DIVISION OF COMPUTER SCIENCE

CODING OR COMPREHENSION?
THE ESSENCE OF SOFTWARE SYSTEM DESIGN

(To appear in the Proceedings of the International AMSE Conference
"Systems Analysis, Control & Design" SYS'93, London , September 1993)

Martin Loomes
Carol Britton
Paul Taylor

Technical Report No.162

September 1993




Coding or comprehension? - The essence of software system design.

Martin Loomes, Carol Britton and Paul Taylor
Division of Computer science,
University of Hertfordshire,

College Lane,

Hatfield, AL10 9AB
email: comqmjl@herts.ac.uk

Abstract

Throughout the disciplines of engineering, modelling and simulation are generally
considered as important components of any modern designer's tool kit. They allow the
powerful mechanisms of abstraction, decomposition and formalisation to be brought to
bear in tangible ways, creating platforms for the analysis, discussion and communication
of ideas. Many traditional engineering design disciplines have developed well-
integrated, and highly successful procedures for using these tools, with the result that
there is no need for individual designers to reflect on the status of the tools or on their
use. One reason for this is that the models and simulations come from domains that are
clearly separable from that of the artefact being designed. There is little danger, for
example, of the civil engineer confusing the plaster model of the dam, or the partial
differential equations capturing stress in the structure with the dam itself.

The designer of software, however, is faced with a rather more complex scenario. The
artefact to be constructed is, itself, an abstract representation of some perceived reality,
and it is often not clear how modelling and simulation relate to this abstract domain. Is
the artefact itself a model and, if so, what is it exactly that is being modelled? Is a
software simulation of the finished system a model of the system, and if so, is the system
a model of itself? Questions such as these may seem contrived and esoteric, and most
software designers can function quite satisfactorily without ever discussing them -
indeed many designers feel distinctly uncomfortable when such issues are raised. It is
important, however, that such issues are directly addressed by those individuals who are
proposing methods and CASE tools as frameworks for system design. Underlying
assumptions about the role of modelling and simulation in the system development
process play a central part in all methods and tools; it is important that such assumptions
are explicitly recognised, both by the designer of the tool and by the system developer
who is to use it. If the views of the tool designer on such fundamental issues are not
fully understood and shared by practitioners, effective use of the tool may be seriously
impaired.

This paper discusses the role of modelling in software design, and puts forward the view
that software engineers use models, not in the same way as traditional engineers, but
more like scientists. The latter construct models to give substance to a theoretical
understanding of some domain that does not yet possess a clearly defined structure. The
model and theory are developed hand in hand, and can often be understood only in
conjunction. We consider two important implications of this view of the software
development process. The first of these is that it is not obvious what comprises the
artefact: the theory or the model. A further implication is that the traditional system life
cycle may well be placing the emphasis of the development process in the wrong place,
by stressing the central role of the lines of code being developed, rather than the
theoretical comprehension of the system.

Keywords: Modelling, theory, software design




Introduction

Why should we bother to question the manner in which designers set about the task of
producing software systems? Surely the Software Development Life Cycle is sufficiently
well established that little more of value can be added? Wouldn't we be better employed
devising better tools and techniques for empowering the designer to engage in the process
more effectively, rather than wasting time on philosophical questions?

Reactions such as these are, sadly, all too common amongst software engineers when they
are asked deep questions about the design process. This paper is predicated upon the belief
that such reactions are not acceptable in modern engineering practice. Alexander forcibly
made the point three decades ago that the modern designer must adopt a self-conscious
attitude towards design, and accept the "loss of innocence" that this implies: the modern
designer cannot simply work within an established style or school and abrogate
responsibility to the establishment, or argue for Divine inspiration, and pass responsibility to
a Higher Being [1]. The arguments that this should apply to software engineering have been
rehearsed elsewhere [2]. Recent trends within software engineering towards encapsulating
many aspects of the process within tools should lead to a deliberate increase in research to
place our understanding of the design process on a well-founded basis, in case we
encapsulate all the weaknesses of our current understanding in complex, monolithic systems
that will render change even more difficult in the future, and also make it impossible for the
engineer to accept responsibility for a design task. The difficulties that are perceived in
bringing about this change of attitudes may be, in part, attributable to the fact that Computer
Science is still a relatively immature, and the vast industry that has sprung up around it often
seems to be producing highly sophisticated products with rather primitive technologies. As
Sprague de Camp has observed [3]:

"Primitive peoples live a hand to mouth existence ... Therefore they can

less well afford to risk experiment than more advanced people. ...

As a result, primitive societies are very conservative. Tribal customs

prescribe exactly how everything shall be done, on pain of the God's

displeasure. An inventor is likely to be liquidated as a dangerous

deviationalist"
The tribal customs may be termed "methodologies" and "CASE tools", and the God in
question may be corporate management, but the end result is the same: a short-term view of
the enterprise.
Holistic research into the design process has largely been ignored in recent years in favour
of extensive micro-studies of aspects of the problem. The weakness of this approach is that
research findings are only useful within the context of the design process as currently
understood. To use the Kuhnian term, research is within the currently accepted paradigm
[4]: the conventional life cycle.

This paper calls into question whether the life cycle paradigm is really capable of supporting
such extensive research programmes, and attempts to introduce the outline of a new
paradigm that might perform this role.

Scientific Approaches.

It is common for academic disciplines that want to be taken seriously to seek to establish a
scientific basis. Software Engineering is no exception to this, and there have been numerous
calls for a more scientific approach to software design. What is meant by a scientific
approach, however, is not well defined. Gries, for example, calls for the establishment of a
science of programming, where the laws of each language are clearly, and formally, stated
and the task of programming is underpinned by explicit guidelines[5]. Hoare suggests that
programming should become more scientific by accepting the onus of mathematical proof
between formal specifications and designed solutions [6]. Neither suggests, however, that
software designers should behave more like scientists, simply that formality, theory and
proof should be given a more prominent place in the life cycle.




A more radical proposal can be made, however, if we try to explore ways in which software
design may be made more like science, rather than ways in which it can be carried out
scientifically. On the face of it this may seem absurd, since clearly software development is
an engineering activity, leading to the construction of a tangible product. The final artefact,
however, is not a physical entity such as a bridge or a new chemical compound, but an
information structure. We would argue that an alternative to the life cycle paradigm can be
found by considering this information structure as a theory: and disciplines whose final
products are theories are more usually termed sciences than engineering.

This approach is not original. Burstall and Goguen, for example, proposed that the task of
producing specifications could be seen as one of theory construction, with formality being
achieved by developing a suitable algebra of theories [7]. Naur has suggested that the task of
programming goes beyond the production of code, and involves the construction of a theory
of the problem [8]. These two papers, whilst often cited, are usually seen as representing
different spheres in the discipline. The former is seen as part of "formal methods", as the
goal was to suggest how the formal concept of a theory presentation could be used to
capture system requirements (originally the aim was to capture micro-worlds for AI). The
latter is usually seen as part of the softer end of systems development, as Naur suggested
that theories are essentially mental entities that cannot be captured and communicated, and
hence software design must be a small group activity carried out in a holistic fashion by the
theory-builders

If we take these two ideas together, however, we have the embryo of a new paradigm for
software system development: the theory-building view. Once we have made this transition
we can look to the Philosophy of Science for inspiration for our methodology, and some
suggested avenues for exploration are outlined below. Before turning to methodological
considerations, however, let us briefly consider what we mean by a "theory".

Theories

The term "theory" is not easily defined, and a detailed discussion of its semantics is beyond
the scope of this paper. We can, however, clarify some of the properties that are generally
expected of a theory, and discuss how these relate to software design.

Ryle builds a powerful analogy between theories and pathways [9]. To have a theory,
according to Ryle, is to be aware of a pathway from one place to another in such a way as to
be able to both use it and also explain its whereabouts to others. Thus self-consciousness is a
necessary pre-requisite for the theory-building approach: the engineer must realise that a
theory is being constructed, and be prepared to discuss this explicitly with others. During
the construction of a pathway one must be prepared to stamp up and down the path in order
to establish it. Subsidence or rocks in the way may cause deviations to the intended route, or
even total abandonment of a chosen route. Existing paths may be incorporated in new ones,
and may also be used to aid the builder during construction. Thus our software engineer
needs to be a rambler as well as a path builder, able to use existing theories as well as
construct new ones. We do not sacrifice the ideals of Gries and Hoare in moving to the
theory building view, rather we extend them to require the software engineer to contribute to
the theoretical world as well as using it.

One very important property of a theory is that we must admit it might not be true: indeed,
we might even expect it to be refuted at some future time. There is no doubt that during the
software design process many theories are constructed that turn out not to be true. Note,
however, that constructing such theories is not "wrong", or "bad design", but an essential
part of the process. Science progresses by putting forward bold and relevant conjectures and
attempting to refute them. Good engineering practice, under this view, would involve stating
theories clearly and explicitly, so that they may more easily be refuted. This seems rather a
long way removed from the attitude of many software designers who see their role as
proposing a design and defending it against all-comers. Clearly, there must come a point in
the design process when the theory is accepted as sufficiently tested to support the task in




hand, and we proceed with a theory that we still expect to be refuted at some future stage.
This 1s not unscientific, of course, for as Popper has observed [10]:
"The empirical basis of objective science has nothing absolute about it. Science does
not rest on solid bedrock. The bold structure of its theories rises, as it were, above a
swamp. It is like a building erected on piles. The piles are driven down from above
into the swamp, but not down to any natural or "given" base; and if we stop driving
the piles deeper, it is not because we have reached firm ground. We simply stop
when we are satisfied that the piles are firm enough to carry the structure, at least for
the time being".
The engineers and customers together must be happy that the piles have been driven deep
enough to ensure that the theory will support the task in hand, and that the theory will not
be refuted when the system is put to use, but this is sufficient. The theory must be fit for
purpose, but need not be "correct" in any absolute sense. The engineers must also ensure
that the theory is internally consistent, for otherwise it is trivially refuted. This is significant,
for if the engineer does not take the scientific approach of actively seeking refutations, an
inconsistent theory can also be used to prove that the system has every desirable property!

Another property that most people would expect of a theory is that it should aid
understanding. This adds a vital new dimension to the life cycle view, for it adds
"explication" to the current "specification"--->"implementation" pairs. Specifications are
usually interpreted as expressing what a system should do, and implementations as
capturing how it should be done. Theories, however, also capture some notion of
explanation: typically by the construction of sets of laws and relationships involving both
well-understood (grounded) phenomena and new theoretical terms. This often poses a
problem for the designer, for increasing the customers' understanding of the problem
frequently leads to subsequent refutation of the theory, as they become better placed to
devise more stringent tests for the theory. This is a contractual, rather than technical,
problem, however, for the theory building view, and it simply means that clean contractual
boundaries need to be established and documented [11]. This is a non-trivial matter, but it is
not a weakness of the theory building view, rather it demonstrates that the paradigm is
capturing explicitly what software designers already know: estimating how much it will cost
to solve a customer's problem is virtually impossible in the software industry. It may mean
that project management will want to superimpose a documentation structure onto the
theory building activities that reflects a traditional life cycle, of course, but this is perfectly
possible.

Methodology

It is important to realise that we are not suggesting a program is a theory, rather that the
task of writing a program involves the production of a theory, and that the driving force
behind the design process is the theory, not the program text. One way of viewing the
relationship between specifications, theories and programs is to consider both specifications
and programs as models of the theory.

In the early stages of a design, the models we construct will generally be considered as
specifications, unless we are adopting a strategy of prototyping, in which case we will
construct executable models, or programs, throughout. These models will not usually
capture all aspects of the current theory, but will address specific abstractions pertinent to
the current sub-task, just as an aircraft designer might construct a model to place in a wind
tunnel to test aerodynamics, ignoring safety evaluation procedures or fuel consumption, or a
statistical model to test system safety parameters under component failure, ignoring
aerodynamics. It is important to understand the proper use of these models, for they are
being used to test hypotheses drawn from the theory. Without the theory neither the
specification nor the program cannot be tested, for no predictions can be made to allow
refutation.




One advantage of the theory building approach is that it is easy to see how the process starts.
The traditional life cycle usually begins with requirements capture: but how can we capture
the requirements for something before we know what that something is? With theory
building, however, we start with a theory, no matter how tentative and abstract, that
provides the searchlight for seeking out refutations. The facts that cause our tentative theory
to be refuted thus become requirements for the subsequent theory to capture. In general, the
more experienced an engineer is in a particular problem domain, the better the initial
theories will be. Indeed, a good engineer solving a standard problem may already have
sufficient knowledge to construct a suitable theory at the first attempt. There may be no
need for "specifications" or "prototypes": the only model constructed will be the program.
The attempts at refutation must still be as sincere, of course, and experience will equip the
engineer with knowledge of the weaknesses of the theory as well as the strengths. The
novice software designer will undoubtedly find the construction of a suitable initial theory a
very demanding task, and may well flounder, or try lots of inappropriate experiments,
hoping to see some patterns emerge that will suggest suitable laws to simplify the task. The
task will be complicated by the theories that the customers and users bring to the process,
which will need to be elicited and reconciled.

The central trunk of the design process is thus a series of theories, each of which is "better"
than the last in some sense. Models may be constructed at any stage, with the final model
(for the time being) comprising a computational model that the customer recognises as a
program. The issue of what makes one theory "better" than another is one that has caused
debate in the Philosophy of Science for many years. It is usually the case that theories that
have been refuted are rejected, although a refuted theory may still have a role to play in a
less general domain of application. Thus a theory that does not quite meet the requirements
of a design task might be the best the designer can find within the resource constraints
imposed: the manual then contains instructions as to how the user navigates around the areas
where problems might arise. In science it is also the case that more general theories are
preferred to those of limited applicability. This may not be the case in Software
Engineering, where selling products that are more powerful than the customer is paying for
may not be acceptable commercially.

A more difficult issue is deciding what to do when a theory is refuted. Clearly it is not
acceptable to start again: we must build on what has gone before. Lakatos suggests that
research programmes contain a "hard core", that is, a kernel of the theory that will not be
refuted except as a last resort. Moreover, this hard core can be carried from project to
project, providing continuity for the engineer, and a starting point for each new design task.
The scientist employs negative heuristics, avoiding difficult paths, and positive heuristics,
driving the research programme in the right direction [12]. Further discussion of these issues
are beyond the scope of this brief introduction to the theory building view, but many of
these ideas has been developed elsewhere [13].

One important property of any new paradigm that is proposed is that it should be able to
explain more than the one it replaces. The life cycle view of the development process is
rather limited: indeed, many people would claim that it only represents an idealised structure
that many managers would like their engineers to conform to, rather than capturing the
design process as actually carried out. This may, of course, still be a valuable enterprise
[14]. Let us briefly illustrate that the theory building view is sufficiently powerful to express
two of the major approaches to design that have been suggested.

First, note that if we construct computational models from the outset we can carry out rapid
prototyping. Each prototype is used to experiment via computational simulations of the
theory, leading to refutation and subsequent refinement, or contractual boundaries if the
customer is satisfied with the abstraction presented.

If we construct a formal specification it may be a partial theory presentation for the theory.
In this case we can test aspects of the programme directly against the specification. We may
even establish a suitable morphism between the specification and the programme text, in




which case there is no point in carrying out testing of both the programme and the
specification, for no additional refutations can be found. Establishing this morphism is
sometimes referred to as a "correctness proof" [15], a somewhat confusing term as the proof
says nothing at all about the fitness for purpose of the theory being modelled. It is simply a
correspondence proof, allowing a simplification of the task of refutation.

Conclusions

In this brief paper we have put forward the view that Software Engineering should be
considering alternative frameworks for the discussion of the software design process. The
documentation-driven approach that is captured by the traditional life cycle has achieved a
dominance that threatens to stifle the exploration of issues that do not fit comfortably within
it. Moreover, it is difficult to see how research from within this dominant paradigm, with the
acceptance of all the assumptions this entails, can ever lead to any radical alternatives.

We have put forward the idea that a fruitful avenue for future research into the software
design process might be to consider the theoretical understanding of the system being
developed as the true end product, rather than the executable code. This theoretical
understanding might be termed a theory, and we can then start to explore the design process
as a theory building enterprise, drawing upon the Philosophy of Science for insights
regarding methodology. No claim is being made that this alternative framework is "correct",
simply that it may stimulate areas of research that do not arise naturally through the life
cycle.

References

[1] Alexander,C: Notes on the synthesis of form, Harvard University Press, 1964.

[2] Loomes,M: Selfconscious or unselfconcious design, JIT 5(1):33-36, March 1990.

[3] Sprague de Camp,L: Ancient Engineers, Tandem, 1977.

[4] Kuhn,T: The structure of scientific revolutions, University of Chicago Press, 1970.

[5] Gries, D: The science of programming, Springer-Verlag, 1981.

[6] Hoare, C: Programming: dsorcery or science?, IEEE Software: 141-154, April 1984.

[7]1 Burstall,R & Goguen,J: Putting theories together to make specifications, Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, 1977.

[8] Naur,P: Programming as theory buiolding, Microprocessing and Microprogramming,
15:253-261, 1985.

[9] Ryle,G: The concept of mind, Peregrin Books, 1949.

[10] Popper,C: The logic of scientific discovery, Hutchinson & Co., 1959.

[11] Cohen, B: Justification of formal methods for system specification, Software and
Microsystems, 1(65):119-127, August 1982.

[12] Lakatos,I: Falsification and the methodology of scientific research programmes, in
Lakatos and Musgrave (editors) Criticism and the groth of knowledge, CUP 1970.

[13] Loomes, M: Software engineering curriculum design, PhD thesis, University of
Surrey, 1991.

[14] Parnas,D & Clements, P: A rational design process: how and why to fake it, in
LNCS 186, Springer-Verlag, 1985.

[15] Loomes,M: Logic and correctness proofs, in Software Engineering Reference Book,
Butterworths, 1991.




