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ABSTRACT

Several different addressing mechanisms are evaluated within the context of
VLIW and superscalar processor design. The results suggest that traditional RISC
addressing mechanisms are less effective than the other simpler addressing
mechanisms considered. In particular, the ORed indexing addressing mechanism
significantly improves performance.
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1 INTRODUCTION

Traditional processors fetch and execute instructions one at a time, taking several cycles to complete
each instruction. More recently, Reduced Instruction Set Computers (RISC) have approached
single cycle execution rates by overlapping the instruction fetch and execute phases of successive
instructions [Tabak 90]. However, to obtain an execution rate in excess of one instruction per
cycle it is necessary to fetch and execute multiple instructions in parallel.

Execution of multiple instructions per cycle can be achieved by two different approaches.
VLIW(Very Long Instruction Word) processors[Fisher 83] rely entirely on the compiler to
schedule instructions into long instruction words so that they can be fetched and executed in
parallel. In contrast, superscalar processors [Johnson 91] rely on instructions being scheduled
dynamically at run-time.

The computer architecture group at the University of Hertfordshire has developed iHARP[Steven
89a, 92], a VLIW(Very Long Instruction Word) processor. The aim of the HARP project is to
develop a processor which can execute instructions significantly in excess of one instruction per
cycle. To date, rates in excess of two instructions per cycle have been achieved[Wang 93].

During each machine cycle iHARP fetches multiple instructions in the form of a long instruction
word from an instruction cache and passes the component instructions directly to four separate
pipelines for execution. The HARP compiler is responsible for making sure that instructions which
can be executed in parallel are grouped together in a single LIW.

The computer architecture group also intend to develop a superscalar processor and the work
outlined in this paper will help to decide the type of architectural features that will be incorporated
into this processor.

This paper evaluates the performance of four different addressing mechanisms which are listed
below:

iHARP addressing mechanisms; offset(Ri), (Ri,Rj) with ORed 1ndex1ng
Traditional RISC addressing modes; offset(Ri), (Ri,Rj). .

Register indirect and direct addressmg only.

Register indirect addressing, direct addressing and an additional offset(SP) addressing mode.
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In particular, the performance of ORed indexing is examined to deduce whether its inclusion in the
HARP architecture improves performance.

Section 2 describes a typical RISC processor pipeline and shows how this model has been altered
in the iHARP processor. In section 3 the addressing mechanisms compared in this study are
described. Section 4 presents the results. These results are then discussed in section 5 with
concluding remarks in section 6.

2 iHARP PIPELINE
A typical RISC processor pipeline[Hennessy 90] requires five stages to execute a load instruction:

IF:  Instruction Fetch.

RF: Register Fetch.

ALU: ALU/Shift operation/Calculate memory address.

MEM: Wait for data from memory on a load instruction or output data on a store instruction.
WB:  Write result to destination register.

A load instruction uses all five stages in the pipeline with the result of the load operation available at
the end of the MEM stage. Consequently, a delay of one cycle is required before the result can be
used in the next sequential instruction (Fig 1).




In contrast, iIHARP uses a four stage pipeline:

IF:  Instruction Fetch.

REF: Fetch register operands from the register file.
ALU/MEM: Perform operation or access data.
WB: Return results to register file.

Two changes have been made to the original five stage pipeline. First, address computation has
been moved to the RF stage. Second, the ALU and MEM stages have been combined. This
second change is possible because loads and stores no longer require the ALU stage to compute
memory addresses and other operations do not use the MEM stage. The result of a load operation
is therefore available in the ALU/MEM stage and can be bypassed directly to the next sequential
instruction with no load delay (Fig 2).

The key to moving the address computation to the RF stage is to reduce the computation to a
bitwise logical OR between the two address components. A logical OR is equivalent to an addition
if no carries are generated. This condition is met if the address components never have a logical
one in the same bit position.

In order to use a logical OR in address computation, the compiler ensures that the bottom n bits of
the stack pointer are always zero by always aligning the stack pointer on a power of two (27)
memory boundary. A second address component or offset can then be safely added to SP using a
logical OR. Glew[Glew 89] suggested the term "ORed indexing" to describe this method.

3 ADDRESSING MECHANISMS CONSIDERED

To evaluate the alternative addressing mechanisms four GNUcc C compilers were
produced(Stallman 88]. The first compiler was the standard GNUcc iHARP compiler[Wang 91].
This compiler was modified to produce three further compilers, each incorporating one of the
alternative sets of addressing modes listed in section 1. Different epilogues and prologues were
also generated for procedure entry and exit. Apart from the addressing modes the iHARP
instruction set was used throughout. ‘ ~

3.1 iHARP ADDRESSING MECHANISMS

This compiler used the iHARP addressing mechanisms which comprised offset(Ri) and (Ri, Rj)
where Ri and Rj are any registers. Since register RO is always zero register indirect and direct
addressing were also available. Two additional features included were:

1) ORed indexing,.
2) Rearranged array accessing.

3.1.1 ORED INDEXING

To use ORed indexing, the code generated on procedure entry must align the stack pointer on a
power of two memory boundary. Local data can then be safely accessed relative to the stack
pointer using ORed indexing. The worst case procedure entry and exit code is shown below:




{ parameters placed in registers or on stack}

BSR RA, _proc /*return address placed in return address register®/
NOP
_proc: MOV SP', SP [*save old stack pointer*/
AND SP, SP, #mask /*force SP to 2" boundary*/
SUB SP, SP, #frame_size [*space allocated for new stack frame*/
ST 4(SP), SP' /*save old SP*/
ST O(SP), RA /*save return address on stack*/
LD RA, O(SP) [*return address placed in register*/
LD SP, 4(SP) [*restore old SP*/
MOV PC, RA [*return from procedure*/

The stack frame size is rounded up to the next 2" boundary by the compiler. On entry into the
procedure body the value of the old SP is saved. The AND instruction then rounds down the stack
pointer to the nearest 21! boundary by forcing the bottom n bits to zero. The new stack frame is
then allocated by subtracting the frame size from SP. On exit from the procedure the old SP is
restored.

In the worst case all the above code is required. However, most iHARP procedures use a standard
minimum stack frame size of 128 bytes. Since SP is always aligned on a 128 byte boundary, this
removes the need to save the old stack pointer and to realign SP before allocating a new stack
frame. As a result the overwhelming majority of iHARP procedure calls incur no additional
overhead to support ORed indexing. The simplified procedure entry and exit code is shown below:

{parameters placed in registers or on stack }

BSR RA, _proc /*return address placed in return address register®/
NOP
_proc: SUB SP, SP, #128 /*space allocated for new stack frame*/
ST O(SP), RA [*save return address on stack*®/
LD RA, 0(SP) [*return address placed in register*/
ADD SP, SP, #128 /*stack frame space deallocated*/
MOV PC, RA [*return from procedure*/

A particular case for a stack frame requiring 27 bytes of memory is shown in Fig 3.
3.1.2 REARRANGED ARRAY ACCESSING

To access the element of an array on the stack the iHARP compiler originally generated the
following code sequence:

ADD R5, R7(ASL #2), SP /*R5 = SP + (Index*4)*/
ADD RS, RS, #8 /*R5 = RS + offset*/
LD RS, (RO, R5) /*Access element of array*/

In this sequence the stack pointer is used in the first stage of the address computation. However, in
order to take advantage of the ORed indexing mechanism this sequence of instructions was altered
in the final peephole pass so that the stack pointer was a component of the final stage of the address
computation. This new code sequence is shown below:




ADD R5, R7(ASL #2), #8 /*R5 = (Index*4) + offset*/
LD RS5, (R5, SP) [*Access element of array*/

In the rearranged code sequence, because SP is on a power of two boundary, a bitwise logical OR
can be performed on SP and RS to produce the address required. As a result, one less addition
instruction is required and the overhead on array accessing is reduced.

3.2 TRADITIONAL RISC ADDRESSING MODES
All the addressing modes found on a traditional RISC architecture are available.
LD Rk, offset(Ri)

NOP
ST offset(Ri), Rk

; Ri is any register.
; NOP indicates a load delay of one cycle.
; Ri is any register including GP(Global Pointer),
; SP, and RO(always zero). No delay.

LD Rk, (Ri, Rj) :

NOP ;

ST (Ri, Rj), Rk :

Ri and Rj are any register.
NOP indicates a load delay of one cycle.
Ri and Rj are any register including GP, SP and RO. No delay.

The load delay shown above is required because address computations must be carried out during a
separate ALU pipeline stage. As a result, the data cache access is delayed and the load operand is
not available to the immediately succeeding instruction.

A traditional stack frame layout, which allocated only enough space for any locals and registers
saved, was used for procedure entry and exit.

3.3 REGISTER INDIRECT ADDRESSING

It was seen in the previous section that a load delay of one is required to implement traditional
RISC addressing mechanisms. One way of removing this load delay is to use a restricted set of
addressing modes so that an address computation in the ALU stage is not required. As previously
described one way is to use ORed indexing. An alternative is to restrict the addressing modes
available to register indirect and direct addressing. A load delay is, therefore, not required as there
are no offsets involved in the computation of a memory address. The same addressing modes are
provided on the Am29000[Johnson 87] and on VIPER[Abnous 92].

The stack frame organisation used was identical to that used in the previous section.
3.4 DEDICATED SP ADDRESS ADDER

As with ORed indexing, another way to perform address computations in the RF stage is to treat
the stack pointer as a separate register by removing it from the general register file, and providing a
dedicated adder which operates in the RF stage to compute (SP) plus offset.

The addressing modes included were identical to those used by the previous option except an
additional mode using offset(SP) is included. Therefore, the instructions LD Rk, offset(SP) and
ST offset(SP),Rk are available to access operands relative to the stack frame.

4 PROCEDURE AND RESULTS

Section 4.1 outlines the procedure used to analyse the various addressing mechanisms described in
section 3. The number of cycles required to execute eight Stanford benchmarks compiled by the
separate compilers is shown in section 4.2.




4.1 PROCEDURE

Four separate C compilers were constructed from the original iHARP C compiler with each one
incorporating one of the alternative addressing mechanisms described in section 3.

Eight Stanford benchmarks were then compiled by the four compilers. The branch and load delay
slots of the resulting 32 HARP code programs produced by the four compilers were filled where
appropriate[{Wang 93]. On average 73% of the load and branch delay slots were filled by the

scheduler.

The 32 HARP code programs were also scheduled[Wang 93] for the four pipeline iHARP
processor. To avoid distorting the results, four register file write-backs per cycle were assumed.

The resulting scheduled code was then run on a HARP simulator[Whale 92]. The number of
cycles required and the dynamic instruction count was recorded. These results are shown in
section 4.2, Tables 1-4.

4.2 RESULTS

TABLE 1 SERIAL EXECUTION TIME (CYCLES)

Program

Bubblesort
Multiply Matrix
Permute

Puzzle

Queens

Quick

Tower

Tree

Average
Harmonic mean

ORed
Indexing

48946
235624
16032
75076
47654
48632
33106
72790

72232.5
43042.9

Trad.
Modes

44552
236232
16940
77492
49858
51242
34610
78894

73727.5
44504.8

Register
Indirect

48962
238084
19346
75316
52174
49716
37798
74806

74525.3
47422.3

TABLE 2 PARALLEL EXECUTION TIME (CYCLES)

Program

Bubblesort
Multiply Matrix
Permute

Puzzle

Queens

Quick

Tower

Tree

Average
Harmonic mean

ORed
Indexing

26510
95570
12010
39302
29278
28698
22952
47818

37767.3
27550.5

Trad.
Modes

29562
96578
13316
41816
31290
31382
25804
54198

40493.3
30277.5

Register
Indirect

26510
95570
12010
39302
29502
28876
22952
47818

37817.5
27595.6

SP Address
Adder

48946
235624
16046
75076
47648
48632
33106
72790

72233.5
43054.9

SP Address
Adder

26510
95570
12010
39302
29274
28698
22952
47818

37766.8
27550.1




TABLE 3

PARALLEL INSTRUCTION COUNT (BYTES)

Program ORed Trad. Register SP Address
Indexing Modes Indirect Adder
Bubblesort 25871 19505 25879 25871
Multiply Matrix 37709 35709 38939 37709
Permute 7994 7994 9644 7994
Puzzle 48877 46825 48997 48997
Queens 37251 37695 39189 37248
Quick 18704 18704 19346 18704
Tower 17873 17189 19156 17873
Tree 31733 31631 32741 31733
Average 28251.5 26906.5 29236.4 28254.9
Harmonic mean 21136.2 20227.2 22963.6 21138.8

TABLE 4 RELATIVE PERFORMANCE OF ADDRESSING MODES
RANK CYCLE COUNT CYCLE COUNT DYNAMIC

SERIAL CODE PARALLEL CODE INSTRUCTION

(% increase®) (% increase*) COUNT (% increase*)
1 ORed Indexing (1.00) SP Address Adder (1.00) Trad. modes (0.96)
2 SP Address Adder (1.00) ORed indexing (1.00) ORed indexing (1.00)
3 Trad. modes (1.03) Reg indirect (1.00) SP Address Adder (1.00)
4 Reg indirect (1.10)  Trad. modes (1.10)  Reg indirect (1.09)

*ORed indexing = 1.00.
5 DISCUSSION

The cycle count for the serial code shows that ORed indexing and the use of a dedicated SP address
adder produced the best performances. Traditional RISC addressing modes degrade performance
by 3% while using register indirect addressing degrades performance by 10%.

The move from serial to parallel code significantly changes the relative performance. With parallel
code, ORed indexing, register indirect addressing and a dedicated stack pointer address adder
perform equally well, while using traditional addressing mechanisms degrades performance by
10%. The VIPER group[Abnous 92] also found that using register indirect addressing in a VLIW
environment yielded a similar 8.4% performance advantage over traditional addressing modes.

In all cases the performance advantage over the traditional addressing modes is achieved by
executing more instructions. Using ORed indexing or a dedicated SP address adder requires 4%
more instructions, while with register indirect addressing 14% more instructions are executed.

Traditional addressing modes perform relatively well in a single pipeline because the compiler is
usually able to hide the load delay by scheduling useful instructions in the load delay slot. In
contrast, in parallel code any instruction which can be used to fill load delay slots can now be
executed in parallel with the load instructions. As a result increasing the load instruction latency
has a greater impact on execution time in parallel code.

In contrast register indirect addressing performs significantly better in a parallel environment. This
improved performance is a direct result of a VLIW processor's ability to precompute addresses in
parallel with other instructions. While these address computations increase the instruction count,
the impact on performance is minimal.




Having discussed the performances of the addressing mechanisms, the implementation
considerations are now examined.

ORed indexing removes the requirement for a load delay and since both loads and ALU operations
use four pipeline stages the instruction scheduler can easily compute the number of write-backs
required in each cycle. However, the major disadvantage of ORed indexing is the wasted space on
the stack frame and this overhead does not impact directly on cycle and instruction counts.

One of the disadvantages of using traditional RISC addressing modes is the implementation cost in
a VLIW or superscalar processor. Implementing this mechanism could be achieved in one of two
ways. First, the ALU write-back operation could be delayed for one cycle. This is done in both
DLX[Hennessy 90] and MIPS-X[Chow 87]. However, using this scheme results in the bypassing
requirements for a four pipeline model similar to iHARP increasing from four ALU results
bypassed to eight ALU inputs[Steven 92] to eight, ALU results being bypassed to eight ALU
inputs. This extra routing would be very costly in terms of silicon area. Second, only the
write-back for the load instruction could be delayed. As a result, the number of write ports
required would have to be increased to accommodate the possibility of two write-backs coinciding,
for example, one write back from a load and one from a succeeding ALU operation which still only
requires four stages. Alternatively, if the number of write-backs was restricted it would be more
difficult for the compiler to predict the number of write-backs occurring in each cycle.

Register indirect addressing requires no load delay, an advantage it shares with ORed indexing.
However, as it is a subset of the iHARP addressing modes it can never do quite so well in terms of
both performance and flexibility.

Although the use of an additional dedicated adder produces excellent results it would, nevertheless,
scale very badly, especially if using multiple data cache ports. For example, if two loads per cycle
were required a dedicated adder would be required for each load to add an offset to the SP.
Therefore, a dedicated adder would be required for every port. In general, this mechanism is the
least flexible of the alternatives examined. It is very dependent on the most common addressing
mode being SP plus offset. It would be less flexible if many address pointers were required. The
other addressing mechanisms are more consistent since they allow. every address register to be
treated in exactly the same way in address calculations. Therefore, on balance, this scheme is less
attractive than the performance figures suggest.

6 CONCLUSIONS

The results support the HARP decision to use ORed indexing. It has produced the best
performance with the cheapest implementation. Its other advantages include no load delay, ease for
scheduling and a simpler mechanism to compute addresses. The one overhead that is incurred, in
procedure entry and exit, does not significantly degrade performance. The dedicated SP address
adder has done as well as ORed indexing but at the expense of additional hardware and reduced
address functionality. Register indirect has done particularly well in terms of cycle count in parallel
code, and especially so when considering its simple implementation. Therefore, in a VLIW or
superscalar processor, the results suggest that ORed indexing or register indirect addressing will
give a superior performance when compared to traditional addressing mechanisms.
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Fig 1 DLX Pipeline Stages

LD R1, offset(R2) F_, _RE, AU MM WB
Load Delay Slot F_, RE_ AU | MM wB
F RF AL MEM

ADD R3, R1, R4
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Fig 2

iHARP Pipeline Stages

LD R1, offset(R2) >

ADD R3, R1,R4
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Fig 3 iHARP Stack Frame Allocation

32 Location Stack Frame

¥

SP

1) SP' points to old stack frame.

2) AND SP, SP, #SFFFFFFEQ aligns SP on a 32 byte boundary wasting some stack locations
in the procedure stack frame.

3) SUB SP, SP, #$20 allocates a 32 byte stack frame.
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