
A Synchronisation Facility for a Stream

Processing Coordination Language

Anna Tikhonova

A thesis submitted to the University of Hertfordshire

in partial fulfilment of the requirements of the degree of

Master of Science by Research

15 January 2015

mailto:anna.m.tikhonova@gmail.com

Abstract

In this thesis we present the AstraKahn project that aims to provide environment for stream

processing applications with an automatic resource and concurrency management based

on communication demand. At the moment the work on the thesis started, the project

was at an early stage and there existed no software implementation. The aim of my

work is to implement a stream synchronisation facility called synchroniser which is a

part of the AstraKahn concept. Synchronisers are programmed in a dedicated language.

The thesis focuses on the implementation of the language compiler to be integrated into

the runtime system prototype being developed in parallel.

AstraKahn structures streaming networks using a fixed set of wiring patterns, including the

serial replication. This pattern dynamically replicates its operand network conceptually

infinitely many times and wires the replicas in a chain. AstraKahn provides an approach to

extract messages from the chain based on the concept of fixed point. The thesis explores

the role of synchronisers in forming from a serial replication pipeline.

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Outline . 3

2 Related Work 4

2.1 Coordination Programming . 4

2.2 Stream Processing . 6

2.3 S-Net . 7

2.4 Summary . 10

3 AstraKahn 12

3.1 Channels and Messages . 12

3.2 Components . 14

3.3 Network Composition . 16

4 AstraKahn Synchroniser 18

4.1 Mathematical Model . 18

4.2 The Language of AstraKahn Synchronisers 21

4.3 Execution Order of Synchroniser . 28

4.4 The Implementation of the aksync Compiler 28

4.5 Discussion and Future Work . 40

5 Serial Replication in AstraKahn 44

5.1 AstraKahn Approach to Serial Replication 44

5.2 Forward Fixed Point . 48

5.3 Reverse Fixed Point . 55

6 Conclusion 59

6.1 Summary . 59

6.2 Future Work . 60

A Syntax of the AstraKahn Syncroniser 61

A.1 Full Grammar . 61

ii

Contents iii

A.2 Keywords, Reserved Words and Punctuation 61

A.3 Abstract Syntax Tree of the Synchroniser 61

Bibliography 65

Chapter 1

Introduction

The concepts of the new coordination language AstraKahn are described in [1]. The lan-

guage defines the coordination behaviour of asynchronous stateless components (boxes)

and their orderly interconnection via stream-carrying channels with finite capacity.

AstraKahn structures the interconnect using a fixed set of wiring primitives, viz. se-

rial and parallel composition, wrap-around connection and serial replication. Boxes

are connected to the network with one or two input channels and one or more output

channels. A stateless box does not synchronise data on its input channels; to this end,

AstraKahn provides a synchronisation facility called synchroniser. Synchronisers are finite

state machines for joining messages and sending them on to the output channels. A

synchroniser is connected to the network with one or more input and output channels.

AstraKahn provides a dedicated language to define synchronisers, while boxes are specified

in any conventional programming language. In order to deal with the issue of application

progress, AstraKahn attempts to provide an automatic resource and concurrency manage-

ment based on communication demand.

1.1 Motivation

At the moment the work on this thesis started, the AstraKahn project was at an early

stage and there existed no software implementation. In order to carry out research

towards automatic resource and concurrency management, an execution environment

for AstraKahn applications must be developed. In brief, such an environment includes a

compiler to generate an intermediate representation of the application source code and

a runtime system to interpret the representation under the input data. Since AstraKahn

provides the coordination language and the programming language of synchronisers, the

two compilers for them are needed. The grammar of the synchroniser language is given

1

CHAPTER 1. INTRODUCTION 2

in [1]. The aim of this work is to study synchronisers and implement the synchroniser

language compiler.

An AstraKahn component, either a box or a synchroniser, is both a consumer and a pro-

ducer for some other components in the network. The static correctness of a connection

demands that the statically guaranteed properties of an output message be sufficient to

satisfy the static requirements of its recipients. In order to check the static correctness

over the network, a component can be abstracted with respect to its data-transformation

behaviour as a so-called communication passport p ⇒ P , where p is the conjunction of

all the requirements and P is the conjunction of all the guarantees. Since boxes are not

analysable by AstraKahn the programmer has to specify passports for them. Synchro-

nisers are fully analysable by AstraKahn and their passports can be extracted from the

source code exclusively by program analysis. Such an analysis can be implemented as a

part of the synchroniser compiler.

AstraKahn provides the serial replication combinator, which creates a conceptually infinite

number of copies of its operand network and connects them in a serial fashion. In

AstraKahn the output from the serial replication pipeline is defined using the concept of

forward fixed point. A forward fixed point is a message that is not changed by being

processed by a newly created replica. In order to detect fixed point messages, the

AstraKahn runtime system has to be provided with a pattern that matches all of them.

The language report [1] gives an intuitive explanation of how the matching pattern

can be embedded into the operand network of the serial replication combinator using

synchronisers, so that the programmer does not have to specify it explicitly within the

AstraKahn application code. The pattern can be extracted from the source code of those

synchronisers by program analysis.

In order to suppress the growth of the replica chain in the serial replication network,

AstraKahn introduces a so-called reverse fixed point mechanism. A reverse fixed point

on a channel is a state of a replica, in which it transmits messages from that channel

unchanged. Once the AstraKahn runtime system detects that a replica is in the reverse

fixed point state on some channel, the connection on that channel can be optimised by

removing the replica. Since synchronisers are the only stateful components in AstraKahn

, a state of a replica, and thus a reverse fixed point, is formed by the states of its

synchronisers. The reverse fixed point can be extracted by program analysis from the

source code of the replicas synchronisers.

CHAPTER 1. INTRODUCTION 3

1.2 Contribution

This thesis focuses on the implementation of synchronisers and their role in the serial

replication wiring pattern. We provide some minor syntax improvements and detailed

explanation how each language construct should be used. An AstraKahn synchroniser

has a non-deterministic behaviour. We give an execution algorithm that defines the

ordering of non-deterministic choices made by the synchroniser, and which is a basis

for the synchroniser runtime. We implement the language compiler that generates the

data structure to be interpreted by the runtime and the communication passport of the

synchroniser. The compiler performs semantic and type checking and reports source

code errors.

The language report [1] explains the machinery behind the serial replication briefly. The

serial replication is an important part of AstraKahn and it has to be well-established for the

execution environment to be implemented. We analyse the original synchroniser-based

approach to fixed points and show how it can be implemented. As a part of the analysis,

we give the topological properties of the operand network that are required for the

existence of forward and reverse fixed points. The analysis shows that the construction

and the debugging of an operand network with a complex fixed point condition can be

quite complicated. In order to avoid having to construct complicated operand networks,

we provide a simple alternative solution for forward fixed point. Finally, we provide

algorithms for the AstraKahn compiler to detect both kinds of fixed point in the operand

network.

1.3 Outline

The remainder of the thesis is as follows. Chapter 2 introduces AstraKahn and presents

some theoretical background in coordination programing and stream processing. AstraKahn

is compared with a recent component system example from either field.

In Chapter 4 the implementation of the synchroniser is described in detail. We describe a

synchroniser mathematically in order to define its behaviour more precisely. The chapter

focuses on the language guide, the execution algorithm and the implementation of the

compiler.

In Chapter 5 the machinery behind the serial replication in AstraKahn and the role of

synchronisers in it is explained.

Chapter 6 concludes the thesis, providing directions for further research.

Chapter 2

Related Work

In this chapter we provide relevant theoretical background in coordination programming

and stream processing. We pick a recent component-system example from each field.

Then, we describe the combined approach to coordination programming and stream

processing, implemented in AstraKahn predecessor S-Net. We sum up the chapter with

a comparison of the three components systems, including their approaches to synchro-

nisation.

2.1 Coordination Programming

The coordination paradigm offers a promising way to address some issues related to

the development of efficient parallel systems. Programming a parallel system can be

seen as a combination of two activities: the actual computing part comprising a num-

ber of processes that manipulate data and a coordination part that is responsible for

communication between the processes.

In the main, coordination is managing dependencies between components. Since the

computation is completely separated from the coordination, the processes that comprise

the former are seen as black boxes. The programming languages used to write the

computational code do not play an important role in setting up the coordination scheme.

Existing coordination models1 are described in details in the survey [2] by G. Papadopou-

los and F. Arbab. They argue that these models fall into two major categories of coor-

dination programming, namely either data-driven or control-driven.

1A coordination model encompasses entities being coordinated, a means of coordination and a se-
mantic framework

4

CHAPTER 2. RELATED WORK 5

The main characteristic of data-driven coordination models is that the coordination code

is mixed with the process definition. A data-driven coordination language typically offers

several coordination primitives which are intertwined with the purely computational

code. Many data-driven coordination models have evolved around the notion of shared

dataspace. The shared dataspace plays a dual role, being a global data repository and

an interprocess communication system. The processes communicate by writing to the

shared dataspace and retrieving data from it. Hystorically the first member of this family

is Linda [3]. Strictly speaking, not all data-driven coordination models follow the above

pattern of coordination. Some of them use a message-passing based mechanism (MPI,

[4]).

Opposite to the data-driven coordination model, the control-driven coordination achieves

almost complete separation of concerns between computation and coordination. This

is usually achieved by defining a special language that offers facilities for controlling

synchronisation, communication, creation and termination of computing components.

One of a contemporary members of this family is Reo [5]. In Reo computational com-

ponents communicate via complex coordinators, or connectors. An undirected channel

is an atomic connector in Reo. Channels are typed, however, no fixed set of types is

assumed. The channel type defines the behaviour of the channel with respect to data.

A list of common types is as follows:

• Sync A channel of type Sync atomically gets data from the input and propagates

it to the output

• Lossy Sync Same as Sync, but data can be lost if the output is not ready to

accept data

• FIFO(n) A channel of type FIFO(n) gets data from the input, temporarily stores

it in an internal buffer of size n, and propagates it to the output whenever it is

ready to accept the data

• Sync Drain A channel of type Sync Drain atomically gets data from both inputs

and loses it

• Filter(c) A channel of type Filter(c) atomically gets data from the input and

propagates it to the output if the filter condition c is satisfied. Otherwise, the

data are lost.

Channels are connected with nodes. Nodes have fixed merger-replicator behaviour: the

data of one of the incoming channels is propagated to all outgoing channels, without

storing or altering it. If multiple incoming channels can provide data, the node makes a

CHAPTER 2. RELATED WORK 6

nondeterministic choice among them. A complex connector in Reo is represented as an

undirected graph of channels and nodes. C. Baier et al. propose constraint automata as

an operational model for component connectors in Reo [6].

2.2 Stream Processing

A stream processing system is a system comprised of a collection of isolated processes

that compute in parallel and communicate data solely via static channels. The processes

are usually divided into three classes: sources that create data for the system, filters that

perform some computation, and sinks that pass data from the system. Stream processing

systems are usually visualised as directed graphs.

An overview of stream processing is given in the survey by R. Stephens [7]. Stephens

identifies that the earliest type of stream processing systems is dataflow. In the first

dataflow programming language Lucid [8], each variable is represented as an infinite

stream of values. Computation is carried out by defining transformation functions that

process such streams. Lucid is possibly the first language to introduce the idea of filter.

A significant result for concurrency engineering is Kahn’s work [9], which outlines the

semantics of a simple parallel programming language. Kahn suggests a distributed

model of computation where a group of deterministic sequential processes communicate

via unbounded FIFO channels under the following assumptions:

• Channels are the only way for processes to communicate

• Channels transmit messages within a finite time

• At any given time a process is either performing computation or waiting for mes-

sages on a specific input channel.

Kahn proved that the output of the resulting process network is deterministic, i.e. it does

not depend on the ordering of computations at different nodes. The model is commonly

referred to as Kahn Process Network (KPN).

A Kahn process may have multiple input and multiple output channels. Reading from

a KPN channel is blocking, i.e. a process that reads from an empty channel stalls

and can only continue when the channel contains sufficient data. On the contrary,

writing to a channel is non-blocking, and it always succeeds since the capacity of a

KPN channel is unlimited. Processes cannot test an input channel for data availability

without committing to consume the data. KPNs allow arbitrary wiring, i.e. a network

may have feedback communication.

CHAPTER 2. RELATED WORK 7

In KPNs the number of data elements a process might read from a channel or write

to a channel is not restricted. In synchronous dataflow (SDF, [10]) the consumption

and production rates of a process are fixed. A recent SDF language is StreamIt [11].

The basic unit of computation in StreamIt is a user-defined single-input single-output

(SISO) block called a filter. The filter can communicate with neighbouring blocks via

FIFO channels. StreamIt structures an application using the following primitives:

• Pipeline specifies sequential composition of filters

• SplitJoin specifies parallel composition of filters

• and FeedbackLoop provides a way to create loop constructs in a streaming network.

A StreamIt program is a hierarchical composition of these constructs.

Thanks to the single-input and single-output restriction, a filter does not need to syn-

chronise data on multiple input channels and to split result between output channels.

2.3 S-Net

S-Net [12], [13] is a declarative coordination language based on stream processing. It

defines the behaviour of stateless asynchronous components (boxes) that interact with

each other in a streaming network. Boxes are written in conventional languages that

are subject to contract with S-Net. They execute fully asynchronously, i.e. a box

may consume data as soon as it is available from the input stream. Moreover, boxes

are SISO, therefore S-Net achieves a near-complete separation of concerns between

communication and computation.

Data on streams are organised as variant records of label-value pairs. S-Net provides a

special facility, called synchrocell, that merges one or more records into a single one. A

synchrocell maintains an internal state in order to keep incoming records which match

one of the patterns until all patterns have been matched. Then the records are merged

into a single one and sent to the output stream.

Streaming networks are expressed in a hierarchical manner using a fixed set of five

combinators, viz. serial composition, parallel composition, serial replication, parallel

replication and feedback loop. Network combinators are unary or binary operators that

take either atomic components, e.g. boxes or synchrocells, or networks as their operands

and construct a SISO network; hence, network construction is inductive. Four of the five

combinators have non-deterministic versions that permit arbitrary reordering of output

streams.

CHAPTER 2. RELATED WORK 8

The type system of S-Net

The type system of S-Net is based on non-recursive variant records with record sub-

typing. A type is S-Net is a non-empty set of anonymous record variants, and a record

is a possibly non-empty set of record entries. Record entries are either fields or tags. A

field consists of a label associated with an opaque value at runtime. A tag is a named

integer used for controlling the flow of records through a network. Record subtyping in

S-Net is based on the understanding that a subtype is more specific than its supertype.

Informally, a type is a subtype of another type if it has additional record entries in the

variants or additional variants.

A box or network in S-Net accepts records of a certain type; thus, records upon entry

to a certain box or network are up-coerced to its input type. In order to avoid the loss

of record entries that are not manipulated by the box, S-Net employs a so-called flow

inheritance mechanism. Any field or tag of an incoming record that is not explicitly

named in the input type of a box or network bypasses the box or network and is added

to any outgoing record created in response, unless that record already contains a field

or tag with the same label.

Components

• Boxes

Boxes are the atomic building blocks of streaming networks in S-Net. User-

defined boxes can be specified in any conventional programming language that has

an interface with S-Net. Generally, a user-defined box may produce a variable

number of output records in response to a single input record, which is up to the

box implementation. S-Net requires to specify the box type signature, which

describes the typewise stream-to-stream transformation performed by the box.

S-Net provides so-called built-in filter boxes (or filters), which allow various house-

keeping operations that do not require knowledge of field values. Those operations

include, but not limited to, elimination of fields and tags from records, copying

fields and tags, adding tags, and splitting records.

• Synchrocells

S-Net provides a built-in component called synchrocell for the purpose of joining of

multiple records appearing in some order on a single input stream. Syntactically,

a synchrocell consists of one or more patterns that match incoming records. A

match happens when the type of a record is a subtype of the type pattern. The

synchrocell provides storage for exactly one record of each pattern, and records

CHAPTER 2. RELATED WORK 9

with an already matched pattern are forwarded directly to the output stream.

Once all the patterns have been matched and a merged record has been sent on

to the output stream, the synchrocell serves as an identity box, i.e. it forwards all

incoming records to the output stream.

The paper [14] shows that in conjunction with other S-Net features, the simplistic

synchrocell design allows the implementation of essential synchronisation features

making the synchrocell an efficient synchronisation facility for asynchronous data

flow computing in the style of S-Net. For example, continuous synchronisation,

which is a common kind of synchronisation in streaming networks, can be imple-

mented by applying a serial replication combinator to a synchroncell. Also, the

paper ([14]) demonstrates modelling of a stateful computation using the property

of synchrocell to become an identity once it has performed joining.

Network Composition

Network composition in S-Net is an inductive process with boxes as base cases. S-Net

networks are constructed hierarchically using a set of five network combinators. Network

combinators are either unary or binary, and they create compound networks that have

a single input and a single output stream. Routing decisions are made at split points of

a network and are based upon the type of the subnetworks and the type of the actual

record.

Serial composition applies to two operands. It connects the output stream of the

first operand to the input stream of the second operand. The input stream of the

first operand and the output stream of the secord operand become those of the

combined network.

Parallel composition applies to two operands and combines them in parallel. An

incoming record is sent to exactly one operand depending on its own type and the

type of records accepted by either of the operands. The output streams of the

operands are merged into a single stream, which becomes the output stream of the

combined network.

Serial replication applies to two operands. It creates infinitely many copies of its first

operand, which is a network, and connects those copies by serial composition. The

second operand is a type pattern, such that each record that is a subtype of this

type pattern leaves the replication pipeline through the output stream.

Indexed parallel replication applies to two operands. Similar to serial replication,

it creates infinitely many replicas of the first operand, which is a network, and

CHAPTER 2. RELATED WORK 10

connects the replicas by parallel composition. The second operand is a tag. Each

incoming record must have this tag and is sent to the replica with the tag value in

the record.

Feedback loop applies to two operands. The first operand is a network and the second

operand is a type pattern. Records which are input to the feedback loop network

enter the operand network unconditionally. All output records of the operand

network that are a subtype of the type pattern are fed back to the input of the

feedback loop network. All other output records leave the feedback loop network.

Serial and parallel replication network are demand-driven, hence the replicas are created

dynamically on runtime.

All combinators except for the serial composition have non-deterministic and determin-

istic variants. Deterministic variants of combinators preserve the ordering of records in

the output stream, while non-deterministic variants are allowed to completely reorder

it.

2.4 Summary

Earlier on we reviewed recent component systems based on coordination programming

(Reo) and stream processing (StreamIt), and described the approach to component

coordination developed in S-Net. The stream processing based approaches StreamIt

and S-Net impose structuring on networks with fixed sets of combinators, while the

coordination language Reo only supports unstructured component connection. In Reo,

the computational components are connected into a network with complex connectors

that are constructed of channels typed with respect to their synchronisation properties.

Just like the Reo’s approach to data synchronisation, S-Net achieves a near-complete

separation of concerns between computation and communication. However, in S-Net,

a computational component’s interface is restricted to SISO. Additionally, S-Net pro-

vides a stream synchronisation facility called synchrocell. Similar to S-Net, the com-

putational components in StreamIt are SISO. StreamIt is based on the synchronous

dataflow model, where neighbouring components communicate synchronously.

In order to support dynamic reconfiguration of streaming networks, S-Net requires

computational components to have no state. A heuristic scheduler that utilises positive

and negative demands of the stream communication was developed for S-Net in [15].

The ability to dynamically reconfigure a streaming network opens opportunities for

parallelisation. StreamIt does not require the components to be stateless; it relies on

CHAPTER 2. RELATED WORK 11

the static scheduling of the synchronous data flow programs. Reo is clueless about the

components it coordinates; it focuses on the components connection, rather then on the

components themselves. In other words, the problem of automatic parallelisation is not

set for both StreamIt and Reo.

Chapter 3

AstraKahn

In this chapter we present the concepts of a new coordination language AstraKahn .

AstraKahn is an attempt to provide a component system with automatic concurrency

management. AstraKahn defines the coordination behaviour of fully asynchronous com-

ponents (boxes) and their orderly interconnection via stream-carrying bounded FIFO

channels. In AstraKahn data on streams are organised as sequences of messages. Each

message conforms to one or more statically known formats.

AstraKahn provides a facility for stream synchronisation in the form of a special component

called a synchroniser. The behaviour of the synchroniser is not fixed; instead, it is defined

in a dedicated language that is a part of AstraKahn paradigm. Similar to S-Net, boxes

are stateless, hence they do not synchronise data; this work is done by synchronisers.

AstraKahn structures streaming networks using a total of four combinators, namely: the

serial connection, the parallel connection, the wrap-around connection and the serial

replication. Network combinators may take either boxes or networks as their operands,

hence the network construction is an inductive process.

In the following sections the concepts of AstraKahn are explained in more detail.

3.1 Channels and Messages

Channels

Channels in AstraKahn are named FIFO queues with a limited capacity. A channel carries

a segmented stream that consists of message sequences and those may in turn consist

of sequences in their own right. In order to mark the beginning and end of a sequence,

AstraKahn supports a special kind of message called a segmentation mark.

12

CHAPTER 3. ASTRAKAHN 13

Segmentation marks can be thought of as brackets. AstraKahn requires that a stream of

message sequences that flows through a channel has a static bracketing depth. Therefore,

each message on a given channel is found between the same number of brackets. The

sequence of messages starts with a certain number of opening brackets and ends with

the same number of closing brackets. Within the sequence brackets can occur only in

the following combination:

) . . .)︸ ︷︷ ︸
k

(. . . (︸ ︷︷ ︸
k

,

where k ≤ d, and d is the number of opening brackets in the beginning of the stream.

This combination constitutes the segmentation mark σk. The bracketing depth d ≥ 0 is

a static characteristic of a channel1.

The Type System of AstraKahn

The type system of AstraKahn is based on the Message Definition Language (MDL, [1])

which is a language of abstract terms that are built recursively from the ground up.

Structurally the terms are symbolic trees with the following kinds of leaf:

Symbol, Number, String terms represent a certain finite quality

Variable term ranges over terms

Flag is a boolean variable that only occurs in a certain context.

Other terms are built recursively using the following types of constructor:

Tuple is a sequence of terms in linear order

List is an extensible sequence of terms in linear order

Record is an extensible collection of label-term pairs

Choice is an extensible collection of alternative labeled terms

Switch is a collection of guarded terms that represents exactly one of them depending

on the value of the boolean guards

1Indeed, the bracketing depth of a channel that would carry the stream of message lists

(((a)(︸︷︷︸
σ1

b))((︸︷︷︸
σ2

c)(︸︷︷︸
σ1

d)))

is 3

CHAPTER 3. ASTRAKAHN 14

Data on streams are organised as sequences of messages defined by a choice of records,

which is similar to S-Net. However, in AstraKahn the data carried by a record entry can

be of any format that MDL allows. Also, in AstraKahn a choice that is known to carry a

single record is labeled uniq. Unlike S-Net, AstraKahn does not need to decide on message

routing since the channels are named, hence AstraKahn messages do not need tags.

An AstraKahn component, either a box or a synchroniser, is both a consumer and a

producer for some other components in the network. Hence to guarantee the static

correctness of a connection, the subtyping relation between the consumer’s input and

the producer’s output types must be satisfied. In order to check the static correctness

over the network, a component can be abstracted with respect to its data-transformation

behaviour as an implicative statement p ⇒ P , called a passport, where p is the type

of the input message and P is the type of the output message. During the check, the

AstraKahn compiler extracts the topology of the network, forms the subtyping relations

between the passports and performs constraint solving in order to instantiate all term

variables. If the constraint system is satisfiable, then the whole program is consistent

and type correct.

3.2 Components

Boxes

Boxes are the atomic building blocks of AstraKahn networks that perform the computation.

An AstraKahn box is deterministic in the sense that for every partial input stream it

produces a deterministic output stream2.

Conceptually, boxes can be specified in any conventional programming language; how-

ever, they are subject to a contract that defines acceptable behaviour for boxes. Any

guarantees that AstraKahn offers are subject to the fulfilment of the contract on behalf of

all the boxes. The interface between a box and the AstraKahn runtime system is defined

by the AstraKahn Box-API for each supported box language.

Unlike S-Net, which does not require to specify any box properties but its type signa-

ture, AstraKahn declares seven box categories with respect to their algebraic properties

and effect of channel segmentation3:

2For a function f(x) : I → O, where I is the totality of f(x) input streams and O is the totality of
f(x) output streams, ∀p ∈ I ∧ ∀t : p ∪ t ∈ I : f(p || t) = f(p) || f(t)

3The box code does not see the segmentation marks; AstraKahn deals with them all by itself

CHAPTER 3. ASTRAKAHN 15

Transductor A transductor has one input channel and one or more output channels

and responds with no more than one output message on each of its output channels.

Segmentation marks are passed on to all the output channels of the box, bypassing

the box code.

Inductor An inductor has one input channel and one or more output channels and

responds to a single message from the input channel with a sequence of messages

on each of its output channels. Before the input stream is passed to the inductor,

each σk in it with k > 0 is replaced by σk+1, and a σ1 is inserted between every

two consecutive data messages. Segmentation marks are bypassed from the input

to all the output channels by the coordinator when encountered at the input of

the inductor.

Reductor A reductor implements the reduction operation for a list of input messages.

The reductors can have more than one output channel with one of them reserved

for the results of the reduction. AstraKahn classifies reductors by the number of

input channels and properties of the reduction operation they implement. There

exist five classes of reductor:

Dyadic ordered A dyadic ordered reductor has two input channels. The first

input channel is reserved for the initial value. The reduction operator is

applied to the messages in the order that they arrive on the second input

channel

Dyadic unordered Same as dyadic ordered except that the reduction operator

can be applied to the messages on the second channel in any order without

affecting the result

Monadic ordered and monadic unordered Same as dyadic reductors except

monadic reductors have one input channel. A monadic reductor is only

started when two messages are received

Monadic segmented A monadic reductor recursively processes an input list of

messages that can be segmented into arbitrary sublists until the list is reduced

to a single message

An AstraKahn box generally is not SISO, which makes a difference from S-Net. Typ-

ically it has a single input channel, however, the number of output channels, although

statically known, is not restricted.

CHAPTER 3. ASTRAKAHN 16

Synchronisers

Synchronisers are non-deterministic finite state machines for joining messages and send-

ing them on to the output channels. AstraKahn provides synchronisers with memory for

storing received messages.

A synchroniser can have any number of input and output channels. Unlike boxes, syn-

chronisers maintain an internal state and generally accept messages from an input chan-

nel in certain states, while in another state the channel may be blocked until a state

transition brings the synchroniser to a state in which messages from the channel are

accepted.

A synchroniser can also compute trivial extensions for messages. For example, it can

append a labeled integer value to a message. It also detects segmentation marks in an

input stream and can change the segmentation of the stream by sending segmentation

marks to the output channels.

The state transitions of a synchroniser can depend on the content of the current message

but never on that of a stored one. In order for the synchroniser to read values from the

current message, it is matched with a pattern specified within the triggering condition

of the transition. In addition, the triggering condition may check the matched values

if they are known to be integers. If the message was matched and the integer values

satisfy the condition, then the transition fires.

The act of sending a message to an output channel is associated with a transition.

Once the transition is known to fire, the synchroniser computes the message extensions,

combines all the parts of the message together and sends it on to the output channel.

AstraKahn provides a dedicated language of synchronisers.

AstraKahn does not introduce the SISO restriction for boxes; instead, it provides a more

complex stream synchronisation facility. Unlike the Reo connector and the S-Net

synchrocell, the AstraKahn synchroniser is able to process messages, e.g. read and change

their content to some extent. In S-Net this can be implemented with filters.

3.3 Network Composition

The construction of streaming networks in AstraKahn is hierarchical: components are

wired into a subnetwork, which in turn can act as a component in a larger network, etc.

In order to wire the components, AstraKahn provides a set of wiring patterns sufficient

CHAPTER 3. ASTRAKAHN 17

to achieve arbitrary wiring [1]. Each pattern identifies input/output channels of the

operand(s) with one another and with the input/output channels of the result.

Three patterns are static, applicable to one or two operands:

Serial connection applies to two operands. All outputs of the first operand are wired

to identically named inputs of the second operand if they exist. The rest of the

inputs and outputs contribute to the input/output sets of the resulting network.

Parallel connection applies to two operands. Two operand networks are placed side

by side without connection and their input and output channels form the input

and output channel sets of the resulting network.

Wrap-around connection applies to a single operand. Each output channel of the

operand that matches an input channel by name is wired to it with a special wrap-

around channel, thus completing a cyclic connection. In order to avoid deadlocks,

AstraKahn does not limit the capacity of wrap-around channels; their capacity is

only limited by the amount of memory available for the queues in the system4.

These three patterns are sufficient to achieve arbitrary wiring of the components.

The fourth pattern – serial replication – replicates the single operand network in-

finitely and wires up the replicas with the serial connection. In implementation, actual

replication is demand-driven: the chain of replicas is extended dynamically. Messages

are extracted from the chain and sent to the output channel when they satisfy the fixed

point condition, see Chapter 5.

AstraKahn attempts to provide a component system with automatic concurrency manage-

ment based on communication demand. Communication demand is observed when a

box produces messages to its output channel slower than they can be consumed from

that channel. If the input channel of the slow box is not empty, several copies of the

box may run in parallel to produce output messages faster and to minimize the latency

of the application network. Otherwise, the communication demand is propagated back-

wards to a box that produces messages for the slow box. Automatic box replications in

AstraKahn are demand-driven; however, it is up to the AstraKahn runtime how many copies

of each box to run at a time.

AstraKahn does not have the parallel replication combinator which exists in S-Net; the

parallel replication is implemented by the concurrency management mechanism. The

synchronisation in the sequences of messages produced by the parallel replicas can be

implemented by an array of synchronisers that are indexed within the declared limits.

4if there is no memory available, the application crashes

Chapter 4

AstraKahn Synchroniser

In this chapter we describe the source language for an AstraKahn synchroniser and its

implementation. Prior to describing the language in details, we present a mathematical

model of a synchroniser from [1] and outline sources of non-determinism in synchronisers.

The aksync compiler is integrated into the current AstraKahn runtime system prototype.

It takes the source code of a synchroniser program, performs the syntactic and seman-

tic analysis of it, builds a data structure for the AstraKahn runtime and generates the

communication passport of the synchroniser.

4.1 Mathematical Model

Synchronisers are finite state machines for joining received messages and sending them on

to the output channels. Synchronisers can have one or more input and output channels.

From the mathematical point of view a synchroniser is a pair

(Φ, Π),

where Φ = (A, S, T) is a nondeterministic state machine with the alphabet of events

A ⊆ C × P , where C denotes the set of input channels and P the set of the predicates

on channel messages. An event (c, p) ∈ A represents the reception of message µ on

channel c that satisfies the predicate p. The set of abstract states in Φ is denoted as

S = {s0, . . . , sk, . . . , sn}, k ≤ n, with the start state s0, and the transition matrix as

T : A× S → S.

The path functional Π(S, Ω), where Ω is the set of output channels, defines the output of

the synchroniser. The function Π (sk, ωm) ∈ Π defines the output to channel ωm ∈ Ω of

18

CHAPTER 4. ASTRAKAHN SYNCHRONISER 19

the synchroniser in state sk ∈ S. In state sk the functional is based on the retrospective

sequence of transitions from the most recent visit to the start state s0 to sk:

(s0, a0), (s1, a1), ... (sk, ak),

where ai = ci×pi ∈ A, 0 ≤ i ≤ k is the alphabet symbol that caused the transition from

the state si. Let µi be the message received in the transition from the state si. Then

Π (sk, ωm) = ψu {µi | ρmki (si), 0 ≤ i ≤ k}, (4.1)

where ρmki is the selection predicate that defines Π, and ψu is the operator that coerces

the messages in the operand set to their joint greatest subtype. A synchroniser in Fig.

4.1 emits to channel ωm only a message received on channel ck in state sk. Fig. 4.1

shows the path functionals for ωm that correspond to each transition on channel ci from

state si, 0 ≤ i ≤ k.

s0

s1

sk

a0, µ0

a1, µ1

ak, µk

...

...

Π (s0, ωm) = ψ⊓ {µ0 | ρm00 = 0} = 0

Π (s1, ωm) = ψ⊓ {µ0 | ρm10 = 0, µ1 | ρm11 = 0} = 0

Π (sk, ωm) = ψ⊓ {µ0 | ρmk 0 = 0, . . . , µk−1 | ρmk k−1 = 0, µk | ρmk k = 1} = µk

Figure 4.1: The path functionals for output channel ωm

From the above, the synchroniser is fully defined by two functions:

1. The transition matrix T

The state machine can have a regular structure whereby many transitions can

be defined at once by a formula with some limited-range integer variables. For

example, a machine with 8 states could have a transition matrix defined thus:

Sk mod 8 → Sk+1 mod 8. In order to be able to employ regular transition graphs,

AstraKahn allows synchronisers to declare state variables.

Example: the counter synchroniser Counter sends every n-th message from

its input channel to the output channel, other messages are disregarded. The

CHAPTER 4. ASTRAKAHN SYNCHRONISER 20

transition diagram of the counter synchroniser with input channel a and output

channel c for n = 3 is given in Figure 4.2.

s0

s1s2

a× true, µ0

a× true, µ1

a× true, µ2

Π (s0, c) = 0

Π (s1, c) = 0

Π (s2, c) = µ2

Figure 4.2: The transition diagram of the counter synchroniser (n = 3)

The transition matrix T of the synchroniser in Fig. 4.2 is
A \S s0 s1 s2

(a, true) s1 s2 s0

The state machine behind the counter has a regular structure, and for this synchro-

niser all its transitions can be defined with a single formula: Sk mod 3 → Sk+1 mod 3.

Considering this, the transition matrix T would be:
A \S Sk mod 3

(a, true) Sk+1 mod 3

. The diagram 4.2 represents the unrolled regular structure of the synchroniser.

However, this representation is inconvenient when n � 1. The diagram can be

folded using state variables. Two possible variants are shown in Fig. 4.3. The state

variable i acts as an induction variable in a while loop with the exit condition c ≥ 3.

s0 s1a× true
µ0

Π (s0, c) = 0
set i = 1

a× i < n− 1
µi

set i = i+ 1
Π (si, c) = 0

a× i = n− 1
µi

Π (si, c) = µi

s0 s1

a× true
µ0

Π (s0, c) = 0
set i = 1

a× i < n− 1
µi

set i = i+ 1
Π (si, c) = 0

a× i = n− 1
µi

Π (si, c) = µi

set i = 1

Figure 4.3: The transition diagrams of the counter synchroniser

2. The selection predicate ρ (see formula 4.1)

In a given state sk for each output channel ωm we note all ρmki that are true. The

corresponding message values must be saved in previous states and recalled in state

sk. It is expected that the boolean vector [ρmki] has only very few true elements.

Although the functional Π can be implemented as function that retrieves all the

saved messages at once, it is feasible to implement it in the form of individual store

variables. A store variable is associated with an input channel.

Example: the binary zip synchroniser Zip2 receives messages on its input

channels and sends their concatenation to the output channel. In the resulting

CHAPTER 4. ASTRAKAHN SYNCHRONISER 21

concatenation there is exactly one message from each input channel and those

messages are combined for the output. The transition diagram of the zip2 syn-

chroniser with input channels a and b and output channel c is given in Fig. 4.4.

Store variables ma and mb are associated with the input channels a and b respec-

tively.

s0

s1

s2

a× true, µ0

set ma = µ0

Π (s0, c) = 0
set ma = µ0set ma = µ0

b× true, µ1

Π (s1, c) = ψ⊓ {ma, µ1}

b× true, µ0

set mb = µ0

Π (s0, c) = 0
a× true, µ2

Π (s2, c) = ψ⊓ {µ2, mb}

Figure 4.4: The transition diagram of the zip2 synchroniser

So far we have given a formal definition of the synchroniser. Along with it we have

introduced two important concepts for the synchroniser that are considered as a part

of the synchroniser language. First is a message storage mechanism we call a store

variable. Second is a mechanism for defining large regular transition matrices, which

we call a state variable. In the next section we describe the programming language of

synchronisers. We shall note that the language allows some operations on store variables1

that the presented mathematical model cannot describe. The model should be fixed in

accordance with the synchroniser language in the future.

4.2 The Language of AstraKahn Synchronisers

The AstraKahn synchroniser is a finite state machine, therefore the basic building blocks

of a synchroniser program are states and transitions. A state of a synchroniser is fully

defined by the corresponding state of the finite state machine and the values of the

state variables. A transition is the act of moving to another state which is initiated by

a triggering event. A triggering event for the synchroniser transition is the arrival of

a message to the associated channel. The message may be required to have a specific

structure. In addition, a transition may be guarded by special conditions on state

variable values. If the condition is satisfied the transition fires, otherwise it is cancelled.

1E.g. merging two store variables into another one, appending a message extension that was computer
by the synchroniser into a store variable, etc.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 22

Once a transition is known to fire, optional actions may be performed before the un-

derlying state machine makes the move. These actions include changing the state and

store variables and sending messages to output channels. In order to change the state

and store variables, the synchroniser language provides state and store expressions over

them.

This section gives an overview of the AstraKahn synchroniser programming language. The

formal grammar of the AstraKahn synchroniser is provided in Appendix A.1.

Program structure

A synchroniser program consists of a header followed by a body wrapped in braces. The

beginning of a synchroniser program is indicated by the keyword synch.

The header contains the synchroniser’s name and the channel signature. The name is

an ASCII string that follows the C convention.

The body lists the state and store variable declarations and the states of the underlying

finite state machine. Each state is supplemented by a list of transitions. Each transition

declares its triggering condition which includes an optional guarding state expression,

an optional list of actions, and, finally, the destination state.

Channel signature

The channel signature defines the input and output channels of the synchroniser and

their bracketing depths. The synchroniser header (Fig. 4.5) declares the synchroniser

min with two input channels that are connected to the ports a, b and two output

channels that are connected to the ports c, d. If the bracketing depths of the channels

are not specified, they are assumed to be 0. Thus, the bracketing depth of the channel

a is 0.

The input channel depth −1 indicates that the input channel is ignored in the syn-

chroniser program. The output channel with the depth −1 must not have data sent to

them.

synch min (a, b:p | c:2, d:p+1)

Figure 4.5: The synchroniser header

The AstraKahn synchroniser allows one to declare constant and configurable integer depths

for the input and output channels. In addition, the depth of an output channel can be

specified with an integer shift to the configurable input channel depth.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 23

The input channels are required to have the bracketing depths specified in the signature.

Thus, the channel a (i.e. the channel connected to the port a) of min must have zero

bracketing depth. The channel b has a configurable bracketing depth p. The actual

values of configurable bracketing depths of input channels are determined by the AstraKahn

compiler by tracing bracketing depth relations over the application network.

The output channels of a synchroniser are guaranteed to have the bracketing depths

specified in its channel signature. Thus, the synchroniser min must send messages to

the output channel c at depth 2. The output channel d must have the bracketing depth

p+ 1, i.e. the depth of the input channel b plus 1.

Variable declaration

The start of a state variables declaration is marked by the keyword state. A state

variable may be either an unsigned integer of some size or a C-style enumeration. State

and store variable names are user-defined identifiers. A user-defined identifier is an

ASCII string that follows the C convention.

Line 1 in Fig. 4.6 declares state variables a, b, c of size 4. Thus, all three variables are

declared to have integer values in the range [0; 15]. Generally, a state variable of size n

has integer values in the range [0; 2n − 1]. State variable c is initialised with an integer

value 0.

The state variable foo that is declared on the line 2 in Fig. 4.6 can only be assigned

the values d, e and f specified in the enumeration. The enumeration values are integer

constants. If they are not specified explicitly, they are assigned consecutive positive

integers starting with 0. Thus, the variable foo has integer values d = 0, e = 1 and

f = 2.

The values can be specified explicitly (see line 3 in Fig. 4.6)

Integer state variables and enum values can be mixed freely in state expressions. Enum

values are interpreted as integer constants.

1 state int(4) a, b, c = 0;

2 state enum(d, e, f) foo;

3 state enum(x = 1, y = 2, z = 4) bar;

4 store msg_a , msg_b;

Figure 4.6: State and store variables declaration

A store variable declaration begins with the keyword store. Line 4 in Fig. 4.6 de-

clares state variables msg a and msg b. Store variables do not need an explicit type

specification; their types are determined on the first assignment to the variable.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 24

All the state and store variables are global to all the states.

States and transitions

States and transitions of the synchroniser define which channels are read and in what

order. Fig. 4.7 presents the code of the binary zip synchroniser’s state machine. Line

1 declares the start state of the synchroniser. The on clause indicates the beginning of

the transition list. In the start state the zip2 synchroniser accepts messages from both

input channels a and b. State and store expressions associated with the transition and

the destination state are specified in the braces.

1 start {

2 on:

3 a { goto s1; }

4 b { goto s2; }

5 }

6 s1 {

7 on:

8 b { goto start; }

9 }

10 s2 {

11 on:

12 a { goto start; }

13 }

Figure 4.7: State machine of the zip2 synchroniser

When the zip2 synchroniser is in the start state and it receives a message from channel a,

the underlying state machine transitions to state s1. In this state the synchroniser can

only receive messages from channel b since there is no transition triggered by channel a

and defined in this state. When the message on channel b is received, the state machine

transitions to the start state. Lines 10-13 define similar behaviour in state s2.

The synchroniser language supports top-down prioritised transition scopes. They are

marked by the elseon keyword. A synchroniser in state foo in Fig. 4.8 accepts messages

from channels connected to the ports a, b, c and d. When no destination state is specified

for a transition, a synchroniser transitions to the current state. If all channels are ready

at the same time in state foo, the synchroniser processes messages from either channel

a or b first. When all messages from channels a and b are processed the synchroniser

receives messages from channel c. If there are no messages in channels a, b and c the

synchroniser receives messages from channel d.

State expressions

A state expression is a combination of integer constants, state variables and operators,

which defines an integer value. The interpretation of a state expression follows the C

CHAPTER 4. ASTRAKAHN SYNCHRONISER 25

1 foo {

2 on:

3 a { }

4 b { }

5 elseon:

6 c { }

7 elseon:

8 d { }

9 }

Figure 4.8: Prioritised transition scopes

rules of precedence and association. State expressions can be assigned to state variables.

Under the assumption that the output channel has the infinite capacity a synthetic

example in Fig. 4.9 counts the number of messages received from channel a between the

arrivals of messages in channel b. Line 1 declares the 8-bit integer count and initialises

it with 0. When a message from a is received the value of count increases by 1 (see line

5).

1 state int(8) count = 0;

2 foo {

3 on:

4 a {

5 set count = [count + 1];

6 }

7 elseon:

8 b {

9 set n = [count], count = [0];

10 send count:[n] => c;

11 }

12 }

Figure 4.9: Use of state variables and expressions

When a message from channel b is received the value of count is stored in the temporary

variable n, set to 0 and then n is sent to the output channel.

The variable n does not have to be declared and is considered an alias for the integer

expression. Temporary variables are available until the state machine of a synchroniser

makes the next transition.

Triggering of a transition

The channel name on its own stands for the availability predicate for the corresponding

channel, i.e. the condition that a message of any kind is available. Whether a transition

takes place depends on the channel status and optionally the content of the message.

When a message is received on a channel, it can be matched with a pattern in order

to extract parameters needed to select a specific transition. Line 3 of Fig. 4.10 checks

whether a message received from the input channel a is a unique choice. Then the one

CHAPTER 4. ASTRAKAHN SYNCHRONISER 26

and only variant is checked on whether it contains the label x. If it does, the value of

x is stored in a temporary variable x. The tail of the message, i.e. all label-value pairs

except for the value labeled x, is stored in a temporary variable t. Both x and t are

available until the state machine makes the next transition.

1 foo {

2 on:

3 a.(x || t) { }

4 a.?v { }

5 a.?v(x, y) { }

6 a.@[k] { }

7 }

Figure 4.10: Message content extraction

To support message formats where several variants of a message are possible, a qualifier

?α is available as an input condition. It qualifies input messages as belonging to the α

variant. Line 4 of Fig. 4.10 checks whether the message received from channel a contains

the variant v. Line 5 checks whether the message that contains the variant v with only

two fields labeled x and y.

A channel carries a stream that consists of messages and possibly segmentation marks.

Line 6 in Fig. 4.10 checks if the message is a segmentation mark of the depth equal to

k. The depth of a segmentation mark can be compared with a state expression.

Several different channels can be tested in any given state, however, once the readiness

of a channel is established, the synchroniser is committed. Hence the set of conditions

applied to the message on any input channel must be exhaustive. In Fig. 4.10 it is not,

because there is no pattern for messages that do not contain the field label x, the variant

v and are not a segmentation mark of depth k at the same time. In this case the final

clause a.else; is assumed. This clause discards the input message and transitions the

synchroniser back to its current state.

A transition can be guarded by a state expression. In this case the transition fires only

if the guarding expression evaluates to true. The synchroniser in Fig. 4.11 sends every

256-th message to the output channel. Line 1 declares the 8-bit state variable i and

initialises it with 0. The variable is incremented every time a message from channel a

is received, except when it reaches 255, in which case it is reset to 0 and the received

message is sent down channel c.

Values that are matched from the message can be used in guarding state expressions.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 27

1 state int(8) i;

2 start {

3 on:

4 a & [i < 255] {

5 set i = [i + 1];

6 }

7 a & [i = 255] {

8 set i = [0];

9 send this => c;

10 }

11 }

Figure 4.11: Use of guarding state expressions

Store expressions and sending messages

Store expression is a mechanism to combine data. In AstraKahn data are typed. Types

are MDL terms. The result of the store expression can be either saved in a store variable

or sent down an output channel.

The example in Fig. 4.12 demonstrates the use of store expressions and the send clause.

In the start state the synchroniser receives messages from channel a that has the label

n in it. Line 5 increments the value under the label n and stores it in the store variable

ma under the label n together with the tail t. The operator ′ applied to the variable x

creates the record ′x′ : value(x). This is a shorthand useful for the avoidance of tedious

notation.

1 store ma;

2 start {

3 on:

4 a.(n || t) {

5 set ma = (n:[n+1] || t);

6 goto s1;

7 }

8 }

9 s1 {

10 on:

11 b {

12 send ma || this => c;

13 goto start;

14 }

15 }

Figure 4.12: Use of store expressions and the send clause

A message received on a channel is referred to by the keyword this within the active

transition. In state s1 the synchroniser receives messages from channel b. When a

message is received, it is concatenated with the store variable ma (see line 12) and sent

to the output channel c.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 28

4.3 Execution Order of Synchroniser

In order to achieve the lowest latency, an AstraKahn synchroniser exploits a non-deterministic

behaviour. In a certain state more than one input channel may be ready, however, a

state machine receives one input message at a time. The synchroniser does not take any

transition that potentially causes sending to a blocked channel. Of the transitions that

do not send to blocked channels, which one will be triggered is defined by the fairness

policy: when more than one transition is possible in a given state, all choices will be

made with the same frequency. If transitions are prioritised, the choices are made within

each scope at first. The fair choice implementation is based on the number of transition

executions on the runtime. The synchroniser always takes the transition that was taken

the least among the available transitions.

Once the transition has been taken and the associated actions have been executed, the

synchroniser transitions to the destination state. In order to avoid transitioning to a

state in which there are no ready input channels the synchroniser may be provided with

a set of destinations to choose. In the synchroniser language this is expressed as a goto-

clause with multiple destinations. The algorithm in Fig. 4.13 defines the ordering of the

choices that a synchroniser makes during the execution.

4.4 The Implementation of the aksync Compiler

In this section we describe the implementation of the AstraKahn synchroniser compiler

aksync. At the current stage of the AstraKahn software stack development the aksync

compiler is highly integrated into the AstraKahn runtime system prototype. Similar to the

runtime system the aksync compiler is implemented in Python. It generates an inter-

mediate representation of the synchroniser program which is passed to the synchroniser

runtime.

The lexical and syntax analysers are implemented using PLY [16] - an implementation

of lex and yacc for Python. The semantic analyser performs semantic and type check-

ing. The code generator emits the synchroniser’s runtime data structure and derives its

passport.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 29

Require: The current state of the synchroniser (curr state)
Ensure: The state, to which the synchroniser transits from the current state

1: function run(curr state)
2: ReadyInputs← ready channels that are read in curr state
3: for each channel in ReadyInputs do
4: trans← transitions from curr state that read from channel
5: if ∃ t ∈ trans ∧ t causes sending to a blocked channel then
6: remove channel from ReadyInputs
7: end if
8: end for
9: if ReadyInputs = ∅ then

10: return curr state
11: end if

12: channel← the least frequently taken channel from ReadyInputs
13: message← fetch a message from channel

. iterate over transitions sorted by the number of executions from low to high
14: for each number of transition executions N in curr state do
15: trans ← all transitions with the number of executions N that read from

channel
16: valid trans← all transitions from trans with satisfied conditions
17: else trans← the .else transition from trans with the satisfied condition
18: if valid trans = ∅ then
19: if else trans = nil then
20: continue
21: else
22: choose(else trans)
23: end if
24: else
25: choose(the least frequently taken transition from valid trans)
26: end if
27: end for
28: if no transition has been chosen then
29: return curr state
30: end if
31: act() . perform the actions associated with the chosen transition
32: ImmediateStates← states listed by the goto clause

33: for each state in ImmediateStates do
34: ReadyInputs← ready channels that are read in state
35: trans← transitions from state that read from ReadyInputs
36: if ReadyInputs = ∅ ∨ ∃ t ∈ trans ∧ t causes sending to a blocked channel

then
37: remove state from ImmediateStates
38: end if
39: end for
40: if ImmediateStates 6= ∅ then
41: return the least frequently taken state from ImmediateStates
42: end if
43: return the least frequently taken state from the goto clause list
44: end function

Figure 4.13: The execution of a synchroniser

CHAPTER 4. ASTRAKAHN SYNCHRONISER 30

4.4.1 Lexical Analysis

Lexical analyser

The lexical analyser reads the stream of characters making up the source program and

groups the characters into lexemes. For each lexeme, the lexical analyser produces a

token of the form 〈name, value〉, which it passes to the syntax analyser. For tokens that

do not need the value, such as punctuation, reserved words and keywords, the second

component is omitted. Those are given in Appendix A.2.

PLY implements the way in which traditional tools work. Specifically, the Python lex

provides an external interface in the form of a token() function that returns the next

valid token on the input stream. Token positional information, which is useful in the

context of error handling, is managed by the Python yacc.

Preprocessor

The original synchroniser language in [1] provides integer configuration parameters to

avoid having to trivially alter synchroniser programs. They are specified in brackets

between the synchroniser’s name and its channel signature. A program that has to

be compiled with uninstantiated input parameters potentially makes the analyses in

the compiler more conservative. Thus, all parameters should be instantiated before

compilation starts.

For the sake of simplicity, we implement substitution for the free parameters in a tiny

lexical preprocessor. The lexical preprocessor requires only lexical analysis. It substi-

tutes tokenized character sequences for other tokenized character sequences according to

some user-defined rules. The preprocessor that has been implemented does not support

any directives and only performs macro substitution. The compiler reads macros from

its invocation command and then passes them to the preprocessor.

With the above implementation, configuration parameters do not have to be specified in

the synchroniser program. However, such an implementation of configuration parameters

has a serious drawback: a macro defines a blind substitution. There is no way to make

sure that it defines a rule for the substitution of an integer parameter because lexical

analysis does not know anything about program structure and semantics. However,

at least rules that are obviously not suitable for integer parameter substitution can be

diagnosed.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 31

4.4.2 Syntax Analysis

Syntax analyser

The syntax analyser obtains a string of tokens from the lexical analyser and verifies

that it can be generated by the grammar of the source language. The syntax analyser is

expected to report syntax errors in an intelligible way and recover from common errors in

order to continue processing of the remainder of the program. For well-formed programs,

the syntax analyser constructs an intermediate representation of the program and passes

it to the rest of the compiler for further processing. The aksync implementation is based

on the abstract syntax tree representation.

The Python yacc generates a syntax-directed translator. Syntax-directed translation

is done by attaching program fragments to productions in a grammar. The program

fragment or so-called semantic action is executed when the production is used during

syntax analysis. The combined result of these executions produces the intermediate

representation of a program in the order induced by the syntax analysis. The Python

yacc accepts source language syntax specification in context-free grammar form. The

grammar for the synchroniser language is given in Appendix A.1.

The syntax error handling and recovery mechanism of PLY is similar to the one of Unix’s

yacc. During syntax analysis when a syntax error is detected the analyser switches to

recovery mode in order to continue further analysis to detect the remaining errors. In our

implementation we do not use recovery mode. Instead, we focus on reporting an error in

the best possible way. We augment the grammar for the language with productions that

generate erroneous constructs. The Python yacc provides a special token error that

acts as a wildcard for any erroneous input. An analyser constructed from a grammar

augmented by these error productions is useful for detecting anticipated errors.

Symbol table

Symbol tables are data structures used by compilers to hold information about identifiers

coalesced from the program’s source code. A semantic action puts information about

identifier x into the symbol table, when the declaration of x is analysed, and uses it

when necessary.

The scope of a declaration is the portion of the program to which the declaration applies.

In synchroniser code state and store variables are visible for all states and transitions.

State expression aliases and pattern-matched variables are visible only within the cur-

rent transition. We have implemented scopes using a chained symbol table approach

CHAPTER 4. ASTRAKAHN SYNCHRONISER 32

described in [17]. We set up a root symbol table for state and store variables and sep-

arate symbol tables for each transition. The tables are chained as illustrated in Fig.

4.14.

ma

mb

. . .

. . .

this . . . this . . . this . . . this . . .

S0 : on a S0 : on b S1 : on a S2 : on b

Figure 4.14: Scoping structure of a synchroniser program using the zip2 synchroniser
as an example

The symbol table implementation supports three operations: create new symbol table,

put new entry in table and get entry for identifier from table. In the sequel, we refer to

these operations as NewSymtab(symtab), symtab.put(ID, value) and symtab.get(ID).

The pseudo-code implementations of symtab.get and symtab.put are given in Fig. 4.15

and Fig. 4.16 respectively.

The synchroniser language does not permit using of the reserved words (Appendix A.2)

as identifiers. This is checked before putting an identifier in the symbol table.

4.4.3 Static Analysis

Static analysis includes:

• Semantic checking. Constraints such as an identifier is declared at most once in a

scope

1: function get(symtab, id)
2: while symtab is not nil do
3: tmp← get(symtab, id)
4: if tmp then
5: return tmp
6: else
7: symtab← previous(symtab) . previous(symtab) returns a symbol table

of the most-closely outer scope
8: end if
9: end while

10: return not found
11: end function

Figure 4.15: Getting an entry for an identifier from the chained symbol table

CHAPTER 4. ASTRAKAHN SYNCHRONISER 33

1: function put(symtab, id, value)
2: if id is reserved then
3: error
4: end if
5: tmp← get(symtab, id)
6: if not tmp then
7: symtab← (id, value)
8: else
9: error

10: end if
11: end function

Figure 4.16: Putting a new entry in the symbol table

• Type checking. The type rules of a language assure that an operator or function

is applied to the right number and type of operands.

Semantic checking

In this section we describe the semantic checks that are not enforced by the grammar.

The synchroniser language requires identifiers except for state expression aliases to be

declared before they are used. Moreover, an identifier must be declared at most once

in a scope. The channels, on which the transitions in the synchroniser are made, must

be declared in the channel signature as well as the channels where messages are sent.

In order to check those, we maintain three symbol tables for identifiers, input channels

and output channels. The scheme given in Fig. 4.1 shows how the symbol tables are

managed and used during the syntax analysis. The symbol tables are initialised before

the syntax analyser runs, as shown in Fig. 4.17.

The attribute type is added to each entry in the symbol table. State variables are

assigned type integer. Non-integer variables, whose structure is unknown, are assigned a

special type void, which stands for a variable MDL term. A detailed information about

the synchroniser language type checker is provided in section 4.4.3.

function init
InChantab← NewSymtab(nil)
OutChantab← NewSymtab(nil)
RootSymtab← NewSymtab(nil)

end function

Figure 4.17: Initialisation of symbol tables

The synchroniser compiler checks if the transition diagram of a synchroniser is connected.

The algorithm given in Fig. 4.18 walks the abstract syntax tree synch and constructs

CHAPTER 4. ASTRAKAHN SYNCHRONISER 34

P
ro

d
u

ct
io

n
S

em
an

ti
c

A
ct

io
n

〈s
yn

ch
〉

::
=

‘
s
y
n
c
h
’

〈I
D

〉
‘
(
’

〈i
n

p
u

t〉
[‘
,
’

〈i
n

p
u

t〉
]*

‘
|
’

〈o
u

tp
u

t〉
[‘
,
’

〈o
u

tp
u

t〉
]*

‘
)
’
‘
{’

〈d
ec

l〉
*

〈s
ta

te
〉+

‘
}’

/*
sy

n
ch

is
th

e
ab

st
ra

ct
sy

n
ta

x
tr

ee
of

th
e

so
u

rc
e

co
d

e.
*/

〈i
n

p
u

t〉
::

=
〈c

h
a
n
〉

[‘
:
’

(〈
ID

〉
|〈

N
U

M
B

E
R

〉)
]

〈c
h
a
n
〉

::
=

〈I
D

〉
fo

re
a
ch

〈c
h
a
n
〉

In
C

h
an

ta
b

.p
u

t(
〈c

h
a
n
〉,

ty
pe

=
vo

id
)

〈o
u

tp
u

t〉
::

=
〈c

h
a
n
〉

[‘
:
’

〈d
ep

th
ex

p
〉]

〈c
h
a
n
〉

::
=

〈I
D

〉
fo

re
a
ch

〈c
h
a
n
〉

O
u

tC
h

an
ta

b
.p

u
t(

〈c
h
a
n
〉,

ty
pe

=
vo

id
)

〈d
ec

l〉
::

=
‘
s
t
o
r
e
’

〈s
to

re
id

li
st

〉
‘
;
’

|‘
s
t
a
t
e
’

〈t
yp

e
〉

〈s
ta

te
id

li
st

〉
‘
;
’

〈s
to

re
id

li
st

〉
::

=
〈i

d
li

st
〉

〈s
ta

te
id

li
st

〉
::

=
〈i

d
li

st
〉

fo
re

a
ch

i
d

in
〈s

to
re

id
li

st
〉

S
y
m

ta
b

.p
u

t(
i
d
,

ty
pe

=
vo

id
)

fo
re

a
ch

i
d

in
〈s

ta
te

id
li

st
〉

S
y
m

ta
b

.p
u

t(
i
d
,

ty
pe

=
in

t)

〈t
ra

n
s

st
m

t〉
::

=
〈t

ra
n

s
n

a
m

e
〉

[‘
.
’

〈c
o
n

d
it

io
n
〉]

[‘
&
’

〈i
n

t
ex

p
〉

]
〈a

ct
io

n
s〉

〈t
ra

n
s

n
a
m

e
〉

::
=

〈I
D

〉

if
n

o
t

In
C

h
an

ta
b

.g
et

(〈
ID

〉)
er

ro
r

S
y
m

ta
b

=
N

ew
S

y
m

ta
b

(R
oo

tS
ym

ta
b
)

S
y
m

ta
b

.p
u

t(
‘
t
h
i
s
’
,

ty
pe

=
vo

id
)

〈c
o
n

d
it

io
n
〉

::
=

‘
@
’

〈s
eg

m
a
rk

〉
|‘

?
’

〈I
D

〉
|‘

e
l
s
e
’

〈s
eg

m
a
rk

〉
::

=
〈I

D
〉

if
n

o
t

S
y
m

ta
b

.g
et

(〈
se

gm
a
rk

〉)
er

ro
r

〈c
o
n

d
it

io
n
〉

::
=

[‘
?
’

〈I
D

〉]
‘
(
’

〈i
d

li
st

〉
[‘
|
|
’

〈t
a
il

〉
]‘
)
’

fo
re

a
ch

i
d

in
〈i

d
li

st
〉
∩

〈t
a
il

〉
S

y
m

ta
b

.p
u

t(
i
d
,

ty
pe

=
vo

id
)

tm
p

=
S

y
m

ta
b

.g
et

(‘
t
h
i
s
’
)

tm
p

.t
yp

e
=
{
‘
p
1
’
:
v
o
i
d
,
.
.
.
‘
p
n
’
:
v
o
i
d
},

w
h

er
e
p
1
,

..
.p

n
ar

e
el

em
en

ts
of

〈i
d

li
st

〉
if

〈t
a
il

〉
tm

p
.t

yp
e

=
tm

p
.t

yp
e
|〈

ta
il

〉
〈s

en
d

st
m

t〉
::

=
‘
s
e
n
d
’

〈d
is

pa
tc

h
〉

[‘
,
’

〈d
is

pa
tc

h
〉*

‘
;
’

〈d
is

pa
tc

h
〉

::
=

〈m
sg

ex
p
〉
‘
=
>
’

〈I
D

〉

tm
p

=
O

u
tC

h
an

ta
b

.g
et

(〈
ID

〉)
if

n
o
t

tm
p

er
ro

r

T
a
b
l
e
4
.1
:

S
y
m

b
ol

ta
b

le
s

m
a
n

a
g
em

en
t

a
n

d
d
u

p
li

ca
te

d
ec

la
ra

ti
o
n

ch
ec

k
in

g
sc

h
em

e

CHAPTER 4. ASTRAKAHN SYNCHRONISER 35

1: function get states(synch)
2: StateSet← nil
3: GotoSet← nil
4: for each state in state list(sync) do
5: if label(state) ∈ StateSet then
6: error . if the state label is not unique
7: else
8: StateSet← StateSet.Append(label(state))
9: end if

10: for each trans in trans list(state) do
11: for each gotostate in goto list(trans) do
12: if gotostate /∈ GotoSet then
13: GotoSet← GotoSet.Append(gotostate)
14: end if
15: end for
16: end for
17: end for

18: return (StateSet, GotoSet)
19: end function

Figure 4.18: Construction of StateSet and GotoSet

Type Values

int(n) [0; 2n − 1]

enum(a1, a2, . . . an) [0;n− 1]

enum(a1 = N1, a2 = N2, . . . an = Nn) N1, N2, . . . Nn

Figure 4.19: Computing the value range of an integer variable

two sets: the set of the synchroniser state labels StateSet and the set of the goto labels

GotoSet. The set GotoSet \ StateSet contains goto labels that point to non-existent

states. If this set is not empty the compilation reporting an error. The set StateSet \
(GotoSet ∪ ‘start’) contains unreachable states that are eliminated, also reporting an

error. The algorithm also checks if the labels of the synchroniser states are unique.

A synchroniser program must have the state labeled ‘start’. The existence of this

state is checked once the StateSet is constructed.

The synchroniser language provides two types of state variable: an integer of the specified

size and an enumeration. The size defines the value range of the integer. The value range

of the enumeration is specified in the variable declaration. Fig. 4.19 gives formulae for

the value range computation.

For a state expression that evaluates to an integer we can check if the computed value

CHAPTER 4. ASTRAKAHN SYNCHRONISER 36

belongs to the assignment-destination value-range. The symbol table stores the value-

range information for integer entries and provides an interface to it in the form of boolean

function check range(id, value). The function returns true if the value fits in the id

value range and false otherwise. Fig. 4.21 shows how the check is integrated into the

syntax analyser.

Tests We have developed a test suite for the semantic analyser. It uses the standard

python unit testing framework unittest. The tests expand the abstract syntax tree into

a nested list and compare the result with the expected value.

Type checking

The design of the type checker is based on information about the syntactic constructs

in the language, the notion of types and the rules for assigning types to language con-

structs. The type of a language construct is denoted by a type expression. Informally,

a type expression is either a basic type or the application of an operator called a type

constructor to other type expressions. A collection of rules for assigning type expressions

to language constructs is called a type system.

The communication protocol of the AstraKahn runtime system prototype supports only

choices. When a synchroniser reads a message from its input channel, the record that

belongs to the variant specified in the synchroniser transition is instantiated2. We take

this into account in implementing the type checker of the synchroniser language. Because

the synchronisers can read values only of the fields that are known to be integer, the

basic types in the synchroniser language are integer and MDL variable. Integer is the

type of state variable. MDL variables are building blocks for the only constructed type

in the synchroniser language – a record. A record is constructed by the concatenation

of two records. The pseudo-code of the record constructor || is given in Fig. 4.20. The

record constructor is obviously commutative and associative.

The case when a label-value pair labeled l exists in both operand records r1 and r2 is

indicated with union(r1(l), r2(l)). The constraint solver resolves which option to take

during the constraint aggregation pass in the AstraKahn compiler.

We describe the type checkers in terms of grammar productions and corresponding

semantic actions. The type checkers for state and store expressions are given in Fig.

4.22 and Fig. 4.23 respectively. The synthesized attribute type for an expression 〈E 〉

gives the type of the expression assigned by the type system for the expression generated

2this means that store variables cannot keep multiple variants

CHAPTER 4. ASTRAKAHN SYNCHRONISER 37

1: function ||(r1, r2)
2: if len(r1) ≤ len(r2) then
3: riter ← r1
4: r ← r2
5: else
6: riter ← r2
7: r ← r1
8: end if . r is the record that contains fewer label-value pairs
9: for each label-value pair (l,v) in riter do

10: if r(l) then . if label l exists in r
11: r(l)← union(r(l), v)
12: else
13: r(l)← v
14: end if
15: end for
16: return r
17: end function

Figure 4.20: The record type constructor ||

Production Semantic Action

〈assign〉 ::= 〈dest〉 ‘=’ ‘[’ 〈int exp c〉 ‘]’
〈dest〉 ::= 〈ID〉

tmp = Symtab.get(〈dest〉)
if not tmp

Symtab.put(〈dest〉, type=int)
else

if tmp.type != int
error

if 〈int exp c〉 evaluates to int
if not check range(〈dest〉,

eval(〈int exp c〉))
error

〈assign〉 ::= 〈dest〉 ‘=’ 〈data exp〉
〈data exp〉 ::=

(〈data〉 | ‘(’ 〈data〉 ‘)’)

tmp = Symtab.get(〈dest〉)
if not tmp

error
if tmp.type == int

error
tmp.type = 〈data exp〉.type

Figure 4.21: Type checker for statements

by 〈E 〉. The type checker for statements is given in Fig. 4.21. It assures that the left

hand side can be assigned to.

CHAPTER 4. ASTRAKAHN SYNCHRONISER 38

Production Semantic Action

〈int exp c〉 ::= 〈NUMBER〉 | 〈ID〉

tmp = Symtab.get(〈ID〉)
if not tmp

error
if tmp.type != int

error
〈int exp c〉.type = int

〈int exp c〉 ::= ‘(’ 〈int exp c1〉 ‘)’
| ‘-’ 〈int exp c1〉
| ‘!’ 〈int exp c1〉

〈int exp c〉.type = 〈int exp c1〉.type

〈int exp c〉 ::=
〈int exp c1〉 〈op〉 〈int exp c2〉

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| ‘<<’ | ‘>>’ | ‘|’ | ‘&’ | ‘^’
| ‘<’ | ‘>’ | ‘==’ | ‘!=’ |‘<=’
| ‘>=’ | ‘&&’ | ‘||’

if 〈int exp c1〉.type == int
and 〈int exp c2〉.type == int
〈int exp c〉.type = int

else
error

Figure 4.22: Type checker for state expressions

Production Semantic Action

〈data〉 ::= 〈item list〉
〈item list〉 ::= 〈item〉 [‘||’ 〈item〉]*

foreach item in 〈item list〉
〈data〉.type = 〈data〉.type || item.type

〈item〉 ::= ‘this’
tmp = Symtab.get(‘this’)
〈item〉.type = tmp.type

〈item〉 ::= 〈ID〉

tmp = Symtab.get(〈ID〉)
if not tmp

error
if tmp.type == int

error
〈item〉.type = tmp.type

〈item〉 ::= ‘’’ 〈ID〉

tmp = Symtab.get(〈ID〉)
if not tmp

error
〈item〉.type = { ‘ID’:tmp.type }

〈item〉 ::= 〈ID〉 ‘:’ 〈rhs〉
〈rhs〉 ::= 〈int exp〉 | 〈rhs ID〉
〈rhs ID〉 ::= 〈ID〉

if 〈rhs ID〉
tmp = Symtab.get(〈rhs ID〉)
if not tmp

error
tmp = Symtab.get(〈ID〉)
〈item〉.type = { ‘ID’:〈rhs〉.type }

Figure 4.23: Type checker for store expressions

CHAPTER 4. ASTRAKAHN SYNCHRONISER 39

4.4.4 Code Generation

Synchroniser runtime code

The compiler generates an abstract syntax tree (AST) that is passed to the AstraKahn

runtime system for the interpretation. An example of the AST for the counter synchro-

niser in Fig. 4.24 is shown in Fig. 4.24. A detailed description of the AST structure can

be found in Appendix A.3.

1 synch counter (a | c)

2 {

3 state int(8) i = 0;

4 start {

5 on:

6 a & [i < 255] {

7 set i = [i + 1];

8 }

9 a && [i = 255] {

10 set i = [0];

11 send this => c;

12 }

13 }

14 }

Figure 4.24: The counter synchroniser code

synch counter

inputs outputs decls states

port a

depth exp

depth 0 shift 0

port c

depth exp

depth 0 shift 0

StateV ar i

type

size 8

state start

trans

port a condition guard actions

IntExp

i < 255

CondEmpty assign

lhs i rhs

IntExp
i+1

TransOrder

trans
. . .

Figure 4.25: The AST generated for the counter synchroniser in Fig. 4.24. The AST
is drawn only for the transition in lines 6-8. The AST generated for the transition in

lines 9-12 is similar

Synchroniser passport

A synchroniser passport consists of the MDL terms for its input and output channels.

Those terms are not straightforward since they have to be fairly generic to match the

CHAPTER 4. ASTRAKAHN SYNCHRONISER 40

broadest possible formats of producer and consumer messages involved in the act of

synchronisation. On the other hand, the synchroniser passport is produced solely on the

basis of the synchroniser code, exclusively by program analysis; the programmer does

not supply an explicit passport for this.

The first thing that is required is the input interface. As mentioned above, the commu-

nication protocol of the AstraKahn runtime system prototype supports only choices. The

use of a variant on a channel in any transition on that channel immediately associates

the choice term structure with it. For example, a channel a that is tested on variants

?v and ?w in transitions has a term comparable with (: ‘v’:$vterm, ‘w’:$wterm || $tail

:), where the variables $vterm and $wterm represent the terms for variants v and w

and $tail represents the choice term that contains the rest of the variants. If a choice is

known to carry a single variant, the variant is labeled uniq. A transition that does not

specify a variant label expects a unique message variant.

The symbol table for a transition maintains a special entry ‘this’. It holds the term

of the message accepted by the transition. The algorithm in Fig. 4.26 walks the syn-

chroniser transitions and constructs the input term for the synchroniser3.

Since a choice is in fact a collection of label-record pairs, the constructor || (Fig. 4.20)

can be applied for choices. When InputTerm contains a label-value pair (‘v’, value)

and the label ‘v’ occurs in another transition, the union || of these two choices results

in the following:

union ((: ‘v’ : $vterm1 | $tail1 :), (: ‘v’ : $vterm2 | $tail2 :))

= (: ‘v’ : union ($vterm1, $vterm2) | ($tail1 || $tail2) :)

Now consider the output interface. The algorithm in Fig. 4.27 collects the dispatches for

every output channel and combines them into the output term of every output channel.

The function type(id) performs the symbol table lookup and returns the type attribute

value for the ‘id’ entry.

4.5 Discussion and Future Work

In this chapter we have presented the language for AstraKahn synchronisers. We have

developed the language compiler that generates the passport of the synchroniser. The

message format in AstraKahn is based on the Message Definition Language (MDL) with

3The algorithm relies on the abstract syntax tree structure (see Appendix. A.3)

CHAPTER 4. ASTRAKAHN SYNCHRONISER 41

1: function input term(synch)
2: CondDict← nil

3: for each state in state list(sync) do . Construct a dictionary CondDict with
input ports as keys and sets of corresponding message conditions as values

4: for each trans in trans list(state) do
5: cond← get condition(trans)
6: if port ∈ CondDict then
7: CondDict(port)← CondDict(port).Append(cond)
8: else
9: CondDict← CondDict.Append((port, cond))

10: end if
11: end for
12: end for

13: InputTerm← nil
14: for each (port, cond set) in CondDict do
15: PortTerm← nil
16: for each cond in cond set do
17: variant← get variant(cond)
18: this← Symtab.get(‘this’)
19: if variant is unique then
20: if PortTerm 6= nil then error
21: end if
22: PortTerm← (: ‘uniq’:this :)
23: break
24: else
25: PortTerm← PortTerm || this
26: end if
27: end for
28: InputTerm← InputTerm.Append((port, PortTerm))
29: end for

30: return InputTerm || $tail
31: end function

Figure 4.26: Construction of the synchroniser input term

the restriction that data on streams are organised as collections of alternative records of

label-value pairs. A value in a record can have any structure that is allowed by the MDL.

The synchroniser that we have presented matches only a top-level structure of a message.

The MDL generates a much broader set of terms than the current version synchroniser

can synchronise; however, it needs to be elaborated whether the implementation of lower

level synchronisation in synchronisers is useful for the real world applications.

The current version of the language does not define flow inheritance in synchronis-

ers. The synchroniser code only needs to access the label-value parts of the message it

CHAPTER 4. ASTRAKAHN SYNCHRONISER 42

1: function output term(synch)
2: DispatchDict← nil
3: for each state in state list(sync) do . Construct a dictionary DispatchDict

with output ports as keys and sets of corresponding messages as values
4: for each trans in trans list(state) do
5: send← get send(trans)
6: (msg, port)← (get msg(send), get port(send)
7: if port ∈ DispatchDict then
8: DispatchDict(port)← DispatchDict(port).Append(msg)
9: else

10: DispatchDict← DispatchDict.Append((port, msg))
11: end if
12: end for
13: end for

14: OutputTerm← nil
15: for each (port,msg set) in DispatchDict do
16: PortTerm← nil
17: for each msg in msg set do
18: if msg is MsgData then . msg matches [‘?’〈ID〉]〈data〉
19: (variant, data)← (get variant(msg), get data(msg))
20: for each item in data do
21: if item is ItemVar or item is ItemPair then . item is either ’id

or id:value
22: (lhs, rhs)← expand(item)
23: PortTerm← PortTerm || {lhs:type(rhs)}
24: else . item is either this or id
25: PortTerm← PortTerm || type(id)
26: end if
27: end for
28: end if
29: end for
30: OutputTerm← OutputTerm.Append((port, PortTerm))
31: end for

32: return OutputTerm || $tail
33: end function

Figure 4.27: Construction of the synchroniser output term

CHAPTER 4. ASTRAKAHN SYNCHRONISER 43

matches. Thus, the flow inheritance should be supported outside of the synchroniser

definition and the question how it should be done is left open.

The compiler we have implemented does not optimise the code deeply. We have only

implemented an elimination of unused states. However, a broader set of dead code

elimination optimisations can be implemented4.

4E.g. a conditional transition can be eliminated if its condition always evaluates to false

Chapter 5

Serial Replication in AstraKahn

In this chapter we explain the machinery behind the serial replication in AstraKahn and

the role of synchronisers in it. We introduce the concept of the forward fixed point for

the replication pipeline and show how it is used to organise the output from the infinite

chain of replicas. In order to suppress the growth of the replica chain, we present the

concept of the reverse fixed point and show how it is used to optimise some replicas at

the head of the chain.

5.1 AstraKahn Approach to Serial Replication

The serial replication combinator creates a conceptually infinite number of copies of

its operand network, and connects them in a chain. Replication is demand-driven: the

replicas are created dynamically. A fresh replica is inactive1, hence it does not necessarily

require significant resources since AstraKahn boxes are stateless and since synchronisers

require no resources in their start state2. Indeed the cost of replication is only felt when

the replicas are active, which is the case from the time that the first message is received

until all messages have left the replica and all its synchronisers have returned to their

start states.

In S-Net, the output from a replication pipeline is based on the record subtyping in the

type system. The replication combinators in S-Net require the programmer to specify

a termination pattern, so that each record that is a subtype of this pattern leaves the

replication pipeline throught the output stream.

1More generally, we call a replica inactive when all of its synchronisers are in their start states, none
of its channels has messages in them and no box is running

2When a synchroniser transitions back to the start state, it flushes its store variables

44

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 45

In AstraKahn the output from the replication pipeline is defined using the concept of fixed

point. From the mathematical point of view a fixed point of a function is an element of

the function’s domain that it maps to itself. That is to say, a function f(x) : X → Y

has a fixed point at x0 ∈ X if f(x0) = x0. The serial replication combinator implements

the computation3 shown in Fig. 5.1. After the n-th replica has processed the message

f (n−1)(x) 6= x0 the computation reaches the fixed point f (n)(x) = x0, and the message

x0 is sent on to the output channel of the serial replication network f∗.

f∗

f f f f
b
x

b

f(x)

b

f(f(x))

. . .
b

f (n−1)(x)

b

x0

b

f (n)(x) = x0

f

Figure 5.1: The recursive computation in AstraKahn

The number of iterations n needed to reach the fixed point is not known in advance,

meaning that in order to utilize the fixed point as shown in Fig. 5.1, AstraKahn must

be able to detect the fixed point message right at the time it is produced by the n-th

replica or later. Therefore, similar to S-Net, AstraKahn needs to be provided with a

pattern that matches all the fixed point messages of the operand network. In S-Net,

the serial replication combinator requires this pattern as one of its operands; by contrast,

in AstraKahn the pattern is required to be deduced from the operand network by compiler

analysis.

The chain of replicas grows as the computation progresses, however, in the example

in Fig. 5.1 the computation is carried out only by a single replica in the tail of the

chain. The replicas in the head of the chain have processed the message and are not

used anymore. In order to suppress the growth of the chain, AstraKahn must detect

such replicas and optimise the connection by removing them. Since AstraKahn boxes are

stateless, an operand network can have a state that is fully defined by the states of its

synchronisers. A replica of the operand network can be removed from the chain safely

if the replica is in a state, in which it forwards any message without change, i.e. any

message it receives is its fixed point. We will call such a state of the replica a reverse

fixed point state.

Motivating Example

In this section we demonstrate the concept of fixed point by a simple example.

3f (n)(x) denotes f(f(. . . f︸ ︷︷ ︸
n

(x) . . .))

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 46

The serial replication network f∗ in Fig. 5.2 computes a total sum of integer values

that are stored under label x in incoming messages while the sum is less than some

integer value n. The network has one input and one output channel x. Although the

synchronisation can be done by variants, for the sake of simplicity we consider that

the input message has a unique variant and, thus, the message format of the operand

network f is (: uniq: {x:Int} :). In order to compute a sum, the value stored under

label x has to be extracted out of two input messages, so the network has to preserve

a state by keeping the message that was received first. Once the second message is

received, the network can proceed to a stateless computation and finally send the result

on to the next replica of f .

x x

S

B

b

c

a

f∗

Figure 5.2: A motivating example for forward and reverse fixed points

The state management in f is implemented by synchroniser S listed in Fig. 5.3. The

synchroniser has one input channel x, which is also the input channel of f , and two

output channels a and b. Channel a is connected to a box (B) that performs the

summation, and channel b merges with the output channel of B into the output channel

of f . The synchroniser declares a store variable (ma) for keeping the first summand.

In the start state the synchroniser checks the integer value stored under label x in the

received message. If that value is greater than n, the message is sent on to the output

channel b and then to the next replica of f . Otherwise, the label-value pair x:value is

saved to the store variable and synchroniser S transitions to state s1. In state s1 the

synchroniser extracts the integer value from the received message and forms an output

message of format (: uniq: {x:Int, y:Int} :) using the contents of the store variable and

the extracted value. Then the message is sent on to B and the synchroniser transitions

to state rfp (reverse f ixed point state).

Box B sums up the values stored under labels x and y of the received message and forms

an output message (: uniq: {x:Int} :) carrying the sum of the two values as shown in

Fig. 5.4. The message is sent on to the output channel of B and consequently to the

output channel of f .

In state rfp synchroniser S transmits any message it receives on its input channel

without change and then transitions back to this state. When S stays in state rfp, the

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 47

1 synch S (x | a, b)

2 {

3 store ma:x;

4 start {

5 on:

6 a.(x || t) & [x >= n] {

7 send this => b;

8 }

9 a.(x || t) & [x < n] {

10 set ma = x:[x];

11 goto s1;

12 }

13 }

14 s1 {

15 on:

16 a.(x || t) {

17 send ma || y:[x] => a;

18 goto rfp;

19 }

20 }

21 rfp {

22 on:

23 a {

24 send this => b;

25 goto rfp;

26 }

27 }

28 }

Figure 5.3: Synchroniser S in Fig. 5.2

(: uniq : {x : x, y : y} :)

(: uniq : {x : s} :)

s = x+ y

a

c B

Figure 5.4: Schematic box code for the motivating example in Fig. 5.2

whole replica of f acts in the same way. Such replicas can be removed from the wiring

in order to unlock the reserved resources. The removal of these replicas is necessary

because the number of replicas needed for the computation is not known in advance.

When the total sum is greater than n and the summation is finished, the next summation

is initiated in f∗ with the arrival of a new message. If this summation uses less replicas

than the previous one, the extra replicas should be noted and removed to release the

resources. The behaviour that is coded in state rfp of synchroniser S allows the AstraKahn

runtime to detect unused replicas and remove them.

The transition in line 6 of Fig. 5.3 checks if the interim result of the summation is

greater than n. If the condition is satisfied, the received message is sent on to the next

replica of f . Synchroniser S in that replica receives the message and the same transition

is activated resulting in the message being sent on to the next replica. In this way the

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 48

message that carries the interim result greater than n cascades through the infinite chain

of replicas without change. Thus, the message is the fixed point of the serial replication

network f∗. Generally, a fixed point message of f∗ is detected by testing the condition

(x || t) & x ≥ n on the message, and this test is encoded in the transition in line 6 of

S (Fig. 5.3). In order to detect fixed point messages, program analysis extracts the

condition from the synchroniser source code. Once the fixed point condition is known,

AstraKahn is able to detect fixed point messages on runtime.

In the remainder of the chapter we will give formal definitions of a fixed point message

and a reverse fixed point state, and will provide algorithms for the AstraKahn compiler to

detect them. In the sequel, we will call a fixed point message a forward fixed point.

5.2 Forward Fixed Point

Once the computation in a serial replication network has reached the fixed point, newly

created replicas are known to transmit fixed point messages without change. AstraKahn

does not analyse boxes4, so it can determine about the operand network behaviour only

from its synchronisers. Thus, in order for the operand network to be analysable by

AstraKahn it must contain a path that does not traverse boxes and which may traverse

synchronisers. Because a newly created replica is inactive, and hence the synchronisers

in it are in their start states, the start states of the synchronisers that belong to the path

must have a special transition that sends the message on to the next synchroniser along

the path. Since transitions can be conditional on the message content, the fixed point

pattern, or rather the fixed point condition, can be present in these special transitions.

The existence of a forward fixed point requires the operand network to have some topo-

logical properties that are formally defined as follows. Consider a network N that has

an input and an output channel, both named x.

Definition 1. The network N is said to have a forward fixed point in x if and only if

the following requirements are satisfied:

1. There exists a condition P (m) on the content of the message m received by the

network on the input channel x under which it follows a unique non-branching

path to the output channel x without traversing any boxes

2. The path5 can traverse synchronisers, but then whenever P (m) is true and the

synchroniser is in the start state, it must accept m and transition back to the start

4Except for the communication passport generation
5In the sequel, we will call this path the fixed point path

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 49

state while sending the message m on the path unchanged and without producing

any other output

The condition P may not be unique for each network, and when it is not, the fixed

point condition of the network is a disjunction of all such conditions. The condition can

also be a tautology, in which case the forward fixed point is called unconditional. When

the fixed point path traverses a single synchroniser, the fixed point condition is defined

exclusively by the synchroniser transitions that loop around the start state and send on

the accepted messages unchanged. When the path traverses several synchronisers, the

fixed point condition of the network is a conjunction of the fixed point conditions of

these synchronisers. We demonstrate the construction of the fixed point condition with

the example operand network N depicted in Fig. 5.5.

x xs2 s3

p3

p12

p1

p22. . .

s1

N∗

Figure 5.5: Forming of the forward fixed point condition of a network

Apart from all the paths that traverse boxes, the operand network N has a unique path

[s1, s2, s3] that traverses only synchronisers. The synchroniser s2 has two transitions

that loop around the start state and send on messages they accept unchanged with the

firing conditions p12 and p22. A message m is a fixed point for the synchroniser s2 when

it satisfies any of these conditions, i.e. p12(m) ∨ p22(m) is true. The synchronisers s1 and

s3 have fixed point conditions p1 and p3 respectively. Then the fixed point condition of

the network N is p1 ∧ (p12 ∨ p22) ∧ p3.

Definition 1 requires the synchronisers that traverse the fixed point path to transition

back to the start state after the fixed point message has been sent to the output chan-

nel. This restriction can be relaxed, however, in this case the programmer would have

to maintain transitions that check the fixed point condition in every state of each syn-

chroniser along the path.

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 50

Output from the Serial Replication Network

Now we will clarify how the serial replication network is wired to the rest of the AstraKahn

application network and how the output is produced. Strictly speaking, the serial repli-

cation is not just a wiring pattern since it does not simply wire the replicas of its operand

network. It also creates a set of output channels and augments the replicas with some

auxiliary synchronisers.

The serial replication N∗ defines the output channel set Nout as follows:

Nout = {name(c) | c ∈ O ∧ fp(c)}

where O is the output channel set of N and the predicate fp(c) is true on any channel

c that has a forward fixed point. The serial replication creates a set of fresh output

channels O∗ taking the names from the set Nout. A message that is sent to an inac-

tive replica on any channel c with name(c) ∈ Nout and which satisfies the fixed point

condition on that channel is immediately transferred to the identically named output

channel from O∗. A network in Fig. 5.6 demonstrates how the output is produced from

the serial replication of a network that has a single input and a single output channel.

x′

b

b
x

S(j)
M ′x′

x′x

N∗

. . . P P

S(j+1)

b

M

b

b
S(n)

. . .

x′(j)

N ′ N ′

S(0)

. . .b . . .
x(j−1)

x′

x

Figure 5.6: Output from the serial replication network

The operand network N has the fixed point condition P =
∨n

j=0 pj , where pj is the fixed

point condition extracted from the j-th synchroniser (0 ≤ j ≤ n) on the fixed point

path of N . In order to check whether a message m on channel x′ satisfies the condition

pj , a synchroniser S(j) is inserted before every inactive replica N ′. If pj(m) is true,

the synchroniser sends the message m on to the input channel of the next synchroniser

S(j+1) to check whether pj+1 is satisfied. Otherwise, the message m is sent to the input

channel x′ of the next replica of N . The listing of the synchroniser S(j), 1 ≤ j ≤ n− 1

is given in Fig. 5.7. The synchronisers S(0) and S(n) have the same structure, however,

S(0) reads messages from the output channel x′ of the previous replica and S(n) sends

the message that satisfies P to the output of N∗. We shall note that for all j for which

pj =
∧k

i=0 p
(i)
j the synchroniser S(j) has k transitions that check the conditions p

(i)
j .

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 51

synch S(j) (x′(j−1) | x′(j), x′)
{

start {

on:

x′(j−1).pj {

send this => x′(j);
}

x.else {

send this => x′;
}

}

}

Figure 5.7: The synchroniser S(j)

The merger M ′ gathers messages that do not satisfy the fixed point condition from all

synchronisers S(j) between two consecutive replicas of N and forwards them to the input

channel of the next replica. The merger M gathers messages that satisfy the fixed point

condition P and forwards the messages to the output channel x of the serial replication

network N∗.

5.2.1 Forward Fixed Point Detection

The existence of a forward fixed point requires the synchronisers that are traversed by

the fixed point path to have at least one transition in their start states that accepts the

fixed point messages and sends them on unchanged and without producing any other

output. Coded in the synchroniser language, the transition that defines the fixed point

condition p in channel x is presented in Fig. 5.8.

start {

on:

x.p {

send this => out;

}

...

}

Figure 5.8: The start state of a synchroniser that encodes the fixed point condition
p in channel x

Note that there exists no other transition on the channel from the start state with the

same structure (a single send clause). Otherwise, the synchroniser would have the fixed

point condition that is the disjunction of conditions in such transitions. The algorithm

in Fig. 5.9 checks if a forward fixed point exists on channel x and extracts the fixed point

condition from the synchroniser source code. The algorithm supports the renaming of

channel x in the synchroniser. Moreover, it may be the case that the transitions that

cause a fixed point in the synchronisers send messages to different output channels. The

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 52

algorithm detects such a situation; however, the branching of the fixed point path is

resolved in the context of the whole network.

Require: the abstract syntax tree of the synchroniser program (synch), the input
label of a channel to test for a forward fixed point (x)

Ensure: a dictionary (a,CondList), where a is the output label of the fixed point
channel and CondList is the list of atomic fixed point conditions

1: function extract fp(synch, x)
2: state← getthestartstatetreefromsynch
3: CondDict← nil

4: for each trans in trans list(state) do
5: if get port(trans) 6= x then
6: continue . the transition reads from another channel
7: end if
8: if get goto(trans) 6= (‘start’ ∨ ∅) then
9: continue . the transition does not loop around the state state

10: end if
11: if get assign(trans) 6= ∅ then
12: continue
13: end if
14: send← get send(trans)
15: if get msg(send) 6= this then
16: continue
17: end if
18: cond← get condition(trans)
19: if cond is not CondDataMsg ∨ cond is not CondEmpty then
20: continue . the condition cannot be a segmentation mark or an .else

21: end if
22: out port← get port(send)
23: if cond ∈ CondDict(out port) then
24: CondDict(out port)← CondDict(out port).Append(cond)
25: else
26: CondDict← CondDict.Append(out port, [cond])
27: end if
28: end for

29: return CondDict
30: end function

Figure 5.9: Extracting the fixed point condition from a synchroniser (assumes that
channel x is declared as an input and an output channel of the synchroniser)

The fixed point condition of an AstraKahn network is formed by the fixed point conditions

of its synchronisers that are traversed by the fixed point path. Networks in AstraKahn are

represented as graphs, thus the fixed point detection is a graph search problem.

A network graph is a directed multigraph because in AstraKahn two nodes are not re-

stricted to be connected with only one edge. The graph has four types of nodes, namely

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 53

a box, a synchroniser, a merger and a network. The fixed point path may traverse nodes

of any type except for boxes. If the path traverses a node that is a network, the network

must have a forward fixed point as well.

The fixed point detection algorithm (Fig. 5.10) is based on the depth-first search algo-

rithm with the following considerations:

• The first and the last nodes of the fixed point path for a particular input channel

are known; consequently, only the paths between these two nodes in the graph are

traversed

• If the search encounters a box, the traversed path is rejected

• If the search encounters a synchroniser, the fixed point condition of the synchro-

niser is extracted using the function extract fp in Fig. 5.9. If the synchroniser

has no fixed point condition, the traversed path is rejected. Otherwise, the search

continues only for the successors of the node that were detected by extract fp

• If the search encounters a merger, it immediately continues to its only successor

• If the search encounters a node that encapsulates a network, the fixed point de-

tection is run on the network. If no fixed point path exists for the network, the

traversed path is rejected.

The fixed point detection algorithm runs only on acyclic networks. The wrap-around

wiring makes AstraKahn networks cyclic, however, the wrap-around channels cannot carry

a fixed point. Therefore, these channels must be filtered before the fixed point detection

is run.

5.2.2 Discussion

The approach we have presented relies on the ability of synchronisers to encode some

checks of the message content and perform different actions depending on the result of

a check. As the analysis in previous sections shows, the construction of an operand

network with a complex fixed point condition can be quite complicated. In order to

avoid having to construct complicated operand networks, we provide an additional fixed

point detection strategy that relies on a special port wiring primitive P that transmits

messages immediately from one port to another without storing them. The programmer

now has to make sure that the fixed point messages are detected within the operand

network6 and sent to P . The messages cascade through all the active replicas via a chain

6It can be done in a box

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 54

Require: an operand network graph (graph), a channel to test for a forward foxed
point (x), the first and the last node in the fixed point path (start, end), the list
of fixed point conditions gathered along the path (cond list, optional with the
default value empty list)

Ensure: a set of fixed point conditions on the channel

1: function detect ffp(graph, x, start, end, cond list = empty list)
2: if start is a box then
3: return empty list
4: end if

5: if start is a synchroniser then
6: CondDict← extract fp(start, x)
7: if CondDict = nil then
8: return empty list
9: end if

10: Lists← empty list
11: cond list← cond list.Append(start cond)
12: for each succ node in succ nodes(start) do
13: out port← get label(edge(start, succ node))
14: if out port ∈ keys(CondDict) then
15: if start = end then
16: return cond list
17: end if
18: NewLists← detect ffp(graph, out port, succ node, end, cond list)
19: for new list in NewLists do
20: Lists← Lists.Append(new list) . the fixed point path branches

if |Lists| > 1
21: end for
22: end if
23: end for
24: return Lists
25: end if

26: if start is a merger then
27: if start = end then
28: return cond list
29: end if
30: out port← get out port(start) . a merger has a single output port
31: succ node← get succ node(start)
32: return detect ffp(graph, out port, succ node, end, cond list)
33: end if

34: if start is a network then
35: start←get a node that has an input port x
36: Lists← detect ffp(graph, x, start, end)
37: if start = end then
38: return cond list.Append(Lists)
39: end if
40: return Lists
41: end if
42: end function

Figure 5.10: A forward fixed point detection in channel x (assumes the network graph
is connected)

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 55

of P wires and leave the replication network when they encounter an inactive replica.

The example in Fig. 5.11 demonstrates how the approach works.

The operand network A in Fig. 5.11 has a single input port x and two output ports.

The output port x is intended for the messages that proceed to the next replica of A in

the chain, and the output port x′ is a auxiliary port for the messages that are supposed

to leave the replication pipeline. The serial replication network A∗ has a single input

and a single output port both named x. During the compilation, the operand network

A is encapsulated into the special network N it as shown in Fig. 5.11. The network N

inherits all the ports from A and adds the corresponding input port x′. The input and

output ports x′ of N are connected with the wiring primitive P . The output and the

input ports x′ of the consequent replicas of N are connected with the wiring primitive

P as well. A message that A sends to the output port x′ cascades through all the

. . .

. . .

. . .

N (active) N (active) N (inactive)

x xx x
A A A

. . .
P P P

x
x

x′

A

x

P P

A∗

Figure 5.11: The operand network A (top) and a possible implementation of its serial
replication A∗ (bottom)

active replicas. Once it has reached an inactive replica, the output channel x of A∗ is

dynamically wired to the output port x′ of the last active replica of N . When an inactive

replica becomes active, the port x′ is rewired with the input port of this replica using

P .

5.3 Reverse Fixed Point

A reverse fixed point on channel x is a state of a replica, in which it transmits messages

from channel x unchanged. A state of a replica is formed by the states of its syn-

chronisers. AstraKahn does not analyse boxes and it can determine the operand network

behaviour only from its synchronisers. Thus, in order for the operand network to be

analysable by AstraKahn it must contain a path that does not traverse boxes and which

may traverse synchronisers. Every synchroniser that is traversed by the path must have

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 56

at least one state, in which it accepts a message from channel x unconditionally and

sends it on to the next synchroniser along the path without storing or modifying the

message.

The existence of a reverse fixed point state requires the operand network to have some

topological properties that are formally defined as follows. Consider a network N that

has an input and an output channel, both named x.

Definition 2. The network N is said to have a reverse fixed point in x if and only if

the following requirements are satisfied:

1. A unique non-branching path from the input to the output channel x exists that

does not traverse any boxes

2. Every synchroniser Si on the path has a subset of states, which we denote as

si, such that in each of these states every message on the path is immediately

transferred without being changed or stored, causing the synchroniser to remain

in the same state7. In a state from si the synchroniser Si may still be sensitive to

other input channels, as long as this does not, under any circumstances, cause a

transition to a state outside si

The network N is said to be in a reverse fixed point state on channel x when each Si is

in a state that belongs to its si.

Rewiring of the Reverse Fixed Point

The reverse fixed point optimises an input connection that has to cascade through the

chain to a replica that is ready to accept the data.

The operand network N in Fig. 5.12 has two input and two output channels x and y.

Any input channel x wired to an active replica of N that transitions to a reverse fixed

point state on that channel is disconnected from the replica and dynamically rewired to

the input port x of the next replica in the chain.

If a replica transitions to a reverse fixed point state on every one of its input channels,

no box is running and the channels are empty, the replica is removed from the chain.

7We shall note that the values of any state variables form a part of the synchroniser state

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 57

N∗

x
y

x
y

N (rfp) N

. . .

. . .
. . .
. . .

x

y y

x

y

Figure 5.12: Rewiring of a Reverse Fixed Point replica N (rfp) on channel x

5.3.1 Reverse Fixed Point Detection

The existence of a reverse fixed point on channel x requires the synchronisers that are

traversed by the fixed point path to have at least one state, in which they unconditionally

accept messages from that channel, send them on along the path unchanged and then

transition back to the same state. A synchroniser that is in the reverse fixed point state

never transitions from it. Coded in the synchroniser language, a transition that makes

a state of a synchroniser the reverse fixed point state on channel x is given in Fig. 5.13.

s {

on:

x {

send this => out;

goto s;

}

...

}

Figure 5.13: The reverse fixed point state s of a synchroniser on channel x

Note that all other transitions from state s must come back to state s. As long as they

do they can even change the state variables of the synchroniser; the reverse fixed point

is unconditional and it exists for any values of the store variables.

The algorithm in Fig. 5.14 checks if a reverse fixed point exists on channel x and extracts

all fixed point states from the synchroniser source code. The algorithm is designed to

work with the detection algorithm in Fig. 5.10.

CHAPTER 5. SERIAL REPLICATION IN ASTRAKAHN 58

Require: the abstract syntax tree of the synchroniser program (synch), the input
label of a channel to test for a forward fixed point (x)

Ensure: a dictionary (a, StateList), where a is the output label of the fixed point
channel and StateList is the list of the reverse fixed point states of the synchroniser

1: function extract fp(synch, x)
2: rfp states← all states from synch that have transitions like in Fig. 5.13
3: result← ∅

4: while rfp states 6= result do
5: if result 6= ∅ then
6: rfp states← result
7: result← ∅
8: end if
9: for each state in rfp states do

10: gotos← all destination states in state
11: if gotos \ rfp states = ∅ then
12: result← result ∪ state
13: end if
14: end for
15: if result = ∅ then
16: return no reverse fixed point state found
17: end if
18: end while

19: StateDict← nil
20: for each state in result do
21: rfp out← output channel labels of the RPF transitions from state
22: for each out in rfp out do
23: if out /∈ StateDict then
24: StateDict(out)← state
25: else
26: StateDict(out)← StateDict(out).Appendstate
27: end if
28: end for
29: end for

30: return StateDict
31: end function

Figure 5.14: Extracting the reverse fixed point from a synchroniser (assumes that
channel x is declared as an input and an output channel of the synchroniser)

Chapter 6

Conclusion

6.1 Summary

The implementation of AstraKahn synchronisers and analysis of their role in the serial

replication wiring pattern have been presented. A dedicated language that AstraKahn

provides for programing synchronisers was described in details. A synchroniser exploits

non-deterministic behaviour and in order to explain how the synchroniser makes choices,

the synchronisers execution algorithm has been given. The language compiler that was

implemented in the thesis project generates the data structure to be interpreted by the

AstraKahn runtime, and the communication passport of the synchroniser. The compiler

performs static checking and reports source code errors. The compiler can be used

in checking of the static correctness of a connection between components all over the

application network.

In AstraKahn the output from the serial replication pipeline is defined using the concept

of fixed point. In order to detect fixed point messages, AstraKahn needs to be provided

with a pattern that matches all of them. This thesis has shown exactly how this pattern

can be embedded into the operand network of the serial replication combinator, so that

the programmer does not have to specify it explicitly within the AstraKahn application

code. However, the analysis has shown that the original approach to the output from the

serial replication network can be quite inconvenient for code maintenance and debugging

when the fixed point condition is complex, so the thesis has suggested a simpler fixed

point detection strategy in addition to the original one. In order to suppress the growth

of the replica chain, AstraKahn introduces a reverse fixed point concept. The thesis has

presented an example AstraKahn code to motivate the reverse fixed point and has shown

how the reverse fixed point can be used. As the result of the analysis performed in the

59

CHAPTER 6. CONCLUSION 60

thesis, the forward and the reverse fixed point detection algorithms to be implemented

in the AstraKahn compiler have been provided.

6.2 Future Work

The current version of the synchroniser language does not define flow inheritance in

synchronisers, thus the next step in the synchroniser implementation is to decide how

it should be done. The synchroniser code only needs to access the label-value pairs of

the message it matches. Thus, the flow inheritance should be supported outside the

synchroniser definition.

The synchroniser that was presented matches only label-value pairs of a record. The

MDL, which is the basis of the AstraKahn type system, generates a much broader set of

terms than the current version synchroniser can process; however, whether or not the

synchronisation in record values is useful for the real world applications still needs to be

established.

The fixed point detection algorithms given in the thesis should be implemented in the

AstraKahn compiler. The dynamic rewiring support for the serial replication pattern

should be implemented in the AstraKahn runtime system.

The long-term goal of the AstraKahn project is to provide an environment for development

of scalable concurrent applications that do not require manual tuning. One approach

to address automatic concurrency management is statistical learning. In a streaming

network the time during which a particular box or synchroniser processes messages

is distributed according to some distribution. On the other hand, processes translate

the input distribution to the output distribution to some degree depending on their

definition. Knowing these characteristics for both boxes and synchronisers, it could be

possible to estimate the parallelisation factors for each box in order to optimise the

throughput or the latency of the network.

Appendix A

Syntax of the AstraKahn

Syncroniser

A.1 Full Grammar

The full grammar of the synchroniser language can be found in Fig. A.1

The grammar of integer expression used in the synchroniser implementation can be

found in Fig. A.2.

A.2 Keywords, Reserved Words and Punctuation

The keywords, the reserved words and the punctuation used in the AstraKahn synchroniser

syntax are given in Fig. A.3.

A.3 Abstract Syntax Tree of the Synchroniser

The aksync compiler uses the abstract syntax tree (AST) code representation. The

AST nodes represent significant programming constructs of the synchroniser language.

In our implementation we use the AST generator by E. Bendersky [18]. The generator

configuration file (Fig. A.4) describes the structure of the AST nodes. Each node lists

the attributes and the child nodes. A single star (*) and two stars (**) depict a single

child node and a sequence of nodes of the same type respectively. A string depicts an

attribute.

61

APPENDIX A. SYNTAX OF THE ASTRAKAHN SYNCRONISER 62

〈sync〉 ::= ‘synch’ 〈ID〉 ‘(’ 〈input〉 [‘,’ 〈input〉]* ‘|’ 〈output〉 [‘,’ 〈output〉]* ‘)’
‘{’ 〈decl〉* 〈state〉+ ‘}’

〈input〉 ::= 〈ID〉 [‘:’ (〈ID〉 | 〈NUMBER〉)]

〈output〉 ::= 〈ID〉 [‘:’ 〈depth exp〉]

〈depth exp〉 ::= 〈ID〉 | 〈NUMBER〉 | 〈ID〉 ‘+’ 〈NUMBER〉 | 〈ID〉 ‘-’ 〈NUMBER〉

〈decl〉 ::= ‘store’ 〈id list〉 ‘;’
| ‘state’ 〈type〉 〈id list〉 ‘;’

〈type〉 ::= ‘int’ ‘(’ 〈NUMBER〉 ‘)’
| ‘enum’ ‘(’ 〈id list〉 ‘)’

〈state〉 ::= 〈ID〉 ‘{’ ‘on:’ 〈trans stmt〉+ [‘elseon:’ 〈trans stmt〉+]* ‘}’

〈trans stmt〉 ::= 〈ID〉 [‘.’ 〈condition〉] [‘&’ 〈int exp〉] 〈actions〉

〈condition〉 ::= ‘@’ 〈ID〉
| ‘?’ 〈ID〉
| [‘?’ 〈ID〉] ‘(’ 〈id list〉 [‘||’ 〈ID〉]‘)’
| ‘else’

〈actions〉 ::= ‘{’ [〈set stmt〉] [〈send stmt〉] [〈goto stmt〉] ‘}’

〈set stmt〉 ::= ‘set’ 〈assign〉 [‘,’ 〈assign〉]* ‘;’

〈assign〉 ::= 〈ID〉 ‘=’ (〈int exp〉 | 〈data exp〉)

〈send stmt〉 ::= ‘send’ 〈dispatch〉 [‘,’ 〈dispatch〉]* ‘;’

〈dispatch〉 ::= 〈msg exp〉 ‘=>’ 〈ID〉

〈msg exp〉 ::= ‘@’ 〈ID〉
| ‘@’ 〈int exp〉
| [‘?’ 〈ID〉] 〈data exp〉
| ‘nil’

〈data exp〉 ::= 〈data〉
| ‘(’ 〈data〉 ‘)’

〈data〉 ::= 〈item〉 [‘||’ 〈item〉]*

〈item〉 ::= ‘this’
| 〈ID〉
| ‘’’ 〈ID〉
| 〈ID〉 ‘:’ 〈rhs〉

〈rhs〉 ::= 〈int exp〉
| 〈ID〉

〈goto stmt〉 ::= ‘goto’ 〈id list〉 ‘;’

〈id list〉 ::= 〈ID〉 [‘,’ 〈ID〉]*

〈int exp〉 ::= ‘[’ 〈int exp c〉 ‘]’

Figure A.1: The syntax of the AstraKahn synchroniser

APPENDIX A. SYNTAX OF THE ASTRAKAHN SYNCRONISER 63

〈int exp c〉 ::= 〈NUMBER〉
| 〈ID〉
| ‘(’ 〈int exp c〉 ‘)’
| 〈int exp c〉 ‘+’ 〈int exp c〉
| 〈int exp c〉 ‘-’ 〈int exp c〉
| 〈int exp c〉 ‘*’ 〈int exp c〉
| 〈int exp c〉 ‘/’ 〈int exp c〉
| 〈int exp c〉 ‘%’ 〈int exp c〉
| 〈int exp c〉 ‘<<’ 〈int exp c〉
| 〈int exp c〉 ‘>>’ 〈int exp c〉
| 〈int exp c〉 ‘|’ 〈int exp c〉
| 〈int exp c〉 ‘&’ 〈int exp c〉
| 〈int exp c〉 ‘^’ 〈int exp c〉
| ‘-’ 〈int exp c〉
| 〈int exp c〉 ‘<’ 〈int exp c〉
| 〈int exp c〉 ‘>’ 〈int exp c〉
| 〈int exp c〉 ‘==’ 〈int exp c〉
| 〈int exp c〉 ‘!=’ 〈int exp c〉
| 〈int exp c〉 ‘<=’ 〈int exp c〉
| 〈int exp c〉 ‘>=’ 〈int exp c〉
| ‘!’ 〈int exp c〉
| 〈int exp c〉 ‘&&’ 〈int exp c〉
| 〈int exp c〉 ‘||’ 〈int exp c〉

Figure A.2: The syntax of the integer expression in AstraKahn synchroniser

Keywords synch, store, state, int, enum, start, on, elseon, else, do, send,
goto

Reserved words nil, this

Punctuation braces, brackets, parantheses, the comma, the dot, the semi-
colon, the plus sign, the minus sign, the ampersand, the at
sign, the question mark, the bar-bar sign, the equality sign,
the arrow

Figure A.3: AstraKahn synchroniser keywords, reserved words and punctiation

APPENDIX A. SYNTAX OF THE ASTRAKAHN SYNCRONISER 64

inputs -> PortList , outputs -> PortList , decls -> DeclList , states -> StateList

Sync: [name , inputs*, outputs*, decls*, states *]

ports -> [Port , ...]

PortList: [ports **]

depth_exp -> ID | NUMBER | DepthExp | DepthNone

Port: [name , depth_exp *]

DepthExp: [depth , shift]

DepthNone: []

decls -> [StoreVar | StateVar , ...]

DeclList: [decls **]

StoreVar: [name]

type -> IntType | EnumType

StateVar: [name , type*]

IntType: [size]

labels -> [ID, ...]

EnumType: [labels **]

states -> [State , ...]

StateList: [states **]

trans_orders -> [TransOrder , ...]

State: [name , trans_orders **]

trans_stmt -> [Trans , ...]

TransOrder: [trans_stmt **]

condition -> CondSegmark | CondDataMsg | CondEmpty | CondElse

guard -> IntExp

actions -> [Assign | Send | Goto , ...]

Trans: [port , condition*, guard*, actions **]

CondSegmark: [depth]

labels -> [ID, ...]

CondDataMsg: [choice , labels**, tail]

CondEmpty: []

CondElse: []

rhs -> DataExp | IntExp

Assign: [lhs , rhs*]

items -> [ItemThis | ItemVar | ItemExpand | ItemPair , ...]

DataExp: [items **]

ItemThis: []

ItemVar: [name]

ItemExpand: [name]

value -> ID | IntExp

ItemPair: [label , value*]

msg -> MsgSegmark | MsgData | MsgNil

Send: [msg*, port]

depth -> ID | IntExp

MsgSegmark: [depth*]

data_exp -> DataExp

MsgData: [choice , data_exp *]

MsgNil: []

states -> [ID, ...]

Goto: [states **]

ID: [name]

NUMBER: [value]

IntExp: [exp]

Figure A.4: The generator configuration file of the synchroniser AST nodes. Child
node types are provided in comments (marked with dashes).

Bibliography

[1] Alex Shafarenko. Astrakahn: A coordination language for streaming networks.

CoRR, abs/1306.6029, 2013.

[2] George A. Papadopoulos and Farhad Arbab. Coordination models and languages.

In ADVANCES IN COMPUTERS, pages 329–400. Academic Press, 1998.

[3] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. Com-

puter, 19(8):26–34, August 1986.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Ver-

sion 3.0, 2012. Chapter author for Collective Communication, Process Topologies,

and One Sided Communications.

[5] Farhad Arbab. Reo: a channel-based coordination model for component composi-

tion. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[6] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling compo-

nent connectors in reo by constraint automata. Sci. Comput. Program., 61(2):75–

113, July 2006.

[7] Robert Stephens. A survey of stream processing. Acta Inf., 34(7):491–541, 1997.

[8] Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with

iteration. Commun. ACM, 20(7):519–526, 1977.

[9] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP

Congress, pages 471–475, 1974.

[10] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of synchronous

data flow programs for digital signal processing. IEEE Trans. Comput., 36(1):24–35,

January 1987.

65

BIBLIOGRAPHY 66

[11] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A

language for streaming applications. In Proceedings of the 11th International Con-

ference on Compiler Construction, CC ’02, pages 179–196, London, UK, UK, 2002.

Springer-Verlag.

[12] Clemens Grelck, Sven-Bodo Scholz, and Alexander V. Shafarenko. A Gentle In-

troduction to S-Net: Typed Stream Processing and Declarative Coordination of

Asynchronous Components. Parallel Processing Letters, 18(2):221–237, 2008.

[13] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Concurrency Engineer-

ing with S-Net. In Adrian Prantl Jens Knoop, editor, Programming Languages and

Foundations of Programming, 15th Workshop (KPS’09), Maria Taferl, Austria, vol-

ume 2009-X-1 of Technical Report, pages 78–92. Institute of Computer Languages,

Vienna University of Technology, 2009.

[14] Clemens Grelck. The Essence of Synchronisation in Asynchronous Data Flow Pro-

gramming. In Jurriaan Hage, editor, 22nd International Symposium on Implemen-

tation and Application of Functional Languages (IFL’10), Alphen aan den Rijn,

Netherlands, volume UU-CS-2010-020 of Technical Report, pages 159–172. Depart-

ment of Information and Computing Sciences, Utrecht University, 2010.

[15] Vu Thien Nga Nguyen and Raimund Kirner. Demand-based scheduling priorities

for performance optimisation of stream programs on parallel platforms. In ICA3PP

(1), pages 357–369, 2013.

[16] David Beazly et al. Ply (python lex-yacc). http://www.dabeaz.com/ply/, Febru-

ary 2011. [Online; accessed 9-December-2014].

[17] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-

ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2006.

[18] Eli Bendersky. A parser for the c language written in pure python. https://

github.com/eliben/pycparser, 2015.

http://www.dabeaz.com/ply/
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Outline

	2 Related Work
	2.1 Coordination Programming
	2.2 Stream Processing
	2.3 S-Net
	2.4 Summary

	3 AstraKahn
	3.1 Channels and Messages
	3.2 Components
	3.3 Network Composition

	4 AstraKahn Synchroniser
	4.1 Mathematical Model
	4.2 The Language of AstraKahn Synchronisers
	4.3 Execution Order of Synchroniser
	4.4 The Implementation of the aksync Compiler
	4.5 Discussion and Future Work

	5 Serial Replication in AstraKahn
	5.1 AstraKahn Approach to Serial Replication
	5.2 Forward Fixed Point
	5.3 Reverse Fixed Point

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	A Syntax of the AstraKahn Syncroniser
	A.1 Full Grammar
	A.2 Keywords, Reserved Words and Punctuation
	A.3 Abstract Syntax Tree of the Synchroniser

	Bibliography

