class, with scores of 0.67 for Hazard, 0.83 for Merge, and 0.84 for Stop. 

The overall accuracy for the combined dataset reaches 83%. The Macro Average, which 

independently calculates metrics for each class and then takes the average, provides an 

overview of the model's performance across all three classes, with a Precision of 0.74, a Recall 

of 0.83, and an F1-Score of 0.78.  

Moreover, the weighted average considers the number of instances for each class for 

Precision, Recall, and F1-Score. This approach assigns more significance to classes with 

larger instances and results in a Precision of 0.84, a Recall of 0.83, and an F1-Score of 0.83, 

offering a more detailed evaluation considering class distribution. 

 

Class Precision Recall F1-Score Quantity 

Hazard 0.56 0.83 0.67 6 

Merge 0.86 0.80 0.83 253 

Stop 0.82 0.86 0.84 260 

     

Accuracy   0.83 519 

Macro Avg 0.74 0.83 0.78 519 

Weighted Avg 0.84 0.83 0.83 519 

 

Table 40 Combined junction accuracy metrics show each class's Precision, Recall, and F1-

score metrics and the total incidences. 

 

8.6.4 Metric comparison of single and combined junctions 

We evaluated the four junctions individually and collectively, summarising the results in Table 

41 and Figure 75. The overall accuracy is 0.83 in the updated DYLE, suggesting a balanced 

trade-off between Precision and Recall. Hence, there was accurate classification of 83% of 

instances. The k-fold cross-validation result of 0.81 attests to the model's consistent 

performance across diverse subsets of the dataset. 

Examining each specific junction (JM377, JM384, JM599, JM454), accuracy values range 

from 0.71 to 0.84, reflecting variations in junction dynamics, traffic volume, and behaviour. The 

k-fold cross-validation results for individual junctions (ranging from 0.71 to 0.74) indicate stable 

performance across different folds. 
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The updated DYLE dataset and the combined ground truth data exhibit enhanced accuracy 

compared with the average of the four junctions and the aggregated DYLE metrics from 

Chapter 7. The k-fold cross-validation results underscore the model's reliability, consistent 

performance, and ability to generalise effectively. This observation is particularly relevant to 

our exploration of the hypothesis in Research Question 4 (RQ4), where we sought to 

investigate and analyse specific aspects related to how our model can generalise across 

differenT-junctions.   

 

 

Metric F1-Score Accuracy K-fold (10) 

Junction Class Hazard Merge Stop   

Updated DYLE 0.67 0.83 0.84 0.83 0.81 

JM377 0.5 0.79 0.8 0.79 0.73 

JM384 0.5 0.8 0.76 0.77 0.71 

JM599 0.8 0.82 0.87 0.84 0.74 

JM454 0 0.71 0.76 0.74 0.74 

Aggregated Training DYLE 0.79 

 

Table 41 Comparison of single and combined junction and DYLE dataset accuracy metrics. 

 

 

Figure 75 K-fold training accuracy compared to ground truth F1-Score per class and overall 

accuracy.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Updated DYLE

JM377

JM384

JM599

JM454

Aggregated DYLE

Junction/Dataset combined metrics

K-Fold (10) Accuracy F1-Score Stop F1-Score Merge F1-Score Hazzard
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8.7 Discussion 

Upon reviewing the updated DYLE dataset and comparing it to the aggregated DYLE from 

Section 7.6.1, it became evident that the dataset's composition had improved. Incorporating 

new manually classified ground truth data led to a slightly more balanced representation of 

the main classes. This enhancement in data balance suggests a positive impact on the 

model's performance, indicating that it is potentially better at generalisation across differenT-

junctions. In summary, the results indicate that the dataset refinement contributed to a more 

robust and representative training set for the model. 

 

This chapter addressed Research Question 5 (RQ5), 'How accurately can a machine 

learning model, utilising 2D video-derived feature vectors, predict a vehicle's intention at a T-

junction?' We have shown reasonable accuracy using data from a single junction, achieving 

an F1 score of 0.87 for the Stop class and 0.82 for the Merge class at JM599. By amalgamating 

ground truth data and manually incorporating newly classified data, we observe enhanced k-

fold cross-validation, resulting in higher F1 scores than the averages for individual junctions. 

The current accuracy level stands at 0.83. 

 

Contribution discussed in this chapter:  A computationally efficient approach for predicting 

vehicle intent at a T-junction using video-derived feature vectors as training data. We have 

demonstrated that in terms of efficiency, we can predict an intention in approximately 40 ms, 

demonstrating an efficient pipeline backed with an accuracy of 83% on a small dataset. 

 

In the next chapter, we transition the entire pipeline online, activating DAISY to transmit 

predictions directly to DYLE through classified feature vectors. This transformation renders 

the pipeline a fully remote system, enabling real-time updates and inferences on new data 

within 100 milliseconds and dynamically building the training dataset. 
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Chapter 9: Pipeline Autonomy 

 

9.1 Introduction 

In the preceding chapters, we discussed the methodologies and methods constituting the 

individual components in the pipeline depicted in Figure 76. This sequential process explains 

the means through which we predict vehicle intent.  

The pipeline feeds 2D video as an input, employs deep learning for detection, classification, 

and tracking, and uses a machine learning prediction model, DAISY. DAISY analyses historical 

vehicle actions using verified and categorised feature vectors, ultimately generating an intent 

classification as output. 

We now possess a reasonably accurate trained model and can generalise effectively across 

diverse junctions. Instead of merely freezing this model and deploying without incorporating 

additional training data, we introduce an additional phase: autonomy. 
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Figure 76 illustrates the complete pipeline, encompassing the stages of video data capture 

and processing, the generation of DUKE feature vectors, the three possible predictions of 

vehicle intent by DAISY, and examples of possible outputs. Additionally, the diagram highlights 

the dynamic updating of DYLE post-DAISY prediction, representing a continuous and adaptive 

refinement process. 
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This chapter focuses on the online phase, exploring how DAISY autonomously generates 

ground truth-validated feature vector training data, passed from DUKE and trained using the 

DYLE dataset.  

This validated data then updates DYLE training data by incorporating accurately classified 

feature vector arrays. These arrays consist of SFpc and Fpc predictions. They are efficiently 

transmitted to DYLE within  45 ms from when the target vehicle is physically classified and 

integrated as classified feature vectors in real-time. This process enriches DAISY's model with 

new training data, enhancing its predictive capabilities for the subsequent intent of the 

following target vehicle. 

Until now, we have conducted manual verifications for each target vehicle action at the merge 

line within our experimental junctions and retrospectively applied the corresponding Fpc and 

SFpc classification features to the training data. Despite being a labour-intensive approach, this 

method assured an association between the target vehicles' SFpc feature vectors and the target 

vehicle's Fpc. The product of this work is DYLE, our dataset of classified feature vectors, which 

we verified and analysed in Chapters 7 and 8.   

In our subsequent experiments, we understand the impact of using our novel sub-classification 

(SFpc) method on all associated target vehicle feature vectors. Without the SFpc classification, 

our dataset has a better class frequency balance and the possibility of greater accuracy of 

intent prediction at the merge line. Before we put the pipeline online, in this chapter, we 

conduct a final ablation study by removing the sub-classifications from the junction updated 

DYLE dataset, described in section 8.6, to ascertain the effect of the subclasses on the training 

data.  

 

Research Question 6 (RQ6): Can a trained machine learning model accurately predict 

vehicle intent at a T-Junction using new data, and what is its effective prediction range from 

the junction? 

 

Research Question 7 (RQ7): Can our online model infer and append intent predictions as 

new inference data in real-time without negatively affecting the accuracy or F1 score? 

 

Contribution:  

A quantitative examination of how accurately DAISY, trained on progressively larger datasets, 

can predict driver intentions and determine the practical distance from the junction at which 

predictions remain viable. This exploration contributes to understanding the limits and 

capabilities of machine learning in the context of driver behaviour prediction at critical road 

intersections. 
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We create and evaluate an online model capable of inferring and appending new data in real- 

time while maintaining base accuracy and F1 score. 

 

9.1.2 Chapter organisation 

This chapter provides a comprehensive overview of various studies and analyses related to 

the classification and verification of feature vectors in autonomous systems. Section 9.1 

introduces the chapter and outlines its organisation. In Section 9.2, an ablation study explores 

the sub-classification of feature vectors. Section 9.3 discusses the autonomous application of 

Fpc and Sfpc classification features, including a case study on autonomous merge line data 

recording (DUKE). Interactions with other vehicles are examined in Section 9.4.  

The focus then shifts to online data verification and analysis in Section 9.5, which includes 

several subsections detailing specific aspects of online verification, accuracy, and comparison 

of F1 scores using the JM454 system. Section 9.6 extends this analysis to other systems - 

JM599, JM377, and JM384, focusing on online distance accuracy experiments and class 

distribution.  

Section 9.7 addresses the balancing of training data, including the generation of new hazard 

class samples and the cross-validation of different DYLE models. Section 9.8 explores unseen 

data online with a new junction, UO196, examining class distribution, accuracy, and F1 scores 

and comparing results from various DYLE iterations. The chapter concludes in Section 9.9, 

summarising the findings and implications of the studies presented. 

 

9.2 Ablation study, the effect of sub-classification of feature vectors 

In light of the manual integration of subclasses into our training data, post-classification of 

target vehicles' behaviours at the merge line, and their absence in our initial analyses, it is 

imperative to assess their impact on the training dataset before the online deployment of our 

system. Our approach involves real-time writing of Fpc and Sfpc classifications, necessitating 

understanding their influence on the DAISY prediction model. It is crucial since, in an online 

setting, we can only control the training data, with verification and adjustments reserved for 

offline periods. 

We undertook an ablation study using the combined DYLE dataset to gauge the effect of our 

sub-classification categories. Our first step involved removing all subclasses, resulting in 

feature vectors solely labelled with Fpc ground truth classifications. Consequently, each feature 

vector was categorised as Fpc: Stop, Merge, or Hazard, devoid of any SFpc classification, 

irrespective of the vehicle's distance from the merge line. 

Following this, we replicated the analysis method outlined in section 7.4.6.1, applying K-fold 

cross-validation on the modified DYLE dataset. This procedure aimed to understand how the 
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removal of subclasses influences the model's predictive accuracy and to evaluate the 

necessity of these subclasses in enhancing the model's performance in real-world scenarios. 

 

 

 

 

 

 

 

 

Table 42 Ablation study update DYLE K-fold cross-validation accuracy results removing SFpc 
from the updated DYLE dataset. 
 

 

 

 

 

 

 

 

  

 

The results shown in Table 44 indicate that DAISY's predictive performance on the training 

data has decreased following the removal of SFpc classifications. This decline in predictive 

accuracy could be attributed to the diminished distinction in the dataset caused by the 

reduction in distance-based features. With removing these subclassifications, features such 

as distance, area, Px, and Py across different feature vectors now exhibit more similar values, 

leading to less distinct data characteristics. 

Another important observation is that this abridged DYLE DAISY's prediction does not 

incorporate data from feature vectors manually classified as greater than 9% of the distance 

to the merge line. By removing the feature vectors recorded from 10% of the total distance to 

the merge line, the dataset no longer includes feature vectors with a distance feature that 

exceeds 9% of the distance from the merge line. While we can focus our dataset construction 

on only three classifications (Stop, Merge, or Hazard) and gather precise data to enhance 

predictions at the merge line, this approach presents a significant limitation. It restricts our 

predictive capacity to a maximum of 9% of the distance from the merge line, which translates 

to approximately 400 milliseconds before the final action at the merge line. This timeframe is 

K value 

 

Mean Accuracy 

Updated DYLE 

Fpc only 

5 0.66 

10 0.69 

Fpc  Count Frequency 

merge 968 50.92% 

stop 913 48.03% 

hazard 20 1.05% 

Figure 77 Updated  DYLE Class 

frequency 

 

Table 43   Updated DYLE  with 
Fpc class only. Count/Frequency 
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insufficient for our objective. 

We aim to predict vehicle intent as far away from the merge line as possible. Therefore, while 

simplifying the dataset to three classifications might streamline the data and potentially 

improve accuracy at close distances, it would not align with our aim of early prediction. Early 

prediction is crucial for practical applications, such as advanced driver-assistance systems 

(ADAS), where timely alerts and decisions could significantly enhance road safety. Thus, while 

the ablation study provides valuable insights into the impact of subclassifications, it also 

underscores the necessity of a more comprehensive approach that includes a broader range 

of distances for effective prediction. 

 

9.3 Autonomously applying Fpc and Sfpc classification features to feature vectors 

In our existing methodology, we manually classify each feature vector array based on target 

vehicles' visible ground truth actions at the merge line, a process involving tracking each 

vehicle from initial detection to the merge line, recording an Fpc and adding an SFpc to each 

feature vector in the target vehicle array and adding it to DYLE. 

Up to this point, DAISY utilises manually curated training data to make real-time predictions 

about a target vehicle's intent as it approaches the merge line. It is possible to use these 

predictions to classify each DUKE-derived feature vector with a specific DAISY-predicted SFpc 

and an Fpc and then integrate these classifications into DYLE in an autonomous and real-time 

manner. This process would incrementally enrich the dataset for subsequent analyses. 

However, as outlined in previous chapters, DAISY's prediction accuracy currently stands at 

83%, implying that approximately 17% of its predictions could be erroneous. Maintaining the 

integrity and accuracy of our training data is crucial, so we use only the verified ground truth 

actions, as determined by the DUKE system, for input into DYLE. This method helps preserve 

the quality and reliability of the training data that DAISY accesses, regardless of its current 

prediction accuracy. 

 

 

9.3.1 DUKE: Autonomous Merge line data recording 

Determining the Fpc for a target vehicle approaching the merge line involves a threshold-based 

model as a function within DUKE. This model measures features such as the distance from 

the merge line and the vehicle's velocity and acceleration at the merge line and compares 

these values against predefined thresholds for stop, merge, and hazard actions. When the 

thresholds are met, DUKE triggers the Fpc feature as the target vehicle nears the merge line. 

The Fpc, which could be either Stop, Merge, or Hazard, is assigned to the final feature vector 

in the current array representing the target vehicle. This classification is based on the vehicle's 
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performance against the set thresholds for the key features at the critical point of the merge 

line. Once the Fpc is determined, the subsequent step involves classifying the other features 

within the array with SFpc. These SFpc classifications are assigned based on their proximity to 

the merge line, providing a more detailed understanding of the vehicle's behaviour as it 

approaches the merge line. After these classifications are applied, the fully classified feature 

vector is appended to DYLE as individual classified feature vectors. This autonomous process 

enriches the training data, DYLE, for DAISY, refining and enhancing its real-time predictive 

capabilities for subsequent target vehicles.  

The threshold model is an inline function described in the algorithm below; the implementation 

of this function is designed to replicate the manual classification of the feature vector process 

described in section 7.4.5 and create a fully autonomous system capable of generating and 

learning from new data in an unsupervised mode.  

The threshold model follows these basic steps: checks if the vehicle is within 9% of the total 

distance to the merge line, categorises the vehicle's action as "Merge," "Hazard," or "Stop" 

based on its acceleration and velocity and labels the feature vectors associated with the 

vehicle as "Weak," "Moderate," or "Strong" based on the merge line action and distance from 

the merge line. 

 

Algorithm: Threshold_Model_Function 

Input: distanceToMergeLine, totalDistanceToMergeLine, acceleration, velocity,  

thresholds (x, y, a,b) 

Output: Fpc, Associated_ SFpc 

Function: 

1. Set thresholdDistance = 9% of totalDistanceToMergeLine 

 

2. If distanceToMergeLine <= thresholdDistance, then 

     a. If acceleration > x and velocity > x and (acceleration < y and velocity < y), then 

         i. Fpc = "Merge" 

     b. If acceleration > x and velocity > x and (acceleration > y or velocity > y), then 

         i. Fpc = "Hazard" 

     c. Else 

         i. Fpc = "Stop" 

3. If distanceToMergeLine is >= thresholdDistance(a), then 

     a. SFpc = "Strong"+ Fpc 

   Else, If distanceToMergeLine is >= thresholdDistance(b), then 

     a. SFpc = "Moderate" + Fpc 

   Else 
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     a. SFpc = "Weak" + Fpc 

4. Return Fpc, Associated_ SFpc 

 

Accurately categorising feature vector arrays is pivotal in enhancing DAISY's real-time 

forecast ability. Sampling the autonomous operation without direct supervision is essential, 

and this can be achieved by consistently reviewing video logs and juxtaposing the predictions 

with actual outcomes. Additionally, conducting K-fold cross-validation on the DYLE system is 

crucial to assess overfitting and generalisation ability,  followed by fine-tuning the threshold 

model to ensure optimal performance. 

 

9.4 Interactions with other vehicles 

As highlighted in the literature review, analysing traffic behaviour at a junction necessitates 

considering more than just the road's topology. It's also crucial to consider the various road 

users who may impact traffic flow, including drivers, cyclists, pedestrians, and other road users 

in the traffic environment. Their behaviours, interactions, and movements significantly shape 

traffic dynamics and must be factored into any analytical model or traffic management strategy 

to ensure accuracy and effectiveness. 

We collected a set of feature vectors that activated the 'approach_b' feature to investigate this. 

This feature is integrated into the feature vectors of target vehicles to indicate the presence of 

another vehicle approaching the T-junction from direction b on the major road. The 

'approach_b' feature is paired with 'approach_dis_b', a metric indicating the distance of the 

approaching vehicle from the junction's merge line at each time step. 

Figure 78 indicates target vehicles nearing the merge line and the measured distance 

('app_b_dis') at which a vehicle from direction b is detected. This distance is represented in 

pixels from the merge line. The classifications are based on SFpc classes, providing a snapshot 

of how approaching vehicles from direction b influences the behaviour of target vehicles at the 

junction.  
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Figure 78 SFpc of feature vectors showing target vehicles approaching the merge line when a vehicle approaches from direction b at 

a distance from the merge line in pixels. 
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Target vehicles nearing the merge line to enter the main road are impacted by traffic from 

direction b. Figure 75 shows data primarily classified as a 'strong stop' within approximately 

220 pixels of the merge line. The predominant stop classification is likely due to patterns in 

the training data, where vehicles with a positive approach_b feature indicating a vehicle on 

the main road typically have stop class when within a set distance range. By incorporating the 

'approach_b' feature, a clear pattern emerges in the feature vector: the presence of an 

approaching vehicle often leads to the classification of the target vehicle as more likely to stop. 

While our current dataset is not extensive enough to verify this trend conclusively, we believe 

that the 'approach_b' feature is a valuable enhancement. As DYLE is enriched with additional 

feature vectors, this feature is expected to improve the accuracy of intent predictions. 

 

9.5  Online data Verification and analysis 

In the following experiments, we utilised the remaining 20% of the video data set aside for 

online verification, as Table 21, Section 7.3 outlined. The complete pipeline is now fully active; 

we enabled DYLE to incorporate new autonomously classified feature vectors added by 

DUKE, as detailed in Section 9.3.1.  

As we verify each junction, the size of the online DYLE increases with the autonomous addition 

of newly classified feature vectors. We change the order of the test junction experimentation 

as new data is appended to DYLE; this way, we can balance out bias, which may be present 

if we append data from the same junction in the same order during each batch of experiments. 

We use this method as it may help to alleviate issues since the first junction will not be training 

from the same amount of data as the last junction; as we append during each experiment, the 

quantity of training data available increases. After completing the Verification of each Junction, 

we obtain two key sets of data: a video log of the junction during the verification period and an 

updated DYLE dataset enriched with newly classified data. Additionally, we gather insights on 

the predictions made by DAISY during this process based on final intent predictions and 

ground truth actions at the merge line. 

Following the online Verification of each Junction, we analyse DYLE. We examine the newly 

added feature vectors for class distribution and employ K-fold cross-validation to assess the 

training data's accuracy changes. We also validate the autonomous classifications made by 

DUKE, using the video logs and vehicle IDs to link and evaluate the accuracy of the 

corresponding feature vectors.  

 

9.5.1 Single Junction Online Verification JM454 

Junction JM454 is a T-junction on the busy rural Junction A29 in southeast England. At this 

junction, we have a short distance from the initial detection to the merge line.   
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The junction-specific video log was used to verify incremental predictions made by DAISY 

starting from the first detection, as shown in Figure 76, where there is a time series of video 

screenshots. The initial intent prediction DAISY output is  Stop. This is the merge line intent 

prediction that DAISY predicts vehicle (id=77) will take when it gets to the merge line—

generated from processing SFpc in the method described in section 8.3. As the target vehicle 

approached the merge line, multiple predictions were made based on the associated feature 

vectors generated by DUKE. Ground truth verification confirmed that the target vehicle picture 

in Figure 79 stopped at the merge line as predicted. DUKE updated DYLE with the target 

vehicles' classified feature vector array. In the top image in Figure 76, a vehicle is detected 

approaching from direction b, classified as a car (2) and 41 pixels from the junction entrance 

merge line. This feature may assist in the accurate early predictions of target vehicle intent, 

as discussed above. However, we require more junction data with approach_b  features to 

confirm this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79 is a chronological series of video screenshots that capture the intent prediction of 

a target vehicle from initial detection. As the target vehicle (id=77) approaches the merge 

line, DAISY outputs further predictions and a final prediction at the merge line. In this case, 

the predictions were accurate with ground truth validation.   

 

The following example is of a Merge prediction; in Figure 80, a time series screenshot from 
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our video shows that DAISY's initial prediction is for the target vehicle (id=47) to Stop at the 

merge line; ground truth verification showed that vehicle 47 merge onto the major road without 

stopping. This is an example of initial prediction inaccuracies due to the method we use to 

classify the SFpc generated by DAISY, where we have very few examples for the initial 

prediction classification. However, as more features are generated and are sub-classified, the 

accuracy improves towards the merge line.  

Even though the initial error in Daisy's prediction DUKE updated DYLE with vehicle 47 

feature vector array classified as Fpc Merge and the associated SFpc subclassification applied 

to the associated feature vectors in the array.  

 

  

 

Figure 80 The initial intent prediction of vehicle 47 made by DAISY is incorrect regarding the 

target vehicle 47. Ground truth confirmation showed that vehicle 47 merged without stopping 

as predicted. 

 

Prediction of a hazard class intent is more difficult due to the imbalance in the dataset; there 

are very few examples of hazard-classified feature vectors in the training data; this may well 

be an advantage because it not only reduces the chance of a dangerous false hazard 

prediction, it a; so means that any feature vector that falls outside of the probability of being a 

stop or merges will be classified as a hazard, catering for data that has never been seen for 

example an out of control vehicle travelling erratically towards the merge line. 

However, the example shown in the time series video screenshots in Figure 78 shows that 

DAISY can correctly predict a Hazard intent class from around 50% of the distance to the 

merge line. The vehicle (id=265) in Figure 81 entered the major road carelessly. The ground 

truth video log showed that vehicle 256 entered in front of a fast-moving vehicle from direction 

b, causing it to slow down. DUKE updated DYLE with the hazard-classified feature vectors 
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from vehicle 256 feature vector array, instantly adding to the training data. 

 

 

 

 

Figure 81 Despite vehicle 265 being incorrectly classified initially, the correct final classification 

was predicted at around 50% of the distance to the merge line. 

 

9.5.2 Updaing DYLE with autonomously classified  feature vectors from JM454 

In the post-video analysis of the ground truth data, we verified the new data in DYLE and then 

measured accuracy using our K-fold method. Table 44 lists the accuracy results for the Online 

DYLE dataset, a combination of the updated DYLE from 8.6.4, Table 41,  and autonomously 

classified feature vectors from JM454. 

 

 

K value Mean accuracy 

 Online DYLE 

5 0.79 

10 0.82 

 

Table 44 Online DYLE K-fold cross-validation accuracy results with Junction 

JM454 feature vectors autonomously classified and appended. 

 

The accuracy of our model shows no improvement when setting k to 5 and only a marginal 

improvement of 0.01 when k is increased to 10. This outcome aligns with our expectations, as 

the expansion of our dataset has not been as substantial as in earlier updates, where there 
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was a significant augmentation in the count of classified feature vectors. Notably, the addition 

of classifications made autonomously has not altered the fundamental characteristics of the 

dataset. 

9.5.3 Verification of autonomous online intent predictions JM454 

During the above experiments, DUKE  created classified feature vectors. Before 

experimenting with the remaining data from our test T-junctions, we cross-referenced the 

merge line action classifications made autonomously by DUKE with the video log of the 

experiment on JM454. As discussed in 9.5.2, the addition of autonomous classification did not 

impact the k-fold cross-validation accuracy of DYLE; however, as more feature vectors are 

appended, any miss classification errors will quickly degrade the accuracy of DAISY 

predictions.  

When we reviewed the video log, we found that DUKE correctly classified all the Merge actions 

at the merge line; however, we had to correct four Stop predictions and alter the classification 

to Merge. We then adjusted the threshold values (x,y), discussed in 9.3.1, to account for this 

in the subsequent experiments. So far, our method for assessing ground truth accuracy has 

involved using Fpc at the merge line. By comparing final predictions with ground truth data, we 

establish a reliable metric for accuracy in predicting vehicle intent at the merge line. We aim 

to predict this intent as early as possible and as far from the merge line as possible. This 

approach aims to maximise the available time for generating alerts when necessary. 

 

9.5.4 Accuracy and distance from merge line junction JM454 

In our analysis of Junction JM454, we utilised the video log to track DAISY's initial prediction 

when the target vehicle was first detected and then monitored its subsequent predictions up 

to the merge line. Following the methodology outlined in section 7.4.2, we defined specific 

distance ranges and correlated these with subclass associations relative to the vehicle's 

proximity to the merge line. We recorded DAISY's predictions within these predetermined 

ranges and compared them to the ground truth ascertained from the video log. This approach 

allowed us to evaluate the accuracy of DAISY's predictions in relation to how far the prediction 

is made from the merge line. 
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Table 45 JM454  Accuracy metrics based on intent predictions made from a distance range 

from the total distance to the merge line.  

Key: 

Pr (Precision): The ratio of correctly predicted positive observations to the total predicted 

positives. 

Re (Recall): The ratio of correctly predicted positive observations to all observations in the 

actual class. 

The F1 Score is the weighted average of Precision and Recall.  

Qty: Number of actual instances in each class. 

Macro vs. Weighted Averages: The Macro Average is consistently lower than the Weighted 

Average, suggesting that the model performs better on classes with more instances. 

 

Summary of the results of distance and prediction accuracy from Table 45.  

The results erroneously show excellent performance for 'Hazard', as this is based on a single 

result. The Performance for 'Merge' is good, but for 'Stop', there are poor results, especially in 

recall. The overall accuracy and averages indicate a well-performing model, but the 'Stop' 

class, having a lower recall, suggests a potential area for model refinement. Since the 'Hazard' 

class has only one instance, we require more data for this class to ensure that the model's 

performance is genuinely robust and not a result of limited exposure. 

The class 'Hazard' is still problematic due to the lack of instances (Qty=1). The overall model 

accuracy and weighted average F1 score are the highest and closest to the merge line,  which 

might indicate a tendency of the model to be more conservative in class predictions. 

 

9.5.5 Comparison of F1 scores and accuracy for given distance ranges JM454 

We collated the F1 scores and accuracy metric from the individual distance range experiments 

above and compared them, as seen in Figure 82. The data shows that the F1 score for the 

Dis_Range >= 70  >= 40  and <=69  >= 10  and <=39  <= 9   

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty 

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1 

Merge 0.59 0.79 0.67 0.66 0.84 0.74 0.75 0.91 0.82 0.74 0.91 0.82 104 

Stop 0.42 0.22 0.29 0.63 0.40 0.49 0.82 0.56 0.66 0.81 0.53 0.64 72 

              

Accuracy   0.55   0.66   0.77   0.76 177 

Macro Avg 0.34 0.34 0.32 0.43 0.41 0.41 0.85 0.82 0.83 0.85 0.81 0.82 177 

W-Avg 0.52 0.55 0.51 0.65 0.66 0.63 0.78 0.77 0.76 0.77 0.76 0.74 177 
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Stop class increases as the distance from the merge line decreases. This suggests that 

predictions become more accurate for stopping vehicles closer to the merge line. The Merge 

class maintains a relatively high F1 score across all distance ranges, slightly increasing as the 

distance from the merge line decreases. This indicates consistent prediction accuracy for 

merging vehicles, with a marginal improvement at closer ranges. A single Hazard class data 

point cannot be analysed for a trend without more Hazard classified feature vectors. 

 

 

 

Figure 82 F1 score and accuracy based on class and distance from merge line JM454 

 

The average F1 score across classes remains relatively stable across different distances, with 

a slight upward trend as the vehicle approaches the merge line. The linear trend indicates a 

modest increase in overall predictive performance as the distance to the merge line 

decreases. The model's performance in predicting stopping and merging behaviour improves 

as vehicles approach the merge line, possibly due to more apparent feature vectors 

representing the vehicle behaviours or increased data quality at closer distances. 

Since the 'Hazard' class lacks multiple data points, no trend can be established, which also 

means that the model's performance for hazard prediction is not well-represented in this 

graph. 

The overall stability of the accuracy score suggests that the model performs reasonably well 

across all distances but is slightly better from 49% of the total distance to the merge line.  
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9.6 Online distance accuracy experiments for JM599, JM377 and JM384 

We have evaluated the precision of predicting vehicle intentions based on their proximity to 

the merge line at a single test junction. Employing the techniques described in Section 9.5, 

we extended this analysis to three additional test T-junctions. We aimed to assess each 

junction independently and then aggregate the data from all four junctions to assess the 

system mean accuracy at each given distance range. Data is autonomously and incrementally 

added to the online DYLE database during each junction experiment, sampled and verified to 

correct misclassifications. 

We utilise video logs to validate the autonomous predictions of vehicle intentions, from the 

initial detection of the target vehicle to its eventual action at the merge line. This process 

involves manually correcting misclassifications in DYLE and fine-tuning threshold settings as 

needed. After these adjustments, we calculate the accuracy of the revised online DYLE 

database using a k-fold cross-validation method. We subsequently verified the ground truth 

actions against the predicted and at each junction using the distance ranges we established 

above and used benchmark metrics to compare.  

 

9.6.1 JM599 Online verification and distance from merge line accuracy 

Once we verified the ground truth actions with the DAISY predictions using the video log of 

JM599 verification partition video data and corrected the misclassifications, we carried out a 

k-fold cross-validation using the now updated online DYLE, as seen in Table 46.  

 

 

 

 

 

 

Table 46 Online DYLE K-fold cross-validation accuracy results with Junction JM599 feature 

vectors autonomously classified and appended 

The online appending of autonomously classified feature vector data using JM599 video to 

DYLE has shown a slight increase in k-fold cross-validation accuracy when k = 10 and no 

improvement when k = 5, as seen in Table 46. Accuracy and F1 scores are also improved, as 

seen in Table 47, where we have tabulated the metrics of predictions made by DAISY from 

each distance range. 

 

K value Mean accuracy 

 Online DYLE 

5 0.79 

10 0.83 
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Table 47 JM599 Accuracy metrics based on intent predictions made from a distance range 

from the total distance to the merge line.  

 

 

 

Figure 83. F1 score and accuracy based on class and distance from merge line for JM599 

 

Initial discussion from the results of JM599: The Merge class consistently has the highest F1 

scores across all distance ranges, indicating that the model is most accurate for this class. 

Accuracy increases as the distance to the merge line decreases, suggesting that the model's 

overall performance improves with a more inclusive threshold. The linear trend line of the 

average F1 scores is almost flat the further from the merge line and begins to ascend as we 

move towards the merge line, suggesting a relationship between the inclusivity of the distance 

ranges, sub-classifications (SFpc) and the model's performance. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>= 70% >= 40% and <=69% >= 10% and <=39% <= 9%

F1
 S

co
re

\A
cc

u
ra

cy

Distance range from merge line

JM599: F1 score distance from merge line/Class and Accuracy 

Stop F1 Merge F1 Hazard F1 Accuracy Linear (Accuracy)

Dis_Range >= 70  >= 40  and <=69  >= 10  and <=39  <= 9   

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty 

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.50 0.50 0.50 0.50 0.50 0.50 2 

Merge 0.65 0.69 0.67 0.73 0.78 0.75 0.79 0.84 0.82 0.85 0.94 0.89 103 

Stop 0.52 0.48 0.50 0.67 0.62 0.64 0.77 0.70 0.73 0.92 0.78 0.84 73 

              

Accuracy   0.60   0.70   0.78   0.87 178 

Macro Avg 0.39 0.39 0.39 0.47 0.46 0.46 0.69 0.68 0.68 0.76 0.74 0.75 178 

W-Avg 0.59 0.60 0.59 0.70 0.70 0.70 0.78 0.78 0.78 0.88 0.87 0.87 178 
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9.6.2 JM384 Online verification and distance from merge line accuracy 

Once we verified the ground truth actions with the DAISY predictions using the video log of 

JM384 verification partition video data and corrected the misclassifications, we carried out a 

k-fold cross-validation using the now updated online DYLE, as seen in Table 48 and compared 

this to the results from the previous iteration of Online DYLE from junction JM599. We saw a 

slight increase from 0.79 to 0.81 when k = 5 and no change when k = 10. An accuracy increase 

when using a smaller k value may be due to reduced variance in model evaluation; with a 

smaller k, each fold comprises a larger portion of the dataset. As a result, the variance in the 

evaluation metric across different folds may decrease, potentially providing a more stable 

estimate of model performance. However, using fewer folds can also mean that each training 

dataset is smaller, potentially leading to a higher bias in the model training process because 

the model is trained on a less diverse data set in each iteration. 

 

 

K value Mean accuracy 

 Online DYLE 

5 0.81 

10 0.83 

 

Table 48 Online DYLE K-fold cross-validation accuracy results with Junction JM384 feature 

vectors autonomously classified and appended 

Accuracy and F1 scores are shown below for JM384, as seen in Table 49, where we have 

tabulated the metrics of predictions made by DAISY from each distance range. 

 

 

Table 49 JM384 Accuracy metrics based on intent predictions made from a distance range 

from the total distance to the merge line. There is a clear trend of improving performance as 

the distance range decreases. The Stop class is predicted with relatively high accuracy, 

Dis_Range >= 70  >= 40  and <=69  >= 10  and <=39  <= 9   

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty 

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 

Merge 0.48 0.55 0.51 0.60 0.66 0.62 0.73 0.71 0.72 0.74 0.82 0.78 38 

Stop 0.71 0.63 0.67 0.79 0.73 0.76 0.84 0.84 0.84 0.90 0.83 0.86 63 

              

Accuracy   0.60   0.70   0.79   0.82 101 

Macro Avg 0.40 0.40 0.39 0.46 0.46 0.46 0.52 0.52 0.52 0.54 0.55 0.54 101 

W-Avg 0.63 0.60 0.61 0.72 0.70 0.71 0.80 0.79 0.80 0.84 0.82 0.83 101 
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especially in the <= 9% range. The overall performance improves in lower ranges, similar to 

the previous junction analysis. The quantity of data per class appears to impact model 

performance, as seen with the Stop class. 

 

 

Figure 84 F1 score and accuracy based on class and distance from merge line JM384 

 

Initial discussion of the results from JM384:  The yellow dashed line shows the overall 

accuracy trend of the model. The line is relatively straight, suggesting a consistent 

improvement in accuracy across distance ranges and a proportional increase in accuracy as 

the distance from the merge line decreases. DAISY performs better for Stop and Merge 

classes when closer to the merge line, but there is no data to analyse for the 'Hazard' class. 

The accuracy improves at closer distances, as seen in the other junctions. 

 

 

9.6.3 JM377 Online verification and distance from merge line accuracy 

Once we verified the ground truth actions with the DAISY predictions using the video log of 

JM377 verification partition video data and corrected the misclassifications, we carried out a 

k-fold cross-validation using the now fully updated online DYLE, as seen in Table 50 and 

compared this to the results from the updated DYLE. 
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K value Mean accuracy 

 Online DYLE 

5 0.83 

10 0.85 

 

Table 50 Online DYLE K-fold cross-validation accuracy results with Junction JM377 feature 

vectors autonomously classified and appended 

Initial result discussion based on Table 50. 

From 0.81 to 0.83 with K=5 could result from the specific way the data gets split in the 5 folds, 

which might result in each fold being a good representation of the overall dataset; hence, when 

combined, they result in a better model. Ongoing refinement of the threshold model 

parameters or adding more representative features by adding new data contribute to improved 

accuracy. The increase in accuracy from 0.83 to 0.85 with k = 10 suggests that there may be 

reduced variance; more folds mean that each test is less variable and potentially less biased 

towards any particular subset of data, making the estimated accuracy more reliable. 

The model is trained on 90% of the data each time, which might prevent overfitting compared 

to training on 80% (as with K=5). Also, more folds can lead to more diverse training and 

validation sets, which may help the model learn a more general pattern. 
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JM377 Accuracy and F1 scores, as seen in Table 51 and Figure 85, where we have tabulated 

the metrics of predictions made by DAISY from each distance range. 

 

 

Table 51 JM377 Accuracy metrics based on intent predictions made from a distance range 

from the total distance to the merge line.  

 

 

 

 

Figure 85 F1 score and accuracy based on class and distance from merge line JM377 

 

DAISY struggles with accurate predictions in the range (>= 10% and <= 39%) where the 

accuracy dips. JM377 is a very busy junction, with traffic held close to the merge line waiting 
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Dis_Range >= 70  >= 40  and <=69  >= 10  and <=39  <= 9   

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty 

Hazard 0.0 0.0 0.0 0.0 0.0 0.0 0.75 1.0 0.86 0.67 0.67 0.67 3 

Merge 0.58 0.58 0.58 0.69 0.70 0.70 0.68 0.78 0.72 0.76 0.84 0.79 67 

Stop 0.71 0.72 0.71 0.80 0.80 0.80 0.82 0.72 0.76 0.88 0.81 0.84 88 

              

Accuracy   0.65   0.74   0.75   0.82 158 

Macro Avg 0.43 0.43 0.43 0.50 0.50 0.50 0.75 0.83 0.78 0.77 0.77 0.77 158 

W-Avg 0.64 0.65 0.64 0.74 0.74 0.74 0.76 0.75 0.75 0.82 0.82 0.82 158 
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to join the major road. The range that DAISY struggles in is where traffic backs up, causing 

overlapping or ambiguous cues that could indicate multiple intents. A method of alleviating this 

is to pause inference when traffic is stopped, moving very slowly or backed up.  

 

9.6.4 Online DYLE class distribution 

We have now appended the previously updated DYLE from 8.6.1 with the feature vectors from 

the online junction experiments to create an online DYLE  constituting  99,851 feature vectors, 

equating to 2,515 individually identified target vehicles. Table 52 and Figure 86 show the class 

distributions and highlight the lack of Hazard classified feature vectors.  

 

Fpc / 
SFpc 

Count Frequency 

s_stop 21,420 21.45% 

w_merge 16,056 16.08% 

w_stop 15,671 15.69% 

s_merge 16,194 16.22% 

m_stop 14,170 14.19% 

m_merge 13,751 13.77% 

merge 1280 1.28% 

stop 1209 1.21% 

w_hazard 24 0.02% 

m_hazard 28 0.03% 

s_hazard 22 0.02% 

hazard 26 0.03% 

 

Table 52 Online DYLE.                          Figure 86 Online DYLE class frequency count 

 

9.6.5 Analysis of the resulting  metrics from the  online Verification video data 

We now have a comprehensive mixed junction dataset called online DYLE, consisting of 

feature vectors from the initial 60% of the video data covering all junctions, designated as the 

training subset. Subsequently, we incorporated a 20% segment for manual testing, followed 

by the final 20% segment of video data integrated autonomously into the online pipeline. We 

sampled and rectified any incorrect classifications before proceeding with a K-fold cross-

validation. Table 53 presents updated metrics for each junction and the newly compiled online 

DYLE dataset; these updates are depicted in Figure 87. 
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Metric Fpc  F1-Score (<=9%) Accuracy K-fold (10) 

Junction Class Hazard Merge Stop   
Online DYLE + Combined* 0.54 0.82 0.80 0.82 0.85 

Updated DYLE + Combined* 0.67 0.83 0.84 0.83 0.81 

JM377 0.67 0.79 0.84 0.82 0.85 

JM384 0.0 0.78 0.86 0.82 0.83 

JM599 0.5 0.89 0.84 0.87 0.83 

JM454 1.0 0.82 0.64 0.76 0.82 

Aggregated Training DYLE 0.79 

*Combined = JM599, JM384, JM377 and JM454 

Table 53 Comparison of Fpc of single junction metrics with previous DYLE iterations. Online 

DYLE has the final 20% video verification data feature vectors appended.  

 

 

 

Figure 87 K-fold training accuracy compared to ground truth F1-Score per class and overall  

accuracy. 

 

Table 53 shows the Fpc against the actual ground truth actions for each junction, with the 

details found in Sections 9.5.8 and 9.6.1, .2 and.3 The initial training dataset, Aggregated 

DYLE, was established in Section 7.5, while the Updated DYLE is detailed in Section 8.6.1. 

Although the Online DYLE is not performing as well as the Updated DYLE iteration, it's 

important to note that the latest data added to the Online DYLE was incorporated 

autonomously, and samples were manually verified post-integration which demonstrates a 
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positive outcome for the online pipeline in the future. Isolated examination of the Online DYLE 

results reveals a promising trend, with relatively good accuracy and a good balance across F1 

scores for all classes.  

Figure 88 is a comparison of the latest iteration of DYLE against the previous Updated DYLE, 

and it highlights the increase in the k-fold score; all junctions demonstrate steady performance 

in cross-validation,  especially for JM377 and JM384, which have the highest k-fold scores, 

suggesting their performance is consistent across various data subsets. Accuracy measures 

the proportion of true results (both true positives and true negatives) among the total number 

of cases examined, and JM599 has the highest accuracy, suggesting that DAISY accurately 

classifies a high percentage of instances at this junction. JM454 has the lowest accuracy, 

which may indicate higher misclassifications overall. As more data is needed, we could not 

thoroughly evaluate the Hazard class's accuracy and determine its impact on overall 

performance. Given the live traffic setting of this study, instances of behaviour that DAISY 

would categorise as a Hazard are scarce. The training data comprises approximately 1% of 

the total feature vectors identified as Hazard. This scarcity of Hazard-classified examples 

presents a significant challenge in conducting a comprehensive analysis. 

 

 

Figure 88 Performance comparison from previous DYLE iteration for junctions JM377, JM454, 

JM599 and JM384. 
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9.6.6 Accuracy and distance from merge line 

When integrating data on distance ranges with the revised DYLE dataset to evaluate our 

model's effectiveness across various junctions, we observed a more uniform categorisation of 

stop and merge actions and an improvement in overall mean accuracy, in contrast to data 

from isolated junctions. This data smoothing improves our ability to answer Research 

Question 5 (RQ5): Can a trained machine learning model accurately predict vehicle intent at 

a T-Junction using new data, and what is its effective prediction range from the junction? 

Based on the data presented in Figure 89, general intent predictions regarding vehicle 

behaviour improved when the vehicle was less than 40% away from the total distance to the 

merge line. This level of prediction accuracy could potentially extend to class-specific intents, 

such as merging, at approximately 70% distance from the merge line. However, it's important 

to note that the impact of data imbalance on this predictive capability is not fully understood. 

Furthermore, the analysis shows that the model's ability to predict stopping behaviour is not 

as strong as its predictions for merging or responding to hazards. The model's accuracy 

notably increases as the vehicle gets closer to the merge line, with a marked improvement 

observed when the vehicle is 39% or less away from the merge line. Table 54 and Figure 85 

show the combined metrics of the online verification experiments.  

 

Distance Range >= 70% >= 40% and <=69% >= 10% and <=39% <= 9% 

Metric     

Stop F1 0.54 0.67 0.74 0.80 

Merge F1 0.61 0.70 0.77 0.82 

Hazard F1 0.00 0.00 0.59 0.54 

Accuracy 0.60 0.70 0.77 0.82 

 

Table 54 Mean junction class F1 score and mean accuracy using the Online DYLE dataset 
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Figure 89 Mean  F1 score and accuracy based on class and distance from merge line for the 

combined junctions JM377, JM454, JM599 and JM384. The Stop F1 score is consistently the 

lowest across all distance ranges, indicating that the model is less accurate at predicting stops 

than Merge, which is consistently the highest, suggesting that the model is better at predicting 

Merge with a high confidence level. Accuracy shows an overall positive trend, meaning that 

the model's predictions become more accurate as the vehicle gets closer to the merge line. 

However, a significant increase in accuracy seems to occur when the distance range from the 

merge line is less than or equal to 39%. The Linear (Accuracy) trend line indicates that, on 

average, accuracy improves as the vehicle gets closer to the merge line. This trend line 

smooths out fluctuations in the actual accuracy data to show the general direction of change. 

 

9.7 Balancing the Training Data 

Our work developing a general T-junction dataset has produced extensive vehicle behaviour 

feature data containing over 2,500 individually classified vehicles with over 99,000 classified 

feature vectors. Due to the nature of our data gathering in live traffic, there is an imbalance in 

our dataset. As previously discussed, we have a minority class, Hazard, and associated 

Hazard SFpc, which is underrepresented in our data set online DYLE. Balancing data is crucial 

in machine learning to prevent the model from being biased toward the majority class and to 

improve overall performance. To address this issue before we move on to our subsequent 

experiments, we use a method based on the work of (Kovács, 2019), a well-researched 
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method called Synthetic Minority Over-sampling Technique (SMOTE) to create synthetic 

instances of the minority class. 

SMOTE is a statistical technique for increasing the number of cases in your dataset in a 

balanced way. SMOTE creates synthetic samples from the minor class instead of copies. For 

each sample in the minority class, SMOTE finds its k-nearest neighbours (k-NN), where k is 

typically a sample from the k-nearest neighbours is randomly chosen, and a synthetic sample 

is created at a point along the line segment connecting the minority class sample and its 

chosen neighbour. The values for the synthetic sample are interpolated between the two 

existing samples. The SMOTE algorithm generates synthetic samples by interpolating 

between the positive of the minority class instances in the feature space. Given a minority 

class instance 𝑓𝑣𝑖 and one of its nearest neighbours 𝑓𝑣𝑛𝑛, the synthetic sample 𝑓𝑣𝑛𝑒𝑤 is 

created by the following equation: 

 

 

𝑓𝑣𝑛𝑒𝑤 = 𝑓𝑣𝑖 + λ ∙ (𝑓𝑣𝑛𝑛 − 𝑓𝑣𝑖)    (25) 

 

Where λ is a random number between 0 and 1.    

 

This scalar λ, is how far the new synthetic sample is to be placed along the line segment 

between 𝑓𝑣𝑖 and 𝑓𝑣𝑛𝑛 .  

The value of λ is generated again for each feature in the data point, which means that the 

synthetic samples can be scattered in the space around the original minority instances, 

contributing to variance and potentially leading to better generalisation for DAISY trained on 

this augmented dataset.  

This process is repeated until the desired level of balance is reached in the dataset. For 

example, if the goal is to have an equal number of instances in both classes, SMOTE would 

keep generating synthetic samples from the minority class until this balance is achieved. 

 

9.7.1 Generating new samples of Hazard class and sub-classes 

We generated new samples of the Hazard class and associated sub-classes of W_Hazard, 

M_Hazard and S_Hazard, which were appended to the online DYLE dataset, creating a new 

dataset called SMOTE DYLE The new distribution can be seen in Table 55 and Figure 90, 

where all the subclasses are now distributed more evenly. More feature vectors are generated 

in the subclass (SFpc) S_Stop because vehicles in this distance zone often stop or move very 

slowly, resulting in a higher volume of data processing in this zone compared to other 

subclassification zones. In these other zones, vehicles tend to move more quickly and usually 
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pass through without stopping and generating multiple feature vectors over a short distance. 

 

 

Fpc / SFpc  Count  Frequency 

s_stop  21,420.00  14.52% 

w_merge  16,056.00  10.89% 

w_stop  15,671.00  10.62% 

s_merge  16,194.00  10.98% 

m_stop  14,170.00  9.61% 

m_merge  13,751.00  9.32% 

merge  1,280.00  0.87% 

stop  1,209.00  0.82% 

w_hazard  14,998.00  10.17% 

m_hazard  15,897.00  10.78% 

s_hazard  15,651.00  10.61% 

hazard  1,196.00  0.81% 

 

Table 55 SMOTE DYLE               Figure 90 SMOTE DYLE  class frequency count 

 

SMOTE generates synthetic samples that are not duplicates of existing minority class 

instances. Instead, it blends characteristics from the minority class, allowing classifiers to form 

broader and less precise decision boundaries. This approach can enhance the DAISY's ability 

to generalise. However, it is crucial to understand that SMOTE's effectiveness in achieving a 

balanced dataset does not automatically translate to improved classifier performance. The 

reason is that these synthetic samples are created within the feature space and may introduce 

noise or unrepresentative patterns, not accurately reflecting the true distribution of the minority 

class. Therefore, as the literature suggests, we combine SMOTE with k-fold cross-validation 

to confirm that the DAISY's performance is better on new, unseen data. 

 

9.7.2 K-Fold cross-validation of SMOTE DYLE 

We apply K-fold cross-validation on the SMOTE DYLE dataset using the method outlined in 

section 7.4.6.1. This procedure aimed to understand how the synthetic addition of Hazard 

subclasses influences the model's predictive accuracy and to evaluate the necessity of these 

additional subclasses in enhancing DAISY's predictive accuracy. 
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K value Mean accuracy 

 SMOTE DYLE 

5 0.86 

10 0.89 

 

 

Table 56 SMOTE  DYLE K-fold cross-validation accuracy results with synthetic feature 

vectors for Hazard sub-classes appended 

 

Based on the K-fold cross-validation results seen in Table 56, DAISY's predictive accuracy 

has improved using the SMOTE method for generating synthetic samples. The mean accuracy 

of the SMOTE DYLE dataset has increased from 0.83 to 0.86 when k=5 and from 0.85 to 0.89 

when k=10. The increase in mean accuracy suggests that both a higher number of folds in 

cross-validation and the application of SMOTE aid DAISY are probably due to better 

generalisation and handling of class imbalances. It's important to note that while increasing k 

can lead to more reliable estimates of model performance, it also increases computational 

cost. As discussed, adding subclasses to associate feature vectors with a ground-truth action 

is one of our contributions to this thesis. Without the sub-classes, we would depend on a 

prediction at the merge line, which, with the correct amount of accurately verified data, should 

prove very accurate based on our findings in previous chapters. However, our goal is to predict 

vehicle intent as far from the merge line as possible, and by creating associative sub-classes, 

we saw that accuracy is improving now that these sub-classes are balanced.  

 

9.7.3 Generating new samples of minority FPC classes 

In SMOTE DYLE, an imbalance persists in the less frequent Fpc classes of Stop and Merge. 

These classes are crucial, established based on concrete ground truths, and form the basis 

for sub-class classification. Each Fpc class encapsulates a verified feature vector from a target 

vehicle derived from our extensive video logs at various junctions. These feature vectors were 

initially classified either manually or using DUKE, followed by verification through our video 

logs. The Hazard Fpc class is also a minority class and now consists mainly of synthetically 

generated feature vectors, as detailed in section 9.7.1. The next step to further balance the 

dataset involves generating synthetic feature vector samples for both the Stop and Merge 

classes and additional synthetic samples for the Hazard class to ensure a more uniform 

distribution across all classes. We generated the new feature vectors for all the Fpc classes 

using the SMOTE method above and appended them to the new Uniform DYLE dataset. From 

the frequency and count details in Table 57 and Figure 91 below, we can now see a more 
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uniform distribution of the classes.  

 

Fpc / SFpc  Count  Frequency 

s_stop           21,420.00  11.78% 

w_merge           16,056.00  8.83% 

w_stop           15,671.00  8.62% 

s_merge           16,194.00  8.90% 

m_stop           14,170.00  7.79% 

m_merge           13,751.00  7.56% 

merge           12,606.00  6.93% 

stop           11,999.00  6.60% 

w_hazard           14,998.00  8.25% 

m_hazard           15,897.00  8.74% 

s_hazard           15,651.00  8.61% 

hazard           13,453.00  7.40% 

 

Table 57 SMOTE Fpc DYLE               Figure 91 SMOTE Fpc  DYLE  class frequency count 

 

9.7.4 K-Fold cross-validation of Uniform DYLE 

We apply K-fold cross-validation on the Uniform DYLE dataset to help understand how the 

synthetic addition of Fpc classes influences the model's predictive accuracy.  

 

K value Mean accuracy 

Uniform DYLE 

5 0.87 

10 0.91 

 

Table 58 SMOTE  DYLE K-fold cross-validation accuracy results with synthetic feature vectors 

for Fpc appended 

 

Based on the K-fold cross-validation results seen in Table 58, DAISY's predictive accuracy 

has marginally improved using the SMOTE method for generating synthetic samples. The 

mean accuracy of the Uniform DYLE dataset has increased from 0.86 to 0.87 when k=5 and 

from 0.89 to 0.91 when k=10. Based on k= 10 with cross-validation by appending synthetic 

feature vector examples created using the SMOTE method, we see the uniform DYLE has a  

7.06% accuracy increase from the Online DYLE dataset. 
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Table 59 compares the DYLE datasets as synthetic data is appended.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92 Comparison of the incremental improvement of the DYLE dataset using SMOTE to 

generate synthetic samples. 

 

Our Initial analysis of the SMOTE method and results from appending synthetic data shows 

that due to the Online DYLE dataset having an imbalance of classes, it appears that DAISY 

tended to be biased towards the majority class, often neglecting the minority class. By creating 

synthetic samples of the minority class, the class distribution is balanced. The results in Table 

59 and Figure 92 suggest that DAISY can now learn more effectively from both the minority 

and majority classes. This balanced learning environment allows the DAISY to understand 

each class's characteristics better, leading to more accurate predictions; showing a 7% 

increase in accuracy indicates that the model is now better at predicting outcomes across all 

classes, not just the majority class. The overall impact of using SMOTE is a more robust and 

accurate model, which is particularly important in our work, where correctly predicting the 

minority class is as crucial as predicting the majority class. The results reflect the effectiveness 

of SMOTE in enhancing Daisy's performance by mitigating the effects of class imbalance, as 

evidenced by a measurable improvement in accuracy. However, without a ground truth 

analysis, the apparent improvement in accuracy is not verified. The next step is to carry out a 
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complete unseen data experiment on the entire pipeline.  

 

9.8 Unseen data online with a new junction 

In section 7.3, Table 21, we demonstrated how we partitioned our video data for training and 

verification, and chapters 8 and 9 explore four of our junction video data. As detailed in 7.3, 

we have a hold-back junction consisting of 119 minutes of video data reserved for when we 

could apply the most accurate model and robust dataset to this video data to answer our 

primary research question. (RQ6): Can a trained machine learning model accurately predict 

vehicle intent at a T-Junction using new data, and what is its effective prediction range from 

the junction? 

Research Question 7 (RQ7): Can our online model infer and append intent predictions as 

new inference data in real-time without negatively affecting the accuracy or F1 score? 

 

9.8.1 UO196 Junction preparation 

We created the optimal video (Vo)  of junction UO196 as a single video file based on the 

specifications discussed in Chapter 5. We use Uniform DYLE as our dataset, adjust the ground 

truth junction parameters for detection zones, and merge line distance in relation to the 

junction topology and camera perspective. We also adjust the threshold model from section 

9.3.1 to ensure that the autonomous Fpc classification generated by DUKE  and subsequent 

post-Fpc classification of the SFpc class are recorded accurately during the online appending of 

the classified feature vectors. As the UO196 Vo data is input into our pipeline and target 

vehicles are detected and tracked, feature vectors are created, inferred, classified and 

appended to DYLE in a mean time of 43 ms. The latest iteration is called Alpha DYLE and 

contains Uniform DYLE data with the autonomously appended data from UO196. 

 

9.8.2 Distribution of classes and K-fold score of Alpha DYLE 

After processing all the video data through our pipeline, we created an updated version of the 

Alpha DYLE dataset. This new dataset increased  Uniform DYLE in size by approximately 5% 

with the addition of newly classified feature vectors. Our analysis showed a modest 

improvement in performance metrics, with an increase from 0.91 to 0.92 when setting k = 10. 

However, there was no noticeable change in performance when k was set to 5, compared to 

the results obtained with the SMOTE DYLE dataset. Furthermore, as indicated in Table 60, 

introducing our online autonomous data appending approach did not negatively affect the 

dataset's quality or integrity. 
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K value Mean accuracy 

 Alpha DYLE 

5 0.87 

10 0.92 

 

Table 60 Alpha  DYLE K-fold cross-validation accuracy results with synthetic feature vectors 

for Fpc appended 

The class distribution of Alpha DYLE can be seen in Table 61 and visually in Figure 93. 

 

Fpc / SFpc  Count  Frequency 

s_stop                23,458  12.24% 

w_merge                17,687  9.22% 

w_stop                17,302  9.02% 

s_merge                17,621  9.19% 

m_stop                15,495  8.08% 

m_merge                15,280  7.97% 

merge                12,722  6.64% 

stop                12,118  6.32% 

w_hazard                15,018  7.83% 

m_hazard                15,912  8.30% 

s_hazard                15,662  8.17% 

hazard                13,455  7.02% 

 

Table 61 Alpha DYLE                            Figure 93 Alpha DYLE  class frequency count 

 

Figure 89 shows that the class distribution of Alpha DYLE has remained intact during the 

addition of autonomous feature vectors from junction UO196. 

 

9.8.3 Accuracy and F1 score based on UO196 video log ground truths 

The K-fold score for the Alpha DYLE model remained broadly consistent, prompting us to 

conduct a thorough validation through video log ground truth verification. Additionally, we 

recorded the DAISY predictions at various distance zones, enabling us to gather performance 

indicating data on accuracy and F1 scores from all distance zones and the Fpc, as detailed in 

Table 62 and illustrated in confusion matrixes in Figures 94-96 inclusively. 
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Accuracy and F1 scores are shown in Table 62 and Figure 98, where we have tabulated the 

metrics of predictions made by DAISY from each distance range. 

 

 

 

 

 Figure 94 UO196 Confusion matrix 
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Figure 97 UO196 Confusion matrix Fpc 
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 Figure 96 UO196 Confusion matrix 
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 Figure 95 UO196 Confusion matrix  
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Table 62 Accuracy metrics based on intent predictions made from a distance range from the 

total distance to the merge line using unseen data from UO196  

 

Initial discussion of results from experiments using UO196: 

Table 62 shows the Metrics Precision (Pr), Recall (Re), F1-Score (F1), and Quantity (Qty) at 

the Discrimination distance ranges as a total distance from the merge line., and the accuracy 

of DAISY prediction based on Fpc at the given distance. 

>= 70% 

>= 40% and <= 69% 

>= 10% and <= 39% 

<= 9% 

Hazard: Low sample size (Qty = 2), potentially leading to less reliable metrics. Consistent F1 

scores across different discrimination ranges but low precision in the 40-69% range. 

Merge: Largest sample size (Qty = 116), providing more reliable metrics. Generally, higher 

scores in higher discrimination ranges indicate better performance as the discrimination 

threshold increases. 

Stop: The sample size is similar to Merge (Qty = 119) and consistently increases all metrics 

as the discrimination threshold increases. 

DAISY Overall Performance: Accuracy: Increases with higher discrimination thresholds, from 

0.68 to 0.86.  

Macro Average: Considers each class equally and shows a general improvement in metrics 

with higher discrimination thresholds.  

Weighted Average (W-Avg): Accounts for class imbalance and mirrors the trend in accuracy, 

improving as discrimination thresholds increase. Precision, recall, and F1-score are 

consistently higher in the <= 9% discrimination range. Due to its low quantity, the Hazard class 

required more instances to ascertain its true performance. For the "Merge" and "Stop" classes, 

there is a clear trend of improvement in model metrics with the increase in discrimination 

threshold. 

Dis_Range >= 70  >= 40  and <=69  >= 10  and <=39  <= 9   

Class Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Qty 

Hazard 1.0 0.5 0.67 0.33 0.5 0.4 1.0 0.5 0.67 1.0 0.5 0.67 2 

Merge 0.68 0.64 0.66 0.73 0.70 0.71 0.79 0.79 0.79 0.85 0.85 0.85 116 

Stop 0.67 0.71 0.69 0.72 0.74 0.73 0.80 0.81 0.80 0.86 0.87 0.86 119 

              

Accuracy   0.68   0.72   0.80   0.86 237 

Macro Avg 0.78 0.62 0.67 0.59 0.65 0.61 0.86 0.70 0.75 0.90 0.74 0.79 237 

W-Avg 0.68 0.68 0.67 0.72 0.72 0.72 0.80 0.80 0.80 0.86 0.86 0.86 237 
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Figure 98 Mean  F1 score and accuracy based on class and distance from merge line UO196. DAISY 

trained on Alpha DYLE demonstrates robustness in F1 scores across different distance discrimination 

thresholds for the Stop and Merge classes. There is a steady increase in overall accuracy as the 

distance discrimination threshold decreases. The hazard class does not have enough representative 

samples to analyse. 

 

9.8.4 Comparison of  results from Alpha DYLE + UO196 and other DYLE iterations 

 

Metric Fpc  F1-Score (<=9%) Accuracy K-fold (10) 

Junction Class Hazard Merge Stop   

Alpha DYLE + UO196 0.67 0.85 0.86 0.86 0.92 

Online DYLE + Combined* 0.54 0.82 0.80 0.82 0.85 

Updated DYLE + Combined* 0.67 0.83 0.84 0.83 0.81 

Aggregated Training DYLE 0.79 

Uniform DYLE (SMOTE) 0.91 
*Combined = JM599, JM384, JM377 and JM454 

Table 63 Comparison of Fpc of single junction metrics with previous DYLE iterations. Uniform 

DYLE has been balanced with SMOTE-created feature vectors.  
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Figure 99 K-fold score,  accuracy compared to ground truth Fpc and  F1-Score per class and 

overall  

 

9.9 Chapter conclusion 

This chapter demonstrates the methods and methodologies we used to conduct a 

comprehensive interactive series of experiments to answer the following research questions. 

 

Research Question 6 (RQ6): Can a trained machine learning model accurately predict 

vehicle intent at a T-Junction using new data, and what is its effective prediction range from 

the junction? 

Research Question 7 (RQ7): Can our online model infer and append intent predictions as 

new inference data in real-time without negatively affecting the accuracy or F1 score? 

 

We progressively trained, evaluated and improved our dataset DYLE using our experimental 

junction video data and created a dataset called Alpha DYLE. We then processed our hold-

back junction video data from UO196, which had not been used in our training series of 

experiments and passed this video through our entire pipeline. RQ6 focuses on two interlinked 

components from our final results: 
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1) Accuracy of intent prediction: Our results show that Alpha DYLE has a k-fold (k=10) of 0.92 

and a ground truth average of 0.82 for Fpc classifications on new unseen data.  

 

2) What is the effective prediction range from the junction? We demonstrated that the effective 

prediction range increases as the target vehicle approaches the merge line. Accuracy 

improves from less than 40% of the total distance from the merge line.  

 

RQ7 focuses on the impact of autonomous appending and inferring from new data; our results 

showed an improvement in Fpc F1 scores for Stop and Merge, K-fold score and overall 

accuracy with no detrimental effect.   

 

Our Contribution in this Chapter. 

A quantitative examination of how accurately DAISY, trained on progressively larger datasets, 

can predict driver intentions and determine the practical distance from the junction at which 

predictions remain viable. This exploration contributes to understanding the limits and 

capabilities of machine learning in the context of driver behaviour prediction at critical road 

intersections. 

Creating and evaluating an online model capable of inferring and appending new data in real 

time while maintaining base accuracy and F1 score. 
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Chapter 10: Conclusion and Future Work  

 

This chapter provides a comprehensive overview of how each section in this thesis plays a 

pivotal role in addressing the fundamental questions that drove this research.  By leveraging 

the knowledge acquired from preceding chapters, we illuminate the contributions to answering 

the main research questions. 

To address our core questions, we embarked on creating an experimental pipeline.  The 

chapters in this thesis collectively delineate the evolution of a pipeline designed to explore 

predicting vehicle intent at T-junctions.  This pipeline is established in 2d video-derived feature 

vectors, emphasising key aspects such as dataset creation, model training, and real-time 

prediction capabilities. 

 

10.1 Thesis  summary 

Chapter 2 This chapter delves into the concept of vehicle intent prediction, which is pivotal for 

forecasting future actions or movements of vehicles in various scenarios, such as navigating 

intersections or traffic or during autonomous vehicle operations like lane changes.  The term 

"vehicle intent" is preferred over "driver intent" to focus on the vehicles' dynamics, whether 

controlled by humans or autonomously. 

Our review combines computer vision and machine learning with sensor data analysis—

employing 2D and 3D cameras, radar, Lidar, and GPS—to understand the vehicle's 

environment and movements.  Machine learning models leverage this data, historical trends 

and behavioural modelling of human driving habits to predict future actions.  This predictive 

framework also integrates environmental factors, such as road conditions and nearby traffic, 

offering a holistic approach to anticipating vehicle behaviour and enhancing road safety and 

efficiency. 

We found that the advantages of these technologies include their consistency, reliability, and 

ability to process large volumes of data without fatigue, contrasting with human susceptibilities 

to distraction and emotional factors.  Machine learning models also have the potential to learn 

and improve over time, possibly exceeding human prediction accuracy. 

However, challenges remain, particularly in interpreting complex human behaviours, 

situational awareness, and ethical considerations in critical decision-making scenarios.  

Despite these hurdles, vehicle intent prediction aims to match or surpass human capabilities 

in predicting vehicle actions, contributing significantly to road safety and the advancement of 

autonomous vehicle technologies. 

 

Chapter 3 describes the creation of a data-rich video dataset for unsignalised UK T-junctions 
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to extract accurate vehicle feature vectors.  The methodologies used to craft the dataset are 

explained, setting the stage for subsequent chapters focusing on object detection, 

classification, and prediction of driver intent.  We emphasise the importance of setting a 

standard point of view for processing 2D videos and the necessity for meticulous camera 

placement from all junctions during recording to maintain a robust dataset.  

 

Chapter 4 addresses Research Question 1, examining the impact of a specialised dataset on 

the real-time performance of object detection and classification.  Contributions include 

quantitative comparisons of YOLOv5 and Faster R-CNN models using the video dataset and 

constructing a target-based vehicle image dataset.  Our tailored dataset slightly enhanced the 

confidence in vehicle detection, as shown in the copy of Table 9 below from our video data.  

This demonstrates that training for a specific object detection task can be enhanced through 

transfer learning.  We utilised COCO as a foundational dataset in our instance and transferred 

our specialised image training data as weights to the YOLOv5m model.  Ultimately, this results 

in more accurate ground truth observations throughout the object detection and classification, 

reducing computational power waste associated with false positives. 

 

Model YOLOv5 m Benchmark mAP With our dataset, mAP 

mAP 0.5 0.45 0.45 

mAP 0.5  0.95 0.64 0.65 

Class Confidence cars (tab 3) using Bo video. 0.91 0.93 

Copy of Table 9 (4.5.3).  Post-training evaluation metrics for transfer learning using YOLOv5 m with IoU 0.5 

 

Chapter 5, Research Question 2, explores how pixel density and frame rate variations affect 

real-time object detection and classification models.  The chapter reveals the relationship 

between data quantity, computational resource requirements, and the neural network's 

performance.  An optimal model and input specification are identified for efficiently capturing 

vehicle features and generating feature vectors.  We observed that a deep neural network like 

YOLOxl achieves accurate vehicle classifications with high-resolution images at a high frame 

rate.  Conversely, a small neural network like YOLOn, when given low-resolution images at a 

low frame rate, tends to produce inconsistent predictions or entirely miss vehicle detections.  

Our model needs to fall between these two points.  We pinpointed a model and input 

specification by conducting iterative experiments that struck the right balance, swiftly capturing 

the required vehicle detail within our existing models' constraints. 

 

Chapter 6 introduced an advanced approach to extracting feature vectors from 2D video data, 

addressing Research Question 3: Is obtaining accurate pixel-level features from dynamic 

vehicles that closely match ground truth data feasible?  The data presented in Table 17 below 
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indicates that the feature values derived from DUKE do not exhibit significant statistical 

variance when compared to our ground truth data. 

 

Data Mean Velocity 

px/ms 

Vel 

(p-value) 

Vel 

(SD) 

vel 

Mean 

Acc 

px/ms2 

Acc 

(p-value) 

Acc 

(SD) 

vel 

Distance 

px 

Mean 

Area 

px2 

Acc 

(p-value) 

Acc 

(SD) 

vel 

DUKE 0.93 0.18 0.19 0.28 0.09 0.09 893 8370 683 716 

Ground Truth 1.06 0.17 0.2 0.33 0.09 0.09 963 8259 679 705 

Copy of Table 17 compares manually gathered ground truth data with the 2D-pixel features obtained through DUKE. 

 

While promising, we concluded that further refinement of the feature data was necessary to 

enhance quality and reliability before training and testing the prediction model.   

 

Chapter 7 discussed approaches to generating credible training data in the form of feature 

vectors and arrays.  The chapter also explores the generality of feature vectors across different 

experimental T-junctions.  It introduces the concept of organising and classifying discrete 

vehicle feature vectors as feature vector arrays to classify all target vehicle data from initial 

detection to merge line prediction.  Chapter 7 addressed RQ4: Can our feature vectors' 

inherent generality be observed per the consistent camera positioning hypothesis?  

The final results from the copy of Table 32 below demonstrate an improvement when DYLE is 

trained by transferring data from multiple junctions into a single dataset. 

 

K- 
value 

K-fold cross-validation means Accuracy  

JM599 JM377 JM454 JM384 
Aggregated 

DYLE 

5 0.69 0.72 0.68 0.71 0.77 

10 0.74 0.73 0.74 0.71 0.79 

 

Copy of Table 32 K-fold cross-validation means Accuracy for different datasets. 

 

In conclusion, the analysis of feature vectors within the context of the consistent camera 

positioning hypothesis indicates a positive correlation between the standardisation of data 

collection methods and the enhancement of model performance.  Specifically, employing a 

consistent point of view (POV) and camera angle across various data collection points enables 

the aggregation of higher-quality data, as evidenced by the improved aggregated DYLE scores 

for K=5 and K=10 compared to individual mean accuracies.  This suggests that such a 

standardised approach facilitates the use of data from a single junction for training across 

multiple junctions and significantly contributes to achieving superior overall performance in 

data analysis and model training. 
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Chapter 8 reviews the updated DYLE dataset, noting improvements in composition and 

balance due to new manually classified ground truth data.  In this chapter, we examined 

Research Question 5 RQ5: How accurately can a machine learning model, utilising 2D video-

derived feature vectors, predict a vehicle's intention at a T-junction?  

Based on the data presented in the copy of Table 41, it's evident that the Updated DYLE 

dataset demonstrates consistent performance across various classifications, with F1-Scores 

between 0.67 and 0.84 and a peak Accuracy of 0.83.  This indicates that our machine learning 

model, DAISY, is performing well, achieving an accuracy of 0.83 despite the limited data 

available.  This also enabled us to advance in completing the pipeline, ensuring we established 

a solid foundation in our machine-learning methodology. 

 

Metric F1-Score Accuracy K-fold (10) 

Junction Class Hazard Merge Stop   

Updated DYLE 0.67 0.83 0.84 0.83 0.81 

JM377 0.5 0.79 0.8 0.79 0.73 

JM384 0.5 0.8 0.76 0.77 0.71 

JM599 0.8 0.82 0.87 0.84 0.74 

JM454 0 0.71 0.76 0.74 0.74 

Aggregated Training DYLE 0.79 
 

Copy of Table 41 Comparison of single and combined junction and DYLE dataset accuracy 

metrics. 

 

Chapter 9 details experiments addressing Research Questions 6 and 7.  Results show that 

the online model, DAISY, can accurately predict driver intentions at a T-junction, with an 

effective prediction range increasing as the target vehicle approaches the merge line.  The 

chapter contributes to understanding the limits and capabilities of machine learning in 

predicting driver behaviour at critical road intersections.  RQ6: Can a trained machine learning 

model accurately predict vehicle intent at a T-Junction using new data, and what is its effective 

prediction range from the junction?  We achieved an accuracy of intent prediction of k-fold 

(k=10) of 0.92 and a ground truth average of 0.82 for Fpc classifications on new unseen data, 

and we demonstrated that the effective prediction range increases as the target vehicle 

approaches the merge line.  Accuracy improves from less than 40% of the total distance from 

the merge line.  

RQ7: Can the online model infer and append intent predictions as new inference data in real-

time without negatively affecting the Accuracy or F1 score?  We found a positive impact of 

autonomous appending to DYLE and inferring from new data; our results showed an 

improvement in Fpc F1 scores for Stop (0.86) and Merge (0.85), K-fold score (0.92) and overall 
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Accuracy (0.86) with no detrimental effect to the DYLE data.  

 

10.2 Research questions discussed 

With an overview of the whole thesis, we can now return to my initial research questions.    

The overarching question was: 

 

How effectively can computer vision and machine learning methods be utilised to predict the 

intentions of vehicles at T-junctions in real-time, and to what degree of Accuracy and 

effectiveness can these predictions be achieved? 

 

We then dissected this question into eight focused research questions; the first key question 

was.  

How does employing a constrained and focused dataset affect the real-time performance of 

object detection and classification?   We discovered that, as expected, there was no significant 

change in detection accuracy mAP,  as we were creating additional vehicle class data and not 

a new dataset.  However, the class confidence increased, demonstrating an improvement in 

real data predictions when using our video dataset and suggesting that a focused dataset 

could improve the performance.  However, further tests and model training will yield a more 

conclusive answer.   

The second question was in relation to our choice of the YOLO model and the relationship 

between performance and input values.  Considering the neural network's characteristics in 

use, how do pixel density and frame rate variations affect real-time object detection and 

classification models?  We discovered a well-defined relationship between the quantity of data 

and the computational resource requirements for our vehicle detection and classification 

model.  It became evident that an extensive neural network, such as YOLOxl, delivers 

accurate vehicle classifications when provided with high-resolution images at a high frame 

rate.  In contrast, a simple neural network, such as YOLOn, fed low-resolution images at a low 

frame rate either exhibits erratic predictions or fails to detect vehicles.  The YOLO models we 

experimented with were trained using transfer learning and our focused dataset from the 

previous question.  

The third question queried the efficacy of obtaining accurate pixel-level features from dynamic 

vehicles that closely match ground truth data.  Is obtaining accurate pixel-level features from 

dynamic vehicles that closely match ground truth data feasible?  Our original approach to 

deriving meaningful features from two-dimensional 2D video data closely aligns with the 

ground truth data.  The quality of our feature vectors hinged on the experiments undertaken 

in assessing YOLO models in the previous question.  We obtained ground truth-based 
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accurate vectors in real-time by selecting a YOLO model with accuracy and inference time 

performance.  

The fourth question examined the extent of our model's generalisation; the model's ability to 

infer from all our tesT-junctions is based on standardising recording settings.  Can our feature 

vectors' inherent generality be observed per the consistent camera positioning hypothesis?  

The results from the aggregated dataset indicate an observable degree of generality in our 

data, as evidenced by an increase in mean Accuracy.  Despite variations in the perspective of 

the merge line due to differences in camera placement angles at each junction, our model 

demonstrated the ability to recognise features from distincT-junctions and successfully apply 

them to other junctions.  

The fifth question assessed the above components at a single experimental junction before 

moving to the remaining junctions.  How accurately can a machine learning model, utilising 

2D video-derived feature vectors, predict a vehicle's intention at a T-junction?  We have shown 

reasonable Accuracy using data from a single junction, achieving an F1 score of 0.87 for the 

Stop class and 0.82 for the Merge class at JM599. 

 By amalgamating ground truth data and manually incorporating newly classified data, we 

observe enhanced k-fold cross-validation, resulting in higher F1 scores than the averages for 

individual junctions.  The accuracy level stands at 0.83 at the end of these experiments.  

Question 6 explored the real-world testing on new unseen data.  We found that DAISY could 

predict unseen data with an accuracy of 0.82 and that Accuracy deteriorated from distances 

>40% from the merge line.  Question 7 focused on the effect of self-learning the autonomous 

appending of intent classifications, and we found a positive impact with no detrimental effect 

on the DYLE data.  

 

10.3 Comparison with current state of the art real time intent prediction 

Key Metrics for Comparison: 

1. Accuracy: The proportion of correct predictions made by the model. 

2. Precision and Recall: Precision measures the accuracy of positive predictions, while 

recall measures the ability to identify all relevant instances. 

3. F1-Score: The harmonic mean of precision and recall, providing a single metric for 

overall performance. 

4. Latency: The model's time to process input data and produce predictions. 

5. Robustness: The model's ability to handle diverse and unseen driving scenarios. 

6. Scalability: How well the model performs with increasing data and complexity. 
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Current State-of-the-Art Models: 

ChauffeurNet (Waymo): 

Description: A deep learning approach is used to predict the behaviour of surrounding vehicles. 

It employs a combination of LSTM and convolutional neural networks (CNNs) for 

spatiotemporal processing. 

Performance: High accuracy and robustness in diverse urban environments. 

Challenges for Comparison: Waymo's extensive proprietary dataset and highly optimized 

hardware make direct comparisons challenging. 

Tesla Autopilot: 

Description: Uses a suite of cameras, radar, and ultrasonic sensors, along with neural 

networks, to predict vehicle actions and navigate complex environments. 

Performance: Demonstrates high accuracy in many driving scenarios with rapid updates via 

over-the-air improvements. 

Challenges for Comparison: Proprietary data and frequent updates mean performance metrics 

are continuously evolving, making static comparisons difficult. 

NVIDIA Drive: 

Description: Utilizes deep neural networks for vehicle intent prediction, leveraging high-

performance GPUs for real-time processing. 

Performance: Known for low latency and high processing power, it is suitable for real-time 

applications. 

Challenges for Comparison: Requires significant computational resources, which may not be 

directly comparable to DAISY's implementation. 

Mobileye (Intel): 

Description: Uses computer vision and machine learning algorithms to predict vehicle intents. 

Focuses on providing real-time predictions using efficient processing techniques. 

Performance: High accuracy in detecting and predicting vehicle behaviour, with a focus on 

scalability. 

Challenges for Comparison: Mobileye's system architecture and proprietary datasets can 

make direct performance comparisons complex. 

Performance Comparison: 

DAISY vs. ChauffeurNet (Waymo): 

• Accuracy: DAISY demonstrates comparable accuracy but may slightly lag due to 

Waymo's extensive dataset. 

• Latency: DAISY's real-time processing capabilities are competitive, though Waymo 

benefits from specialized hardware. 

• Robustness: Both systems handle urban environments well, but Waymo has the 

advantage of more comprehensive data. 
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DAISY vs. Tesla Autopilot: 

• Accuracy: DAISY's accuracy in predicting vehicle intents is similar, but Tesla's frequent 

updates provide a continuously improving model. 

• Latency: Both systems are designed for real-time operation, with comparable latency. 

• Scalability: DAISY may have an edge in scalability due to its modular approach, 

whereas Tesla's proprietary system may be more optimized for specific hardware. 

DAISY vs. NVIDIA Drive: 

• Accuracy: Comparable accuracy, but NVIDIA's system may have higher precision due 

to its extensive hardware acceleration. 

• Latency: NVIDIA likely has lower latency due to GPU acceleration, though DAISY is 

competitive with efficient algorithm design. 

DAISY vs. Mobileye: 

• Accuracy: DAISY and Mobileye show similar levels of accuracy, with Mobileye possibly 

having a slight edge due to its specialized vision algorithms. 

• Latency: Both systems are designed for low latency, making them suitable for real-time 

applications. 

• Scalability: DAISY's approach may offer better scalability due to its emphasis on 

modularity and extensibility. 

Systematic Differences Affecting Direct Comparison: 

Datasets: 

Proprietary Data: Many state-of-the-art models use proprietary datasets that are not publicly 

available, making direct comparisons difficult. 

Data Diversity: Differences in the diversity and volume of training data can significantly impact 

model performance. 

Hardware: 

Specialized Hardware: Some systems benefit from specialized hardware (e.g., NVIDIA's 

GPUs), which may not be directly comparable to the hardware used by DAISY. 

Optimization: Hardware-specific optimizations can lead to performance differences that are 

not solely due to the algorithm. 

Algorithm Complexity: 

Model Architecture: Variations in model architecture (e.g., LSTM vs. CNN) can lead to 

differences in performance metrics. 

Feature Engineering: Different feature extraction and engineering approaches can impact 

model accuracy and latency. 

Real-Time Capabilities: 

Processing Speed: Differences in processing speed due to algorithm efficiency and hardware 

can affect real-time performance. 
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Latency Requirements: Varying latency requirements for different applications (e.g., highway 

driving vs. urban environments) can influence model comparisons. 

Comparing DAISY with state-of-the-art vehicle intent prediction models reveals that while 

DAISY is competitive in accuracy, latency, and robustness, systematic differences such as 

datasets, hardware, and algorithm complexity make direct comparisons challenging. 

Nonetheless, DAISY's real-time processing capabilities, modular design, and focus on 

scalability position it as a strong contender in autonomous vehicle intent prediction.  

 

Gap Analysis: Identifying Opportunities for Contribution 

Compared with state-of-the-art vehicle intent prediction models, several gaps and 

opportunities for contribution emerge. 

Real-Time Processing Efficiency: 

Gap: While existing models like ChauffeurNet and Mobileye demonstrate high accuracy, their 

real-time processing efficiency may vary due to hardware optimisation and algorithmic 

complexity differences. 

Contribution: This thesis optimises real-time processing efficiency in DAISY, ensuring rapid 

prediction of vehicle intents without compromising accuracy. By leveraging efficient algorithms 

and hardware-agnostic design principles, DAISY aims to excel in accuracy and low-latency 

processing. 

Scalability and Adaptability: 

Gap: Current models may lack scalability or adaptability, limiting deployment across diverse 

platforms and environments. 

Contribution: This thesis emphasises DAISY's modular and scalable design, enabling 

seamless integration into various autonomous vehicle systems and hardware configurations. 

By addressing scalability challenges and ensuring adaptability to evolving technological 

landscapes, DAISY aims to set a new standard for versatility in real-time intent prediction 

models. 

This thesis bridges existing gaps in real-time vehicle intent prediction by addressing 

processing efficiency, scalability, robustness, and sensor integration challenges. Through the 

development and optimisation of DAISY, this research contributes to advancing autonomous 

driving technologies, particularly in enhancing safety, reliability, and adaptability in real-world 

driving scenarios. By focusing on these critical areas of improvement, this thesis aims to 

establish DAISY as a benchmark for future developments in vehicle intent prediction, setting 

new standards for efficiency, scalability, and robustness in autonomous vehicle systems. 
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10.4 Discussion and future work 

Impact of a Constrained Dataset on Real-time Performance: It was found that focusing on 

creating additional vehicle class data without forming a new dataset did not significantly 

change the detection accuracy (measured by mean Average Precision, mAP) but did increase 

class confidence.  This implies that a dataset with a narrower focus could potentially improve 

performance.  By gathering training images of vehicles from our point-of-view perspective and 

initially using a dataset specifically tailored to vehicles instead of a broad object dataset (such 

as COCO) for transfer learning, we can establish the foundational step towards creating a 

more targeted image training dataset. 

 

YOLO Model Performance Analysis: This thesis revealed a clear relationship between data 

quantity, computational resources, and model performance.  New improved YOLO versions 

are becoming available every year, and the next step would be to integrate YOLOv6, 7 and 8 

into DUKE and repeat the analysis undertaken in Chapter 5 to define the performance of each 

model. 

 

 Accuracy of Pixel-level Features from Dynamic Vehicles: This thesis demonstrated the 

feasibility of obtaining accurate pixel-level feature vectors from dynamic vehicles that align 

closely with ground truth data, especially when using a suitably accurate and efficient YOLO 

model.  Combining an updated focused image dataset and an updated YOLO model may 

increase inference rate and Accuracy performance, allowing for a deeper neural network for 

tracking. 

 

Model Generalisation Across T-junctions: The model showed an ability to generalise 

across differenT-junctions, as indicated by increased mean Accuracy.  This was attributed to 

the consistent camera positioning, suggesting the model could recognise and apply features 

from various junctions.  This raises the question of how much data is required from discrete 

junctions to generalise across any T-junction in the UK? 

Future work will entail the collection of video data from another selection of experimental 

junctions and the amalgamation of all our test data to infer unseen junction data. 

 

Real-world Testing on Unseen Data: DAISY demonstrated the ability to predict unseen data 

accurately.  However, Accuracy decreased for data captured in relation to greater distances 

from the merge line.  Future work would remove the constraints of real-time inference to focus 

solely on intent prediction accuracy at varying distances from the merge line and then build 

the pipeline around a solid accuracy base. 
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We would experiment with the following models: GPT (Generative Pre-trained Transformer) 

Series.  OpenAI's GPT series (Roumeliotis and Tselikas, 2023), especially the latest iterations 

like GPT-4, offer highly accurate predictions for a range of NLP tasks, including intent 

detection; this could be applied to our feature vector arrays.  Their ability to generate human-

like text makes them suitable for complex intent understanding.  LSTM networks are 

particularly effective for sequence prediction problems, making them ideal for applications 

where intent needs to be inferred from a sequence of actions.  CNNs for Image-Based Intent 

Prediction In contexts where the intent is derived from visual cues, such as predicting the 

intent of a vehicle in autonomous driving, CNNs have been highly effective due to their ability 

to extract features from images; we would experiment with combining detection, classification 

and intent prediction into a single shot CNN.   

CRF (Conditional Random Fields) combined with RNNs for sequence labelling tasks (Leevy, 

Khoshgoftaar and Villanustre, 2020) where context is crucial for predicting the intent, 

combining CRFs with RNNs or LSTMs has proven to be highly effective, offering a balance 

between understanding sequence context and making accurate predictions.  Transformer-

based models for Multimodal Intent Prediction Models like ViLBERT (Vision-and-Language 

BERT) (Hong et al., 2020) that utilise the transformer architecture to process both text and 

visual input have shown high Accuracy in predicting intent where visual cues and textual 

information are essential. 

 

Self-learning and Intent Classification: We introduced a self-learning mechanism for 

appending intent classifications and enriching live training data that showed a positive impact 

without harming the data quality.  Future work would involve collecting data from a static site 

on a 24-hour basis to generate sufficient data to assess the impact of the self-learning 

mechanism.  

Continuous Improvement 

Feedback Loop for Safety Enhancements: The vehicle intent model can continuously learn 

from new data, improving its predictions over time.  This dynamic improvement ensures that 

the safety layer it represents becomes more effective as more data is collected and analysed. 

 

 

10.5 Future work: The Swiss cheese model of safety 

Integrating a vehicle intent model, particularly in the context of motorcycle safety aT-junctions, 

can significantly contribute to the Swiss Cheese safety model (Akuh and Atombo, 2019) by 

adding an innovative layer of defence against accidents.  

Our vehicle intent prediction model serves as an early warning system, predicting potential 
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conflicts before they occur.  By understanding the likely actions of vehicles at T-junctions, the 

system can alert riders and drivers to possible hazards, allowing for preemptive action. 

This can be integrated with traffic signals and control systems; our vehicle intent prediction 

model can optimise traffic flow, reducing the chances of accidents by managing vehicle 

movements more effectively.  

 For motorcycles, integrating intent prediction models into Advanced Rider Assistance 

Systems (ARAS) can enhance the functionality of these systems, providing riders with real-

time information about the intentions of surrounding vehicles, thereby allowing for safer 

navigation through junctions. By providing alerts to riders and drivers about the predicted 

movements of other vehicles, our model directly addresses human errors, such as failure to 

notice an approaching vehicle or misjudging its speed and direction. 

The insights gained from the vehicle intent model can be used to develop better training 

materials and simulations, teaching riders and drivers about common risk patterns at  T-

junctions and how to avoid them.  Data and insights from our model can inform more effective 

traffic policies and junction designs that inherently reduce conflict points and improve safety 

for all road users, especially vulnerable ones like motorcyclists. 

By providing a predictive capability, our vehicle intent model fills gaps that other safety 

measures might not address, such as unpredictable human behaviour or the limitations of the 

physical infrastructure to enforce safe interactions. 

 

Other practical use considerations. 

Traffic Management Systems: 

Utilising aggregated intent prediction data from multiple vehicles to optimize traffic flow and 

reduce congestion. 

Benefit: More efficient traffic management, leading to reduced travel times and lower 

emissions. 

Challenge: Collecting and processing large volumes of data in real-time while maintaining 

privacy and security. 

Fleet Management: 

Enhancing the management of commercial vehicle fleets by predicting vehicle behaviour and 

optimizing routes. 

Benefit: Improved efficiency and safety of fleet operations, leading to cost savings and better 

service quality. 

Challenge: Integrating predictive systems with existing fleet management software and 

ensuring scalability. 

Smart Infrastructure: 

Integrating intent prediction with smart city infrastructure, such as connected traffic lights and 
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road signs. 

Benefit: Enhancing infrastructure responsiveness to real-time traffic conditions, improving 

overall urban mobility. 

Challenge: Coordinating between various stakeholders (e.g., municipalities, tech providers) 

and ensuring interoperability of systems. 

Driver Training and Simulation: 

Using intent prediction models in driving simulators for training new drivers or assessing driver 

behaviour. 

Benefit: Providing realistic and challenging scenarios for training, leading to better-prepared 

drivers. 

Challenge: Develop high-fidelity simulation environments that accurately reflect real-world 

driving conditions. 

Emergency Response: 

Assisting emergency vehicles in navigating traffic by predicting the actions of surrounding 

vehicles. 

Benefit: Faster and safer routes for emergency responders, potentially saving lives. 

Challenge: Ensuring that prediction models can handle the unique dynamics of emergency 

scenarios. 

Future Outlook: 

As vehicle intent prediction systems like DAISY evolve, their integration into various aspects 

of transportation and urban mobility is expected to grow. The potential for these systems to 

enhance safety, efficiency, and overall user experience is significant. However, achieving this 

potential requires addressing the technical, operational, and regulatory challenges associated 

with their implementation. By focusing on these areas, we can pave the way for more 

intelligent and responsive transportation systems in the future. 

 

10.5.1 Contribution to the Swiss Cheese Model for Motorcycle Safety 

Integrating a vehicle intent model into motorcycle safety strategies represents a proactive and 

dynamic approach to safety.  It does not rely solely on reactive measures (e.g., helmets, 

protective gear) or static infrastructure (e.g., road signs, physical barriers) but adds a 

sophisticated layer that actively predicts and mitigates risks.  In the context of the Swiss 

Cheese Model, it is a layer that not only enhances the effectiveness of existing layers but also 

evolves to address emerging safety challenges, making it a valuable addition to the 

multifaceted approach required for improving road safety, particularly aT-junctions where the 

interaction dynamics are complex, and the stakes are high. 
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