
1 
 

 

 

 

 

 

 

Analysis and Modelling of TTL ice 

crystals based on in-situ light 

scattering patterns 

 

 

 

by 

Elizabeth Reeja Mathen 

 

 

 

 

Submitted to the University of Hertfordshire in partial fulfilment of 

the requirement of the degree of PhD 

 

 

July 2023 

 



2 
 

Abstract 

 

 

Even though there are numerous studies on cirrus clouds and its influence on climate, lack of 
detailed information on its microphysical properties like ice crystal geometry, still exists. 
Challenges like instrumental limitations and scarcity of observational data could be the 
reasons behind it. But this knowledge gap has only heightened the error in climate model 
predictions. Therefore, this study is focused on the Tropical Tropopause Layer (TTL), where 
cirrus clouds can be seen, and the temperature bias is higher. Since the shape and surface 
geometry of ice crystals greatly influence the temperature, a detailed understanding of these 
ice crystals is necessary. So, this paper will look in-depth on finding the morphology of different 
types of ice crystals in the TTL.  

The primary objective of this research is to analyse the scattering patterns of ice crystals in 
the TTL cirrus and find their characteristics like shape and size distributions. As cirrus is a high 
cloud, it plays a crucial role in the Earth-atmosphere radiation balance and by knowing the 
scattering properties of ice crystals, their impact on the radiative balance can be estimated. 
This research further helps to broaden the understanding of the general scattering properties 
of TTL ice crystals, to support climate modelling and contribute towards more accurate climate 
prediction.   

An investigation into the light scattering data is presented. The data consist of 2D scattering 
patterns of ice crystals of size 1-100µm captured by the Aerosol Ice Interface Transition 
Spectrometer (AIITS) between the scattering angles 6° and 25° at the wavelength of 532nm. 
The images were taken during the NERC and NASA Co-ordinated Airborne Studies in the 
Tropics and Airborne Tropical Tropopause Experiment (known as the CAST-ATTREX 
campaign) on 5th March 2015 at an altitude between 15-16km over the Eastern Pacific.  

The features in the scattering patterns are analysed to identify the crystal habit, as they vary 
with the geometry of the crystal. After the analysis phase, the model crystals of specific types 
and sizes are generated using an appropriate computer program. The scattering data of the 
model crystals are then simulated using a Beam Tracing Model (BTM) based on physical 
optics, as geometric optics doesn’t produce the required information and exact methods (like 
T-matrix or Discrete Dipole Approximation) are either unsuitable for large size parameters or 
time-consuming. The simulated scattering pattern of a model crystal is then compared against 
that of the AIITS to find the characteristics like shape, surface texture and size of the ice 
crystals. By successive testing and further analysis, the crystal sizes are estimated. Since the 
manual analysis of scattering patterns is time-consuming, a pilot study on Deep Learning 
Network has been undertaken to classify the scattering patterns.  

Previous studies have shown that there are high concentrations of small ice crystals in TTL 
cirrus. However, these crystals, especially <30µm, are often misclassified due to the limited 
resolution of the imaging instruments, or even considered as shattered ice. Through this 
research it was possible to explore both the crystal habit and its surface texture with greater 
accuracy as the scattering patterns captured by the AIITS are analysed instead of crystal 
images. It was found that most of the crystals are quasi-spheroidal in shape and that there is 
indeed an abundance of smaller crystals <30µm. It was also found that over a quarter of the 
crystal population has rough surfaces. 

 

 

 



3 
 

 

 

Acknowledgement 

 

 

I owe my deepest gratitude to my supervisors, Dr Evelyn Hesse, and Dr Richard Greenaway, 
for their guidance and invaluable supervision throughout this research. I cannot think of better 
supervisors and without their continuous help, this dissertation would not have been possible.  

Also, my special thanks to Dr Chris Stopford for helpful discussions on the AIITS instrument, 
Dr Anthony J Baran and the OBR group at the Met Office for their insightful comments, Dr 
Sarah Woods at SPEC Inc and ThaoPaul Bui at NASA for all their support regarding the 2015 
ATTREX MMS data.  

My appreciation also goes out to my friends. 

I would also like to thank my family for their inspiration and unwavering support. 

Above all, I am extremely grateful to Almighty God, who enabled me to complete this research. 

I would also like to acknowledge the following organisations for the awards: 

❖ Collaborative Awards in Science and Engineering (CASE): Met Office, UK 
❖ Bell Burnell Graduate Scholarship Fund (BBGSF): Institute of Physics, UK 

 

  



4 
 

CONTENTS   

 

1. Introduction .................................................................................................................................. 7 

2. Ice crystals, cirrus clouds and light scattering – an overview .......................................................... 9 

2.1 Ice crystals ............................................................................................................................... 9 

2.1.1 Ice crystal habits ............................................................................................................. 10 

2.1.2 Orientation of crystals ..................................................................................................... 11 

2.2 Cirrus clouds .......................................................................................................................... 12 

2.2.1 Microphysical properties of cirrus clouds and its impact on climate ................................ 14 

2.2.2 Previous studies on cirrus clouds ..................................................................................... 15 

2.3 The process of scattering and related terminology ................................................................. 17 

2.3.1 Scattering pattern ........................................................................................................... 18 

2.3.2 Single scattering and its properties.................................................................................. 19 

2.3.2.1 Cross-sections and efficiencies ................................................................................. 19 

2.3.2.2 Single scattering albedo............................................................................................ 19 

2.3.2.3 Phase function.......................................................................................................... 19 

2.3.2.4 Asymmetry Parameter ............................................................................................. 20 

3. Light Scattering Data.................................................................................................................... 21 

3.1 Airborne Tropical Tropopause Experiment (ATTREX) .............................................................. 21 

3.1.1 ATTREX 2015 ................................................................................................................... 23 

3.2 Measurement Probes ............................................................................................................ 25 

3.2.1 Fast Cloud Droplet Probe (FCDP) ..................................................................................... 25 

3.2.2 Two-Dimensional Stereo (2D-S) ....................................................................................... 26 

3.2.3 Hawkeye ......................................................................................................................... 26 

3.2.4 Aerosol Ice Interface Transition Spectrometer (AIITS) ...................................................... 27 

3.3 Images taken by the CPI ......................................................................................................... 29 

4. Methodologies ............................................................................................................................ 30 

4.1 Terminology........................................................................................................................... 30 

4.1.1 Euler angles..................................................................................................................... 30 

4.1.2 Aspect Ratio .................................................................................................................... 31 

4.1.3 Size Parameter ................................................................................................................ 31 

4.2 Features of different types of crystals and their scattering patterns ....................................... 32 

4.3 Methods for simulating light scattering patterns .................................................................... 33 

4.3.1 The Beam Tracing Model (BTM) ...................................................................................... 33 

4.4 Estimating the shape and size of crystals ................................................................................ 34 



5 
 

4.5 Estimating the size and roughness of rough crystals ............................................................... 34 

4.5.1 Speckle Analysis .............................................................................................................. 35 

4.5.1.1 Testing the Speckle Analysis code using simulated scattering images........................ 37 

4.5.2 Combined Roughness ...................................................................................................... 41 

4.5.2.1 Grey Level Co-occurrence Matrix (GLCM) ................................................................. 41 

4.6 Dealing with weak images ...................................................................................................... 46 

5. Modelling different types of crystals to approximate AIITS scattering patterns ............................ 48 

5.1 Plates ..................................................................................................................................... 48 

5.1.1 Pristine, smooth hexagonal plates ................................................................................... 48 

5.1.2 Hexagonal plates with rounded edges ............................................................................. 50 

5.1.3 Scalene plates ................................................................................................................. 54 

5.1.4 Droxtals .......................................................................................................................... 59 

5.2 Columns................................................................................................................................. 62 

5.2.1 Smooth solid columns ..................................................................................................... 62 

5.2.2 Rough solid columns ....................................................................................................... 63 

5.2.3 Needles ........................................................................................................................... 64 

5.3 Quasi-spheroids ..................................................................................................................... 66 

5.4 Rough crystals ........................................................................................................................ 69 

5.4.1 Testing the Speckle Analysis code using AIITS images ...................................................... 71 

6. Results and Discussion ................................................................................................................. 74 

6.1 AIITS results from the 2015 ATTREX mission and their interpretation ..................................... 74 

6.1.1 Very small crystals ........................................................................................................... 74 

6.1.2 Columns .......................................................................................................................... 75 

6.1.3 Plates .............................................................................................................................. 77 

6.1.4 Rough crystals ................................................................................................................. 79 

6.1.5 Quasi-spheroids .............................................................................................................. 81 

6.2 Imaging parameters which might have affected the particle classification results .................. 87 

6.3 Results from NASA probes ..................................................................................................... 89 

6.3.1 Particle size comparison between AIITS and NASA probes’ measurements ...................... 90 

6.3.2 Temperature and supersaturation ................................................................................... 93 

6.4 Results from related studies................................................................................................... 93 

7. Pattern classification using Deep Learning Network ..................................................................... 95 

7.1 Deep Learning Network ......................................................................................................... 95 

7.2 Data pre-processing ............................................................................................................... 95 

7.3 Network Framework and Training .......................................................................................... 98 

7.3.1 Overcoming the data challenge ....................................................................................... 98 



6 
 

7.3.2 Training dataset .............................................................................................................. 98 

7.3.3 Designing the Network .................................................................................................... 99 

7.4 Assessing the Networks’ prediction ...................................................................................... 102 

7.4.1 Test dataset .................................................................................................................. 102 

7.4.2 The Networks’ prediction .............................................................................................. 102 

7.5 Testing the trained networks with PPD2 images ................................................................... 105 

7.6 Discussion of the results ...................................................................................................... 106 

8. Conclusions and Future work ..................................................................................................... 108 

9. Bibliography .............................................................................................................................. 112 

10. Acronyms ................................................................................................................................ 117 

11. Appendix ................................................................................................................................. 119 

11.1 Speckle Analysis ................................................................................................................. 119 

11.2 Combined Roughness......................................................................................................... 122 

11.3 Date Time UTC Conversion ................................................................................................. 124 

11.4 Data pre-processing ........................................................................................................... 125 

11.5 Deep Learning Network ..................................................................................................... 129 

11.6 Poster ................................................................................................................................ 133 

 

 

  



7 
 

1. INTRODUCTION 

 

Ice crystals can produce spectacular displays in the sky. Depending on the angle of incident 
light as well as the geometry and orientation of the ice crystals, these displays vary. Optical 
phenomena like halos and light pillars are results of refraction and reflection of light through 
ice crystals.  

Clouds can be seen in different levels of the atmosphere – high, middle, or low. Compared to 
low and middle clouds, high clouds like cirrus varies significantly in terms of their radiative 
properties due to their position in the atmosphere as well as the complex microphysical 
properties of ice crystals in them (Kokhanovsky 2006). The ice crystals in cirrus clouds vary 
in shape and size depending on their growth conditions such as temperature and humidity in 
the atmosphere. Their size ranges from <10μm to many thousands of microns (Baran 2012). 
Cirrus clouds are commonly seen in the upper troposphere and lower stratosphere, a layer 
called tropopause layer. In the tropics, this layer is known as the tropical tropopause layer 
(TTL). Studies show that the cirrus cloud coverage is higher in the tropics than in the mid-
latitudes (Baran 2012, Lloyd et al. 2021). The impact of TTL cirrus on climate is huge and 
several studies have been conducted to understand their microphysical and macrophysical 
properties (see Section 2.2.2). The microphysical properties (shape and size distribution etc.) 
of crystals, play a key role as they can ultimately affect the cloud radiative forcing (Zhang et 
al. 1999). Therefore, it is crucial to know the physical and scattering properties of ice crystals 
in TTL clouds and by knowing them, radiative transfer and climate model simulations can be 
done much more accurately. 

There are several airborne instruments which are used for imaging ice crystals directly and 
indirectly. Direct imaging simply means taking images of a crystal directly, while the detection 
of light scattered by a crystal is called indirect imaging. The primary advantage of indirect 
imaging is that it can be used for imaging small crystals. Small crystals <100μm, due to their 
size, are often not classified accurately by direct imaging instruments, limited by their resolving 
power. Also, it is hard to predict whether the crystal surface is smooth or rough by analysing 
their direct images.  

In this research, properties of individual ice crystals in 1-100μm size range are investigated by 
analysing their scattering patterns. This helps not only to classify the crystal habits, but also 
to identify their surface texture. Different types of crystals exhibit different properties in their 
scattering patterns. The scattering pattern will often contain prominent features like speckles, 
rings, arcs, or bands (maxima and minima) resulting from constructive and destructive 
interference. The pattern depends on the wavelength of the incident light as well as the 
geometry (shape, surface roughness and orientation) and refractive index of the particle. For 
example, the scattering pattern obtained from a pristine plate crystal differs from that of a 
scalene plate crystal in many ways (see Section 5.1). By successive testing and closely 
studying these features, the crystal sizes and shapes can be estimated. 

In Chapter 2, the properties of ice crystals like their structure, habits, and orientation are 
discussed, followed by the types of cirrus clouds and the importance of understanding their 
microphysical properties as well as previous studies conducted in them. In the later sections, 
the scattering process and related terminology are briefly described. 

This study is focusing on a database of 2D light scattering images taken by the Aerosol Ice 
Interface Transition Spectrometer (AIITS) at the wavelength of 532nm over the angular range 
of 6°-25°. These images were taken during the NERC and NASA Co-ordinated Airborne 
Studies in the Tropics and Airborne Tropical Tropopause Experiment (known as the CAST-
ATTREX campaign) on 5th March 2015. Details of the ATTREX mission as well as some of 
the instruments used for the mission are discussed in Chapter 3.  
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Since the data are indirect images of crystals, an investigation is needed to identify the crystal 
shapes and sizes. This is done using a combination of analysis and computer modelling 
techniques detailed in Chapter 4. On analysing the features in the scattering pattern, it is 
possible to identify the general shape of the crystal, as the features vary depending on the 
geometry (and surface texture) of the crystal. Additional steps are followed to accurately 
estimate the shape, size, and surface texture of the crystals. Once the crystal habit is found, 
a model of that crystal is generated using a specific algorithm and its scattering pattern is 
simulated using a technique called the Beam Tracing Model (Taylor 2016, Hesse et al. 2018). 
Investigations are carried out using crystal models of different sizes and orientations until the 
scattering pattern matches with the AIITS images. If the AIITS images only contain speckle-
like features indicating rough crystals, the crystal habit identification is not possible. The size 
and roughness of rough crystals are calculated using two different computer programmes. 
The features of different types of crystals and their scattering patterns as well as the process 
of estimating the shapes, sizes and roughness of crystals are described in Chapter 4. The 
simulated scattering patterns of different types of modelled crystals compared to the AIITS 
images are detailed in Chapter 5 using a variety of examples. 

The findings of the current investigation are summarized in Chapter 6. These are also 
compared with the results from other NASA probes during the same flight as well as results 
from previous studies conducted in TTL cirrus clouds. 

Finally, a pilot study on a Deep Learning neural network that helps to classify the crystals 
based on the scattering pattern is discussed. To speed up the process, the Transfer Learning 
method is implemented using two pre-trained networks (GoogLeNet and ResNet-50) for image 
classification and their prediction accuracies are analysed. Transfer Learning is particularly 
useful when limited data is available. Another advantage of using a pre-trained network is that 
the network can transfer the knowledge it gained from a larger dataset it has been trained 
with, to the new smaller dataset. This reduces the training time and the need to design a 
network from scratch. By replacing the final few layers of the pre-trained network, it can be 
used alongside the new dataset. 

As with all neural networks, the first step is data pre-processing. This process is described in 
detail in Chapter 7. The pre-trained networks are then trained with a limited number of AIITS 
images belonging to five categories (Blank images, Columns, Patterned, Plates, and 
Rounded) as this is a pilot study. There are two versions of the program: one for testing 
individual images and another for testing a folder of images. In the first version, on testing a 
single image, the probability of the crystal type is predicted in the form of a bar chart in 
descending order. In the second, the probability of the crystal type is predicted based on a 
folder of test images and the predictions with highest score (probability) are written to a file. 
The first program will be useful for individual inspection of images and predictions, while the 
second one is aimed at an image database for a faster comparison of results and for checking 
the overall prediction accuracies of the networks. In addition, to check the usability of the 
trained networks on light scattering images taken by other instruments, images from the 
Particle Phase Discriminator version 2 (PPD2) are used as another test set. Finally, the 
prediction accuracies of both GoogLeNet and ResNet-50 are evaluated based on two test 
datasets. 
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2. ICE CRYSTALS, CIRRUS CLOUDS AND LIGHT SCATTERING 

– AN OVERVIEW 

 

2.1 Ice crystals 
 

Ice crystals are simply water in a solid state. At visible wavelengths, ice appears transparent 
in its purest form and somewhat opaque in the presence of impurities like tiny air bubbles or 
dust particles. Ice crystals are formed by homogeneous or heterogeneous nucleation. While 
the former occurs below -38°C (Atlas et al. 2022), the latter, which is observed frequently 
(Carslaw 2009), occurs below 0°C. Homogeneous nucleation refers to the spontaneous 
freezing of liquid water, and heterogeneous nucleation refers to the nucleation process 
involving an ice nucleating particle like mineral dust, volcanic ash, pollen, soot etc. In 
heterogeneous nucleation, the nucleating particle usually has a crystal lattice structure that 
closely resembles that of ice.  

Depending on temperature and pressure, ice can take on different crystalline structures. 
Among them, the most common types are hexagonal ice (Ih) and cubic ice (Ic), both having a 
structure of tessellating hexagonal rings of oxygen atoms linked by hydrogen bonds. The two 
types differ on how their layers are stacked. Fig. 2.1 (a) shows a layer of water ice with red 
spheres representing oxygen atoms connected by hydrogen bonds (hydrogen atoms are 
omitted for clarity). Fig. 2.1 (b) shows hexagonal ice (Ih) with the same layer format repeating 
in successive layers, while in cubic ice (Ic) Fig. 2.1 (c), the successive layers are displaced by 
half the diameter of the hexagonal ring in the previous layer. A possible structure of a 
combination of hexagonal ice (Ih) and cubic ice (Ic) termed as ‘stacking disordered ice’ (Isd) is 
shown in Fig. 2.1 (d) (Murray et al. 2015). 

 

Fig. 2.1: Different crystal structures of ice; (a) layer of water ice, (b) hexagonal ice, (c) cubic 
ice and (d) stacking disordered ice. Taken from Murray et al. (2015). 
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2.1.1 Ice crystal habits 
The shape of the ice crystal varies from pristine hexagonal prism (2 basal and 6 prism facets) 
to complex structures. Both the crystal shape and its growth are very much determined by the 
temperature and ice supersaturation. Nevertheless, the underlying crystal structure can also 
determine the crystal’s shape (Murray et al. 2015). For example, hexagonal plates and 
columns are likely to originate from hexagonal ice (Ih), cubes, octahedra and cubo-octahedra 
from cubic ice (Ic), and trigonal crystals from ‘stacking disordered ice’ (Isd) (Murray et al. 2015). 

“The ice elements formed in natural clouds are of three main types: individual ice crystals (or 
groups of crystals having a common nucleus), snowflakes and hailstones.” (Mason and 
Ludlam 1951). There are 80 types of snow crystals based on meteorological classification 
(Lee and Magono 1966); a further improvement from 36 types based on Nakaya’s general 
classification of snow crystals. Though widely used, the authors of Kikuchi et al. (2013) point 
out that these classifications are based on observations in Japan and do not include 
observations from polar regions. The new classification system, named ‘global classification’, 
is based on observations from several sites in Japan as well as northern and southern 
hemisphere polar regions. It presents 121 types of snow crystals, ice crystals and solid 
precipitation particles with microscope images and schematic drawings alongside their 
characteristics. The solid precipitation particles include sleet, hail, and ice pellets (Kikuchi et 
al. 2013).  

Bailey and Hallett (2009) provide a comprehensive habit diagram as a function of temperature 
and ice supersaturation, which is shown in Fig. 2.2. The figure consists of both textual (top) 
and pictorial format (bottom) of ice crystal habits formed between 0°-70°C, based on field 
studies and laboratory results.  

In general, single crystals dominate above -20°C, while polycrystalline structures dominate 
between -20°C and -70°C. Among the latter, a plate-like regime is evident from -20°C to -40°C 
and column-like regime between −40° and −70°C. Most of the thin columns can be seen 
between -10°C and 0°C below 30% ice supersaturation. Most of the simple hexagonal crystals 
are found at low ice supersaturation and crystal complexity increases with supersaturation. 
Stellar crystals or dendrites are formed at a temperature range of -8°C and -18°C. On the 
other hand, bullet rosettes can be seen at temperatures below -40°C at higher supersaturation 
values. At lower saturation (below 10%), small crystals of size<50 µm can be seen (Bailey and 
Hallett 2009). 

Mason and Ludlam (1951) state that “...skeletal or dendritic crystals forms are the 
consequence of high ice-supersaturations, while complete crystals of simple geometrical 
shape are produced at low supersaturations”. This agrees with Fig. 2.2, where dendritic 
crystals are found at between 20-60% ice supersaturation and hexagonal crystals at below 
10% ice supersaturation. 

Depending on temperature and ice supersaturation, the crystal habit can shift substantially 
due to their fall in the atmosphere. However, the history of nucleation and changing growth 
conditions will be preserved in the crystal (Bailey and Hallett 2009). Regarding symmetry and 
surface texture, ice crystals may not always be perfect. Bailey and Hallett (2009) state that 
“most ice crystals are defective and irregular in shape to varying degrees and are mostly 
polycrystalline at temperatures below −20°C... (the) vast majority of ice crystals are defective 
in shape with rough surfaces.”  
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Fig. 2.2: Habit diagram for atmospheric ice crystals in text (above) and in pictorial format 
(below), taken from Bailey and Hallett (2009). 

 

2.1.2 Orientation of crystals 
In an ice cloud, ice crystals can be seen in different orientations. However, the orientation of 
the crystal depends largely on its geometry, or more simply, keeping its largest surface area 
horizontal. For example, planar crystals like columns and plates are usually found orienting 
horizontally. More specifically, hexagonal columns are usually found horizontally oriented 
along its column axis, while plates are often seen lying on their basal facet. The preferred 
orientation is due to the atmospheric drag force. The larger the surface area of the crystal, the 
larger the drag force will be. Based on a study (Noel and Sassen 2005) conducted in cold 
cirrus cloud to investigate the orientation of ice crystals using LIDAR (Light Detection and 
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Ranging) observations, 81.5% crystals were found below 1.75° to the orientation angle. About 
11.5 % of the crystals were between 1.75-3°, and 7% of the crystals above 3° to the orientation 
angle. Therefore, it was estimated that the high-level cold clouds (<~-30°C) have a maximum 
deviation angle of ~1.0° (Noel and Sassen 2005). Other studies (Chepfer et al. 1999, 
Westbrook et al. 2010) also confirm that planar crystals are found to be horizontally oriented. 

2.2 Cirrus clouds  
 

Clouds are made of minute particles of liquid water, ice crystals, or both. They may also 
contain ice nucleating particles or aerosols. Ranging from puffy cumulus to colourful 
noctilucent, clouds are divided into different types depending on their appearance (shape, 
texture etc.), and the atmospheric level at which they occur. Though clouds can be seen at all 
levels of the atmosphere, most of them are found in the lowest layer of the atmosphere called 
the troposphere (up to 10km from Earth’s surface), where the majority of the dust particles 
and water vapour are present. 

High clouds, which are entirely composed of ice crystals are called cirrus clouds. They have 
a white, thin, and wispy appearance with a mean optical depth of 0.31±0.24 (Giannakaki et al. 
2007). An example is shown in Fig. 2.3. Even though previous studies (Kramer et al. 1999) 
show that homogeneous nucleation is the main nucleation mechanism due to low temperature, 
later studies (O’Shea et al. 2016) show evidence for both heterogeneous and homogeneous 
nucleation of ice particles in cirrus clouds. They are also formed as a result of contrails left 
behind by aeroplanes, known as contrail cirrus (Karcher 2018). For high clouds like cirrus, 
cirrostratus, and cirrocumulus, (sometimes referred as cirriform clouds collectively), the typical 
height of the cloud base above the Earth’s surface is 5-13km and 6-18km in the temperate 
and tropical regions respectively (Houze 2014). 

 

 

Fig. 2.3: Cirrus cloud seen across the sky over Hertfordshire, U.K., along with contrails.  

 

The cirrus cloud can be further divided into different types. Cirrus spissatus (translates to ‘thick’ 
in Latin) is the thickest cirrus cloud which can be seen in the upper troposphere. An example, 
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taken from St. Brelade, Jersey can be seen in Fig. 2.4 (a). Another cirrus cloud type known as 
cirrus floccus can also be seen in its initial stage of development (see inset of Fig. 2.4 (a), 
CloudAtlas 2017). Houze (2014) suggests that as the cloud ages, the hair-like appearance of 
cirrus clouds will become more exaggerated. Fig. 2.4 (b-d), taken from Colorado, shows this 
aging process (Houze 2014). In Fig. 2.4 (b), cirrus floccus with wool-like patches can be seen. 
In a more advanced stage of development, cirrus uncinus can be seen in Fig. 2.4 (c), which 
can be easily distinguished by its unique hook shape (uncinus means ‘curly hooks’ in Latin). 
Later, in the most advanced state, cirrus fibrates are formed with parallel streaks without any 
hook. Fig. 2.4 (d) shows a special kind of cirrus fibrates known as ‘cirrus fibrates vertebratus’ 
with a distinct fish bone-like look.  

Clouds, in general, play a very important role in climate. “Changes in cloud cover are important 
because clouds exert a strong control over Earth's radiative balance (Carslaw et al. 2002). 
They can make the Earth’s atmosphere cooler or warmer by reflecting or absorbing the 
sunlight. According to the report by the Intergovernmental Panel on Climate Change, “Clouds 
and aerosols continue to contribute the largest uncertainty to estimates and interpretations of 
the Earth’s changing energy budget” (Boucher et al. 2013). Cirrus clouds, in particular, have 
been a topic of interest for many researchers. Results from space-based measurements show 
that at any given time, cirrus covers about 30% of the mid-latitudes, and 60%–80% of the 
tropics (Baran 2012). Relatively higher cloud fractions were found in tropical regions compared 
to mid-latitudes (Lloyd et al. 2021).  

 

 

Fig. 2.4: Different types of cirrus clouds. (a) Cirrus spissatus (taken from CloudAtlas (2017)); 
the highlighted area shows the cirrus floccus in its initial development stage. (b) Cirrus 

floccus, (c) cirrus uncinus, and (d) cirrus fibrates vertebratus. Images (b-d) are taken from 
Houze (2014). 
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2.2.1 Microphysical properties of cirrus clouds and its impact on climate 
Inconsistencies still exist in climate modelling due to spatial and temporal variations of cirrus 
clouds and differences in their microphysical parameters (Baran 2012, Zhang et al. 1999). 
Limitations of imaging instruments in capturing their exact properties, scarcity of satellite as 
well as in situ measurements are other contributing factors to such inconsistencies (Jensen 
and Pfister 2004, Karcher 2018). Several authors (Strom et al. 1997, Noel and Sassen 2005, 
Murray et.al 2015) have pointed out the shortage of information about the microphysical 
properties of cirrus clouds which results in uncertainty of their effect on the radiative balance 
and ultimately, in modelling climate. “The radiative impact of cirrus clouds is one of the largest 
sources of uncertainty in global climate models (GCMs) due to the complex microphysical 
processes that are poorly understood and difficult to measure” (Lloyd et al. 2021). 

Cirrus clouds can be seen primarily in the tropopause layer, a transition layer which separates 
the dry stratosphere from the wet troposphere. It extends between ~10-12km at high altitudes 
and 14-18km in the tropics (Houze 2014). Within the tropopause layer temperature stays 
almost constant. Between the Earth’s surface and the tropopause layer temperature 
decreases with height and above the tropopause layer, the temperature increases with height 
(temperature inversion). In the tropics, this layer is known as Tropical Tropopause Layer (TTL). 
Many authors (Baran 2012, Thornberry et al. 2017) claim that the TTL cirrus act as a crucial 
layer in the atmosphere by contributing to thermal radiation and temperature biases. “The role 
of thin cirrus clouds for cloud feedback is not known and remains a source of possible 
systematic bias...Feedbacks from thin cirrus amount cannot be ruled out and are an important 
source of uncertainty” (Boucher et al. 2013). 

Cirrus clouds can absorb the thermal infrared radiation emitted from the Earth’s surface and 
lower atmosphere and at the same time, they can reflect the incoming sunlight (Kokhanovsky 
2006). Depending on the amount of radiation it absorbs and reflects, the net energy varies. 
“Understanding the role of cirrus clouds in this [radiative energy budget] system is vital, as 
they interact with short- and long-wave radiation, and the presence of cirrus can be decisive 
as to a net gain or loss of radiative energy in the [polar] atmosphere” (Marsing et al. 2023). 
The net radiative effect of cirrus cloud is defined as the sum of the short-wave radiation and 
long-wave radiation (Baran 2012). 

𝑅𝑛𝑒𝑡 = 𝑅𝑆𝑊 + 𝑅𝐿𝑊 

where 𝑅𝑛𝑒𝑡  is the net radiation (irradiance, unit: W/m2), 𝑅𝑆𝑊 is the short-wave radiation and 

𝑅𝐿𝑊 is the long-wave radiation. The short-wave radiation is the difference between the short-

wave irradiance from cirrus (𝑅𝑆𝑊(𝑐𝑖𝑟𝑟𝑢𝑠)) and cloud-free sky (𝑅𝑆𝑊(𝑐𝑙𝑜𝑢𝑑𝑓𝑟𝑒𝑒)). Similarly, the 

long-wave radiation is the difference between the long-wave irradiance from the cirrus 

(𝑅𝐿𝑊(𝑐𝑖𝑟𝑟𝑢𝑠)) and cloud-free sky (𝑅𝐿𝑊(𝑐𝑙𝑜𝑢𝑑𝑓𝑟𝑒𝑒)). 

𝑅𝑆𝑊 = 𝑅𝑆𝑊(𝑐𝑖𝑟𝑟𝑢𝑠) − 𝑅𝑆𝑊(𝑐𝑙𝑜𝑢𝑑_𝑓𝑟𝑒𝑒) 

𝑅𝐿𝑊 = 𝑅𝐿𝑊(𝑐𝑖𝑟𝑟𝑢𝑠) − 𝑅𝐿𝑊(𝑐𝑙𝑜𝑢𝑑_𝑓𝑟𝑒𝑒) 

The net radiative effect can be positive, negative, or neutral depending on ice crystal shape 
and size distribution along with other parameters (optical depth, ice water content, altitude 
etc.) of the cirrus cloud (Baran 2012). For example, in terms of crystal habit, a cloud containing 
spherical crystals has higher radiative forcing compared to one with aspherical or polycrystals 
(aspherical crystals have higher reflective (albedo) properties) (Zhang et al. 1999). In terms of 
crystal size, large ice crystals produce positive cloud radiative forcing (and thereby warming 
effect on Earth-atmosphere system); on the other hand, a large number of smaller crystals 
can create the opposite effect (Zhang et al. 1999). The authors also state that “Cirrus cloud 
radiative forcing, which reflects the potential climate impact of cirrus, is extremely sensitive to 
crystal shape and to crystal size distribution.” Other studies (Wendisch et al. 2005 and 2007) 
also confirm that ice crystal shape can significantly affect long-wave radiation. 

(2.1) 

(2.2) 

(2.3) 
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Small particle size with low fall speed (the rate at which crystals fall down in the atmosphere 
due to gravity) is one of the reasons for longer cloud persistence in the TTL (Fueglistaler et al. 
2009). “The small particles may make an important contribution for the radiative transfer in 
clouds and should not be neglected” (Wyser 1998). In the next section, the importance of 
studying small crystals is described, based on the previous studies conducted in the cirrus 
clouds. 

 

2.2.2 Previous studies on cirrus clouds 
Over the years, various studies of the microphysics of cirrus clouds have demonstrated the 
prevalence of small ice (<100µm). However, there are uncertainties concerning their 
morphology (Baran 2012). 

In a study, based on a series of in-situ measurements over several states in the U.S., a higher 
concentration of smaller sized crystals was found. The particle size distributions measured in 
and near cirrus clouds using optical array probes can be seen in Fig. 2.5 (Heymsfield 1975). 
The temperature varied between -19°C and -58°C during sampling. From Fig. 2.5, it is evident 
that the particle spectra are roughly the same for two types of cirrus, cirrus uncinus and 
cirrostratus up to crystal size of 100µm. The particle concentration is high in the size range 
10-100 µm. Then it reduces gradually for cirrostratus; while for cirrus uncinus, it peaks again 
at 500µm. 

 

Fig. 2.5: The particle size distributions measured in cirrus clouds, taken from Heymsfield 
(1975). Two types of cirrus clouds were sampled: cirrus uncinus (A) and cirrostratus (B). 

 

Regarding a series of measurements to analyse the distribution and mass concentration of 
ice in cirrus clouds using an airborne optical ice particle counter, Liou (1986) states that “The 
crystal shapes associated with cirrostratus, cirrocumulus and cirrus were found to be columns, 
plates and bullets with sizes ranging from about 100 to 1000 µm. It is noted that many crystals 
with sizes smaller than 100µm may be missed by the sampling techniques.” 

NASA has also conducted several studies of cirrus clouds over the years. The objective of 
one such study, the 2014 Airborne Tropical Tropopause Experiment (ATTREX), was to 
investigate the composition, humidity, and thermal structure of TTL cirrus (Jensen et al. 2019). 
(Note that this investigation is also part of ATTREX but focused on 2015 ATTREX.) Details of 
the instruments and ATTREX mission are given in Chapter 3. Fig. 2.6 shows the mean size 
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distribution of crystals sampled on 9-10 March over Western Pacific (the fifth flight out of six 
flight samplings) along with their CPI (Cloud Particle Imager) images. The size distributions 
are shown for two temperature ranges. From the CPI images, the abundance of smaller 
crystals at lower temperature (T<195K=-78°C) can be seen. In comparison, larger crystals are 
evident at the higher temperature range of 195-210K (=-78 to -63°C). In general, the smaller 
crystals look quasi-spheroidal (except a few plates, columns, and bullets), but it is difficult to 
identify the actual crystal shape from the image. In terms of crystal size, the distribution peaks 
can be seen at crystal sizes<30µm. This data is from just one of 6 flight sampling results; 
nevertheless, the results from the other flights corroborate the abundance of small crystals 
<30µm (Woods et al. 2018). 

 

 

Fig. 2.6: The mean size distribution of crystals (provided by FCDP and 2D-S probes) and the 
crystal images captured by the CPI during the flight on 9-10 March as part of the 2014 

ATTREX campaign. Image reproduced from Jensen et al. (2019). The two CPI image panels 
(right) correspond to temperature<195K (top) and between 195-210K (bottom). 

 

Similar results were found during a mission to study the microphysical properties of midlatitude 
cirrus clouds where temperature ranged between -28°C and -61°C. The particle distribution 
peaked in number concentration near 30µm; 99% of the total number concentration were 
accounted by particles <50µm (Lawson et al. 2006b). Among these measurements, two flights 
were through thin cirrus clouds and no particles >100µm were observed. The dominance of 
small crystals might be explained by ice shattering, but the authors consider this phenomenon 
to have only a partial effect on the counts. “Thus, the data suggest that, while crystal shattering 
may inflate the number of small particles in some cirrus clouds, there are instances where 
crystal shattering is highly unlikely and very high concentrations of small particles are still 
observed” (Lawson et al. 2006b). 
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In another study, cirrus clouds were sampled by an aircraft off the UK coast, to the northeast 
(altitude 6500 to 8500 m) and north (altitude 6000 to 9000 m), on 11th and 13th March 2015 
respectively (O’Shea et al. 2016). During the former flight, the temperature ranged between 
230 and 239 K with a cloud top temperature of 220K. During the latter, it was 226 to 245 K 
with a cloud top temperature of 226K. It is reported that “For both flights the highest 
concentrations of small ice (less than 100µm in size) are observed at the lowest temperatures 
suggesting that this is where most of the ice nucleation is occurring” (O’Shea et al. 2016). 

In addition to the studies mentioned above, a novel imaging remote sensing method was used 
during a recent study (Forster and Mayer 2022) on retrieving ice crystal properties in cirrus 
cloud. It was based on ground-based imaging observations of halo displays and they found 
that 90% of the crystals had an effective radius (measure for mean size in particle population) 
of <40µm. The process of retrieval of ice crystal properties is as follows: The image database 
consists of images taken by the HaloCam. An automated HaloForest algorithm validates the 
images with 22° halos. The images are centred around specific azimuth angles. The best 
match is found based on the radiance measurement of the ground-based HaloCam RGB 
image and the precomputed radiance distribution in the look up table in the scattering angle 
range of 18-25°. The look up table consists of different parameters like ice crystal habits, 
surface roughness values, effective radii, cirrus optical thickness etc. The ice crystal properties 
of the best match are then retrieved. In addition, they also check for the presence of the 46° 
halo, to further differentiate the crystals. Though the light shed by the study on the crystal size 
is valuable, it is worth noting that, since it was focused on halo producing crystals (usually 
facetted crystals), other crystals (like quasi-spheroids, which are incapable of producing halos) 
were excluded from the study.  

Despite all these studies, there is ambiguity around small sized crystals as to whether they 
are actual crystals or just artifacts resulting from the partial observation of out-of-focus larger 
particles (O’Shea et al. 2016). They are also often considered as shattered ice (O’Shea et al. 
2016, Guignard et al. 2012), misclassified or generalized as quasi-spheroids (Bailey and 
Hallett 2009, Woods et al. 2018), missed by the detecting instruments (Liou 1986), or even 
excluded from the dataset due to pixel inadequacy (O’Shea et al. 2016). “The presence or 
absence of such small particles has important implications for understanding cirrus cloud 
microphysics and radiative properties, and so further investigation of this issue is crucial to 
further progress” (O’Shea et al. 2016). 

It is clear from these studies that a detailed knowledge of small ice crystal (<100μm) properties 
is required to characterise cirrus more effectively, permitting the development of more 
accurate radiative transfer and climate model simulations. The current study is specifically 
focused on this range and provides just such an insight into these properties. Since this 
investigation is based on analysing the 2D light scattering patterns captured by the AIITS, the 
method is not affected by the resolution limit imposed by direct imaging. Additionally, the 
surface texture can also be analysed accurately. Scattering images however mean that, the 
properties of ice crystals can only be found by solving the indirect problem using a combination 
of observational data analysis and computer modelling techniques.  

Before proceeding any further, the scattering process and related terminologies are 
discussed. 

 

2.3 The process of scattering and related terminology 
Consider a particle which is subdivided into smaller regions. Light, an electromagnetic wave, 
can induce a dipole moment in each of these regions and set the dipoles to oscillate at the 
frequency of the applied field. As a result, they radiate energy in all directions known as 
scattered wave. At any point P, the total scattered field will be the sum of all the scattered 
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wavelets (Bohren and Huffman 1998). Fig. 2.7 provides a pictorial representation of this 
process. 

Not all the incident waves will be re-radiated as a scattered wave. A portion of the incident 
energy could be ‘absorbed’ by the particle depending on the absorption coefficient of the 
medium. As a result of scattering and absorption, the incident wave will be attenuated, which 
is commonly referred as ‘extinction’. 

Extinction = Scattering + Absorption 

 

 

Fig. 2.7: The process of incident light scattered by a particle, taken from Bohren and 

Huffman (1998). 

 

The light wave incident on a particle can be absorbed, reflected from its surface or refracted 
through the particle and be scattered in different directions. It is possible to capture part of the 
angular distribution of the scattered light using instruments like the AIITS (described in Section 
3.2.4) and by analysing the features of the scattering pattern, the properties of particles can 
be retrieved. This is termed the Indirect (inverse) scattering problem. That is, finding the 
characteristics (shape, size, and surface) of the particle by analysing its scattering data, which 
is a challenging problem. The converse is called the direct scattering problem, finding the 
scattered field from a particle of known shape, size, and constituents. 

Note that only elastic scattering is considered. That is, the scattered light is assumed to have 
the same wavelength (or frequency) as the incident light.  

 

2.3.1 Scattering pattern 
Scattering patterns help us to study the morphology of ice crystals as the features in the 
pattern vary depending on the crystal habit. It is a two-dimensional plot of the scattered light 

represented in polar co-ordinate form (𝜃, 𝜙), where 0°≤𝜃≤180° and 0°≤𝜙≤360°. In general, the 
forward and backward scattering hemisphere gives scattering information between 𝜃=0°-90° 

and 𝜃=90°-180° respectively. In this study, the focus is on the forward scattering information 

of 6°≤𝜃≤25°, which is the angular range of AIITS images. The same range is used while 
scattering patterns of model crystals are simulated using the Beam Tracing Model (BTM, see 
Section 4.3.1). The scattering pattern in a linear intensity scale will only illustrate features at 
high intensity. For this reason, the scattering pattern is plotted in logarithmic scale for a better 
visualisation of the intricate details, especially at the lower intensity range.  
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2.3.2 Single scattering and its properties 
Single scattering refers to scattering from a single particle. In single scattering, it is assumed 
that the particles are at large separation from each other, and only the scattered field of the 
individual particle when excited by an external field is considered. Hence, it is sometimes 
referred as independent scattering. That is, each particle is treated in complete isolation from 
the surrounding particles (Bohren and Huffman 1998). Regarding the minimal particle 
separation for independent scattering, there is no universal rule. While a mutual distance of 
three times the radius is recommended by Hulst (1957), a distance of four times their radius 
is suggested by Mishchenko (2000).  

Some of the single scattering properties are described below. 

 

2.3.2.1 Cross-sections and efficiencies 
The scattering cross section (Csca) can be defined as the ratio of the total power (unit: W) 
removed from the incident beam due to the light scattering by the particle to the incident 
irradiance (unit: Wm-2). Similarly, absorption cross section (Cabs) can be defined as the ratio of 
the total power removed from the incident beam due to the absorption of light by the particle 
to the incident irradiance. Extinction cross section (Cext) accounts for the attenuation resulting 
from both the scattering and absorption cross sections. 

By the law of conservation of energy, 

𝐶𝑒𝑥𝑡 = 𝐶𝑠𝑐𝑎 + 𝐶𝑎𝑏𝑠 

For a non-absorbing particle,  

𝐶𝑒𝑥𝑡 = 𝐶𝑠𝑐𝑎 

The scattering cross section can also be defined as the product of scattering efficiency (Qsca) 
and the geometrical projected cross section of the particle. Equation 2.4 can be written in 
terms of efficiencies as, 

𝑄𝑒𝑥𝑡 = 𝑄𝑠𝑐𝑎 + 𝑄𝑎𝑏𝑠 

where Qext and Qabs are extinction and absorption efficiencies respectively. The cross sections 
have units of area, while efficiencies are dimensionless. 

 

2.3.2.2 Single scattering albedo 
The ratio of scattering cross section to extinction cross section is defined as the single 
scattering albedo. 

�̅� =
𝐶𝑠𝑐𝑎

𝐶𝑒𝑥𝑡
 

It provides a measure of how much of the extinction is due to scattering and takes a value 

between 0 and 1. While �̅� = 1 implies that the extinction is solely due to scattering, �̅� = 0 

implies that the extinction is solely due to absorption. 

 

2.3.2.3 Phase function 
The angular intensity distribution of light scattered by a particle at a given wavelength is called 

the phase function. The direction of scattering is characterized by scattering angle (𝜃) and 
azimuth angle (ϕ). The scattering angle 𝜃 is the angle formed between the incident and 

(2.4) 
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scattered beam directions. The phase function is normalized in such a way that the integral 

over the scattering sphere centred on the particle is equal to 4𝜋 (Sienfeld and Pandis,1997). 

∫ ∫ 𝑃11(𝜃, ϕ) 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑ϕ = 4𝜋

𝜃=𝜋

𝜃=0

ϕ=2𝜋

ϕ=0

 

 

2.3.2.4 Asymmetry Parameter 
Asymmetry parameter refers to the intensity-weighted average of the cosine of the scattering 

angle (𝜃). 

𝑔 =< 𝑐𝑜𝑠𝜃 >=
1

2
∫ 𝑃11(𝜃) 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃

𝜃=𝜋

𝜃=0

 

Depending on the direction of the scattered light, the value of 𝑔 changes between -1 and 1. 

When 𝜃=0°, the scattered light propagates in the same direction of the incident light (forward 

scattering and 𝑔=1. For backward scattering (𝜃=180°), when the scattered light propagates in 

a backward direction to the incident light, 𝑔=-1. When the light is scattered equally in all 

directions (isotropic), 𝑔=0. 

 

In this chapter, an overview on ice crystals and cirrus clouds were given. The scattering 
process and associated terminology were also outlined. Previous studies point out the 
importance of understanding the microphysical properties of small ice crystals in cirrus cloud 
and this research is focused on investigating the properties of these ice crystals. 

In the next chapters, this paper briefly discusses: 

• The light scattering data and instrumentation. 

• The features that can be seen in the scattering pattern and how to identify the ice 
crystal geometry based on those features. The processes of estimating the size of 
smooth and rough crystals are also described. 

• Examples of different types of modelled crystals and their simulated scattering patterns 
are compared to the AIITS light scattering pattern images. 

• The statistics of crystal types and sizes based on analysing the light scattering data 
taken by AIITS (05 March ATTREX 2015). 

• The steps involved in developing a Deep Learning code for future crystal classification. 
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3. LIGHT SCATTERING DATA 

 

The data used in this research was obtained during the ATTREX (Airborne Tropical 
Tropopause Experiment) scientific campaign on 5th March 2015. The data, a collection of 2426 
indirect images or far-field light scattering patterns, was generated by the AIITS (Aerosol Ice 
Interface Transition Spectrometer), an instrument designed and built at the University of 
Hertfordshire. This chapter outlines the ATTREX mission and some of the instruments used 
during the science flight. 

 

3.1 Airborne Tropical Tropopause Experiment (ATTREX) 
 

The ATTREX was a series of scientific measurement campaigns initiated by NASA (National 
Aeronautics and Space Administration) to study the physical processes, chemical 
composition, moisture levels and humidity in the TTL from 2011 to 2015. NASA’s Global Hawk 
(Fig. 3.1), an unmanned aerial vehicle (UAV) was chosen for this project to carry the 
specialised instruments due to its ability to fly at high altitude (20 km) covering a long range 
(16000 km) with a payload capacity of around 680 kg (Jensen et al. 2013). The ATTREX 
project was managed by the NASA Ames Earth Science Project Office, along with 
investigators from NASA, National Oceanic and Atmospheric Administration (NOAA), National 
Centre for Atmospheric Research (NCAR), several universities as well as private industry 
(Conner 2015). 

 

 

Fig. 3.1: NASA Global Hawk during a checkout flight of ATTREX instruments (Baccus 2014). 

 

Overall, the ATTREX mission provided over 300 hours of TTL sampling (Jensen et al. 2022). 
Brief summaries of the flights, the regions where the experiments were conducted as well as 
the flight duration when sampling are given in Table 3.1.  The flight path taken during different 
ATTREX missions are shown in Figs. 3.2 and 3.3. The figures have a different range in 
latitude/longitude. Details of the 2011 and 2013 ATTREX missions are discussed in Jensen et 
al. (2013). 
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Year Flight hours Sampling Region 

2011 (Oct-Nov) 61.3 (3 flights) Eastern Pacific TTL 

2013 (Feb-Mar) 146.6 (6 flights) Central and Eastern Pacific 
TTL 

2014 (Jan-Mar) 99.9 (6 flights) Western Pacific TTL 

2015 (Jan-Mar) 66 (4 flights) Central and Eastern Pacific 
TTL 

Table 3.1: ATTREX flights details. 

 

 

Fig. 3.2: Flight tracks of ATTREX 2011 (left) and 2013 (right) flights (Jensen et al. 2013). 

 

 

Fig. 3.3: Flight tracks of ATTREX 2014 science flight (Woods et al. 2018). 

 

During the ATTREX 2014 deployment, six research flights were conducted in the Western 
Pacific. These are shown in six different colours in Fig. 3.3. Fig. 3.4 also shows the ATTREX 
2014 flight path, but additionally it shows the occurrence of clouds (coloured by temperature 
in Kelvin) along the flight track as well as the vertical flight profile. The clouds were sampled 
at an altitude between 14-18 km and the temperature of the cloud ranged between 185-207 
K. Further information on the 2014 ATTREX mission can be found in Thornberry et al. (2017), 
Jensen et al. (2017) and Woods et al. (2018). 
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Fig. 3.4: The Global Hawk flight path over the Western Pacific for ATTREX 2014 (top) shown 
in grey colour. The presence of cloud is shown in rainbow colours with a temperatures scale 

on right side of the figure. The TTL clouds are shown in dark blue colour. The altitude of 
clouds (in km) along with the vertical profile of the flight are shown in the bottom panel 

(Thornberry et al. 2017). 

 

3.1.1 ATTREX 2015 
The 2015 ATTREX deployment was NASA ATTREX and CAST (Co-ordinated Airborne 
Studies in the Tropics, funded by Natural Environmental Research Council (NERC)) joint 
mission conducting research flights using the Global Hawk. The Global Hawk took off from its 
base at NASA’s Armstrong Flight Research Centre, California, and conducted three research 
flights between 3rd and 13th March with an average duration of 22 hours totalling 66 hours.  

 

 

Fig. 3.5: Image of ATTREX 2015 flight tracks superimposed on a ‘colorterrain’ map. The 
flight track on 5th March is shown in red. The other flight tracks on 10th March (blue), 2 range 

flights on 26th Feb (yellow) and 13th March (green), can be seen as well. 
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Along with the previously flown ATTREX payload, two new CAST probes were used, the AIITS 
and the Green House gas Observations in the Stratosphere and Troposphere (GHOST) 
(Conner 2015). More details on AIITS can be found in Section 3.2.4. GHOST is a shortwave- 
infrared (SWIR) spectrometer which measures the greenhouse gases from an airborne 
platform (Humpage et al. 2018). The two CAST instruments had conflicting requirements for 
atmospheric conditions to get optimal results; while AIITS is designed to study cloud particles, 
GHOST require cloudless skies (Humpage et al. 2018). Therefore, separate flights were 
targeted for AIITS and GHOST on 5th and 10th March respectively. The flight on the 5th of 
March (flight track shown in red colour in Fig. 3.5) lasted for a total duration of 25 hours and a 
large proportion of it consisted of vertical profiling through the TTL clouds. 

Fig. 3.6 shows how the static temperature and pressure change as a function of altitude. 
Pressure is given in units of hecto Pascals (hPa). 1 hPa=100 Pa= 1 millibar. At higher altitudes 
around 18km, the pressure ranges between 50-100 hPa and the temperature 190-215 K, 
compared to the surface values 900-950 hPa and 280-290 K respectively. 

 

  

Fig. 3.6: Temperature(left) and Pressure (right) profile. 

 

Temperature and altitude data are shown in Fig. 3.7. The vertical profile of the flight, track 
shown in blue colour, ranges from 14 to 18 km. The corresponding value of temperature is 
shown in red colour. Over time, the temperature varied between 190 and 220 K, and as 
expected, the temperature peaked at around 205K over the area in which the flight descended 
to 14km. 
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Fig. 3.7: The temperature and altitude data. The blue solid line represents the vertical profile 

of the flight track, and the red solid line represents the static temperature along the flight 

track. 

 

3.2 Measurement Probes 
Several measurement probes were installed on the aircraft during the ATTREX mission, some 
of which are briefly described here. 

 

3.2.1 Fast Cloud Droplet Probe (FCDP) 
FCDP is an optical particle counter designed to measure cloud particle number and size 
distributions in 1.5-50 µm diameter range. The probe (see Fig. 3.8) consists of 2 arms with a 
laser beam on one side (transmitter arm) and the photodetectors on the other (receiver arm). 
It works on the principle of forward scattering; as the particle passes through the sample 
volume (between the transmit and receive arm) the light will be scattered and directed through 
collection lens system, while the detecting optics measures the particle size based on the 
intensity of scattered light collected at the dump spot. The data acquisition as well as the signal 
processing systems are kept in the main body (SPECinc 2019). The instrument provides 
reliable measurement in ice clouds (Jensen et al. 2013). The FCDP, along with the layout of 
its light scattering measurement principle is shown in Fig. 3.8. Apart from ATTREX, FCDP has 
also been used in the NASA POSIDON (Pacific Oxidants, Sulphur, Ice, Dehydration, and 
cONvection) experiment to study the OH and sulphur chemistry, cirrus clouds, and 
dehydration in the tropical upper troposphere and lower stratosphere over the western Pacific 
(NASA 2020). 

   

Fig. 3.8: Picture of FCDP (left) (SPECinc 2019) and its light scattering measurement 

principle (right) (Glienke et al. 2020). 
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3.2.2 Two-Dimensional Stereo (2D-S) 
2D-S is an optical imaging instrument capable of taking shadowgraph images (a photographic 
image resembling a shadow) of particles with a pixel resolution of 10μm at aircraft speeds up 
to 250 m/s (Lawson et al. 2006a). It can measure the particle size between 10-1280 microns 
using two independent 10 µm channels, as well as particle concentration and extinction (NASA 
2022). It consists of two linear 128-photodiode arrays illuminated by two diode laser beams 
perpendicular to each other. The beams are directed through the centre of the sample volume. 
Since the probe is capable of recording two independent images of the same particle in the 
beam’s overlap region, even a three-dimensional view can be reconstructed for some 
particles. Single images of particles are captured outside the rectangular overlap region 
(Lawson et al. 2006a). Although replaced by the Hawkeye and 3V-CPI (Three view Cloud 
Particle Imager, combination of 2D-S and CPI), the instrument is still operational. Fig. 3.9 
shows the zoomed in portion of sample volume of the 2D-S as well as the instrument installed 
on an aircraft. 

 

                            

Fig. 3.9: Photograph of 2D-S’ close-up view of sample volume with orthogonal laser beams 

(left) and of 2D-S and CPI installed on a research aircraft (right) (Lawson et al. 2006a). 

 

3.2.3 Hawkeye 
Hawkeye (see Fig. 3.10) is a particle imager which houses a combination of cloud particle 
probes: Two channels of 2D-S capable of sizing particles in the 10-1280 µm and 50-6400 µm 
size ranges at 10µm and 50µm resolution respectively, FCDP with 1.5–50 µm size range at 
3µm resolution and Cloud Particle Imager (CPI) with 2.3–2300 µm size range at 2.3µm 
resolution (SPECinc 2012). In other words, it is an extended version of 3V-CPI integrated with 
FCDP. The 3V-CPI, an imaging probe, comprises of two channels of 2D-S as well as the CPI 
probe and is used to measure the particle size, shape, and concentration. The CPI was 
operating in a trigger mode to take high resolution images of the particle when the particle is 
found in the overlap region of the 2 laser beams from the 2D-S probe. The CPI camera 
provides grayscale images with a maximum rate of 400 frames per second. Therefore, the 
CPI provided information on crystal habit while 2D-S provided data on particle size distribution. 
The sectional view of the instrument as well as its optical layout is shown in Fig. 3.10. 
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Fig. 3.10: The sectional view of Hawkeye instrument (left) and its optical layout (right). 

Reproduced from SPECinc (2011). 

 

3.2.4 Aerosol Ice Interface Transition Spectrometer (AIITS) 
AIITS is a light scattering (indirect imaging) instrument used to investigate the morphology of 
airborne particles, in particular ice crystals in high altitude cirrus clouds. Indirect imaging is 
particularly useful for small crystal analysis since optical (direct) imaging is often constrained 
by depth of field, aberrations, and diffraction. Therefore, the lower size limit is much larger with 
direct imaging. It works by introducing a laser beam to an individual particle and the forward 
scattering patterns are captured in two dimensions by two high-resolution cameras (Stopford 
et al. 2015). The instrument can analyse the individual particles ranging from 1 to 100 µm in 
size, carried in the airflow. It was developed at the University of Hertfordshire as part of the 
NERC project Co-ordinated Airborne Studies in the Tropics (CAST). 

 

Fig. 3.11: The AIITS instrument (left). The instrument layout, picture courtesy of Dr Chris 

Stopford (right). The components are not to scale. 

 

The instrument shown in Fig. 3.11, consists of a laser source (532nm), photomultiplier tube 
(PMT), beam splitters, trigger detector system and cameras. The instrument weighs 
approximately 35kg; its outer casing is made of anodized aluminium. The particle enters 
through the inlet (left side) of the instrument shown in Fig. 3.11. The inlet is designed to reduce 
shattering of ice with an angled leading edge.   
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Optionally, the laser light is passed through a quarter-wave plate, which converts linearly 
polarized light into circularly polarized light (and vice versa). This is directed towards the beam 
steering mirror, which reduces the size of the optical system by bending the beam while 
redirecting the beam to the scattering volume. The scattering volume is defined by the region 
intersected by the trigger detector mirror (bottom) and the photodiode (top). To be triggered, 
a particle must be within the scanning area of the detector as well as in the path of the beam. 
The emerging scattered light passes through a Pellicle beam splitter and the images are 
captured by the intensified CCD cameras. 

The instrument can operate in two different modes: forward scattering intensity mode and 
forward and backward depolarisation mode. In the former mode, the quarter wave plate 
converts the beam into circularly polarized light and the cameras capture the 2D intensity 
patterns. While operating in the latter mode, the beam will be linearly polarized, and 
independent images of parallel and perpendicular polarization are taken by the two intensified 
cameras with up to 100fps (frames per second). Backward scattered depolarisation is 
captured on to two PMTs with orthogonal polarisation filters applied. The images are greyscale 
images (8-bit JPG) with a dimension of 512x640 pixels. The forward and backward scattering 
pattern have an angular range of 6°-25° and 163.5°-173.7° respectively. Unfortunately, one of 
the intensifiers was broken during the testing phase of ATTREX 2015 science flight and 
therefore, the polarised images were not captured.  

All the instruments described in this section can be mounted on aircrafts. The specifications 
of these instruments are summarized in Table 3.2. 

Instrument 
Sample Volume 

at 100m/s 
Sample Area 

Collection 
angle 

Measurement 
Range 

Optimum size 
range (µm) 

FCDP 0.08 L/s [1] 
2.4mm x 2.4 

mm [2] 
4-12° [2] 1.5-50 µm [2] 

 
10-25 µm [3,1] 

 

2-DS 16 L/s [4] 
0.128 cm × 
6.3 cm [5] 

- 10-1280 µm [6] >30µm [3] 

CPI 0.37 L/s [4] 
2.3mm x 2.3 

mm [7] 
2.5-8.2° [8] 2.3-2300 µm [9] >30µm [3,10] 

AIITS 
0.74mm2 x 90 
µm = 0.06mm3 

[11] 
0.74mm2 [11] 6-25° [12] 1-100 µm [11] 1-100 µm [11] 

Table 3.2: Specifications of different instruments. 

The results from the NASA probes are compared with the AIITS’ results in Section 6.3. 

 
1 Thornberry et al. 2017 
2 Glienke et al. 2020 
3 Dr Richard Cotton, private communication, Oct 2023 
4 Baumgardner et al. 2011 
5 Sample cross section, Lawson et al. 2006a 
6 NASA (2022) 
7 Przybylo et al. 2022 
8 SPECinc (2013) 
9 SPECinc (2012) 
10 Lawson, R. P. et al. 2008 
11 Dr Chris Stopford, private communication, Nov 2023 
12 Stopford et al. 2015 
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3.3 Images taken by the CPI 

The images taken by the CPI instrument on 5th March 2015 are given in Fig. 6.25. In the figure, 
a few hexagonal plates and columns can be seen, but predominantly the crystals look quasi-
spheroidal. The spheroidal crystals may not be spheroidal in reality; it might be due to the 
constrained resolution of the instrument. Likewise, the surface texture cannot be determined 
from the given images. This is where additional information can be drawn from the AIITS 
images, as the intricate features in the scattering pattern can be clearly seen. And by solving 
the inverse problem, the crystal type can be identified. An example image, taken using AIITS 
instrument is shown below (Fig. 3.12), where the speckle-like feature is visible, indicative of a 
rough surface texture. Based on modelling results, it was found that the crystal was indeed a 
rough solid column (details in Section 5.2.2). 

 

Fig. 3.12: AIITS no.1906 

 

This chapter provided an introduction to the ATTREX mission, and several probes used for 
measurements including the AIITS. Next, we look at how the features in the scattering pattern 
images taken by the AIITS help in identifying the crystal types. The method used to simulate 
the scattering patterns of model crystals and some terminologies related to crystal modelling 
are also described.  
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4. METHODOLOGIES 

 

In the first section of this chapter, some of the terminologies associated with crystal modelling 
are discussed. The crystal modelling requires different analytic as well as computational 
techniques as it varies with type of crystal. The crystal type can be identified by analysing the 
features in the scattering pattern. This is outlined in Section 4.2. This is followed by the method 
which is used to simulate the light scattering pattern as well as the steps involved in estimating 
ice crystal geometry. Finally, the process of extracting the crystal diameter and surface 
roughness from rough crystals using two different algorithms is discussed in detail in Sections 
4.5.1 and 4.5.2 respectively. 

 

4.1 Terminology 
Some of the terminologies that are often used in this and following chapters are explained 
here. 

4.1.1 Euler angles  
The Euler angles are used to define crystal orientation. For example, the model crystal needs 
to be rotated several times using different Euler angles, until a best match between the 
simulated images and AIITS images are found. Hence, they play a key role in accurately 
estimating the crystal sizes (discussed in Chapter 5). 

Consider a (three dimensional) Cartesian co-ordinate system with x, y, and z axes 
(perpendicular to each other) and the propagation of incident beam is in -z direction, with the 
particle situated at its centre. An example is shown in Fig. 4.1.  

 

Fig. 4.1: Changing the orientation of a column crystal using the Euler angles, taken from 

(Taylor 2016). Step-by-step rotation from the crystal’s initial to final orientation using three 

different angles are shown through A-D. 
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The hexagonal column aligned with its axis parallel to the z-axis, is rotated in 3 steps defined 
by 3 angles: alpha (α), beta (β) and gamma (γ) respectively. The original orientation before 
any rotation is shown in Fig. 4.1 (A). Once rotated, the subsequent rotations are calculated 
from the new co-ordinate system. This results in 3 axes of rotation: 1) Rotate around z axis by 
an angle α (z’=z and the new axes are named x’ and y’). 2) Rotate around the new x’ axis by 
an angle β (x’’=x’ and, y’ and z’ changes to y’’ and z’’). 3) Rotate around the z’’ axis by an 
angle γ (Z=z’’ and, x’’ and y’’ changes to X and Y). These three rotations are shown in Fig. 4.1 
(B-D) respectively. If rotated in the clockwise direction, the angle of rotation will be positive. In 
this paper, Euler angles are specified in radians, unless otherwise stated. 

4.1.2 Aspect Ratio  
The aspect ratio (𝐴𝑅) is defined as the ratio of the hexagonal prism height (𝐻) to its basal 

diameter (𝐷 =2*prism radius). The aspect ratio is larger than one for columns, and smaller 

than one for plates. Examples are shown in Fig. 4.2 using a hexagonal column and plate. 
Crystals with aspect ratio unity are often called as equiaxed as their prism height and basal 
diameter are equal.  

𝐴𝑅 =
𝐻

𝐷
 

 

Fig. 4.2: Planar crystals: column (left) and plate (right) with dimensions indicated. 

 

4.1.3 Size Parameter  

The size parameter (𝑋) is the product of wave number (𝑘 =
2𝜋

𝜆
) and the characteristic size (𝑟) 

of the particle. It is dimensionless.  

𝑋 = 𝑘𝑟 =
2𝜋𝑟

𝜆
 

In many applications the characteristic size is defined as 
𝐷𝑚𝑎𝑥

2
, where 𝐷𝑚𝑎𝑥  is the maximum 

dimension of the particle. 

𝑋 =
𝜋𝐷𝑚𝑎𝑥

𝜆
 

For a hexagonal prism,  𝐷𝑚𝑎𝑥 = √𝐻2 + 𝐷2 where 𝐻 and 𝐷 are the height and diameter of 

the particle, respectively. 

Since the AIITS detects particles in the 1-100 µm diameter range at a wavelength of 532nm, 
the current study is only focused on size parameters ranging from 5.9 to 590.5.  

 (D) 

 (H) 

 (D) 

 (H) 
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4.2 Features of different types of crystals and their scattering 

patterns 
Different features are manifested in the scattering pattern depending on the crystal type. In 
general, the scattering pattern varies with particle shape, size, texture, refractive index, and 
wavelength at which it is measured. As this study is focusing on ice crystals with refractive 
index 1.31 at the wavelength 532nm of the AIITS’ laser beam, the scattering pattern depends 
only on the crystal shape, size, and texture. By analysing the features in the pattern, it is 
possible to identify the overall shape of the crystal and other properties such as whether it is 
rough, rounded, or pristine. In general, pristine crystals exhibit bright, sharp, and well-defined 
scattering arcs; rough crystals show speckle-like features and crystals with significantly 
rounded edges are likely to display ring-like structure in their scattering pattern. In plates, due 
to the crystal orientation, 22° halos cannot be observed. The features of different types of 
crystals and their scattering patterns are summarized in Table 4.1. 

Crystal Type 
Features of crystal 
with sub-categories 

        Features in the scattering pattern 

Plates 

- orientated 
preferentially on its 

basal facet 
(perpendicular to the 
gravitational force). 

 
- can be regular 

hexagonal, trigonal, 
scalene or droxtal type 

with pristine/round 
edges and 

smooth/rough surface 

Regular Hexagonal: 6 prominent scattering 
arcs extending from the centre radially. 
 
Scalene: 4 prominent and 2 weak scattering 
arcs. 
 
Trigonal or scalene with 3-fold symmetry: 6 
scattering arcs with distinct features. 
 
Droxtals: 3 or more scattering arcs with bright 
spots (halos). These can be regular or scalene 
type as well. (For details, see Section 5.1.4) 
 
Rough plates: Speckle-like feature with 3 or 
more arcs.  
 
Rounded plates: Ring-like structure with 3 or 
more arcs. 
 

Columns 
 

- orientated 
preferentially on prism 
axis near perpendicular 

to the gravitational 
force. 

 
- can be short or long 
columns and needles 
(extremely thin solid 

columns). 
 

- can be rough or 
smooth with rounded, 

or pristine edges. 
 

Smooth columns: 2 bright scattering arcs in 
the centre (later mentioned as major central arc) 
with or without parallel lines. The central arc can 
contain maxima and minima. The number of 
these will increase with crystal diameter. Often 
a bright spot (halo) can be seen towards the end 
of one scattering arc. 
 
Needles: Major central arc without 
accompanying parallel lines. 
 
 
Rough columns: Speckle-like feature with a 
major central arc. 

Rough 
crystals 

- any orientation. 
- crystals with rough 

surface. 
Speckle-like feature. 
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Table 4.1. Features of different types of crystals and their respective simulated patterns. 

These main and sub-crystal categories, what their simulated scattering patterns look like, how 
specific models are created, how the simulated patterns are generated from these models and 
how they are compared, are all explained in detail in Chapter 5 along with examples. 

4.3 Methods for simulating light scattering patterns 
In principle, light scattering patterns can be simulated by exact methods (finding solutions to 
the scattering problem by directly solving Maxwell’s equations). For example, the T-matrix 
method (Mishchenko et al. 2014) is an exact method, and the discrete dipole approximation 
(Yurkin et al. 2007) is a numerically exact method. Although accurate, exact methods’ 
computational limits makes them unsuitable for large particle sizes and/or particles with 
complex shape. For such particles hybrid physical-geometric optics can be applied (Yang et 
al. 2019, Konoshonkin et al. 2017, Taylor 2016, Hesse et al. 2018). Within this project, the 
Beam Tracing Models (Taylor 2016 and Hesse et al. 2018) are applied. They are briefly 
described in the next section. 
 

4.3.1 The Beam Tracing Model (BTM) 
For this work two versions (Taylor 2016 and Hesse et al. 2018) of the Beam Tracing Model 
(BTM) were used. In both methods the incident plane wave is split into beams. In Taylor (2016) 
method, the beams are defined by the projected cross sections of the beam-facing facets, but 
in Hesse et al. (2018) method, beams are defined by triangulating the projected cross section 
of the particle. Following Snell’s law, each beam is reflected and refracted at the particle 
surface. This is implemented differently in the two methods: if a transmitted beam hits more 
than one facet, it is split into sub-beams, which are again reflected and refracted, etc, until 
beam energy is below a set minimum or a set number of recursions is reached in Taylor’s 
method (2016), whereas the small triangular beams are not further subdivided in Hesse et al. 
(2018) method. 

In both methods, externally reflected and outward refracted beams undergo Kirchhoff 
diffraction, and the far field is calculated for the angular region of interest. In addition to tracing 
the part of the incident wave hitting the crystal, external diffraction needs to be considered. 
Following Babinet’s13 principle, this is done by computing Kirchhoff diffraction by the beam 
facing facets. Taylor’s (2016) method is very fast, but the current implementation is only 
applicable to simple geometric shapes like hexagonal prisms, whereas the method of Hesse 
et al. (2018) is not restricted by such limitations to particle shape, but it is more computationally 
expensive. 

 
13 Babinet’s principle states that the diffraction pattern from an aperture is identical to that from a 
complimentary screen, however there is a phase shift of π in the electric field (Hecht, 2002). 

Smooth 
Rounded 
crystals 

- any orientation. 
- crystals with rounded 

edges and smooth 
surface. 

Ring-like structure. 

Rough 
Rounded 
crystals 

- any orientation. 
- crystals with rounded 

edges and rough 
surface. 

Combination of both ring-like and speckle-like 
features. 
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4.4 Estimating the shape and size of crystals 
In general, estimating the crystal geometry is a four-step process, which is outlined below. In 
step 1, an overall idea about the crystal habit is obtained through the analysis of features in 
the scattering pattern. However, for an accurate estimation of both size and shape, steps 2-4 
are to be followed. After finding the crystal type, corresponding model crystals are generated. 
The BTM is used to simulate the scattering pattern of model crystals. Model crystals of various 
sizes and orientations are used until the simulated patterns matches the AIITS images. Once 
they match, the crystal size is estimated depending on the crystal habit.  

Step 1: Find the crystal shape: Analyse the features in the light scattering pattern images to 
find the type of ice crystal. The features of different types of crystals were already addressed 
in Section 4.2. This can be done by visual inspection. However, it is challenging to classify the 
crystal habits manually and the process will become even harder for larger datasets. This is 
the motivation behind implementing a Deep Learning Network, an automated neural network 
to classify the scattering images based on the crystal type, which will be discussed in Chapter 
7. 

Step 2: Model specific crystal: Generate the specific crystal files using the relevant program. 
Different programs (in Fortran) are used to generate crystals with different geometries like 
pristine hexagonal plates, quasi-spheroids, rough crystals etc. Model crystals of different sizes 
and in different orientations are required. Model crystals are initially produced in α=β=γ=0 
orientation. These crystal files are used alongside MATLAB code to visualize the particle 
shape. For more complicated crystal files like rough crystals, a software named ‘QuickDraw 
3D Viewer’ is used for visualization. 

Step 3: Simulate the scattering pattern: The model crystal file obtained in step 2 is used as 
input for the Beam Tracing Model (discussed in Section 4.3.1), to produce 2D scattering 
pattern of the model crystal. The simulated pattern is then compared (by eye) with that of the 
AIITS scattering pattern image. Since the pattern changes with crystal size and orientation, 
steps 2 and 3 are repeated with different crystal sizes and orientations until the two patterns 
match. By changing the values of the Euler angles, different crystal orientation can be 
obtained. The scattering pattern is visualized using MATLAB. 

Step 4: Estimate particle size: Once the simulated pattern and the AIITS scattering pattern 
image match, the crystal size is estimated. The process of size estimation varies with the 
crystal habit and is explained in detail in the next chapter. For example, size estimation of a 
smooth hexagonal prism is done manually by analysing the angular distribution of diffraction 
minima in the scattering pattern (or the width of the scattering arcs). As the width of the 
scattering arc increases, the crystal size decreases. For a rounded crystal, size can be 
estimated based on the number of ‘ring like’ structures in the scattering pattern. The higher 
the number of rings, the larger the crystal. For rough crystals, smaller speckles are indicative 
of larger crystals, and vice versa. 

In general, these steps are followed to estimate the shape and size of all crystals. Chapter 5 
provides the process of modelling different types of crystals, comparing it with AIITS images 
and estimating the crystal sizes, in detail with examples. For rough crystals, two MATLAB 
algorithms are used to estimate particle diameter as well as particle roughness. These are 
explained in the next section. 

4.5 Estimating the size and roughness of rough crystals 
One of the easiest ways to identify the rough crystals is to check whether its scattering pattern 
contains any speckle-like features. For rough plates and rough columns, in addition to 
speckles, scattering arcs will be visible. However, in some other cases like rough quasi-
spheroids or irregular crystals, the absence of additional unique features (nothing other than 
speckles) makes the detection of underlying crystal habit challenging. For this reason, only 
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rough plates and rough columns are separately classified. Other crystals are collectively 
grouped into the ’Rough crystal’ category as their crystal habits are unknown. See Section 5.4 
for more information. 

Unlike the analysis described in the previous section, the process of rough crystal estimation 
is automated using MATLAB. That is, the images are directly fed into the program to calculate 
the crystal diameter. However, the results have been validated by manual analysis as well and 
this is described in Section 5.4.1 in detail. First, the Speckle Analysis code used to calculate 
the rough crystal size, is discussed. Then, the Combined Roughness code is discussed, which 
evaluates how rough the crystals are on a scale between 0 to 1, ranging from smooth to very 
rough respectively. In each section, the accuracy of the algorithm is reviewed, and changes 
were made where appropriate. 

 

4.5.1 Speckle Analysis 
 

To estimate the size of the rough crystals, the method described in Ulanowski et al. (2012) is 
followed, where the authors state that the median of the speckle area is inversely proportional 
to the particle size. The equation,  

𝐷 ≈
4𝜆𝑧

𝜋𝐷𝑠
 

is used to estimate the particle size or diameter (𝐷). 𝜆 is the wavelength of light (532nm), 𝑧 is 

the distance between the particle and the detection plane in equivalent pixels, and 𝐷𝑠 is the 
average diameter of the speckle spots in pixels.  

Based on the method described in Ulanowski (2012), a Speckle Analysis programme has 
been written (in MATLAB) to estimate the crystal size by analysing the speckles in the 
scattering pattern (Appendix 11.1). The flowchart of the code is shown in Fig. 4.3. 

The first step is the image pre-processing stage which involves 2D median filtering and 
displaying the relevant area of the greyscale image. By using 2D median filtering, the noise 
can be reduced without damaging the edges of the image. 

The next step is the greyscale morphological reconstruction of the image using the 
‘imreconstruct’ function which has two parameters: Marker and Mask. The image which needs 
to be enhanced is used as the Mask. The Marker is used to mark the regions to be enhanced. 
The greyscale reconstruction simply extracts the connected components of Mask which are 
‘marked’ by the Marker using iterative geodesic dilations (Vincent 1993). The geodesic 
distance is the shortest distance between two pixels in the Mask and is highly dependent on 
pixel connectivity (Vincent 1993). As the Marker value, the image is multiplied by a constant, 
0.6 which is recommended in Ulanowski et al. (2012). Once the morphological reconstruction 
is done, the regional maxima is computed using ‘imregionalmax’ function. Since this function 
finds the regional maxima in the reconstructed image by replacing the pixels of constant 
intensity values with 1 and their neighbours of lower pixel values with 0, the speckles can be 
identified as pixel values of 1. At this point the image will be binary or logical. 

Finally, the function ‘regionprops’ is applied on the regional maxima (speckles) to find the 
properties of the speckles like speckle area. The median area of the speckle is found, from 

which the diameter of the speckle (𝐷𝑠) is derived. This is done by equating the median speckle 
area to the equivalent circular area. The speckle diameter (𝐷𝑠) is then substituted into Equation 

4.1 to find the particle diameter (𝐷).  

Ulanowski et al. (2012) recommends using a quality criterion (𝑄),  

(4.1) 

(4.2) 
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𝑄 = 4𝐶/(1 − 𝐶) 

where 𝐶 is the spot coverage, 𝐶 =
𝐴

𝐴+𝐴𝑏
, 𝐴 is the total speckle area and 𝐴𝑏 is the background 

area. 𝑄 has the maximum value (𝑄 = 1), when 𝐶 = 1/2 which occurs when 𝐴 = 𝐴𝑏  and the 

lowest value (𝑄 = 0), when 𝐶 = 0 or 𝐶 = 1 (when either 𝐴 or 𝐴𝑏  is zero). The results are 
rejected if the quality criterion value falls below 0.4. The chosen threshold is based on 
comparing true and predicted values where the correlation value is maximised.  

 

Fig. 4.3: Flowchart of the Speckle Analysis code. 

 

The speckle analysis code has been tested using simulated scattering pattern images and the 
result is described in the next section.  

 

                   Image Pre-processing 

 
 
 
 
 
 
 
 
 
 
  

Yes 

Load the scattering 

pattern (greyscale) 

image. 

Apply median filtering 

on the image. 

Mask: Image 

 Marker: Image*0.6 

Do Morphological reconstruction 
when Marker<=Mask 

Find the regional maxima. 

Get the speckle properties like 

speckle area using 

‘regionprops’ function. 

Apply Quality Criterion (𝑄) 

Is 
𝑄>0.4

? 

Reject the result and 

test next image. 

Accept the Particle 

size result. 

No 

Calculate the diameter of the 

speckle from the median of 

the speckle area. 

Compute the particle 

diameter using Equation 4.1. 

Display the relevant 

area of the image. 
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The value of ‘z’ in Equation 4.1 is calculated for the simulated images as follows (Fig. 4.4): 

The simulated images have a dimension of 511x511 pixels:  

z =
511/2

tan25°
= 547.92 pixels 

 

 

       

       

 

           

Fig. 4.4: Figure showing the geometry for calculating value ‘z’. 

 

On substituting 𝜆=532nm and z =547.92pixels, Equation 4.1 reduces to: 

𝐷 =
371.3

𝐷𝑠
µ𝑚 

 

4.5.1.1 Testing the Speckle Analysis code using simulated scattering images  

 

The code was tested using the simulated scattering pattern images of modelled crystals. The 
rough crystal models of various roughnesses, types and sizes were generated using the 
method described in Collier (2014). Since the sizes of these crystals were known in advance, 
it was straightforward to test the accuracy of the prediction results. There were 25 entries in 
total with particle diameters ranging from about 10 to 100 µm, consisting of plates, columns, 
and spheres in different orientations and with various degrees of roughness. The simulated 
pattern images were saved in .jpg image format. As an image pre-processing step, these were 
converted to greyscale images with only the region of interest displayed. The rest of the 
process is the same as shown in the flowchart Fig. 4.3.  

In Fig. 4.5, test of the simulated pattern of a rough column with radius 10µm and length 30µm 
using the Speckle Analysis code is shown in successive steps as an example. In the top panel, 
the simulated image in .jpg is given in Fig. 4.5 (a), the image after pre-processing is used as 
Mask in (b), and the image multiplied by a constant 0.6 is used as the Marker in (c). The 
resulting image after morphological reconstruction using the Marker and Mask is shown in (d). 
The regional maxima obtained from the reconstructed image is shown as the binary image in 
(e). The ‘regionprops’ function is used to get the area of the speckle and its median is 
computed. To analyse the proportion of speckles taken into consideration using the 
‘regionprops’ function, extra lines of code were added, and the selected speckles are 
highlighted in (f). 

 

z 

511/2= 

255.5 pixels 

25° 

Scattering pattern image Particle 

(4.3) 
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   (a) Image      (b) Mask      (c) Marker 

 

(d) Morphological reconstruction (e) Regional Maxima  (f) Selected speckles 

Fig. 4.5: The step-by-step output of the Speckle Analysis code while using 0.6 as the Marker 
value. (a) The simulated image, (b) the cropped image used as the Mask, (c) the image 
multiplied by 0.6 used as the Marker value, (d) the result of morphological reconstruction 

using Marker and Mask, (e) the regional maxima in the reconstructed image and (f) 
highlighting the speckles that are considered in the reconstructed image. 

 

The maximum dimension of the crystal was compared against the diameter predicted using 

the Speckle Analysis program. Regarding the Quality Criterion ( 𝑄 ), Ulanowski et al. 
recommend that the predicted result is acceptable if 𝑄>0.4. However, on analysing the 𝑄 
values and the predicted result, they were not consistently correlated. That is, the predicted 

crystal diameter matched with the actual crystal diameter in some cases where 𝑄 value is less 
than 0.4. On testing simulated images no particular relationship was found between 𝑄 value 
and predicted result. Hence the quality criterion was not utilised in this analysis. 

Ulanowski et al. (2012) states that the median of the speckle area is inversely proportional to 
the particle size. This is confirmed in the current study. In Fig. 3.6, the estimated particle 
diameter is plotted against the inverse of the median speckle area of the simulated images. 
The red line is the Equation 4.1 (or Equation 12 in Ulanowski et al. (2012)). The equation holds 
true for smaller crystal sizes up to 30µm in diameter. However, for crystals larger than 30µm, 
it departs from the red line indicating that the speckle sizes are larger for larger crystals. 
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Fig. 4.6: A plot of estimated particle diameter versus the inverse of the median speckle area 
for the simulated scattering images of rough spheres, plates, and columns. The trendline is 

shown as blue dotted line and Equation 4.1 as red line. 

 

In comparison, a similar plot from Ulanowski et al. (2012) is shown in Fig. 4.7. They used a 
variety of samples like living cells, rough and smooth dust grains as well as ice analogues. It 
is evident from the plot that, as grain size increases beyond 30µm, the black line representing 
Equation 4.1 diverges from the data points. 

 

 

Fig. 4.7: A plot of grain size versus the inverse of the median speckle area for a variety of 
samples including dusts, living cell and ice analogue in size range:4-88µm, taken from 

Ulanowski et al. (2012). Equation 4.1 is shown in black line. 

 

Since Equation 4.1 does not fit for crystal sizes greater than 30µm, the algorithm has been 
tested with different Marker values rather than just 0.6. Values between 0.6 and 0.9 were 
tested in steps of 0.1. The resulting plot of crystal diameter against inverse median speckle 
area is shown in Fig. 4.8 and it was found that the line representing Equation 4.1 passes in 
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between the datapoints of Markers 0.7 and 0.8. Hence, an attempt was made to test Marker 
0.75 as well. The general trend is that, as the Marker value increases, the median speckle 
area decreases.  

On analysing Fig. 4.8, it is obvious that the line representing Equation 4.1 goes through 
majority of the datapoints for Marker values 0.75. The crystal diameter is overestimated, if the 
datapoints are above the Equation 4.1 line and on the other hand, underestimated if they are 
below the Equation 4.1 line.  

 

 

Fig. 4.8: Crystal diameter versus the inverse of the median speckle area for simulated 
images using Marker values between 0.6 and 0.9. The Equation 4.1 is shown in red line. 

 

The Sample Standard Deviation was also calculated for the different Marker values using the 
equation, 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √
∑(𝐼𝑆𝐴 − 𝐼𝑆𝐴𝐸)2

25 − 1
 

where 𝐼𝑆𝐴 is the Inverse median Speckle Area obtained from reconstructed image and 𝐼𝑆𝐴𝐸 
is the Inverse Speckle Area obtained from Equation 4.1. The different Marker values along 
with their standard deviation are given in the Table 4.2. The standard deviation values are low 
for Marker values between 0.7 and 0.8. Based on the plot in Fig. 4.8 and standard deviation 
calculation, 0.75 seems to be the optimal Marker value having the lowest standard deviation 
value of 0.0103. 
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Marker values Sample Standard Deviation 

0.6 0.0243 

0.7 0.0145 

0.75 0.0103 

0.8 0.0159 

0.9 0.0919 

  
Table 4.2: The standard deviation of different marker values. 

Though using Marker = Original Image x 0.75 was found to be optimal based on testing the 
samples of simulated images of crystal sizes between 10-100 µm and its sample standard 
deviation result, it is better not to rely on a constant Marker value that works for all crystal 
sizes. Based on Fig. 4.7 and Fig. 4.8, where different samples are used, both plots show a 
similar trend of predicting accurate crystal diameters up to 30µm while using Marker value 0.6. 
Therefore, it appears that there is a relationship between crystal size and Marker value. Image 
dimension is another factor that affects the crystal diameter prediction. For example, the 
Speckle Analysis code predicts different values as crystal diameter for a simulated image of 
511x511 pixel dimension compared to a resized image of 458x458 pixel dimension. For these 
reasons, an approximative process is recommended: start with a 0.75 Marker value and 
compare the speckle size in the reconstructed binary image with regional maxima with that of 
the speckles in the original image. If the speckle size in the reconstructed image is smaller, 
use a smaller Marker value, otherwise, use a larger Marker value. This will help in a more 
accurate crystal size prediction. 

 

4.5.2 Combined Roughness 
The crystal roughness can be characterized using the combined roughness parameter 
(Ulanowski et al. 2014). Depending on the crystal roughness, the combined roughness value 
varies from 0-1; with 0 being the least rough crystal and 1 being the roughest crystal. The 
combined roughness value is calculated based on analysing the textural features in an image. 
Textural features provide information on spatial distribution of intensities or more simply, the 
variations in the grey levels of pixels in an image. In the same manner whether a surface is 
smooth or rough can be differentiated by touching it, the high and low brightness values in 
neighbourhood pixels in an image can be manipulated to find out the image texture. As a 
statistical approach, Grey Level Co-occurrence Matrix (GLCM) is used to analyse the texture 
of different regions of the image. In the following section, the GLCM is explained with an 
example and its statistical features are described. The MATLAB program written for 
computation of the combined roughness parameter can be found in Appendix 11.2. 

4.5.2.1 Grey Level Co-occurrence Matrix (GLCM) 
GLCM provides information about grey level values in a neighbourhood region.  For example, 
in areas with smooth texture, the range of values in the neighbourhood around a pixel is a 
small value; in areas of rough texture, the range is larger. In MATLAB, the function 
‘graycomatrix’ is used to create a GLCM (also called Grey-level spatial dependence matrix). 
The matrix elements are numbers which specify how often the pixel value ‘i’ (grey-scale or 
intensity value) occurred adjacent to the pixel value ‘j’ at a distance ‘d’ and direction angle ‘θ’. 

Specifying the spatial relationship of GLCM: 

The spatial relationship of GLCM can be varied using parameters like ‘direction angle’ and 
‘symmetric’ in MATLAB. The direction angle ‘θ’ (also called an ‘offset’) represents the direction 
along which the distance between a pixel and its adjacent pixel are calculated and the default 
‘offset’ is set to a pixel and its horizontally adjacent pixel to its right (offset= [row_offset 
column_offset] = [0,1]). By default, ‘symmetric’ is set to ‘false’, that is the order of values (1,2) 
and (2,1) are counted differently. If it is set to ‘true’, both (1,2) and (2,1) will be considered as 
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same if they are adjacent, and its order is disregarded. Usually, second order statistics 
(distance between 2 pixels) are followed while defining the spatial relationship. Higher order 
(distance of 3 or more pixels) statistics results in complex computations and are time 
consuming. 

For example, consider an image (Fig. 4.9 (a)), a two-dimensional matrix of 5x6 order which 
contains eight grayscale or intensity values between 1 and 8. This means that there will be 8 
shades of brightness in the image. Its GLCM with an offset [0,1], distance 1(pixel) and 
symmetric ‘false’ is shown in Fig. 4.9 (b).                                             

              

 (a) Image    (b) GLCM of Image 

Fig. 4.9: (a) An image and (b) its GLCM shown using a 2D matrix. 

The GLCM is not an image, but a matrix containing the frequencies of pixel elements based 
on the original image matrix. To illustrate, the first element in the GLCM (row 1, column 1) is 
zero as there is no occurence of pixel value 1 adjacent to 1 in the image.The second element 
in GLCM (row 1, column 2) is 1 as there is one instance of pixel value 1 next to pixel value 2 
in the image matrix. The third element (1,3) has occurred twice in the image matrix and hence 
2 is tabulated in the GLCM. Similarly, the rest of the pixel pairs in the GLCM are computed. 

In general, an image with ‘𝑛’ different pixels generates a co-occurrence matrix of ′𝑛 𝑥 𝑛′ order. 
As the size of the matrix gets larger, MATLAB by default scales down the intensity values to 
eight equal width bins. For an image with grayscale value ranges from 0-255, the 256 grey 
levels are divided int 8 bins (of 32 levels each) and the values in each bin are mapped into a 
single grey value between 1 to 8.  

The number of GLCMs depends on the number of offsets (or directions) and its dimension 
depends on the number of grey levels or more specifically, the binned grey levels. For an 
offset [0,1], only one GLCM is created as only one direction is specified. If a four directional 
offset is specified, four GLCMs are created and there will be 4 values for each statistical 
feature corresponding to each direction, from which the mean value is taken. Two examples 
are given below (Fig. 4.10) for creating GLCMs with the distance between the pixel of interest 
(P) and its nearest neighbour pixels in four directions.  

                   

(a)                 (b) 

Fig. 4.10: An example showing the spatial relationship with (a) an offset = [0 1; 0 -1; -1 0; 1 
0] and (b) an offset = [0 1; -1 1; -1 0; -1 -1]. 
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Fig. 4.10 (a) has an array of offset = [0 1; 0 -1; -1 0; 1 0] specifying right, left, top and bottom 
directions respectively and Fig. 4.10 (b) with an array of offset = [0 1; -1 1; -1 0; -1 -1] specifying 
right, top right, top and top left directions respectively. As Ulanowski et al. (2014) is followed, 
a distance of 1 pixel in the 4 directions (offset = [0 1; -1 1; -1 0; -1 -1] is also referred to as 0°, 
45°, 90° and 135° angles respectively). Also, the grey levels (0-255) are divided into 8 bins. 
Therefore, GLCMs are of order 8x8x4, that is, 4 different GLCMs for the four directions and 
each GLCM contains 8 rows and 8 columns (Haralick et al. 1973). 

The MATLAB function ‘graycoprop’ normalizes the GLCM by equating the sum of its elements 
to one and calculates the statistical properties of the GLCM. The number of values in the 
statistical features depends on the number of GLCMs. There are four properties in total; they 
are dependent on angles and are defined as follows in MATLAB: 

Contrast or variance:  Measures the local variations in the GLCM. Or simply, it measures 
the intensity or value of a pixel and its neighbour over the whole image. If the pixel values are 
similar, the contrast of the image will be low, and the higher the amount of local variation in 
the image, the greater will be the contrast value. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑|𝑖 − 𝑗|2 𝑝(𝑖, 𝑗)

𝑖,𝑗

 

where p (i, j) is the probability value in row ‘i’ and column ‘j’.  

Correlation: A measure of image linearity, so it measures how correlated a pixel is to its 
neighbour over the whole image. If the image is linear, higher the correlation value. Correlation 
is one for a perfectly positively correlated image. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
 

𝑖,𝑗

 

where 𝜇𝑖 and 𝜇𝑗  are the mean of the GLCM computed on the row and column respectively. 

Similarly, 𝜎𝑖 and 𝜎𝑗 are the standard deviations computed on the row and column respectively. 

Energy or uniformity: Measures the uniformity of the pixels. It is defined as the sum of 
squared entries in the GLCM.  

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 

Higher the uniformity, higher the energy value. Energy is 1 for a constant image. 

Homogeneity: Measures the closeness or density of the distribution of elements in the GLCM 
to the GLCM diagonal. Homogeneity is 1 for a diagonal GLCM.  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
 

𝑖,𝑗

 

In addition to the GLCM textural features, two additional features (related to image brightness) 
were considered: 

- 
𝑅𝑀𝑆

𝑆𝐷
 (Ratio of root mean square brightness to its standard deviation) 

- Kurtosis (𝐾) (Ratio of the fourth central moment of the distribution to the fourth power 
of standard deviation) depicts to what extend a distribution contain outliers compared 
to the normal distribution. 

(4.7) 

 (4.5) 

(4.6) 

(4.8) 
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According to Ulanowski et al. (2014), the most robust measurements produced by Energy, 
𝑅𝑀𝑆

𝑆𝐷
 and base 10 logarithm of Kurtosis were used to define the ‘combined roughness’. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 = 0.7 − (
2 × 𝐸𝑛𝑒𝑟𝑔𝑦

3
) −

𝑙𝑜𝑔10(𝐾)

6
+

𝑅𝑀𝑆
𝑆𝐷

4000
 

 

The flowchart for creating a GLCM and extracting features from the matrix to compute the 
‘combined roughness’ value is given below (Fig. 4.11). The first step is image pre-processing 
in which the region of interest is looked at after cropping and masking the rest of the image. 
There are two paths: one for finding the image brightness features and the other for finding 
the textural features. In path 1, the mean image brightness is scaled to 10 (from the grey scale 
range 0-255) and all the non-zero elements are extracted from the image to calculate the 
image histogram which provides the distribution of pixel values in each grey level bins. Then 
the statistical parameters like standard deviation, root mean square, and kurtosis are 
computed using relevant equations. In path 2, the image, which is of ‘uint8’ datatype is 
converted into ‘single’ datatype first. The type conversion is necessary as ‘uint8’ cannot accept 
‘NaN’ values and if the zero entries are not addressed, the statistical parameters’ values are 
affected. Once the image is converted into ‘single’ datatype, all the zero entries are replaced 
with ‘NaN’ values. Then the GLCM is created with the specified spatial relationship (adjacent 
pixels in direction 0°, 45°, 90° and 135° with distance 1 pixel and symmetrical). The GLCM 
features (only ‘Energy’ is required) are extracted and the mean value will be calculated. The 
results from the path 1 and path 2 are substituted into the Equation 4.9 to find the ‘combined 
roughness’ value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11: Flowchart of the Combined Roughness algorithm. 

 

      (4.9) 

Image Pre-processing (masking and 

cropping to look at the region of 

interest). 

Convert the image into ‘single’ 

datatype and replace all zero 

elements with ‘NaN’. 

Compute GLCM based on the spatial 

relationship specified in terms of 

direction angle and symmetry. 

Extract the GLCM features and find 

the mean value. 

Get the non-zero elements 

in the image and using the 

image histogram, compute 

the standard deviation, 

RMS, and kurtosis. 

Scale the mean image 

brightness to 10. 

 

GLCM features: 
- Contrast 
- Correlation 
- Energy 
- Homogeneity 

Spatial relationship: 
 
- Offset (direction 
angle): [0 1; -1 1; -1 0; -
1 -1] corresponding to 
0°, 45°, 90° and 135° 
 
- Symmetric: True 

Find the ‘combined roughness’ value 

using Equation 4.9. 
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The input images are AIITS images of unit8 type with 8 bits and 28=256 grey levels. Even 
though the AIITS’ image dimension is 512x640 pixels, only the area of interest (8-25°) 
represented by 458x458 were used to calculate the statistical features of GLCM. A few 
examples are given below (Table 4.3) representing different roughness of ice crystals. The 
first two crystals shown in the table have significant roughness (around 0.6) compared to the 
third one (0.3). The last image is a smooth needle crystal with combined roughness around 
0.1. From Table 4.3, it is evident that the combined roughness values decreases as we go 
through the images from left to right. For the last image, Energy is higher (0.6979) implying a 
greater uniformity of the pixel values. In comparison, the first image has a lower Energy value 
implying a lesser pixel uniformity. On the other hand, there is high variance of pixel values in 
the first image, therefore a higher Contrast. Energy and Contrast are opposite to each other. 

 

    

Image No: 2227 2376 10 1122 

Contrast 
(Mean) 

[0.34,0.46,0.33,
0.45]  

0.3995 

[0.28,0.33,0.26,
0.34] 

 0.3102 

[0.156,0.16,0.15
6,0.159] 
0.1582 

[0.080,0.0826,0.0
804,0.0837] 

0.0817 

Correlation 
(Mean) 

[0.88,0.84,0.88,
0.84] 

0.8648 

[0.91,0.89,0.91,
0.89]  

0.9022 

[0.682,0.675,0.6
83,0.675] 
0.6793 

[0.844,0.839,0.84
4,0.837] 
0.8414 

Energy 
(Mean) 

[0.14,0.12,0.14,
0.12] 

 0.1338 

[0.15,0.14,0.16,
0.14]  

0.1530 

[0.498,0.496,0.4
98,0.496] 

0.4973 

[0.698,0.697,0.69
8,0.697] 
0.6979 

Homogeneity 
(Mean) 

[0.83,0.79,0.83,
0.79] 

0.8170 

[0.86,0.83,0.86,
0.83]  

0.8501 

[0.921,0.919,0.9
21,0.920] 
0.9209 

[0.959,0.958,0.95
9,0.958] 
0.9591 

Kurtosis (K) 4.2002 5.4383 10.89 17.41 

log10(K) 0.6233 0.7355 1.0371 1.2409 

Root Mean 
Square 
(RMS) 

2579 2609 2713 2799 

Standard 
Deviation 

(SD) 
3.79 4.35 4.44 6.05 

RMS/SD 680.57 599.31 609.83 462.17 

Combined 
Roughness 

0.6771 0.6252 0.3480 0.1434 

No. of 
Saturated 

Pixels 
22 75 0 0 

 

Table 4.3: A table showing details of four different images with different roughness scale 

along with other statistical parameters. 
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4.6 Dealing with weak images 
 

It is difficult to get information from weak grayscale images. There is a wide range of functions 
available in MATLAB related to image enhancement. A built-in function ‘adapthisteq()’ has 
been found particularly useful for enhancing the image using Contrast-Limited Adaptive 
Histogram Equalization (CLAHE).  

Fig. 4.12 shows a side-by-side comparison of an original and corresponding enhanced image. 
Many features that were hidden in the original image are revealed in the enhanced image. 
The ring-like structure in the enhanced image shows that it is likely to be the scattering pattern 
of a small quasi-spheroid crystal. In general, this type of enhancement might amplify the noise 
in the image too (which can be prevented using a ‘ClipLimit’ value in the range 0-1, default 
being 0.01); however, the additional parameters are not used as only the concealed features 
in a weak image are examined. 

 

Fig. 4.12: A comparison of original image (left) and enhanced image (right) using contrast-

limited adaptive histogram equalization. 

The histogram plots are helpful for visualizing the intensity distribution of greyscale images. 
Even though they have 256 bins by default, it is evident that the distribution is concentrated in 
a small range, between 5 and 50 bins for the original greyscale image (Fig. 4.13 (a)). On the 
other hand, the distribution of intensities spread out up to 150 bins for the enhanced image 
(Fig. 4.13 (b)). 

 

(a)      (b) 

Fig. 4.13: A plot of histogram for the original greyscale image (a) and contrast-limited 

adaptive histogram equalization (b). 
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Compared to the regular histogram equalisation function, which does the contrast adjustment 
to the entire image, the CLAHE only performs the histogram equalization on smaller regions 
of the image in a controlled manner. On applying the regular histogram equalization function 
on the original image shown in Fig. 4.12, it is obvious in Fig. 4.14 that some parts of the image 
are oversaturated, and noises are amplified. 

 

 

Fig. 4.14: The effect of applying the regular histogram equalization on the original image 
shown in Fig. 4.12.  

 

This chapter outlined how to identify crystal types based on the features in their scattering 
pattern and estimate their size. The method used to simulate scattering pattern of model 
crystals was also discussed. In the next chapter, these are further explained using several 
examples. 
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5. MODELLING DIFFERENT TYPES OF CRYSTALS TO 

APPROXIMATE AIITS SCATTERING PATTERNS 

 

 

As mentioned in Sections 4.4 and 4.5, the model crystals are generated using program specific 
to the crystal type, and the crystal orientation is represented in Euler angles (radians). The 
simulated scattering patterns of these models are obtained by running the ‘Beam Tracing 
Model’ program. By comparing them with the AIITS scattering pattern images and subsequent 
testing with different crystal sizes and orientations, crystal models are developed. The details 
of different crystal habits are explained in this section using various examples. 

5.1 Plates 
Plates usually have eight facets in total and are found orientating with their basal facets 
perpendicular to the laser beam. There are different types of plates, and some of them are 
addressed in this section.  

5.1.1 Pristine, smooth hexagonal plates  
The striking feature of a plate is the presence of six prominent scattering arcs in its scattering 
pattern. The six-fold symmetry arises from the hexagonal crystal symmetry. In the first 
example (Fig. 5.1), particle number 2342 in the AIITS data is shown (also in Fig. 5.2(a)). 

 

 

Fig. 5.1: Scattering pattern image of particle number 2342. 

 

A model crystal and its scattering pattern, which resembles that of the AIITS pattern, are 
shown in Fig. 5.2(b) and (d) respectively. The crystal size was estimated as radius 40-45µm 
(based on the scattering arc width) and thickness≤5µm (based on patterns within the arcs). 
Because scattering patterns computed for thick plates show additional features like bright 
extra arcs, which are not visible in Fig. 5.2(a), presumably this pattern was generated by a 
thin plate. In the scattering pattern of a 20 µm thick plate with similar radius, but in a slightly 
different orientation, two additional scattering arcs which arise from the prism facets can be 
seen (Fig. 5.2(h)). Additionally, a higher number of minima can be seen within the six 
scattering arcs.  

In general, all model crystals are generated in α=β=γ=0 orientation. This is shown in Fig. 5.2 

(c) using the model crystal in (b).  
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Fig. 5.2: A large, thin model plate (b) and its simulated scattering pattern (d) in comparison 
with the AIITS pattern (a). The same model crystal in (b) are shown in different orientations in 
(c-g). The scattering pattern of a thicker plate is shown in (h). 

 

Through manual analysis of repeated runs of BTM by changing one Euler angle at a time, an 
optimal set of Euler angles is found. The Euler angles are selected based on the position of 
arcs, the direction of arc’s bending as well as the width of the arcs. In this case, the optimum 
Euler angles were found to be α=-0.6, β=0.5, γ=0.4 radians. When the values are slightly off 
the optimum values, the pattern changes. An example can be seen in Fig. 5.2 (g) where the 
alpha angle is changed by 0.3 compared to (d), that is, α=-0.3, β=0.5, γ=0.4 radians. 

 
(a) AIITS 2342 

 
 
 
 

 
(b) A model crystal with radius 

40µm and thickness 3µm in 
α=-0.6, β=0.5, γ=0.4 radians 

orientation. 
 

 
(c) The scattering pattern of the 
model crystal in (b) in α=0, β=0, 

γ=0 radians orientation. 
 

 
(d) The scattering pattern of 

(b) in an orientation of α=-0.6, 
β=0.5, γ=0.4 radians. 

 
(e)  The scattering pattern of 
(b) with gamma angle rotated 

60° clockwise. 
α= -0.6, β=0.5, γ=1.4472 

radians. 

 
(f)  The scattering pattern of (b) 
with gamma angle rotated 60° 

anti-clockwise.  
α= -0.6, β=0.5, γ=-0.6472 

radians. 

 

 
(g) The  scattering pattern of 

(b) in an orientation of 
α=-0.3, β=0.5, γ=0.4 radians. 

 
(h) The scattering pattern of a 
crystal with radius 45µm and 

thickness 20µm in α=0.1, 
β=0.5, γ=-0.3 radians 

orientation. 

 

2 additional 

scattering arcs 

Scattering     

arcs 
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Due to the 60° symmetry of a hexagonal prism, a particular scattering pattern can be 
reproduced by more than one set of Euler angles. This is shown in Fig. 5.2 (e) and (f), where 
the scattering pattern in (d) is replicated by rotating the crystal by 60° clockwise or anti-
clockwise during the last rotation (gamma angle). 

 

5.1.2 Hexagonal plates with rounded edges 
Like the regular hexagonal plate discussed in previous section, the scattering pattern (given 
in Fig. 5.3) of particle number 2304 also displays six arcs. As the scattering pattern is dimmer 
and the arcs are wider compared to the previous one (AIITS no.2342), the scatterer is 
presumed to be a small hexagonal plate. 

 

 

 

Fig. 5.3: Scattering pattern of particle number 2304 in the AIITS data. 

 

After analysing a range of plates with different radii and thicknesses manually, crystal size was 
estimated based on the width of the scattering arcs. Since plates tend to orientate on their 
basal facets, it is almost impossible to estimate the thickness of the plate, which is out of view. 
However, after rigorous testing, plate models with thickness greater than or equal to radius 
were not used because of the increased probability of prominent additional features arising 
from its prism facets (like circular arcs in Fig. 5.4 (f), (g) and (h)). For plates with thickness less 
than the crystal radius, only six scattering arcs can be seen (Fig. 5.4 (c), (d), (e)). The edge 
length plays a major role in a plate crystals’ scattering pattern. In a regular hexagonal crystal, 
both radius and edge length are equal. On decreasing the crystal radius, the width of the six 
prominent scattering arc increases (see for example, Fig. 5.4 (g) and (h)). Therefore, one can 
estimate the plate radius to be in the 20-25µm range with thickness<20µm (for thickness>20, 
prism facet features contribute like the example shown in Fig. 5.4 (g) (h)). This also rules out 
any likelihood of scatterer being a long column as they are found usually orientated with their 
long prism axis perpendicular to the laser beam. The Euler angles for the pristine hexagonal 
plate were found to be α=2.2, β=0.2 and γ=0. 
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(a) AIITS 2304 

 
 

(b) A model crystal with radius 22.5µm and 
thickness 3µm in Euler orientation α=2.2, 

β=0.2 and γ=0 radians. 
 

 

 
(c) Radius 23µm,  

thickness 7µm 

 
(d) Radius 20µm,  

thickness 5µm 

 
(e) Radius 23µm,  

thickness 2µm 
 
 
 

 
(f) Radius 20µm,  
thickness 20µm 

 
(g) Radius 19µm,  
thickness 25µm 

 

 
(h) Radius 50µm,  
thickness 50µm 

 

Fig. 5.4: Simulated scattering patterns of pristine plate models in comparison with AIITS 
pattern. Scattering patterns of thin plates (aspect ratio<0.5) and thick plates (aspect 

ratio≥0.5) can be seen in (c), (d), (e) and (f), (g), (h) respectively. 

 

Model crystals, with some rounding factors introduced to the above pristine plates, were also 
tested using another algorithm [E. Hesse, private communication], which takes the following 
input: 

i. Radius of the hexagonal plate. 
ii. Thickness (length) of the hexagonal plate. 

Circular arc 

 Circular arc 
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iii. Rounding factor for cylinder radius (f) or semi-minor axis length, value ranges 
between 0.867 (perfectly round) and 1 (no rounding or pristine hexagon).14 

iv. Number of rectangular sub-sections (n) parallel to the cylindrical axis.15 
v. Rounding factor for cylinder length (ff), value between 1.05(round) and 

1.41(pristine), semi-major axis length or half the major axis length.16 
vi. Number of trapezoidal sections (s) which ranges between 1 and 10, (ellipsoid 

section replacing a corner is divided into s trapezoidal subsections).17 

   

(The alpha angle of Euler orientation for rounded crystal is rotated by 90 degrees compared 
to pristine plates generated using ‘Column_Plate’ algorithm, therefore this should be 
subtracted, and the new set of Euler angle is α=0.629, β=0.2, γ=0 in radians). A range of 
rounding factors were tested. Fig. 5.5 (a) shows an example of a rounded plate crystal with 
radius 22.5µm, thickness 4µm and rounding factors f=0.95, n=1, ff=1.35, s=2 and its scattering 
pattern (Fig. 5.5 (b)), which shows a much better agreement with the AIITS pattern (Fig. 5.5 
(d)), than the patterns computed for pristine plate in (Fig. 5.5 (f). Therefore, it is assumed that 
the scatterer is a plate crystal with slightly rounded edges. Even though the same rounding 
factors are used for another model crystal, the scattering pattern shows fringes or ring-like 
structure (see Fig. 5.5 (c)). This is because the thickness of model crystal is different and on 
applying the rounding factors, the overall shape of the crystal is changed. The scattering 
pattern of yet another model crystal with different rounding factors f=0.95, n=1, ff=1.35, s=4 is 
shown in (Fig. 5.5 (e), in which a few ring-like structure can be seen. In comparison, the AIITS 
pattern (Fig. 5.5 (d)) is less rounded than the scattering pattern of model crystals shown in 
Fig. 5.5 (c) and (e). 

 

 

 

 

 

 
14 These limits of the rounding factor correspond to inner circle and circumcircle of the hexagonal facet, 
respectively. The intersection lines of the prism with the circular cylinder of the corresponding radius are 
determined. 
15 The new boundary of the prism between two such intersection lines is defined by n new rectangular facets of 
equal size, with vertices positioned on the upper and lower edges of the circular cylinder. 
16 These limits of the rounding factors correspond to inner ellipse and circum-ellipse of the largest rectangular 
cross section through the prism containing the prism axis. The intersection points of this rectangular cross 
section with the ellipse are determined. 
17 The new boundary of the prism between two such intersection points is defined by s equidistant points, which 
are positioned on the ellipse. 
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(a) A model crystal of radius 22.5µm, thickness 
4µm, rounding factors (f 0.95, n 1, ff 1.35, s 2) 

with Euler angles: α=0.629, β=0.2 and γ=0 
radians. 

 
  (b) The scattering pattern of the 

corresponding model crystal in (a). The 
maxima and minima show good agreement 

with those of AIITS in (d). 

  
       (c) Radius 23.5µm, thickness 21.5µm and 

rounding factors (f 0.95, n 1, ff 1.35, s 2). 

 
(d) AIITS 2304 

 
           (e) Radius 23.5µm, thickness 6µm and 

rounding factors (f 0.95, n 1, ff 1.35, s 4). 

 
          (f) Radius 22.5µm, thickness 4µm 

pristine hexagonal plate. 

 

Fig. 5.5: Simulated scattering pattern of rounded plate models in comparison with AIITS 
pattern. 

 

The highlighted plate in Fig. 5.6 looks very similar to the model presented in this section. The 
picture is taken from Tape (1994) and has been enhanced to provide a better view of the 
crystals. The ice crystals, shown in the picture, were collected on 4th January 1985 at the 
South Pole during a halo display. Note that the halo crystals possess diameters close to or 
exceeding 200µm, considerably larger than those of the model crystals. 
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Fig. 5.6: An enhanced picture of ice crystals collected during a halo display at the South pole 
on 4 January 1985 taken from Tape (1994). A plate similar to the modelled crystal is 

highlighted in red. 

 

5.1.3 Scalene plates 
Consider Fig. 5.7. Six arcs are evident but two are much less prominent than the others 
(possibly) indicating a plate crystal with semi-regular hexagonal geometry. The process of 
modelling such a crystal is detailed below. 

 

 

Fig. 5.7: Scattering pattern of particle number 2308 in the AIITS data. 

 

The original algorithm could only generate a regular hexagonal plate with equal sides. This 
has been edited to incorporate sides with 2 shorter edges to make it scalene (semi-regular 
hexagon). The modified program takes an additional input: edge_factor (EF) which is a 
dimensionless factor. As ice crystals tend to retain their hexagonal structure, we wanted to 
avoid disrupting its internal 120-degree angle between 2 adjacent sides. The idea was to 
extend four sides (as depicted in Fig. 5.8). 
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Fig. 5.8: Diagram of changing a hexagonal crystal to a rhomboidal one. 

 

By making use of edge_factor (EF=factor times the edge length added to the original length), 
the desired length was acquired. The factor ranges between 0 (no effect: regular hexagon) 
and 1 (extreme point: creating a diamond or rhomboid shape). As EF increases, the crystal 
becomes more elongated (up to four longer sides). In the algorithm, the six vertices A to F 
were assigned eki (1) to eki (6) for top basal facet and eki (7) to eki (12) for bottom basal facet. 
The eki are position vectors (a set of 3 co-ordinates namely ek1, ek2 and ek3) corresponding 
to x, y and z values. The co-ordinates of the new points were calculated using vector algebra. 
For example, point H (in a rhomboid crystal with EF=1 in Fig. 5.8) can be found by, H= ek (2) 
+ Edge Factor x (ek (2) - ek (1)). This makes the vertices B and C to converge at H. Similarly, 
this algorithm was further edited to create the more common scalene plates (with three short 
and three long edges or three-fold symmetry) shown in Fig. 5.9. The existence of such crystals 
is noted in Murray et.al (2015). 

 

 
Length:5µm, Radius: 22.5µm, EF:0.9 

 

 

 
Length:3µm, Radius: 30µm, EF:0.5 

 

A 
eki(1) 

[eki(7)] 

 B 
eki(2) 

[eki(8)] 

 

eki(3) 
[eki(9)] 
C 

eki(4) 
[eki(10)] 

D eki(5) 
[eki(11)] 
             E 

          F 
eki(6) 
[eki(12)] 

H G 
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Length:3µm, Radius: 15µm, EF:0.5  

 

Fig. 5.9: Models of plates with three-fold symmetry (left) and their corresponding simulated 
scattering patterns (right). All crystals are in α=2.2, β=0.2 and γ=0 orientation. 

 

The Fig. 5.10 shows a more detailed transformation from regular hexagonal (solid blue) to a 
semi-regular hexagonal (red dot and line) and further to a rhomboidal crystal (green dash). 
The equations used to find the edge lengths and long radius of the semi-regular hexagonal 
prisms, based on Fig. 5.10 are given below:   

Long Edge (LE): The long edge, 𝐴𝐵 = 𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 +  𝐸𝐹 𝑥 𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠.  

Short Edge (SE):  𝐵𝐶 = 𝑆𝑖𝑛 30°𝑥𝐴𝐵,  since 𝐴𝐶𝐵 is a right-angled triangle. 

         𝑂𝐶 = 𝐵𝑂 − 𝐵𝐶, where 𝐵𝑂 is the Hexagonal Radius.   

    The short edge, 𝐴𝐸 = 2𝑥𝐴𝐷 (since 𝐴𝐷 = 𝑂𝐶) 

Long Radius (LR):   𝐸𝐷 = 𝐴𝐷 =
𝐴𝐸

2
 

      𝑂𝐷 = [
√3

2
𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 + 𝐸𝐹  

√3

2
 𝐻𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 𝑅𝑎𝑑𝑖𝑢𝑠 ] =

√3

2
𝐴𝐵 

The long radius,  𝑂𝐸 = √𝐸𝐷2 + 𝑂𝐷2   

 

Fig. 5.10: Three different crystal geometries are shown: the pristine regular hexagon (blue 
solid line) with hexagonal radius (OB), semi-regular hexagon (red dot and line) and a 

rhomboid (green dash). 
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The model crystal (in Fig 5.11 (b)) has a hexagonal cross-section with 4 long and 2 short sides. 
The four bright and the two faded arcs in the AIITS image (Fig 5.11 (a)) are linked to the 4 
long edges and 2 short edges of the semi-regular hexagonal plate respectively (the hexagonal 
shape can be considered as three sets of parallel edges, i.e., two sets of long edges and one 
set of short edges). 

The next step is to find the correct crystal orientation specified in terms of the Euler angles. 
Fig 5.11 shows simulated scattering patterns using different sets of Euler angles and crystal 
sizes. The patterns in Fig 5.11 (c), (d) and (e) look almost the same, but 3 different sets of 
Euler angles are used (whose sum of alpha and gamma is equal to 1.45). However, on careful 
inspection one can see that the arc running from top left to bottom right straightens up with 
increasing gamma and decreasing alpha, while beta angle is kept constant. Therefore, the 4 
major arcs find a middle ground at α=-0.2, β=0.4 and γ=1.65.  

 

 
(a) AIITS 2308 

 
(b) A model crystal with Rad45, len2,  

α=-0.2, β=0.4, γ=1.65, EF 0.7, SE:13.5, 
LE:76.5 

 
(c) Rad40, len5, α=-0.45, β=0.4, 

γ=1.9, α+γ=1.45, EF 0.6,  
LE:64, SE:16, LR:56 

 
(d) Rad50, len5, α=-0.2, β=0.4, 

γ=1.65, α+γ=1.45, EF 0.6, 
LE:80, SE:20, LR:70 

 
(e) Rad50, len5, α=0, β=0.4, 
γ=1.45, α+γ=1.45, EF 0.6, 

LE:80, SE:20, LR:70 
 

 
(f) Rad35, len18, α=-0.2, β=0.4, 
γ=1.65, EF 0.65, LE:58, SE:12, 

LR:50.38 

 
(g) Rad45, len2, α=-0.2, β=0.4, 

γ=1.65, EF 0.7, LE:76.5, 
SE:13.5, LR:66.59 

 

 

Fig. 5.11: Forward scattering pattern of different crystal sizes in comparison with AIITS 2308. 

Short Edge (SE) 

Long Edge (LE) 
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Looking at the scattering arc’s width, the long edge can be estimated between 55-80µm and 
short edge between 10-14µm. In this case too, the thickness of the plate should be less than 
half the regular hexagonal plate radius. Otherwise, additional features will become prominent 
in the scattering pattern (Fig. 5.11 (f)). The scattering pattern of the model crystal (Fig. 5.11 
(g)) shows a good agreement with the AIITS pattern. Existence of such (scalene) semi-regular 
hexagonal plates are recorded in Tape (1994). One such sample of crystals collected during 
a halo display at South Pole is given in Fig. 5.12, which includes plates ranging from rhomboid 
to regular hexagonal symmetry. 

 

 

 

Fig. 5.12: Ice crystals collected during a halo display at the South pole on 2 January 1990 
(Tape 1994). Semi-regular and rhomboid crystals are shown in orange and yellow arrows 

respectively. 

 

 

From the scattering pattern of the modelled plate crystal, altogether, six scattering arcs were 
seen and the width of the scattering arc was highly dependent on the edge length of the plate. 
Increased edge length results in narrow scattering arcs. This agrees with far-field diffraction 
in which the diameter of the slit (or object) is inversely proportional to the angle of diffraction. 
Therefore, the larger the particle, the smaller will be the divergence of the diffracted beam. In 
hexagonally symmetric crystals, the width of all the six scattering arcs were the same, whereas 
in semi-regular hexagonal plates or scalene plates, there were manifestations of scattering 
arcs of dissimilar width. Estimating the particle size in terms of edge length (both long and 
short edges) is highly recommended for scalene plates (as edge length is not equal to radius). 
While estimate can be made either by radius or edge length for regular hexagonal plates (as 
edge length is equal to radius).  
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5.1.4 Droxtals 
Droxtals are a variant of plates with tapered upper and lower prism sections. Consequently, 
droxtals have 20 facets while plates only have eight (Yang et al. 2003). A microscopic 
photograph of a droxtal taken from Kikuchi et al. (2013) and a model droxtal with 20 faces are 
shown in Fig. 5.14 (d) and (f). They are formed by direct freezing of supercooled liquid droplets 
with little growth directly from the vapour (AMS Glossary of Meteorology, 2012). So far, the 
scattering patterns of different varieties of plates were discussed. The scattering patterns of 
droxtals show a similar appearance to that of plates; however, the former have bright spots or 
halos in addition to the scattering arcs. The number and position of bright spots depends on 
the crystal orientation. There were a few AIITS images which appeared to be the scattering 
pattern of droxtals. One such example is shown in Fig. 5.13. 

 

 

Fig. 5.13: Scattering pattern image of particle number 2315 in the AIITS data. 

 

A droxtal with radius 20µm and an aspect ratio nearly equal to unity (height or length:33.6µm) 
is shown in Fig. 5.14 (b). This model was found to be a good approximation for the scatterer 
of the pattern (in Fig. 5.14 (a)), in an orientation of α=-0.6, β=0.5, γ=0.4 radians. The simulated 
pattern (Fig. 5.14 (c)) contains features like scattering arcs, concentric rings as well as bright 
spots, all in the right places. The droxtal has an estimated radius of 15-20µm and length 25-
34µm. Though features like scattering arcs and bright spots are usual appearance for droxtals, 
the concentric ring like feature may not be evident in some orientations like the one in Fig. 
5.14 (f). 
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Fig. 5.14: Model of a droxtal and its simulated scattering pattern in comparison with the 
AIITS pattern 

 

 

 

 

 

 

 
(a) AIITS 2315 

 

 
(b) A droxtal with radius 20µm and 

length 33.6µm, α=-0.6, β=0.5, γ=0.4 
radians 

 
 

 
(c) The simulated pattern of the model 

crystal in (b) 
 
 
 

 
(e) The simulated pattern of the model 

crystal in (f) 
 

 
(d) Microscopic photograph of a 
droxtal taken from Kikuchi et al. 

(2013) 
 

 

 
(f) A droxtal with radius 20µm and 

length 33.6µm, α=-1.3, β=-1.3, γ=-0.7 
radians 
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In addition to regular droxtals, those of scalene nature were tested. The simulated pattern of 
a model crystal with radius 20µm and height 40µm showed a greater resemblence to particle 
number 2337 (Fig. 5.15).  

 

 

Fig. 5.15: Scattering pattern of particle number 2337 in the AIITS data. 

 

An enhanced image is shown in Fig. 5.16 (a) for a better view of its minor arcs. The striking 
features that match the AIITS image with the simulated scattering pattern are the major and 
minor arcs (wider and thinner arcs), and the three halo-like features on the central cross-like 
arc. The vertical and horizontal arcs forming a cross-like structure was indicative that both the 
diameter and height of the crystal might be roughly the same. The orientation of the droxtal 
was found to be α=1.3, β=-1.3, γ=0.7 radians after testing with several orientations. 

 

 
(a) Enhanced image of 
AIITS 2337 

 
(b) Simulated scattering 
pattern of the droxtal model 
with radius 20µm and height 
40µm. 

 

 
(c) A droxtal model with radius 
20µm and height 40µm in 
α=1.3, β=-1.3, γ=0.7 radians 
orientation. 

 

Fig. 5.16: (a) AIITS pattern, (c) a model crystal of droxtal and (b) its simulated pattern. 

 

Several variations of scalene droxtals were tested like the examples in Fig. 5.17. Since the 
models shown are in the same orientation of α=1.3, β=-1.3, γ=0.7 radians, the positions of arc 
are also nearly in same places as in Fig 5.16 (a); however, the halos are in different places 
which might be due to the difference in tilt angles of the facets. The simulated pattern shown 
in Fig 5.16 (b), shows the closest resemblance to that of Fig 5.16 (a), and the scalene droxtal 
has an estimated radius of 20-25µm with height=2 x radius. 
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(a) Simulated scattering pattern of the droxtal 
model in (b). 

(b) A droxtal model with radius 25µm and 
height 48µm. 

                

(c) Simulated scattering pattern of the droxtal 
model in (d). 

(d) A droxtal model with radius 25µm and 
height 50µm. 

Fig. 5.17 (b) and (d): Model crystals of scalene droxtals; (a) and (c): their respective 
simulated patterns. 

5.2 Columns  
Columns are hexagonal prisms like plates, but unlike plates, they orientate with their prism 
axis perpendicular to the laser beam. There are different varieties of columns, like solid or 
hollow columns, and they can be thick or thin with smooth or rough surfaces. Columns with 
very high aspect ratio are referred to as needles (see Section 5.2.3).  

 

5.2.1 Smooth solid columns 
Smooth columns are those with a smooth surface texture. The scattering pattern of such 
crystals display two scattering arcs (a major central arc) with or without accompanying parallel 
lines. The AIITS image number 2351 (Fig. 5.18 (a)) appeared to be the scattering pattern from 
a column crystal. Therefore, smooth columns of several sizes were tested and the scattering 
pattern from a model crystal (Fig. 5.18 (b)) with radius 10µm and length 25µm was found to 
be a match. On testing, the model crystal was found to be in α=2.8, β=-1.3 and γ=-0.7 radians’ 
orientation. It was understood that as the column becomes longer (increasing length or 
growing on its prism axis), the width of the central arc decreases and as the column gets wider 
(increasing diameter or growing on its basal axis), the number of minima within the arc 
increases (as long as diameter<=length). Based on this, the crystal was found to have an 
estimated basal radius of 2-10µm and prism length of 20-30µm. 
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              (a)                                               (b)                                              (c) 

Fig. 5.18: (a) AIITS pattern number 2351, (c) the model crystal of a smooth solid column with 
radius 10µm and length 25µm, and (b) its simulated pattern. 

 

5.2.2 Rough solid columns 
A rough column, as the name implies, has a rough texture on its surface. In the scattering 
pattern of such a crystal, speckle-like feature will be evident as with any rough crystal. In 
addition, solid column’s feature of major central arc will also be visible. On analysing the AIITS 
image number 1906 (Fig. 5.19 (a)), a combination of speckles as well as the major central arc 
were seen, which indicates that the crystal is a rough solid column. The crystal size was 
estimated to have a basal radius 10-15µm and prism height of 30-40µm after testing with 
different column sizes with varied surface roughness. As with smooth solid column, the rough 
column’s central arc become wider in the scattering pattern, as the column length gets shorter, 
and fewer number of minima will be seen inside the arc. As discussed in Section 4.5.1, the 
speckle size is inversely proportional to the crystal size. The model crystal and its simulated 
pattern are in orientation: α=0.5, β=1.2 and γ=0.2 radians (Fig. 5.19 (c) and (b)). 

 

 

      

              (a)                                               (b)                                              (c) 

Fig. 5.19: AIITS pattern number 1906 (a), the model crystal of a rough solid column with radius 
10µm and length 30µm (c) and its simulated pattern (b). 
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5.2.3 Needles 
Needle crystals are column-like crystals that are extremely thin. Fig. 5.20 shows the scattering 
pattern of such a crystal. 

 

 

Fig. 5.20: The scattering pattern image of particle number 1122 in the AIITS data. 

 

 

Fig. 5.21 (b) and (c) show a model crystal with radius 0.5µm, length 13µm, and its 
corresponding scattering pattern respectively. This pattern is the best fit obtained. The process 
to obtain it was as follows: Since the scattering pattern exhibits the properties of a long column 
(orientating on its long prism axis), a column crystal was generated first. After a sequence of 
testing with different crystal sizes and Euler angles, a model crystal was developed. It was 
understood that the width of the scattering arc increases as the crystal length decreases, and 
by increasing the radius of the crystal, a greater number of minima (dark bands) will be visible 
in the pattern. 

The crystal length was estimated based on the width of the scattering arcs, and its radius, 
based on the presence/absence of minima. For crystals with radius≥1µm, minima will be 
present within the central arc of the scattering pattern. One such example is shown in Fig. 
5.21 (d). As column radius increases, greater number of minima will be visible. Likewise, when 
the length of the column is increased, the width of the central arc decreases. As AIITS can 
only detect crystal sizes with diameter≥1µm, the lower range was ignored. The only radius 
which displayed similarity was 0.5µm. Therefore, the crystal type was identified as needle like 
crystal with an estimated basal radius 0.5µm and prism height of 10-20µm. 
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Fig. 5.21: Simulated scattering pattern (c) of thin solid column model (b) in comparison with 
the AIITS pattern (a). The scattering pattern of a thicker column is shown in (d). 

 

 

According to Lee and Magono (1966), microscopically needle-like crystals can be further 
classified as: 

1. Extremely thin solid columns.  
2. Extremely thin hollow columns (called Sheaths).   
3. Needle-like structure with a pointed or knife edged tip.  

The model crystal belongs to the first category, or type ‘N1e needle crystal’ according to the 
nomenclature in Lee and Magono (1966). Based on observations noted in Lee and Magono 
(1966), these types of crystals are formed at temperature below -30°C; however, it was also 
noted that these types of crystals can be experimentally obtained around -50°C. It is also 
mentioned that “minute solid columnar crystals are frequently observed in the early stage of 
mature columnar crystals” (Lee and Magono 1966). Examples of thin solid columns are shown 
in Fig. 5.22. 

 

          
(a) AIITS 1122 

         
(b) Model crystal with radius 0.5µm, 
length 13µm, α=-1.2, β=-1.3, γ=-0.5 

radians 

 
(c) The scattering pattern of the 

corresponding model crystal in (b) 

 
(d) The scattering pattern of a crystal 

with radius 5µm, length 20µm,  
α=-1.2, β=-1.3, γ=-0.7 radians 
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Fig. 5.22: Microscopic photographs of thin solid columns from Lee and Magono (1966). 

 

5.3 Quasi-spheroids 
Quasi-spheroidal crystals are crystals with significantly rounded edges and an aspect ratio 
close to unity. The striking feature in the scattering pattern of this type of crystal is the presence 
of a ring-like structure. Based on the number of rings and the ring’s width, it is possible to 
estimate the crystal radius. A perfectly spherical crystal has a diffraction pattern with 
concentric intensity peaks very similar to that of water droplets. Two types of quasi-spheroids 
were observed in the AIITS images: smooth and rough. The smooth quasi-spheroids only 
contained ring-like structure in its scattering pattern, while the rough quasi-spheroids 
displayed the same with an additional speckle-like pattern. 

In general, the models of Quasi-spheroid crystals are generated using the gsphere (Muinonen 
et al. 1996) program with specific radiuses, and the scattering patterns are simulated using 
Hesse et al. (2018) Beam Tracer method. Since there is a relationship between the number 
of rings and the crystal size, the number of rings is counted from the 2D simulated patterns for 
each crystal size. The larger the crystal, the more rings are visible in the scattering pattern. As 
an example, a model of smooth sphere of radius 10 µm along with its simulated 2D scattering 
pattern is shown in Fig. 5.23. For this sized crystal, 8-12 rings are visible in the scattering 
pattern plotted between 6°-25°. Likewise, different sized crystals are tested to find the number 
of rings, and the results are given in the last column of Table 5.1. 

  

Fig. 5.23: A model of smooth sphere with radius 10µm (left) and its simulated 2D scattering 
pattern (right). 

 

For validation, the number of rings visible in the simulated 2D scattering pattern is compared 
with the phase function generated using both the Mie and Beam Tracer program. This is given 
in the second and third column of the Table 5.1. The phase function provides a plot of the 
azimuthally integrated P11 element of the scattering matrix, which corresponds to intensity, 
versus the scattering angle. As an example, the phase function of smooth sphere of radius 10 
µm created using Mie program and Beam Tracer program are given in Fig. 5.24 for a side-to-
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side comparison. 10 peaks can be seen in the phase function plot generated via Mie program 
and 11 peaks can be counted from the Beam Tracer-generated phase function plot. 

 

Radii 
(µm) 

Mie: 
Number of intensity 
peaks in P11 (6°-25°) 

Beam Tracer: 
Number of intensity 
peaks in P11 (6°-25°) 

Beam Tracer: 
Number of rings visible in the 
2D scattering pattern (6°-25°) 

5 5 5 5-6 

10 10 11 8-12 

15 14 15 12-17 

20 19 20 17-20 

25 24 26 20-24 

Table 5.1: The number of bright diffraction rings or intensity peaks in different sphere 
radiuses. 

 

 

Fig. 5.24: The phase function of a smooth sphere with radius 10µm generated using Mie 
program (left) and BT program (right). 

 

In general, the number of intensity peaks in the phase function or the rings in the 2D scattering 
pattern increases with increasing crystal radius. On comparing the number of intensity peaks 
in the phase function plot of Mie and Beam Tracer program, only ±2 difference can be seen. 
Note that, a maximum of 22 rings were spotted in the AIITS images of quasi-spheroids. Hence, 
the Table 5.1 contains information of the radius up to 25µm. With the help of this table, the 
radius of crystals is estimated by counting the number of rings in the AIITS images. Also note 
that the information provided here is for forward scattering pattern of 6°-25°. Obviously, the 
number of rings increases if the forward scattering pattern covers more than this region. 

 

So far, the process of estimating the radius of a quasi-spheroidal crystal from its scattering 
pattern were discussed. Let us look at some of the AIITS example images next. 

 

The AIITS scattering pattern of a smooth quasi-spheroid crystal is shown in Fig. 5.25 (a) and 
about 5-8 prominent rings are visible. In comparison, the simulated scattering pattern of the 
model crystal with radius 5 µm shown in Fig. 5.25 (c) has 4-5 rings and therefore smaller than 
the one in AIITS pattern. The crystal size is therefore estimated as 5-10µm in radius. It is 
obvious that the model is too spherical compared to the AIITS pattern; nevertheless, for an 
approximate size estimation, the model is deemed to be sufficient. The actual crystal is likely 
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to have a slightly oval shape with rounded edges (and not perfectly spherical as in the model). 
The model crystal in correct orientation and its side view are shown in Fig. 5.25 (b) and (d) 
respectively.  

 
(a) AIITS 1999 

 
(b) A model crystal with radius 5µm, 

length 10µm and rounding factors (f 0.87, 
n 8, ff 1.06, s 8) α=2.2, β=0.1, γ=-0.1 

radians 
 
 

 
(c) The scattering pattern of the model 

crystal in Fig. (b) 

 

 
(d) Side view of the model crystal 

  
Fig. 5.25: (b) and (d): Quasi-spheroid model and simulated scattering pattern (c) in 

comparison with the AIITS pattern (a). 

 

 

To replicate the AIITS pattern, equiaxed (approximately equal in diameter and length) model 
crystals are used.  

In the next example, Fig. 5.26 (a), image number 2411 in the AIITS dataset is shown, in which 
around 12-14 rings can be seen. This is also a quasi-spheroidal crystal as the previous one, 
but a greater number of rings indicates that the crystal is bigger. Also, some speckle-like 
feature can be seen indicating that this is a rough quasi-spheroid. The model crystal has a 
radius and length of 15µm and 25µm respectively, with rounding factors of f=0.87, n=8, 
ff=1.06, s=8. Rounding factors were explained in Section 5.1.2. In Fig. 5.26 ((c) top row) and 
(b), the original crystal orientation which was found to be α=2, β=0.1, γ=0 radians as well as 
its simulated scattering pattern are shown. The side view of the model crystal is given in the 
bottom row of (c). Estimated size of this quasi-spheroid is 10-15µm radius. The roughness of 
the crystal was computed as 0.5073 based on the method described in Section 4.5.2. 
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           (a)           (b)                 (c)                                    

Fig. 5.26: (a) The AIITS image number 2411, (c) a model crystal with radius 15µm and 
length 25µm rounding factors (f 0.87, n 8, ff 1.06, s 8) in correct orientation (top) and its side 

view (bottom), and (b) the simulated pattern of the model crystal in correct orientation. 

 

In general, for both smooth and rough quasi-spheroids, the crystal sizes were calculated 
based on the number of rings visible in their scattering pattern. For rough quasi-spheroids, 
additionally the roughness of the crystal was computed using the Combined Roughness 
program. 

 

5.4 Rough crystals 
For some rough crystal morphologies, despite the scattering patterns being dominated by 
speckle, shape information is still visible. For example, Fig 5.27 presents the scattering pattern 
of a rough column with radius 20µm and length 50µm, where the distinct horizontal arc can be 
clearly seen.  

 

                   

Fig. 5.27: A rough solid column model of radius 20µm and length 50µm (left) and its 
simulated scattering pattern (right). 

 

Another example is given in Fig. 5.28. Six prominent arcs can be seen distinctly in the 
scattering pattern of a rough, thin plate of radius 50µm and length 40µm, along with the 
speckles. 
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Fig. 5.28: A rough, thin plate model of radius 50µm and length 40µm (left) and its simulated 
scattering pattern (right). 

 

However, this is not always the case. Sometimes, the speckle pattern eradicates other 
features. One such example is a rough sphere18. Usually, rings can be seen in the scattering 
pattern of a smooth sphere. However, these are lost in the scattering pattern as the surface of 
the sphere roughens. Fig. 5.29 demonstrates this phenomenon, comparing a slightly rough 
sphere with a smooth sphere. These models have a radius of 15µm, and their simulated 
scattering patterns are shown in the bottom row.  

 

                         

                     

Fig. 5.29: Models of rough sphere with standard deviation 0.15 and correlation angle 30° 
(top left) and a smooth sphere (top right), both of radius 15µm along with their simulated 

scattering pattern (bottom row). 

 

Thus, it is not always possible to retrieve shape information from a crystal with rough surfaces. 

Ulanowski et al. (2012) states, “The complexity of these particles and of the resulting patterns, 

which exhibit speckle-like appearance, makes characterization difficult and in extreme cases 
prevents particle shape retrieval by direct comparison with theory”. For example, in Fig. 5.30 

 
18 Rough surfaced sphere crystals are modelled using a program for generating crystals with a Gaussian 
random surface (Muinonen et al. 1996). 
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taken from Ulanowski et al. (2012), the particle types and shapes are all different, yet their 
scattering patterns look similar and do not provide much information other than speckles. 

 

Fig. 5.30: (top) SEM images of a pollen, rough and slightly rough mineral dust grains, and a 
rough ice analogue respectively (from left to right), with their corresponding scattering 

patterns (bottom), taken from Ulanowski et al. (2012). 

 

In general, the roughness of all types of crystals can be assessed by exploiting the textural 
features in the images using Grey Level Co-occurrence Matrix (Ulanowski et al. 2014). Further 
details on the method can be found in Section 4.5.2. When speckles occur alongside distinct 
features indicative of the crystal shape, the patterns are classified in the specific crystal 
category such as ‘rough plates’, ‘rough columns’ etc. For rough plates and rough columns, the 
size estimation is done based on the width of the scattering arc as mentioned in Sections 5.1 
and 5.2. In cases where only speckles (but no shape structure) are visible, patterns are 
grouped into the general ‘Rough crystal’ category. The size estimation of such crystals is 
based on the Speckle Analysis method presented in Section 4.5.1.  

 

5.4.1 Testing the Speckle Analysis code using AIITS images  
 

AIITS images require a different value for ‘z’ (Equation 4.1). This is because, the image 
dimensions differ from the simulated images used in Section 4.5.1. Native AIITS images have 
a dimension of 640x512 pixels. For easier manipulation, a cropped version of 458x458 pixels 
is used in which the outer ring (scattering angle 25°) just touches the border of the image. 

Therefore, z=491 pixels are obtained from the equation below: 

z =
458/2

tan25°
= 491 pixels 

On substituting 𝜆=532nm and z=491pixels, Equation 4.1 becomes: 

𝐷 =
332.7

𝐷𝑠
µ𝑚 

(5.1) 
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𝐷𝑠, which is the average speckle diameter (in pixels), is calculated from the image using the 
Speckle Analysis code.  

The investigation of the Speckle Analysis algorithm in Section 4.5.1.1 with simulated scattering 
patterns demonstrated that the accuracy of the analysis was highly sensitive to the Marker 
value. The same investigation was repeated with real (AIITS) scattering patterns to determine 
the optimum Marker value.  

There were 91 images in total and Marker values between 0.6 and 0.9 were used. Table 5.2 
shows the result of how many crystal sizes were predicted correctly using different marker 
values. Out of the other Marker values, 0.75 is still the best with a prediction accuracy of 
around 55% within one standard deviation. 

 

Marker values No. of correct 
predictions 

Percentage 

0.6 35 38.46% 

0.7 48 52.75% 

0.75 50 54.95% 

0.8 48 52.75% 

0.9 4 4.40% 

Table 5.2: The percentage of correct crystal sizes predicted by the Speckle Analysis code 
while using different Marker values. 

 

These results clearly indicate that a Marker value between 0.7 and 0.8 is optimal. Though the 
authors of Ulanowski et al. (2012), recommend using 0.6 as the constant Marker value, based 
on testing both modelled crystals’ simulated patterns and AIITS scattering pattern images, it 
was found that the Marker value should be 0.75 instead of 0.6 for this dataset. However, as 
mentioned in Section 4.5.1.1, rather than relying on a constant Marker value, it is 
recommended to find the optimum Marker value based on the dataset and image dimension. 

The accuracy of the predicted rough crystal diameter obtained from the Speckle Analysis code 
is tested by visual inspection, comparing the simulated scattering pattern of rough spheres of 
different sizes of 5µm radius apart. For example, the AIITS image is compared with the 
simulated scattering pattern of a rough sphere of radius 10µm. If the AIITS image shows 
smaller speckle size, it will next be compared with the simulated scattering pattern of a rough 
sphere of radius 15µm. Otherwise, it will be compared with the simulated scattering pattern of 
a rough sphere of radius 5µm.  

Fig. 5.31 shows the simulated pattern of rough spheres of radiuses 5, 10 and 15µm 
respectively. The speckle size of AIITS no.166 in Fig 5.32 is smaller than the simulated pattern 
of rough spheres of radiuses 5µm and larger than 10µm and hence, radius 5-10µm will be 
estimated. Similarly, for AIITS no.83 in Fig 5.32, the speckle size lies between the speckles in 
the simulated patterns of 10 and 15µm radius ranges and thus, 10-15µm will be estimated. 
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Fig. 5.31: Simulated scattering patterns of rough spheres of radiuses 5, 10 and 15µm (left to 
right). 

 

 

  

Fig. 5.32: AIITS no. 166 and no. 83 (left to right). 

 

Until now, modelling and analysis of scattering patterns of different types of crystals as well 
as their comparison with the AIITS scattering pattern images were discussed in detail using 
several examples. The result of analysing the AIITS images taken on 5th March 2015 ATTREX 
are discussed in the next chapter with statistics. 
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6. RESULTS AND DISCUSSION 

 

 

6.1 AIITS results from the 2015 ATTREX mission and their 

interpretation 
 

In this research, the AIITS patterns were classified based on visual inspection depending on 
the overall size, shape, and surface texture of the crystals. Based on the analysis, out of 2426 
patterns, only a subset of 876 images (36.10%) can be used; the others were either blank or 
only the artefacts between 0° and 8° were visible, and hence discarded. The resulting 
proportion of different crystal categories are given in Table 6.1, which is a summarized table. 
For a more detailed information see Table 6.4. 

 

Crystal Categories Number Percentage 

Very small crystals 409 46.69% 

Columns 27 3.08% 

Plates 43 4.91% 

Rough crystals 106 12.10% 

Quasi-spheroids 291 33.22% 

Total 876 100% 

Table 6.1: Classification of AIITS images into different crystal types and textures. 

 

Each category from the table is explained in detail below. 

 

6.1.1 Very small crystals 
From Table 6.1, the most common crystal type is ‘very small crystals’ (46.69%) comprising 
crystals in the radius range 1-5µm. Most of the crystals (237) in this group showed features 
similar to the ones arising from quasi-spheroids, that is about 1-4 ring-like structure in their 
scattering pattern. Small droxtals and any small crystal with rounded edges and/or slightly 
rough surface texture are also likely to be in this group, as their scattering pattern show similar 
features and it is often difficult to distinguish them from the actual quasi-spheroidal crystals. 
For particles in this size range, the features in the scattering pattern will be quite spread out. 
As a result, it is impractical to accurately classify them into finer categories such as quasi-
spheroids, droxtals, small crystals with rounded edges or rough surface texture. The rest of 
the crystals (172) out of 409, exhibited an arc-like feature or elongated oval shape with parallel 
lines in the scattering pattern which could indicate that they are columns. The former and latter 
type are shown in Fig. 6.1 and Fig. 6.2 respectively. 
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No.24    No.28 

     

No.41            No.216 

Fig. 6.1: Very small crystals displaying quasi-spheroidal features (above). 

 

   

No.39    No.153  

   

No.158    No.320 

Fig. 6.2: Very small crystals displaying columnar features (above). 

 

6.1.2 Columns 
27 of the total data set (3.08%), were identified as ‘Columns’ and these were the least common 
type of crystal. The prism height ranged between 10-40µm. This category was further divided 
into needles, rough solid columns and smooth solid columns comprising 1, 9 and 17 crystals 
respectively in each group. While, the height of the rough solid columns spread across the 10-
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40 range, most of the smooth solid columns were found to be in the 10-20µm range. Based 
on the analysis, the aspect ratios of the columns were <1 (basal radius<half the prism length) 
indicating that they are thin columns. The only exception was for a rough column with an 
aspect ratio of 1, which implies a thick or equiaxed column. The details are given in Table 6.2. 

 

Prism height (µm) Needle Rough 
Column 

Smooth 
Column 

Total number of crystals 
in each size range 

10-20 1 3 13 17 

20-30 
 

2 4 6 

30-40 
 

4 
 

4 

Grand Total 1 9 17 27 
Table 6.2: Sub-categories of column crystals. 

 

An example crystal from each sub-category is shown below (Fig. 6.3). 

 

         
 No.1122          No.1597                      No.2317 

Fig. 6.3: Crystals representing the sub-categories of columns: Needles, rough solid 
columns, and smooth solid columns respectively (left to right). 

 

Fig. 6.4 shows the height of the rough columns in different size ranges along with the combined 
roughness parameter using a box and whisker chart. (See Section 4.5.2 for combined 
roughness parameter). This chart is one of the best graphical methods to display the summary 
of variation in a dataset and it represents the following: 

- The box represents the interquartile data range with lower and upper quartile values on the 
lower and upper end of the box. (Lower and upper quartile implies the median of the lower 
and upper half of the dataset respectively. The difference between these two is the 
interquartile range).  

- Within the box, ‘x’ marks the mean of the dataset. 

- The horizontal line inside the box is the median of the dataset. 

- Lines extending from the either side of the box, called whiskers indicates the minimum and 
maximum values in the dataset.  

The three rough columns in the 10-20µm size range have their combined roughness value 
roughly between 0.3 and 0.6. The two mid-sized (20-30µm) rough columns have roughness 
values of 0.37 and 0.48. For the rest of the four rough columns in the 30-40µm size range, the 
roughness value varied from 0.40 to 0.68.  
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Fig. 6.4: The roughness parameter and size ranges of rough columns. 

 

6.1.3 Plates 
The third category in Table 6.1, ‘Plates’, are comprised of 43 crystals contributing 4.91% of 
the overall crystal population. It is the second least common type of crystal. The sub-
categories of plates are given in Table 6.3, along with their frequency of occurrence and size 
estimation (the total number of crystals found in a particular size range is given in brackets in 
the 3rd column). As plates orientate on their basal facet, it is difficult to estimate how thick they 
are, since this dimension is out of view. However, based on the analysis of tilted plates, they 
were thin, with their prism length less than or equal to basal radius. In terms of aspect ratio, 
this will be ≤1 (thickness/diameter). The droxtals were usually equiaxed, with an aspect ratio 
close to 1.  

 

Types of   Plate        Occurrence         Size estimation in µm             

Pristine, smooth 
regular hexagonal plate 

5 (2) rad:15-20 
(1) rad:35-40 
(1) rad:40-45 
(1) rad:45-50 

Regular hexagonal 
plate with rounded 
edges 

7 (4) rad:25-30 
(1) rad:45-50 
(1) rad:20-25 
(1) rad:30-35 

Rough (regular 
hexagonal) plate 

1 (1) rad:25-30; combined roughness:0.39 

Pristine Scalene plate 2 (1) rad:20-25, ef<0.4. 
(1) rad:40-45, ef:0.7 

Scalene plate with 
rounded edges 

10 (4) rad:20-25; ef:0.4-0.7 
(2) rad:15-20; ef:0.4-0.5 
(1) rad:10-15; ef:0.2 
(3) rad:5-10; ef:0.7 

Rough scalene plate 4 (1) rad:10-15; ef0.7, combined 
roughness:0.6499 
(1) rad:20-25; ef0.7, combined 
roughness:0.6933 
(1) rad:20-25; ef:0.7, combined 
roughness:0.689 
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Table 6.3: The sub-categories of plates, and their size estimation (rad: radius estimated in 

microns; ef: Edge Factor, a dimensionless value (between 0 and 1) used to change the 
regular hexagonal crystal to a rhomboid crystal, see Section:5.1.3; for combined roughness, 

see Section 4.5.2). 

 

Examples of sub-categories of plates are shown in Fig. 6.5. Based on the features in the 
scattering pattern, these are regular hexagonal plates, scalene plates and droxtals in the top, 
middle and bottom panels respectively. 

 

    

No.2342   No.2042  No.2034 

     

No.2308   No.2239  No.2316 

  

No.2338  No.2019 

Fig. 6.5: Different types of plates. Top panel: regular hexagonal plate, regular hexagonal 
plate with rounded edges, regular hexagonal plate with rough surface (left to right). Middle 
panel: Pristine smooth scalene plate, smooth scalene plate with rounded edges, scalene 

plate with rough surface (left to right). Bottom panel: Regular droxtal (left), Scalene droxtal 
(right). 

 

(1) rad:5-10; ef:0.7, combined 
roughness:0.5423 

Droxtals 14 (8) rad:15-20  
(5) rad:20-25 
(1) rad:25-30 
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The Fig. 6.6 shows a doughnut chart representing the percentage contribution of different 
types of plates. Over half of the ‘Plates’ (56%) were droxtals and scalene plates with rounded 
edges, followed by smooth regular hexagonal plates without (12%) and with (16%) rounded 
edges. The scalene plates and regular hexagonal plates with rough texture were the least 
common types among the ‘Plates’, contributing 5% and 2% respectively.  

 

Fig. 6.6: The different types of plates based on their percentage contribution. 

 

Using the stacked column chart, the subcategories of plates in various size ranges along with 
the frequency in which they appeared are shown in Fig. 6.7. Most of the plates, in general, 
were sized in 15-30µm radius range. The pristine, smooth hexagonal plates have larger size 
ranges of 35-50µm. On the other hand, both scalene plates with rounded edges as well as 
rough texture have smaller radius range of 5-25µm. Interestingly, apart from a scalene plate 
in the 40-45µm range, there are no scalene plates beyond 25µm radius. Nearly all varieties of 
plates were found to be around the mid-range of 20-25µm. 

 

 

Fig. 6.7: The subcategories of plates in different size ranges. 

 

6.1.4 Rough crystals 
The ‘Rough crystal’ category, consisting of 106 crystals representing 12.10%, are crystals with 
unknown shape, but with rough surface texture. The size of the crystals as well as their 
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roughness are obtained using Speckle Analysis (Section 4.5.1) and Combined Roughness 
(Section 4.5.2) code respectively.  

Overall, the combined roughness parameter ranges between 0.2-0.9 and hence the category 
is split into three groups based on roughness, namely, slightly rough, medium rough and very 
rough crystals ranging from 0.2-0.4, 0.4-0.6 to 0.6-0.9 respectively. An example from each 
category is shown in Fig. 6.8. They have a combined roughness of 0.63, 0.45 and 0.36 
corresponding to very rough, moderate rough and slightly rough crystals respectively. 

   

No.2027       No.2218   No.1382 

Fig. 6.8: Examples of very rough, moderate rough and slightly rough crystals. 

 

The three groups are shown in Fig. 6.9 using the ‘box and whisker’ chart. The description on 
chart is mentioned under the ‘rough column’ in Section 6.1.2 with Fig. 6.4. The dots are outliers 
or significantly different values in the dataset. The size of the slightly rough crystals was found 
to be between 5-20µm radius. However, for the very rough crystals it extended from 10 to 
30µm radius. The medium rough crystals covered both size ranges, that is, 5-30µm radius. 

 

 

 

Fig. 6.9: The three varieties of rough crystals with varied sizes and roughness parameters. 
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The Fig. 6.10 shows all the crystals in the rough category with different roughness parameter 
and sizes. Apparently, the surface roughness increases with crystal sizes. Note that it has not 
been investigated whether the increasing roughness with crystal sizes is an artefact or not. 
This goes beyond the scope of the present study and hence further studies would be 
beneficial. 

 

Fig. 6.10: The roughness parameter of different sized rough crystals. 

 

There were 22 slightly rough crystals, 42 medium rough and 42 very rough crystals, making a 
total of 106. In Fig. 6.11, it is clear that very rough crystals are indeed larger in terms of size 
which implies that larger crystals have overall rougher surface texture. None of the slightly 
rough crystals were found above 20µm radius. The majority of the crystals were found to be 
in 5-10µm radius range with slight or medium roughness. 

 

Fig. 6.11: The frequency of rough crystals in different size ranges. 

 

6.1.5 Quasi-spheroids 
The ‘Quasi-spheroid’ category is the second common type of crystal with 291 crystals 
representing 33.22% of the overall crystal population. These crystals are further divided into 
two groups, smooth and rough quasi-spheroids, based on their surface texture. The smooth 
quasi-spheroids are crystals with smooth surface as well as significantly rounded edges, and 
they feature ring-like structure in the scattering patterns. The rough quasi-spheroids are rough 
surfaced crystals with significantly rounded edges. Therefore, a combination of both ring-like 
and speckle-like structures are noticeable in their scattering patterns.  
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(a) Smooth quasi-spheroids: 

Overall, 178 smooth quasi-spheroid crystals were found in the radius range 5-25µm. Among 
them, over half of the crystals, that is 55% (98 crystals), were in the small radius range of 5-
10µm. 42%, represented by 74 crystals, were found to be in the 10-15µm bin. The smaller 
portion of 3%, correspond to 5 crystals in 15-20µm and just 1 crystal in 20-25µm bin. The 
distribution of different sized quasi-spheroid crystals represented using a bar chart is illustrated 
in Fig. 6.12. 

 

 

Fig. 6.12: The frequency of ‘smooth quasi-spheroid’ crystals in different size ranges. 

 

The size of these crystals was estimated by manually counting the rings in the scattering 
pattern as well as using the speckle Analysis code. Fig. 6.13 shows some examples of Smooth 
Quasi-spheroids of various sizes. The No.1981 and No.2024 has 5-6 and 9-12 rings and they 
fall into the 5-10µm and 10-15µm sizes respectively. In the bottom panel of Fig. 6.13, there 
are 14-18 rings in No.2324 and 18-24 rings in No.2410. The former and latter belongs to size 
ranges of 15-20µm and 20-25µm radius ranges respectively. 

 

No.1981  No.2024 

 

No.2324  No.2410 

Fig. 6.13: Examples of quasi-spheroid crystals in different radius ranges. 
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(b) Rough Quasi-spheroids: 

There were 113 crystals which showed both features like rounded edges as well as rough 
surface texture based on the image analysis. These are included in the ‘rough quasi-
spheroids’ category which contributes 12.9% to the total crystal population. Examples are 
shown in Fig. 6.14. While No.2072 has 16-18 rings implying a crystal radius of 15-20µm, the 
No.2357 has 10-14 rings inferring a crystal radius of 10-15µm. The former and the latter have 
a roughness of 0.69 and 0.38 respectively. 

 

  

No. 2072      No.2357 

Fig. 6.14: Examples of rough quasi-spheroid crystals. 

 

The bar chart in Fig. 6.15 shows the number of ‘rough quasi-spheroid’ crystals in different size 
ranges. There are 49 crystals (43%) in the 10-15 µm radius range making it the most populated 
size range. On its either side, 5-10 µm and 15-20 µm represented 19% with 21 crystals and 
22% with 25 crystals respectively. The lowest number, with 18 crystals (16%) were found in 
the 20-25 µm size range.  

 

 

Fig. 6.15: The frequency of ‘rough quasi-spheroids’ crystals in different size ranges. 

 

Just like smooth quasi-spheroids, the size estimation of this type of crystals were also done 
by counting the number of rings as it is more robust and easier compared to Speckle Analysis. 
The Speckle Analysis code was also applied on unsaturated images (93 out of 113 images of 
rough quasi-spheroids). The 10 saturated images are excluded from the comparison of these 
two methods.  
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The Fig. 6.16 shows the comparison of crystal size estimation by testing 93 rough quasi-
spheroidal crystals based on manual ring counting and automated speckle analysis (using 
marker value 0.75). The two methods agree reasonably well for small crystal sizes. As crystal 
size increases (diameter>40µm), speckles merge to form larger speckles and hence the sizes 
were underpredicted by the Speckle Analysis code. For instance, in Fig. 6.16, the Speckle 
Analysis code predicted between 18 and 37 µm for crystal sizes between 40 and 50 µm. As 
an example, a cropped version of original image of AIITS No.2048 is shown in Fig. 6.17 (left), 
along with reconstructed image used in Speckle Analysis code, Fig. 6.17 (right). It can be seen 
that some of the highlighted speckles (or rings) are merged and while predicting the crystal 
diameter from the median of these speckles, there will be inaccuracies. A particle size of 
33.17µm was predicted by the Speckle Analysis code. However, based on manual ring 
counting, 18-22 rings can be seen and has an estimated diameter of 40-50 µm (see Table 
5.1). 

 

 

Fig. 6.16: Comparison of crystal size (diameter) prediction based on manual ring counting 
and automated speckle analysis code (using 0.75 marker value). The trendline is shown in 

red dotted line. 

 

 

Fig. 6.17: (left) cropped and masked image of AIITS number 2048; (right) highlighted 

speckles in reconstructed image used in Speckle Analysis code.  

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

P
re

d
ic

te
d

 c
ry

st
al

 d
ia

m
et

er
 b

as
ed

 o
n

 
Sp

ec
kl

e 
A

n
al

ys
is

Estimated crystal diameter based on counting rings (µm)

Size prediction of rough quasi-spheroids using 
counting of rings vs Speckle analysis



85 
 

The combined roughness values of these crystals were also determined to find out how rough 
these crystals were. This is given in Fig. 6.18. Even though there are a few outliers represented 
by the dots, overall, the data shows an increasing trend of roughness with crystal size as 
expected. The mean roughness rises from 0.4 to 0.7 as the size ranges between 5-25µm. 

 

Fig. 6.18: The combined roughness value of ‘rough quasi-spheroid’ crystals. 

 

A more detailed table (compared to Table 6.1) with sub-categories of crystals is given below 
(Table 6.4). The same-coloured rows belong to the same crystal type. 

 

Crystal Types Sub-categories of Crystals 
Number of 

crystals 

Very small crystals 
Very small crystals (rounded) (Rad:1-5µm) 237 

Very small crystals (column-like) (Rad:1-5µm) 172 

 
Columns 

 

Smooth columns (length:10-30µm) 17 

Rough columns (length:10-40µm) 9 

Needles (length 10-15µm) 1 

Plates 

Pristine, smooth plates (Rad:15-50µm) 5 

Plate with rounded edges (Rad:20-50µm) 7 

Scalene plates (Rad:20-45µm) 2 

Scalene plates with rounded edges (Rad:5-25µm) 10 

Rough plates (Rad:25-30µm) 1 

Rough scalene plates (Rad:5-25µm) 4 

Droxtals (Rad:15-30µm) 14 

Rough crystals 
(unknown crystal 

shape) 

Slightly rough (Rad:5-20µm) 22 

Medium rough (Rad:5-30µm) 42 

Very rough (Rad:10-30µm) 42 

Quasi-spheroids 
Smooth quasi-spheroids (Rad:5-25µm) 178 

Rough quasi-spheroids (Rad:5-25µm) 113 

 Total 876 

Table 6.4: A detailed table with the size and number of sub-categories of ice crystals. 

 

In Fig. 6.19 (a), the proportions of different types of crystals in different size ranges are shown. 
The radius range 1-5µm are classified as very small crystals. The four radius ranges between 
30-50µm on the extreme right are solely contributed by plates; even though there are only 6 
plates in the specified size ranges. A wide variety of crystal types; including plates, columns, 



86 
 

rough crystals, smooth as well as rough quasi-spheroids, can be seen in the lower to mid 
radius ranges (5-30µm). All the crystals are shown in terms of radius; for columns, half the 
prism length is used as ‘radius’ to incorporate it into the Fig. 6.19 (a). No aggregates were 
found in this scattering dataset. (The scattering patterns of aggregates are similar to columns, 
but additionally contain multiple scattering arcs running through the centre.)  The Particle Size 
Distribution (PSD) is given in Fig. 6.19 (b). Note that the crystal diameter in microns is shown 
in the horizontal axis.  

 

(a) 

 

(b) 

Fig. 6.19: (a) The overall proportion of various crystal types in different sizes. (b) Also plotted 

as a Particle Size Distribution (PSD). 
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Out of the 409 very small crystals, 237 are rounded crystals. Along with 291 (smooth and 
rough) quasi-spheroids, altogether there are 528 crystals with rounded edges, the most 
common crystal type (60%). They appear to be in the 1-25 radius range. This excludes plates 
with rounded edges and rough crystals which are of unknown type. The percentage further 
increases if these are counted in the rounded or quasi-spheroid group. In general, smaller 
crystals are predominantly quasi-spheroidal and as the size of the crystal increases, they 
become more and more complex.  

A simplified representation of proportions of crystals in different size ranges is depicted in Fig. 
6.20 using a 3D pie chart. The crystal sizes, indicated by different colours, are presented in 
percentages.  

 

Fig. 6.20: The proportion of crystals in different size ranges. The sizes are in µm radius.  

 

The most populous radius range is 1-5µm with 409 crystals (47%). The numbers decrease 
with increasing size range. The second most populated radius range is 5-10µm with 179 
crystals (20%). The number of crystals decreases further to 143, 74, 50 and 15 in the radius 
ranges 10-15, 15-20, 20-25 and 25-30 µm respectively. The least populated bins extend from 
30-50µm. Two plates, one smooth with rounded edges and the other, regular smooth, pristine, 
were found in the 30-35 and 35-40 µm bins respectively. The same two crystal types were 
found again in the 45-50µm range. A smooth, pristine and a scalene plate were found in the 
40-45µm range. 

6.2 Imaging parameters which might have affected the particle 

classification results 
This section includes some of the parameters which were noted during the image analysis 
procedure. The parameters like camera settings and combined intensity of the image are 
discussed below.  

The camera parameters ‘exposure time’ and ‘gain value’ were set to 2µs and 275 respectively 
and were not changed during the flight. However, some of the scattering patterns were weak 
(dim) and others were bright. One of the reasons for this difference in brightness level for 
images could be the following: Since the small crystals have small surface area there will be 
less scattering, and therefore, result in a weaker scattering pattern image; while the large 
crystals scatter strongly, and as a result, their scattering pattern image will be brighter. Even 
though this is not always the case, the general trend is that larger crystals have bright 
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scattering patterns compared to the smaller crystals. One of the disadvantages of the dim 
image is that the features, which helps to identify the crystal type, may be vague and hence 
less information can be processed. However, there are various functions that can be used in 
MATLAB to improve the image sharpness or brightness, and these are applied on weak 
images to get as much information as possible. One such method is described in Section 4.6. 

In terms of size estimation of crystals, it is a common practice to find the combined intensity 
of a scattering image. The combined intensity is the total intensity or brightness in an image 
and is used as the usual sizing method for scattering probes that do not record scattering 
patterns. In general, the larger the crystal, the brighter the image will be and hence, greater 
the combined intensity value. For a dim image, the combined intensity value will be small 
corresponding to a smaller crystal. Therefore, by just sorting the combined intensity values, 
presumably the crystal sizes can be sorted. However, this is not a completely reliable method, 
and the reason is illustrated using examples. Two plots of combined intensity versus 
illuminated area are shown in Fig. 6.21 and Fig. 6.22 corresponding to regular hexagonal 
plates and smooth rounded crystals respectively. 

 

Fig. 6.21: Combined Intensity plotted against illuminated area of plates. 

 

 

Fig. 6.22: Combined Intensity plotted against illuminated area of smooth quasi-spheroids. 
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The illuminated area refers to the area of the crystal that is illuminated by the beam. Hence, 

the illuminated area of plates implies the hexagonal area, which is 
3√3

2
 𝑟2, where 𝑟 is the radius 

of the hexagonal plate, and the illuminated area of rounded crystals are approximated to the 

area of a circle, π𝑟2, where 𝑟 is the radius of the rounded crystals (circle). 

In Fig. 6.21, five plates with radiuses between 15 and 50µm were analysed. Based on the 
figure, the combined intensity increases with the illuminated area implying that the larger 
crystal scatter light more. The Fig. 6.22 is plotted using 178 smooth Quasi-spheroid crystals 
with four radius ranges of 5-10, 10-15, 15-20 and 20-25µm. In this case as well, there is a 
general trend of combined intensity being proportional to the surface area of the crystal. 
Nevertheless, there are exceptions like the largest crystal with 22.5µm (taken as the average 
of 20-25µm) seems to have a lower combined intensity value despite of its size (illuminated 
area around 1600µm2). This is due to the lower overall brightness value of the image.  

Any change in the overall brightness will affect the crystal size prediction. As an example, two 
images representing crystals with similar size and/or roughness but with different brightness 
values are shown in Fig. 6.23. 

 

Fig. 6.23: (left) AIITS image no. 2399 and (right) 2391. 

 

Both the scattering pattern image no.2399 and 2391 are classified as rough crystals in the 
size range of radius 20-25µm. The speckles in the image look similar in size indicating that 
they have similar size. The right image in Fig. 6.23 has a combined intensity of only 6,850,645 
while the left one has over twice the amount of brightness (14,892,656). Determining the 
crystal sizes by sorting the combined intensity alone might lead to an inaccurate result of 
crystal size. 

Therefore, as mentioned earlier, there were inconsistencies in terms of brightness and size of 
the crystals and cannot be relied on this process alone. Hence, individual visual inspection of 
scattering pattern images (by eye) is advisable. 

 

6.3 Results from NASA probes 
 

This section describes the results obtained from the NASA probes, taken during the CAST-
ATTREX Global Hawk flight on 5th March 2015.  

There were 3 data files in total with similar information format: the PSD (particle size 
distribution) number, Time stamp (in seconds), Latitude (°North), Longitude (°East), Altitude 
(m), Temperature (K), Mean maximum dimension of bin (µm), Number concentration (m-3/µm) 
and Bin width (µm). The first set was solely from the 2D-S probe consisting of 282 PSDs, the 
second set contains the recordings from both FCDP and 2D-S consisting of 382 PSDs and 
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the third set, with 344 PSDs, was similar to the second set except that the first 2 bin sizes (10 
and 20) of the 2D-S data were replaced by the FCDP data (as FCDP provides a more accurate 
measurement for smaller crystals).  

PSDs represent the distribution of sizes of different particles. The timestamps recorded by the 
NASA instruments are in seconds (more specifically, Coordinated Universal Time (UTC) since 
1st Jan 1970 00:00:00). (For example: A time stamp of ‘1425528704’ stands for ‘16499 days 
04:11:44’). However, the AIITS records real time for its the scattering pattern images. 
Therefore, AIITS times were converted to these time stamps first. An algorithm, which 
automates the process of extracting the date and time from images (individual images or a 
folder of images) and converts them to UTC is given in Appendix 11.3. These UTC times are 
then directly searched in any of the above 3 datasets to check whether the ice crystals of 
similar size have been recorded by other probes at the same time. However, only few crystals 
were found at the exact same timestamp recorded by AIITS and NASA probes. Hence their 
average PSDs over the entire flight were investigated which is described below. 

 

6.3.1 Particle size comparison between AIITS and NASA probes’ 

measurements 
The analysis is limited to the UTC time between 04:07 and 15:55 on 5th March 2015. During 
this time range, both the AIITS and the NASA probes recorded the presence of some particles. 
Also, this study is limited to crystals with a mean maximum dimension of 100µm as that is the 
AIITS’ maximum measurement range. Therefore, the recordings with mean maximum 
dimensions above 100µm are excluded from the analysis. The particles are binned according 
to their size and the bin sizes are different for different NASA probes: for the third dataset, 
they range from 10 to 3105µm and have a bin width of 10µm for a mean maximum dimension 
up to 200µm. The mean maximum dimension of the bin refers to the maximum dimension 
(length or diameter) of the particle across its projected area. The number concentration 
specifies the count frequency of a specific bin size for each second. More specifically, the 
(particle) number concentration, given in Equation 6.1, depends on the count frequency or 
number of counts (f), the air speed (v), the sampling area of the triggering zone (A) and the 
time interval (t) (Thornton 2016).  

𝑁 =
𝑓

𝐴𝑣𝑡
                      (6.1) 

Fig. 6.24 shows the PSDs (in logarithmic scale) measured by the NASA probes in comparison 
to the AIITS instrument. The size distribution of different types of crystals are shown in different 
colours for the AIITS and the primary y-axis is given in number of particles in size bin/width of 
the bin. The PSD measured by the NASA probes are shown in triangles and the secondary y-
axis is given in number concentration. Regarding the crystal size, there are higher 
concentrations of crystals in smaller bins and negligible amounts in higher bins based on AIITS 
data. This agrees with the NASA probe measurements. 
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Fig. 6.24: PSDs measured by the NASA probes (triangles) and the AIITS (coloured based on 

crystal types) for the entire flight. Note that particle sizes ≤100 are only analysed. 

 

A collection of ice crystal images taken by the CPI instrument during the 5 th of March 2015 

flight are given below (Fig. 6.25): 

 

0 10 20 30 40 50 60 70 80 90 100

0.01

0.1

1

10

100

1000

0.01

0.1

1

10

100

1000

N
u

m
b

er
 c

o
n

ce
n

tr
at

io
n

 (m
-3

µ
m

-1
)

(N
u

m
b

er
 o

f 
p

ar
ti

cl
es

 in
 s

iz
e 

b
in

)/
(b

in
 w

id
th

)

Particle Diameter (µm)

PSD based on AIITS and NASA probes measurements

Very small crystals Columns Plates

Rough crystals Smooth Quasi-spheroids Rough Quasi-spheroids

NASA probes



92 
 

 

 

Fig. 6.25: Ice crystal images taken by the CPI instrument on 5th March 2015. 

 

Regarding the crystal shape, it is evident that the CPI images in Fig. 6.25 are populated by 
plates, columns, and quasi-spheroids, which agrees with the AIITS images (see Table 6.4). 
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6.3.2 Temperature and supersaturation  

The temperature values were noted from the data files mentioned in Section 6.3 based on the 
timestamps and altitude. Between 8 and 18km, the temperature ranged between -83°C and -
40°C.  

Apart from temperature, ice supersaturation is another parameter which determines the type 
of the ice crystal formed in the atmosphere. Unfortunately, the ice supersaturation values were 
not recorded in the data files mentioned in Section 6.3. However, since the current study 
shows that there is an abundance in smaller crystal sizes, the ice supersaturation is very likely 
to be <10%. According to the habit diagram (Fig.2.2), the smaller crystals are found at all 
temperatures (0° to -70°C) when ice supersaturation is <10%. The results from 2014 ATTREX 
show that the mode of the distribution in supersaturation in cloud was approximately 3–5% 
(Woods et al. 2018). Therefore, based on the habit diagram analysis and findings from 
previous ATTREX TTL cirrus sampling, it can be concluded that the ice supersaturation levels 
were low (<10%) during the ATTREX 2015. 

 

6.4 Results from related studies 
 

In this research it was found that around 60% of crystals in the TTL clouds were quasi-
spheroidal in shape having a diameter of 50µm or below. 47% were very small with a radius 
range of 1-5µm (see Fig. 6.20). The results from previous studies in Cirrus cloud confirm these 
findings. One such study is 2014 ATTREX, the details of which are given in Section 3.1. The 
results from the study sampling over the TTL cirrus of the Western Pacific were summarized 
in Woods et al. (2018) as “Observed ice particles were predominantly small (<30µm) and 
quasi-spheroidal in shape, with the percentage of quasi-spheroids increasing with decreasing 
temperature. In comparison to the large fraction of the population consisting of quasi-
spheroids, faceted habits (columns, plates, rosettes, and budding rosettes) constituted a 
smaller percentage of the overall population and exhibited the opposite correlation with 
temperature.”  

Another study, the Costa Rica Aura Validation Experiment (CR-AVE), sponsored by NASA 
conducted near San Jose, Costa Rica in 2006, the subvisible cirrus (SVC) clouds in the TTL 
from -75°C to -90°C were sampled. SVC clouds are clouds with very low ice crystal number 
concentrations having an optical depth lower than 0.03 (Spreitzer et al. 2017). The result show 
that based on the CPI images, 84% ice particles were quasi-spherical and larger particles 
(>65µm) exhibited disk-shaped and hexagonal plate characteristics (Lawson et al. 2008). The 
Fig 6.26 shows the SVC layer, taken during the transit flight for the CR-AVE. 
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Fig. 6.26: The SVC layer, taken during the transit flight from Houston for the CR-AVE 

(Lawson et al. 2008). 

 

In another in-situ measurement, conducted on 18th March 1994 in cirrus clouds over southern 
Germany, the authors (Strom et al. 1997) report that, “Crystal concentrations were high 
(median 2.5 cm−3, STP) and sizes small with a diameter of mean mass (average diameter of 
the sample) of typically 16 µm”. The temperature ranged between −35°C to −60°C. They also 
mention that the cloud consisted of numerous small crystals with no crystals larger than 50µm. 
In comparison, based on the research conducted in this paper, 97% crystals were found to 
have a diameter of 50µm or less. 

In the next chapter automation of light scattering images using deep learning network is 
discussed. 
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7. PATTERN CLASSIFICATION USING DEEP LEARNING 

NETWORK 

 

 

The process of manual classification of light scattering images of ice crystals is laborious and 
time consuming. It can lead to many pitfalls such as human error due to fatigue, inconsistent 
or unreliable results due to biases. For this reason, a Deep Learning (DL) program using 
MATLAB (version R2020b) was developed to automate the classification procedure for light 
scattering pattern images of ice crystals.  

7.1 Deep Learning Network 
A Deep Learning Network (DLN) can be built from scratch. However, it will take time for 
designing and training processes. Hence, the Transfer Learning method was used. By using 
the ‘Transfer Learning’, the network can ‘transfer the learning’ (low-level features such as 
edges, contour etc.) it has gained previously through large datasets. A pre-trained network 
trained on one dataset (for example, different types of objects, animals etc.) can be ‘fine-tuned’ 
to make it usable for classifying another dataset. The fine-tuning is carried out by replacing 
the final few layers of the network (see Section 7.3.3) and re-training the network with a new 
dataset; so that the network can unlearn the features from previous images (trained on a 
different image dataset) and learn the features specific to the new dataset.  

The most commonly used convolutional neural networks for image classification are AlexNet, 
GoogLeNet and ResNet-50 (Sharma et al. 2018). The convolution layer is the core component 
of these networks where the features of the image get extracted, hence the name 
convolutional neural networks. The network consists of several layers with serial and parallel 
connections between them, and the output from the previous layer is often used as the input 
for succeeding layers. The number of layers as well as their arrangement varies with networks. 
There are only 25 layers in AlexNet while GoogLeNet has 144 and ResNet-50 has 177 layers. 
The image input size of AlexNet is 227x227x3 and that of ResNet-50 and GoogLeNet is 
224x224x3. Sharma et al. (2018) report that AlexNet performed poorest in terms of prediction 
accuracy compared to the other two networks. Also, the input size of ResNet-50 is the same 
as for GoogLeNet. These are the two reasons for choosing both GoogLeNet and ResNet-50 
for image classification in this research.  

In the next two Sections, two major phases in developing the DL programme - Data pre-
processing and Network training - are explained. Both networks, GoogLeNet and ResNet-50, 
are trained using a training set of AIITS images. Once the training is complete, the networks 
are tested using a test dataset containing AIITS images and their prediction accuracies are 
compared in Section 7.4. Additionally, in Section 7.5, both networks trained on AIITS images 
were tested for their applicability to images taken by a different light scattering instrument, the 
Particle Phase Discriminator version 2 (PPD2). For this, a test dataset of PPD2 images (which 
cover the same angular range as AIITS images) was used. The networks’ prediction 
accuracies based on both test datasets were evaluated in Section 7.6. 

7.2 Data pre-processing 
The images that are used to train the network need to be compatible with the input image size 
of the network. As mentioned in the previous section, the image input size of GoogLeNet and 
ResNet-50 is same (224x224x3), hence the same data pre-processing steps can be followed 
for both networks.  
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The AIITS 2D light scattering patterns are greyscale images of 512x640 pixels. These images 
were cropped to 458x458 pixels, so that the outer angular region just touches the image 
border. The angular regions outside the ‘ring area’ (8° to 25°) were masked, so that only the 
scattering pattern remains. The process of finding the relevant region of interest is described 
below. 

The AIITS images are not centred, but slightly offset towards the left-hand side, as can be 
seen in the first columns of Fig. 7.1. It was necessary to centre the images as well as to 
eliminate the background region for easier image processing in later stages. Therefore, a 
MATLAB script was developed to find the beam-stop and its centre, as well as the inner and 
outer radii of the scattering pattern in each image.  

 

 

 

Fig. 7.1: Three different AIITS scattering pattern images are shown in each row. The first 

column shows the original scattering pattern images; the second column shows the cropped 

image with beam-stop, inner and outer circle marked in different colours; the third column 

shows the masked image with only the region of interest displayed. 

 

Not all the AIITS images were identical regarding the visibility of parameters like the beam-
stop, the inner and outer radii. That is, in some cases only one or two parameters were 
detectable. For example, three types of images are shown in the rows of Fig. 7.1. From left to 
right, the columns represent the original AIITS image, the cropped image with parameters 
marked, and the final, masked image, displaying only the area of interest. In the first example, 
which is AIITS no. 2190, all parameters were detected (see first row, second column). The 
solid red line represents the outer radius. The inner radius is shown in blue dotted lines, the 
beam-stop in red dotted lines and the beam-stop centre is marked by an ‘X’ in pink colour. 
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The images in the second row show AIITS no. 24, which has comparatively low overall 
brightness and is likely to be the scattering pattern of a very small crystal of size 1-5µm in 
radius. All parameters except the outer radius were detected. Whereas only the inner radius 
was detected in the bottom row of Fig. 7.1 showing AIITS no. 6. 

Since the detected parameters vary with images as mentioned above, the programme in 
Appendix 11.4 is used to find the mean values of the parameters. After running the programme 
for all the images in the AIITS database, the parameters of each image were saved to a text 
file and the mean value of the centre, the inner radius and the outer radius were found to be 
[229,229], 75 and 224 pixels respectively. 

A built-in function ’imfindcircles’ in MATLAB has been used to detect the beam-stop centre as 
well as the inner and outer radii of the scattering pattern image automatically. (In MATLAB, by 
using this function on an image with explicitly stating the radius range, it will return the centres 
of the circles along with their radii within the specified radius range.) After the circles of specific 
radius ranges are detected, they can be visualised using a function ‘viscircles’ with the relevant 
centres and radii. This is shown in the middle column of Fig. 7.1. The first and the last columns 
of Fig. 7.1 show the images before and after formatting, respectively. That is, the former 
represents the original AIITS image, and the latter represents the cropped and masked image 
containing the relevant information with other regions masked by setting the intensity to a 
maximum value of 255. Note that the inner angular region contains the artefact ring which is 
visible just outside the beam-stop. Even though AIITS captures the scattering pattern in the 
angular range of 6° to 25° of the forward scattering hemispheres, sometimes they contain 
artefacts up to 8° as can be clearly seen in the 2nd and 3rd row of Fig. 7.1. This is the reason 
for choosing the inner radius as 8° instead of 6°. Therefore, the evaluable information is 
contained between the two angles 8° and 25° (corresponding to 75 and 224 pixels). 

There are also images in the AIITS database that do not contain any useful information. 
Examples are shown in Fig. 7.2. The first image is completely blank, the second image only 
contains the beam-stop at the centre and the third image shows the beam-stop along with an 
artefact or ring just outside the beam-stop. All three types of images are counted as ‘Blank’ as 
they do not contain any information related to crystal type. 

 

   

Fig. 7.2 Images that are counted as ‘Blank Images’. 

 

As the final step of data pre-processing, resizing of images from 458x458 to 224x224 pixels 
and conversion to colour images was necessary to make them compatible with the input size 
of the networks, which is 224x224x3. An ‘augmentedImageDatastore’ function is used for this 
purpose (see Section 7.3.3). The data pre-processing workflow is shown in Fig. 7.3. The 
resulting image was used in the Input Layer of the DLN. 
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Fig. 7.3: The methodology of Data Pre-processing for DLN. 

 

7.3 Network Framework and Training 
A brief discussion on the training dataset and training options are presented in this section. 
Pre-requisites: Add-ons such as the Image Processing Toolbox and Deep Learning Toolbox 
should be installed in MATLAB. 

 

7.3.1 Overcoming the data challenge 
Some crystal morphologies are not well represented in the AIITS database making it difficult 
to generate training sets of a suitable size. However, the training set can be artificially 
increased by replicating the images through flipping and 90° rotations. This, in turn increases 
the diversity of different crystal orientations in the training set. The replicated images were of 
RGB image type of bit depth 24 and the AIITS scattering patterns were grayscale images (.jpg) 
of bit depth 8. The differences in image type are addressed in the pre-processing stage 
mentioned in Section 7.2 and all images are converted to RGB images. 

 

7.3.2 Training dataset 
The dataset which is used to train the network is important, as the network learns and performs 
based on this dataset. The criteria for selecting images for the training dataset was based on 
those mentioned in Lindqvist et al. (2012). That is, the images for the training set were selected 
to cover a variety of crystal size and orientation. Also, the selected images have features of 
crystal habits recognizable and representative of its class, thereby avoiding overlaps within 
the categories. 

The training data set consists of a total of 80 images, including original AIITS scattering pattern 
images as well as replicated images as mentioned in Section 7.3.1. The images were cropped 
and masked and there were 5 crystal categories (Blank, Patterned, Plates, Columns and 
Rounded) with 16 images in each category. It is also recommended to have equal number of 
images in each category to avoid biases towards certain categories. Due to time constraints, 
a small dataset with a few categories was chosen for training. Note that the ‘Blank’ category 
refers to images like the ones shown in Fig. 7.2. The rough crystals and quasi-spheroids are 

Light Scattering Patterns 

(greyscale images) 
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referred as ‘Patterned’ and ‘Rounded’ categories respectively. The same training dataset 
consisting of AIITS images is used to train both networks.  

 

7.3.3 Designing the Network 
The DLN was designed using the Deep Network Designer App in MATLAB. Prior to designing 
the network, the images for training were made available in the MATLAB workspace. To 
achieve this, these steps are followed: First, load the main folder (crystal category) containing 
the training dataset into the MATLAB workspace using the ‘ImageDatastore’ function. Set the 
parameters ‘IncludeSubfolders’ to ‘true’ and ‘LabelSource’ to ‘foldernames’. This setting 
enables the network to follow supervised learning and use the subfolder names (Blank 
Images, Columns, Patterned, Plates, and Rounded) as the crystal categories. In supervised 
learning, the network is trained using a labelled dataset so that the network knows what 
features to expect in each category. Next, an ‘augmentedImageDatastore’ function is used to 
resize and convert the greyscale to RGB images to make it compatible to the input layer of 
the DLN (see Section 7.2). After executing these steps, the training dataset will be available 
in the MATLAB workspace. 

In the next step, the pre-trained network is loaded using Transfer Learning. This can be 
achieved by following the options MATLAB-> Apps-> Deep Network Designer-> Pre-trained 
Network-> GoogLeNet (or ResNet-50). Then the network’s final three layers are replaced by 
FullyConnectedLayer, SoftmaxLayer and ClassificationOutputLayer.  

FullyConnectedLayer: As the name indicates, all neurons in this layer are connected to all 

the neurons in the previous layer. This helps to identify the larger patterns and classify the 
images (based on the output size) by combining the (smaller) features learned by the previous 
layers. 

SoftmaxLayer: It converts the unnormalized prediction scores from the fully connected layer 
to a normalized probability distribution (between 0 and 1). The score across different 
categories adds up to 1. 

ClassificationOutputLayer: This layer deduces the number of categories from the output 
size of previous layer and associates the categories with the scores. The category with the 
highest score will be chosen as the predicted class. 

Drag and drop the layers from the Layer Library on the left side in the specified order to make 
the network specifically suitable for this research, to classify crystals. Set ‘OutputSize’ of the 
FullyConnectedLayer to 5 (the number of crystal categories). This is the design phase shown 
in Fig. 7.4, where the final layers of the network are zoomed in. Then click ‘Analyze’ which 
checks the network and displays any warnings or errors.  

The next step is the Data importing stage in which the ‘Data’ tab, next to the ‘Designer’, is 
selected. From the drop-down list, select ‘Image Datastore in workspace’ as the data source 
and then ‘Import’. This is shown in Fig. 7.5. The data for both training and validation can be 
set here, and the same pre-processed dataset is used for both. The default setting of 30% of 
images from the training set is used for validation. Validation data is a set of images that are 
used to test the network during the training process and is different from the test dataset (which 
is used to test the network after the network is trained). 
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Fig. 7.4: The design phase where the final three layers are replaced, and the Output size is 
changed to five. 

 

 

Fig. 7.5: Setting the training dataset. 

 

The final phase is the training phase where several training options (like Initial Learning Rate 
and Epochs) are available. The Initial Learning Rate was set to 0.001, which helps the network 
to learn slowly. Its default value is 0.01. On increasing the Initial Learning Rate, the network 
training will be faster, but results in increased prediction inaccuracies. The training was done 
in 4 Epochs. An epoch is passing the entire training dataset through the neural network in one 
cycle. Here, 4 epochs correspond to passing the entire dataset 4 times through the neural 
network for training. Other parameters were set to default values. Then select ‘Train’ to train 
the network using the training dataset and ‘Export’ to export the trained network to the 
workspace. After training, the progress and results will be shown as in Fig. 7.6. 
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In the MATLAB editor write ‘save <trainedNetworkName>’ to save the trained network. The 
same process of data pre-processing, designing, and training is followed for both networks. 

 

 

 

 

Fig. 7.6: The training progress results of GoogLeNet (top) and ResNet-50 (bottom). The 
black dotted line represents the validation dataset in both plots. The blue and red line 

represents the accuracy and loss of the training dataset, respectively. 
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Based on the training results, the training accuracy (blue line) of GoogLeNet is around 50%, 
while that of ResNet-50 is 60%. The training accuracy is the classification accuracy based on 
the images it was trained on. The training loss (red line) is the cross-entropy loss between 
network predictions and target values computed on the training set (Matlab R2019b). The 
training loss is around 1.5 for GoogLeNet and 1 for ResNet-50. The validation loss (dotted 
line), the cross-entropy loss computed on the validation dataset, is less than 1 for both 
networks. More simply, the loss is the predictive inaccuracy of the network (Matlab R2021a). 
The lower the loss, the better the prediction. 

Overall, the validation accuracy of GoogLeNet is slightly higher (81.25%) than that of ResNet-
50 (80%). The validation accuracy provides the fraction of the predicted category that matches 
the true category in the validation dataset. This can be further improved by increasing the 
number of images in the training dataset and by changing the training options 
(hyperparameters). The optimum values of the Initial Learning Rate, Epoch, and other training 
hyperparameters varies with the dataset and can only be found by testing with different values 
until training accuracy flattens (stops improving). Due to time constraints, these are not 
investigated further.  

7.4 Assessing the Networks’ prediction 
All the images in the test dataset were manually classified as one of the five categories. 
Accuracy of the networks were assessed by comparing the predicted results of the network 
with that of manual classification. Some assumptions are made while assessing the networks’ 
accuracies. It is assumed that the manual classification is 100% correct, just like in other 
applications (O’Shea et al. 2016). 

As reported in Lindqvist et al. (2012), there are cases where the crystal habit becomes 
subjective. That is, more than one category can describe the crystal type equally well. For 
example, the rounded crystals often have uneven rings or a speckle-like pattern which can 
affect the network’s prediction due to overlaps between categories. In such cases, images 
belonging to the ‘Rounded’ category are predicted as ‘Patterned’ by the network. Even manual 
classification is sometimes biased toward one category (O’Shea et al. 2016). 

7.4.1 Test dataset 
The test dataset comprises a total of 50 AIITS light scattering images of five crystal categories. 
If a network predicts too well or poorly for a specific category, the network’s accuracy can be 
biased to that category. For this reason, the same number of (10) images in each category 
are used as test data. Also, the same test dataset consisting of AIITS images is used to test 
both networks. The data pre-processing steps are applied to the test dataset before it is fed to 
the trained network for testing. 

 

7.4.2 The Networks’ prediction 
There are two versions of the program. The first version is for analysing an individual image 
after calling it from the test dataset. The network predicts the probability of crystal type in the 
form of a horizontal bar chart in descending order. An example is shown in Fig. 7.7, in which 
the program correctly categorizes the scattering pattern of a rough crystal as ‘Patterned’. This 
is based on GoogLeNet; on changing the network to ResNet-50 in the program, the prediction 
(similar to Fig 7.7) based on ResNet-50 can be obtained. 
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Fig. 7.7: AIITS light scattering pattern image (left) and the probability of crystal type 

predicted by the GoogLeNet (right). 

 

In the second version of the DLN program, a folder of images is analysed and the prediction 
result (crystal type) with highest probability is written into an Excel sheet. This helps in a faster 
comparison of results and for checking the overall prediction accuracy of the network. Also, 
the results in the Excel sheet can be used to plot the manual classification (also called True 
Class) against the predicted classification (Predicted Class), which is often known as a 
Confusion Matrix. The Confusion Matrices of GoogLeNet and ResNet-50 are given in Fig. 7.8. 
The blue and orange colours correspond to correct and incorrect observations respectively. 
Also, the strength of the colour increases with cell value. The values in the Confusion Matrix 
cells add up to 50 corresponding to 50 images in the test dataset. 

The diagonal cells (top left to bottom right) represent correctly classified categories, while the 
off-diagonal cells represent mis-classified categories. Overall, 32 out of 50 images were 
correctly predicted by the GoogLeNet resulting in 64% network accuracy. On comparing the 
manual classification of crystals with the prediction of ResNet-50, only 23 images were 
correctly predicted, resulting in 46% network accuracy. On the right side of the confusion 
matrix, row summary is also provided, in which a percentage of both correct and in-correct 
observations in each category can be seen. Category-wise, Blank Images, Columns, and 
Patterned were predicted with 100%, 80% and 90% accuracy respectively by GoogLeNet. In 
comparison, ResNet-50 predicted the categories Blank Images and Patterned with 100% and 
70% respectively. Both GoogLeNet and ResNet-50 predicted the crystal classifications 
‘Plates’ and ‘Rounded’ with an accuracy of 20% and 30% ‘respectively. This shows that both 
networks need improvements to correctly predict the Plates and Rounded categories. 
Additionally, ResNet-50 needs improvement in the ‘Columns’ category. 
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Fig. 7.8: The Confusion Matrix charts of GoogLeNet (top) and ResNet-50 (bottom) tested on 
AIITS images. 

 

So far, the light scattering images taken by the AIITS (used for both training and testing) have 
been discussed. In the next section, the networks trained on AIITS images are tested on the 
light scattering images taken by another instrument to check the usability of the network. Note 
that, the new test dataset is solely for testing the network’s usability and is not related to the 
research flight this paper is focused on. 
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7.5 Testing the trained networks with PPD2 images  
 

The Particle Phase Discriminator (PPD) is an optical scattering instrument that takes high 
resolution light scattering patterns (Kaye et al. 2008). Just like AIITS, PPD captures the 
scattering pattern in the angular range of 6°-25°. Hence, images taken by the PPD, more 
specifically, the second version PPD (PPD2) are used as another test dataset to check the 
usability of the trained networks. 

PPD2 images are .bmp type greyscale images (bit depth of 8) with 768x582 pixel dimension. 
Since the images vary in terms of dimension, compared to AIITS images, the parameters were 
re-calculated using the program in Appendix 11.4. The centre, as well as the inner and outer 
radius of the scattering pattern were found to be [290, 290], 76 and 289 pixels respectively. 
The images were also cropped and masked.  

There were 140 PPD2 images in the test dataset with a random number of images belonging 
to each of the five categories. The confusion matrices of GoogLeNet and ResNet-50 are 
shown in Fig. 7.9. Overall, GoogLeNet predicted with 55.7% accuracy while ResNet-50 
predicted with only 17.86%. In terms of categories, GoogLeNet predicted the ‘Blank Images’, 
‘Columns’ and ‘Patterned’ with over 75% accuracy. However, ResNet-50 predicted with <20% 
for all categories except for ‘Patterned’ (92.3%). 

The results show that it is possible to use the networks trained on AIITS images to categorize 
the PPD2 images. Since both images have information contained in the angular range of 6°-
25°, the same trained networks can be used readily for classification purpose. The only 
additional step taken is regarding the data pre-processing. That is, due to the differences in 
image dimension, the AIITS and PPD2 images have separate lines of code in the data pre-
processing program.  
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Fig. 7.9: The Confusion Matrix chart of GoogLeNet (top) and ResNet-50 (bottom) tested on 
PPD2 images. 

7.6 Discussion of the results 
The following trends are observed on analysing the images in the test datasets taken by two 
different optical scattering instruments (AIITS and PPD2), based on two neural networks 
(GoogLeNet and ResNet-50): 

- The overall accuracy of the network varies with the test dataset.  
- Different networks show different accuracy rates even though the same test dataset is 

used.  
- The prediction accuracy varies between category levels. That is, some networks 

identify some categories (classes) within the test dataset better than others. For 
example, GoogLeNet performed well on categories like ‘Columns’ and ‘Patterned’ 
while it failed on the ‘Rounded’ category. 

All of these trends can be seen in Sharma et al. (2018), as they analysed 10 categories from 
two popular datasets (containing images of furniture, vehicles etc.) using three trained 
networks, AlexNet, GoogLeNet and ResNet-50.  

In general, the results show that the same trained network can be used to test images taken 
by AIITS as well as PPD2. For AIITS and PPD2 images, GoogLeNet predicted with an 
accuracy of 64% and 55.7%, while ResNet-50 predicted with 46% and 17.86% accuracy, 
respectively. On average, GoogLeNet predicted with a higher accuracy of 60%, compared to 
ResNet-50 (32%). This result is similar to the findings by Sharma et al. (2018), who report that 
the accuracy rate of GoogLeNet varied from 64.40% to 71.67% on two datasets and outdid 
the other networks (ResNet-50 and AlexNet). 

If a crystal habit that is not included in the training set is used in the test set, the network will 
classify it as the best matched category. For example, in the test dataset containing the AIITS 
images, some droxtals and a pristine scalene plate were used to check whether the networks 
categorize them correctly. It was found that pristine scalene plate was correctly identified as 
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‘plates’ by both networks, even though the training set only contained scattering images of 
regular hexagonal plates. However, droxtals were misclassified as ‘Blank Images’, ‘Patterned’ 
or ‘Columns’.  

One of the reasons for misclassification is the insufficient number of images in the training 
dataset. That is, the networks were trained with very small numbers of images belonging to 
five categories due to lack of data and time constraints. This might be the reason for the failure 
of networks to classify ‘Plates’ and ‘Rounded’ categories correctly. By increasing the number 
of images in the training dataset, hopefully the network can learn more and predict with higher 
accuracy. 

Another reason for misclassification is the overlap between categories. It is sometimes difficult 
to distinguish between the categories. For example, ‘Plates’ are sometimes misclassified as 
‘Columns’, ‘Blank images’ or ‘Patterned’. Manually, it is easy to identify ‘Plate’ patterns as the 
ones with four to six major arcs and ‘Column’ patterns as those with two arcs. However, the 
network may fail to detect these specific features in the scattering pattern. For instance, 
variations in the arcs’ brightness may cause the network to detect only two out of six arcs and 
hence classify ‘Plates’ as ‘Columns’. Weak (dim) images can result in predicting ‘Plates’ as 
‘Blank Images’. Slight imperfections in plates can make the scattering pattern of plates to 
contain features other than the arcs. In such cases, ‘Plates’ may be classified as ‘Patterned’. 
Therefore, in reality, it may not always be possible to assign crystals to one specific category. 
Overlaps across different categories are expected in DLN and are reported by several authors 
(Sharma et al. 2018, O’Shea et al. 2016, Lindqvist et al. 2012). 

GoogLeNet can be readily used to classify both AIITS and PPD2 images as the network 
performed with an average accuracy of 60% on image classification. However, the network 
need improvement for ‘Plates’ and ‘Rounded’ categories. Also, five categories do not 
adequately represent the variety of crystal types occurring in cirrus. Hence, network re-training 
is recommended by expanding the crystal categories as well as increasing the number of 
images in each category, to further increase the usefulness of the network in future.   
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8. CONCLUSIONS AND FUTURE WORK 

 

Cirrus clouds play a crucial role in the Earth's radiative balance. The radiative properties of 
such clouds are very much determined by its constituents. The size, shape, and roughness of 
the ice crystals - all play an important role and this is the focus of the current study. “The sizes 
and shapes of ice crystals affect fundamental microphysical processes, such as 
sedimentation, vapor growth, and aggregation, as well as cloud optical 
properties...Furthermore, microscale roughness structures on crystal surfaces and other 
crystal distortions appear ubiquitous and substantially affect crystal scattering properties.” 
(Diedenhoven et al. 2020). 

Although direct imaging instruments like the CPI can be used to determine the shapes of larger 
crystals, the surface texture may not be accurately assessed. Also, for smaller crystals 
(<30µm), the habit identification is difficult since the resolution of such instruments is 
insufficient. The light scattering instrument AIITS is particularly useful in such cases. In this 
thesis, the properties of individual ice crystals were investigated based on the light scattering 
pattern images taken by the AIITS at the wavelength of 532nm in the TTL cirrus over the 
Eastern Pacific during Airborne Tropical Tropopause Experiment on 5th March 2015. 

Of the 2426 images obtained, only 876 images were suitable for analysis. The discarded 

images were either blank or only contained an artefact in the centre. The results presented in 

Chapter 6 were compared with CPI images and data obtained from other NASA probes during 

the same flight. Previous TTL cirrus studies also support the current findings.  

In general, crystal habits like quasi-spheroids (60%), columns (23%), and plates (5%) were 

found. The crystal images taken by the CPI during the same flight (Fig. 6.25) also validate this 

finding. The results are consistent with previous studies: Based on the data from 2014 

ATTREX campaign, the authors (Woods et al. 2018) state that “The sparsity of aggregates in 

the CPI images obtained during ATTREX strongly suggests that particle aggregation is 

negligible in TTL cirrus”. In agreement with this, no aggregates were found during the current 

investigation. The authors also state that the faceted habits constituted a smaller percentage 

of the overall population. In the current study, only 0.6% of the total crystal population 

comprised pristine plates. Another cirrus sampling flight conducted on the 11th and 13th March 

2015 (O’Shea et al. 2016) report that “Pristine plates were observed during both flights, but 

they only account for a small proportion of the total crystals (less than 2%)”. In addition, during 

current study, it was found that 12% of the total crystal population were rough crystals with 

unknown shape. The percentage of rough crystals increases to 26.6% if rough surfaced 

columns, plates, and quasi-spheroids are also included. This is an important finding, that over 

a quarter of the crystal population possess a rough surface. This is a key microphysical 

property, which might have gone undetected if solely direct imaging was used. 

In terms of crystal sizes, a general trend of the total number of crystals decreasing with 

increasing crystal size was observed. While 47% of crystals were found to have a diameter 

≤10µm, only 3% accounted for a diameter ≥50µm. Majority of the crystals (83%) were found 

to have a diameter ≤30µm. It was also found that over half of the crystal population possessed 

rounded edges. These findings agree with the results from 2014 ATTREX sampling over the 

TTL cirrus of the Western Pacific summarized in Woods et al. (2018), “Observed ice particles 

were predominantly small (<30µm) and quasi-spheroidal in shape.”  The PSDs based on AIITS 

data and NASA probes have been analysed and the results agree that there are higher 

concentrations of small crystals. 
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The temperature varied between -40 and -83 °C at an altitude of 8-18 km. Though the ice 

supersaturation values are not available, the abundance of smaller crystals indicates ice 

supersaturation below 10%. This conclusion is based on analysing the habit diagram (Fig. 2.2) 

and results from 2014 ATTREX sampling. In both cases, smaller crystals were found at low 

ice supersaturation levels (<10%).  

The morphology of the crystals was identified by analysing the features in the 2D light 
scattering patterns which carry information about their geometries. By successive testing and 
closely studying these features, crystals were classified. For this, a combination of analysis as 
well as computer modelling techniques were used.  

If the scattering patterns only contain speckle-like features, the crystals are categorized as 
rough with unknown shape. The degree of roughness was computed using the ‘Combined 
Roughness’ method described in Ulanowski et al. (2014). The size of rough crystals was 
estimated by means of the ‘Speckle Analysis’ method (Ulanowski et al. 2012) based on 
greyscale morphological reconstruction. It was found that using a constant Marker value 
(=0.6xImage) may not work accurately for all images. While using 0.6 as the Marker value, the 
crystal sizes were underestimated especially for crystals larger than 30µm. On testing, overall, 
0.75 is the best Marker value as the predictions were comparatively better for the crystal sizes 
between 10-100µm. However, rather than using a constant Marker value for all images, it is 
strongly recommended that the binary image created using the morphological reconstruction 
is compared with the original image to make sure the speckles are of same size to get an 
accurate estimate. It was also found that while using a constant marker value, the result varies 
with image dimension. As the Marker value increases, the window size (or the ‘Marking’ of 
speckles) decreases. Therefore, on using a larger Marker value like 0.9 for a smaller crystal, 
crystal size will be overestimated.  

If features other than speckles can be seen in the scattering pattern, the crystals are 
categorized as quasi-spheroids, plates, columns etc. depending on their unique features 
(rings, arcs etc.) in the scattering pattern. The size estimation process varies with habit. For 
example, in a quasi-spheroid crystal’s case, the sizes are estimated based on the number of 
rings. As the crystal size increases, a greater number of rings will be visible. For plates and 
columns, the width of the scattering arc should be analysed. While the scattering arc ’s width 
can be used to estimate the length of a column crystal, the same can be used to evaluate the 
radius of a plate crystal. This is due to their orientation resulting from the atmospheric drag 
force as columns align with their prism facets (long axis) perpendicular to the gravitational 
force, but plates with their basal facets. Additional features like position and number of minima 
can also be analysed for a more accurate estimate. Droxtals, a variant of plates with multiple 
facets, show both scattering arcs as well as bright spots in their scattering pattern. Just like 
plates, their radius can be estimated by examining the width of the scattering arcs. Irrespective 
of the crystal type, a cross-like pattern is usually evident in the scattering patterns of crystals 
with aspect ratio close to one, implying that the crystal diameter is about equal to the crystal 
length (equiaxed). 

A variety of ice crystals models in different orientations and aspect ratios were used to simulate 
the light scattering patterns using the BTM (Hesse et al. 2018, Taylor 2016). The simulated 
patterns were then compared to the AIITS images to estimate the crystal shapes and sizes. 
Overall, the scattering patterns of model crystals presented in chapter 5 show a good 
agreement with the AIITS patterns.  

Manual analysis of scattering patterns is time consuming and laborious. Therefore, a pilot 
study using Deep Learning Networks has been conducted to classify the light scattering 
images captured by the AIITS into five categories: Blank images, Columns, Plates, Patterned 
and Rounded. Based on Transfer learning, two pre-trained networks, GoogLeNet and ResNet-
50, were used for this purpose, and their prediction accuracies are analysed to find the best 
network. The same training dataset consisting of 80 AIITS images (16 images in each of the 
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five categories) was used to train both networks. The prediction accuracy of GoogLeNet was 
then compared with ResNet-50 using the same test dataset of 50 AIITS images. In addition, 
to check the re-usability of the network on images taken by another light scattering instrument, 
another test dataset of 140 images obtained from the PPD2 was used to test both networks. 
On testing both networks with the two test datasets, GoogLeNet performed with an average 
prediction accuracy of 60% while ResNet-50 scored 32%. However, the prediction accuracies 
for categories, ‘Plates’ and ‘Rounded’, were the lowest among other categories. Furthermore, 
five categories are insufficient in terms of representing the crystal varieties occurring in the 
cirrus clouds. By expanding the network’s training set by adding more categories as well as 
more data in each category and re-training the network, hopefully the crystal classification can 
be made easier in future. However, this was outside the scope of this research due to time 
constraints. The current network was trained on a single CPU, but if the need arises to train 
the network with a large dataset, parallel processing is advisable. Although the existing 
network is trained specifically by the AIITS images, the results show that GoogLeNet 
performed equally well on PPD2 images. Hence, the network (GoogLeNet) can be used for 
the image classification of scattering pattern images taken by different light scattering 
instruments. If the image dimension, the mean values of the centre and the outer and inner 
radii of the image taken by other instruments are different from those of AIITS images, they 
can be re-calculated using Appendix 11.4. Also, the pre-processing steps in the DLN program 
[Appendix 11.5] re-size the image as well as convert it to RGB to make it compatible with the 
DLN.  

In this investigation, it has been demonstrated how the crystal shape, size, edge roundness, 
surface texture and orientation can affect the scattering pattern. For a more accurate 
estimation of the crystal geometry, detection of scattering patterns both front and side view of 
the crystal is recommended. Since the AIITS only captures 6°≤θ≤25° of the forward scattering, 
the details beyond 25° are missed out. Though it is impractical to get the pattern <6° because 
of the high intensity laser beam near the centre, detecting scattered light at larger angles 
(25°≤θ≤90°) would be advantageous.  

Overall, through this study of light scattering patterns, crystal habits in the 1-100µm size range 
were determined much more accurately compared to direct imaging. This is an important size 
range which is frequently observed in cirrus cloud, but often overlooked. O’Shea et al. (2016) 
state that “Most nucleation occurs at the lowest temperatures near cloud top where the crystals 
are mostly small. An optical array probe observes small ice (<100µm) at all levels in both 
clouds [2 flights sampling in cirrus clouds] suggesting ice nucleation at all levels. This includes 
regions at temperatures too high for homogeneous nucleation (>238 K).” There are cases 
where smaller crystals are regarded as shattered ice or artifact due to the partial observation 
of miss-sized larger particles (O’Shea et al. 2016, Guignard et al. 2012), missed by the 
detecting instruments (Liou 1986), misclassified as quasi-spheroids (Woods et al. 2018, Bailey 
and Hallett 2009) or rejected due to quality control (like insufficient pixels) imposed on the 
instrument (O’Shea et al. 2016). Woods et al. (2018) mention the difficulty in accurately 
classifying particles <30µm captured using CPI due to its limited resolution. They termed such 
particles ‘quasi-spheroids’ even though the category contains droxtals or other habits. Though 
the larger particles (>30µm) can be readily classified by habits using direct imaging, the 
surface texture of the particle cannot be determined. In such cases indirect imaging can be 
used, however, this requires solving the indirect problem of light scattering to obtain 
information about the particle shape and surface. It has been shown that using a combination 
of both direct and indirect imaging, the accuracy of crystal classification can be improved. 
Future development of direct imaging instruments specifically designed for small crystal 
detection will also be advantageous. 
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Key findings from this research can be summarized as follows: 

1. On investigating the images taken by the AIITS during the ATTREX mission on 5th of 
March 2015, crystal types like quasi-spheroids (60%), columns (23%), and plates (5%) 
were found. There was no evidence of aggregates. 

2. Over a quarter (26.6%) of the crystal population showed surface roughness. Among 
these, 12% are crystals with unknown shape. The rest of the crystals are rough 
surfaced columns, plates, and quasi-spheroids.  

3. 83% of the crystals have a diameter≤30µm, while only 3% had a diameter≥50µm. 
These findings are in good agreement with previous studies conducted in TTL cirrus. 

4. In the Speckle Analysis method, using a constant Marker value (=0.6xImage) 
suggested in Ulanowski et al. (2012) may not work accurately for crystals larger than 
30µm. It was found that 0.75 is the best Marker value as the predictions were 
comparatively better for the crystal sizes between 10-100µm. However, it is 
recommended to use a marker value between 0.6-0.9 making sure the speckles are of 
same size by comparing the original image with the binary image created using the 
morphological reconstruction to get an accurate result. 

5. A pilot study using Deep Learning Network which helps in classifying crystals based 
on their scattering pattern images has been undertaken. On comparing the two pre-
trained networks, GoogLeNet and ResNet-50, on average the former predicted 
correctly with 60%, while the latter predicted correctly with only 32% accuracy. The 
prediction accuracy for some categories needed improvement and the five categories 
which the network was trained on seem insufficient in representing the crystal 
population found in cirrus clouds. Hence, it is recommended to re-train the network 
after expanding the network’s training set by adding more data in each category as 
well as increasing the number of crystal categories. In this way crystal classification 
based on images taken by different light scattering instruments can be automated.  

6. Overall, this study helped to determine the crystal habits in the 1-100µm size range 
much more accurately compared to direct imaging. In addition, surface texture of these 
crystals was analysed. 
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10. ACRONYMS 

 

2D-S: Two-Dimensional Stereo. 

AIITS: Aerosol Ice Interface Transition Spectrometer.  

ATTREX: Airborne Tropical TRopopause Experiment. 

BT: Beam Tracer.  

BTM: Beam Tracing Model.  

CAST: Coordinated Airborne Studies in the Tropics.  

CCD: Charge-Coupled Device. 

CLAHE: Contrast Limited Adaptive Histogram Equalization. 

CPI: Cloud Particle Imager.  

3V-CPI: Three view Cloud Particle Imager. 

DL: Deep Learning. 

DLN: Deep Learning Network. 

EF: Edge Factor. 

FCDP: Fast Cloud Droplet Probe. 

GHOST: Green House gas Observations in the Stratosphere and Troposphere. 

GLCM: Grey-Level Co-occurrence Matrix. 

IN: Ice Nuclei. 

LE: Long Edge. 

LIDAR: LIght Detection And Ranging. 

LR: Long Radius. 

NASA: National Aeronautics and Space Administration. 

NERC: Natural Environmental Research Council. 

NCAR: National Centre for Atmospheric Research. 

NOAA: National Oceanic and Atmospheric Administration. 

OLR: Outgoing Longwave Radiation. 

POSIDON: Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection Experiment. 

PSD: Particle Size Distribution. 

PMT: Photo Multiplier Tube. 

RMS: Root Mean Square. 

SD: Standard Deviation. 

SE: Short Edge. 
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SGDM: Stochastic Gradient Descent with Momentum. 

TTL: Tropical Tropopause Layer. 

UAV: Unmanned aerial vehicle. 

UTC: Co-ordinated Universal Time. 

  



119 
 

11. APPENDIX 

 

11.1 Speckle Analysis  
%% Finding the particle size from speckles, based on Ulanowski 

et al. 2012 

 

%% For AIITS images: 

ds = imageDatastore('Test Images');%specify the path of file 

I = readimage(ds,2046); %specify the image no. in the 

datastore. 

%Alternatively read the image directly by calling its name: I 

= imread('imagename.jpg'); 

imshow(I);figure; 

  

%applying 2 pass median filtering to reduce noise 

MFilter = medfilt2(I);  

MFilter2 = medfilt2(MFilter); 

%montage({I,MFilter2});figure; 

  

%%For AIITS: Cropping the image 

B= imcrop(MFilter2,[50 19 457 457]);%xtop ytop (left), 

xbottom/width, ybottom/height (right)%cropping the image to 

eliminate background region. 

Xcen = 229.8; Ycen= 229.6; %Image centre 

InnerRadius =75.4180; %Inner angular region corresponding to 8 

degree %though 6degree, artefacts are visible up to 8degree 

OuterRadius =224.4; %Outer angular region corresponding to 25 

degree 

[nrows,ncols]=size(B); 

  

%Masking the regions other than 8-25 degree; %both 'masking & 

setting the bkgd to 0' and 'image subtraction' does the same. 

[xx, yy] = ndgrid((1:nrows)-Ycen, (1:ncols)-Xcen); % generate 

grid with mask 

mask1 = ((xx.^2 + yy.^2)>OuterRadius^2); % masking region 

outside the circle 

B(mask1) = 0; %0 for black %120 for grey mask %255 white mask 

mask2 = ((xx.^2 + yy.^2)<InnerRadius^2);% masking region 

inside the circle 

B(mask2) = 0; %%values 0-255 can only be assigned, NaN is not 

valid 

imshow(B);figure; %cropped and masked image 

  

% %To check whether the parameters (inner and outer angular 

region) are right 

% imshow(B); 

% hold on; 
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% viscircles([229.8,229.6],75.4180,'Color','b'); 

% viscircles([229.8,229.6],224.4,'Color','r'); 

% hold off; 

  

InnerCircularArea =3.14*(InnerRadius^2); 

%17859.92=3.14*(75.4180^2) 

OuterCircularArea =3.14*(OuterRadius^2); 

%158115.8=3.14*(224.4^2) 

index=find(B==255); 

SatPixels=length(index); %no. of saturated pixels. 

numberOfPixels = numel(B);%no.of pixels in matrix B, that is 

458x458=209764 

[pixelCounts, grayLevels] = imhist(B);%how many no. of pixels 

are in each pixel bins/gray levels;  

  

%Greyscale reconstruction 

Marker=B*0.75; %original=0.6, but only works for up to 

30micron crystals. For 10-100micron crystals 0.75 worked 

better during testing with both simulated and AIITS images. 

%Test with 0.6 to 0.8 as marker values to find optimum value 

according to data. 

mask=B; 

%imshow(mask);figure; %same as cropped and masked image 

imshow(Marker);figure; 

if Marker<=mask 

J = imreconstruct(Marker,mask);%morphological greyscale 

reconstruction 

end 

imshow(J);figure; 

RGMax = imregionalmax(J); %finding regional maxima %binary 

image 

%imshow(RGMax); figure; 

  

% %%Retrieve speckle properties like speckle area using the 

regionprops function. 

stats = 

regionprops('table',RGMax,'Area','BoundingBox','Centroid','Maj

orAxisLength','MinorAxisLength'); 

stats = stats(~(stats.MajorAxisLength > 63),:); %simulated 

images inner radius is 63. This condition is inserted so that 

it does not detect the inner angular region as a speckle or 

any speckle greater than inner angular region size. It also 

prevents detecting large, merged speckles. 

  

% %Finding speckle area and particle diameter 

MedianSpeckArea=median(stats.Area) %%median of the speckle 

area 

Ds=2*sqrt(MedianSpeckArea/pi);%Speckle Diameter %A=pi*(d/2)^2 

% equivalent circular area 

InverseArea=1/MedianSpeckArea; 
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ParticleDiam=332.75/Ds %Particle diameter extracting from 

AIITS images (Eqn.12 in article); z=491 pixels for AIITS 

images. use different z value for other optical scattering 

instrument. 

  

% %Quality criterion (Q) check: according to article, Q>0.4 

accept, otherwise reject the result 

% %However, no correlation between Q value and predicted 

particle diameter has been found. 

CircularArea=OuterCircularArea-InnerCircularArea;%140255.9; 

%Area between 2 rings 

SumSpeckArea=sum(stats.Area); 

BkgArea=CircularArea-SumSpeckArea;%sum(stats2.Area); 

C=(SumSpeckArea/(SumSpeckArea+BkgArea)); 

Q=4*C*(1-C); 

  

% %to highlight the speckles selected from the reconstructed 

image using regionprops. 

Cdiameters = median([stats.MajorAxisLength 

stats.MinorAxisLength],2);%median(A,2) is a column vector 

containing the median value of each row. 

centers = stats.Centroid; 

radii = Cdiameters/2; 

imshow(RGMax); 

viscircles(centers,radii); 
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11.2 Combined Roughness 
%%Computing the roughness of crystals from an image based on 

gray-level co-occurrence matrix (GLCM) or gray-level spatial 

dependence matrix  

 

clear all; 

ds = imageDatastore('Test Images'); 

I = readimage(ds,1122);  

 

%%Cropping and Masking the image 

 B1= imcrop(I,[50 19 457 457]);  

 Xcen = 229.8; 

 Ycen= 229.6; 

 InnerRadius =75.4180;  

 OuterRadius =224.4; 

 [nrows,ncols]=size(B1); 

 [xx, yy] = ndgrid((1:nrows)-Ycen, (1:ncols)-Xcen); % generate 

grid with mask 

 mask1 = ((xx.^2 + yy.^2)>OuterRadius^2);%& ((xx.^2 + 

yy.^2)>InnerRadius^2); % masking region outside the circle 

 mask2 = ((xx.^2 + yy.^2)<InnerRadius^2);% masking region 

inside the circle 

 B2=B1.*cast(mask1, class(B1));%mask1&2 are of type 'double', 

so converting them into class type 'unit8' as of the image B1 

 B3=B1.*cast(mask2, class(B1)); 

 MI=B1-B2-B3; %458x458 unint8 

 %imshow(MI);figure; 

 index=find(MI==255); 

SatPixels=length(index); %no. of saturated pixels 

  

  lo=MI(MI~=0);%%% get all non-zero elements in the 

MaskedImage (MI) 

  mean_lo=mean(lo);%mean of non-zero elements 

  num =size(lo,1);%no. of non-zero elements 

  

  MI_10= round(MI*(10/mean_lo)); % scale mean image brightness 

to 10 on the 0–255 scale 

  lo=MI_10(MI_10~=0); 

  mean_lo=mean(lo); 

  %imshow(MI_10); 

   

   

 [pixelCounts, grayLevels] = imhist(lo); %%% find the IMAGE 

HISTOGRAM of MaskedImage(MI)  

 rmscheck=rms(pixelCounts); %built-in function to find rms. 

 meancheck = mean(pixelCounts); 

 sdcheck=std2(lo); %built-in function to find standard 

deviation of a matrix. 

 

%Finding the rms, std and kurtosis manually 

 rmstest=0; 
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 sdtest=0; 

 ktest=0; 

 rmsc=rms(lo); 

 for count=1:255 

     rmstest = rmstest +pixelCounts(count)*pixelCounts(count); 

%summation of (individual intensity frequencies) ^2 % 

pixelCounts(count) -> getting values in pixelCounts 

     sdtest = sdtest+pixelCounts(count)*(count-rmsc)^2;  

%(individual intensity frequencies)x(grey level intensity-mean 

grey value)^2 

     ktest = ktest + pixelCounts(count)*(count-rmsc)^4; 

 end 

  

 RMS = sqrt(rmstest/256);   % Jolic eq. (8) for RMS 

 SD = sqrt(sdtest/(num-1));  % Jolic eq. (9) for SD 

(140303=num-1; ‘num’ is no. of non-zero elements) 

 rmsBYsd = RMS/SD;   

 ktest = ktest/(num-1);       % for kurtosis 

 Kurt=(ktest/SD^4); 

 log10K = log10(Kurt);   % log10(kurtosis) 

  

%converting 'uint8' type to 'single' image 

  B=im2single(MI); 

  B(B==0) = NaN; %uint8 can't have NaNs, only double/single 

can have NaNs. 

 imshow(B);  

  

  

% %if offset is set to 4 directions 

 offsets= [0 1; -1 1; -1 0; -1 -1]; 

 [glcms,SI] = 

graycomatrix(B,'Offset',offsets,'Symmetric',true); 

 SImax= max(SI); 

 stats = graycoprops(glcms); 

 AvgContrast=mean(stats.Contrast); 

 AvgCorrelation=mean(stats.Correlation); 

 AvgEnergy=mean(stats.Energy); 

 AvgHomogeneity=mean(stats.Homogeneity); 

Combined_Roughness=0.7-((2*AvgEnergy)/3)-

(log10K)/6+rmsBYsd/4000; 

%% End of code 
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11.3 Date Time UTC Conversion 
Extracting the date and time from individual images or a folder of images, and converts them 

to UTC. 

%% Extracting and converting time/UTC since year 

1970(individual images) 

fileinfo=dir('Flight150305_01_R001_0000253_P.jpg'); 

[Y,M,D,H,MN,S] = datevec(fileinfo.date); %datevector, a 

numeric vector whose six elements represent the year, month, 

day, hour, minute, and second components of t. 

dt = datestr(fileinfo.date,'HH:MM:SS'); 

UTC=int64(1425513600+(H*60*60)+(MN*60)+S); 

 

 

  

%% Extracting and converting time to UTC since year 

1970(folder of images) 

b={}; 

Files=dir('*.jpg'); 

for k=1:length(Files) 

FD=Files(k).date; 

[Y,M,D,H,MN,S] = datevec(FD); 

t =sprintf('%02.f:%02.f:%02.f',H,MN,S);%in 2 digits floating 

point form. 

b{k,1}=t; 

UTC(k,1)=int64(1425513600+(H*60*60)+(MN*60)+S);  

k=k+1; 

end 
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11.4 Data pre-processing 
%% Display the centre of BeamStop, inner & outer angular 

region of images of AIITS and PPD2 images 

  

%%Part-1: individual images%% 

ds = imageDatastore('test images');%creating a datastore for 

the folder  

I = readimage(ds,3);%image no. 3 in the datastore 

imshow(I); figure; 

B= imcrop(I,[100 1 581 581]);%xtop ytop (left), xbottom/width, 

ybottom/height (right)for PPD2 %%[50 19 457 457] for AIITS 

imshow(B); 

[BScenter, BSradii] = imfindcircles(B,[20 

60],'ObjectPolarity','dark');%detects beam stopper 

[INcenter, INradii] = imfindcircles(B,[70 

100],'ObjectPolarity','bright','Sensitivity',0.96,'EdgeThresho

ld',0.1);%%circle just outside beam stop %inner circle 

[OCcenter, OCradii] = imfindcircles(B,[215 

250],'ObjectPolarity','bright','Sensitivity',0.99,'EdgeThresho

ld',0.1);%%outer circle 

%%%EdgeThreshold 0 means all possible edge points are 

considered as a possible point on a circle circumference 

%%% Matlab recommends the Radius of the circle should be: Rmax 

< 3*Rmin and (Rmax - Rmin) < 100  

    if (~isempty(BScenter) && ~isempty(OCcenter) && 

~isempty(INcenter)) ||(~isempty(BScenter) && 

~isempty(OCcenter) && isempty(INcenter)) 

        Center = (BScenter+OCcenter)/2;   %BS&OC!=0       

    elseif (isempty(BScenter) && ~isempty(OCcenter) && 

~isempty(INcenter))||(isempty(BScenter) && ~isempty(OCcenter) 

&& isempty(INcenter)) 

        Center = OCcenter; %BS=0,OC!=0       

    elseif (~isempty(BScenter) && isempty(OCcenter) && 

~isempty(INcenter)) || (~isempty(BScenter) && 

isempty(OCcenter) && isempty(INcenter)) 

        Center = BScenter;    %BS!=0,OC=0    

    elseif (isempty(OCcenter) && isempty(BScenter) && 

~isempty(INcenter)) 

        Center = INcenter; %BS=OC=0 %%INC!=0 

    else  

        Center = [0 0]; %blank images          

    end    

  

     

% viscircles(BScenter, BSradii,'LineStyle','--'); 

% viscircles(INcenter, INradii,'LineStyle',':','Color','b'); 

% viscircles(OCcenter, OCradii,'Color','r'); 

% if ~isempty(Center) 

% hold on; 

% plot(Center(:,1),Center(:,2),'mx','LineWidth',2);%marking x 

at centre 
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% hold off; 

% end 

  

%To check the parameters are correct: 

    Center = [290 290];% for PPD2 and[229.8 229.6] for AIITS 

 

    viscircles(Center, 

76,'LineStyle',':','Color','b');%InnerCircle=76 for PPD2 and 

75.4 for AIITS 

    viscircles(Center, 289,'Color','r');%OuterCircle=289 for 

PPD2 and 224.4 for AIITS 

    hold on; 

    plot(Center(:,1),Center(:,2),'mx','LineWidth',2);%marking 

x at centre  

    hold off; 

%%End of code of Part-1 

 

 

%%Part-2: Folder of images%% 

ds = imageDatastore('test images');%creating a datastore for 

the folder 

nFiles=numel(ds.Files); %find total no. of images 

Center=[0 0];  

count=0; 

for k=1:nFiles  

%reading images from the datastore%% 

I = readimage(ds,k); 

B= imcrop(I,[100 1 581 581]); % [100 1 581 581] for PPD2 and 

[50 19 457 457] for AIITS 

[FoundCenter, OuterRadius, InnerRadius] = checkCenter(B); 

for i=k 

x(i,1)=FoundCenter(1,1);%row 1 col 1; x co-ordinate 

x(i,2)=FoundCenter(1,2);%row 1 col 2; y co-ordinate 

ir(i,1)=InnerRadius(1,1); 

or(i,1)=OuterRadius(1,1); 

end 

 

%writing the values into a file 

%writematrix(x,'PPD2_Centre_CroppedImage.txt','Delimiter','tab

'); 

writematrix(ir,'PPD2_InnerRadius_CroppedImage.txt','Delimiter'

,'tab'); 

%writematrix(or,'OuterRadius_CroppedImage.txt','Delimiter','ta

b');  

k=k+1; 

count=count+1; 

end 

  

%%%defining the function%%% 

function [FoundCenter, OuterRadius, InnerRadius]  = 

checkCenter(B) 
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[BScenter, BSradii] = imfindcircles(B,[20 

60],'ObjectPolarity','dark');%detects beam stopper 

[INcenter, INradii] = imfindcircles(B,[70 

100],'ObjectPolarity','bright','Sensitivity',0.96,'EdgeThresho

ld',0.1);%%circle just outside beam stop %inner circle 

[OCcenter, OCradii] = imfindcircles(B,[215 

250],'ObjectPolarity','bright','Sensitivity',0.99,'EdgeThresho

ld',0.1);%%outer circle 

  

    if (~isempty(BScenter) && ~isempty(OCcenter) && 

~isempty(INcenter)) ||(~isempty(BScenter) && 

~isempty(OCcenter) && isempty(INcenter)) 

        Center = (BScenter+OCcenter)/2;   %BS&OC!=0       

    elseif (isempty(BScenter) && ~isempty(OCcenter) && 

~isempty(INcenter))||(isempty(BScenter) && ~isempty(OCcenter) 

&& isempty(INcenter)) 

        Center = OCcenter; %BS=0,OC!=0       

    elseif (~isempty(BScenter) && isempty(OCcenter) && 

~isempty(INcenter)) || (~isempty(BScenter) && 

isempty(OCcenter) && isempty(INcenter)) 

        Center = BScenter;    %BS!=0,OC=0    

    elseif (isempty(OCcenter) && isempty(BScenter) && 

~isempty(INcenter)) 

        Center = [0 0]; %BS=OC=0 %%we dont need INcentre as 

the artefact is slightly off towards left. 

    else  

        Center = [0 0]; %blank images          

    end 

     

    FoundCenter = Center; 

  

   if ~isempty(OCradii) 

    OuterRadius = OCradii; 

   elseif isempty(OCradii) 

     OuterRadius = 0; 

   end 

    

   if ~isempty(INradii) 

    InnerRadius = INradii; 

   elseif isempty(INradii) 

     InnerRadius = 0; 

   end 

  

   if INradii<80  %%%anything greater than 80 is likely to be 

in a region other than around beamstop. 

    InnerRadius = INradii; 

   else 

     InnerRadius = 0; 

   end 

   end 

%%%End of Part-2 code. 



128 
 

 

%%Part-3: Finding the mean values 

A = readmatrix('OuterRadius_Image.txt'); 

MeanOuterRadius = mean(nonzeros(A)); 

%End of Part-3 code. 
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11.5 Deep Learning Network 

 
%%% Designing a Trained Network  

%% PART-1: USING SUPERVISED LEARNING, ASSIGN THE FOLDER NAMES 

AS CRYSTAL CATEGORIES. (SEE SECTION 7.3.3) 

ds = imageDatastore("Crystal Category 

14","IncludeSubfolders",true,"LabelSource","foldernames"); 

auds = augmentedImageDatastore([224 

224],ds,"ColorPreprocessing","gray2rgb"); 

save trainedNetwork_1; %GoogLeNet 

GoogLeNet=trainedNetwork_1; %rename the trained network 

save GoogLeNet; 

%% END OF CODE FOR PART-1. 

 

%% PART-2: TO TEST INDIVIDUAL IMAGES 

load GoogLeNet; 

net=GoogLeNet;%using GoogleNet, 5 categories:plate,columns, 

rounded, blank & patterned, to work on masked & cropped image 

opengl('save', 'software'); 

  

%section for AIITS images 

% Xcen=229.8;  

% Ycen=229.6;  

% OCradii=224.4;  

% ICradii=75.4; 

% a = imread('Flight150305_01_R001_0000006_P.jpg');  

% C= imcrop(a,[50 19 457 457]);%xtop ytop (left), 

xbottom/width, ybottom/height (right)55 16 450 450 or [54 18 

456 456] or [50 19 457 457] 

  

%section for PPD2 images 

Xcen=290; % Image centre.  

Ycen=290; %Image centre.  

OCradii=289; %Outer angular region.  

ICradii=76; %Inner angular region. 

a = imread('2.bmp'); 

C= imcrop(a,[100 1 581 581]);%xtop ytop (left), xbottom/width, 

ybottom/height (right) 

  

  

%%%generating circular mask%%% for both types of images 

 [nrows,ncols]=size(C); 

 [xx, yy] = ndgrid((1:nrows)-Ycen, (1:ncols)-Xcen); % generate 

grid with mask 

 mask = ((xx.^2 + yy.^2)>OCradii^2); % masking region outside 

the circle %equation of circular mask 

 C(mask) = 255;  

 mask2 = ((xx.^2 + yy.^2)<ICradii^2);% masking region inside 

the circle 
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 C(mask2) = 255; %%values 0-255 can only be assigned, NaN is 

not valid. 

 figure('Name','Image versus Prediction','NumberTitle','off'); 

 subplot(1,2,1); 

LeftAx = subplot(1,2,1); 

imshow(C); 

title(LeftAx,'PPD2 image'); %%change the title according to 

image type. 

  

auds1 = augmentedImageDatastore([224 

224],C,"ColorPreprocessing","gray2rgb");%converting grayscale 

to RGB. 

[pred,scores] = classify(net,auds1);%predicted category in 

pred and the prediction score/value (0-1)in scores. 

[~,idx] = sort(scores,'descend');%to show the highest probable 

category first. sorting the scores in descending order along 

with their index. 

idx = idx(5:-1:1);%change the no. 5 to the total number of 

outputs/categories. 

classNamesTop = net.Layers(end).ClassNames(idx);%extracting 

category names from the final layer of the Deep Network. 

scoresTop = scores(idx); 

subplot(1,2,2);  

barh(scoresTop); %horizontal bar chart of the prediction 

scores 

%barchart properties 

xlim([0 1]); 

title('Top 5 Predictions'); 

xlabel('Probability'); 

yticklabels(classNamesTop);%category names 

ytickangle(45);%to show the labels in an angle (otherwise the 

labels overlap) 

%% END OF CODE FOR PART-2. 

 

 

%%PART-3: TO TEST IMAGE DATABASE 

f = imageDatastore("Test images"); %check files are reading 

sequentially 

nFiles=numel(f.Files); %find total no. of images 

count=0; 

  

% %%for AIITS images 

% Xcen=229.8;  

% Ycen=229.6;  

% OCradii=224.4;  

% ICradii=75.4;  

  

%%for PPD2 images 

Xcen=290;   

Ycen=290;   

OCradii=289;   
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ICradii=76; 

  

%%%for all images 

load GoogLeNet;  

net = GoogLeNet; 

for j=1:nFiles   

a = readimage(f,j);%reading images from the datastore%% 

 

%Image cropping for AIITS/PPD2 images  

%C= imcrop(a,[50 19 457 457]);% for AIITS images; xtop ytop 

(left), xbottom/width, ybottom/height (right) 

C= imcrop(a,[100 1 581 581]); % for PPD2 images; 

   

   

%%%generating circular mask%%% for both image types 

[nrows,ncols]=size(C); 

[xx, yy] = ndgrid((1:nrows)-Ycen, (1:ncols)-Xcen); % generate 

grid with mask 

mask = ((xx.^2 + yy.^2)>OCradii^2); % masking region outside 

the circle 

C(mask) = 255;  

mask2 = ((xx.^2 + yy.^2)<ICradii^2);% masking region inside 

the circle 

C(mask2) = 255; %%values 0-255 can only be assigned, NaN is 

not valid 

  

ImD = augmentedImageDatastore([224 

224],C,"ColorPreprocessing","gray2rgb"); 

[pred,scores] = classify(net,ImD); 

    for i=j 

        s(i,1)=scores(1,1);%row 1 col 1; 

        s(i,2)=scores(1,2); 

        s(i,3)=scores(1,3); 

        s(i,4)=scores(1,4); 

        s(i,5)=scores(1,5); 

        p(i,1)=pred(1,1); 

    end 

     

 

%%if using Excel file, write only 1 file at a time to avoid 

crashing 

%writematrix(s,'testImages_Scores_DLN_GoogLeNet.txt','Delimite

r','tab'); %to view scores 

writematrix(p,'testDataset_PPD2_GoogLeNet.xlsx'); %to view 

predicted category. 

 

  

j=j+1; 

count=count+1; 

end  
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summary(p); % summary of results (number of crystals in each 

categories) 

%% END OF CODE FOR PART-3. 

 

%%Part-4: to display the CONFUSION MATRIX 

data1= readcell('test images PPD2.xlsx','Range','A1:A140'); % 

specify the data range of manual classification in the Excel 

sheet. 

data2= readcell('test images PPD2.xlsx','Range','C1:C140'); % 

specify the data range of predicted classification in the 

Excel sheet. 

cm = confusionchart(data1,data2,'Title','Confusion Matrix - 

ResNet','RowSummary','row-normalized');%true class vs 

predicted class 

%% END OF CODE FOR PART-4. 
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11.6 Poster 
 

The following Poster was presented during the SPECS (School of Physics, Engineering and Computer 

Science) conference conducted at the University of Hertfordshire on 13th June 2023. The Poster 

outlines the summary of research undertaken in this thesis. 
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